1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Arm Firmware Framework for ARMv8-A(FFA) interface driver 4 * 5 * The Arm FFA specification[1] describes a software architecture to 6 * leverages the virtualization extension to isolate software images 7 * provided by an ecosystem of vendors from each other and describes 8 * interfaces that standardize communication between the various software 9 * images including communication between images in the Secure world and 10 * Normal world. Any Hypervisor could use the FFA interfaces to enable 11 * communication between VMs it manages. 12 * 13 * The Hypervisor a.k.a Partition managers in FFA terminology can assign 14 * system resources(Memory regions, Devices, CPU cycles) to the partitions 15 * and manage isolation amongst them. 16 * 17 * [1] https://developer.arm.com/docs/den0077/latest 18 * 19 * Copyright (C) 2021 ARM Ltd. 20 */ 21 22 #define DRIVER_NAME "ARM FF-A" 23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 24 25 #include <linux/acpi.h> 26 #include <linux/arm_ffa.h> 27 #include <linux/bitfield.h> 28 #include <linux/cpuhotplug.h> 29 #include <linux/delay.h> 30 #include <linux/device.h> 31 #include <linux/hashtable.h> 32 #include <linux/interrupt.h> 33 #include <linux/io.h> 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/mm.h> 37 #include <linux/mutex.h> 38 #include <linux/of_irq.h> 39 #include <linux/scatterlist.h> 40 #include <linux/slab.h> 41 #include <linux/smp.h> 42 #include <linux/uuid.h> 43 #include <linux/xarray.h> 44 45 #include "common.h" 46 47 #define FFA_DRIVER_VERSION FFA_VERSION_1_2 48 #define FFA_MIN_VERSION FFA_VERSION_1_0 49 50 #define SENDER_ID_MASK GENMASK(31, 16) 51 #define RECEIVER_ID_MASK GENMASK(15, 0) 52 #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x)))) 53 #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x)))) 54 #define PACK_TARGET_INFO(s, r) \ 55 (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r))) 56 57 #define RXTX_MAP_MIN_BUFSZ_MASK GENMASK(1, 0) 58 #define RXTX_MAP_MIN_BUFSZ(x) ((x) & RXTX_MAP_MIN_BUFSZ_MASK) 59 60 #define FFA_MAX_NOTIFICATIONS 64 61 62 static ffa_fn *invoke_ffa_fn; 63 64 static const int ffa_linux_errmap[] = { 65 /* better than switch case as long as return value is continuous */ 66 0, /* FFA_RET_SUCCESS */ 67 -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */ 68 -EINVAL, /* FFA_RET_INVALID_PARAMETERS */ 69 -ENOMEM, /* FFA_RET_NO_MEMORY */ 70 -EBUSY, /* FFA_RET_BUSY */ 71 -EINTR, /* FFA_RET_INTERRUPTED */ 72 -EACCES, /* FFA_RET_DENIED */ 73 -EAGAIN, /* FFA_RET_RETRY */ 74 -ECANCELED, /* FFA_RET_ABORTED */ 75 -ENODATA, /* FFA_RET_NO_DATA */ 76 -EAGAIN, /* FFA_RET_NOT_READY */ 77 }; 78 79 static inline int ffa_to_linux_errno(int errno) 80 { 81 int err_idx = -errno; 82 83 if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap)) 84 return ffa_linux_errmap[err_idx]; 85 return -EINVAL; 86 } 87 88 struct ffa_pcpu_irq { 89 struct ffa_drv_info *info; 90 }; 91 92 struct ffa_drv_info { 93 u32 version; 94 u16 vm_id; 95 struct mutex rx_lock; /* lock to protect Rx buffer */ 96 struct mutex tx_lock; /* lock to protect Tx buffer */ 97 void *rx_buffer; 98 void *tx_buffer; 99 size_t rxtx_bufsz; 100 bool mem_ops_native; 101 bool msg_direct_req2_supp; 102 bool bitmap_created; 103 bool notif_enabled; 104 unsigned int sched_recv_irq; 105 unsigned int notif_pend_irq; 106 unsigned int cpuhp_state; 107 struct ffa_pcpu_irq __percpu *irq_pcpu; 108 struct workqueue_struct *notif_pcpu_wq; 109 struct work_struct notif_pcpu_work; 110 struct work_struct sched_recv_irq_work; 111 struct xarray partition_info; 112 DECLARE_HASHTABLE(notifier_hash, ilog2(FFA_MAX_NOTIFICATIONS)); 113 rwlock_t notify_lock; /* lock to protect notifier hashtable */ 114 }; 115 116 static struct ffa_drv_info *drv_info; 117 118 /* 119 * The driver must be able to support all the versions from the earliest 120 * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION. 121 * The specification states that if firmware supports a FFA implementation 122 * that is incompatible with and at a greater version number than specified 123 * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION), 124 * it must return the NOT_SUPPORTED error code. 125 */ 126 static u32 ffa_compatible_version_find(u32 version) 127 { 128 u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version); 129 u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION); 130 u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION); 131 132 if ((major < drv_major) || (major == drv_major && minor <= drv_minor)) 133 return version; 134 135 pr_info("Firmware version higher than driver version, downgrading\n"); 136 return FFA_DRIVER_VERSION; 137 } 138 139 static int ffa_version_check(u32 *version) 140 { 141 ffa_value_t ver; 142 143 invoke_ffa_fn((ffa_value_t){ 144 .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION, 145 }, &ver); 146 147 if ((s32)ver.a0 == FFA_RET_NOT_SUPPORTED) { 148 pr_info("FFA_VERSION returned not supported\n"); 149 return -EOPNOTSUPP; 150 } 151 152 if (FFA_MAJOR_VERSION(ver.a0) > FFA_MAJOR_VERSION(FFA_DRIVER_VERSION)) { 153 pr_err("Incompatible v%d.%d! Latest supported v%d.%d\n", 154 FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0), 155 FFA_MAJOR_VERSION(FFA_DRIVER_VERSION), 156 FFA_MINOR_VERSION(FFA_DRIVER_VERSION)); 157 return -EINVAL; 158 } 159 160 if (ver.a0 < FFA_MIN_VERSION) { 161 pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n", 162 FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0), 163 FFA_MAJOR_VERSION(FFA_MIN_VERSION), 164 FFA_MINOR_VERSION(FFA_MIN_VERSION)); 165 return -EINVAL; 166 } 167 168 pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION), 169 FFA_MINOR_VERSION(FFA_DRIVER_VERSION)); 170 pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0), 171 FFA_MINOR_VERSION(ver.a0)); 172 *version = ffa_compatible_version_find(ver.a0); 173 174 return 0; 175 } 176 177 static int ffa_rx_release(void) 178 { 179 ffa_value_t ret; 180 181 invoke_ffa_fn((ffa_value_t){ 182 .a0 = FFA_RX_RELEASE, 183 }, &ret); 184 185 if (ret.a0 == FFA_ERROR) 186 return ffa_to_linux_errno((int)ret.a2); 187 188 /* check for ret.a0 == FFA_RX_RELEASE ? */ 189 190 return 0; 191 } 192 193 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt) 194 { 195 ffa_value_t ret; 196 197 invoke_ffa_fn((ffa_value_t){ 198 .a0 = FFA_FN_NATIVE(RXTX_MAP), 199 .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt, 200 }, &ret); 201 202 if (ret.a0 == FFA_ERROR) 203 return ffa_to_linux_errno((int)ret.a2); 204 205 return 0; 206 } 207 208 static int ffa_rxtx_unmap(u16 vm_id) 209 { 210 ffa_value_t ret; 211 212 invoke_ffa_fn((ffa_value_t){ 213 .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0), 214 }, &ret); 215 216 if (ret.a0 == FFA_ERROR) 217 return ffa_to_linux_errno((int)ret.a2); 218 219 return 0; 220 } 221 222 static int ffa_features(u32 func_feat_id, u32 input_props, 223 u32 *if_props_1, u32 *if_props_2) 224 { 225 ffa_value_t id; 226 227 if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) { 228 pr_err("%s: Invalid Parameters: %x, %x", __func__, 229 func_feat_id, input_props); 230 return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS); 231 } 232 233 invoke_ffa_fn((ffa_value_t){ 234 .a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props, 235 }, &id); 236 237 if (id.a0 == FFA_ERROR) 238 return ffa_to_linux_errno((int)id.a2); 239 240 if (if_props_1) 241 *if_props_1 = id.a2; 242 if (if_props_2) 243 *if_props_2 = id.a3; 244 245 return 0; 246 } 247 248 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0) 249 #define FFA_SUPPORTS_GET_COUNT_ONLY(version) ((version) > FFA_VERSION_1_0) 250 #define FFA_PART_INFO_HAS_SIZE_IN_RESP(version) ((version) > FFA_VERSION_1_0) 251 #define FFA_PART_INFO_HAS_UUID_IN_RESP(version) ((version) > FFA_VERSION_1_0) 252 #define FFA_PART_INFO_HAS_EXEC_STATE_IN_RESP(version) \ 253 ((version) > FFA_VERSION_1_0) 254 255 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */ 256 static int 257 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3, 258 struct ffa_partition_info *buffer, int num_partitions) 259 { 260 int idx, count, flags = 0, sz, buf_sz; 261 ffa_value_t partition_info; 262 263 if (FFA_SUPPORTS_GET_COUNT_ONLY(drv_info->version) && 264 (!buffer || !num_partitions)) /* Just get the count for now */ 265 flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY; 266 267 mutex_lock(&drv_info->rx_lock); 268 invoke_ffa_fn((ffa_value_t){ 269 .a0 = FFA_PARTITION_INFO_GET, 270 .