xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/phy_fixed.h>
56 #include <linux/platform_device.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/prefetch.h>
59 #include <linux/property.h>
60 #include <linux/ptrace.h>
61 #include <linux/regmap.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/skbuff.h>
64 #include <linux/slab.h>
65 #include <linux/spinlock.h>
66 #include <linux/string.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/workqueue.h>
70 #include <net/ip.h>
71 #include <net/page_pool/helpers.h>
72 #include <net/selftests.h>
73 #include <net/tso.h>
74 #include <soc/imx/cpuidle.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6sx_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45 |
172 		  FEC_QUIRK_JUMBO_FRAME,
173 };
174 
175 static const struct fec_devinfo fec_s32v234_info = {
176 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
177 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
178 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
179 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
180 		  FEC_QUIRK_HAS_MDIO_C45,
181 };
182 
183 static struct platform_device_id fec_devtype[] = {
184 	{
185 		/* keep it for coldfire */
186 		.name = DRIVER_NAME,
187 		.driver_data = 0,
188 	}, {
189 		/* sentinel */
190 	}
191 };
192 MODULE_DEVICE_TABLE(platform, fec_devtype);
193 
194 static const struct of_device_id fec_dt_ids[] = {
195 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
196 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
197 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
198 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
199 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
200 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
201 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
202 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
203 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
204 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
205 	{ /* sentinel */ }
206 };
207 MODULE_DEVICE_TABLE(of, fec_dt_ids);
208 
209 static unsigned char macaddr[ETH_ALEN];
210 module_param_array(macaddr, byte, NULL, 0);
211 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
212 
213 #if defined(CONFIG_M5272)
214 /*
215  * Some hardware gets it MAC address out of local flash memory.
216  * if this is non-zero then assume it is the address to get MAC from.
217  */
218 #if defined(CONFIG_NETtel)
219 #define	FEC_FLASHMAC	0xf0006006
220 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
221 #define	FEC_FLASHMAC	0xf0006000
222 #elif defined(CONFIG_CANCam)
223 #define	FEC_FLASHMAC	0xf0020000
224 #elif defined (CONFIG_M5272C3)
225 #define	FEC_FLASHMAC	(0xffe04000 + 4)
226 #elif defined(CONFIG_MOD5272)
227 #define FEC_FLASHMAC	0xffc0406b
228 #else
229 #define	FEC_FLASHMAC	0
230 #endif
231 #endif /* CONFIG_M5272 */
232 
233 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
234  *
235  * 2048 byte skbufs are allocated. However, alignment requirements
236  * varies between FEC variants. Worst case is 64, so round down by 64.
237  */
238 #define MAX_JUMBO_BUF_SIZE	(round_down(16384 - FEC_DRV_RESERVE_SPACE - 64, 64))
239 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
240 #define PKT_MINBUF_SIZE		64
241 
242 /* FEC receive acceleration */
243 #define FEC_RACC_IPDIS		BIT(1)
244 #define FEC_RACC_PRODIS		BIT(2)
245 #define FEC_RACC_SHIFT16	BIT(7)
246 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
247 
248 /* MIB Control Register */
249 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
250 
251 /*
252  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
253  * size bits. Other FEC hardware does not, so we need to take that into
254  * account when setting it.
255  */
256 #ifndef CONFIG_M5272
257 #define	OPT_ARCH_HAS_MAX_FL	1
258 #else
259 #define	OPT_ARCH_HAS_MAX_FL	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_SPEED           BIT(5)
280 #define FEC_ECR_BYTESWP         BIT(8)
281 /* FEC RCR bits definition */
282 #define FEC_RCR_LOOP            BIT(0)
283 #define FEC_RCR_DRT		BIT(1)
284 #define FEC_RCR_MII             BIT(2)
285 #define FEC_RCR_PROMISC         BIT(3)
286 #define FEC_RCR_BC_REJ          BIT(4)
287 #define FEC_RCR_FLOWCTL         BIT(5)
288 #define FEC_RCR_RGMII		BIT(6)
289 #define FEC_RCR_RMII            BIT(8)
290 #define FEC_RCR_10BASET         BIT(9)
291 #define FEC_RCR_NLC		BIT(30)
292 /* TX WMARK bits */
293 #define FEC_TXWMRK_STRFWD       BIT(8)
294 
295 #define FEC_MII_TIMEOUT		30000 /* us */
296 
297 /* Transmitter timeout */
298 #define TX_TIMEOUT (2 * HZ)
299 
300 #define FEC_PAUSE_FLAG_AUTONEG	0x1
301 #define FEC_PAUSE_FLAG_ENABLE	0x2
302 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
303 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
304 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
305 
306 /* Max number of allowed TCP segments for software TSO */
307 #define FEC_MAX_TSO_SEGS	100
308 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
309 
310 #define IS_TSO_HEADER(txq, addr) \
311 	((addr >= txq->tso_hdrs_dma) && \
312 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
313 
314 static int mii_cnt;
315 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)316 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
317 					     struct bufdesc_prop *bd)
318 {
319 	return (bdp >= bd->last) ? bd->base
320 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
321 }
322 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)323 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
324 					     struct bufdesc_prop *bd)
325 {
326 	return (bdp <= bd->base) ? bd->last
327 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
328 }
329 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)330 static int fec_enet_get_bd_index(struct bufdesc *bdp,
331 				 struct bufdesc_prop *bd)
332 {
333 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
334 }
335 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)336 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
337 {
338 	int entries;
339 
340 	entries = (((const char *)txq->dirty_tx -
341 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
342 
343 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
344 }
345 
swap_buffer(void * bufaddr,int len)346 static void swap_buffer(void *bufaddr, int len)
347 {
348 	int i;
349 	unsigned int *buf = bufaddr;
350 
351 	for (i = 0; i < len; i += 4, buf++)
352 		swab32s(buf);
353 }
354 
fec_dump(struct net_device * ndev)355 static void fec_dump(struct net_device *ndev)
356 {
357 	struct fec_enet_private *fep = netdev_priv(ndev);
358 	struct bufdesc *bdp;
359 	struct fec_enet_priv_tx_q *txq;
360 	int index = 0;
361 
362 	netdev_info(ndev, "TX ring dump\n");
363 	pr_info("Nr     SC     addr       len  SKB\n");
364 
365 	txq = fep->tx_queue[0];
366 	bdp = txq->bd.base;
367 
368 	do {
369 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
370 			index,
371 			bdp == txq->bd.cur ? 'S' : ' ',
372 			bdp == txq->dirty_tx ? 'H' : ' ',
373 			fec16_to_cpu(bdp->cbd_sc),
374 			fec32_to_cpu(bdp->cbd_bufaddr),
375 			fec16_to_cpu(bdp->cbd_datlen),
376 			txq->tx_buf[index].buf_p);
377 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
378 		index++;
379 	} while (bdp != txq->bd.base);
380 }
381 
382 /*
383  * Coldfire does not support DMA coherent allocations, and has historically used
384  * a band-aid with a manual flush in fec_enet_rx_queue.
385  */
386 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)387 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
388 		gfp_t gfp)
389 {
390 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
391 }
392 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)393 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
394 		dma_addr_t handle)
395 {
396 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
397 }
398 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)399 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
400 		gfp_t gfp)
401 {
402 	return dma_alloc_coherent(dev, size, handle, gfp);
403 }
404 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)405 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
406 		dma_addr_t handle)
407 {
408 	dma_free_coherent(dev, size, cpu_addr, handle);
409 }
410 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
411 
412 struct fec_dma_devres {
413 	size_t		size;
414 	void		*vaddr;
415 	dma_addr_t	dma_handle;
416 };
417 
fec_dmam_release(struct device * dev,void * res)418 static void fec_dmam_release(struct device *dev, void *res)
419 {
420 	struct fec_dma_devres *this = res;
421 
422 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
423 }
424 
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)425 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
426 		gfp_t gfp)
427 {
428 	struct fec_dma_devres *dr;
429 	void *vaddr;
430 
431 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
432 	if (!dr)
433 		return NULL;
434 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
435 	if (!vaddr) {
436 		devres_free(dr);
437 		return NULL;
438 	}
439 	dr->vaddr = vaddr;
440 	dr->dma_handle = *handle;
441 	dr->size = size;
442 	devres_add(dev, dr);
443 	return vaddr;
444 }
445 
is_ipv4_pkt(struct sk_buff * skb)446 static inline bool is_ipv4_pkt(struct sk_buff *skb)
447 {
448 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
449 }
450 
451 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)452 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
453 {
454 	/* Only run for packets requiring a checksum. */
455 	if (skb->ip_summed != CHECKSUM_PARTIAL)
456 		return 0;
457 
458 	if (unlikely(skb_cow_head(skb, 0)))
459 		return -1;
460 
461 	if (is_ipv4_pkt(skb))
462 		ip_hdr(skb)->check = 0;
463 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
464 
465 	return 0;
466 }
467 
468 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)469 fec_enet_create_page_pool(struct fec_enet_private *fep,
470 			  struct fec_enet_priv_rx_q *rxq, int size)
471 {
472 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
473 	struct page_pool_params pp_params = {
474 		.order = fep->pagepool_order,
475 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
476 		.pool_size = size,
477 		.nid = dev_to_node(&fep->pdev->dev),
478 		.dev = &fep->pdev->dev,
479 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
480 		.offset = FEC_ENET_XDP_HEADROOM,
481 		.max_len = fep->rx_frame_size,
482 	};
483 	int err;
484 
485 	rxq->page_pool = page_pool_create(&pp_params);
486 	if (IS_ERR(rxq->page_pool)) {
487 		err = PTR_ERR(rxq->page_pool);
488 		rxq->page_pool = NULL;
489 		return err;
490 	}
491 
492 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
493 	if (err < 0)
494 		goto err_free_pp;
495 
496 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
497 					 rxq->page_pool);
498 	if (err)
499 		goto err_unregister_rxq;
500 
501 	return 0;
502 
503 err_unregister_rxq:
504 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
505 err_free_pp:
506 	page_pool_destroy(rxq->page_pool);
507 	rxq->page_pool = NULL;
508 	return err;
509 }
510 
511 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)512 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
513 			     struct sk_buff *skb,
514 			     struct net_device *ndev)
515 {
516 	struct fec_enet_private *fep = netdev_priv(ndev);
517 	struct bufdesc *bdp = txq->bd.cur;
518 	struct bufdesc_ex *ebdp;
519 	int nr_frags = skb_shinfo(skb)->nr_frags;
520 	int frag, frag_len;
521 	unsigned short status;
522 	unsigned int estatus = 0;
523 	skb_frag_t *this_frag;
524 	unsigned int index;
525 	void *bufaddr;
526 	dma_addr_t addr;
527 	int i;
528 
529 	for (frag = 0; frag < nr_frags; frag++) {
530 		this_frag = &skb_shinfo(skb)->frags[frag];
531 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
532 		ebdp = (struct bufdesc_ex *)bdp;
533 
534 		status = fec16_to_cpu(bdp->cbd_sc);
535 		status &= ~BD_ENET_TX_STATS;
536 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
537 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
538 
539 		/* Handle the last BD specially */
540 		if (frag == nr_frags - 1) {
541 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
542 			if (fep->bufdesc_ex) {
543 				estatus |= BD_ENET_TX_INT;
544 				if (unlikely(skb_shinfo(skb)->tx_flags &
545 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
546 					estatus |= BD_ENET_TX_TS;
547 			}
548 		}
549 
550 		if (fep->bufdesc_ex) {
551 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
552 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
553 			if (skb->ip_summed == CHECKSUM_PARTIAL)
554 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
555 
556 			ebdp->cbd_bdu = 0;
557 			ebdp->cbd_esc = cpu_to_fec32(estatus);
558 		}
559 
560 		bufaddr = skb_frag_address(this_frag);
561 
562 		index = fec_enet_get_bd_index(bdp, &txq->bd);
563 		if (((unsigned long) bufaddr) & fep->tx_align ||
564 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
565 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
566 			bufaddr = txq->tx_bounce[index];
567 
568 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
569 				swap_buffer(bufaddr, frag_len);
570 		}
571 
572 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
573 				      DMA_TO_DEVICE);
574 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
575 			if (net_ratelimit())
576 				netdev_err(ndev, "Tx DMA memory map failed\n");
577 			goto dma_mapping_error;
578 		}
579 
580 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
581 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
582 		/* Make sure the updates to rest of the descriptor are
583 		 * performed before transferring ownership.
584 		 */
585 		wmb();
586 		bdp->cbd_sc = cpu_to_fec16(status);
587 	}
588 
589 	return bdp;
590 dma_mapping_error:
591 	bdp = txq->bd.cur;
592 	for (i = 0; i < frag; i++) {
593 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
594 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
595 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
596 	}
597 	return ERR_PTR(-ENOMEM);
598 }
599 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)600 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
601 				   struct sk_buff *skb, struct net_device *ndev)
602 {
603 	struct fec_enet_private *fep = netdev_priv(ndev);
604 	int nr_frags = skb_shinfo(skb)->nr_frags;
605 	struct bufdesc *bdp, *last_bdp;
606 	void *bufaddr;
607 	dma_addr_t addr;
608 	unsigned short status;
609 	unsigned short buflen;
610 	unsigned int estatus = 0;
611 	unsigned int index;
612 	int entries_free;
613 
614 	entries_free = fec_enet_get_free_txdesc_num(txq);
615 	if (entries_free < MAX_SKB_FRAGS + 1) {
616 		dev_kfree_skb_any(skb);
617 		if (net_ratelimit())
618 			netdev_err(ndev, "NOT enough BD for SG!\n");
619 		return NETDEV_TX_OK;
620 	}
621 
622 	/* Protocol checksum off-load for TCP and UDP. */
623 	if (fec_enet_clear_csum(skb, ndev)) {
624 		dev_kfree_skb_any(skb);
625 		return NETDEV_TX_OK;
626 	}
627 
628 	/* Fill in a Tx ring entry */
629 	bdp = txq->bd.cur;
630 	last_bdp = bdp;
631 	status = fec16_to_cpu(bdp->cbd_sc);
632 	status &= ~BD_ENET_TX_STATS;
633 
634 	/* Set buffer length and buffer pointer */
635 	bufaddr = skb->data;
636 	buflen = skb_headlen(skb);
637 
638 	index = fec_enet_get_bd_index(bdp, &txq->bd);
639 	if (((unsigned long) bufaddr) & fep->tx_align ||
640 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
641 		memcpy(txq->tx_bounce[index], skb->data, buflen);
642 		bufaddr = txq->tx_bounce[index];
643 
644 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
645 			swap_buffer(bufaddr, buflen);
646 	}
647 
648 	/* Push the data cache so the CPM does not get stale memory data. */
649 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
650 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
651 		dev_kfree_skb_any(skb);
652 		if (net_ratelimit())
653 			netdev_err(ndev, "Tx DMA memory map failed\n");
654 		return NETDEV_TX_OK;
655 	}
656 
657 	if (nr_frags) {
658 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
659 		if (IS_ERR(last_bdp)) {
660 			dma_unmap_single(&fep->pdev->dev, addr,
661 					 buflen, DMA_TO_DEVICE);
662 			dev_kfree_skb_any(skb);
663 			return NETDEV_TX_OK;
664 		}
665 	} else {
666 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
667 		if (fep->bufdesc_ex) {
668 			estatus = BD_ENET_TX_INT;
669 			if (unlikely(skb_shinfo(skb)->tx_flags &
670 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
671 				estatus |= BD_ENET_TX_TS;
672 		}
673 	}
674 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
675 	bdp->cbd_datlen = cpu_to_fec16(buflen);
676 
677 	if (fep->bufdesc_ex) {
678 
679 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
680 
681 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
682 			fep->hwts_tx_en))
683 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
684 
685 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
686 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
687 
688 		if (skb->ip_summed == CHECKSUM_PARTIAL)
689 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
690 
691 		ebdp->cbd_bdu = 0;
692 		ebdp->cbd_esc = cpu_to_fec32(estatus);
693 	}
694 
695 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
696 	/* Save skb pointer */
697 	txq->tx_buf[index].buf_p = skb;
698 
699 	/* Make sure the updates to rest of the descriptor are performed before
700 	 * transferring ownership.
701 	 */
702 	wmb();
703 
704 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
705 	 * it's the last BD of the frame, and to put the CRC on the end.
