1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/prefetch.h>
58 #include <linux/property.h>
59 #include <linux/ptrace.h>
60 #include <linux/regmap.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/skbuff.h>
63 #include <linux/slab.h>
64 #include <linux/spinlock.h>
65 #include <linux/string.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/workqueue.h>
69 #include <net/ip.h>
70 #include <net/page_pool/helpers.h>
71 #include <net/selftests.h>
72 #include <net/tso.h>
73 #include <soc/imx/cpuidle.h>
74
75 #include "fec.h"
76
77 static void set_multicast_list(struct net_device *ndev);
78 static void fec_enet_itr_coal_set(struct net_device *ndev);
79 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
80 int cpu, struct xdp_buff *xdp,
81 u32 dma_sync_len);
82
83 #define DRIVER_NAME "fec"
84
85 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
86
87 #define FEC_ENET_RSEM_V 0x84
88 #define FEC_ENET_RSFL_V 16
89 #define FEC_ENET_RAEM_V 0x8
90 #define FEC_ENET_RAFL_V 0x8
91 #define FEC_ENET_OPD_V 0xFFF0
92 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
93
94 #define FEC_ENET_XDP_PASS 0
95 #define FEC_ENET_XDP_CONSUMED BIT(0)
96 #define FEC_ENET_XDP_TX BIT(1)
97 #define FEC_ENET_XDP_REDIR BIT(2)
98
99 struct fec_devinfo {
100 u32 quirks;
101 };
102
103 static const struct fec_devinfo fec_imx25_info = {
104 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
105 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
106 };
107
108 static const struct fec_devinfo fec_imx27_info = {
109 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
110 FEC_QUIRK_HAS_MDIO_C45,
111 };
112
113 static const struct fec_devinfo fec_imx28_info = {
114 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
115 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
116 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
117 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
118 };
119
120 static const struct fec_devinfo fec_imx6q_info = {
121 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
124 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
125 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
126 };
127
128 static const struct fec_devinfo fec_mvf600_info = {
129 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
130 FEC_QUIRK_HAS_MDIO_C45,
131 };
132
133 static const struct fec_devinfo fec_imx6sx_info = {
134 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
135 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
136 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
137 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
138 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
139 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
140 FEC_QUIRK_HAS_MDIO_C45,
141 };
142
143 static const struct fec_devinfo fec_imx6ul_info = {
144 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
145 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
146 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
147 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
148 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
149 FEC_QUIRK_HAS_MDIO_C45,
150 };
151
152 static const struct fec_devinfo fec_imx8mq_info = {
153 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
154 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
155 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
156 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
157 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
158 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
159 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
160 FEC_QUIRK_HAS_MDIO_C45,
161 };
162
163 static const struct fec_devinfo fec_imx8qm_info = {
164 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
165 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
166 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
167 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
168 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
169 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
170 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
171 };
172
173 static const struct fec_devinfo fec_s32v234_info = {
174 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
175 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
176 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
177 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
178 FEC_QUIRK_HAS_MDIO_C45,
179 };
180
181 static struct platform_device_id fec_devtype[] = {
182 {
183 /* keep it for coldfire */
184 .name = DRIVER_NAME,
185 .driver_data = 0,
186 }, {
187 /* sentinel */
188 }
189 };
190 MODULE_DEVICE_TABLE(platform, fec_devtype);
191
192 static const struct of_device_id fec_dt_ids[] = {
193 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
194 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
195 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
196 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
197 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
198 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
199 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
200 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
201 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
202 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
203 { /* sentinel */ }
204 };
205 MODULE_DEVICE_TABLE(of, fec_dt_ids);
206
207 static unsigned char macaddr[ETH_ALEN];
208 module_param_array(macaddr, byte, NULL, 0);
209 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
210
211 #if defined(CONFIG_M5272)
212 /*
213 * Some hardware gets it MAC address out of local flash memory.
214 * if this is non-zero then assume it is the address to get MAC from.
215 */
216 #if defined(CONFIG_NETtel)
217 #define FEC_FLASHMAC 0xf0006006
218 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
219 #define FEC_FLASHMAC 0xf0006000
220 #elif defined(CONFIG_CANCam)
221 #define FEC_FLASHMAC 0xf0020000
222 #elif defined (CONFIG_M5272C3)
223 #define FEC_FLASHMAC (0xffe04000 + 4)
224 #elif defined(CONFIG_MOD5272)
225 #define FEC_FLASHMAC 0xffc0406b
226 #else
227 #define FEC_FLASHMAC 0
228 #endif
229 #endif /* CONFIG_M5272 */
230
231 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
232 *
233 * 2048 byte skbufs are allocated. However, alignment requirements
234 * varies between FEC variants. Worst case is 64, so round down by 64.
235 */
236 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
237 #define PKT_MINBUF_SIZE 64
238
239 /* FEC receive acceleration */
240 #define FEC_RACC_IPDIS BIT(1)
241 #define FEC_RACC_PRODIS BIT(2)
242 #define FEC_RACC_SHIFT16 BIT(7)
243 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
244
245 /* MIB Control Register */
246 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
247
248 /*
249 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
250 * size bits. Other FEC hardware does not, so we need to take that into
251 * account when setting it.
252 */
253 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
254 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
255 defined(CONFIG_ARM64)
256 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
257 #else
258 #define OPT_FRAME_SIZE 0
259 #endif
260
261 /* FEC MII MMFR bits definition */
262 #define FEC_MMFR_ST (1 << 30)
263 #define FEC_MMFR_ST_C45 (0)
264 #define FEC_MMFR_OP_READ (2 << 28)
265 #define FEC_MMFR_OP_READ_C45 (3 << 28)
266 #define FEC_MMFR_OP_WRITE (1 << 28)
267 #define FEC_MMFR_OP_ADDR_WRITE (0)
268 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
269 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
270 #define FEC_MMFR_TA (2 << 16)
271 #define FEC_MMFR_DATA(v) (v & 0xffff)
272 /* FEC ECR bits definition */
273 #define FEC_ECR_RESET BIT(0)
274 #define FEC_ECR_ETHEREN BIT(1)
275 #define FEC_ECR_MAGICEN BIT(2)
276 #define FEC_ECR_SLEEP BIT(3)
277 #define FEC_ECR_EN1588 BIT(4)
278 #define FEC_ECR_SPEED BIT(5)
279 #define FEC_ECR_BYTESWP BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP BIT(0)
282 #define FEC_RCR_DRT BIT(1)
283 #define FEC_RCR_MII BIT(2)
284 #define FEC_RCR_PROMISC BIT(3)
285 #define FEC_RCR_BC_REJ BIT(4)
286 #define FEC_RCR_FLOWCTL BIT(5)
287 #define FEC_RCR_RGMII BIT(6)
288 #define FEC_RCR_RMII BIT(8)
289 #define FEC_RCR_10BASET BIT(9)
290 #define FEC_RCR_NLC BIT(30)
291 /* TX WMARK bits */
292 #define FEC_TXWMRK_STRFWD BIT(8)
293
294 #define FEC_MII_TIMEOUT 30000 /* us */
295
296 /* Transmitter timeout */
297 #define TX_TIMEOUT (2 * HZ)
298
299 #define FEC_PAUSE_FLAG_AUTONEG 0x1
300 #define FEC_PAUSE_FLAG_ENABLE 0x2
301 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
302 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
303 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
304
305 /* Max number of allowed TCP segments for software TSO */
306 #define FEC_MAX_TSO_SEGS 100
307 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
308
309 #define IS_TSO_HEADER(txq, addr) \
310 ((addr >= txq->tso_hdrs_dma) && \
311 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
312
313 static int mii_cnt;
314
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)315 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
316 struct bufdesc_prop *bd)
317 {
318 return (bdp >= bd->last) ? bd->base
319 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
320 }
321
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)322 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
323 struct bufdesc_prop *bd)
324 {
325 return (bdp <= bd->base) ? bd->last
326 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
327 }
328
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)329 static int fec_enet_get_bd_index(struct bufdesc *bdp,
330 struct bufdesc_prop *bd)
331 {
332 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
333 }
334
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)335 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
336 {
337 int entries;
338
339 entries = (((const char *)txq->dirty_tx -
340 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
341
342 return entries >= 0 ? entries : entries + txq->bd.ring_size;
343 }
344
swap_buffer(void * bufaddr,int len)345 static void swap_buffer(void *bufaddr, int len)
346 {
347 int i;
348 unsigned int *buf = bufaddr;
349
350 for (i = 0; i < len; i += 4, buf++)
351 swab32s(buf);
352 }
353
fec_dump(struct net_device * ndev)354 static void fec_dump(struct net_device *ndev)
355 {
356 struct fec_enet_private *fep = netdev_priv(ndev);
357 struct bufdesc *bdp;
358 struct fec_enet_priv_tx_q *txq;
359 int index = 0;
360
361 netdev_info(ndev, "TX ring dump\n");
362 pr_info("Nr SC addr len SKB\n");
363
364 txq = fep->tx_queue[0];
365 bdp = txq->bd.base;
366
367 do {
368 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
369 index,
370 bdp == txq->bd.cur ? 'S' : ' ',
371 bdp == txq->dirty_tx ? 'H' : ' ',
372 fec16_to_cpu(bdp->cbd_sc),
373 fec32_to_cpu(bdp->cbd_bufaddr),
374 fec16_to_cpu(bdp->cbd_datlen),
375 txq->tx_buf[index].buf_p);
376 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
377 index++;
378 } while (bdp != txq->bd.base);
379 }
380
381 /*
382 * Coldfire does not support DMA coherent allocations, and has historically used
383 * a band-aid with a manual flush in fec_enet_rx_queue.