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3, 271 .a5 = flags, 272 }, &partition_info); 273 274 if (partition_info.a0 == FFA_ERROR) { 275 mutex_unlock(&drv_info->rx_lock); 276 return ffa_to_linux_errno((int)partition_info.a2); 277 } 278 279 count = partition_info.a2; 280 281 if (FFA_PART_INFO_HAS_SIZE_IN_RESP(drv_info->version)) { 282 buf_sz = sz = partition_info.a3; 283 if (sz > sizeof(*buffer)) 284 buf_sz = sizeof(*buffer); 285 } else { 286 buf_sz = sz = 8; 287 } 288 289 if (buffer && count <= num_partitions) 290 for (idx = 0; idx < count; idx++) { 291 struct ffa_partition_info_le { 292 __le16 id; 293 __le16 exec_ctxt; 294 __le32 properties; 295 uuid_t uuid; 296 } *rx_buf = drv_info->rx_buffer + idx * sz; 297 struct ffa_partition_info *buf = buffer + idx; 298 299 buf->id = le16_to_cpu(rx_buf->id); 300 buf->exec_ctxt = le16_to_cpu(rx_buf->exec_ctxt); 301 buf->properties = le32_to_cpu(rx_buf->properties); 302 if (buf_sz > 8) 303 import_uuid(&buf->uuid, (u8 *)&rx_buf->uuid); 304 } 305 306 if (!(flags & PARTITION_INFO_GET_RETURN_COUNT_ONLY)) 307 ffa_rx_release(); 308 309 mutex_unlock(&drv_info->rx_lock); 310 311 return count; 312 } 313 314 #define LAST_INDEX_MASK GENMASK(15, 0) 315 #define CURRENT_INDEX_MASK GENMASK(31, 16) 316 #define UUID_INFO_TAG_MASK GENMASK(47, 32) 317 #define PARTITION_INFO_SZ_MASK GENMASK(63, 48) 318 #define PARTITION_COUNT(x) ((u16)(FIELD_GET(LAST_INDEX_MASK, (x))) + 1) 319 #define CURRENT_INDEX(x) ((u16)(FIELD_GET(CURRENT_INDEX_MASK, (x)))) 320 #define UUID_INFO_TAG(x) ((u16)(FIELD_GET(UUID_INFO_TAG_MASK, (x)))) 321 #define PARTITION_INFO_SZ(x) ((u16)(FIELD_GET(PARTITION_INFO_SZ_MASK, (x)))) 322 #define PART_INFO_ID_MASK GENMASK(15, 0) 323 #define PART_INFO_EXEC_CXT_MASK GENMASK(31, 16) 324 #define PART_INFO_PROPS_MASK GENMASK(63, 32) 325 #define PART_INFO_ID(x) ((u16)(FIELD_GET(PART_INFO_ID_MASK, (x)))) 326 #define PART_INFO_EXEC_CXT(x) ((u16)(FIELD_GET(PART_INFO_EXEC_CXT_MASK, (x)))) 327 #define PART_INFO_PROPERTIES(x) ((u32)(FIELD_GET(PART_INFO_PROPS_MASK, (x)))) 328 static int 329 __ffa_partition_info_get_regs(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3, 330 struct ffa_partition_info *buffer, int num_parts) 331 { 332 u16 buf_sz, start_idx, cur_idx, count = 0, prev_idx = 0, tag = 0; 333 struct ffa_partition_info *buf = buffer; 334 ffa_value_t partition_info; 335 336 do { 337 __le64 *regs; 338 int idx; 339 340 start_idx = prev_idx ? prev_idx + 1 : 0; 341 342 invoke_ffa_fn((ffa_value_t){ 343 .a0 = FFA_PARTITION_INFO_GET_REGS, 344 .a1 = (u64)uuid1 << 32 | uuid0, 345 .a2 = (u64)uuid3 << 32 | uuid2, 346 .a3 = start_idx | tag << 16, 347 }, &partition_info); 348 349 if (partition_info.a0 == FFA_ERROR) 350 return ffa_to_linux_errno((int)partition_info.a2); 351 352 if (!count) 353 count = PARTITION_COUNT(partition_info.a2); 354 if (!buffer || !num_parts) /* count only */ 355 return count; 356 357 cur_idx = CURRENT_INDEX(partition_info.a2); 358 tag = UUID_INFO_TAG(partition_info.a2); 359 buf_sz = PARTITION_INFO_SZ(partition_info.a2); 360 if (buf_sz > sizeof(*buffer)) 361 buf_sz = sizeof(*buffer); 362 363 regs = (void *)&partition_info.a3; 364 for (idx = 0; idx < cur_idx - start_idx + 1; idx++, buf++) { 365 union { 366 uuid_t uuid; 367 u64 regs[2]; 368 } uuid_regs = { 369 .regs = { 370 le64_to_cpu(*(regs + 1)), 371 le64_to_cpu(*(regs + 2)), 372 } 373 }; 374 u64 val = *(u64 *)regs; 375 376 buf->id = PART_INFO_ID(val); 377 buf->exec_ctxt = PART_INFO_EXEC_CXT(val); 378 buf->properties = PART_INFO_PROPERTIES(val); 379 uuid_copy(&buf->uuid, &uuid_regs.uuid); 380 regs += 3; 381 } 382 prev_idx = cur_idx; 383 384 } while (cur_idx < (count - 1)); 385 386 return count; 387 } 388 389 /* buffer is allocated and caller must free the same if returned count > 0 */ 390 static int 391 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer) 392 { 393 int count; 394 u32 uuid0_4[4]; 395 bool reg_mode = false; 396 struct ffa_partition_info *pbuf; 397 398 if (!ffa_features(FFA_PARTITION_INFO_GET_REGS, 0, NULL, NULL)) 399 reg_mode = true; 400 401 export_uuid((u8 *)uuid0_4, uuid); 402 if (reg_mode) 403 count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1], 404 uuid0_4[2], uuid0_4[3], 405 NULL, 0); 406 else 407 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], 408 uuid0_4[2], uuid0_4[3], 409 NULL, 0); 410 if (count <= 0) 411 return count; 412 413 pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL); 414 if (!pbuf) 415 return -ENOMEM; 416 417 if (reg_mode) 418 count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1], 419 uuid0_4[2], uuid0_4[3], 420 pbuf, count); 421 else 422 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], 423 uuid0_4[2], uuid0_4[3], 424 pbuf, count); 425 if (count <= 0) 426 kfree(pbuf); 427 else 428 *buffer = pbuf; 429 430 return count; 431 } 432 433 #define VM_ID_MASK GENMASK(15, 0) 434 static int ffa_id_get(u16 *vm_id) 435 { 436 ffa_value_t id; 437 438 invoke_ffa_fn((ffa_value_t){ 439 .a0 = FFA_ID_GET, 440 }, &id); 441 442 if (id.a0 == FFA_ERROR) 443 return ffa_to_linux_errno((int)id.a2); 444 445 *vm_id = FIELD_GET(VM_ID_MASK, (id.a2)); 446 447 return 0; 448 } 449 450 static inline void ffa_msg_send_wait_for_completion(ffa_value_t *ret) 451 { 452 while (ret->a0 == FFA_INTERRUPT || ret->a0 == FFA_YIELD) { 453 if (ret->a0 == FFA_YIELD) 454 fsleep(1000); 455 456 invoke_ffa_fn((ffa_value_t){ 457 .a0 = FFA_RUN, .a1 = ret->a1, 458 }, ret); 459 } 460 } 461 462 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit, 463 struct ffa_send_direct_data *data) 464 { 465 u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); 466 ffa_value_t ret; 467 468 if (mode_32bit) { 469 req_id = FFA_MSG_SEND_DIRECT_REQ; 470 resp_id = FFA_MSG_SEND_DIRECT_RESP; 471 } else { 472 req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ); 473 resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP); 474 } 475 476 invoke_ffa_fn((ffa_value_t){ 477 .a0 = req_id, .a1 = src_dst_ids, .a2 = 0, 478 .a3 = data->data0, .a4 = data->data1, .a5 = data->data2, 479 .a6 = data->data3, .a7 = data->data4, 480 }, &ret); 481 482 ffa_msg_send_wait_for_completion(&ret); 483 484 if (ret.a0 == FFA_ERROR) 485 return ffa_to_linux_errno((int)ret.a2); 486 487 if (ret.a0 == resp_id) { 488 data->data0 = ret.a3; 489 data->data1 = ret.a4; 490 data->data2 = ret.a5; 491 data->data3 = ret.a6; 492 data->data4 = ret.a7; 493 return 0; 494 } 495 496 return -EINVAL; 497 } 498 499 static int ffa_msg_send2(struct ffa_device *dev, u16 src_id, void *buf, size_t sz) 500 { 501 u32 src_dst_ids = PACK_TARGET_INFO(src_id, dev->vm_id); 502 struct ffa_indirect_msg_hdr *msg; 503 ffa_value_t ret; 504 int retval = 0; 505 506 if (sz > (drv_info->rxtx_bufsz - sizeof(*msg))) 507 return -ERANGE; 508 509 mutex_lock(&drv_info->tx_lock); 