706 	 */
707 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
708 	bdp->cbd_sc = cpu_to_fec16(status);
709 
710 	/* If this was the last BD in the ring, start at the beginning again. */
711 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
712 
713 	skb_tx_timestamp(skb);
714 
715 	/* Make sure the update to bdp is performed before txq->bd.cur. */
716 	wmb();
717 	txq->bd.cur = bdp;
718 
719 	/* Trigger transmission start */
720 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
721 	    !readl(txq->bd.reg_desc_active) ||
722 	    !readl(txq->bd.reg_desc_active) ||
723 	    !readl(txq->bd.reg_desc_active) ||
724 	    !readl(txq->bd.reg_desc_active))
725 		writel(0, txq->bd.reg_desc_active);
726 
727 	return 0;
728 }
729 
730 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)731 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
732 			  struct net_device *ndev,
733 			  struct bufdesc *bdp, int index, char *data,
734 			  int size, bool last_tcp, bool is_last)
735 {
736 	struct fec_enet_private *fep = netdev_priv(ndev);
737 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
738 	unsigned short status;
739 	unsigned int estatus = 0;
740 	dma_addr_t addr;
741 
742 	status = fec16_to_cpu(bdp->cbd_sc);
743 	status &= ~BD_ENET_TX_STATS;
744 
745 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
746 
747 	if (((unsigned long) data) & fep->tx_align ||
748 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
749 		memcpy(txq->tx_bounce[index], data, size);
750 		data = txq->tx_bounce[index];
751 
752 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
753 			swap_buffer(data, size);
754 	}
755 
756 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
757 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
758 		dev_kfree_skb_any(skb);
759 		if (net_ratelimit())
760 			netdev_err(ndev, "Tx DMA memory map failed\n");
761 		return NETDEV_TX_OK;
762 	}
763 
764 	bdp->cbd_datlen = cpu_to_fec16(size);
765 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
766 
767 	if (fep->bufdesc_ex) {
768 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
769 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
770 		if (skb->ip_summed == CHECKSUM_PARTIAL)
771 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
772 		ebdp->cbd_bdu = 0;
773 		ebdp->cbd_esc = cpu_to_fec32(estatus);
774 	}
775 
776 	/* Handle the last BD specially */
777 	if (last_tcp)
778 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
779 	if (is_last) {
780 		status |= BD_ENET_TX_INTR;
781 		if (fep->bufdesc_ex)
782 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
783 	}
784 
785 	bdp->cbd_sc = cpu_to_fec16(status);
786 
787 	return 0;
788 }
789 
790 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)791 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
792 			 struct sk_buff *skb, struct net_device *ndev,
793 			 struct bufdesc *bdp, int index)
794 {
795 	struct fec_enet_private *fep = netdev_priv(ndev);
796 	int hdr_len = skb_tcp_all_headers(skb);
797 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
798 	void *bufaddr;
799 	unsigned long dmabuf;
800 	unsigned short status;
801 	unsigned int estatus = 0;
802 
803 	status = fec16_to_cpu(bdp->cbd_sc);
804 	status &= ~BD_ENET_TX_STATS;
805 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
806 
807 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
808 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
809 	if (((unsigned long)bufaddr) & fep->tx_align ||
810 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
811 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
812 		bufaddr = txq->tx_bounce[index];
813 
814 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
815 			swap_buffer(bufaddr, hdr_len);
816 
817 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
818 					hdr_len, DMA_TO_DEVICE);
819 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
820 			dev_kfree_skb_any(skb);
821 			if (net_ratelimit())
822 				netdev_err(ndev, "Tx DMA memory map failed\n");
823 			return NETDEV_TX_OK;
824 		}
825 	}
826 
827 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
828 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
829 
830 	if (fep->bufdesc_ex) {
831 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
832 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
833 		if (skb->ip_summed == CHECKSUM_PARTIAL)
834 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
835 		ebdp->cbd_bdu = 0;
836 		ebdp->cbd_esc = cpu_to_fec32(estatus);
837 	}
838 
839 	bdp->cbd_sc = cpu_to_fec16(status);
840 
841 	return 0;
842 }
843 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)844 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
845 				   struct sk_buff *skb,
846 				   struct net_device *ndev)
847 {
848 	struct fec_enet_private *fep = netdev_priv(ndev);
849 	int hdr_len, total_len, data_left;
850 	struct bufdesc *bdp = txq->bd.cur;
851 	struct bufdesc *tmp_bdp;
852 	struct bufdesc_ex *ebdp;
853 	struct tso_t tso;
854 	unsigned int index = 0;
855 	int ret;
856 
857 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
858 		dev_kfree_skb_any(skb);
859 		if (net_ratelimit())
860 			netdev_err(ndev, "NOT enough BD for TSO!\n");
861 		return NETDEV_TX_OK;
862 	}
863 
864 	/* Protocol checksum off-load for TCP and UDP. */
865 	if (fec_enet_clear_csum(skb, ndev)) {
866 		dev_kfree_skb_any(skb);
867 		return NETDEV_TX_OK;
868 	}
869 
870 	/* Initialize the TSO handler, and prepare the first payload */
871 	hdr_len = tso_start(skb, &tso);
872 
873 	total_len = skb->len - hdr_len;
874 	while (total_len > 0) {
875 		char *hdr;
876 
877 		index = fec_enet_get_bd_index(bdp, &txq->bd);
878 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
879 		total_len -= data_left;
880 
881 		/* prepare packet headers: MAC + IP + TCP */
882 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
883 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
884 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
885 		if (ret)
886 			goto err_release;
887 
888 		while (data_left > 0) {
889 			int size;
890 
891 			size = min_t(int, tso.size, data_left);
892 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
893 			index = fec_enet_get_bd_index(bdp, &txq->bd);
894 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
895 							bdp, index,
896 							tso.data, size,
897 							size == data_left,
898 							total_len == 0);
899 			if (ret)
900 				goto err_release;
901 
902 			data_left -= size;
903 			tso_build_data(skb, &tso, size);
904 		}
905 
906 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
907 	}
908 
909 	/* Save skb pointer */
910 	txq->tx_buf[index].buf_p = skb;
911 
912 	skb_tx_timestamp(skb);
913 	txq->bd.cur = bdp;
914 
915 	/* Trigger transmission start */
916 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
917 	    !readl(txq->bd.reg_desc_active) ||
918 	    !readl(txq->bd.reg_desc_active) ||
919 	    !readl(txq->bd.reg_desc_active) ||
920 	    !readl(txq->bd.reg_desc_active))
921 		writel(0, txq->bd.reg_desc_active);
922 
923 	return 0;
924 
925 err_release:
926 	/* Release all used data descriptors for TSO */
927 	tmp_bdp = txq->bd.cur;
928 
929 	while (tmp_bdp != bdp) {
930 		/* Unmap data buffers */
931 		if (tmp_bdp->cbd_bufaddr &&
932 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
933 			dma_unmap_single(&fep->pdev->dev,
934 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
935 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
936 					 DMA_TO_DEVICE);
937 
938 		/* Clear standard buffer descriptor fields */
939 		tmp_bdp->cbd_sc = 0;
940 		tmp_bdp->cbd_datlen = 0;
941 		tmp_bdp->cbd_bufaddr = 0;
942 
943 		/* Handle extended descriptor if enabled */
944 		if (fep->bufdesc_ex) {
945 			ebdp = (struct bufdesc_ex *)tmp_bdp;
946 			ebdp->cbd_esc = 0;
947 		}
948 
949 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
950 	}
951 
952 	dev_kfree_skb_any(skb);
953 
954 	return ret;
955 }
956 
957 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)958 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
959 {
960 	struct fec_enet_private *fep = netdev_priv(ndev);
961 	int entries_free;
962 	unsigned short queue;
963 	struct fec_enet_priv_tx_q *txq;
964 	struct netdev_queue *nq;
965 	int ret;
966 
967 	queue = skb_get_queue_mapping(skb);
968 	txq = fep->tx_queue[queue];
969 	nq = netdev_get_tx_queue(ndev, queue);
970 
971 	if (skb_is_gso(skb))
972 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
973 	else
974 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
975 	if (ret)
976 		return ret;
977 
978 	entries_free = fec_enet_get_free_txdesc_num(txq);
979 	if (entries_free <= txq->tx_stop_threshold)
980 		netif_tx_stop_queue(nq);
981 
982 	return NETDEV_TX_OK;
983 }
984 
985 /* Init RX & TX buffer descriptors
986  */
fec_enet_bd_init(struct net_device * dev)987 static void fec_enet_bd_init(struct net_device *dev)
988 {
989 	struct fec_enet_private *fep = netdev_priv(dev);
990 	struct fec_enet_priv_tx_q *txq;
991 	struct fec_enet_priv_rx_q *rxq;
992 	struct bufdesc *bdp;
993 	unsigned int i;
994 	unsigned int q;
995 
996 	for (q = 0; q < fep->num_rx_queues; q++) {
997 		/* Initialize the receive buffer descriptors. */
998 		rxq = fep->rx_queue[q];
999 		bdp = rxq->bd.base;
1000 
1001 		for (i = 0; i < rxq->bd.ring_size; i++) {
1002 
1003 			/* Initialize the BD for every fragment in the page. */
1004 			if (bdp->cbd_bufaddr)
1005 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1006 			else
1007 				bdp->cbd_sc = cpu_to_fec16(0);
1008 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1009 		}
1010 
1011 		/* Set the last buffer to wrap */
1012 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1013 		bdp->cbd_sc |= cpu_to_fec16(BD_ENET_RX_WRAP);
1014 
1015 		rxq->bd.cur = rxq->bd.base;
1016 	}
1017 
1018 	for (q = 0; q < fep->num_tx_queues; q++) {
1019 		/* ...and the same for transmit */
1020 		txq = fep->tx_queue[q];
1021 		bdp = txq->bd.base;
1022 		txq->bd.cur = bdp;
1023 
1024 		for (i = 0; i < txq->bd.ring_size; i++) {
1025 			/* Initialize the BD for every fragment in the page. */
1026 			bdp->cbd_sc = cpu_to_fec16(0);
1027 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1028 				if (bdp->cbd_bufaddr &&
1029 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1030 					dma_unmap_single(&fep->pdev->dev,
1031 							 fec32_to_cpu(bdp->cbd_bufaddr),
1032 							 fec16_to_cpu(bdp->cbd_datlen),
1033 							 DMA_TO_DEVICE);
1034 				if (txq->tx_buf[i].buf_p)
1035 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1036 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1037 				if (bdp->cbd_bufaddr)
1038 					dma_unmap_single(&fep->pdev->dev,
1039 							 fec32_to_cpu(bdp->cbd_bufaddr),
1040 							 fec16_to_cpu(bdp->cbd_datlen),
1041 							 DMA_TO_DEVICE);
1042 
1043 				if (txq->tx_buf[i].buf_p)
1044 					xdp_return_frame(txq->tx_buf[i].buf_p);
1045 			} else {
1046 				struct page *page = txq->tx_buf[i].buf_p;
1047 
1048 				if (page)
1049 					page_pool_put_page(pp_page_to_nmdesc(page)->pp,
1050 							   page, 0,
1051 							   false);
1052 			}
1053 
1054 			txq->tx_buf[i].buf_p = NULL;
1055 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1056 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1057 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1058 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1059 		}
1060 
1061 		/* Set the last buffer to wrap */
1062 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1063 		bdp->cbd_sc |= cpu_to_fec16(BD_ENET_TX_WRAP);
1064 		txq->dirty_tx = bdp;
1065 	}
1066 }
1067 
fec_enet_active_rxring(struct net_device * ndev)1068 static void fec_enet_active_rxring(struct net_device *ndev)
1069 {
1070 	struct fec_enet_private *fep = netdev_priv(ndev);
1071 	int i;
1072 
1073 	for (i = 0; i < fep->num_rx_queues; i++)
1074 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1075 }
1076 
fec_enet_enable_ring(struct net_device * ndev)1077 static void fec_enet_enable_ring(struct net_device *ndev)
1078 {
1079 	struct fec_enet_private *fep = netdev_priv(ndev);
1080 	struct fec_enet_priv_tx_q *txq;
1081 	struct fec_enet_priv_rx_q *rxq;
1082 	int i;
1083 
1084 	for (i = 0; i < fep->num_rx_queues; i++) {
1085 		rxq = fep->rx_queue[i];
1086 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1087 		writel(fep->max_buf_size, fep->hwp + FEC_R_BUFF_SIZE(i));
1088 
1089 		/* enable DMA1/2 */
1090 		if (i)
1091 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1092 			       fep->hwp + FEC_RCMR(i));
1093 	}
1094 
1095 	for (i = 0; i < fep->num_tx_queues; i++) {
1096 		txq = fep->tx_queue[i];
1097 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1098 
1099 		/* enable DMA1/2 */
1100 		if (i)
1101 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1102 			       fep->hwp + FEC_DMA_CFG(i));
1103 	}
1104 }
1105 
1106 /* Whack a reset.  We should wait for this.
1107  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1108  * instead of reset MAC itself.
1109  */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1110 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1111 {
1112 	u32 val;
1113 
1114 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1115 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1116 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1117 			writel(0, fep->hwp + FEC_ECNTRL);
1118 		} else {
1119 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1120 			udelay(10);
1121 		}
1122 	} else {
1123 		val = readl(fep->hwp + FEC_ECNTRL);
1124 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1125 		writel(val, fep->hwp + FEC_ECNTRL);
1126 	}
1127 }
1128 
fec_set_hw_mac_addr(struct net_device * ndev)1129 static void fec_set_hw_mac_addr(struct net_device *ndev)
1130 {
1131 	struct fec_enet_private *fep = netdev_priv(ndev);
1132 
1133 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1134 	       (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1135 	       fep->hwp + FEC_ADDR_LOW);
1136 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1137 	       fep->hwp + FEC_ADDR_HIGH);
1138 }
1139 
1140 /*
1141  * This function is called to start or restart the FEC during a link
1142  * change, transmit timeout, or to reconfigure the FEC.  The network
1143  * packet processing for this device must be stopped before this call.
1144  */
1145 static void
fec_restart(struct net_device * ndev)1146 fec_restart(struct net_device *ndev)
1147 {
1148 	struct fec_enet_private *fep = netdev_priv(ndev);
1149 	u32 ecntl = FEC_ECR_ETHEREN;
1150 	u32 rcntl = FEC_RCR_MII;
1151 
1152 	if (OPT_ARCH_HAS_MAX_FL)
1153 		rcntl |= (fep->netdev->mtu + ETH_HLEN + ETH_FCS_LEN) << 16;
1154 
1155 	if (fep->bufdesc_ex)
1156 		fec_ptp_save_state(fep);
1157 
1158 	fec_ctrl_reset(fep, false);
1159 
1160 	/*
1161 	 * enet-mac reset will reset mac address registers too,
1162 	 * so need to reconfigure it.
1163 	 */
1164 	fec_set_hw_mac_addr(ndev);
1165 
1166 	/* Clear any outstanding interrupt, except MDIO. */
1167 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1168 
1169 	fec_enet_bd_init(ndev);
1170 
1171 	fec_enet_enable_ring(ndev);
1172 
1173 	/* Enable MII mode */
1174 	if (fep->full_duplex == DUPLEX_FULL) {
1175 		/* FD enable */
1176 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1177 	} else {
1178 		/* No Rcv on Xmit */
1179 		rcntl |= FEC_RCR_DRT;
1180 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1181 	}
1182 
1183 	/* Set MII speed */
1184 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1185 
1186 #if !defined(CONFIG_M5272)
1187 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1188 		u32 val = readl(fep->hwp + FEC_RACC);
1189 
1190 		/* align IP header */
1191 		val |= FEC_RACC_SHIFT16;
1192 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1193 			/* set RX checksum */
1194 			val |= FEC_RACC_OPTIONS;
1195 		else
1196 			val &= ~FEC_RACC_OPTIONS;
1197 		writel(val, fep->hwp + FEC_RACC);
1198 		writel(min(fep->rx_frame_size, fep->max_buf_size), fep->hwp + FEC_FTRL);
1199 	}
1200 #endif
1201 
1202 	/*
1203 	 * The phy interface and speed need to get configured
1204 	 * differently on enet-mac.
1205 	 */
1206 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1207 		/* Enable flow control and length check */
1208 		rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL;
1209 
1210 		/* RGMII, RMII or MII */
1211 		if (phy_interface_mode_is_rgmii(fep->phy_interface))
1212 			rcntl |= FEC_RCR_RGMII;
1213 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1214 			rcntl |= FEC_RCR_RMII;
1215 		else
1216 			rcntl &= ~FEC_RCR_RMII;
1217 
1218 		/* 1G, 100M or 10M */
1219 		if (ndev->phydev) {
1220 			if (ndev->phydev->speed == SPEED_1000)
1221 				ecntl |= FEC_ECR_SPEED;
1222 			else if (ndev->phydev->speed == SPEED_100)
1223 				rcntl &= ~FEC_RCR_10BASET;
1224 			else
1225 				rcntl |= FEC_RCR_10BASET;
1226 		}
1227 	} else {
1228 #ifdef FEC_MIIGSK_ENR
1229 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1230 			u32 cfgr;
1231 			/* disable the gasket and wait */
1232 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1233 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1234 				udelay(1);
1235 
1236 			/*
1237 			 * configure the gasket:
1238 			 *   RMII, 50 MHz, no loopback, no echo
1239 			 *   MII, 25 MHz, no loopback, no echo
1240 			 */
1241 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1242 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1243 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1244 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1245 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1246 
1247 			/* re-enable the gasket */
1248 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1249 		}
1250 #endif
1251 	}
1252 
1253 #if !defined(CONFIG_M5272)
1254 	/* enable pause frame*/
1255 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1256 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1257 	     ndev->phydev && ndev->phydev->pause)) {
1258 		rcntl |= FEC_RCR_FLOWCTL;
1259 
1260 		/* set FIFO threshold parameter to reduce overrun */
1261 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1262 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1263 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1264 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1265 
1266 		/* OPD */
1267 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1268 	} else {
1269 		rcntl &= ~FEC_RCR_FLOWCTL;
1270 	}
1271 #endif /* !defined(CONFIG_M5272) */
1272 
1273 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1274 
1275 	/* Setup multicast filter. */
1276 	set_multicast_list(ndev);
1277 #ifndef CONFIG_M5272
1278 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1279 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1280 #endif
1281 
1282 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1283 		/* enable ENET endian swap */
1284 		ecntl |= FEC_ECR_BYTESWP;
1285 
1286 		/* When Jumbo Frame is enabled, the FIFO may not be large enough
1287 		 * to hold an entire frame. In such cases, if the MTU exceeds
1288 		 * (PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN), configure the interface
1289 		 * to operate in cut-through mode, triggered by the FIFO threshold.
1290 		 * Otherwise, enable the ENET store-and-forward mode.