384 */
385 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)386 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
387 gfp_t gfp)
388 {
389 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
390 }
391
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)392 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
393 dma_addr_t handle)
394 {
395 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
396 }
397 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)398 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
399 gfp_t gfp)
400 {
401 return dma_alloc_coherent(dev, size, handle, gfp);
402 }
403
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)404 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
405 dma_addr_t handle)
406 {
407 dma_free_coherent(dev, size, cpu_addr, handle);
408 }
409 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
410
411 struct fec_dma_devres {
412 size_t size;
413 void *vaddr;
414 dma_addr_t dma_handle;
415 };
416
fec_dmam_release(struct device * dev,void * res)417 static void fec_dmam_release(struct device *dev, void *res)
418 {
419 struct fec_dma_devres *this = res;
420
421 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
422 }
423
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)424 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
425 gfp_t gfp)
426 {
427 struct fec_dma_devres *dr;
428 void *vaddr;
429
430 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
431 if (!dr)
432 return NULL;
433 vaddr = fec_dma_alloc(dev, size, handle, gfp);
434 if (!vaddr) {
435 devres_free(dr);
436 return NULL;
437 }
438 dr->vaddr = vaddr;
439 dr->dma_handle = *handle;
440 dr->size = size;
441 devres_add(dev, dr);
442 return vaddr;
443 }
444
is_ipv4_pkt(struct sk_buff * skb)445 static inline bool is_ipv4_pkt(struct sk_buff *skb)
446 {
447 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
448 }
449
450 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)451 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
452 {
453 /* Only run for packets requiring a checksum. */
454 if (skb->ip_summed != CHECKSUM_PARTIAL)
455 return 0;
456
457 if (unlikely(skb_cow_head(skb, 0)))
458 return -1;
459
460 if (is_ipv4_pkt(skb))
461 ip_hdr(skb)->check = 0;
462 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
463
464 return 0;
465 }
466
467 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)468 fec_enet_create_page_pool(struct fec_enet_private *fep,
469 struct fec_enet_priv_rx_q *rxq, int size)
470 {
471 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
472 struct page_pool_params pp_params = {
473 .order = 0,
474 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
475 .pool_size = size,
476 .nid = dev_to_node(&fep->pdev->dev),
477 .dev = &fep->pdev->dev,
478 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
479 .offset = FEC_ENET_XDP_HEADROOM,
480 .max_len = FEC_ENET_RX_FRSIZE,
481 };
482 int err;
483
484 rxq->page_pool = page_pool_create(&pp_params);
485 if (IS_ERR(rxq->page_pool)) {
486 err = PTR_ERR(rxq->page_pool);
487 rxq->page_pool = NULL;
488 return err;
489 }
490
491 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
492 if (err < 0)
493 goto err_free_pp;
494
495 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
496 rxq->page_pool);
497 if (err)
498 goto err_unregister_rxq;
499
500 return 0;
501
502 err_unregister_rxq:
503 xdp_rxq_info_unreg(&rxq->xdp_rxq);
504 err_free_pp:
505 page_pool_destroy(rxq->page_pool);
506 rxq->page_pool = NULL;
507 return err;
508 }
509
510 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)511 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
512 struct sk_buff *skb,
513 struct net_device *ndev)
514 {
515 struct fec_enet_private *fep = netdev_priv(ndev);
516 struct bufdesc *bdp = txq->bd.cur;
517 struct bufdesc_ex *ebdp;
518 int nr_frags = skb_shinfo(skb)->nr_frags;
519 int frag, frag_len;
520 unsigned short status;
521 unsigned int estatus = 0;
522 skb_frag_t *this_frag;
523 unsigned int index;
524 void *bufaddr;
525 dma_addr_t addr;
526 int i;
527
528 for (frag = 0; frag < nr_frags; frag++) {
529 this_frag = &skb_shinfo(skb)->frags[frag];
530 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
531 ebdp = (struct bufdesc_ex *)bdp;
532
533 status = fec16_to_cpu(bdp->cbd_sc);
534 status &= ~BD_ENET_TX_STATS;
535 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
536 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
537
538 /* Handle the last BD specially */
539 if (frag == nr_frags - 1) {
540 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
541 if (fep->bufdesc_ex) {
542 estatus |= BD_ENET_TX_INT;
543 if (unlikely(skb_shinfo(skb)->tx_flags &
544 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
545 estatus |= BD_ENET_TX_TS;
546 }
547 }
548
549 if (fep->bufdesc_ex) {
550 if (fep->quirks & FEC_QUIRK_HAS_AVB)
551 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
552 if (skb->ip_summed == CHECKSUM_PARTIAL)
553 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
554
555 ebdp->cbd_bdu = 0;
556 ebdp->cbd_esc = cpu_to_fec32(estatus);
557 }
558
559 bufaddr = skb_frag_address(this_frag);
560
561 index = fec_enet_get_bd_index(bdp, &txq->bd);
562 if (((unsigned long) bufaddr) & fep->tx_align ||
563 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
564 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
565 bufaddr = txq->tx_bounce[index];
566
567 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
568 swap_buffer(bufaddr, frag_len);
569 }
570
571 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
572 DMA_TO_DEVICE);
573 if (dma_mapping_error(&fep->pdev->dev, addr)) {
574 if (net_ratelimit())
575 netdev_err(ndev, "Tx DMA memory map failed\n");
576 goto dma_mapping_error;
577 }
578
579 bdp->cbd_bufaddr = cpu_to_fec32(addr);
580 bdp->cbd_datlen = cpu_to_fec16(frag_len);
581 /* Make sure the updates to rest of the descriptor are
582 * performed before transferring ownership.
583 */
584 wmb();
585 bdp->cbd_sc = cpu_to_fec16(status);
586 }
587
588 return bdp;
589 dma_mapping_error:
590 bdp = txq->bd.cur;
591 for (i = 0; i < frag; i++) {
592 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
593 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
594 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
595 }
596 return ERR_PTR(-ENOMEM);
597 }
598
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)599 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
600 struct sk_buff *skb, struct net_device *ndev)
601 {
602 struct fec_enet_private *fep = netdev_priv(ndev);
603 int nr_frags = skb_shinfo(skb)->nr_frags;
604 struct bufdesc *bdp, *last_bdp;
605 void *bufaddr;
606 dma_addr_t addr;
607 unsigned short status;
608 unsigned short buflen;
609 unsigned int estatus = 0;
610 unsigned int index;
611 int entries_free;
612
613 entries_free = fec_enet_get_free_txdesc_num(txq);
614 if (entries_free < MAX_SKB_FRAGS + 1) {
615 dev_kfree_skb_any(skb);
616 if (net_ratelimit())
617 netdev_err(ndev, "NOT enough BD for SG!\n");
618 return NETDEV_TX_OK;
619 }
620
621 /* Protocol checksum off-load for TCP and UDP. */
622 if (fec_enet_clear_csum(skb, ndev)) {
623 dev_kfree_skb_any(skb);
624 return NETDEV_TX_OK;
625 }
626
627 /* Fill in a Tx ring entry */
628 bdp = txq->bd.cur;
629 last_bdp = bdp;
630 status = fec16_to_cpu(bdp->cbd_sc);
631 status &= ~BD_ENET_TX_STATS;
632
633 /* Set buffer length and buffer pointer */
634 bufaddr = skb->data;
635 buflen = skb_headlen(skb);
636
637 index = fec_enet_get_bd_index(bdp, &txq->bd);
638 if (((unsigned long) bufaddr) & fep->tx_align ||
639 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
640 memcpy(txq->tx_bounce[index], skb->data, buflen);
641 bufaddr = txq->tx_bounce[index];
642
643 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
644 swap_buffer(bufaddr, buflen);
645 }
646
647 /* Push the data cache so the CPM does not get stale memory data. */
648 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
649 if (dma_mapping_error(&fep->pdev->dev, addr)) {
650 dev_kfree_skb_any(skb);
651 if (net_ratelimit())
652 netdev_err(ndev, "Tx DMA memory map failed\n");
653 return NETDEV_TX_OK;
654 }
655
656 if (nr_frags) {
657 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
658 if (IS_ERR(last_bdp)) {
659 dma_unmap_single(&fep->pdev->dev, addr,
660 buflen, DMA_TO_DEVICE);
661 dev_kfree_skb_any(skb);
662 return NETDEV_TX_OK;
663 }
664 } else {
665 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
666 if (fep->bufdesc_ex) {
667 estatus = BD_ENET_TX_INT;
668 if (unlikely(skb_shinfo(skb)->tx_flags &
669 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
670 estatus |= BD_ENET_TX_TS;
671 }
672 }
673 bdp->cbd_bufaddr = cpu_to_fec32(addr);
674 bdp->cbd_datlen = cpu_to_fec16(buflen);
675
676 if (fep->bufdesc_ex) {
677
678 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
679
680 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
681 fep->hwts_tx_en))
682 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
683
684 if (fep->quirks & FEC_QUIRK_HAS_AVB)
685 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
686
687 if (skb->ip_summed == CHECKSUM_PARTIAL)
688 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
689
690 ebdp->cbd_bdu = 0;
691 ebdp->cbd_esc = cpu_to_fec32(estatus);
692 }
693
694 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
695 /* Save skb pointer */
696 txq->tx_buf[index].buf_p = skb;
697
698 /* Make sure the updates to rest of the descriptor are performed before
699 * transferring ownership.
700 */
701 wmb();
702
703 /* Send it on its way. Tell FEC it's ready, interrupt when done,
704 * it's the last BD of the frame, and to put the CRC on the end.
705 */
706 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
707 bdp->cbd_sc = cpu_to_fec16(status);
708
709 /* If this was the last BD in the ring, start at the beginning again. */
710 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
711
712 skb_tx_timestamp(skb);
713
714 /* Make sure the update to bdp is performed before txq->bd.cur. */
715 wmb();
716 txq->bd.cur = bdp;
717
718 /* Trigger transmission start */
719 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
720 !readl(txq->bd.reg_desc_active) ||
721 !readl(txq->bd.reg_desc_active) ||
722 !readl(txq->bd.reg_desc_active) ||
723 !readl(txq->bd.reg_desc_active))
724 writel(0, txq->bd.reg_desc_active);
725
726 return 0;
727 }
728
729 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)730 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
731 struct net_device *ndev,
732 struct bufdesc *bdp, int index, char *data,
733 int size, bool last_tcp, bool is_last)
734 {
735 struct fec_enet_private *fep = netdev_priv(ndev);
736 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
737 unsigned short status;
738 unsigned int estatus = 0;
739 dma_addr_t addr;
740
741 status = fec16_to_cpu(bdp->cbd_sc);
742 status &= ~BD_ENET_TX_STATS;
743
744 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
745
746 if (((unsigned long) data) & fep->tx_align ||
747 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
748 memcpy(txq->tx_bounce[index], data, size);
749 data = txq->tx_bounce[index];
750
751 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
752 swap_buffer(data, size);
753 }
754
755 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
756 if (dma_mapping_error(&fep->pdev->dev, addr)) {
757 dev_kfree_skb_any(skb);
758 if (net_ratelimit())
759 netdev_err(ndev, "Tx DMA memory map failed\n");
760 return NETDEV_TX_OK;
761 }
762
763 bdp->cbd_datlen = cpu_to_fec16(size);
764 bdp->cbd_bufaddr = cpu_to_fec32(addr);
765
766 if (fep->bufdesc_ex) {
767 if (fep->quirks & FEC_QUIRK_HAS_AVB)
768 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
769 if (skb->ip_summed == CHECKSUM_PARTIAL)
770 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
771 ebdp->cbd_bdu = 0;
772 ebdp->cbd_esc = cpu_to_fec32(estatus);
773 }
774
775 /* Handle the last BD specially */
776 if (last_tcp)
777 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
778 if (is_last) {
779 status |= BD_ENET_TX_INTR;
780 if (fep->bufdesc_ex)
781 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
782 }
783
784 bdp->cbd_sc = cpu_to_fec16(status);
785
786 return 0;
787 }
788
789 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)790 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
791 struct sk_buff *skb, struct net_device *ndev,
792 struct bufdesc *bdp, int index)