510 511 msg = drv_info->tx_buffer; 512 msg->flags = 0; 513 msg->res0 = 0; 514 msg->offset = sizeof(*msg); 515 msg->send_recv_id = src_dst_ids; 516 msg->size = sz; 517 uuid_copy(&msg->uuid, &dev->uuid); 518 memcpy((u8 *)msg + msg->offset, buf, sz); 519 520 /* flags = 0, sender VMID = 0 works for both physical/virtual NS */ 521 invoke_ffa_fn((ffa_value_t){ 522 .a0 = FFA_MSG_SEND2, .a1 = 0, .a2 = 0 523 }, &ret); 524 525 if (ret.a0 == FFA_ERROR) 526 retval = ffa_to_linux_errno((int)ret.a2); 527 528 mutex_unlock(&drv_info->tx_lock); 529 return retval; 530 } 531 532 static int ffa_msg_send_direct_req2(u16 src_id, u16 dst_id, const uuid_t *uuid, 533 struct ffa_send_direct_data2 *data) 534 { 535 u32 src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); 536 union { 537 uuid_t uuid; 538 __le64 regs[2]; 539 } uuid_regs = { .uuid = *uuid }; 540 ffa_value_t ret, args = { 541 .a0 = FFA_MSG_SEND_DIRECT_REQ2, 542 .a1 = src_dst_ids, 543 .a2 = le64_to_cpu(uuid_regs.regs[0]), 544 .a3 = le64_to_cpu(uuid_regs.regs[1]), 545 }; 546 memcpy((void *)&args + offsetof(ffa_value_t, a4), data, sizeof(*data)); 547 548 invoke_ffa_fn(args, &ret); 549 550 ffa_msg_send_wait_for_completion(&ret); 551 552 if (ret.a0 == FFA_ERROR) 553 return ffa_to_linux_errno((int)ret.a2); 554 555 if (ret.a0 == FFA_MSG_SEND_DIRECT_RESP2) { 556 memcpy(data, (void *)&ret + offsetof(ffa_value_t, a4), sizeof(*data)); 557 return 0; 558 } 559 560 return -EINVAL; 561 } 562 563 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz, 564 u32 frag_len, u32 len, u64 *handle) 565 { 566 ffa_value_t ret; 567 568 invoke_ffa_fn((ffa_value_t){ 569 .a0 = func_id, .a1 = len, .a2 = frag_len, 570 .a3 = buf, .a4 = buf_sz, 571 }, &ret); 572 573 while (ret.a0 == FFA_MEM_OP_PAUSE) 574 invoke_ffa_fn((ffa_value_t){ 575 .a0 = FFA_MEM_OP_RESUME, 576 .a1 = ret.a1, .a2 = ret.a2, 577 }, &ret); 578 579 if (ret.a0 == FFA_ERROR) 580 return ffa_to_linux_errno((int)ret.a2); 581 582 if (ret.a0 == FFA_SUCCESS) { 583 if (handle) 584 *handle = PACK_HANDLE(ret.a2, ret.a3); 585 } else if (ret.a0 == FFA_MEM_FRAG_RX) { 586 if (handle) 587 *handle = PACK_HANDLE(ret.a1, ret.a2); 588 } else { 589 return -EOPNOTSUPP; 590 } 591 592 return frag_len; 593 } 594 595 static int ffa_mem_next_frag(u64 handle, u32 frag_len) 596 { 597 ffa_value_t ret; 598 599 invoke_ffa_fn((ffa_value_t){ 600 .a0 = FFA_MEM_FRAG_TX, 601 .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle), 602 .a3 = frag_len, 603 }, &ret); 604 605 while (ret.a0 == FFA_MEM_OP_PAUSE) 606 invoke_ffa_fn((ffa_value_t){ 607 .a0 = FFA_MEM_OP_RESUME, 608 .a1 = ret.a1, .a2 = ret.a2, 609 }, &ret); 610 611 if (ret.a0 == FFA_ERROR) 612 return ffa_to_linux_errno((int)ret.a2); 613 614 if (ret.a0 == FFA_MEM_FRAG_RX) 615 return ret.a3; 616 else if (ret.a0 == FFA_SUCCESS) 617 return 0; 618 619 return -EOPNOTSUPP; 620 } 621 622 static int 623 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len, 624 u32 len, u64 *handle, bool first) 625 { 626 if (!first) 627 return ffa_mem_next_frag(*handle, frag_len); 628 629 return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle); 630 } 631 632 static u32 ffa_get_num_pages_sg(struct scatterlist *sg) 633 { 634 u32 num_pages = 0; 635 636 do { 637 num_pages += sg->length / FFA_PAGE_SIZE; 638 } while ((sg = sg_next(sg))); 639 640 return num_pages; 641 } 642 643 static u16 ffa_memory_attributes_get(u32 func_id) 644 { 645 /* 646 * For the memory lend or donate operation, if the receiver is a PE or 647 * a proxy endpoint, the owner/sender must not specify the attributes 648 */ 649 if (func_id == FFA_FN_NATIVE(MEM_LEND) || 650 func_id == FFA_MEM_LEND) 651 return 0; 652 653 return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE; 654 } 655 656 static void ffa_emad_impdef_value_init(u32 version, void *dst, void *src) 657 { 658 struct ffa_mem_region_attributes *ep_mem_access; 659 660 if (FFA_EMAD_HAS_IMPDEF_FIELD(version)) 661 memcpy(dst, src, sizeof(ep_mem_access->impdef_val)); 662 } 663 664 static void 665 ffa_mem_region_additional_setup(u32 version, struct ffa_mem_region *mem_region) 666 { 667 if (!FFA_MEM_REGION_HAS_EP_MEM_OFFSET(version)) { 668 mem_region->ep_mem_size = 0; 669 } else { 670 mem_region->ep_mem_size = ffa_emad_size_get(version); 671 mem_region->ep_mem_offset = sizeof(*mem_region); 672 memset(mem_region->reserved, 0, 12); 673 } 674 } 675 676 static int 677 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize, 678 struct ffa_mem_ops_args *args) 679 { 680 int rc = 0; 681 bool first = true; 682 u32 composite_offset; 683 phys_addr_t addr = 0; 684 struct ffa_mem_region *mem_region = buffer; 685 struct ffa_composite_mem_region *composite; 686 struct ffa_mem_region_addr_range *constituents; 687 struct ffa_mem_region_attributes *ep_mem_access; 688 u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg); 689 690 mem_region->tag = args->tag; 691 mem_region->flags = args->flags; 692 mem_region->sender_id = drv_info->vm_id; 693 mem_region->attributes = ffa_memory_attributes_get(func_id); 694 composite_offset = ffa_mem_desc_offset(buffer, args->nattrs, 695 drv_info->version); 696 697 for (idx = 0; idx < args->nattrs; idx++) { 698 ep_mem_access = buffer + 699 ffa_mem_desc_offset(buffer, idx, drv_info->version); 700 ep_mem_access->receiver = args->attrs[idx].receiver; 701 ep_mem_access->attrs = args->attrs[idx].attrs; 702 ep_mem_access->composite_off = composite_offset; 703 ep_mem_access->flag = 0; 704 ep_mem_access->reserved = 0; 705 ffa_emad_impdef_value_init(drv_info->version, 706 ep_mem_access->impdef_val, 707 args->attrs[idx].impdef_val); 708 } 709 mem_region->handle = 0; 710 mem_region->ep_count = args->nattrs; 711 ffa_mem_region_additional_setup(drv_info->version, mem_region); 712 713 composite = buffer + composite_offset; 714 composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg); 715 composite->addr_range_cnt = num_entries; 716 composite->reserved = 0; 717 718 length = composite_offset + CONSTITUENTS_OFFSET(num_entries); 719 frag_len = composite_offset + CONSTITUENTS_OFFSET(0); 720 if (frag_len > max_fragsize) 721 return -ENXIO; 722 723 if (!args->use_txbuf) { 724 addr = virt_to_phys(buffer); 725 buf_sz = max_fragsize / FFA_PAGE_SIZE; 726 } 727 728 constituents = buffer + frag_len; 729 idx = 0; 730 do { 731 if (frag_len == max_fragsize) { 732 rc = ffa_transmit_fragment(func_id, addr, buf_sz, 733 frag_len, length, 734 &args->g_handle, first); 735 if (rc < 0) 736 return -ENXIO; 737 738 first = false; 739 idx = 0; 740 frag_len = 0; 741 constituents = buffer; 742 } 743 744 if ((void *)constituents - buffer > max_fragsize) { 745 pr_err("Memory Region Fragment > Tx Buffer size\n"); 746 return -EFAULT; 747 } 748 749 constituents->address = sg_phys(args->sg); 750 constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE; 751 constituents->reserved = 0; 752 constituents++; 753 frag_len += sizeof(struct ffa_mem_region_addr_range); 754 } while ((args->sg = sg_next(args->sg))); 755 756 return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len, 757 length, &args->g_handle, first); 758 } 759 760 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args) 761 { 762 int ret; 763 void *buffer; 764 size_t rxtx_bufsz = drv_info->rxtx_bufsz; 765 766 if (!args->use_txbuf) { 767 buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL); 768 if (!buffer) 769 return -ENOMEM; 770 } else { 771 buffer = drv_info->tx_buffer; 772 mutex_lock(&drv_info->tx_lock); 773 } 774 775 ret = ffa_setup_and_transmit(func_id, buffer, rxtx_bufsz, args); 776 777 if (args->use_txbuf) 778 mutex_unlock(&drv_info->tx_lock); 779 else 780 free_pages_exact(buffer, rxtx_bufsz); 781 782 return ret < 0 ? ret : 0; 783 } 784 785 static int ffa_memory_reclaim(u64 g_handle, u32 flags) 786 { 787 ffa_value_t ret; 788 789 invoke_ffa_fn((ffa_value_t){ 790 .a0 = FFA_MEM_RECLAIM, 791 .