1291 		 */
1292 		if ((fep->quirks & FEC_QUIRK_JUMBO_FRAME) &&
1293 		    (ndev->mtu > (PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN)))
1294 			writel(0xF, fep->hwp + FEC_X_WMRK);
1295 		else
1296 			writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1297 	}
1298 
1299 	if (fep->bufdesc_ex)
1300 		ecntl |= FEC_ECR_EN1588;
1301 
1302 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1303 	    fep->rgmii_txc_dly)
1304 		ecntl |= FEC_ENET_TXC_DLY;
1305 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1306 	    fep->rgmii_rxc_dly)
1307 		ecntl |= FEC_ENET_RXC_DLY;
1308 
1309 #ifndef CONFIG_M5272
1310 	/* Enable the MIB statistic event counters */
1311 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1312 #endif
1313 
1314 	/* And last, enable the transmit and receive processing */
1315 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1316 	fec_enet_active_rxring(ndev);
1317 
1318 	if (fep->bufdesc_ex) {
1319 		fec_ptp_start_cyclecounter(ndev);
1320 		fec_ptp_restore_state(fep);
1321 	}
1322 
1323 	/* Enable interrupts we wish to service */
1324 	if (fep->link)
1325 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1326 	else
1327 		writel(0, fep->hwp + FEC_IMASK);
1328 
1329 	/* Init the interrupt coalescing */
1330 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1331 		fec_enet_itr_coal_set(ndev);
1332 }
1333 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1334 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1335 {
1336 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1337 	      of_machine_is_compatible("fsl,imx8qxp") ||
1338 	      of_machine_is_compatible("fsl,imx8dxl")))
1339 		return 0;
1340 
1341 	return imx_scu_get_handle(&fep->ipc_handle);
1342 }
1343 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1344 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1345 {
1346 	struct device_node *np = fep->pdev->dev.of_node;
1347 	u32 rsrc_id, val;
1348 	int idx;
1349 
1350 	if (!np || !fep->ipc_handle)
1351 		return;
1352 
1353 	idx = of_alias_get_id(np, "ethernet");
1354 	if (idx < 0)
1355 		idx = 0;
1356 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1357 
1358 	val = enabled ? 1 : 0;
1359 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1360 }
1361 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1362 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1363 {
1364 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1365 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1366 
1367 	if (stop_gpr->gpr) {
1368 		if (enabled)
1369 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1370 					   BIT(stop_gpr->bit),
1371 					   BIT(stop_gpr->bit));
1372 		else
1373 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1374 					   BIT(stop_gpr->bit), 0);
1375 	} else if (pdata && pdata->sleep_mode_enable) {
1376 		pdata->sleep_mode_enable(enabled);
1377 	} else {
1378 		fec_enet_ipg_stop_set(fep, enabled);
1379 	}
1380 }
1381 
fec_irqs_disable(struct net_device * ndev)1382 static void fec_irqs_disable(struct net_device *ndev)
1383 {
1384 	struct fec_enet_private *fep = netdev_priv(ndev);
1385 
1386 	writel(0, fep->hwp + FEC_IMASK);
1387 }
1388 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1389 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1390 {
1391 	struct fec_enet_private *fep = netdev_priv(ndev);
1392 
1393 	writel(0, fep->hwp + FEC_IMASK);
1394 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1395 }
1396 
1397 static void
fec_stop(struct net_device * ndev)1398 fec_stop(struct net_device *ndev)
1399 {
1400 	struct fec_enet_private *fep = netdev_priv(ndev);
1401 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1402 	u32 val;
1403 
1404 	/* We cannot expect a graceful transmit stop without link !!! */
1405 	if (fep->link) {
1406 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1407 		udelay(10);
1408 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1409 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1410 	}
1411 
1412 	if (fep->bufdesc_ex)
1413 		fec_ptp_save_state(fep);
1414 
1415 	fec_ctrl_reset(fep, true);
1416 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1417 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1418 
1419 	/* We have to keep ENET enabled to have MII interrupt stay working */
1420 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1421 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1422 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1423 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1424 	}
1425 
1426 	if (fep->bufdesc_ex) {
1427 		val = readl(fep->hwp + FEC_ECNTRL);
1428 		val |= FEC_ECR_EN1588;
1429 		writel(val, fep->hwp + FEC_ECNTRL);
1430 
1431 		fec_ptp_start_cyclecounter(ndev);
1432 		fec_ptp_restore_state(fep);
1433 	}
1434 }
1435 
1436 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1437 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1438 {
1439 	struct fec_enet_private *fep = netdev_priv(ndev);
1440 
1441 	fec_dump(ndev);
1442 
1443 	ndev->stats.tx_errors++;
1444 
1445 	schedule_work(&fep->tx_timeout_work);
1446 }
1447 
fec_enet_timeout_work(struct work_struct * work)1448 static void fec_enet_timeout_work(struct work_struct *work)
1449 {
1450 	struct fec_enet_private *fep =
1451 		container_of(work, struct fec_enet_private, tx_timeout_work);
1452 	struct net_device *ndev = fep->netdev;
1453 
1454 	rtnl_lock();
1455 	if (netif_device_present(ndev) || netif_running(ndev)) {
1456 		napi_disable(&fep->napi);
1457 		netif_tx_lock_bh(ndev);
1458 		fec_restart(ndev);
1459 		netif_tx_wake_all_queues(ndev);
1460 		netif_tx_unlock_bh(ndev);
1461 		napi_enable(&fep->napi);
1462 	}
1463 	rtnl_unlock();
1464 }
1465 
1466 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1467 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1468 	struct skb_shared_hwtstamps *hwtstamps)
1469 {
1470 	unsigned long flags;
1471 	u64 ns;
1472 
1473 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1474 	ns = timecounter_cyc2time(&fep->tc, ts);
1475 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1476 
1477 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1478 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1479 }
1480 
1481 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1482 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1483 {
1484 	struct	fec_enet_private *fep;
1485 	struct xdp_frame *xdpf;
1486 	struct bufdesc *bdp;
1487 	unsigned short status;
1488 	struct	sk_buff	*skb;
1489 	struct fec_enet_priv_tx_q *txq;
1490 	struct netdev_queue *nq;
1491 	int	index = 0;
1492 	int	entries_free;
1493 	struct page *page;
1494 	int frame_len;
1495 
1496 	fep = netdev_priv(ndev);
1497 
1498 	txq = fep->tx_queue[queue_id];
1499 	/* get next bdp of dirty_tx */
1500 	nq = netdev_get_tx_queue(ndev, queue_id);
1501 	bdp = txq->dirty_tx;
1502 
1503 	/* get next bdp of dirty_tx */
1504 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1505 
1506 	while (bdp != READ_ONCE(txq->bd.cur)) {
1507 		/* Order the load of bd.cur and cbd_sc */
1508 		rmb();
1509 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1510 		if (status & BD_ENET_TX_READY)
1511 			break;
1512 
1513 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1514 
1515 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1516 			skb = txq->tx_buf[index].buf_p;
1517 			if (bdp->cbd_bufaddr &&
1518 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1519 				dma_unmap_single(&fep->pdev->dev,
1520 						 fec32_to_cpu(bdp->cbd_bufaddr),
1521 						 fec16_to_cpu(bdp->cbd_datlen),
1522 						 DMA_TO_DEVICE);
1523 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1524 			if (!skb)
1525 				goto tx_buf_done;
1526 		} else {
1527 			/* Tx processing cannot call any XDP (or page pool) APIs if
1528 			 * the "budget" is 0. Because NAPI is called with budget of
1529 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1530 			 * however, we can't use the page pool from IRQ context.
1531 			 */
1532 			if (unlikely(!budget))
1533 				break;
1534 
1535 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1536 				xdpf = txq->tx_buf[index].buf_p;
1537 				if (bdp->cbd_bufaddr)
1538 					dma_unmap_single(&fep->pdev->dev,
1539 							 fec32_to_cpu(bdp->cbd_bufaddr),
1540 							 fec16_to_cpu(bdp->cbd_datlen),
1541 							 DMA_TO_DEVICE);
1542 			} else {
1543 				page = txq->tx_buf[index].buf_p;
1544 			}
1545 
1546 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1547 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1548 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1549 				goto tx_buf_done;
1550 			}
1551 
1552 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1553 		}
1554 
1555 		/* Check for errors. */
1556 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1557 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1558 				   BD_ENET_TX_CSL)) {
1559 			ndev->stats.tx_errors++;
1560 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1561 				ndev->stats.tx_heartbeat_errors++;
1562 			if (status & BD_ENET_TX_LC)  /* Late collision */
1563 				ndev->stats.tx_window_errors++;
1564 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1565 				ndev->stats.tx_aborted_errors++;
1566 			if (status & BD_ENET_TX_UN)  /* Underrun */
1567 				ndev->stats.tx_fifo_errors++;
1568 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1569 				ndev->stats.tx_carrier_errors++;
1570 		} else {
1571 			ndev->stats.tx_packets++;
1572 
1573 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1574 				ndev->stats.tx_bytes += skb->len;
1575 			else
1576 				ndev->stats.tx_bytes += frame_len;
1577 		}
1578 
1579 		/* Deferred means some collisions occurred during transmit,
1580 		 * but we eventually sent the packet OK.
1581 		 */
1582 		if (status & BD_ENET_TX_DEF)
1583 			ndev->stats.collisions++;
1584 
1585 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1586 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1587 			 * are to time stamp the packet, so we still need to check time
1588 			 * stamping enabled flag.
1589 			 */
1590 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1591 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1592 				struct skb_shared_hwtstamps shhwtstamps;
1593 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1594 
1595 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1596 				skb_tstamp_tx(skb, &shhwtstamps);
1597 			}
1598 
1599 			/* Free the sk buffer associated with this last transmit */
1600 			napi_consume_skb(skb, budget);
1601 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1602 			xdp_return_frame_rx_napi(xdpf);
1603 		} else { /* recycle pages of XDP_TX frames */
1604 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1605 			page_pool_put_page(pp_page_to_nmdesc(page)->pp, page,
1606 					   0, true);
1607 		}
1608 
1609 		txq->tx_buf[index].buf_p = NULL;
1610 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1611 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1612 
1613 tx_buf_done:
1614 		/* Make sure the update to bdp and tx_buf are performed
1615 		 * before dirty_tx
1616 		 */
1617 		wmb();
1618 		txq->dirty_tx = bdp;
1619 
1620 		/* Update pointer to next buffer descriptor to be transmitted */
1621 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1622 
1623 		/* Since we have freed up a buffer, the ring is no longer full
1624 		 */
1625 		if (netif_tx_queue_stopped(nq)) {
1626 			entries_free = fec_enet_get_free_txdesc_num(txq);
1627 			if (entries_free >= txq->tx_wake_threshold)
1628 				netif_tx_wake_queue(nq);
1629 		}
1630 	}
1631 
1632 	/* ERR006358: Keep the transmitter going */
1633 	if (bdp != txq->bd.cur &&
1634 	    readl(txq->bd.reg_desc_active) == 0)
1635 		writel(0, txq->bd.reg_desc_active);
1636 }
1637 
fec_enet_tx(struct net_device * ndev,int budget)1638 static void fec_enet_tx(struct net_device *ndev, int budget)
1639 {
1640 	struct fec_enet_private *fep = netdev_priv(ndev);
1641 	int i;
1642 
1643 	/* Make sure that AVB queues are processed first. */
1644 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1645 		fec_enet_tx_queue(ndev, i, budget);
1646 }
1647 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1648 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1649 				struct bufdesc *bdp, int index)
1650 {
1651 	struct page *new_page;
1652 	dma_addr_t phys_addr;
1653 
1654 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1655 	if (unlikely(!new_page))
1656 		return -ENOMEM;
1657 
1658 	rxq->rx_buf[index] = new_page;
1659 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1660 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1661 
1662 	return 0;
1663 }
1664 
1665 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1666 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1667 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1668 {
1669 	unsigned int sync, len = xdp->data_end - xdp->data;
1670 	u32 ret = FEC_ENET_XDP_PASS;
1671 	struct page *page;
1672 	int err;
1673 	u32 act;
1674 
1675 	act = bpf_prog_run_xdp(prog, xdp);
1676 
1677 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1678 	 * max len CPU touch
1679 	 */
1680 	sync = xdp->data_end - xdp->data;
1681 	sync = max(sync, len);
1682 
1683 	switch (act) {
1684 	case XDP_PASS:
1685 		rxq->stats[RX_XDP_PASS]++;
1686 		ret = FEC_ENET_XDP_PASS;
1687 		break;
1688 
1689 	case XDP_REDIRECT:
1690 		rxq->stats[RX_XDP_REDIRECT]++;
1691 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1692 		if (unlikely(err))
1693 			goto xdp_err;
1694 
1695 		ret = FEC_ENET_XDP_REDIR;
1696 		break;
1697 
1698 	case XDP_TX:
1699 		rxq->stats[RX_XDP_TX]++;
1700 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1701 		if (unlikely(err)) {
1702 			rxq->stats[RX_XDP_TX_ERRORS]++;
1703 			goto xdp_err;
1704 		}
1705 
1706 		ret = FEC_ENET_XDP_TX;
1707 		break;
1708 
1709 	default:
1710 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1711 		fallthrough;
1712 
1713 	case XDP_ABORTED:
1714 		fallthrough;    /* handle aborts by dropping packet */
1715 
1716 	case XDP_DROP:
1717 		rxq->stats[RX_XDP_DROP]++;
1718 xdp_err:
1719 		ret = FEC_ENET_XDP_CONSUMED;
1720 		page = virt_to_head_page(xdp->data);
1721 		page_pool_put_page(rxq->page_pool, page, sync, true);
1722 		if (act != XDP_DROP)
1723 			trace_xdp_exception(fep->netdev, prog, act);
1724 		break;
1725 	}
1726 
1727 	return ret;
1728 }
1729 
fec_enet_rx_vlan(const struct net_device * ndev,struct sk_buff * skb)1730 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1731 {
1732 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1733 		const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1734 		const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1735 
1736 		/* Push and remove the vlan tag */
1737 
1738 		memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1739 		skb_pull(skb, VLAN_HLEN);
1740 		__vlan_hwaccel_put_tag(skb,
1741 				       htons(ETH_P_8021Q),
1742 				       vlan_tag);
1743 	}
1744 }
1745 
1746 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1747  * When we update through the ring, if the next incoming buffer has
1748  * not been given to the system, we just set the empty indicator,
1749  * effectively tossing the packet.
1750  */
1751 static int
fec_enet_rx_queue(struct net_device * ndev,u16 queue_id,int budget)1752 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1753 {
1754 	struct fec_enet_private *fep = netdev_priv(ndev);
1755 	struct fec_enet_priv_rx_q *rxq;
1756 	struct bufdesc *bdp;
1757 	unsigned short status;
1758 	struct  sk_buff *skb;
1759 	ushort	pkt_len;
1760 	int	pkt_received = 0;
1761 	struct	bufdesc_ex *ebdp = NULL;
1762 	int	index = 0;
1763 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1764 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1765 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1766 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1767 	int cpu = smp_processor_id();
1768 	struct xdp_buff xdp;
1769 	struct page *page;
1770 	__fec32 cbd_bufaddr;
1771 	u32 sub_len = 4;
1772 
1773 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1774 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1775 	 */
1776 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1777 		data_start += 2;
1778 		sub_len += 2;
1779 	}
1780 
1781 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1782 	/*
1783 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1784 	 * headers.
1785 	 */
1786 	flush_cache_all();
1787 #endif
1788 	rxq = fep->rx_queue[queue_id];
1789 
1790 	/* First, grab all of the stats for the incoming packet.
1791 	 * These get messed up if we get called due to a busy condition.
1792 	 */
1793 	bdp = rxq->bd.cur;
1794 	xdp_init_buff(&xdp, PAGE_SIZE << fep->pagepool_order, &rxq->xdp_rxq);
1795 
1796 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1797 
1798 		if (pkt_received >= budget)
1799 			break;
1800 		pkt_received++;
1801 
1802 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1803 
1804 		/* Check for errors. */
1805 		status ^= BD_ENET_RX_LAST;
1806 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1807 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1808 			   BD_ENET_RX_CL)) {
1809 			ndev->stats.rx_errors++;
1810 			if (status & BD_ENET_RX_OV) {
1811 				/* FIFO overrun */
1812 				ndev->stats.rx_fifo_errors++;
1813 				goto rx_processing_done;
1814 			}
1815 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1816 						| BD_ENET_RX_LAST)) {
1817 				/* Frame too long or too short. */
1818 				ndev->stats.rx_length_errors++;
1819 				if (status & BD_ENET_RX_LAST)
1820 					netdev_err(ndev, "rcv is not +last\n");
1821 			}
1822 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1823 				ndev->stats.rx_crc_errors++;
1824 			/* Report late collisions as a frame error. */
1825 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1826 				ndev->stats.rx_frame_errors++;
1827 			goto rx_processing_done;
1828 		}
1829 
1830 		/* Process the incoming frame. */
1831 		ndev->stats.rx_packets++;
1832 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1833 		ndev->stats.rx_bytes += pkt_len;
1834 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1835 			ndev->stats.rx_bytes -= 2;
1836 
1837 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1838 		page = rxq->rx_buf[index];
1839 		cbd_bufaddr = bdp->cbd_bufaddr;
1840 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1841 			ndev->stats.rx_dropped++;
1842 			goto rx_processing_done;
1843 		}
1844 
1845 		dma_sync_single_for_cpu(&fep->pdev->dev,
1846 					fec32_to_cpu(cbd_bufaddr),
1847 					pkt_len,
1848 					DMA_FROM_DEVICE);
1849 		prefetch(page_address(page));
1850 
1851 		if (xdp_prog) {
1852 			xdp_buff_clear_frags_flag(&xdp);
1853 			/* subtract 16bit shift and FCS */
1854 			xdp_prepare_buff(&xdp, page_address(page),
1855 					 data_start, pkt_len - sub_len, false);
1856 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1857 			xdp_result |= ret;
1858 			if (ret != FEC_ENET_XDP_PASS)
1859 				goto rx_processing_done;
1860 		}
1861 
1862 		/* The packet length includes FCS, but we don't want to
1863 		 * include that when passing upstream as it messes up
1864 		 * bridging applications.
1865 		 */
1866 		skb = build_skb(page_address(page),
1867 				PAGE_SIZE << fep->pagepool_order);
1868 		if (unlikely(!skb)) {
1869 			page_pool_recycle_direct(rxq->page_pool, page);
1870 			ndev->stats.rx_dropped++;
1871 
1872 			netdev_err_once(ndev, "build_skb failed!\n");
1873 			goto rx_processing_done;
1874 		}
1875 
1876 		skb_reserve(skb, data_start);
1877 		skb_put(skb, pkt_len - sub_len);
1878 		skb_mark_for_recycle(skb);
1879 
1880 		if (unlikely(need_swap)) {
1881 			u8 *data;
1882 
1883 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1884 			swap_buffer(data, pkt_len);
1885 		}
1886 
1887 		/* Extract the enhanced buffer descriptor */
1888 		ebdp = NULL;
1889 		if (fep->bufdesc_ex)
1890 			ebdp = (struct bufdesc_ex *)bdp;
1891 
1892 		/* If this is a VLAN packet remove the VLAN Tag */
1893 		if (fep->bufdesc_ex &&
1894 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1895 			fec_enet_rx_vlan(ndev, skb);
1896 
1897 		skb->protocol = eth_type_trans(skb, ndev);
1898 
1899 		/* Get receive timestamp from the skb */
1900 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1901 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1902 					  skb_hwtstamps(skb));
1903 
1904 		if (fep->bufdesc_ex &&
1905 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1906 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1907 				/* don't check it */
1908 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1909 			} else {
1910 				skb_checksum_none_assert(skb);
1911 			}
1912 		}
1913 
1914 		skb_record_rx_queue(skb, queue_id);
1915 		napi_gro_receive(&fep->napi, skb);
1916 
1917 rx_processing_done:
1918 		/* Clear the status flags for this buffer */
1919 		status &= ~BD_ENET_RX_STATS;
1920 
1921 		/* Mark the buffer empty */
1922 		status |= BD_ENET_RX_EMPTY;
1923 
1924 		if (fep->bufdesc_ex) {
1925 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1926 
1927 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1928 			ebdp->cbd_prot = 0;
1929 			ebdp->cbd_bdu = 0;
1930 		}
1931 		/* Make sure the updates to rest of the descriptor are
1932 		 * performed before transferring ownership.