793 {
794 struct fec_enet_private *fep = netdev_priv(ndev);
795 int hdr_len = skb_tcp_all_headers(skb);
796 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
797 void *bufaddr;
798 unsigned long dmabuf;
799 unsigned short status;
800 unsigned int estatus = 0;
801
802 status = fec16_to_cpu(bdp->cbd_sc);
803 status &= ~BD_ENET_TX_STATS;
804 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
805
806 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
807 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
808 if (((unsigned long)bufaddr) & fep->tx_align ||
809 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
810 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
811 bufaddr = txq->tx_bounce[index];
812
813 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
814 swap_buffer(bufaddr, hdr_len);
815
816 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
817 hdr_len, DMA_TO_DEVICE);
818 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
819 dev_kfree_skb_any(skb);
820 if (net_ratelimit())
821 netdev_err(ndev, "Tx DMA memory map failed\n");
822 return NETDEV_TX_OK;
823 }
824 }
825
826 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
827 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
828
829 if (fep->bufdesc_ex) {
830 if (fep->quirks & FEC_QUIRK_HAS_AVB)
831 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
832 if (skb->ip_summed == CHECKSUM_PARTIAL)
833 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
834 ebdp->cbd_bdu = 0;
835 ebdp->cbd_esc = cpu_to_fec32(estatus);
836 }
837
838 bdp->cbd_sc = cpu_to_fec16(status);
839
840 return 0;
841 }
842
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)843 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
844 struct sk_buff *skb,
845 struct net_device *ndev)
846 {
847 struct fec_enet_private *fep = netdev_priv(ndev);
848 int hdr_len, total_len, data_left;
849 struct bufdesc *bdp = txq->bd.cur;
850 struct bufdesc *tmp_bdp;
851 struct bufdesc_ex *ebdp;
852 struct tso_t tso;
853 unsigned int index = 0;
854 int ret;
855
856 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
857 dev_kfree_skb_any(skb);
858 if (net_ratelimit())
859 netdev_err(ndev, "NOT enough BD for TSO!\n");
860 return NETDEV_TX_OK;
861 }
862
863 /* Protocol checksum off-load for TCP and UDP. */
864 if (fec_enet_clear_csum(skb, ndev)) {
865 dev_kfree_skb_any(skb);
866 return NETDEV_TX_OK;
867 }
868
869 /* Initialize the TSO handler, and prepare the first payload */
870 hdr_len = tso_start(skb, &tso);
871
872 total_len = skb->len - hdr_len;
873 while (total_len > 0) {
874 char *hdr;
875
876 index = fec_enet_get_bd_index(bdp, &txq->bd);
877 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
878 total_len -= data_left;
879
880 /* prepare packet headers: MAC + IP + TCP */
881 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
882 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
883 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
884 if (ret)
885 goto err_release;
886
887 while (data_left > 0) {
888 int size;
889
890 size = min_t(int, tso.size, data_left);
891 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
892 index = fec_enet_get_bd_index(bdp, &txq->bd);
893 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
894 bdp, index,
895 tso.data, size,
896 size == data_left,
897 total_len == 0);
898 if (ret)
899 goto err_release;
900
901 data_left -= size;
902 tso_build_data(skb, &tso, size);
903 }
904
905 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
906 }
907
908 /* Save skb pointer */
909 txq->tx_buf[index].buf_p = skb;
910
911 skb_tx_timestamp(skb);
912 txq->bd.cur = bdp;
913
914 /* Trigger transmission start */
915 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
916 !readl(txq->bd.reg_desc_active) ||
917 !readl(txq->bd.reg_desc_active) ||
918 !readl(txq->bd.reg_desc_active) ||
919 !readl(txq->bd.reg_desc_active))
920 writel(0, txq->bd.reg_desc_active);
921
922 return 0;
923
924 err_release:
925 /* Release all used data descriptors for TSO */
926 tmp_bdp = txq->bd.cur;
927
928 while (tmp_bdp != bdp) {
929 /* Unmap data buffers */
930 if (tmp_bdp->cbd_bufaddr &&
931 !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
932 dma_unmap_single(&fep->pdev->dev,
933 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
934 fec16_to_cpu(tmp_bdp->cbd_datlen),
935 DMA_TO_DEVICE);
936
937 /* Clear standard buffer descriptor fields */
938 tmp_bdp->cbd_sc = 0;
939 tmp_bdp->cbd_datlen = 0;
940 tmp_bdp->cbd_bufaddr = 0;
941
942 /* Handle extended descriptor if enabled */
943 if (fep->bufdesc_ex) {
944 ebdp = (struct bufdesc_ex *)tmp_bdp;
945 ebdp->cbd_esc = 0;
946 }
947
948 tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
949 }
950
951 dev_kfree_skb_any(skb);
952
953 return ret;
954 }
955
956 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)957 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
958 {
959 struct fec_enet_private *fep = netdev_priv(ndev);
960 int entries_free;
961 unsigned short queue;
962 struct fec_enet_priv_tx_q *txq;
963 struct netdev_queue *nq;
964 int ret;
965
966 queue = skb_get_queue_mapping(skb);
967 txq = fep->tx_queue[queue];
968 nq = netdev_get_tx_queue(ndev, queue);
969
970 if (skb_is_gso(skb))
971 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
972 else
973 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
974 if (ret)
975 return ret;
976
977 entries_free = fec_enet_get_free_txdesc_num(txq);
978 if (entries_free <= txq->tx_stop_threshold)
979 netif_tx_stop_queue(nq);
980
981 return NETDEV_TX_OK;
982 }
983
984 /* Init RX & TX buffer descriptors
985 */
fec_enet_bd_init(struct net_device * dev)986 static void fec_enet_bd_init(struct net_device *dev)
987 {
988 struct fec_enet_private *fep = netdev_priv(dev);
989 struct fec_enet_priv_tx_q *txq;
990 struct fec_enet_priv_rx_q *rxq;
991 struct bufdesc *bdp;
992 unsigned int i;
993 unsigned int q;
994
995 for (q = 0; q < fep->num_rx_queues; q++) {
996 /* Initialize the receive buffer descriptors. */
997 rxq = fep->rx_queue[q];
998 bdp = rxq->bd.base;
999
1000 for (i = 0; i < rxq->bd.ring_size; i++) {
1001
1002 /* Initialize the BD for every fragment in the page. */
1003 if (bdp->cbd_bufaddr)
1004 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1005 else
1006 bdp->cbd_sc = cpu_to_fec16(0);
1007 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1008 }
1009
1010 /* Set the last buffer to wrap */
1011 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1012 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1013
1014 rxq->bd.cur = rxq->bd.base;
1015 }
1016
1017 for (q = 0; q < fep->num_tx_queues; q++) {
1018 /* ...and the same for transmit */
1019 txq = fep->tx_queue[q];
1020 bdp = txq->bd.base;
1021 txq->bd.cur = bdp;
1022
1023 for (i = 0; i < txq->bd.ring_size; i++) {
1024 /* Initialize the BD for every fragment in the page. */
1025 bdp->cbd_sc = cpu_to_fec16(0);
1026 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1027 if (bdp->cbd_bufaddr &&
1028 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1029 dma_unmap_single(&fep->pdev->dev,
1030 fec32_to_cpu(bdp->cbd_bufaddr),
1031 fec16_to_cpu(bdp->cbd_datlen),
1032 DMA_TO_DEVICE);
1033 if (txq->tx_buf[i].buf_p)
1034 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1035 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1036 if (bdp->cbd_bufaddr)
1037 dma_unmap_single(&fep->pdev->dev,
1038 fec32_to_cpu(bdp->cbd_bufaddr),
1039 fec16_to_cpu(bdp->cbd_datlen),
1040 DMA_TO_DEVICE);
1041
1042 if (txq->tx_buf[i].buf_p)
1043 xdp_return_frame(txq->tx_buf[i].buf_p);
1044 } else {
1045 struct page *page = txq->tx_buf[i].buf_p;
1046
1047 if (page)
1048 page_pool_put_page(pp_page_to_nmdesc(page)->pp,
1049 page, 0,
1050 false);
1051 }
1052
1053 txq->tx_buf[i].buf_p = NULL;
1054 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1055 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1056 bdp->cbd_bufaddr = cpu_to_fec32(0);
1057 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1058 }
1059
1060 /* Set the last buffer to wrap */
1061 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1062 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1063 txq->dirty_tx = bdp;
1064 }
1065 }
1066
fec_enet_active_rxring(struct net_device * ndev)1067 static void fec_enet_active_rxring(struct net_device *ndev)
1068 {
1069 struct fec_enet_private *fep = netdev_priv(ndev);
1070 int i;
1071
1072 for (i = 0; i < fep->num_rx_queues; i++)
1073 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1074 }
1075
fec_enet_enable_ring(struct net_device * ndev)1076 static void fec_enet_enable_ring(struct net_device *ndev)
1077 {
1078 struct fec_enet_private *fep = netdev_priv(ndev);
1079 struct fec_enet_priv_tx_q *txq;
1080 struct fec_enet_priv_rx_q *rxq;
1081 int i;
1082
1083 for (i = 0; i < fep->num_rx_queues; i++) {
1084 rxq = fep->rx_queue[i];
1085 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1086 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1087
1088 /* enable DMA1/2 */
1089 if (i)
1090 writel(RCMR_MATCHEN | RCMR_CMP(i),
1091 fep->hwp + FEC_RCMR(i));
1092 }
1093
1094 for (i = 0; i < fep->num_tx_queues; i++) {
1095 txq = fep->tx_queue[i];
1096 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1097
1098 /* enable DMA1/2 */
1099 if (i)
1100 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1101 fep->hwp + FEC_DMA_CFG(i));
1102 }
1103 }
1104
1105 /* Whack a reset. We should wait for this.
1106 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107 * instead of reset MAC itself.
1108 */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1109 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1110 {
1111 u32 val;
1112
1113 if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1114 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1115 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1116 writel(0, fep->hwp + FEC_ECNTRL);
1117 } else {
1118 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1119 udelay(10);
1120 }
1121 } else {
1122 val = readl(fep->hwp + FEC_ECNTRL);
1123 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1124 writel(val, fep->hwp + FEC_ECNTRL);
1125 }
1126 }
1127
fec_set_hw_mac_addr(struct net_device * ndev)1128 static void fec_set_hw_mac_addr(struct net_device *ndev)
1129 {
1130 struct fec_enet_private *fep = netdev_priv(ndev);
1131
1132 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1133 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1134 fep->hwp + FEC_ADDR_LOW);
1135 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1136 fep->hwp + FEC_ADDR_HIGH);
1137 }
1138
1139 /*
1140 * This function is called to start or restart the FEC during a link
1141 * change, transmit timeout, or to reconfigure the FEC. The network
1142 * packet processing for this device must be stopped before this call.
1143 */
1144 static void
fec_restart(struct net_device * ndev)1145 fec_restart(struct net_device *ndev)
1146 {
1147 struct fec_enet_private *fep = netdev_priv(ndev);
1148 u32 rcntl = OPT_FRAME_SIZE | FEC_RCR_MII;
1149 u32 ecntl = FEC_ECR_ETHEREN;
1150
1151 if (fep->bufdesc_ex)
1152 fec_ptp_save_state(fep);
1153
1154 fec_ctrl_reset(fep, false);
1155
1156 /*
1157 * enet-mac reset will reset mac address registers too,
1158 * so need to reconfigure it.
1159 */
1160 fec_set_hw_mac_addr(ndev);
1161
1162 /* Clear any outstanding interrupt, except MDIO. */
1163 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1164
1165 fec_enet_bd_init(ndev);
1166
1167 fec_enet_enable_ring(ndev);
1168
1169 /* Enable MII mode */
1170 if (fep->full_duplex == DUPLEX_FULL) {
1171 /* FD enable */
1172 writel(0x04, fep->hwp + FEC_X_CNTRL);
1173 } else {
1174 /* No Rcv on Xmit */
1175 rcntl |= FEC_RCR_DRT;
1176 writel(0x0, fep->hwp + FEC_X_CNTRL);
1177 }
1178
1179 /* Set MII speed */
1180 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1181
1182 #if !defined(CONFIG_M5272)
1183 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1184 u32 val = readl(fep->hwp + FEC_RACC);
1185
1186 /* align IP header */
1187 val |= FEC_RACC_SHIFT16;
1188 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1189 /* set RX checksum */
1190 val |= FEC_RACC_OPTIONS;
1191 else
1192 val &= ~FEC_RACC_OPTIONS;
1193 writel(val, fep->hwp + FEC_RACC);
1194 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1195 }
1196 #endif
1197
1198 /*
1199 * The phy interface and speed need to get configured
1200 * differently on enet-mac.