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle), 792 .a3 = flags, 793 }, &ret); 794 795 if (ret.a0 == FFA_ERROR) 796 return ffa_to_linux_errno((int)ret.a2); 797 798 return 0; 799 } 800 801 static int ffa_notification_bitmap_create(void) 802 { 803 ffa_value_t ret; 804 u16 vcpu_count = nr_cpu_ids; 805 806 invoke_ffa_fn((ffa_value_t){ 807 .a0 = FFA_NOTIFICATION_BITMAP_CREATE, 808 .a1 = drv_info->vm_id, .a2 = vcpu_count, 809 }, &ret); 810 811 if (ret.a0 == FFA_ERROR) 812 return ffa_to_linux_errno((int)ret.a2); 813 814 return 0; 815 } 816 817 static int ffa_notification_bitmap_destroy(void) 818 { 819 ffa_value_t ret; 820 821 invoke_ffa_fn((ffa_value_t){ 822 .a0 = FFA_NOTIFICATION_BITMAP_DESTROY, 823 .a1 = drv_info->vm_id, 824 }, &ret); 825 826 if (ret.a0 == FFA_ERROR) 827 return ffa_to_linux_errno((int)ret.a2); 828 829 return 0; 830 } 831 832 enum notify_type { 833 SECURE_PARTITION, 834 NON_SECURE_VM, 835 SPM_FRAMEWORK, 836 NS_HYP_FRAMEWORK, 837 }; 838 839 #define NOTIFICATION_LOW_MASK GENMASK(31, 0) 840 #define NOTIFICATION_HIGH_MASK GENMASK(63, 32) 841 #define NOTIFICATION_BITMAP_HIGH(x) \ 842 ((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x)))) 843 #define NOTIFICATION_BITMAP_LOW(x) \ 844 ((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x)))) 845 #define PACK_NOTIFICATION_BITMAP(low, high) \ 846 (FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \ 847 FIELD_PREP(NOTIFICATION_HIGH_MASK, (high))) 848 849 #define RECEIVER_VCPU_MASK GENMASK(31, 16) 850 #define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \ 851 (FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \ 852 FIELD_PREP(RECEIVER_ID_MASK, (r))) 853 854 #define NOTIFICATION_INFO_GET_MORE_PEND_MASK BIT(0) 855 #define NOTIFICATION_INFO_GET_ID_COUNT GENMASK(11, 7) 856 #define ID_LIST_MASK_64 GENMASK(51, 12) 857 #define ID_LIST_MASK_32 GENMASK(31, 12) 858 #define MAX_IDS_64 20 859 #define MAX_IDS_32 10 860 861 #define PER_VCPU_NOTIFICATION_FLAG BIT(0) 862 #define SECURE_PARTITION_BITMAP_ENABLE BIT(SECURE_PARTITION) 863 #define NON_SECURE_VM_BITMAP_ENABLE BIT(NON_SECURE_VM) 864 #define SPM_FRAMEWORK_BITMAP_ENABLE BIT(SPM_FRAMEWORK) 865 #define NS_HYP_FRAMEWORK_BITMAP_ENABLE BIT(NS_HYP_FRAMEWORK) 866 #define FFA_BITMAP_SECURE_ENABLE_MASK \ 867 (SECURE_PARTITION_BITMAP_ENABLE | SPM_FRAMEWORK_BITMAP_ENABLE) 868 #define FFA_BITMAP_NS_ENABLE_MASK \ 869 (NON_SECURE_VM_BITMAP_ENABLE | NS_HYP_FRAMEWORK_BITMAP_ENABLE) 870 #define FFA_BITMAP_ALL_ENABLE_MASK \ 871 (FFA_BITMAP_SECURE_ENABLE_MASK | FFA_BITMAP_NS_ENABLE_MASK) 872 873 #define FFA_SECURE_PARTITION_ID_FLAG BIT(15) 874 875 #define SPM_FRAMEWORK_BITMAP(x) NOTIFICATION_BITMAP_LOW(x) 876 #define NS_HYP_FRAMEWORK_BITMAP(x) NOTIFICATION_BITMAP_HIGH(x) 877 #define FRAMEWORK_NOTIFY_RX_BUFFER_FULL BIT(0) 878 879 static int ffa_notification_bind_common(u16 dst_id, u64 bitmap, 880 u32 flags, bool is_bind) 881 { 882 ffa_value_t ret; 883 u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id); 884 885 func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND; 886 887 invoke_ffa_fn((ffa_value_t){ 888 .a0 = func, .a1 = src_dst_ids, .a2 = flags, 889 .a3 = NOTIFICATION_BITMAP_LOW(bitmap), 890 .a4 = NOTIFICATION_BITMAP_HIGH(bitmap), 891 }, &ret); 892 893 if (ret.a0 == FFA_ERROR) 894 return ffa_to_linux_errno((int)ret.a2); 895 else if (ret.a0 != FFA_SUCCESS) 896 return -EINVAL; 897 898 return 0; 899 } 900 901 static 902 int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap) 903 { 904 ffa_value_t ret; 905 u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id); 906 907 invoke_ffa_fn((ffa_value_t) { 908 .a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags, 909 .a3 = NOTIFICATION_BITMAP_LOW(bitmap), 910 .a4 = NOTIFICATION_BITMAP_HIGH(bitmap), 911 }, &ret); 912 913 if (ret.a0 == FFA_ERROR) 914 return ffa_to_linux_errno((int)ret.a2); 915 else if (ret.a0 != FFA_SUCCESS) 916 return -EINVAL; 917 918 return 0; 919 } 920 921 struct ffa_notify_bitmaps { 922 u64 sp_map; 923 u64 vm_map; 924 u64 arch_map; 925 }; 926 927 static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify) 928 { 929 ffa_value_t ret; 930 u16 src_id = drv_info->vm_id; 931 u16 cpu_id = smp_processor_id(); 932 u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id); 933 934 invoke_ffa_fn((ffa_value_t){ 935 .a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags, 936 }, &ret); 937 938 if (ret.a0 == FFA_ERROR) 939 return ffa_to_linux_errno((int)ret.a2); 940 else if (ret.a0 != FFA_SUCCESS) 941 return -EINVAL; /* Something else went wrong. */ 942 943 if (flags & SECURE_PARTITION_BITMAP_ENABLE) 944 notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3); 945 if (flags & NON_SECURE_VM_BITMAP_ENABLE) 946 notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5); 947 if (flags & SPM_FRAMEWORK_BITMAP_ENABLE) 948 notify->arch_map = SPM_FRAMEWORK_BITMAP(ret.a6); 949 if (flags & NS_HYP_FRAMEWORK_BITMAP_ENABLE) 950 notify->arch_map = PACK_NOTIFICATION_BITMAP(notify->arch_map, 951 ret.a7); 952 953 return 0; 954 } 955 956 struct ffa_dev_part_info { 957 ffa_sched_recv_cb callback; 958 void *cb_data; 959 rwlock_t rw_lock; 960 struct ffa_device *dev; 961 struct list_head node; 962 }; 963 964 static void __do_sched_recv_cb(u16 part_id, u16 vcpu, bool is_per_vcpu) 965 { 966 struct ffa_dev_part_info *partition = NULL, *tmp; 967 ffa_sched_recv_cb callback; 968 struct list_head *phead; 969 void *cb_data; 970 971 phead = xa_load(&drv_info->partition_info, part_id); 972 if (!phead) { 973 pr_err("%s: Invalid partition ID 0x%x\n", __func__, part_id); 974 return; 975 } 976 977 list_for_each_entry_safe(partition, tmp, phead, node) { 978 read_lock(&partition->rw_lock); 979 callback = partition->callback; 980 cb_data = partition->cb_data; 981 read_unlock(&partition->rw_lock); 982 983 if (callback) 984 callback(vcpu, is_per_vcpu, cb_data); 985 } 986 } 987 988 /* 989 * Map logical ID index to the u16 index within the packed ID list. 990 * 991 * For native responses (FF-A width == kernel word size), IDs are 992 * tightly packed: idx -> idx. 993 * 994 * For 32-bit responses on a 64-bit kernel, each 64-bit register 995 * contributes 4 x u16 values but only the lower 2 are defined; the 996 * upper 2 are garbage. This mapping skips those upper halves: 997 * 0,1,2,3,4,5,... -> 0,1,4,5,8,9,... 