1933 		 */
1934 		wmb();
1935 		bdp->cbd_sc = cpu_to_fec16(status);
1936 
1937 		/* Update BD pointer to next entry */
1938 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1939 
1940 		/* Doing this here will keep the FEC running while we process
1941 		 * incoming frames.  On a heavily loaded network, we should be
1942 		 * able to keep up at the expense of system resources.
1943 		 */
1944 		writel(0, rxq->bd.reg_desc_active);
1945 	}
1946 	rxq->bd.cur = bdp;
1947 
1948 	if (xdp_result & FEC_ENET_XDP_REDIR)
1949 		xdp_do_flush();
1950 
1951 	return pkt_received;
1952 }
1953 
fec_enet_rx(struct net_device * ndev,int budget)1954 static int fec_enet_rx(struct net_device *ndev, int budget)
1955 {
1956 	struct fec_enet_private *fep = netdev_priv(ndev);
1957 	int i, done = 0;
1958 
1959 	/* Make sure that AVB queues are processed first. */
1960 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1961 		done += fec_enet_rx_queue(ndev, i, budget - done);
1962 
1963 	return done;
1964 }
1965 
fec_enet_collect_events(struct fec_enet_private * fep)1966 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1967 {
1968 	uint int_events;
1969 
1970 	int_events = readl(fep->hwp + FEC_IEVENT);
1971 
1972 	/* Don't clear MDIO events, we poll for those */
1973 	int_events &= ~FEC_ENET_MII;
1974 
1975 	writel(int_events, fep->hwp + FEC_IEVENT);
1976 
1977 	return int_events != 0;
1978 }
1979 
1980 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1981 fec_enet_interrupt(int irq, void *dev_id)
1982 {
1983 	struct net_device *ndev = dev_id;
1984 	struct fec_enet_private *fep = netdev_priv(ndev);
1985 	irqreturn_t ret = IRQ_NONE;
1986 
1987 	if (fec_enet_collect_events(fep) && fep->link) {
1988 		ret = IRQ_HANDLED;
1989 
1990 		if (napi_schedule_prep(&fep->napi)) {
1991 			/* Disable interrupts */
1992 			writel(0, fep->hwp + FEC_IMASK);
1993 			__napi_schedule(&fep->napi);
1994 		}
1995 	}
1996 
1997 	return ret;
1998 }
1999 
fec_enet_rx_napi(struct napi_struct * napi,int budget)2000 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
2001 {
2002 	struct net_device *ndev = napi->dev;
2003 	struct fec_enet_private *fep = netdev_priv(ndev);
2004 	int done = 0;
2005 
2006 	do {
2007 		done += fec_enet_rx(ndev, budget - done);
2008 		fec_enet_tx(ndev, budget);
2009 	} while ((done < budget) && fec_enet_collect_events(fep));
2010 
2011 	if (done < budget) {
2012 		napi_complete_done(napi, done);
2013 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
2014 	}
2015 
2016 	return done;
2017 }
2018 
2019 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2020 static int fec_get_mac(struct net_device *ndev)
2021 {
2022 	struct fec_enet_private *fep = netdev_priv(ndev);
2023 	unsigned char *iap, tmpaddr[ETH_ALEN];
2024 	int ret;
2025 
2026 	/*
2027 	 * try to get mac address in following order:
2028 	 *
2029 	 * 1) module parameter via kernel command line in form
2030 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2031 	 */
2032 	iap = macaddr;
2033 
2034 	/*
2035 	 * 2) from device tree data
2036 	 */
2037 	if (!is_valid_ether_addr(iap)) {
2038 		struct device_node *np = fep->pdev->dev.of_node;
2039 		if (np) {
2040 			ret = of_get_mac_address(np, tmpaddr);
2041 			if (!ret)
2042 				iap = tmpaddr;
2043 			else if (ret == -EPROBE_DEFER)
2044 				return ret;
2045 		}
2046 	}
2047 
2048 	/*
2049 	 * 3) from flash or fuse (via platform data)
2050 	 */
2051 	if (!is_valid_ether_addr(iap)) {
2052 #ifdef CONFIG_M5272
2053 		if (FEC_FLASHMAC)
2054 			iap = (unsigned char *)FEC_FLASHMAC;
2055 #else
2056 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2057 
2058 		if (pdata)
2059 			iap = (unsigned char *)&pdata->mac;
2060 #endif
2061 	}
2062 
2063 	/*
2064 	 * 4) FEC mac registers set by bootloader
2065 	 */
2066 	if (!is_valid_ether_addr(iap)) {
2067 		*((__be32 *) &tmpaddr[0]) =
2068 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2069 		*((__be16 *) &tmpaddr[4]) =
2070 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2071 		iap = &tmpaddr[0];
2072 	}
2073 
2074 	/*
2075 	 * 5) random mac address
2076 	 */
2077 	if (!is_valid_ether_addr(iap)) {
2078 		/* Report it and use a random ethernet address instead */
2079 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2080 		eth_hw_addr_random(ndev);
2081 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2082 			 ndev->dev_addr);
2083 		return 0;
2084 	}
2085 
2086 	/* Adjust MAC if using macaddr */
2087 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2088 
2089 	return 0;
2090 }
2091 
2092 /* ------------------------------------------------------------------------- */
2093 
2094 /*
2095  * Phy section
2096  */
2097 
2098 /* LPI Sleep Ts count base on tx clk (clk_ref).
2099  * The lpi sleep cnt value = X us / (cycle_ns).
2100  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2101 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2102 {
2103 	struct fec_enet_private *fep = netdev_priv(ndev);
2104 
2105 	return us * (fep->clk_ref_rate / 1000) / 1000;
2106 }
2107 
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2108 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2109 				 bool enable)
2110 {
2111 	struct fec_enet_private *fep = netdev_priv(ndev);
2112 	unsigned int sleep_cycle, wake_cycle;
2113 
2114 	if (enable) {
2115 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2116 		wake_cycle = sleep_cycle;
2117 	} else {
2118 		sleep_cycle = 0;
2119 		wake_cycle = 0;
2120 	}
2121 
2122 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2123 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2124 
2125 	return 0;
2126 }
2127 
fec_enet_adjust_link(struct net_device * ndev)2128 static void fec_enet_adjust_link(struct net_device *ndev)
2129 {
2130 	struct fec_enet_private *fep = netdev_priv(ndev);
2131 	struct phy_device *phy_dev = ndev->phydev;
2132 	int status_change = 0;
2133 
2134 	/*
2135 	 * If the netdev is down, or is going down, we're not interested
2136 	 * in link state events, so just mark our idea of the link as down
2137 	 * and ignore the event.
2138 	 */
2139 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2140 		fep->link = 0;
2141 	} else if (phy_dev->link) {
2142 		if (!fep->link) {
2143 			fep->link = phy_dev->link;
2144 			status_change = 1;
2145 		}
2146 
2147 		if (fep->full_duplex != phy_dev->duplex) {
2148 			fep->full_duplex = phy_dev->duplex;
2149 			status_change = 1;
2150 		}
2151 
2152 		if (phy_dev->speed != fep->speed) {
2153 			fep->speed = phy_dev->speed;
2154 			status_change = 1;
2155 		}
2156 
2157 		/* if any of the above changed restart the FEC */
2158 		if (status_change) {
2159 			netif_stop_queue(ndev);
2160 			napi_disable(&fep->napi);
2161 			netif_tx_lock_bh(ndev);
2162 			fec_restart(ndev);
2163 			netif_tx_wake_all_queues(ndev);
2164 			netif_tx_unlock_bh(ndev);
2165 			napi_enable(&fep->napi);
2166 		}
2167 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2168 			fec_enet_eee_mode_set(ndev,
2169 					      phy_dev->eee_cfg.tx_lpi_timer,
2170 					      phy_dev->enable_tx_lpi);
2171 	} else {
2172 		if (fep->link) {
2173 			netif_stop_queue(ndev);
2174 			napi_disable(&fep->napi);
2175 			netif_tx_lock_bh(ndev);
2176 			fec_stop(ndev);
2177 			netif_tx_unlock_bh(ndev);
2178 			napi_enable(&fep->napi);
2179 			fep->link = phy_dev->link;
2180 			status_change = 1;
2181 		}
2182 	}
2183 
2184 	if (status_change)
2185 		phy_print_status(phy_dev);
2186 }
2187 
fec_enet_mdio_wait(struct fec_enet_private * fep)2188 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2189 {
2190 	uint ievent;
2191 	int ret;
2192 
2193 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2194 					ievent & FEC_ENET_MII, 2, 30000);
2195 
2196 	if (!ret)
2197 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2198 
2199 	return ret;
2200 }
2201 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2202 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2203 {
2204 	struct fec_enet_private *fep = bus->priv;
2205 	struct device *dev = &fep->pdev->dev;
2206 	int ret = 0, frame_start, frame_addr, frame_op;
2207 
2208 	ret = pm_runtime_resume_and_get(dev);
2209 	if (ret < 0)
2210 		return ret;
2211 
2212 	/* C22 read */
2213 	frame_op = FEC_MMFR_OP_READ;
2214 	frame_start = FEC_MMFR_ST;
2215 	frame_addr = regnum;
2216 
2217 	/* start a read op */
2218 	writel(frame_start | frame_op |
2219 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2220 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2221 
2222 	/* wait for end of transfer */
2223 	ret = fec_enet_mdio_wait(fep);
2224 	if (ret) {
2225 		netdev_err(fep->netdev, "MDIO read timeout\n");
2226 		goto out;
2227 	}
2228 
2229 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2230 
2231 out:
2232 	pm_runtime_put_autosuspend(dev);
2233 
2234 	return ret;
2235 }
2236 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2237 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2238 				  int devad, int regnum)
2239 {
2240 	struct fec_enet_private *fep = bus->priv;
2241 	struct device *dev = &fep->pdev->dev;
2242 	int ret = 0, frame_start, frame_op;
2243 
2244 	ret = pm_runtime_resume_and_get(dev);
2245 	if (ret < 0)
2246 		return ret;
2247 
2248 	frame_start = FEC_MMFR_ST_C45;
2249 
2250 	/* write address */
2251 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2252 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2253 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2254 	       fep->hwp + FEC_MII_DATA);
2255 
2256 	/* wait for end of transfer */
2257 	ret = fec_enet_mdio_wait(fep);
2258 	if (ret) {
2259 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2260 		goto out;
2261 	}
2262 
2263 	frame_op = FEC_MMFR_OP_READ_C45;
2264 
2265 	/* start a read op */
2266 	writel(frame_start | frame_op |
2267 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2268 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2269 
2270 	/* wait for end of transfer */
2271 	ret = fec_enet_mdio_wait(fep);
2272 	if (ret) {
2273 		netdev_err(fep->netdev, "MDIO read timeout\n");
2274 		goto out;
2275 	}
2276 
2277 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2278 
2279 out:
2280 	pm_runtime_put_autosuspend(dev);
2281 
2282 	return ret;
2283 }
2284 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2285 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2286 				   u16 value)
2287 {
2288 	struct fec_enet_private *fep = bus->priv;
2289 	struct device *dev = &fep->pdev->dev;
2290 	int ret, frame_start, frame_addr;
2291 
2292 	ret = pm_runtime_resume_and_get(dev);
2293 	if (ret < 0)
2294 		return ret;
2295 
2296 	/* C22 write */
2297 	frame_start = FEC_MMFR_ST;
2298 	frame_addr = regnum;
2299 
2300 	/* start a write op */
2301 	writel(frame_start | FEC_MMFR_OP_WRITE |
2302 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2303 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2304 	       fep->hwp + FEC_MII_DATA);
2305 
2306 	/* wait for end of transfer */
2307 	ret = fec_enet_mdio_wait(fep);
2308 	if (ret)
2309 		netdev_err(fep->netdev, "MDIO write timeout\n");
2310 
2311 	pm_runtime_put_autosuspend(dev);
2312 
2313 	return ret;
2314 }
2315 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2316 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2317 				   int devad, int regnum, u16 value)
2318 {
2319 	struct fec_enet_private *fep = bus->priv;
2320 	struct device *dev = &fep->pdev->dev;
2321 	int ret, frame_start;
2322 
2323 	ret = pm_runtime_resume_and_get(dev);
2324 	if (ret < 0)
2325 		return ret;
2326 
2327 	frame_start = FEC_MMFR_ST_C45;
2328 
2329 	/* write address */
2330 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2331 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2332 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2333 	       fep->hwp + FEC_MII_DATA);
2334 
2335 	/* wait for end of transfer */
2336 	ret = fec_enet_mdio_wait(fep);
2337 	if (ret) {
2338 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2339 		goto out;
2340 	}
2341 
2342 	/* start a write op */
2343 	writel(frame_start | FEC_MMFR_OP_WRITE |
2344 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2345 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2346 	       fep->hwp + FEC_MII_DATA);
2347 
2348 	/* wait for end of transfer */
2349 	ret = fec_enet_mdio_wait(fep);
2350 	if (ret)
2351 		netdev_err(fep->netdev, "MDIO write timeout\n");
2352 
2353 out:
2354 	pm_runtime_put_autosuspend(dev);
2355 
2356 	return ret;
2357 }
2358 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2359 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2360 {
2361 	struct fec_enet_private *fep = netdev_priv(ndev);
2362 	struct phy_device *phy_dev = ndev->phydev;
2363 
2364 	if (phy_dev) {
2365 		phy_reset_after_clk_enable(phy_dev);
2366 	} else if (fep->phy_node) {
2367 		/*
2368 		 * If the PHY still is not bound to the MAC, but there is
2369 		 * OF PHY node and a matching PHY device instance already,
2370 		 * use the OF PHY node to obtain the PHY device instance,
2371 		 * and then use that PHY device instance when triggering
2372 		 * the PHY reset.
2373 		 */
2374 		phy_dev = of_phy_find_device(fep->phy_node);
2375 		phy_reset_after_clk_enable(phy_dev);
2376 		if (phy_dev)
2377 			put_device(&phy_dev->mdio.dev);
2378 	}
2379 }
2380 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2381 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2382 {
2383 	struct fec_enet_private *fep = netdev_priv(ndev);
2384 	int ret;
2385 
2386 	if (enable) {
2387 		ret = clk_prepare_enable(fep->clk_enet_out);
2388 		if (ret)
2389 			return ret;
2390 
2391 		if (fep->clk_ptp) {
2392 			mutex_lock(&fep->ptp_clk_mutex);
2393 			ret = clk_prepare_enable(fep->clk_ptp);
2394 			if (ret) {
2395 				mutex_unlock(&fep->ptp_clk_mutex);
2396 				goto failed_clk_ptp;
2397 			} else {
2398 				fep->ptp_clk_on = true;
2399 			}
2400 			mutex_unlock(&fep->ptp_clk_mutex);
2401 		}
2402 
2403 		ret = clk_prepare_enable(fep->clk_ref);
2404 		if (ret)
2405 			goto failed_clk_ref;
2406 
2407 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2408 		if (ret)
2409 			goto failed_clk_2x_txclk;
2410 
2411 		fec_enet_phy_reset_after_clk_enable(ndev);
2412 	} else {
2413 		clk_disable_unprepare(fep->clk_enet_out);
2414 		if (fep->clk_ptp) {
2415 			mutex_lock(&fep->ptp_clk_mutex);
2416 			clk_disable_unprepare(fep->clk_ptp);
2417 			fep->ptp_clk_on = false;
2418 			mutex_unlock(&fep->ptp_clk_mutex);
2419 		}
2420 		clk_disable_unprepare(fep->clk_ref);
2421 		clk_disable_unprepare(fep->clk_2x_txclk);
2422 	}
2423 
2424 	return 0;
2425 
2426 failed_clk_2x_txclk:
2427 	if (fep->clk_ref)
2428 		clk_disable_unprepare(fep->clk_ref);
2429 failed_clk_ref:
2430 	if (fep->clk_ptp) {
2431 		mutex_lock(&fep->ptp_clk_mutex);
2432 		clk_disable_unprepare(fep->clk_ptp);
2433 		fep->ptp_clk_on = false;
2434 		mutex_unlock(&fep->ptp_clk_mutex);
2435 	}
2436 failed_clk_ptp:
2437 	clk_disable_unprepare(fep->clk_enet_out);
2438 
2439 	return ret;
2440 }
2441 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2442 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2443 				      struct device_node *np)
2444 {
2445 	u32 rgmii_tx_delay, rgmii_rx_delay;
2446 
2447 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2448 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2449 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2450 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2451 			return -EINVAL;
2452 		} else if (rgmii_tx_delay == 2000) {
2453 			fep->rgmii_txc_dly = true;
2454 		}
2455 	}
2456 
2457 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2458 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2459 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2460 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2461 			return -EINVAL;
2462 		} else if (rgmii_rx_delay == 2000) {
2463 			fep->rgmii_rxc_dly = true;
2464 		}
2465 	}
2466 
2467 	return 0;
2468 }
2469 
fec_enet_mii_probe(struct net_device * ndev)2470 static int fec_enet_mii_probe(struct net_device *ndev)
2471 {
2472 	struct fec_enet_private *fep = netdev_priv(ndev);
2473 	struct phy_device *phy_dev;
2474 	int ret;
2475 
2476 	if (fep->phy_node) {
2477 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2478 					 &fec_enet_adjust_link, 0,
2479 					 fep->phy_interface);
2480 		if (!phy_dev) {
2481 			netdev_err(ndev, "Unable to connect to phy\n");
2482 			return -ENODEV;
2483 		}
2484 	} else {
2485 		/* check for attached phy */
2486 		phy_dev = phy_find_first(fep->mii_bus);
2487 		if (fep->dev_id && phy_dev)
2488 			phy_dev = phy_find_next(fep->mii_bus, phy_dev);
2489 
2490 		if (!phy_dev) {
2491 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2492 			phy_dev = fixed_phy_register_100fd();
2493 			if (IS_ERR(phy_dev)) {
2494 				netdev_err(ndev, "could not register fixed PHY\n");
2495 				return PTR_ERR(phy_dev);
2496 			}
2497 		}
2498 
2499 		ret = phy_connect_direct(ndev, phy_dev, &fec_enet_adjust_link,
2500 					 fep->phy_interface);
2501 		if (ret) {
2502 			if (phy_is_pseudo_fixed_link(phy_dev))
2503 				fixed_phy_unregister(phy_dev);
2504 			netdev_err(ndev, "could not attach to PHY\n");
2505 			return ret;
2506 		}
2507 
2508 	}
2509 
2510 	/* mask with MAC supported features */
2511 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2512 		phy_set_max_speed(phy_dev, 1000);
2513 		phy_remove_link_mode(phy_dev,
2514 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2515 		phy_support_sym_pause(phy_dev);
2516 	}
2517 	else
2518 		phy_set_max_speed(phy_dev, 100);
2519 
2520 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2521 		phy_support_eee(phy_dev);
2522 
2523 	fep->link = 0;
2524 	fep->full_duplex = 0;
2525 
2526 	phy_attached_info(phy_dev);
2527 
2528 	return 0;
2529 }
2530 
fec_enet_mii_init(struct platform_device * pdev)2531 static int fec_enet_mii_init(struct platform_device *pdev)
2532 {
2533 	static struct mii_bus *fec0_mii_bus;
2534 	struct net_device *ndev = platform_get_drvdata(pdev);
2535 	struct fec_enet_private *fep = netdev_priv(ndev);
2536 	bool suppress_preamble = false;
2537 	struct phy_device *phydev;
2538 	struct device_node *node;
2539 	int err = -ENXIO;
2540 	u32 mii_speed, holdtime;
2541 	u32 bus_freq;
2542 
2543 	/*
2544 	 * The i.MX28 dual fec interfaces are not equal.