1201 */
1202 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1203 /* Enable flow control and length check */
1204 rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL;
1205
1206 /* RGMII, RMII or MII */
1207 if (phy_interface_mode_is_rgmii(fep->phy_interface))
1208 rcntl |= FEC_RCR_RGMII;
1209 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1210 rcntl |= FEC_RCR_RMII;
1211 else
1212 rcntl &= ~FEC_RCR_RMII;
1213
1214 /* 1G, 100M or 10M */
1215 if (ndev->phydev) {
1216 if (ndev->phydev->speed == SPEED_1000)
1217 ecntl |= FEC_ECR_SPEED;
1218 else if (ndev->phydev->speed == SPEED_100)
1219 rcntl &= ~FEC_RCR_10BASET;
1220 else
1221 rcntl |= FEC_RCR_10BASET;
1222 }
1223 } else {
1224 #ifdef FEC_MIIGSK_ENR
1225 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1226 u32 cfgr;
1227 /* disable the gasket and wait */
1228 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1229 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1230 udelay(1);
1231
1232 /*
1233 * configure the gasket:
1234 * RMII, 50 MHz, no loopback, no echo
1235 * MII, 25 MHz, no loopback, no echo
1236 */
1237 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1238 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1239 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1240 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1241 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1242
1243 /* re-enable the gasket */
1244 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1245 }
1246 #endif
1247 }
1248
1249 #if !defined(CONFIG_M5272)
1250 /* enable pause frame*/
1251 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1252 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1253 ndev->phydev && ndev->phydev->pause)) {
1254 rcntl |= FEC_RCR_FLOWCTL;
1255
1256 /* set FIFO threshold parameter to reduce overrun */
1257 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1258 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1259 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1260 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1261
1262 /* OPD */
1263 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1264 } else {
1265 rcntl &= ~FEC_RCR_FLOWCTL;
1266 }
1267 #endif /* !defined(CONFIG_M5272) */
1268
1269 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1270
1271 /* Setup multicast filter. */
1272 set_multicast_list(ndev);
1273 #ifndef CONFIG_M5272
1274 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1275 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1276 #endif
1277
1278 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1279 /* enable ENET endian swap */
1280 ecntl |= FEC_ECR_BYTESWP;
1281 /* enable ENET store and forward mode */
1282 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1283 }
1284
1285 if (fep->bufdesc_ex)
1286 ecntl |= FEC_ECR_EN1588;
1287
1288 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1289 fep->rgmii_txc_dly)
1290 ecntl |= FEC_ENET_TXC_DLY;
1291 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1292 fep->rgmii_rxc_dly)
1293 ecntl |= FEC_ENET_RXC_DLY;
1294
1295 #ifndef CONFIG_M5272
1296 /* Enable the MIB statistic event counters */
1297 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1298 #endif
1299
1300 /* And last, enable the transmit and receive processing */
1301 writel(ecntl, fep->hwp + FEC_ECNTRL);
1302 fec_enet_active_rxring(ndev);
1303
1304 if (fep->bufdesc_ex) {
1305 fec_ptp_start_cyclecounter(ndev);
1306 fec_ptp_restore_state(fep);
1307 }
1308
1309 /* Enable interrupts we wish to service */
1310 if (fep->link)
1311 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1312 else
1313 writel(0, fep->hwp + FEC_IMASK);
1314
1315 /* Init the interrupt coalescing */
1316 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1317 fec_enet_itr_coal_set(ndev);
1318 }
1319
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1320 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1321 {
1322 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1323 of_machine_is_compatible("fsl,imx8qxp") ||
1324 of_machine_is_compatible("fsl,imx8dxl")))
1325 return 0;
1326
1327 return imx_scu_get_handle(&fep->ipc_handle);
1328 }
1329
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1330 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1331 {
1332 struct device_node *np = fep->pdev->dev.of_node;
1333 u32 rsrc_id, val;
1334 int idx;
1335
1336 if (!np || !fep->ipc_handle)
1337 return;
1338
1339 idx = of_alias_get_id(np, "ethernet");
1340 if (idx < 0)
1341 idx = 0;
1342 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1343
1344 val = enabled ? 1 : 0;
1345 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1346 }
1347
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1348 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1349 {
1350 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1351 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1352
1353 if (stop_gpr->gpr) {
1354 if (enabled)
1355 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1356 BIT(stop_gpr->bit),
1357 BIT(stop_gpr->bit));
1358 else
1359 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1360 BIT(stop_gpr->bit), 0);
1361 } else if (pdata && pdata->sleep_mode_enable) {
1362 pdata->sleep_mode_enable(enabled);
1363 } else {
1364 fec_enet_ipg_stop_set(fep, enabled);
1365 }
1366 }
1367
fec_irqs_disable(struct net_device * ndev)1368 static void fec_irqs_disable(struct net_device *ndev)
1369 {
1370 struct fec_enet_private *fep = netdev_priv(ndev);
1371
1372 writel(0, fep->hwp + FEC_IMASK);
1373 }
1374
fec_irqs_disable_except_wakeup(struct net_device * ndev)1375 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1376 {
1377 struct fec_enet_private *fep = netdev_priv(ndev);
1378
1379 writel(0, fep->hwp + FEC_IMASK);
1380 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1381 }
1382
1383 static void
fec_stop(struct net_device * ndev)1384 fec_stop(struct net_device *ndev)
1385 {
1386 struct fec_enet_private *fep = netdev_priv(ndev);
1387 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1388 u32 val;
1389
1390 /* We cannot expect a graceful transmit stop without link !!! */
1391 if (fep->link) {
1392 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1393 udelay(10);
1394 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1395 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1396 }
1397
1398 if (fep->bufdesc_ex)
1399 fec_ptp_save_state(fep);
1400
1401 fec_ctrl_reset(fep, true);
1402 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1403 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1404
1405 /* We have to keep ENET enabled to have MII interrupt stay working */
1406 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1407 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1408 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1409 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1410 }
1411
1412 if (fep->bufdesc_ex) {
1413 val = readl(fep->hwp + FEC_ECNTRL);
1414 val |= FEC_ECR_EN1588;
1415 writel(val, fep->hwp + FEC_ECNTRL);
1416
1417 fec_ptp_start_cyclecounter(ndev);
1418 fec_ptp_restore_state(fep);
1419 }
1420 }
1421
1422 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1423 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1424 {
1425 struct fec_enet_private *fep = netdev_priv(ndev);
1426
1427 fec_dump(ndev);
1428
1429 ndev->stats.tx_errors++;
1430
1431 schedule_work(&fep->tx_timeout_work);
1432 }
1433
fec_enet_timeout_work(struct work_struct * work)1434 static void fec_enet_timeout_work(struct work_struct *work)
1435 {
1436 struct fec_enet_private *fep =
1437 container_of(work, struct fec_enet_private, tx_timeout_work);
1438 struct net_device *ndev = fep->netdev;
1439
1440 rtnl_lock();
1441 if (netif_device_present(ndev) || netif_running(ndev)) {
1442 napi_disable(&fep->napi);
1443 netif_tx_lock_bh(ndev);
1444 fec_restart(ndev);
1445 netif_tx_wake_all_queues(ndev);
1446 netif_tx_unlock_bh(ndev);
1447 napi_enable(&fep->napi);
1448 }
1449 rtnl_unlock();
1450 }
1451
1452 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1453 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1454 struct skb_shared_hwtstamps *hwtstamps)
1455 {
1456 unsigned long flags;
1457 u64 ns;
1458
1459 spin_lock_irqsave(&fep->tmreg_lock, flags);
1460 ns = timecounter_cyc2time(&fep->tc, ts);
1461 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1462
1463 memset(hwtstamps, 0, sizeof(*hwtstamps));
1464 hwtstamps->hwtstamp = ns_to_ktime(ns);
1465 }
1466
1467 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1468 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1469 {
1470 struct fec_enet_private *fep;
1471 struct xdp_frame *xdpf;
1472 struct bufdesc *bdp;
1473 unsigned short status;
1474 struct sk_buff *skb;
1475 struct fec_enet_priv_tx_q *txq;
1476 struct netdev_queue *nq;
1477 int index = 0;
1478 int entries_free;
1479 struct page *page;
1480 int frame_len;
1481
1482 fep = netdev_priv(ndev);
1483
1484 txq = fep->tx_queue[queue_id];
1485 /* get next bdp of dirty_tx */
1486 nq = netdev_get_tx_queue(ndev, queue_id);
1487 bdp = txq->dirty_tx;
1488
1489 /* get next bdp of dirty_tx */
1490 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1491
1492 while (bdp != READ_ONCE(txq->bd.cur)) {
1493 /* Order the load of bd.cur and cbd_sc */
1494 rmb();
1495 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1496 if (status & BD_ENET_TX_READY)
1497 break;
1498
1499 index = fec_enet_get_bd_index(bdp, &txq->bd);
1500
1501 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1502 skb = txq->tx_buf[index].buf_p;
1503 if (bdp->cbd_bufaddr &&
1504 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1505 dma_unmap_single(&fep->pdev->dev,
1506 fec32_to_cpu(bdp->cbd_bufaddr),
1507 fec16_to_cpu(bdp->cbd_datlen),
1508 DMA_TO_DEVICE);
1509 bdp->cbd_bufaddr = cpu_to_fec32(0);
1510 if (!skb)
1511 goto tx_buf_done;
1512 } else {
1513 /* Tx processing cannot call any XDP (or page pool) APIs if
1514 * the "budget" is 0. Because NAPI is called with budget of
1515 * 0 (such as netpoll) indicates we may be in an IRQ context,
1516 * however, we can't use the page pool from IRQ context.
1517 */
1518 if (unlikely(!budget))
1519 break;
1520
1521 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1522 xdpf = txq->tx_buf[index].buf_p;
1523 if (bdp->cbd_bufaddr)
1524 dma_unmap_single(&fep->pdev->dev,
1525 fec32_to_cpu(bdp->cbd_bufaddr),
1526 fec16_to_cpu(bdp->cbd_datlen),
1527 DMA_TO_DEVICE);
1528 } else {
1529 page = txq->tx_buf[index].buf_p;
1530 }
1531
1532 bdp->cbd_bufaddr = cpu_to_fec32(0);
1533 if (unlikely(!txq->tx_buf[index].buf_p)) {
1534 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1535 goto tx_buf_done;
1536 }
1537
1538 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1539 }
1540
1541 /* Check for errors. */
1542 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1543 BD_ENET_TX_RL | BD_ENET_TX_UN |
1544 BD_ENET_TX_CSL)) {
1545 ndev->stats.tx_errors++;
1546 if (status & BD_ENET_TX_HB) /* No heartbeat */
1547 ndev->stats.tx_heartbeat_errors++;
1548 if (status & BD_ENET_TX_LC) /* Late collision */
1549 ndev->stats.tx_window_errors++;
1550 if (status & BD_ENET_TX_RL) /* Retrans limit */
1551 ndev->stats.tx_aborted_errors++;
1552 if (status & BD_ENET_TX_UN) /* Underrun */
1553 ndev->stats.tx_fifo_errors++;
1554 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1555 ndev->stats.tx_carrier_errors++;
1556 } else {
1557 ndev->stats.tx_packets++;
1558
1559 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1560 ndev->stats.tx_bytes += skb->len;
1561 else
1562 ndev->stats.tx_bytes += frame_len;
1563 }
1564
1565 /* Deferred means some collisions occurred during transmit,
1566 * but we eventually sent the packet OK.
1567 */
1568 if (status & BD_ENET_TX_DEF)
1569 ndev->stats.collisions++;
1570
1571 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1572 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1573 * are to time stamp the packet, so we still need to check time
1574 * stamping enabled flag.