998 */ 999 static int list_idx_to_u16_idx(int idx, bool is_native_resp) 1000 { 1001 return is_native_resp ? idx : idx + 2 * (idx >> 1); 1002 } 1003 1004 static void ffa_notification_info_get(void) 1005 { 1006 int ids_processed, ids_count[MAX_IDS_64]; 1007 int idx, list, max_ids, lists_cnt; 1008 bool is_64b_resp, is_native_resp; 1009 ffa_value_t ret; 1010 u64 id_list; 1011 1012 do { 1013 invoke_ffa_fn((ffa_value_t){ 1014 .a0 = FFA_FN_NATIVE(NOTIFICATION_INFO_GET), 1015 }, &ret); 1016 1017 if (ret.a0 != FFA_FN_NATIVE(SUCCESS) && ret.a0 != FFA_SUCCESS) { 1018 if ((s32)ret.a2 != FFA_RET_NO_DATA) 1019 pr_err("Notification Info fetch failed: 0x%lx (0x%lx)", 1020 ret.a0, ret.a2); 1021 return; 1022 } 1023 1024 is_64b_resp = (ret.a0 == FFA_FN64_SUCCESS); 1025 is_native_resp = (ret.a0 == FFA_FN_NATIVE(SUCCESS)); 1026 1027 ids_processed = 0; 1028 lists_cnt = FIELD_GET(NOTIFICATION_INFO_GET_ID_COUNT, ret.a2); 1029 if (is_64b_resp) { 1030 max_ids = MAX_IDS_64; 1031 id_list = FIELD_GET(ID_LIST_MASK_64, ret.a2); 1032 } else { 1033 max_ids = MAX_IDS_32; 1034 id_list = FIELD_GET(ID_LIST_MASK_32, ret.a2); 1035 } 1036 1037 for (idx = 0; idx < lists_cnt; idx++, id_list >>= 2) 1038 ids_count[idx] = (id_list & 0x3) + 1; 1039 1040 /* Process IDs */ 1041 for (list = 0; list < lists_cnt; list++) { 1042 int u16_idx; 1043 u16 vcpu_id, part_id, *packed_id_list = (u16 *)&ret.a3; 1044 1045 if (ids_processed >= max_ids - 1) 1046 break; 1047 1048 u16_idx = list_idx_to_u16_idx(ids_processed, 1049 is_native_resp); 1050 part_id = packed_id_list[u16_idx]; 1051 ids_processed++; 1052 1053 if (ids_count[list] == 1) { /* Global Notification */ 1054 __do_sched_recv_cb(part_id, 0, false); 1055 continue; 1056 } 1057 1058 /* Per vCPU Notification */ 1059 for (idx = 1; idx < ids_count[list]; idx++) { 1060 if (ids_processed >= max_ids - 1) 1061 break; 1062 1063 u16_idx = list_idx_to_u16_idx(ids_processed, 1064 is_native_resp); 1065 vcpu_id = packed_id_list[u16_idx]; 1066 ids_processed++; 1067 1068 __do_sched_recv_cb(part_id, vcpu_id, true); 1069 } 1070 } 1071 } while (ret.a2 & NOTIFICATION_INFO_GET_MORE_PEND_MASK); 1072 } 1073 1074 static int ffa_run(struct ffa_device *dev, u16 vcpu) 1075 { 1076 ffa_value_t ret; 1077 u32 target = dev->vm_id << 16 | vcpu; 1078 1079 invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret); 1080 1081 while (ret.a0 == FFA_INTERRUPT) 1082 invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, }, 1083 &ret); 1084 1085 if (ret.a0 == FFA_ERROR) 1086 return ffa_to_linux_errno((int)ret.a2); 1087 1088 return 0; 1089 } 1090 1091 static void ffa_drvinfo_flags_init(void) 1092 { 1093 if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) || 1094 !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL)) 1095 drv_info->mem_ops_native = true; 1096 1097 if (!ffa_features(FFA_MSG_SEND_DIRECT_REQ2, 0, NULL, NULL) || 1098 !ffa_features(FFA_MSG_SEND_DIRECT_RESP2, 0, NULL, NULL)) 1099 drv_info->msg_direct_req2_supp = true; 1100 } 1101 1102 static u32 ffa_api_version_get(void) 1103 { 1104 return drv_info->version; 1105 } 1106 1107 static int ffa_partition_info_get(const char *uuid_str, 1108 struct ffa_partition_info *buffer) 1109 { 1110 int count; 1111 uuid_t uuid; 1112 struct ffa_partition_info *pbuf; 1113 1114 if (uuid_parse(uuid_str, &uuid)) { 1115 pr_err("invalid uuid (%s)\n", uuid_str); 1116 return -ENODEV; 1117 } 1118 1119 count = ffa_partition_probe(&uuid, &pbuf); 1120 if (count <= 0) 1121 return -ENOENT; 1122 1123 memcpy(buffer, pbuf, sizeof(*pbuf) * count); 1124 kfree(pbuf); 1125 return 0; 1126 } 1127 1128 static void ffa_mode_32bit_set(struct ffa_device *dev) 1129 { 1130 dev->mode_32bit = true; 1131 } 1132 1133 static int ffa_sync_send_receive(struct ffa_device *dev, 1134 struct ffa_send_direct_data *data) 1135 { 1136 return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id, 1137 dev->mode_32bit, data); 1138 } 1139 1140 static int ffa_indirect_msg_send(struct ffa_device *dev, void *buf, size_t sz) 1141 { 1142 return ffa_msg_send2(dev, drv_info->vm_id, buf, sz); 1143 } 1144 1145 static int ffa_sync_send_receive2(struct ffa_device *dev, 1146 struct ffa_send_direct_data2 *data) 1147 { 1148 if (!drv_info->msg_direct_req2_supp) 1149 return -EOPNOTSUPP; 1150 1151 return ffa_msg_send_direct_req2(drv_info->vm_id, dev->vm_id, 1152 &dev->uuid, data); 1153 } 1154 1155 static int ffa_memory_share(struct ffa_mem_ops_args *args) 1156 { 1157 if (drv_info->mem_ops_native) 1158 return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args); 1159 1160 return ffa_memory_ops(FFA_MEM_SHARE, args); 1161 } 1162 1163 static int ffa_memory_lend(struct ffa_mem_ops_args *args) 1164 { 1165 /* Note that upon a successful MEM_LEND request the caller 1166 * must ensure that the memory region specified is not accessed 1167 * until a successful MEM_RECALIM call has been made. 1168 * On systems with a hypervisor present this will been enforced, 1169 * however on systems without a hypervisor the responsibility 1170 * falls to the calling kernel driver to prevent access. 1171 */ 1172 if (drv_info->mem_ops_native) 1173 return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args); 1174 1175 return ffa_memory_ops(FFA_MEM_LEND, args); 1176 } 1177 1178 #define ffa_notifications_disabled() (!drv_info->notif_enabled) 1179 1180 struct notifier_cb_info { 1181 struct hlist_node hnode; 1182 struct ffa_device *dev; 1183 ffa_fwk_notifier_cb fwk_cb; 1184 ffa_notifier_cb cb; 1185 void *cb_data; 1186 }; 1187 1188 static int 1189 ffa_sched_recv_cb_update(struct ffa_device *dev, ffa_sched_recv_cb callback, 1190 void *cb_data, bool is_registration) 1191 { 1192 struct ffa_dev_part_info *partition = NULL, *tmp; 1193 struct list_head *phead; 1194 bool cb_valid; 1195 1196 if (ffa_notifications_disabled()) 1197 return -EOPNOTSUPP; 1198 1199 phead = xa_load(&drv_info->partition_info, dev->vm_id); 1200 if (!phead) { 1201 pr_err("%s: Invalid partition ID 0x%x\n", __func__, dev->vm_id); 1202 return -EINVAL; 1203 } 1204 1205 list_for_each_entry_safe(partition, tmp, phead, node) 1206 if (partition->dev == dev) 1207 break; 1208 1209 if (!partition) { 1210 pr_err("%s: No such partition ID 0x%x\n", __func__, dev->vm_id); 1211 return -EINVAL; 1212 } 1213 1214 write_lock(&partition->rw_lock); 1215 1216 cb_valid = !!partition->callback; 1217 if (!(is_registration ^ cb_valid)) { 1218 write_unlock(&partition->rw_lock); 1219 return -EINVAL; 1220 } 1221 1222 partition->callback = callback; 1223 partition->cb_data = cb_data; 1224 1225 write_unlock(&partition->rw_lock); 1226 return 0; 1227 } 1228 1229 static int ffa_sched_recv_cb_register(struct ffa_device *dev, 1230 ffa_sched_recv_cb cb, void *cb_data) 1231 { 1232 return ffa_sched_recv_cb_update(dev, cb, cb_data, true); 1233 } 1234 1235 static int ffa_sched_recv_cb_unregister(struct ffa_device *dev) 1236 { 1237 return ffa_sched_recv_cb_update(dev, NULL, NULL, false); 1238 } 1239 1240 static int ffa_notification_bind(u16 dst_id, u64 bitmap, u32 flags) 1241 { 1242 return ffa_notification_bind_common(dst_id, bitmap, flags, true); 1243 } 1244 1245 static int ffa_notification_unbind(u16 dst_id, u64 bitmap) 1246 { 1247 return ffa_notification_bind_common(dst_id, bitmap, 0, false); 1248 } 1249 1250 static enum notify_type ffa_notify_type_get(u16 vm_id) 1251 { 1252 if (vm_id & FFA_SECURE_PARTITION_ID_FLAG) 1253 return SECURE_PARTITION; 1254 else 1255 return NON_SECURE_VM; 1256 } 1257 1258 /* notifier_hnode_get* should be called with notify_lock held */ 1259 static struct notifier_cb_info * 1260 notifier_hnode_get_by_vmid(u16 notify_id, int vmid) 1261 { 1262 struct notifier_cb_info *node; 1263 1264 hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id) 1265 if (node->fwk_cb && vmid == node->dev->vm_id) 1266 return node; 1267 1268 return NULL; 1269 } 1270 1271 static struct notifier_cb_info * 1272 notifier_hnode_get_by_vmid_uuid(u16 notify_id, int vmid, const uuid_t *uuid) 1273 { 1274 struct notifier_cb_info *node; 1275 1276 if (uuid_is_null(uuid)) 1277 return notifier_hnode_get_by_vmid(notify_id, vmid); 1278 1279 hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id) 1280 if (node->fwk_cb && vmid == node->dev->vm_id && 1281 uuid_equal(&node->dev->uuid, uuid)) 1282 return node; 1283 1284 return NULL; 1285 } 1286 1287 static struct notifier_cb_info * 1288 notifier_hnode_get_by_type(u16 notify_id, enum notify_type type) 1289 { 1290 struct notifier_cb_info *node; 1291 1292 hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id) 1293 if (node->cb && type == ffa_notify_type_get(node->dev->vm_id)) 1294 return node; 1295 1296 return NULL; 1297 } 1298 1299 static int update_notifier_cb(struct ffa_device *dev, int notify_id, 1300 struct notifier_cb_info *cb, bool is_framework) 1301 { 1302 struct notifier_cb_info *cb_info = NULL; 1303 enum notify_type type = ffa_notify_type_get(dev->vm_id); 1304 bool cb_found, is_registration = !!cb; 1305 1306 if (is_framework) 1307 cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, dev->vm_id, 1308 &dev->uuid); 1309 else 1310 cb_info = notifier_hnode_get_by_type(notify_id, type); 1311 1312 cb_found = !!cb_info; 1313 1314 if (!