2545 	 * Here are the differences:
2546 	 *
2547 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2548 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2549 	 *  - external phys can only be configured by fec0
2550 	 *
2551 	 * That is to say fec1 can not work independently. It only works
2552 	 * when fec0 is working. The reason behind this design is that the
2553 	 * second interface is added primarily for Switch mode.
2554 	 *
2555 	 * Because of the last point above, both phys are attached on fec0
2556 	 * mdio interface in board design, and need to be configured by
2557 	 * fec0 mii_bus.
2558 	 */
2559 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2560 		/* fec1 uses fec0 mii_bus */
2561 		if (mii_cnt && fec0_mii_bus) {
2562 			fep->mii_bus = fec0_mii_bus;
2563 			mii_cnt++;
2564 			return 0;
2565 		}
2566 		return -ENOENT;
2567 	}
2568 
2569 	bus_freq = 2500000; /* 2.5MHz by default */
2570 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2571 	if (node) {
2572 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2573 		suppress_preamble = of_property_read_bool(node,
2574 							  "suppress-preamble");
2575 	}
2576 
2577 	/*
2578 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2579 	 *
2580 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2581 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2582 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2583 	 * document.
2584 	 */
2585 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2586 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2587 		mii_speed--;
2588 	if (mii_speed > 63) {
2589 		dev_err(&pdev->dev,
2590 			"fec clock (%lu) too fast to get right mii speed\n",
2591 			clk_get_rate(fep->clk_ipg));
2592 		err = -EINVAL;
2593 		goto err_out;
2594 	}
2595 
2596 	/*
2597 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2598 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2599 	 * versions are RAZ there, so just ignore the difference and write the
2600 	 * register always.
2601 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2602 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2603 	 * output.
2604 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2605 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2606 	 * holdtime cannot result in a value greater than 3.
2607 	 */
2608 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2609 
2610 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2611 
2612 	if (suppress_preamble)
2613 		fep->phy_speed |= BIT(7);
2614 
2615 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2616 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2617 		 * MII event generation condition:
2618 		 * - writing MSCR:
2619 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2620 		 *	  mscr_reg_data_in[7:0] != 0
2621 		 * - writing MMFR:
2622 		 *	- mscr[7:0]_not_zero
2623 		 */
2624 		writel(0, fep->hwp + FEC_MII_DATA);
2625 	}
2626 
2627 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2628 
2629 	/* Clear any pending transaction complete indication */
2630 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2631 
2632 	fep->mii_bus = mdiobus_alloc();
2633 	if (fep->mii_bus == NULL) {
2634 		err = -ENOMEM;
2635 		goto err_out;
2636 	}
2637 
2638 	fep->mii_bus->name = "fec_enet_mii_bus";
2639 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2640 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2641 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2642 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2643 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2644 	}
2645 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2646 		pdev->name, fep->dev_id + 1);
2647 	fep->mii_bus->priv = fep;
2648 	fep->mii_bus->parent = &pdev->dev;
2649 
2650 	err = of_mdiobus_register(fep->mii_bus, node);
2651 	if (err)
2652 		goto err_out_free_mdiobus;
2653 	of_node_put(node);
2654 
2655 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2656 	mdiobus_for_each_phy(fep->mii_bus, phydev)
2657 		phydev->mac_managed_pm = true;
2658 
2659 	mii_cnt++;
2660 
2661 	/* save fec0 mii_bus */
2662 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2663 		fec0_mii_bus = fep->mii_bus;
2664 
2665 	return 0;
2666 
2667 err_out_free_mdiobus:
2668 	mdiobus_free(fep->mii_bus);
2669 err_out:
2670 	of_node_put(node);
2671 	return err;
2672 }
2673 
fec_enet_mii_remove(struct fec_enet_private * fep)2674 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2675 {
2676 	if (--mii_cnt == 0) {
2677 		mdiobus_unregister(fep->mii_bus);
2678 		mdiobus_free(fep->mii_bus);
2679 	}
2680 }
2681 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2682 static void fec_enet_get_drvinfo(struct net_device *ndev,
2683 				 struct ethtool_drvinfo *info)
2684 {
2685 	struct fec_enet_private *fep = netdev_priv(ndev);
2686 
2687 	strscpy(info->driver, fep->pdev->dev.driver->name,
2688 		sizeof(info->driver));
2689 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2690 }
2691 
fec_enet_get_regs_len(struct net_device * ndev)2692 static int fec_enet_get_regs_len(struct net_device *ndev)
2693 {
2694 	struct fec_enet_private *fep = netdev_priv(ndev);
2695 	struct resource *r;
2696 	int s = 0;
2697 
2698 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2699 	if (r)
2700 		s = resource_size(r);
2701 
2702 	return s;
2703 }
2704 
2705 /* List of registers that can be safety be read to dump them with ethtool */
2706 #if !defined(CONFIG_M5272) || defined(CONFIG_COMPILE_TEST)
2707 static __u32 fec_enet_register_version = 2;
2708 static u32 fec_enet_register_offset[] = {
2709 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2710 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2711 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2712 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2713 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2714 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2715 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2716 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2717 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2718 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2719 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2720 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2721 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2722 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2723 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2724 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2725 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2726 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2727 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2728 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2729 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2730 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2731 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2732 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2733 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2734 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2735 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2736 };
2737 /* for i.MX6ul */
2738 static u32 fec_enet_register_offset_6ul[] = {
2739 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2740 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2741 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2742 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2743 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2744 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2745 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2746 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2747 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2748 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2749 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2750 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2751 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2752 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2753 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2754 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2755 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2756 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2757 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2758 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2759 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2760 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2761 };
2762 #else
2763 static __u32 fec_enet_register_version = 1;
2764 static u32 fec_enet_register_offset[] = {
2765 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2766 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2767 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2768 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2769 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2770 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2771 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2772 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2773 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2774 };
2775 #endif
2776 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2777 static void fec_enet_get_regs(struct net_device *ndev,
2778 			      struct ethtool_regs *regs, void *regbuf)
2779 {
2780 	u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2781 	struct fec_enet_private *fep = netdev_priv(ndev);
2782 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2783 	u32 *reg_list = fec_enet_register_offset;
2784 	struct device *dev = &fep->pdev->dev;
2785 	u32 *buf = (u32 *)regbuf;
2786 	u32 i, off;
2787 	int ret;
2788 
2789 #if !defined(CONFIG_M5272) || defined(CONFIG_COMPILE_TEST)
2790 	if (of_machine_is_compatible("fsl,imx6ul")) {
2791 		reg_list = fec_enet_register_offset_6ul;
2792 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2793 	}
2794 #endif
2795 
2796 	ret = pm_runtime_resume_and_get(dev);
2797 	if (ret < 0)
2798 		return;
2799 
2800 	regs->version = fec_enet_register_version;
2801 
2802 	memset(buf, 0, regs->len);
2803 
2804 	for (i = 0; i < reg_cnt; i++) {
2805 		off = reg_list[i];
2806 
2807 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2808 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2809 			continue;
2810 
2811 		off >>= 2;
2812 		buf[off] = readl(&theregs[off]);
2813 	}
2814 
2815 	pm_runtime_put_autosuspend(dev);
2816 }
2817 
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2818 static int fec_enet_get_ts_info(struct net_device *ndev,
2819 				struct kernel_ethtool_ts_info *info)
2820 {
2821 	struct fec_enet_private *fep = netdev_priv(ndev);
2822 
2823 	if (fep->bufdesc_ex) {
2824 
2825 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2826 					SOF_TIMESTAMPING_TX_HARDWARE |
2827 					SOF_TIMESTAMPING_RX_HARDWARE |
2828 					SOF_TIMESTAMPING_RAW_HARDWARE;
2829 		if (fep->ptp_clock)
2830 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2831 
2832 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2833 				 (1 << HWTSTAMP_TX_ON);
2834 
2835 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2836 				   (1 << HWTSTAMP_FILTER_ALL);
2837 		return 0;
2838 	} else {
2839 		return ethtool_op_get_ts_info(ndev, info);
2840 	}
2841 }
2842 
2843 #if !defined(CONFIG_M5272)
2844 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2845 static void fec_enet_get_pauseparam(struct net_device *ndev,
2846 				    struct ethtool_pauseparam *pause)
2847 {
2848 	struct fec_enet_private *fep = netdev_priv(ndev);
2849 
2850 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2851 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2852 	pause->rx_pause = pause->tx_pause;
2853 }
2854 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2855 static int fec_enet_set_pauseparam(struct net_device *ndev,
2856 				   struct ethtool_pauseparam *pause)
2857 {
2858 	struct fec_enet_private *fep = netdev_priv(ndev);
2859 
2860 	if (!ndev->phydev)
2861 		return -ENODEV;
2862 
2863 	if (pause->tx_pause != pause->rx_pause) {
2864 		netdev_info(ndev,
2865 			"hardware only support enable/disable both tx and rx");
2866 		return -EINVAL;
2867 	}
2868 
2869 	fep->pause_flag = 0;
2870 
2871 	/* tx pause must be same as rx pause */
2872 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2873 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2874 
2875 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2876 			  pause->autoneg);
2877 
2878 	if (pause->autoneg) {
2879 		if (netif_running(ndev))
2880 			fec_stop(ndev);
2881 		phy_start_aneg(ndev->phydev);
2882 	}
2883 	if (netif_running(ndev)) {
2884 		napi_disable(&fep->napi);
2885 		netif_tx_lock_bh(ndev);
2886 		fec_restart(ndev);
2887 		netif_tx_wake_all_queues(ndev);
2888 		netif_tx_unlock_bh(ndev);
2889 		napi_enable(&fep->napi);
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 static const struct fec_stat {
2896 	char name[ETH_GSTRING_LEN];
2897 	u16 offset;
2898 } fec_stats[] = {
2899 	/* RMON TX */
2900 	{ "tx_dropped", RMON_T_DROP },
2901 	{ "tx_packets", RMON_T_PACKETS },
2902 	{ "tx_broadcast", RMON_T_BC_PKT },
2903 	{ "tx_multicast", RMON_T_MC_PKT },
2904 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2905 	{ "tx_undersize", RMON_T_UNDERSIZE },
2906 	{ "tx_oversize", RMON_T_OVERSIZE },
2907 	{ "tx_fragment", RMON_T_FRAG },
2908 	{ "tx_jabber", RMON_T_JAB },
2909 	{ "tx_collision", RMON_T_COL },
2910 	{ "tx_64byte", RMON_T_P64 },
2911 	{ "tx_65to127byte", RMON_T_P65TO127 },
2912 	{ "tx_128to255byte", RMON_T_P128TO255 },
2913 	{ "tx_256to511byte", RMON_T_P256TO511 },
2914 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2915 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2916 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2917 	{ "tx_octets", RMON_T_OCTETS },
2918 
2919 	/* IEEE TX */
2920 	{ "IEEE_tx_drop", IEEE_T_DROP },
2921 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2922 	{ "IEEE_tx_1col", IEEE_T_1COL },
2923 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2924 	{ "IEEE_tx_def", IEEE_T_DEF },
2925 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2926 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2927 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2928 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2929 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2930 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2931 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2932 
2933 	/* RMON RX */
2934 	{ "rx_packets", RMON_R_PACKETS },
2935 	{ "rx_broadcast", RMON_R_BC_PKT },
2936 	{ "rx_multicast", RMON_R_MC_PKT },
2937 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2938 	{ "rx_undersize", RMON_R_UNDERSIZE },
2939 	{ "rx_oversize", RMON_R_OVERSIZE },
2940 	{ "rx_fragment", RMON_R_FRAG },
2941 	{ "rx_jabber", RMON_R_JAB },
2942 	{ "rx_64byte", RMON_R_P64 },
2943 	{ "rx_65to127byte", RMON_R_P65TO127 },
2944 	{ "rx_128to255byte", RMON_R_P128TO255 },
2945 	{ "rx_256to511byte", RMON_R_P256TO511 },
2946 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2947 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2948 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2949 	{ "rx_octets", RMON_R_OCTETS },
2950 
2951 	/* IEEE RX */
2952 	{ "IEEE_rx_drop", IEEE_R_DROP },
2953 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2954 	{ "IEEE_rx_crc", IEEE_R_CRC },
2955 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2956 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2957 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2958 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2959 };
2960 
2961 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2962 
2963 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2964 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2965 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2966 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2967 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2968 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2969 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2970 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2971 };
2972 
fec_enet_update_ethtool_stats(struct net_device * dev)2973 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2974 {
2975 	struct fec_enet_private *fep = netdev_priv(dev);
2976 	int i;
2977 
2978 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2979 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2980 }
2981 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2982 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2983 {
2984 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2985 	struct fec_enet_priv_rx_q *rxq;
2986 	int i, j;
2987 
2988 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2989 		rxq = fep->rx_queue[i];
2990 
2991 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2992 			xdp_stats[j] += rxq->stats[j];
2993 	}
2994 
2995 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2996 }
2997 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2998 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2999 {
3000 #ifdef CONFIG_PAGE_POOL_STATS
3001 	struct page_pool_stats stats = {};
3002 	struct fec_enet_priv_rx_q *rxq;
3003 	int i;
3004 
3005 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3006 		rxq = fep->rx_queue[i];
3007 
3008 		if (!rxq->page_pool)
3009 			continue;
3010 
3011 		page_pool_get_stats(rxq->page_pool, &stats);
3012 	}
3013 
3014 	page_pool_ethtool_stats_get(data, &stats);
3015 #endif
3016 }
3017 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3018 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3019 				       struct ethtool_stats *stats, u64 *data)
3020 {
3021 	struct fec_enet_private *fep = netdev_priv(dev);
3022 
3023 	if (netif_running(dev))
3024 		fec_enet_update_ethtool_stats(dev);
3025 
3026 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3027 	data += FEC_STATS_SIZE / sizeof(u64);
3028 
3029 	fec_enet_get_xdp_stats(fep, data);
3030 	data += XDP_STATS_TOTAL;
3031 
3032 	fec_enet_page_pool_stats(fep, data);
3033 }
3034 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3035 static void fec_enet_get_strings(struct net_device *netdev,
3036 	u32 stringset, u8 *data)
3037 {
3038 	int i;
3039 	switch (stringset) {
3040 	case ETH_SS_STATS:
3041 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3042 			ethtool_puts(&data, fec_stats[i].name);
3043 		}
3044 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3045 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3046 		}
3047 		page_pool_ethtool_stats_get_strings(data);
3048 
3049 		break;
3050 	case ETH_SS_TEST:
3051 		net_selftest_get_strings(data);
3052 		break;
3053 	}
3054 }
3055 
fec_enet_get_sset_count(struct net_device * dev,int sset)3056 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3057 {
3058 	int count;
3059 
3060 	switch (sset) {
3061 	case ETH_SS_STATS:
3062 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3063 		count += page_pool_ethtool_stats_get_count();
3064 		return count;
3065 
3066 	case ETH_SS_TEST:
3067 		return net_selftest_get_count();
3068 	default:
3069 		return -EOPNOTSUPP;
3070 	}
3071 }
3072 
fec_enet_clear_ethtool_stats(struct net_device * dev)3073 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3074 {
3075 	struct fec_enet_private *fep = netdev_priv(dev);
3076 	struct fec_enet_priv_rx_q *rxq;
3077 	int i, j;
3078 
3079 	/* Disable MIB statistics counters */
3080 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3081 
3082 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3083 		writel(0, fep->hwp + fec_stats[i].offset);
3084 
3085 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3086 		rxq = fep->rx_queue[i];
3087 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3088 			rxq->stats[j] = 0;
3089 	}
3090 
3091 	/* Don't disable MIB statistics counters */
3092 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3093 }
3094 
3095 #else	/* !defined(CONFIG_M5272) */
3096 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3097 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3098 {
3099 }
3100 
fec_enet_clear_ethtool_stats(struct net_device * dev)3101 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3102 {
3103 }
3104 #endif /* !defined(CONFIG_M5272) */
3105 
3106 /* ITR clock source is enet system clock (clk_ahb).