1575 */
1576 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1577 fep->hwts_tx_en) && fep->bufdesc_ex) {
1578 struct skb_shared_hwtstamps shhwtstamps;
1579 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1580
1581 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1582 skb_tstamp_tx(skb, &shhwtstamps);
1583 }
1584
1585 /* Free the sk buffer associated with this last transmit */
1586 napi_consume_skb(skb, budget);
1587 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1588 xdp_return_frame_rx_napi(xdpf);
1589 } else { /* recycle pages of XDP_TX frames */
1590 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1591 page_pool_put_page(pp_page_to_nmdesc(page)->pp, page,
1592 0, true);
1593 }
1594
1595 txq->tx_buf[index].buf_p = NULL;
1596 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1597 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1598
1599 tx_buf_done:
1600 /* Make sure the update to bdp and tx_buf are performed
1601 * before dirty_tx
1602 */
1603 wmb();
1604 txq->dirty_tx = bdp;
1605
1606 /* Update pointer to next buffer descriptor to be transmitted */
1607 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1608
1609 /* Since we have freed up a buffer, the ring is no longer full
1610 */
1611 if (netif_tx_queue_stopped(nq)) {
1612 entries_free = fec_enet_get_free_txdesc_num(txq);
1613 if (entries_free >= txq->tx_wake_threshold)
1614 netif_tx_wake_queue(nq);
1615 }
1616 }
1617
1618 /* ERR006358: Keep the transmitter going */
1619 if (bdp != txq->bd.cur &&
1620 readl(txq->bd.reg_desc_active) == 0)
1621 writel(0, txq->bd.reg_desc_active);
1622 }
1623
fec_enet_tx(struct net_device * ndev,int budget)1624 static void fec_enet_tx(struct net_device *ndev, int budget)
1625 {
1626 struct fec_enet_private *fep = netdev_priv(ndev);
1627 int i;
1628
1629 /* Make sure that AVB queues are processed first. */
1630 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1631 fec_enet_tx_queue(ndev, i, budget);
1632 }
1633
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1634 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1635 struct bufdesc *bdp, int index)
1636 {
1637 struct page *new_page;
1638 dma_addr_t phys_addr;
1639
1640 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1641 if (unlikely(!new_page))
1642 return -ENOMEM;
1643
1644 rxq->rx_skb_info[index].page = new_page;
1645 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1646 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1647 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1648
1649 return 0;
1650 }
1651
1652 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1653 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1654 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1655 {
1656 unsigned int sync, len = xdp->data_end - xdp->data;
1657 u32 ret = FEC_ENET_XDP_PASS;
1658 struct page *page;
1659 int err;
1660 u32 act;
1661
1662 act = bpf_prog_run_xdp(prog, xdp);
1663
1664 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1665 * max len CPU touch
1666 */
1667 sync = xdp->data_end - xdp->data;
1668 sync = max(sync, len);
1669
1670 switch (act) {
1671 case XDP_PASS:
1672 rxq->stats[RX_XDP_PASS]++;
1673 ret = FEC_ENET_XDP_PASS;
1674 break;
1675
1676 case XDP_REDIRECT:
1677 rxq->stats[RX_XDP_REDIRECT]++;
1678 err = xdp_do_redirect(fep->netdev, xdp, prog);
1679 if (unlikely(err))
1680 goto xdp_err;
1681
1682 ret = FEC_ENET_XDP_REDIR;
1683 break;
1684
1685 case XDP_TX:
1686 rxq->stats[RX_XDP_TX]++;
1687 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1688 if (unlikely(err)) {
1689 rxq->stats[RX_XDP_TX_ERRORS]++;
1690 goto xdp_err;
1691 }
1692
1693 ret = FEC_ENET_XDP_TX;
1694 break;
1695
1696 default:
1697 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1698 fallthrough;
1699
1700 case XDP_ABORTED:
1701 fallthrough; /* handle aborts by dropping packet */
1702
1703 case XDP_DROP:
1704 rxq->stats[RX_XDP_DROP]++;
1705 xdp_err:
1706 ret = FEC_ENET_XDP_CONSUMED;
1707 page = virt_to_head_page(xdp->data);
1708 page_pool_put_page(rxq->page_pool, page, sync, true);
1709 if (act != XDP_DROP)
1710 trace_xdp_exception(fep->netdev, prog, act);
1711 break;
1712 }
1713
1714 return ret;
1715 }
1716
fec_enet_rx_vlan(const struct net_device * ndev,struct sk_buff * skb)1717 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1718 {
1719 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1720 const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1721 const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1722
1723 /* Push and remove the vlan tag */
1724
1725 memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1726 skb_pull(skb, VLAN_HLEN);
1727 __vlan_hwaccel_put_tag(skb,
1728 htons(ETH_P_8021Q),
1729 vlan_tag);
1730 }
1731 }
1732
1733 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1734 * When we update through the ring, if the next incoming buffer has
1735 * not been given to the system, we just set the empty indicator,
1736 * effectively tossing the packet.
1737 */
1738 static int
fec_enet_rx_queue(struct net_device * ndev,u16 queue_id,int budget)1739 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1740 {
1741 struct fec_enet_private *fep = netdev_priv(ndev);
1742 struct fec_enet_priv_rx_q *rxq;
1743 struct bufdesc *bdp;
1744 unsigned short status;
1745 struct sk_buff *skb;
1746 ushort pkt_len;
1747 int pkt_received = 0;
1748 struct bufdesc_ex *ebdp = NULL;
1749 int index = 0;
1750 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1751 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1752 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1753 u32 data_start = FEC_ENET_XDP_HEADROOM;
1754 int cpu = smp_processor_id();
1755 struct xdp_buff xdp;
1756 struct page *page;
1757 __fec32 cbd_bufaddr;
1758 u32 sub_len = 4;
1759
1760 #if !defined(CONFIG_M5272)
1761 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1762 * FEC_RACC_SHIFT16 is set by default in the probe function.
1763 */
1764 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1765 data_start += 2;
1766 sub_len += 2;
1767 }
1768 #endif
1769
1770 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1771 /*
1772 * Hacky flush of all caches instead of using the DMA API for the TSO
1773 * headers.
1774 */
1775 flush_cache_all();
1776 #endif
1777 rxq = fep->rx_queue[queue_id];
1778
1779 /* First, grab all of the stats for the incoming packet.
1780 * These get messed up if we get called due to a busy condition.
1781 */
1782 bdp = rxq->bd.cur;
1783 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1784
1785 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1786
1787 if (pkt_received >= budget)
1788 break;
1789 pkt_received++;
1790
1791 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1792
1793 /* Check for errors. */
1794 status ^= BD_ENET_RX_LAST;
1795 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1796 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1797 BD_ENET_RX_CL)) {
1798 ndev->stats.rx_errors++;
1799 if (status & BD_ENET_RX_OV) {
1800 /* FIFO overrun */
1801 ndev->stats.rx_fifo_errors++;
1802 goto rx_processing_done;
1803 }
1804 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1805 | BD_ENET_RX_LAST)) {
1806 /* Frame too long or too short. */
1807 ndev->stats.rx_length_errors++;
1808 if (status & BD_ENET_RX_LAST)
1809 netdev_err(ndev, "rcv is not +last\n");
1810 }
1811 if (status & BD_ENET_RX_CR) /* CRC Error */
1812 ndev->stats.rx_crc_errors++;
1813 /* Report late collisions as a frame error. */
1814 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1815 ndev->stats.rx_frame_errors++;
1816 goto rx_processing_done;
1817 }
1818
1819 /* Process the incoming frame. */
1820 ndev->stats.rx_packets++;
1821 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1822 ndev->stats.rx_bytes += pkt_len;
1823
1824 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1825 page = rxq->rx_skb_info[index].page;
1826 cbd_bufaddr = bdp->cbd_bufaddr;
1827 if (fec_enet_update_cbd(rxq, bdp, index)) {
1828 ndev->stats.rx_dropped++;
1829 goto rx_processing_done;
1830 }
1831
1832 dma_sync_single_for_cpu(&fep->pdev->dev,
1833 fec32_to_cpu(cbd_bufaddr),
1834 pkt_len,
1835 DMA_FROM_DEVICE);
1836 prefetch(page_address(page));
1837
1838 if (xdp_prog) {
1839 xdp_buff_clear_frags_flag(&xdp);
1840 /* subtract 16bit shift and FCS */
1841 xdp_prepare_buff(&xdp, page_address(page),
1842 data_start, pkt_len - sub_len, false);
1843 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1844 xdp_result |= ret;
1845 if (ret != FEC_ENET_XDP_PASS)
1846 goto rx_processing_done;
1847 }
1848
1849 /* The packet length includes FCS, but we don't want to
1850 * include that when passing upstream as it messes up
1851 * bridging applications.
1852 */
1853 skb = build_skb(page_address(page), PAGE_SIZE);
1854 if (unlikely(!skb)) {
1855 page_pool_recycle_direct(rxq->page_pool, page);
1856 ndev->stats.rx_dropped++;
1857
1858 netdev_err_once(ndev, "build_skb failed!\n");
1859 goto rx_processing_done;
1860 }
1861
1862 skb_reserve(skb, data_start);
1863 skb_put(skb, pkt_len - sub_len);
1864 skb_mark_for_recycle(skb);
1865
1866 if (unlikely(need_swap)) {
1867 u8 *data;
1868
1869 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1870 swap_buffer(data, pkt_len);
1871 }
1872
1873 /* Extract the enhanced buffer descriptor */
1874 ebdp = NULL;
1875 if (fep->bufdesc_ex)
1876 ebdp = (struct bufdesc_ex *)bdp;
1877
1878 /* If this is a VLAN packet remove the VLAN Tag */
1879 if (fep->bufdesc_ex &&
1880 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1881 fec_enet_rx_vlan(ndev, skb);
1882
1883 skb->protocol = eth_type_trans(skb, ndev);
1884
1885 /* Get receive timestamp from the skb */
1886 if (fep->hwts_rx_en && fep->bufdesc_ex)
1887 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1888 skb_hwtstamps(skb));
1889
1890 if (fep->bufdesc_ex &&
1891 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1892 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1893 /* don't check it */
1894 skb->ip_summed = CHECKSUM_UNNECESSARY;
1895 } else {
1896 skb_checksum_none_assert(skb);
1897 }
1898 }
1899
1900 skb_record_rx_queue(skb, queue_id);
1901 napi_gro_receive(&fep->napi, skb);
1902
1903 rx_processing_done:
1904 /* Clear the status flags for this buffer */
1905 status &= ~BD_ENET_RX_STATS;
1906
1907 /* Mark the buffer empty */
1908 status |= BD_ENET_RX_EMPTY;
1909
1910 if (fep->bufdesc_ex) {
1911 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1912
1913 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1914 ebdp->cbd_prot = 0;
1915 ebdp->cbd_bdu = 0;
1916 }
1917 /* Make sure the updates to rest of the descriptor are
1918 * performed before transferring ownership.
1919 */
1920 wmb();
1921 bdp->cbd_sc = cpu_to_fec16(status);
1922
1923 /* Update BD pointer to next entry */
1924 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1925
1926 /* Doing this here will keep the FEC running while we process
1927 * incoming frames. On a heavily loaded network, we should be
1928 * able to keep up at the expense of system resources.