(is_registration ^ cb_found)) 1315 return -EINVAL; 1316 1317 if (is_registration) { 1318 hash_add(drv_info->notifier_hash, &cb->hnode, notify_id); 1319 } else { 1320 hash_del(&cb_info->hnode); 1321 kfree(cb_info); 1322 } 1323 1324 return 0; 1325 } 1326 1327 static int __ffa_notify_relinquish(struct ffa_device *dev, int notify_id, 1328 bool is_framework) 1329 { 1330 int rc; 1331 1332 if (ffa_notifications_disabled()) 1333 return -EOPNOTSUPP; 1334 1335 if (notify_id >= FFA_MAX_NOTIFICATIONS) 1336 return -EINVAL; 1337 1338 write_lock(&drv_info->notify_lock); 1339 1340 rc = update_notifier_cb(dev, notify_id, NULL, is_framework); 1341 if (rc) { 1342 pr_err("Could not unregister notification callback\n"); 1343 write_unlock(&drv_info->notify_lock); 1344 return rc; 1345 } 1346 1347 if (!is_framework) 1348 rc = ffa_notification_unbind(dev->vm_id, BIT(notify_id)); 1349 1350 write_unlock(&drv_info->notify_lock); 1351 1352 return rc; 1353 } 1354 1355 static int ffa_notify_relinquish(struct ffa_device *dev, int notify_id) 1356 { 1357 return __ffa_notify_relinquish(dev, notify_id, false); 1358 } 1359 1360 static int ffa_fwk_notify_relinquish(struct ffa_device *dev, int notify_id) 1361 { 1362 return __ffa_notify_relinquish(dev, notify_id, true); 1363 } 1364 1365 static int __ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu, 1366 void *cb, void *cb_data, 1367 int notify_id, bool is_framework) 1368 { 1369 int rc; 1370 u32 flags = 0; 1371 struct notifier_cb_info *cb_info = NULL; 1372 1373 if (ffa_notifications_disabled()) 1374 return -EOPNOTSUPP; 1375 1376 if (notify_id >= FFA_MAX_NOTIFICATIONS) 1377 return -EINVAL; 1378 1379 cb_info = kzalloc(sizeof(*cb_info), GFP_KERNEL); 1380 if (!cb_info) 1381 return -ENOMEM; 1382 1383 cb_info->dev = dev; 1384 cb_info->cb_data = cb_data; 1385 if (is_framework) 1386 cb_info->fwk_cb = cb; 1387 else 1388 cb_info->cb = cb; 1389 1390 write_lock(&drv_info->notify_lock); 1391 1392 if (!is_framework) { 1393 if (is_per_vcpu) 1394 flags = PER_VCPU_NOTIFICATION_FLAG; 1395 1396 rc = ffa_notification_bind(dev->vm_id, BIT(notify_id), flags); 1397 if (rc) 1398 goto out_unlock_free; 1399 } 1400 1401 rc = update_notifier_cb(dev, notify_id, cb_info, is_framework); 1402 if (rc) { 1403 pr_err("Failed to register callback for %d - %d\n", 1404 notify_id, rc); 1405 if (!is_framework) 1406 ffa_notification_unbind(dev->vm_id, BIT(notify_id)); 1407 } 1408 1409 out_unlock_free: 1410 write_unlock(&drv_info->notify_lock); 1411 if (rc) 1412 kfree(cb_info); 1413 1414 return rc; 1415 } 1416 1417 static int ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu, 1418 ffa_notifier_cb cb, void *cb_data, int notify_id) 1419 { 1420 return __ffa_notify_request(dev, is_per_vcpu, cb, cb_data, notify_id, 1421 false); 1422 } 1423 1424 static int 1425 ffa_fwk_notify_request(struct ffa_device *dev, ffa_fwk_notifier_cb cb, 1426 void *cb_data, int notify_id) 1427 { 1428 return __ffa_notify_request(dev, false, cb, cb_data, notify_id, true); 1429 } 1430 1431 static int ffa_notify_send(struct ffa_device *dev, int notify_id, 1432 bool is_per_vcpu, u16 vcpu) 1433 { 1434 u32 flags = 0; 1435 1436 if (ffa_notifications_disabled()) 1437 return -EOPNOTSUPP; 1438 1439 if (is_per_vcpu) 1440 flags |= (PER_VCPU_NOTIFICATION_FLAG | vcpu << 16); 1441 1442 return ffa_notification_set(dev->vm_id, drv_info->vm_id, flags, 1443 BIT(notify_id)); 1444 } 1445 1446 static void handle_notif_callbacks(u64 bitmap, enum notify_type type) 1447 { 1448 int notify_id; 1449 struct notifier_cb_info *cb_info = NULL; 1450 1451 for (notify_id = 0; notify_id <= FFA_MAX_NOTIFICATIONS && bitmap; 1452 notify_id++, bitmap >>= 1) { 1453 if (!(bitmap & 1)) 1454 continue; 1455 1456 read_lock(&drv_info->notify_lock); 1457 cb_info = notifier_hnode_get_by_type(notify_id, type); 1458 read_unlock(&drv_info->notify_lock); 1459 1460 if (cb_info && cb_info->cb) 1461 cb_info->cb(notify_id, cb_info->cb_data); 1462 } 1463 } 1464 1465 static void handle_fwk_notif_callbacks(u32 bitmap) 1466 { 1467 void *buf; 1468 uuid_t uuid; 1469 int notify_id = 0, target; 1470 struct ffa_indirect_msg_hdr *msg; 1471 struct notifier_cb_info *cb_info = NULL; 1472 1473 /* Only one framework notification defined and supported for now */ 1474 if (!(bitmap & FRAMEWORK_NOTIFY_RX_BUFFER_FULL)) 1475 return; 1476 1477 mutex_lock(&drv_info->rx_lock); 1478 1479 msg = drv_info->rx_buffer; 1480 buf = kmemdup((void *)msg + msg->offset, msg->size, GFP_KERNEL); 1481 if (!buf) { 1482 mutex_unlock(&drv_info->rx_lock); 1483 return; 1484 } 1485 1486 target = SENDER_ID(msg->send_recv_id); 1487 if (msg->offset >= sizeof(*msg)) 1488 uuid_copy(&uuid, &msg->uuid); 1489 else 1490 uuid_copy(&uuid, &uuid_null); 1491 1492 mutex_unlock(&drv_info->rx_lock); 1493 1494 ffa_rx_release(); 1495 1496 read_lock(&drv_info->notify_lock); 1497 cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, target, &uuid); 1498 read_unlock(&drv_info->notify_lock); 1499 1500 if (cb_info && cb_info->fwk_cb) 1501 cb_info->fwk_cb(notify_id, cb_info->cb_data, buf); 1502 kfree(buf); 1503 } 1504 1505 static void notif_get_and_handle(void *cb_data) 1506 { 1507 int rc; 1508 u32 flags; 1509 struct ffa_drv_info *info = cb_data; 1510 struct ffa_notify_bitmaps bitmaps = { 0 }; 1511 1512 if (info->vm_id == 0) /* Non secure physical instance */ 1513 flags = FFA_BITMAP_SECURE_ENABLE_MASK; 1514 else 1515 flags = FFA_BITMAP_ALL_ENABLE_MASK; 1516 1517 rc = ffa_notification_get(flags, &bitmaps); 1518 if (rc) { 1519 pr_err("Failed to retrieve notifications with %d!\n", rc); 1520 return; 1521 } 1522 1523 handle_fwk_notif_callbacks(SPM_FRAMEWORK_BITMAP(bitmaps.arch_map)); 1524 handle_fwk_notif_callbacks(NS_HYP_FRAMEWORK_BITMAP(bitmaps.arch_map)); 1525 handle_notif_callbacks(bitmaps.vm_map, NON_SECURE_VM); 1526 handle_notif_callbacks(bitmaps.sp_map, SECURE_PARTITION); 1527 } 1528 1529 static void 1530 ffa_self_notif_handle(u16 vcpu, bool is_per_vcpu, void *cb_data) 1531 { 1532 struct ffa_drv_info *info = cb_data; 1533 1534 if (!is_per_vcpu) 1535 notif_get_and_handle(info); 1536 else 1537 smp_call_function_single(vcpu, notif_get_and_handle, info, 0); 1538 } 1539 1540 static void notif_pcpu_irq_work_fn(struct work_struct *work) 1541 { 1542 struct ffa_drv_info *info = container_of(work, struct ffa_drv_info, 1543 notif_pcpu_work); 1544 1545 ffa_self_notif_handle(smp_processor_id(), true, info); 1546 } 1547 1548 static const struct ffa_info_ops ffa_drv_info_ops = { 1549 .api_version_get = ffa_api_version_get, 1550 .partition_info_get = ffa_partition_info_get, 1551 }; 1552 1553 static const struct ffa_msg_ops ffa_drv_msg_ops = { 1554 .mode_32bit_set = ffa_mode_32bit_set, 1555 .sync_send_receive = ffa_sync_send_receive, 1556 .indirect_send = ffa_indirect_msg_send, 1557 .sync_send_receive2 = ffa_sync_send_receive2, 1558 }; 1559 1560 static const struct ffa_mem_ops ffa_drv_mem_ops = { 1561 .memory_reclaim = ffa_memory_reclaim, 1562 .memory_share = ffa_memory_share, 1563 .memory_lend = ffa_memory_lend, 1564 }; 1565 1566 static const struct ffa_cpu_ops ffa_drv_cpu_ops = { 1567 .run = ffa_run, 1568 }; 1569 1570 static const struct ffa_notifier_ops ffa_drv_notifier_ops = { 1571 .sched_recv_cb_register = ffa_sched_recv_cb_register, 1572 .sched_recv_cb_unregister = ffa_sched_recv_cb_unregister, 1573 .notify_request = ffa_notify_request, 1574 .notify_relinquish = ffa_notify_relinquish, 1575 .fwk_notify_request = ffa_fwk_notify_request, 1576 .fwk_notify_relinquish = ffa_fwk_notify_relinquish, 1577 .notify_send = ffa_notify_send, 1578 }; 1579 1580 static const struct ffa_ops ffa_drv_ops = { 1581 .info_ops = &ffa_drv_info_ops, 1582 .msg_ops = &ffa_drv_msg_ops, 1583 .mem_ops = &ffa_drv_mem_ops, 1584 .cpu_ops = &ffa_drv_cpu_ops, 1585 .notifier_ops = &ffa_drv_notifier_ops, 1586 }; 1587 1588 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid) 1589 { 1590 int count, idx; 1591 struct ffa_partition_info *pbuf, *tpbuf; 1592 1593 count = ffa_partition_probe(uuid, &pbuf); 1594 if (count <= 0) 1595 return; 1596 1597 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) 1598 if (tpbuf->id == ffa_dev->vm_id) 1599 uuid_copy(&ffa_dev->uuid, uuid); 1600 kfree(pbuf); 1601 } 1602 1603 static int 1604 ffa_bus_notifier(struct notifier_block *nb, unsigned long action, void *data) 1605 { 1606 struct device *dev = data; 1607 struct ffa_device *fdev = to_ffa_dev(dev); 1608 1609 if (action == BUS_NOTIFY_BIND_DRIVER) { 1610 struct ffa_driver *ffa_drv = to_ffa_driver(dev->driver); 1611 const struct ffa_device_id *id_table = ffa_drv->id_table; 1612 1613 /* 1614 * FF-A v1.1 provides UUID for each partition as part of the 1615 * discovery API, the discovered UUID must be populated in the 1616 * device's UUID and there is no need to workaround by copying 1617 * the same from the driver table. 1618 */ 1619 if (uuid_is_null(&fdev->uuid)) 1620 ffa_device_match_uuid(fdev, &id_table->uuid); 1621 1622 return NOTIFY_OK; 1623 } 1624 1625 return NOTIFY_DONE; 1626 } 1627 1628 static struct notifier_block ffa_bus_nb = { 1629 .notifier_call = ffa_bus_notifier, 1630 }; 1631 1632 static int ffa_xa_add_partition_info(struct ffa_device *dev) 1633 { 1634 struct ffa_dev_part_info *info; 1635 struct list_head *head, *phead; 1636 int ret = -ENOMEM; 1637 1638 phead = xa_load(&drv_info->partition_info, dev->vm_id); 1639 if (phead) { 1640 head = phead; 1641 list_for_each_entry(info, head, node) { 1642 if (info->dev == dev) { 1643 pr_err("%s: duplicate dev %p part ID 0x%x\n", 1644 __func__, dev, dev->vm_id); 1645 return -EEXIST; 1646 } 1647 } 1648 } 1649 1650 info = kzalloc(sizeof(*info), GFP_KERNEL); 1651 if (!info) 1652 return ret; 1653 1654 rwlock_init(&info->rw_lock); 1655 info->dev = dev; 1656 1657 if (!phead) { 1658 phead = kzalloc(sizeof(*phead), GFP_KERNEL); 1659 if (!phead) 1660 goto free_out; 1661 1662 INIT_LIST_HEAD(phead); 1663 1664 ret = xa_insert(&drv_info->partition_info, dev->vm_id, phead, 1665 GFP_KERNEL); 1666 if (ret) { 1667 pr_err("%s: failed to save part ID 0x%x Ret:%d\n", 1668 __func__, dev->vm_id, ret); 1669 goto free_out; 1670 } 1671 } 1672 list_add(&info->node, phead); 1673 return 0; 1674 1675 free_out: 1676 kfree(phead); 1677 kfree(info); 1678 return ret; 1679 } 1680 1681 static int ffa_setup_host_partition(int vm_id) 1682 { 1683 struct ffa_partition_info buf = { 0 }; 1684 struct ffa_device *ffa_dev; 1685 int ret; 1686 1687 buf.id = vm_id; 1688 ffa_dev = ffa_device_register(&buf, &ffa_drv_ops); 1689 if (!ffa_dev) { 1690 pr_err("%s: failed to register host partition ID 0x%x\n", 1691 __func__, vm_id); 1692 return -EINVAL; 1693 } 1694 1695 ret = ffa_xa_add_partition_info(ffa_dev); 1696 if (ret) 1697 return ret; 1698 1699 if (ffa_notifications_disabled()) 1700 return 0; 1701 1702 ret = ffa_sched_recv_cb_update(ffa_dev, ffa_self_notif_handle, 1703 drv_info, true); 1704 if (ret) 1705 pr_info("Failed to register driver sched callback %d\n", ret); 1706 1707 return ret; 1708 } 1709 1710 static void ffa_partitions_cleanup(void) 1711 { 1712 struct list_head *phead; 1713 unsigned long idx; 1714 1715 /* Clean up/free all registered devices */ 1716 ffa_devices_unregister(); 1717 1718 xa_for_each(&drv_info->partition_info, idx, phead) { 1719 struct ffa_dev_part_info *info, *tmp; 1720 1721 xa_erase(&drv_info->partition_info, idx); 1722 list_for_each_entry_safe(info, tmp, phead, node) { 1723 list_del(&info->node); 1724 kfree(info); 1725 } 1726 kfree(phead); 1727 } 1728 1729 xa_destroy(&drv_info->partition_info); 1730 } 1731 1732 static int ffa_setup_partitions(void) 1733 { 1734 int count, idx, ret; 1735 struct ffa_device *ffa_dev; 1736 struct ffa_partition_info *pbuf, *tpbuf; 1737 1738 if (!FFA_PART_INFO_HAS_UUID_IN_RESP(drv_info->version)) { 1739 ret = bus_register_notifier(&ffa_bus_type, &ffa_bus_nb); 1740 if (ret) 1741 pr_err("Failed to register FF-A bus notifiers\n"); 1742 } 1743 1744 count = ffa_partition_probe(&uuid_null, &pbuf); 1745 if (count <= 0) { 1746 pr_info("%s: No partitions found, error %d\n", __func__, count); 1747 return -EINVAL; 1748 } 1749 1750 xa_init(&drv_info->partition_info); 1751 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) { 1752 /* Note that if the UUID will be uuid_null, that will require 1753 * ffa_bus_notifier() to find the UUID of this partition id 1754 * with help of ffa_device_match_uuid(). FF-A v1.1 and above 1755 * provides UUID here for each partition as part of the 1756 * discovery API and the same is passed. 1757 */ 1758 ffa_dev = ffa_device_register(tpbuf, &ffa_drv_ops); 1759 if (!ffa_dev) { 1760 pr_err("%s: failed to register partition ID 0x%x\n", 1761 __func__, tpbuf->id); 1762 continue; 1763 } 1764 1765 if (FFA_PART_INFO_HAS_EXEC_STATE_IN_RESP(drv_info->version) && 1766 !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC)) 1767 ffa_mode_32bit_set(ffa_dev); 1768 1769 if (ffa_xa_add_partition_info(ffa_dev)) { 1770 ffa_device_unregister(ffa_dev); 1771 continue; 1772 } 1773 } 1774 1775 kfree(pbuf); 1776 1777 /* 1778 * Check if the host is already added as part of partition info 1779 * No multiple UUID possible for the host, so just checking if 1780 * there is an entry will suffice 1781 */ 1782 if (xa_load(&drv_info->partition_info, drv_info->vm_id)) 1783 return 0; 1784 1785 /* Allocate for the host */ 1786 ret = ffa_setup_host_partition(drv_info->vm_id); 1787 if (ret) 1788 ffa_partitions_cleanup(); 1789 1790 return ret; 1791 } 1792 1793 /* FFA FEATURE IDs */ 1794 #define FFA_FEAT_NOTIFICATION_PENDING_INT (1) 1795 #define FFA_FEAT_SCHEDULE_RECEIVER_INT (2) 1796 #define FFA_FEAT_MANAGED_EXIT_INT (3) 1797 1798 static irqreturn_t ffa_sched_recv_irq_handler(int irq, void *irq_data) 1799 { 1800 struct ffa_pcpu_irq *pcpu = irq_data; 1801 struct ffa_drv_info *info = pcpu->info; 1802 1803 queue_work(info->notif_pcpu_wq, &info->sched_recv_irq_work); 1804 1805 return IRQ_HANDLED; 1806 } 1807 1808 static irqreturn_t notif_pend_irq_handler(int irq, void *irq_data) 1809 { 1810 struct ffa_pcpu_irq *pcpu = irq_data; 1811 struct ffa_drv_info *info = pcpu->info; 1812 1813 queue_work_on(smp_processor_id(), info->notif_pcpu_wq, 1814 &info->notif_pcpu_work); 1815 1816 return IRQ_HANDLED; 1817 } 1818 1819 static void ffa_sched_recv_irq_work_fn(struct work_struct *work) 1820 { 1821 ffa_notification_info_get(); 1822 } 1823 1824 static int ffa_irq_map(u32 id) 1825 { 1826 char *err_str; 1827 int ret, irq, intid; 1828 1829 if (id == FFA_FEAT_NOTIFICATION_PENDING_INT) 1830 err_str = "Notification Pending Interrupt"; 1831 else if (id == FFA_FEAT_SCHEDULE_RECEIVER_INT) 1832 err_str = "Schedule Receiver Interrupt"; 1833 else 1834 err_str = "Unknown ID"; 1835 1836 /* The returned intid is assumed to be SGI donated to NS world */ 1837 ret = ffa_features(id, 0, &intid, NULL); 1838 if (ret < 0) { 1839 if (ret != -EOPNOTSUPP) 1840 pr_err("Failed to retrieve FF-A %s %u\n", err_str, id); 1841 return ret; 1842 } 1843 1844 if (acpi_disabled) { 1845 struct of_phandle_args oirq = {}; 1846 struct device_node *gic; 1847 1848 /* Only GICv3 supported currently with the device tree */ 1849 gic = of_find_compatible_node(NULL, NULL, "arm,gic-v3"); 1850 if (!gic) 1851 return -ENXIO; 1852 1853 oirq.np = gic; 1854 oirq.args_count = 1; 1855 oirq.args[0] = intid; 1856 irq = irq_create_of_mapping(&oirq); 1857 of_node_put(gic); 1858 #ifdef CONFIG_ACPI 1859 } else { 1860 irq = acpi_register_gsi(NULL, intid, ACPI_EDGE_SENSITIVE, 1861 ACPI_ACTIVE_HIGH); 1862 #endif 1863 } 1864 1865 if (irq <= 0) { 1866 pr_err("Failed to create IRQ mapping!