3107  * TCTT unit is cycle_ns * 64 cycle
3108  * So, the ICTT value = X us / (cycle_ns * 64)
3109  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3110 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3111 {
3112 	struct fec_enet_private *fep = netdev_priv(ndev);
3113 
3114 	return us * (fep->itr_clk_rate / 64000) / 1000;
3115 }
3116 
3117 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3118 static void fec_enet_itr_coal_set(struct net_device *ndev)
3119 {
3120 	struct fec_enet_private *fep = netdev_priv(ndev);
3121 	u32 rx_itr = 0, tx_itr = 0;
3122 	int rx_ictt, tx_ictt;
3123 
3124 	rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3125 	tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3126 
3127 	if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3128 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3129 		rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3130 		rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3131 		rx_itr |= FEC_ITR_ICTT(rx_ictt);
3132 	}
3133 
3134 	if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3135 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3136 		tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3137 		tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3138 		tx_itr |= FEC_ITR_ICTT(tx_ictt);
3139 	}
3140 
3141 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3142 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3143 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3144 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3145 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3146 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3147 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3148 	}
3149 }
3150 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3151 static int fec_enet_get_coalesce(struct net_device *ndev,
3152 				 struct ethtool_coalesce *ec,
3153 				 struct kernel_ethtool_coalesce *kernel_coal,
3154 				 struct netlink_ext_ack *extack)
3155 {
3156 	struct fec_enet_private *fep = netdev_priv(ndev);
3157 
3158 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3159 		return -EOPNOTSUPP;
3160 
3161 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3162 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3163 
3164 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3165 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3166 
3167 	return 0;
3168 }
3169 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3170 static int fec_enet_set_coalesce(struct net_device *ndev,
3171 				 struct ethtool_coalesce *ec,
3172 				 struct kernel_ethtool_coalesce *kernel_coal,
3173 				 struct netlink_ext_ack *extack)
3174 {
3175 	struct fec_enet_private *fep = netdev_priv(ndev);
3176 	struct device *dev = &fep->pdev->dev;
3177 	unsigned int cycle;
3178 
3179 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3180 		return -EOPNOTSUPP;
3181 
3182 	if (ec->rx_max_coalesced_frames > 255) {
3183 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3184 		return -EINVAL;
3185 	}
3186 
3187 	if (ec->tx_max_coalesced_frames > 255) {
3188 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3189 		return -EINVAL;
3190 	}
3191 
3192 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3193 	if (cycle > 0xFFFF) {
3194 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3195 		return -EINVAL;
3196 	}
3197 
3198 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3199 	if (cycle > 0xFFFF) {
3200 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3201 		return -EINVAL;
3202 	}
3203 
3204 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3205 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3206 
3207 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3208 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3209 
3210 	fec_enet_itr_coal_set(ndev);
3211 
3212 	return 0;
3213 }
3214 
3215 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3216 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3217 {
3218 	struct fec_enet_private *fep = netdev_priv(ndev);
3219 
3220 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3221 		return -EOPNOTSUPP;
3222 
3223 	if (!netif_running(ndev))
3224 		return -ENETDOWN;
3225 
3226 	return phy_ethtool_get_eee(ndev->phydev, edata);
3227 }
3228 
3229 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3230 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3231 {
3232 	struct fec_enet_private *fep = netdev_priv(ndev);
3233 
3234 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3235 		return -EOPNOTSUPP;
3236 
3237 	if (!netif_running(ndev))
3238 		return -ENETDOWN;
3239 
3240 	return phy_ethtool_set_eee(ndev->phydev, edata);
3241 }
3242 
3243 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3244 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3245 {
3246 	struct fec_enet_private *fep = netdev_priv(ndev);
3247 
3248 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3249 		wol->supported = WAKE_MAGIC;
3250 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3251 	} else {
3252 		wol->supported = wol->wolopts = 0;
3253 	}
3254 }
3255 
3256 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3257 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3258 {
3259 	struct fec_enet_private *fep = netdev_priv(ndev);
3260 
3261 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3262 		return -EINVAL;
3263 
3264 	if (wol->wolopts & ~WAKE_MAGIC)
3265 		return -EINVAL;
3266 
3267 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3268 	if (device_may_wakeup(&ndev->dev))
3269 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3270 	else
3271 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3272 
3273 	return 0;
3274 }
3275 
3276 static const struct ethtool_ops fec_enet_ethtool_ops = {
3277 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3278 				     ETHTOOL_COALESCE_MAX_FRAMES,
3279 	.get_drvinfo		= fec_enet_get_drvinfo,
3280 	.get_regs_len		= fec_enet_get_regs_len,
3281 	.get_regs		= fec_enet_get_regs,
3282 	.nway_reset		= phy_ethtool_nway_reset,
3283 	.get_link		= ethtool_op_get_link,
3284 	.get_coalesce		= fec_enet_get_coalesce,
3285 	.set_coalesce		= fec_enet_set_coalesce,
3286 #ifndef CONFIG_M5272
3287 	.get_pauseparam		= fec_enet_get_pauseparam,
3288 	.set_pauseparam		= fec_enet_set_pauseparam,
3289 	.get_strings		= fec_enet_get_strings,
3290 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3291 	.get_sset_count		= fec_enet_get_sset_count,
3292 #endif
3293 	.get_ts_info		= fec_enet_get_ts_info,
3294 	.get_wol		= fec_enet_get_wol,
3295 	.set_wol		= fec_enet_set_wol,
3296 	.get_eee		= fec_enet_get_eee,
3297 	.set_eee		= fec_enet_set_eee,
3298 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3299 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3300 	.self_test		= net_selftest,
3301 };
3302 
fec_enet_free_buffers(struct net_device * ndev)3303 static void fec_enet_free_buffers(struct net_device *ndev)
3304 {
3305 	struct fec_enet_private *fep = netdev_priv(ndev);
3306 	unsigned int i;
3307 	struct fec_enet_priv_tx_q *txq;
3308 	struct fec_enet_priv_rx_q *rxq;
3309 	unsigned int q;
3310 
3311 	for (q = 0; q < fep->num_rx_queues; q++) {
3312 		rxq = fep->rx_queue[q];
3313 		for (i = 0; i < rxq->bd.ring_size; i++)
3314 			page_pool_put_full_page(rxq->page_pool, rxq->rx_buf[i],
3315 						false);
3316 
3317 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3318 			rxq->stats[i] = 0;
3319 
3320 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3321 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3322 		page_pool_destroy(rxq->page_pool);
3323 		rxq->page_pool = NULL;
3324 	}
3325 
3326 	for (q = 0; q < fep->num_tx_queues; q++) {
3327 		txq = fep->tx_queue[q];
3328 		for (i = 0; i < txq->bd.ring_size; i++) {
3329 			kfree(txq->tx_bounce[i]);
3330 			txq->tx_bounce[i] = NULL;
3331 
3332 			if (!txq->tx_buf[i].buf_p) {
3333 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3334 				continue;
3335 			}
3336 
3337 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3338 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3339 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3340 				xdp_return_frame(txq->tx_buf[i].buf_p);
3341 			} else {
3342 				struct page *page = txq->tx_buf[i].buf_p;
3343 
3344 				page_pool_put_page(pp_page_to_nmdesc(page)->pp,
3345 						   page, 0, false);
3346 			}
3347 
3348 			txq->tx_buf[i].buf_p = NULL;
3349 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3350 		}
3351 	}
3352 }
3353 
fec_enet_free_queue(struct net_device * ndev)3354 static void fec_enet_free_queue(struct net_device *ndev)
3355 {
3356 	struct fec_enet_private *fep = netdev_priv(ndev);
3357 	int i;
3358 	struct fec_enet_priv_tx_q *txq;
3359 
3360 	for (i = 0; i < fep->num_tx_queues; i++)
3361 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3362 			txq = fep->tx_queue[i];
3363 			fec_dma_free(&fep->pdev->dev,
3364 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3365 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3366 		}
3367 
3368 	for (i = 0; i < fep->num_rx_queues; i++)
3369 		kfree(fep->rx_queue[i]);
3370 	for (i = 0; i < fep->num_tx_queues; i++)
3371 		kfree(fep->tx_queue[i]);
3372 }
3373 
fec_enet_alloc_queue(struct net_device * ndev)3374 static int fec_enet_alloc_queue(struct net_device *ndev)
3375 {
3376 	struct fec_enet_private *fep = netdev_priv(ndev);
3377 	int i;
3378 	int ret = 0;
3379 	struct fec_enet_priv_tx_q *txq;
3380 
3381 	for (i = 0; i < fep->num_tx_queues; i++) {
3382 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3383 		if (!txq) {
3384 			ret = -ENOMEM;
3385 			goto alloc_failed;
3386 		}
3387 
3388 		fep->tx_queue[i] = txq;
3389 		txq->bd.ring_size = TX_RING_SIZE;
3390 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3391 
3392 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3393 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3394 
3395 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3396 					txq->bd.ring_size * TSO_HEADER_SIZE,
3397 					&txq->tso_hdrs_dma, GFP_KERNEL);
3398 		if (!txq->tso_hdrs) {
3399 			ret = -ENOMEM;
3400 			goto alloc_failed;
3401 		}
3402 	}
3403 
3404 	for (i = 0; i < fep->num_rx_queues; i++) {
3405 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3406 					   GFP_KERNEL);
3407 		if (!fep->rx_queue[i]) {
3408 			ret = -ENOMEM;
3409 			goto alloc_failed;
3410 		}
3411 
3412 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3413 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3414 	}
3415 	return ret;
3416 
3417 alloc_failed:
3418 	fec_enet_free_queue(ndev);
3419 	return ret;
3420 }
3421 
3422 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3423 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3424 {
3425 	struct fec_enet_private *fep = netdev_priv(ndev);
3426 	struct fec_enet_priv_rx_q *rxq;
3427 	dma_addr_t phys_addr;
3428 	struct bufdesc	*bdp;
3429 	struct page *page;
3430 	int i, err;
3431 
3432 	rxq = fep->rx_queue[queue];
3433 	bdp = rxq->bd.base;
3434 
3435 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3436 	if (err < 0) {
3437 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3438 		return err;
3439 	}
3440 
3441 	/* Some platforms require the RX buffer must be 64 bytes alignment.
3442 	 * Some platforms require 16 bytes alignment. And some platforms
3443 	 * require 4 bytes alignment. But since the page pool have been
3444 	 * introduced into the driver, the address of RX buffer is always
3445 	 * the page address plus FEC_ENET_XDP_HEADROOM, and
3446 	 * FEC_ENET_XDP_HEADROOM is 256 bytes. Therefore, this address can
3447 	 * satisfy all platforms. To prevent future modifications to
3448 	 * FEC_ENET_XDP_HEADROOM from ignoring this hardware limitation, a
3449 	 * BUILD_BUG_ON() test has been added, which ensures that
3450 	 * FEC_ENET_XDP_HEADROOM provides the required alignment.
3451 	 */
3452 	BUILD_BUG_ON(FEC_ENET_XDP_HEADROOM & 0x3f);
3453 
3454 	for (i = 0; i < rxq->bd.ring_size; i++) {
3455 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3456 		if (!page)
3457 			goto err_alloc;
3458 
3459 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3460 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3461 
3462 		rxq->rx_buf[i] = page;
3463 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3464 
3465 		if (fep->bufdesc_ex) {
3466 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3467 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3468 		}
3469 
3470 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3471 	}
3472 
3473 	/* Set the last buffer to wrap. */
3474 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3475 	bdp->cbd_sc |= cpu_to_fec16(BD_ENET_RX_WRAP);
3476 	return 0;
3477 
3478  err_alloc:
3479 	fec_enet_free_buffers(ndev);
3480 	return -ENOMEM;
3481 }
3482 
3483 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3484 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3485 {
3486 	struct fec_enet_private *fep = netdev_priv(ndev);
3487 	unsigned int i;
3488 	struct bufdesc  *bdp;
3489 	struct fec_enet_priv_tx_q *txq;
3490 
3491 	txq = fep->tx_queue[queue];
3492 	bdp = txq->bd.base;
3493 	for (i = 0; i < txq->bd.ring_size; i++) {
3494 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3495 		if (!txq->tx_bounce[i])
3496 			goto err_alloc;
3497 
3498 		bdp->cbd_sc = cpu_to_fec16(0);
3499 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3500 
3501 		if (fep->bufdesc_ex) {
3502 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3503 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3504 		}
3505 
3506 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3507 	}
3508 
3509 	/* Set the last buffer to wrap. */
3510 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3511 	bdp->cbd_sc |= cpu_to_fec16(BD_ENET_TX_WRAP);
3512 
3513 	return 0;
3514 
3515  err_alloc:
3516 	fec_enet_free_buffers(ndev);
3517 	return -ENOMEM;
3518 }
3519 
fec_enet_alloc_buffers(struct net_device * ndev)3520 static int fec_enet_alloc_buffers(struct net_device *ndev)
3521 {
3522 	struct fec_enet_private *fep = netdev_priv(ndev);
3523 	unsigned int i;
3524 
3525 	for (i = 0; i < fep->num_rx_queues; i++)
3526 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3527 			return -ENOMEM;
3528 
3529 	for (i = 0; i < fep->num_tx_queues; i++)
3530 		if (fec_enet_alloc_txq_buffers(ndev, i))
3531 			return -ENOMEM;
3532 	return 0;
3533 }
3534 
3535 static int
fec_enet_open(struct net_device * ndev)3536 fec_enet_open(struct net_device *ndev)
3537 {
3538 	struct fec_enet_private *fep = netdev_priv(ndev);
3539 	int ret;
3540 	bool reset_again;
3541 
3542 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3543 	if (ret < 0)
3544 		return ret;
3545 
3546 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3547 	ret = fec_enet_clk_enable(ndev, true);
3548 	if (ret)
3549 		goto clk_enable;
3550 
3551 	/* During the first fec_enet_open call the PHY isn't probed at this
3552 	 * point. Therefore the phy_reset_after_clk_enable() call within
3553 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3554 	 * sure the PHY is working correctly we check if we need to reset again
3555 	 * later when the PHY is probed
3556 	 */
3557 	if (ndev->phydev && ndev->phydev->drv)
3558 		reset_again = false;
3559 	else
3560 		reset_again = true;
3561 
3562 	/* I should reset the ring buffers here, but I don't yet know
3563 	 * a simple way to do that.
3564 	 */
3565 
3566 	ret = fec_enet_alloc_buffers(ndev);
3567 	if (ret)
3568 		goto err_enet_alloc;
3569 
3570 	/* Init MAC prior to mii bus probe */
3571 	fec_restart(ndev);
3572 
3573 	/* Call phy_reset_after_clk_enable() again if it failed during
3574 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3575 	 */
3576 	if (reset_again)
3577 		fec_enet_phy_reset_after_clk_enable(ndev);
3578 
3579 	/* Probe and connect to PHY when open the interface */
3580 	ret = fec_enet_mii_probe(ndev);
3581 	if (ret)
3582 		goto err_enet_mii_probe;
3583 
3584 	if (fep->quirks & FEC_QUIRK_ERR006687)
3585 		imx6q_cpuidle_fec_irqs_used();
3586 
3587 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3588 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3589 
3590 	napi_enable(&fep->napi);
3591 	phy_start(ndev->phydev);
3592 	netif_tx_start_all_queues(ndev);
3593 
3594 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3595 				 FEC_WOL_FLAG_ENABLE);
3596 
3597 	return 0;
3598 
3599 err_enet_mii_probe:
3600 	fec_enet_free_buffers(ndev);
3601 err_enet_alloc:
3602 	fec_enet_clk_enable(ndev, false);
3603 clk_enable:
3604 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3605 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3606 	return ret;
3607 }
3608 
3609 static int
fec_enet_close(struct net_device * ndev)3610 fec_enet_close(struct net_device *ndev)
3611 {
3612 	struct fec_enet_private *fep = netdev_priv(ndev);
3613 	struct phy_device *phy_dev = ndev->phydev;
3614 
3615 	phy_stop(phy_dev);
3616 
3617 	if (netif_device_present(ndev)) {
3618 		napi_disable(&fep->napi);
3619 		netif_tx_disable(ndev);
3620 		fec_stop(ndev);
3621 	}
3622 
3623 	phy_disconnect(phy_dev);
3624 
3625 	if (!fep->phy_node && phy_is_pseudo_fixed_link(phy_dev))
3626 		fixed_phy_unregister(phy_dev);
3627 
3628 	if (fep->quirks & FEC_QUIRK_ERR006687)
3629 		imx6q_cpuidle_fec_irqs_unused();
3630 
3631 	fec_enet_update_ethtool_stats(ndev);
3632 
3633 	fec_enet_clk_enable(ndev, false);
3634 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3635 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3636 
3637 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3638 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3639 
3640 	fec_enet_free_buffers(ndev);
3641 
3642 	return 0;
3643 }
3644 
3645 /* Set or clear the multicast filter for this adaptor.
3646  * Skeleton taken from sunlance driver.
3647  * The CPM Ethernet implementation allows Multicast as well as individual
3648  * MAC address filtering.  Some of the drivers check to make sure it is
3649  * a group multicast address, and discard those that are not.  I guess I
3650  * will do the same for now, but just remove the test if you want
3651  * individual filtering as well (do the upper net layers want or support
3652  * this kind of feature?).