1929 */
1930 writel(0, rxq->bd.reg_desc_active);
1931 }
1932 rxq->bd.cur = bdp;
1933
1934 if (xdp_result & FEC_ENET_XDP_REDIR)
1935 xdp_do_flush();
1936
1937 return pkt_received;
1938 }
1939
fec_enet_rx(struct net_device * ndev,int budget)1940 static int fec_enet_rx(struct net_device *ndev, int budget)
1941 {
1942 struct fec_enet_private *fep = netdev_priv(ndev);
1943 int i, done = 0;
1944
1945 /* Make sure that AVB queues are processed first. */
1946 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1947 done += fec_enet_rx_queue(ndev, i, budget - done);
1948
1949 return done;
1950 }
1951
fec_enet_collect_events(struct fec_enet_private * fep)1952 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1953 {
1954 uint int_events;
1955
1956 int_events = readl(fep->hwp + FEC_IEVENT);
1957
1958 /* Don't clear MDIO events, we poll for those */
1959 int_events &= ~FEC_ENET_MII;
1960
1961 writel(int_events, fep->hwp + FEC_IEVENT);
1962
1963 return int_events != 0;
1964 }
1965
1966 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1967 fec_enet_interrupt(int irq, void *dev_id)
1968 {
1969 struct net_device *ndev = dev_id;
1970 struct fec_enet_private *fep = netdev_priv(ndev);
1971 irqreturn_t ret = IRQ_NONE;
1972
1973 if (fec_enet_collect_events(fep) && fep->link) {
1974 ret = IRQ_HANDLED;
1975
1976 if (napi_schedule_prep(&fep->napi)) {
1977 /* Disable interrupts */
1978 writel(0, fep->hwp + FEC_IMASK);
1979 __napi_schedule(&fep->napi);
1980 }
1981 }
1982
1983 return ret;
1984 }
1985
fec_enet_rx_napi(struct napi_struct * napi,int budget)1986 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1987 {
1988 struct net_device *ndev = napi->dev;
1989 struct fec_enet_private *fep = netdev_priv(ndev);
1990 int done = 0;
1991
1992 do {
1993 done += fec_enet_rx(ndev, budget - done);
1994 fec_enet_tx(ndev, budget);
1995 } while ((done < budget) && fec_enet_collect_events(fep));
1996
1997 if (done < budget) {
1998 napi_complete_done(napi, done);
1999 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
2000 }
2001
2002 return done;
2003 }
2004
2005 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2006 static int fec_get_mac(struct net_device *ndev)
2007 {
2008 struct fec_enet_private *fep = netdev_priv(ndev);
2009 unsigned char *iap, tmpaddr[ETH_ALEN];
2010 int ret;
2011
2012 /*
2013 * try to get mac address in following order:
2014 *
2015 * 1) module parameter via kernel command line in form
2016 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2017 */
2018 iap = macaddr;
2019
2020 /*
2021 * 2) from device tree data
2022 */
2023 if (!is_valid_ether_addr(iap)) {
2024 struct device_node *np = fep->pdev->dev.of_node;
2025 if (np) {
2026 ret = of_get_mac_address(np, tmpaddr);
2027 if (!ret)
2028 iap = tmpaddr;
2029 else if (ret == -EPROBE_DEFER)
2030 return ret;
2031 }
2032 }
2033
2034 /*
2035 * 3) from flash or fuse (via platform data)
2036 */
2037 if (!is_valid_ether_addr(iap)) {
2038 #ifdef CONFIG_M5272
2039 if (FEC_FLASHMAC)
2040 iap = (unsigned char *)FEC_FLASHMAC;
2041 #else
2042 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2043
2044 if (pdata)
2045 iap = (unsigned char *)&pdata->mac;
2046 #endif
2047 }
2048
2049 /*
2050 * 4) FEC mac registers set by bootloader
2051 */
2052 if (!is_valid_ether_addr(iap)) {
2053 *((__be32 *) &tmpaddr[0]) =
2054 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2055 *((__be16 *) &tmpaddr[4]) =
2056 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2057 iap = &tmpaddr[0];
2058 }
2059
2060 /*
2061 * 5) random mac address
2062 */
2063 if (!is_valid_ether_addr(iap)) {
2064 /* Report it and use a random ethernet address instead */
2065 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2066 eth_hw_addr_random(ndev);
2067 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2068 ndev->dev_addr);
2069 return 0;
2070 }
2071
2072 /* Adjust MAC if using macaddr */
2073 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2074
2075 return 0;
2076 }
2077
2078 /* ------------------------------------------------------------------------- */
2079
2080 /*
2081 * Phy section
2082 */
2083
2084 /* LPI Sleep Ts count base on tx clk (clk_ref).
2085 * The lpi sleep cnt value = X us / (cycle_ns).
2086 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2087 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2088 {
2089 struct fec_enet_private *fep = netdev_priv(ndev);
2090
2091 return us * (fep->clk_ref_rate / 1000) / 1000;
2092 }
2093
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2094 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2095 bool enable)
2096 {
2097 struct fec_enet_private *fep = netdev_priv(ndev);
2098 unsigned int sleep_cycle, wake_cycle;
2099
2100 if (enable) {
2101 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2102 wake_cycle = sleep_cycle;
2103 } else {
2104 sleep_cycle = 0;
2105 wake_cycle = 0;
2106 }
2107
2108 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2109 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2110
2111 return 0;
2112 }
2113
fec_enet_adjust_link(struct net_device * ndev)2114 static void fec_enet_adjust_link(struct net_device *ndev)
2115 {
2116 struct fec_enet_private *fep = netdev_priv(ndev);
2117 struct phy_device *phy_dev = ndev->phydev;
2118 int status_change = 0;
2119
2120 /*
2121 * If the netdev is down, or is going down, we're not interested
2122 * in link state events, so just mark our idea of the link as down
2123 * and ignore the event.
2124 */
2125 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2126 fep->link = 0;
2127 } else if (phy_dev->link) {
2128 if (!fep->link) {
2129 fep->link = phy_dev->link;
2130 status_change = 1;
2131 }
2132
2133 if (fep->full_duplex != phy_dev->duplex) {
2134 fep->full_duplex = phy_dev->duplex;
2135 status_change = 1;
2136 }
2137
2138 if (phy_dev->speed != fep->speed) {
2139 fep->speed = phy_dev->speed;
2140 status_change = 1;
2141 }
2142
2143 /* if any of the above changed restart the FEC */
2144 if (status_change) {
2145 netif_stop_queue(ndev);
2146 napi_disable(&fep->napi);
2147 netif_tx_lock_bh(ndev);
2148 fec_restart(ndev);
2149 netif_tx_wake_all_queues(ndev);
2150 netif_tx_unlock_bh(ndev);
2151 napi_enable(&fep->napi);
2152 }
2153 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2154 fec_enet_eee_mode_set(ndev,
2155 phy_dev->eee_cfg.tx_lpi_timer,
2156 phy_dev->enable_tx_lpi);
2157 } else {
2158 if (fep->link) {
2159 netif_stop_queue(ndev);
2160 napi_disable(&fep->napi);
2161 netif_tx_lock_bh(ndev);
2162 fec_stop(ndev);
2163 netif_tx_unlock_bh(ndev);
2164 napi_enable(&fep->napi);
2165 fep->link = phy_dev->link;
2166 status_change = 1;
2167 }
2168 }
2169
2170 if (status_change)
2171 phy_print_status(phy_dev);
2172 }
2173
fec_enet_mdio_wait(struct fec_enet_private * fep)2174 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2175 {
2176 uint ievent;
2177 int ret;
2178
2179 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2180 ievent & FEC_ENET_MII, 2, 30000);
2181
2182 if (!ret)
2183 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2184
2185 return ret;
2186 }
2187
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2188 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2189 {
2190 struct fec_enet_private *fep = bus->priv;
2191 struct device *dev = &fep->pdev->dev;
2192 int ret = 0, frame_start, frame_addr, frame_op;
2193
2194 ret = pm_runtime_resume_and_get(dev);
2195 if (ret < 0)
2196 return ret;
2197
2198 /* C22 read */
2199 frame_op = FEC_MMFR_OP_READ;
2200 frame_start = FEC_MMFR_ST;
2201 frame_addr = regnum;
2202
2203 /* start a read op */
2204 writel(frame_start | frame_op |
2205 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2206 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2207
2208 /* wait for end of transfer */
2209 ret = fec_enet_mdio_wait(fep);
2210 if (ret) {
2211 netdev_err(fep->netdev, "MDIO read timeout\n");
2212 goto out;
2213 }
2214
2215 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2216
2217 out:
2218 pm_runtime_mark_last_busy(dev);
2219 pm_runtime_put_autosuspend(dev);
2220
2221 return ret;
2222 }
2223
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2224 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2225 int devad, int regnum)
2226 {
2227 struct fec_enet_private *fep = bus->priv;
2228 struct device *dev = &fep->pdev->dev;
2229 int ret = 0, frame_start, frame_op;
2230
2231 ret = pm_runtime_resume_and_get(dev);
2232 if (ret < 0)
2233 return ret;
2234
2235 frame_start = FEC_MMFR_ST_C45;
2236
2237 /* write address */
2238 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2239 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2240 FEC_MMFR_TA | (regnum & 0xFFFF),
2241 fep->hwp + FEC_MII_DATA);
2242
2243 /* wait for end of transfer */
2244 ret = fec_enet_mdio_wait(fep);
2245 if (ret) {
2246 netdev_err(fep->netdev, "MDIO address write timeout\n");
2247 goto out;
2248 }
2249
2250 frame_op = FEC_MMFR_OP_READ_C45;
2251
2252 /* start a read op */
2253 writel(frame_start | frame_op |
2254 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2255 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2256
2257 /* wait for end of transfer */
2258 ret = fec_enet_mdio_wait(fep);
2259 if (ret) {
2260 netdev_err(fep->netdev, "MDIO read timeout\n");
2261 goto out;
2262 }
2263
2264 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2265
2266 out:
2267 pm_runtime_mark_last_busy(dev);
2268 pm_runtime_put_autosuspend(dev);
2269
2270 return ret;
2271 }
2272
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2273 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2274 u16 value)
2275 {
2276 struct fec_enet_private *fep = bus->priv;
2277 struct device *dev = &fep->pdev->dev;
2278 int ret, frame_start, frame_addr;
2279
2280 ret = pm_runtime_resume_and_get(dev);
2281 if (ret < 0)
2282 return ret;
2283
2284 /* C22 write */
2285 frame_start = FEC_MMFR_ST;
2286 frame_addr = regnum;
2287
2288 /* start a write op */
2289 writel(frame_start | FEC_MMFR_OP_WRITE |
2290 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2291 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2292 fep->hwp + FEC_MII_DATA);
2293
2294 /* wait for end of transfer */
2295 ret = fec_enet_mdio_wait(fep);
2296 if (ret)
2297 netdev_err(fep->netdev, "MDIO write timeout\n");
2298
2299 pm_runtime_mark_last_busy(dev);
2300 pm_runtime_put_autosuspend(dev);
2301
2302 return ret;
2303 }
2304
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2305 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2306 int devad, int regnum, u16 value)
2307 {
2308 struct fec_enet_private *fep = bus->priv;
2309 struct device *dev = &fep->pdev->dev;
2310 int ret, frame_start;
2311
2312 ret = pm_runtime_resume_and_get(dev);
2313 if (ret < 0)
2314 return ret;
2315
2316 frame_start = FEC_MMFR_ST_C45;
2317
2318 /* write address */
2319 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2320 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2321 FEC_MMFR_TA | (regnum & 0xFFFF),
2322 fep->hwp + FEC_MII_DATA);
2323
2324 /* wait for end of transfer */
2325 ret = fec_enet_mdio_wait(fep);
2326 if (ret) {
2327 netdev_err(fep->netdev, "MDIO address write timeout\n");
2328 goto out;
2329 }
2330
2331 /* start a write op */
2332 writel(frame_start | FEC_MMFR_OP_WRITE |
2333 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2334 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2335 fep->hwp + FEC_MII_DATA);
2336
2337 /* wait for end of transfer */
2338 ret = fec_enet_mdio_wait(fep);
2339 if (ret)
2340 netdev_err(fep->netdev, "MDIO write timeout\n");
2341
2342 out:
2343 pm_runtime_mark_last_busy(dev);
2344 pm_runtime_put_autosuspend(dev);
2345
2346 return ret;
2347 }
2348
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2349 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2350 {
2351 struct fec_enet_private *fep = netdev_priv(ndev);
2352 struct phy_device *phy_dev = ndev->phydev;
2353
2354 if (phy_dev) {
2355 phy_reset_after_clk_enable(phy_dev);
2356 } else if (fep->phy_node) {
2357 /*
2358 * If the PHY still is not bound to the MAC, but there is
2359 * OF PHY node and a matching PHY device instance already,
2360 * use the OF PHY node to obtain the PHY device instance,
2361 * and then use that PHY device instance when triggering
2362 * the PHY reset.