\n"); 1867 return -ENODATA; 1868 } 1869 1870 return irq; 1871 } 1872 1873 static void ffa_irq_unmap(unsigned int irq) 1874 { 1875 if (!irq) 1876 return; 1877 irq_dispose_mapping(irq); 1878 } 1879 1880 static int ffa_cpuhp_pcpu_irq_enable(unsigned int cpu) 1881 { 1882 if (drv_info->sched_recv_irq) 1883 enable_percpu_irq(drv_info->sched_recv_irq, IRQ_TYPE_NONE); 1884 if (drv_info->notif_pend_irq) 1885 enable_percpu_irq(drv_info->notif_pend_irq, IRQ_TYPE_NONE); 1886 return 0; 1887 } 1888 1889 static int ffa_cpuhp_pcpu_irq_disable(unsigned int cpu) 1890 { 1891 if (drv_info->sched_recv_irq) 1892 disable_percpu_irq(drv_info->sched_recv_irq); 1893 if (drv_info->notif_pend_irq) 1894 disable_percpu_irq(drv_info->notif_pend_irq); 1895 return 0; 1896 } 1897 1898 static void ffa_uninit_pcpu_irq(void) 1899 { 1900 if (drv_info->cpuhp_state) { 1901 cpuhp_remove_state(drv_info->cpuhp_state); 1902 drv_info->cpuhp_state = 0; 1903 } 1904 1905 if (drv_info->notif_pcpu_wq) { 1906 destroy_workqueue(drv_info->notif_pcpu_wq); 1907 drv_info->notif_pcpu_wq = NULL; 1908 } 1909 1910 if (drv_info->sched_recv_irq) 1911 free_percpu_irq(drv_info->sched_recv_irq, drv_info->irq_pcpu); 1912 1913 if (drv_info->notif_pend_irq) 1914 free_percpu_irq(drv_info->notif_pend_irq, drv_info->irq_pcpu); 1915 1916 if (drv_info->irq_pcpu) { 1917 free_percpu(drv_info->irq_pcpu); 1918 drv_info->irq_pcpu = NULL; 1919 } 1920 } 1921 1922 static int ffa_init_pcpu_irq(void) 1923 { 1924 struct ffa_pcpu_irq __percpu *irq_pcpu; 1925 int ret, cpu; 1926 1927 irq_pcpu = alloc_percpu(struct ffa_pcpu_irq); 1928 if (!irq_pcpu) 1929 return -ENOMEM; 1930 1931 for_each_present_cpu(cpu) 1932 per_cpu_ptr(irq_pcpu, cpu)->info = drv_info; 1933 1934 drv_info->irq_pcpu = irq_pcpu; 1935 1936 if (drv_info->sched_recv_irq) { 1937 ret = request_percpu_irq(drv_info->sched_recv_irq, 1938 ffa_sched_recv_irq_handler, 1939 "ARM-FFA-SRI", irq_pcpu); 1940 if (ret) { 1941 pr_err("Error registering percpu SRI nIRQ %d : %d\n", 1942 drv_info->sched_recv_irq, ret); 1943 drv_info->sched_recv_irq = 0; 1944 return ret; 1945 } 1946 } 1947 1948 if (drv_info->notif_pend_irq) { 1949 ret = request_percpu_irq(drv_info->notif_pend_irq, 1950 notif_pend_irq_handler, 1951 "ARM-FFA-NPI", irq_pcpu); 1952 if (ret) { 1953 pr_err("Error registering percpu NPI nIRQ %d : %d\n", 1954 drv_info->notif_pend_irq, ret); 1955 drv_info->notif_pend_irq = 0; 1956 return ret; 1957 } 1958 } 1959 1960 INIT_WORK(&drv_info->sched_recv_irq_work, ffa_sched_recv_irq_work_fn); 1961 INIT_WORK(&drv_info->notif_pcpu_work, notif_pcpu_irq_work_fn); 1962 drv_info->notif_pcpu_wq = create_workqueue("ffa_pcpu_irq_notification"); 1963 if (!drv_info->notif_pcpu_wq) 1964 return -EINVAL; 1965 1966 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ffa/pcpu-irq:starting", 1967 ffa_cpuhp_pcpu_irq_enable, 1968 ffa_cpuhp_pcpu_irq_disable); 1969 1970 if (ret < 0) 1971 return ret; 1972 1973 drv_info->cpuhp_state = ret; 1974 return 0; 1975 } 1976 1977 static void ffa_notifications_cleanup(void) 1978 { 1979 ffa_uninit_pcpu_irq(); 1980 ffa_irq_unmap(drv_info->sched_recv_irq); 1981 drv_info->sched_recv_irq = 0; 1982 ffa_irq_unmap(drv_info->notif_pend_irq); 1983 drv_info->notif_pend_irq = 0; 1984 1985 if (drv_info->bitmap_created) { 1986 ffa_notification_bitmap_destroy(); 1987 drv_info->bitmap_created = false; 1988 } 1989 drv_info->notif_enabled = false; 1990 } 1991 1992 static void ffa_notifications_setup(void) 1993 { 1994 int ret; 1995 1996 ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL); 1997 if (!ret) { 1998 ret = ffa_notification_bitmap_create(); 1999 if (ret) { 2000 pr_err("Notification bitmap create error %d\n", ret); 2001 return; 2002 } 2003 2004 drv_info->bitmap_created = true; 2005 } 2006 2007 ret = ffa_irq_map(FFA_FEAT_SCHEDULE_RECEIVER_INT); 2008 if (ret > 0) 2009 drv_info->sched_recv_irq = ret; 2010 2011 ret = ffa_irq_map(FFA_FEAT_NOTIFICATION_PENDING_INT); 2012 if (ret > 0) 2013 drv_info->notif_pend_irq = ret; 2014 2015 if (!drv_info->sched_recv_irq && !drv_info->notif_pend_irq) 2016 goto cleanup; 2017 2018 ret = ffa_init_pcpu_irq(); 2019 if (ret) 2020 goto cleanup; 2021 2022 hash_init(drv_info->notifier_hash); 2023 rwlock_init(&drv_info->notify_lock); 2024 2025 drv_info->notif_enabled = true; 2026 return; 2027 cleanup: 2028 pr_info("Notification setup failed %d, not enabled\n", ret); 2029 ffa_notifications_cleanup(); 2030 } 2031 2032 static int __init ffa_init(void) 2033 { 2034 int ret; 2035 u32 buf_sz; 2036 size_t rxtx_bufsz = SZ_4K; 2037 2038 ret = ffa_transport_init(&invoke_ffa_fn); 2039 if (ret) 2040 return ret; 2041 2042 drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL); 2043 if (!drv_info) 2044 return -ENOMEM; 2045 2046 ret = ffa_version_check(&drv_info->version); 2047 if (ret) 2048 goto free_drv_info; 2049 2050 if (ffa_id_get(&drv_info->vm_id)) { 2051 pr_err("failed to obtain VM id for self\n"); 2052 ret = -ENODEV; 2053 goto free_drv_info; 2054 } 2055 2056 ret = ffa_features(FFA_FN_NATIVE(RXTX_MAP), 0, &buf_sz, NULL); 2057 if (!ret) { 2058 if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 1) 2059 rxtx_bufsz = SZ_64K; 2060 else if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 2) 2061 rxtx_bufsz = SZ_16K; 2062 else 2063 rxtx_bufsz = SZ_4K; 2064 } 2065 2066 drv_info->rxtx_bufsz = rxtx_bufsz; 2067 drv_info->rx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL); 2068 if (!drv_info->rx_buffer) { 2069 ret = -ENOMEM; 2070 goto free_pages; 2071 } 2072 2073 drv_info->tx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL); 2074 if (!drv_info->tx_buffer) { 2075 ret = -ENOMEM; 2076 goto free_pages; 2077 } 2078 2079 ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer), 2080 virt_to_phys(drv_info->rx_buffer), 2081 rxtx_bufsz / FFA_PAGE_SIZE); 2082 if (ret) { 2083 pr_err("failed to register FFA RxTx buffers\n"); 2084 goto free_pages; 2085 } 2086 2087 mutex_init(&drv_info->rx_lock); 2088 mutex_init(&drv_info->tx_lock); 2089 2090 ffa_drvinfo_flags_init(); 2091 2092 ffa_notifications_setup(); 2093 2094 ret = ffa_setup_partitions(); 2095 if (!ret) 2096 return ret; 2097 2098 pr_err("failed to setup partitions\n"); 2099 ffa_notifications_cleanup(); 2100 ffa_rxtx_unmap(drv_info->vm_id); 2101 free_pages: 2102 if (drv_info->tx_buffer) 2103 free_pages_exact(drv_info->tx_buffer, rxtx_bufsz); 2104 free_pages_exact(drv_info->rx_buffer, rxtx_bufsz); 2105 free_drv_info: 2106 kfree(drv_info); 2107 return ret; 2108 } 2109 rootfs_initcall(ffa_init); 2110 2111 static void __exit ffa_exit(void) 2112 { 2113 ffa_notifications_cleanup(); 2114 ffa_partitions_cleanup(); 2115 ffa_rxtx_unmap(drv_info->vm_id); 2116 free_pages_exact(drv_info->tx_buffer, drv_info->rxtx_bufsz); 2117 free_pages_exact(drv_info->rx_buffer, drv_info->rxtx_bufsz); 2118 kfree(drv_info); 2119 } 2120 module_exit(ffa_exit); 2121 2122 MODULE_ALIAS("arm-ffa"); 2123 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 2124 MODULE_DESCRIPTION("Arm FF-A interface driver"); 2125 MODULE_LICENSE("GPL v2"); 2126