3653  */
3654 
3655 #define FEC_HASH_BITS	6		/* #bits in hash */
3656 
set_multicast_list(struct net_device * ndev)3657 static void set_multicast_list(struct net_device *ndev)
3658 {
3659 	struct fec_enet_private *fep = netdev_priv(ndev);
3660 	struct netdev_hw_addr *ha;
3661 	unsigned int crc, tmp;
3662 	unsigned char hash;
3663 	unsigned int hash_high = 0, hash_low = 0;
3664 
3665 	if (ndev->flags & IFF_PROMISC) {
3666 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3667 		tmp |= 0x8;
3668 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3669 		return;
3670 	}
3671 
3672 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3673 	tmp &= ~0x8;
3674 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3675 
3676 	if (ndev->flags & IFF_ALLMULTI) {
3677 		/* Catch all multicast addresses, so set the
3678 		 * filter to all 1's
3679 		 */
3680 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3681 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3682 
3683 		return;
3684 	}
3685 
3686 	/* Add the addresses in hash register */
3687 	netdev_for_each_mc_addr(ha, ndev) {
3688 		/* calculate crc32 value of mac address */
3689 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3690 
3691 		/* only upper 6 bits (FEC_HASH_BITS) are used
3692 		 * which point to specific bit in the hash registers
3693 		 */
3694 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3695 
3696 		if (hash > 31)
3697 			hash_high |= 1 << (hash - 32);
3698 		else
3699 			hash_low |= 1 << hash;
3700 	}
3701 
3702 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3703 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3704 }
3705 
3706 /* Set a MAC change in hardware. */
3707 static int
fec_set_mac_address(struct net_device * ndev,void * p)3708 fec_set_mac_address(struct net_device *ndev, void *p)
3709 {
3710 	struct sockaddr *addr = p;
3711 
3712 	if (addr) {
3713 		if (!is_valid_ether_addr(addr->sa_data))
3714 			return -EADDRNOTAVAIL;
3715 		eth_hw_addr_set(ndev, addr->sa_data);
3716 	}
3717 
3718 	/* Add netif status check here to avoid system hang in below case:
3719 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3720 	 * After ethx down, fec all clocks are gated off and then register
3721 	 * access causes system hang.
3722 	 */
3723 	if (!netif_running(ndev))
3724 		return 0;
3725 
3726 	fec_set_hw_mac_addr(ndev);
3727 
3728 	return 0;
3729 }
3730 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3731 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3732 	netdev_features_t features)
3733 {
3734 	struct fec_enet_private *fep = netdev_priv(netdev);
3735 	netdev_features_t changed = features ^ netdev->features;
3736 
3737 	netdev->features = features;
3738 
3739 	/* Receive checksum has been changed */
3740 	if (changed & NETIF_F_RXCSUM) {
3741 		if (features & NETIF_F_RXCSUM)
3742 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3743 		else
3744 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3745 	}
3746 }
3747 
fec_set_features(struct net_device * netdev,netdev_features_t features)3748 static int fec_set_features(struct net_device *netdev,
3749 	netdev_features_t features)
3750 {
3751 	struct fec_enet_private *fep = netdev_priv(netdev);
3752 	netdev_features_t changed = features ^ netdev->features;
3753 
3754 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3755 		napi_disable(&fep->napi);
3756 		netif_tx_lock_bh(netdev);
3757 		fec_stop(netdev);
3758 		fec_enet_set_netdev_features(netdev, features);
3759 		fec_restart(netdev);
3760 		netif_tx_wake_all_queues(netdev);
3761 		netif_tx_unlock_bh(netdev);
3762 		napi_enable(&fep->napi);
3763 	} else {
3764 		fec_enet_set_netdev_features(netdev, features);
3765 	}
3766 
3767 	return 0;
3768 }
3769 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3770 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3771 				 struct net_device *sb_dev)
3772 {
3773 	struct fec_enet_private *fep = netdev_priv(ndev);
3774 	u16 vlan_tag = 0;
3775 
3776 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3777 		return netdev_pick_tx(ndev, skb, NULL);
3778 
3779 	/* VLAN is present in the payload.*/
3780 	if (eth_type_vlan(skb->protocol)) {
3781 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3782 
3783 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3784 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3785 	} else if (skb_vlan_tag_present(skb)) {
3786 		vlan_tag = skb->vlan_tci;
3787 	} else {
3788 		return vlan_tag;
3789 	}
3790 
3791 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3792 }
3793 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3794 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3795 {
3796 	struct fec_enet_private *fep = netdev_priv(dev);
3797 	bool is_run = netif_running(dev);
3798 	struct bpf_prog *old_prog;
3799 
3800 	switch (bpf->command) {
3801 	case XDP_SETUP_PROG:
3802 		/* No need to support the SoCs that require to
3803 		 * do the frame swap because the performance wouldn't be
3804 		 * better than the skb mode.
3805 		 */
3806 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3807 			return -EOPNOTSUPP;
3808 
3809 		if (!bpf->prog)
3810 			xdp_features_clear_redirect_target(dev);
3811 
3812 		if (is_run) {
3813 			napi_disable(&fep->napi);
3814 			netif_tx_disable(dev);
3815 		}
3816 
3817 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3818 		if (old_prog)
3819 			bpf_prog_put(old_prog);
3820 
3821 		fec_restart(dev);
3822 
3823 		if (is_run) {
3824 			napi_enable(&fep->napi);
3825 			netif_tx_start_all_queues(dev);
3826 		}
3827 
3828 		if (bpf->prog)
3829 			xdp_features_set_redirect_target(dev, false);
3830 
3831 		return 0;
3832 
3833 	case XDP_SETUP_XSK_POOL:
3834 		return -EOPNOTSUPP;
3835 
3836 	default:
3837 		return -EOPNOTSUPP;
3838 	}
3839 }
3840 
3841 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3842 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3843 {
3844 	if (unlikely(index < 0))
3845 		return 0;
3846 
3847 	return (index % fep->num_tx_queues);
3848 }
3849 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3850 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3851 				   struct fec_enet_priv_tx_q *txq,
3852 				   void *frame, u32 dma_sync_len,
3853 				   bool ndo_xmit)
3854 {
3855 	unsigned int index, status, estatus;
3856 	struct bufdesc *bdp;
3857 	dma_addr_t dma_addr;
3858 	int entries_free;
3859 	u16 frame_len;
3860 
3861 	entries_free = fec_enet_get_free_txdesc_num(txq);
3862 	if (entries_free < MAX_SKB_FRAGS + 1) {
3863 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3864 		return -EBUSY;
3865 	}
3866 
3867 	/* Fill in a Tx ring entry */
3868 	bdp = txq->bd.cur;
3869 	status = fec16_to_cpu(bdp->cbd_sc);
3870 	status &= ~BD_ENET_TX_STATS;
3871 
3872 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3873 
3874 	if (ndo_xmit) {
3875 		struct xdp_frame *xdpf = frame;
3876 
3877 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3878 					  xdpf->len, DMA_TO_DEVICE);
3879 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3880 			return -ENOMEM;
3881 
3882 		frame_len = xdpf->len;
3883 		txq->tx_buf[index].buf_p = xdpf;
3884 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3885 	} else {
3886 		struct xdp_buff *xdpb = frame;
3887 		struct page *page;
3888 
3889 		page = virt_to_page(xdpb->data);
3890 		dma_addr = page_pool_get_dma_addr(page) +
3891 			   (xdpb->data - xdpb->data_hard_start);
3892 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3893 					   dma_sync_len, DMA_BIDIRECTIONAL);
3894 		frame_len = xdpb->data_end - xdpb->data;
3895 		txq->tx_buf[index].buf_p = page;
3896 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3897 	}
3898 
3899 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3900 	if (fep->bufdesc_ex)
3901 		estatus = BD_ENET_TX_INT;
3902 
3903 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3904 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3905 
3906 	if (fep->bufdesc_ex) {
3907 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3908 
3909 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3910 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3911 
3912 		ebdp->cbd_bdu = 0;
3913 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3914 	}
3915 
3916 	/* Make sure the updates to rest of the descriptor are performed before
3917 	 * transferring ownership.
3918 	 */
3919 	dma_wmb();
3920 
3921 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3922 	 * it's the last BD of the frame, and to put the CRC on the end.
3923 	 */
3924 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3925 	bdp->cbd_sc = cpu_to_fec16(status);
3926 
3927 	/* If this was the last BD in the ring, start at the beginning again. */
3928 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3929 
3930 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3931 	dma_wmb();
3932 
3933 	txq->bd.cur = bdp;
3934 
3935 	/* Trigger transmission start */
3936 	writel(0, txq->bd.reg_desc_active);
3937 
3938 	return 0;
3939 }
3940 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3941 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3942 				int cpu, struct xdp_buff *xdp,
3943 				u32 dma_sync_len)
3944 {
3945 	struct fec_enet_priv_tx_q *txq;
3946 	struct netdev_queue *nq;
3947 	int queue, ret;
3948 
3949 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3950 	txq = fep->tx_queue[queue];
3951 	nq = netdev_get_tx_queue(fep->netdev, queue);
3952 
3953 	__netif_tx_lock(nq, cpu);
3954 
3955 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3956 	txq_trans_cond_update(nq);
3957 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3958 
3959 	__netif_tx_unlock(nq);
3960 
3961 	return ret;
3962 }
3963 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3964 static int fec_enet_xdp_xmit(struct net_device *dev,
3965 			     int num_frames,
3966 			     struct xdp_frame **frames,
3967 			     u32 flags)
3968 {
3969 	struct fec_enet_private *fep = netdev_priv(dev);
3970 	struct fec_enet_priv_tx_q *txq;
3971 	int cpu = smp_processor_id();
3972 	unsigned int sent_frames = 0;
3973 	struct netdev_queue *nq;
3974 	unsigned int queue;
3975 	int i;
3976 
3977 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3978 	txq = fep->tx_queue[queue];
3979 	nq = netdev_get_tx_queue(fep->netdev, queue);
3980 
3981 	__netif_tx_lock(nq, cpu);
3982 
3983 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3984 	txq_trans_cond_update(nq);
3985 	for (i = 0; i < num_frames; i++) {
3986 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3987 			break;
3988 		sent_frames++;
3989 	}
3990 
3991 	__netif_tx_unlock(nq);
3992 
3993 	return sent_frames;
3994 }
3995 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3996 static int fec_hwtstamp_get(struct net_device *ndev,
3997 			    struct kernel_hwtstamp_config *config)
3998 {
3999 	struct fec_enet_private *fep = netdev_priv(ndev);
4000 
4001 	if (!netif_running(ndev))
4002 		return -EINVAL;
4003 
4004 	if (!fep->bufdesc_ex)
4005 		return -EOPNOTSUPP;
4006 
4007 	fec_ptp_get(ndev, config);
4008 
4009 	return 0;
4010 }
4011 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4012 static int fec_hwtstamp_set(struct net_device *ndev,
4013 			    struct kernel_hwtstamp_config *config,
4014 			    struct netlink_ext_ack *extack)
4015 {
4016 	struct fec_enet_private *fep = netdev_priv(ndev);
4017 
4018 	if (!netif_running(ndev))
4019 		return -EINVAL;
4020 
4021 	if (!fep->bufdesc_ex)
4022 		return -EOPNOTSUPP;
4023 
4024 	return fec_ptp_set(ndev, config, extack);
4025 }
4026 
fec_change_mtu(struct net_device * ndev,int new_mtu)4027 static int fec_change_mtu(struct net_device *ndev, int new_mtu)
4028 {
4029 	struct fec_enet_private *fep = netdev_priv(ndev);
4030 	int order;
4031 
4032 	if (netif_running(ndev))
4033 		return -EBUSY;
4034 
4035 	order = get_order(new_mtu + ETH_HLEN + ETH_FCS_LEN
4036 			  + FEC_DRV_RESERVE_SPACE);
4037 	fep->rx_frame_size = (PAGE_SIZE << order) - FEC_DRV_RESERVE_SPACE;
4038 	fep->pagepool_order = order;
4039 	WRITE_ONCE(ndev->mtu, new_mtu);
4040 
4041 	return 0;
4042 }
4043 
4044 static const struct net_device_ops fec_netdev_ops = {
4045 	.ndo_open		= fec_enet_open,
4046 	.ndo_stop		= fec_enet_close,
4047 	.ndo_start_xmit		= fec_enet_start_xmit,
4048 	.ndo_select_queue       = fec_enet_select_queue,
4049 	.ndo_set_rx_mode	= set_multicast_list,
4050 	.ndo_validate_addr	= eth_validate_addr,
4051 	.ndo_tx_timeout		= fec_timeout,
4052 	.ndo_set_mac_address	= fec_set_mac_address,
4053 	.ndo_change_mtu		= fec_change_mtu,
4054 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4055 	.ndo_set_features	= fec_set_features,
4056 	.ndo_bpf		= fec_enet_bpf,
4057 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4058 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4059 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4060 };
4061 
4062 static const unsigned short offset_des_active_rxq[] = {
4063 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4064 };
4065 
4066 static const unsigned short offset_des_active_txq[] = {
4067 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4068 };
4069 
4070  /*
4071   * XXX:  We need to clean up on failure exits here.
4072   *
4073   */
fec_enet_init(struct net_device * ndev)4074 static int fec_enet_init(struct net_device *ndev)
4075 {
4076 	struct fec_enet_private *fep = netdev_priv(ndev);
4077 	struct bufdesc *cbd_base;
4078 	dma_addr_t bd_dma;
4079 	int bd_size;
4080 	unsigned int i;
4081 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4082 			sizeof(struct bufdesc);
4083 	unsigned dsize_log2 = __fls(dsize);
4084 	int ret;
4085 
4086 	WARN_ON(dsize != (1 << dsize_log2));
4087 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4088 	fep->tx_align = 0xf;
4089 #else
4090 	fep->tx_align = 0x3;
4091 #endif
4092 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4093 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4094 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4095 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4096 
4097 	/* Check mask of the streaming and coherent API */
4098 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4099 	if (ret < 0) {
4100 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4101 		return ret;
4102 	}
4103 
4104 	ret = fec_enet_alloc_queue(ndev);
4105 	if (ret)
4106 		return ret;
4107 
4108 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4109 
4110 	/* Allocate memory for buffer descriptors. */
4111 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4112 				  GFP_KERNEL);
4113 	if (!cbd_base) {
4114 		ret = -ENOMEM;
4115 		goto free_queue_mem;
4116 	}
4117 
4118 	/* Get the Ethernet address */
4119 	ret = fec_get_mac(ndev);
4120 	if (ret)
4121 		goto free_queue_mem;
4122 
4123 	/* Set receive and transmit descriptor base. */
4124 	for (i = 0; i < fep->num_rx_queues; i++) {
4125 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4126 		unsigned size = dsize * rxq->bd.ring_size;
4127 
4128 		rxq->bd.qid = i;
4129 		rxq->bd.base = cbd_base;
4130 		rxq->bd.cur = cbd_base;
4131 		rxq->bd.dma = bd_dma;
4132 		rxq->bd.dsize = dsize;
4133 		rxq->bd.dsize_log2 = dsize_log2;
4134 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4135 		bd_dma += size;
4136 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4137 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4138 	}
4139 
4140 	for (i = 0; i < fep->num_tx_queues; i++) {
4141 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4142 		unsigned size = dsize * txq->bd.ring_size;
4143 
4144 		txq->bd.qid = i;
4145 		txq->bd.base = cbd_base;
4146 		txq->bd.cur = cbd_base;
4147 		txq->bd.dma = bd_dma;
4148 		txq->bd.dsize = dsize;
4149 		txq->bd.dsize_log2 = dsize_log2;
4150 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4151 		bd_dma += size;
4152 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4153 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4154 	}
4155 
4156 
4157 	/* The FEC Ethernet specific entries in the device structure */
4158 	ndev->watchdog_timeo = TX_TIMEOUT;
4159 	ndev->netdev_ops = &fec_netdev_ops;
4160 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4161 
4162 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4163 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4164 
4165 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4166 		/* enable hw VLAN support */
4167 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4168 
4169 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4170 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4171 
4172 		/* enable hw accelerator */
4173 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4174 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4175 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4176 	}
4177 
4178 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES)
4179 		fep->tx_align = 0;
4180 
4181 	ndev->hw_features = ndev->features;
4182 
4183 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4184 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4185 				     NETDEV_XDP_ACT_REDIRECT;
4186 
4187 	fec_restart(ndev);
4188 
4189 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4190 		fec_enet_clear_ethtool_stats(ndev);
4191 	else
4192 		fec_enet_update_ethtool_stats(ndev);
4193 
4194 	return 0;
4195 
4196 free_queue_mem:
4197 	fec_enet_free_queue(ndev);
4198 	return ret;
4199 }
4200 
fec_enet_deinit(struct net_device * ndev)4201 static void fec_enet_deinit(struct net_device *ndev)
4202 {
4203 	struct fec_enet_private *fep = netdev_priv(ndev);
4204 
4205 	netif_napi_del(&fep->napi);
4206 	fec_enet_free_queue(ndev);
4207 }
4208 
4209 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4210 static int fec_reset_phy(struct platform_device *pdev)
4211 {
4212 	struct gpio_desc *phy_reset;
4213 	int msec = 1, phy_post_delay = 0;
4214 	struct device_node *np = pdev->dev.of_node;
4215 	int err;
4216 
4217 	if (!np)
4218 		return 0;
4219 
4220 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4221 	/* A sane reset duration should not be longer than 1s */
4222 	if (!err && msec > 1000)
4223 		msec = 1;
4224 
4225 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4226 	/* valid reset duration should be less than 1s */
4227 	if (!err && phy_post_delay > 1000)
4228 		return -EINVAL;
4229 
4230 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4231 					    GPIOD_OUT_HIGH);
4232 	if (IS_ERR(phy_reset))
4233 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4234 				     "failed to get phy-reset-gpios\n");
4235 
4236 	if (!phy_reset)
4237 		return 0;
4238 
4239 	if (msec > 20)
4240 		msleep(msec);
4241 	else
4242 		usleep_range(msec * 1000, msec * 1000 + 1000);
4243 
4244 	gpiod_set_value_cansleep(phy_reset, 0);
4245 
4246 	if (!phy_post_delay)
4247 		return 0;
4248 
4249 	if (phy_post_delay > 20)
4250 		msleep(phy_post_delay);
4251 	else
4252 		usleep_range(phy_post_delay * 1000,
4253 			     phy_post_delay * 1000 + 1000);
4254 
4255 	return 0;
4256 }
4257 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4258 static int fec_reset_phy(struct platform_device *pdev)
4259 {
4260 	/*
4261 	 * In case of platform probe, the reset has been done
4262 	 * by machine code.