2363 */
2364 phy_dev = of_phy_find_device(fep->phy_node);
2365 phy_reset_after_clk_enable(phy_dev);
2366 put_device(&phy_dev->mdio.dev);
2367 }
2368 }
2369
fec_enet_clk_enable(struct net_device * ndev,bool enable)2370 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2371 {
2372 struct fec_enet_private *fep = netdev_priv(ndev);
2373 int ret;
2374
2375 if (enable) {
2376 ret = clk_prepare_enable(fep->clk_enet_out);
2377 if (ret)
2378 return ret;
2379
2380 if (fep->clk_ptp) {
2381 mutex_lock(&fep->ptp_clk_mutex);
2382 ret = clk_prepare_enable(fep->clk_ptp);
2383 if (ret) {
2384 mutex_unlock(&fep->ptp_clk_mutex);
2385 goto failed_clk_ptp;
2386 } else {
2387 fep->ptp_clk_on = true;
2388 }
2389 mutex_unlock(&fep->ptp_clk_mutex);
2390 }
2391
2392 ret = clk_prepare_enable(fep->clk_ref);
2393 if (ret)
2394 goto failed_clk_ref;
2395
2396 ret = clk_prepare_enable(fep->clk_2x_txclk);
2397 if (ret)
2398 goto failed_clk_2x_txclk;
2399
2400 fec_enet_phy_reset_after_clk_enable(ndev);
2401 } else {
2402 clk_disable_unprepare(fep->clk_enet_out);
2403 if (fep->clk_ptp) {
2404 mutex_lock(&fep->ptp_clk_mutex);
2405 clk_disable_unprepare(fep->clk_ptp);
2406 fep->ptp_clk_on = false;
2407 mutex_unlock(&fep->ptp_clk_mutex);
2408 }
2409 clk_disable_unprepare(fep->clk_ref);
2410 clk_disable_unprepare(fep->clk_2x_txclk);
2411 }
2412
2413 return 0;
2414
2415 failed_clk_2x_txclk:
2416 if (fep->clk_ref)
2417 clk_disable_unprepare(fep->clk_ref);
2418 failed_clk_ref:
2419 if (fep->clk_ptp) {
2420 mutex_lock(&fep->ptp_clk_mutex);
2421 clk_disable_unprepare(fep->clk_ptp);
2422 fep->ptp_clk_on = false;
2423 mutex_unlock(&fep->ptp_clk_mutex);
2424 }
2425 failed_clk_ptp:
2426 clk_disable_unprepare(fep->clk_enet_out);
2427
2428 return ret;
2429 }
2430
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2431 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2432 struct device_node *np)
2433 {
2434 u32 rgmii_tx_delay, rgmii_rx_delay;
2435
2436 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2437 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2438 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2439 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2440 return -EINVAL;
2441 } else if (rgmii_tx_delay == 2000) {
2442 fep->rgmii_txc_dly = true;
2443 }
2444 }
2445
2446 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2447 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2448 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2449 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2450 return -EINVAL;
2451 } else if (rgmii_rx_delay == 2000) {
2452 fep->rgmii_rxc_dly = true;
2453 }
2454 }
2455
2456 return 0;
2457 }
2458
fec_enet_mii_probe(struct net_device * ndev)2459 static int fec_enet_mii_probe(struct net_device *ndev)
2460 {
2461 struct fec_enet_private *fep = netdev_priv(ndev);
2462 struct phy_device *phy_dev = NULL;
2463 char mdio_bus_id[MII_BUS_ID_SIZE];
2464 char phy_name[MII_BUS_ID_SIZE + 3];
2465 int phy_id;
2466 int dev_id = fep->dev_id;
2467
2468 if (fep->phy_node) {
2469 phy_dev = of_phy_connect(ndev, fep->phy_node,
2470 &fec_enet_adjust_link, 0,
2471 fep->phy_interface);
2472 if (!phy_dev) {
2473 netdev_err(ndev, "Unable to connect to phy\n");
2474 return -ENODEV;
2475 }
2476 } else {
2477 /* check for attached phy */
2478 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2479 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2480 continue;
2481 if (dev_id--)
2482 continue;
2483 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2484 break;
2485 }
2486
2487 if (phy_id >= PHY_MAX_ADDR) {
2488 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2489 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2490 phy_id = 0;
2491 }
2492
2493 snprintf(phy_name, sizeof(phy_name),
2494 PHY_ID_FMT, mdio_bus_id, phy_id);
2495 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2496 fep->phy_interface);
2497 }
2498
2499 if (IS_ERR(phy_dev)) {
2500 netdev_err(ndev, "could not attach to PHY\n");
2501 return PTR_ERR(phy_dev);
2502 }
2503
2504 /* mask with MAC supported features */
2505 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2506 phy_set_max_speed(phy_dev, 1000);
2507 phy_remove_link_mode(phy_dev,
2508 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2509 #if !defined(CONFIG_M5272)
2510 phy_support_sym_pause(phy_dev);
2511 #endif
2512 }
2513 else
2514 phy_set_max_speed(phy_dev, 100);
2515
2516 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2517 phy_support_eee(phy_dev);
2518
2519 fep->link = 0;
2520 fep->full_duplex = 0;
2521
2522 phy_attached_info(phy_dev);
2523
2524 return 0;
2525 }
2526
fec_enet_mii_init(struct platform_device * pdev)2527 static int fec_enet_mii_init(struct platform_device *pdev)
2528 {
2529 static struct mii_bus *fec0_mii_bus;
2530 struct net_device *ndev = platform_get_drvdata(pdev);
2531 struct fec_enet_private *fep = netdev_priv(ndev);
2532 bool suppress_preamble = false;
2533 struct phy_device *phydev;
2534 struct device_node *node;
2535 int err = -ENXIO;
2536 u32 mii_speed, holdtime;
2537 u32 bus_freq;
2538 int addr;
2539
2540 /*
2541 * The i.MX28 dual fec interfaces are not equal.
2542 * Here are the differences:
2543 *
2544 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2545 * - fec0 acts as the 1588 time master while fec1 is slave
2546 * - external phys can only be configured by fec0
2547 *
2548 * That is to say fec1 can not work independently. It only works
2549 * when fec0 is working. The reason behind this design is that the
2550 * second interface is added primarily for Switch mode.
2551 *
2552 * Because of the last point above, both phys are attached on fec0
2553 * mdio interface in board design, and need to be configured by
2554 * fec0 mii_bus.
2555 */
2556 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2557 /* fec1 uses fec0 mii_bus */
2558 if (mii_cnt && fec0_mii_bus) {
2559 fep->mii_bus = fec0_mii_bus;
2560 mii_cnt++;
2561 return 0;
2562 }
2563 return -ENOENT;
2564 }
2565
2566 bus_freq = 2500000; /* 2.5MHz by default */
2567 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2568 if (node) {
2569 of_property_read_u32(node, "clock-frequency", &bus_freq);
2570 suppress_preamble = of_property_read_bool(node,
2571 "suppress-preamble");
2572 }
2573
2574 /*
2575 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2576 *
2577 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2578 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2579 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2580 * document.
2581 */
2582 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2583 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2584 mii_speed--;
2585 if (mii_speed > 63) {
2586 dev_err(&pdev->dev,
2587 "fec clock (%lu) too fast to get right mii speed\n",
2588 clk_get_rate(fep->clk_ipg));
2589 err = -EINVAL;
2590 goto err_out;
2591 }
2592
2593 /*
2594 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2595 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2596 * versions are RAZ there, so just ignore the difference and write the
2597 * register always.
2598 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2599 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2600 * output.
2601 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2602 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2603 * holdtime cannot result in a value greater than 3.