4263 	 */
4264 	return 0;
4265 }
4266 #endif /* CONFIG_OF */
4267 
4268 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4269 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4270 {
4271 	struct device_node *np = pdev->dev.of_node;
4272 
4273 	*num_tx = *num_rx = 1;
4274 
4275 	if (!np || !of_device_is_available(np))
4276 		return;
4277 
4278 	/* parse the num of tx and rx queues */
4279 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4280 
4281 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4282 
4283 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4284 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4285 			 *num_tx);
4286 		*num_tx = 1;
4287 		return;
4288 	}
4289 
4290 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4291 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4292 			 *num_rx);
4293 		*num_rx = 1;
4294 		return;
4295 	}
4296 
4297 }
4298 
fec_enet_get_irq_cnt(struct platform_device * pdev)4299 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4300 {
4301 	int irq_cnt = platform_irq_count(pdev);
4302 
4303 	if (irq_cnt > FEC_IRQ_NUM)
4304 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4305 	else if (irq_cnt == 2)
4306 		irq_cnt = 1;	/* last for pps */
4307 	else if (irq_cnt <= 0)
4308 		irq_cnt = 1;	/* At least 1 irq is needed */
4309 	return irq_cnt;
4310 }
4311 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4312 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4313 {
4314 	struct net_device *ndev = platform_get_drvdata(pdev);
4315 	struct fec_enet_private *fep = netdev_priv(ndev);
4316 
4317 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4318 		fep->wake_irq = fep->irq[2];
4319 	else
4320 		fep->wake_irq = fep->irq[0];
4321 }
4322 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4323 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4324 				   struct device_node *np)
4325 {
4326 	struct device_node *gpr_np;
4327 	u32 out_val[3];
4328 	int ret = 0;
4329 
4330 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4331 	if (!gpr_np)
4332 		return 0;
4333 
4334 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4335 					 ARRAY_SIZE(out_val));
4336 	if (ret) {
4337 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4338 		goto out;
4339 	}
4340 
4341 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4342 	if (IS_ERR(fep->stop_gpr.gpr)) {
4343 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4344 		ret = PTR_ERR(fep->stop_gpr.gpr);
4345 		fep->stop_gpr.gpr = NULL;
4346 		goto out;
4347 	}
4348 
4349 	fep->stop_gpr.reg = out_val[1];
4350 	fep->stop_gpr.bit = out_val[2];
4351 
4352 out:
4353 	of_node_put(gpr_np);
4354 
4355 	return ret;
4356 }
4357 
4358 static int
fec_probe(struct platform_device * pdev)4359 fec_probe(struct platform_device *pdev)
4360 {
4361 	struct fec_enet_private *fep;
4362 	struct fec_platform_data *pdata;
4363 	phy_interface_t interface;
4364 	struct net_device *ndev;
4365 	int i, irq, ret = 0;
4366 	static int dev_id;
4367 	struct device_node *np = pdev->dev.of_node, *phy_node;
4368 	int num_tx_qs;
4369 	int num_rx_qs;
4370 	char irq_name[8];
4371 	int irq_cnt;
4372 	const struct fec_devinfo *dev_info;
4373 
4374 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4375 
4376 	/* Init network device */
4377 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4378 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4379 	if (!ndev)
4380 		return -ENOMEM;
4381 
4382 	SET_NETDEV_DEV(ndev, &pdev->dev);
4383 
4384 	/* setup board info structure */
4385 	fep = netdev_priv(ndev);
4386 
4387 	dev_info = device_get_match_data(&pdev->dev);
4388 	if (!dev_info)
4389 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4390 	if (dev_info)
4391 		fep->quirks = dev_info->quirks;
4392 
4393 	fep->netdev = ndev;
4394 	fep->num_rx_queues = num_rx_qs;
4395 	fep->num_tx_queues = num_tx_qs;
4396 
4397 	/* default enable pause frame auto negotiation */
4398 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4399 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4400 
4401 	/* Select default pin state */
4402 	pinctrl_pm_select_default_state(&pdev->dev);
4403 
4404 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4405 	if (IS_ERR(fep->hwp)) {
4406 		ret = PTR_ERR(fep->hwp);
4407 		goto failed_ioremap;
4408 	}
4409 
4410 	fep->pdev = pdev;
4411 	fep->dev_id = dev_id++;
4412 
4413 	platform_set_drvdata(pdev, ndev);
4414 
4415 	if ((of_machine_is_compatible("fsl,imx6q") ||
4416 	     of_machine_is_compatible("fsl,imx6dl")) &&
4417 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4418 		fep->quirks |= FEC_QUIRK_ERR006687;
4419 
4420 	ret = fec_enet_ipc_handle_init(fep);
4421 	if (ret)
4422 		goto failed_ipc_init;
4423 
4424 	if (of_property_read_bool(np, "fsl,magic-packet"))
4425 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4426 
4427 	ret = fec_enet_init_stop_mode(fep, np);
4428 	if (ret)
4429 		goto failed_stop_mode;
4430 
4431 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4432 	if (!phy_node && of_phy_is_fixed_link(np)) {
4433 		ret = of_phy_register_fixed_link(np);
4434 		if (ret < 0) {
4435 			dev_err(&pdev->dev,
4436 				"broken fixed-link specification\n");
4437 			goto failed_phy;
4438 		}
4439 		phy_node = of_node_get(np);
4440 	}
4441 	fep->phy_node = phy_node;
4442 
4443 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4444 	if (ret) {
4445 		pdata = dev_get_platdata(&pdev->dev);
4446 		if (pdata)
4447 			fep->phy_interface = pdata->phy;
4448 		else
4449 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4450 	} else {
4451 		fep->phy_interface = interface;
4452 	}
4453 
4454 	ret = fec_enet_parse_rgmii_delay(fep, np);
4455 	if (ret)
4456 		goto failed_rgmii_delay;
4457 
4458 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4459 	if (IS_ERR(fep->clk_ipg)) {
4460 		ret = PTR_ERR(fep->clk_ipg);
4461 		goto failed_clk;
4462 	}
4463 
4464 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4465 	if (IS_ERR(fep->clk_ahb)) {
4466 		ret = PTR_ERR(fep->clk_ahb);
4467 		goto failed_clk;
4468 	}
4469 
4470 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4471 
4472 	/* enet_out is optional, depends on board */
4473 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4474 	if (IS_ERR(fep->clk_enet_out)) {
4475 		ret = PTR_ERR(fep->clk_enet_out);
4476 		goto failed_clk;
4477 	}
4478 
4479 	fep->ptp_clk_on = false;
4480 	mutex_init(&fep->ptp_clk_mutex);
4481 
4482 	/* clk_ref is optional, depends on board */
4483 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4484 	if (IS_ERR(fep->clk_ref)) {
4485 		ret = PTR_ERR(fep->clk_ref);
4486 		goto failed_clk;
4487 	}
4488 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4489 
4490 	/* clk_2x_txclk is optional, depends on board */
4491 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4492 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4493 		if (IS_ERR(fep->clk_2x_txclk))
4494 			fep->clk_2x_txclk = NULL;
4495 	}
4496 
4497 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4498 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4499 	if (IS_ERR(fep->clk_ptp)) {
4500 		fep->clk_ptp = NULL;
4501 		fep->bufdesc_ex = false;
4502 	}
4503 
4504 	ret = fec_enet_clk_enable(ndev, true);
4505 	if (ret)
4506 		goto failed_clk;
4507 
4508 	ret = clk_prepare_enable(fep->clk_ipg);
4509 	if (ret)
4510 		goto failed_clk_ipg;
4511 	ret = clk_prepare_enable(fep->clk_ahb);
4512 	if (ret)
4513 		goto failed_clk_ahb;
4514 
4515 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4516 	if (!IS_ERR(fep->reg_phy)) {
4517 		ret = regulator_enable(fep->reg_phy);
4518 		if (ret) {
4519 			dev_err(&pdev->dev,
4520 				"Failed to enable phy regulator: %d\n", ret);
4521 			goto failed_regulator;
4522 		}
4523 	} else {
4524 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4525 			ret = -EPROBE_DEFER;
4526 			goto failed_regulator;
4527 		}
4528 		fep->reg_phy = NULL;
4529 	}
4530 
4531 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4532 	pm_runtime_use_autosuspend(&pdev->dev);
4533 	pm_runtime_get_noresume(&pdev->dev);
4534 	pm_runtime_set_active(&pdev->dev);
4535 	pm_runtime_enable(&pdev->dev);
4536 
4537 	ret = fec_reset_phy(pdev);
4538 	if (ret)
4539 		goto failed_reset;
4540 
4541 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4542 	if (fep->bufdesc_ex)
4543 		fec_ptp_init(pdev, irq_cnt);
4544 
4545 	ret = fec_enet_init(ndev);
4546 	if (ret)
4547 		goto failed_init;
4548 
4549 	for (i = 0; i < irq_cnt; i++) {
4550 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4551 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4552 		if (irq < 0)
4553 			irq = platform_get_irq(pdev, i);
4554 		if (irq < 0) {
4555 			ret = irq;
4556 			goto failed_irq;
4557 		}
4558 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4559 				       0, pdev->name, ndev);
4560 		if (ret)
4561 			goto failed_irq;
4562 
4563 		fep->irq[i] = irq;
4564 	}
4565 
4566 	/* Decide which interrupt line is wakeup capable */
4567 	fec_enet_get_wakeup_irq(pdev);
4568 
4569 	ret = fec_enet_mii_init(pdev);
4570 	if (ret)
4571 		goto failed_mii_init;
4572 
4573 	/* Carrier starts down, phylib will bring it up */
4574 	netif_carrier_off(ndev);
4575 	fec_enet_clk_enable(ndev, false);
4576 	pinctrl_pm_select_sleep_state(&pdev->dev);
4577 
4578 	fep->pagepool_order = 0;
4579 	fep->rx_frame_size = FEC_ENET_RX_FRSIZE;
4580 
4581 	if (fep->quirks & FEC_QUIRK_JUMBO_FRAME)
4582 		fep->max_buf_size = MAX_JUMBO_BUF_SIZE;
4583 	else
4584 		fep->max_buf_size = PKT_MAXBUF_SIZE;
4585 
4586 	ndev->max_mtu = fep->max_buf_size - ETH_HLEN - ETH_FCS_LEN;
4587 
4588 	ret = register_netdev(ndev);
4589 	if (ret)
4590 		goto failed_register;
4591 
4592 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4593 			   FEC_WOL_HAS_MAGIC_PACKET);
4594 
4595 	if (fep->bufdesc_ex && fep->ptp_clock)
4596 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4597 
4598 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4599 
4600 	pm_runtime_put_autosuspend(&pdev->dev);
4601 
4602 	return 0;
4603 
4604 failed_register:
4605 	fec_enet_mii_remove(fep);
4606 failed_mii_init:
4607 failed_irq:
4608 	fec_enet_deinit(ndev);
4609 failed_init:
4610 	fec_ptp_stop(pdev);
4611 failed_reset:
4612 	pm_runtime_put_noidle(&pdev->dev);
4613 	pm_runtime_disable(&pdev->dev);
4614 	if (fep->reg_phy)
4615 		regulator_disable(fep->reg_phy);
4616 failed_regulator:
4617 	clk_disable_unprepare(fep->clk_ahb);
4618 failed_clk_ahb:
4619 	clk_disable_unprepare(fep->clk_ipg);
4620 failed_clk_ipg:
4621 	fec_enet_clk_enable(ndev, false);
4622 failed_clk:
4623 failed_rgmii_delay:
4624 	if (of_phy_is_fixed_link(np))
4625 		of_phy_deregister_fixed_link(np);
4626 	of_node_put(phy_node);
4627 failed_stop_mode:
4628 failed_ipc_init:
4629 failed_phy:
4630 	dev_id--;
4631 failed_ioremap:
4632 	free_netdev(ndev);
4633 
4634 	return ret;
4635 }
4636 
4637 static void
fec_drv_remove(struct platform_device * pdev)4638 fec_drv_remove(struct platform_device *pdev)
4639 {
4640 	struct net_device *ndev = platform_get_drvdata(pdev);
4641 	struct fec_enet_private *fep = netdev_priv(ndev);
4642 	struct device_node *np = pdev->dev.of_node;
4643 	int ret;
4644 
4645 	ret = pm_runtime_get_sync(&pdev->dev);
4646 	if (ret < 0)
4647 		dev_err(&pdev->dev,
4648 			"Failed to resume device in remove callback (%pe)\n",
4649 			ERR_PTR(ret));
4650 
4651 	cancel_work_sync(&fep->tx_timeout_work);
4652 	fec_ptp_stop(pdev);
4653 	unregister_netdev(ndev);
4654 	fec_enet_mii_remove(fep);
4655 	if (fep->reg_phy)
4656 		regulator_disable(fep->reg_phy);
4657 
4658 	if (of_phy_is_fixed_link(np))
4659 		of_phy_deregister_fixed_link(np);
4660 	of_node_put(fep->phy_node);
4661 
4662 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4663 	 * disabling them again.
4664 	 */
4665 	if (ret >= 0) {
4666 		clk_disable_unprepare(fep->clk_ahb);
4667 		clk_disable_unprepare(fep->clk_ipg);
4668 	}
4669 	pm_runtime_put_noidle(&pdev->dev);
4670 	pm_runtime_disable(&pdev->dev);
4671 
4672 	fec_enet_deinit(ndev);
4673 	free_netdev(ndev);
4674 }
4675 
fec_suspend(struct device * dev)4676 static int fec_suspend(struct device *dev)
4677 {
4678 	struct net_device *ndev = dev_get_drvdata(dev);
4679 	struct fec_enet_private *fep = netdev_priv(ndev);
4680 	int ret;
4681 
4682 	rtnl_lock();
4683 	if (netif_running(ndev)) {
4684 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4685 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4686 		phy_stop(ndev->phydev);
4687 		napi_disable(&fep->napi);
4688 		netif_tx_lock_bh(ndev);
4689 		netif_device_detach(ndev);
4690 		netif_tx_unlock_bh(ndev);
4691 		fec_stop(ndev);
4692 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4693 			fec_irqs_disable(ndev);
4694 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4695 		} else {
4696 			fec_irqs_disable_except_wakeup(ndev);
4697 			if (fep->wake_irq > 0) {
4698 				disable_irq(fep->wake_irq);
4699 				enable_irq_wake(fep->wake_irq);
4700 			}
4701 			fec_enet_stop_mode(fep, true);
4702 		}
4703 		/* It's safe to disable clocks since interrupts are masked */
4704 		fec_enet_clk_enable(ndev, false);
4705 
4706 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4707 		if (fep->rpm_active) {
4708 			ret = pm_runtime_force_suspend(dev);
4709 			if (ret < 0) {
4710 				rtnl_unlock();
4711 				return ret;
4712 			}
4713 		}
4714 	}
4715 	rtnl_unlock();
4716 
4717 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4718 		regulator_disable(fep->reg_phy);
4719 
4720 	/* SOC supply clock to phy, when clock is disabled, phy link down
4721 	 * SOC control phy regulator, when regulator is disabled, phy link down
4722 	 */
4723 	if (fep->clk_enet_out || fep->reg_phy)
4724 		fep->link = 0;
4725 
4726 	return 0;
4727 }
4728 
fec_resume(struct device * dev)4729 static int fec_resume(struct device *dev)
4730 {
4731 	struct net_device *ndev = dev_get_drvdata(dev);
4732 	struct fec_enet_private *fep = netdev_priv(ndev);
4733 	int ret;
4734 	int val;
4735 
4736 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4737 		ret = regulator_enable(fep->reg_phy);
4738 		if (ret)
4739 			return ret;
4740 	}
4741 
4742 	rtnl_lock();
4743 	if (netif_running(ndev)) {
4744 		if (fep->rpm_active)
4745 			pm_runtime_force_resume(dev);
4746 
4747 		ret = fec_enet_clk_enable(ndev, true);
4748 		if (ret) {
4749 			rtnl_unlock();
4750 			goto failed_clk;
4751 		}
4752 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4753 			fec_enet_stop_mode(fep, false);
4754 			if (fep->wake_irq) {
4755 				disable_irq_wake(fep->wake_irq);
4756 				enable_irq(fep->wake_irq);
4757 			}
4758 
4759 			val = readl(fep->hwp + FEC_ECNTRL);
4760 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4761 			writel(val, fep->hwp + FEC_ECNTRL);
4762 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4763 		} else {
4764 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4765 		}
4766 		fec_restart(ndev);
4767 		netif_tx_lock_bh(ndev);
4768 		netif_device_attach(ndev);
4769 		netif_tx_unlock_bh(ndev);
4770 		napi_enable(&fep->napi);
4771 		phy_init_hw(ndev->phydev);
4772 		phy_start(ndev->phydev);
4773 	}
4774 	rtnl_unlock();
4775 
4776 	return 0;
4777 
4778 failed_clk:
4779 	if (fep->reg_phy)
4780 		regulator_disable(fep->reg_phy);
4781 	return ret;
4782 }
4783 
fec_runtime_suspend(struct device * dev)4784 static int fec_runtime_suspend(struct device *dev)
4785 {
4786 	struct net_device *ndev = dev_get_drvdata(dev);
4787 	struct fec_enet_private *fep = netdev_priv(ndev);
4788 
4789 	clk_disable_unprepare(fep->clk_ahb);
4790 	clk_disable_unprepare(fep->clk_ipg);
4791 
4792 	return 0;
4793 }
4794 
fec_runtime_resume(struct device * dev)4795 static int fec_runtime_resume(struct device *dev)
4796 {
4797 	struct net_device *ndev = dev_get_drvdata(dev);
4798 	struct fec_enet_private *fep = netdev_priv(ndev);
4799 	int ret;
4800 
4801 	ret = clk_prepare_enable(fep->clk_ahb);
4802 	if (ret)
4803 		return ret;
4804 	ret = clk_prepare_enable(fep->clk_ipg);
4805 	if (ret)
4806 		goto failed_clk_ipg;
4807 
4808 	return 0;
4809 
4810 failed_clk_ipg:
4811 	clk_disable_unprepare(fep->clk_ahb);
4812 	return ret;
4813 }
4814 
4815 static const struct dev_pm_ops fec_pm_ops = {
4816 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4817 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4818 };
4819 
4820 static struct platform_driver fec_driver = {
4821 	.driver	= {
4822 		.name	= DRIVER_NAME,
4823 		.pm	= pm_ptr(&fec_pm_ops),
4824 		.of_match_table = fec_dt_ids,
4825 		.suppress_bind_attrs = true,
4826 	},
4827 	.id_table = fec_devtype,
4828 	.probe	= fec_probe,
4829 	.remove = fec_drv_remove,
4830 };
4831 
4832 module_platform_driver(fec_driver);
4833 
4834 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4835 MODULE_LICENSE("GPL");
4836