2604 */
2605 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2606
2607 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2608
2609 if (suppress_preamble)
2610 fep->phy_speed |= BIT(7);
2611
2612 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2613 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2614 * MII event generation condition:
2615 * - writing MSCR:
2616 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2617 * mscr_reg_data_in[7:0] != 0
2618 * - writing MMFR:
2619 * - mscr[7:0]_not_zero
2620 */
2621 writel(0, fep->hwp + FEC_MII_DATA);
2622 }
2623
2624 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2625
2626 /* Clear any pending transaction complete indication */
2627 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2628
2629 fep->mii_bus = mdiobus_alloc();
2630 if (fep->mii_bus == NULL) {
2631 err = -ENOMEM;
2632 goto err_out;
2633 }
2634
2635 fep->mii_bus->name = "fec_enet_mii_bus";
2636 fep->mii_bus->read = fec_enet_mdio_read_c22;
2637 fep->mii_bus->write = fec_enet_mdio_write_c22;
2638 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2639 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2640 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2641 }
2642 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2643 pdev->name, fep->dev_id + 1);
2644 fep->mii_bus->priv = fep;
2645 fep->mii_bus->parent = &pdev->dev;
2646
2647 err = of_mdiobus_register(fep->mii_bus, node);
2648 if (err)
2649 goto err_out_free_mdiobus;
2650 of_node_put(node);
2651
2652 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2653 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2654 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2655 if (phydev)
2656 phydev->mac_managed_pm = true;
2657 }
2658
2659 mii_cnt++;
2660
2661 /* save fec0 mii_bus */
2662 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2663 fec0_mii_bus = fep->mii_bus;
2664
2665 return 0;
2666
2667 err_out_free_mdiobus:
2668 mdiobus_free(fep->mii_bus);
2669 err_out:
2670 of_node_put(node);
2671 return err;
2672 }
2673
fec_enet_mii_remove(struct fec_enet_private * fep)2674 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2675 {
2676 if (--mii_cnt == 0) {
2677 mdiobus_unregister(fep->mii_bus);
2678 mdiobus_free(fep->mii_bus);
2679 }
2680 }
2681
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2682 static void fec_enet_get_drvinfo(struct net_device *ndev,
2683 struct ethtool_drvinfo *info)
2684 {
2685 struct fec_enet_private *fep = netdev_priv(ndev);
2686
2687 strscpy(info->driver, fep->pdev->dev.driver->name,
2688 sizeof(info->driver));
2689 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2690 }
2691
fec_enet_get_regs_len(struct net_device * ndev)2692 static int fec_enet_get_regs_len(struct net_device *ndev)
2693 {
2694 struct fec_enet_private *fep = netdev_priv(ndev);
2695 struct resource *r;
2696 int s = 0;
2697
2698 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2699 if (r)
2700 s = resource_size(r);
2701
2702 return s;
2703 }
2704
2705 /* List of registers that can be safety be read to dump them with ethtool */
2706 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2707 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2708 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2709 static __u32 fec_enet_register_version = 2;
2710 static u32 fec_enet_register_offset[] = {
2711 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2712 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2713 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2714 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2715 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2716 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2717 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2718 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2719 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2720 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2721 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2722 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2723 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2724 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2725 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2726 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2727 RMON_T_P_GTE2048, RMON_T_OCTETS,
2728 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2729 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2730 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2731 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2732 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2733 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2734 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2735 RMON_R_P_GTE2048, RMON_R_OCTETS,
2736 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2737 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2738 };
2739 /* for i.MX6ul */
2740 static u32 fec_enet_register_offset_6ul[] = {
2741 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2742 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2743 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2744 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2745 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2746 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2747 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2748 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2749 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2750 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2751 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2752 RMON_T_P_GTE2048, RMON_T_OCTETS,
2753 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2754 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2755 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2756 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2757 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2758 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2759 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2760 RMON_R_P_GTE2048, RMON_R_OCTETS,
2761 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2762 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2763 };
2764 #else
2765 static __u32 fec_enet_register_version = 1;
2766 static u32 fec_enet_register_offset[] = {
2767 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2768 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2769 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2770 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2771 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2772 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2773 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2774 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2775 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2776 };
2777 #endif
2778
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2779 static void fec_enet_get_regs(struct net_device *ndev,
2780 struct ethtool_regs *regs, void *regbuf)
2781 {
2782 struct fec_enet_private *fep = netdev_priv(ndev);
2783 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2784 struct device *dev = &fep->pdev->dev;
2785 u32 *buf = (u32 *)regbuf;
2786 u32 i, off;
2787 int ret;
2788 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2789 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2790 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2791 u32 *reg_list;
2792 u32 reg_cnt;
2793
2794 if (!of_machine_is_compatible("fsl,imx6ul")) {
2795 reg_list = fec_enet_register_offset;
2796 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2797 } else {
2798 reg_list = fec_enet_register_offset_6ul;
2799 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2800 }
2801 #else
2802 /* coldfire */
2803 static u32 *reg_list = fec_enet_register_offset;
2804 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2805 #endif
2806 ret = pm_runtime_resume_and_get(dev);
2807 if (ret < 0)
2808 return;
2809
2810 regs->version = fec_enet_register_version;
2811
2812 memset(buf, 0, regs->len);
2813
2814 for (i = 0; i < reg_cnt; i++) {
2815 off = reg_list[i];
2816
2817 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2818 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2819 continue;
2820
2821 off >>= 2;
2822 buf[off] = readl(&theregs[off]);
2823 }
2824
2825 pm_runtime_mark_last_busy(dev);
2826 pm_runtime_put_autosuspend(dev);
2827 }
2828
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2829 static int fec_enet_get_ts_info(struct net_device *ndev,
2830 struct kernel_ethtool_ts_info *info)
2831 {
2832 struct fec_enet_private *fep = netdev_priv(ndev);
2833
2834 if (fep->bufdesc_ex) {
2835
2836 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2837 SOF_TIMESTAMPING_TX_HARDWARE |
2838 SOF_TIMESTAMPING_RX_HARDWARE |
2839 SOF_TIMESTAMPING_RAW_HARDWARE;
2840 if (fep->ptp_clock)
2841 info->phc_index = ptp_clock_index(fep->ptp_clock);
2842
2843 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2844 (1 << HWTSTAMP_TX_ON);
2845
2846 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2847 (1 << HWTSTAMP_FILTER_ALL);
2848 return 0;
2849 } else {
2850 return ethtool_op_get_ts_info(ndev, info);
2851 }
2852 }
2853
2854 #if !defined(CONFIG_M5272)
2855
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2856 static void fec_enet_get_pauseparam(struct net_device *ndev,
2857 struct ethtool_pauseparam *pause)
2858 {
2859 struct fec_enet_private *fep = netdev_priv(ndev);
2860
2861 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2862 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2863 pause->rx_pause = pause->tx_pause;
2864 }
2865
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2866 static int fec_enet_set_pauseparam(struct net_device *ndev,
2867 struct ethtool_pauseparam *pause)
2868 {
2869 struct fec_enet_private *fep = netdev_priv(ndev);
2870
2871 if (!ndev->phydev)
2872 return -ENODEV;
2873
2874 if (pause->tx_pause != pause->rx_pause) {
2875 netdev_info(ndev,
2876 "hardware only support enable/disable both tx and rx");
2877 return -EINVAL;
2878 }
2879
2880 fep->pause_flag = 0;
2881
2882 /* tx pause must be same as rx pause */
2883 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2884 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2885
2886 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2887 pause->autoneg);
2888
2889 if (pause->autoneg) {
2890 if (netif_running(ndev))
2891 fec_stop(ndev);
2892 phy_start_aneg(ndev->phydev);
2893 }
2894 if (netif_running(ndev)) {
2895 napi_disable(&fep->napi);
2896 netif_tx_lock_bh(ndev);
2897 fec_restart(ndev);
2898 netif_tx_wake_all_queues(ndev);
2899 netif_tx_unlock_bh(ndev);
2900 napi_enable(&fep->napi);
2901 }
2902
2903 return 0;
2904 }
2905
2906 static const struct fec_stat {
2907 char name[ETH_GSTRING_LEN];
2908 u16 offset;
2909 } fec_stats[] = {
2910 /* RMON TX */
2911 { "tx_dropped", RMON_T_DROP },
2912 { "tx_packets", RMON_T_PACKETS },
2913 { "tx_broadcast", RMON_T_BC_PKT },
2914 { "tx_multicast", RMON_T_MC_PKT },
2915 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2916 { "tx_undersize", RMON_T_UNDERSIZE },
2917 { "tx_oversize", RMON_T_OVERSIZE },
2918 { "tx_fragment", RMON_T_FRAG },
2919 { "tx_jabber", RMON_T_JAB },
2920 { "tx_collision", RMON_T_COL },
2921 { "tx_64byte", RMON_T_P64 },
2922 { "tx_65to127byte", RMON_T_P65TO127 },
2923 { "tx_128to255byte", RMON_T_P128TO255 },
2924 { "tx_256to511byte", RMON_T_P256TO511 },
2925 { "tx_512to1023byte", RMON_T_P512TO1023 },
2926 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2927 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2928 { "tx_octets", RMON_T_OCTETS },
2929
2930 /* IEEE TX */
2931 { "IEEE_tx_drop", IEEE_T_DROP },
2932 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2933 { "IEEE_tx_1col", IEEE_T_1COL },
2934 { "IEEE_tx_mcol", IEEE_T_MCOL },
2935 { "IEEE_tx_def", IEEE_T_DEF },
2936 { "IEEE_tx_lcol", IEEE_T_LCOL },
2937 { "IEEE_tx_excol", IEEE_T_EXCOL },
2938 { "IEEE_tx_macerr", IEEE_T_MACERR },
2939 { "IEEE_tx_cserr", IEEE_T_CSERR },
2940 { "IEEE_tx_sqe", IEEE_T_SQE },
2941 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2942 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2943
2944 /* RMON RX */
2945 { "rx_packets", RMON_R_PACKETS },
2946 { "rx_broadcast", RMON_R_BC_PKT },
2947 { "rx_multicast", RMON_R_MC_PKT },
2948 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2949 { "rx_undersize", RMON_R_UNDERSIZE },
2950 { "rx_oversize", RMON_R_OVERSIZE },
2951 { "rx_fragment", RMON_R_FRAG },
2952 { "rx_jabber", RMON_R_JAB },
2953 { "rx_64byte", RMON_R_P64 },
2954 { "rx_65to127byte", RMON_R_P65TO127 },
2955 { "rx_128to255byte", RMON_R_P128TO255 },
2956 { "rx_256to511byte", RMON_R_P256TO511 },
2957 { "rx_512to1023byte", RMON_R_P512TO1023 },
2958 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2959 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2960 { "rx_octets", RMON_R_OCTETS },
2961
2962 /* IEEE RX */
2963 { "IEEE_rx_drop", IEEE_R_DROP },
2964 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2965 { "IEEE_rx_crc", IEEE_R_CRC },
2966 { "IEEE_rx_align", IEEE_R_ALIGN },
2967 { "IEEE_rx_macerr", IEEE_R_MACERR },
2968 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2969 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2970 };
2971
2972 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2973
2974 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2975 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2976 "rx_xdp_pass", /* RX_XDP_PASS, */
2977 "rx_xdp_drop", /* RX_XDP_DROP, */
2978 "rx_xdp_tx", /* RX_XDP_TX, */
2979 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2980 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2981 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2982 };
2983
fec_enet_update_ethtool_stats(struct net_device * dev)2984 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2985 {
2986 struct fec_enet_private *fep = netdev_priv(dev);
2987 int i;
2988
2989 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2990 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2991 }
2992
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2993 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2994 {
2995 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2996 struct fec_enet_priv_rx_q *rxq;
2997 int i, j;
2998
2999 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3000 rxq = fep->rx_queue[i];
3001
3002 for (j = 0; j < XDP_STATS_TOTAL; j++)
3003 xdp_stats[j] += rxq->stats[j];
3004 }
3005
3006 memcpy(data, xdp_stats, sizeof(xdp_stats));
3007 }
3008
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3009 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3010 {
3011 #ifdef CONFIG_PAGE_POOL_STATS
3012 struct page_pool_stats stats = {};
3013 struct fec_enet_priv_rx_q *rxq;
3014 int i;
3015
3016 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3017 rxq = fep->rx_queue[i];
3018
3019 if (!rxq->page_pool)
3020 continue;
3021
3022 page_pool_get_stats(rxq->page_pool, &stats);
3023 }
3024
3025 page_pool_ethtool_stats_get(data, &stats);
3026 #endif
3027 }
3028
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3029 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3030 struct ethtool_stats *stats, u64 *data)
3031 {
3032 struct fec_enet_private *fep = netdev_priv(dev);
3033
3034 if (netif_running(dev))
3035 fec_enet_update_ethtool_stats(dev);
3036
3037 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3038 data += FEC_STATS_SIZE / sizeof(u64);
3039
3040 fec_enet_get_xdp_stats(fep, data);
3041 data += XDP_STATS_TOTAL;
3042
3043 fec_enet_page_pool_stats(fep, data);
3044 }
3045
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3046 static void fec_enet_get_strings(struct net_device *netdev,
3047 u32 stringset, u8 *data)
3048 {
3049 int i;
3050 switch (stringset) {
3051 case ETH_SS_STATS:
3052 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3053 ethtool_puts(&data, fec_stats[i].name);
3054 }
3055 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3056 ethtool_puts(&data, fec_xdp_stat_strs[i]);
3057 }
3058 page_pool_ethtool_stats_get_strings(data);
3059
3060 break;
3061 case ETH_SS_TEST:
3062 net_selftest_get_strings(data);
3063 break;
3064 }
3065 }
3066
fec_enet_get_sset_count(struct net_device * dev,int sset)3067 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3068 {
3069 int count;
3070
3071 switch (sset) {
3072 case ETH_SS_STATS:
3073 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3074 count += page_pool_ethtool_stats_get_count();
3075 return count;
3076
3077 case ETH_SS_TEST:
3078 return net_selftest_get_count();
3079 default:
3080 return -EOPNOTSUPP;
3081 }
3082 }
3083
fec_enet_clear_ethtool_stats(struct net_device * dev)3084 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3085 {
3086 struct fec_enet_private *fep = netdev_priv(dev);
3087 struct fec_enet_priv_rx_q *rxq;
3088 int i, j;
3089
3090 /* Disable MIB statistics counters */
3091 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3092
3093 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3094 writel(0, fep->hwp + fec_stats[i].offset);
3095
3096 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3097 rxq = fep->rx_queue[i];
3098 for (j = 0; j < XDP_STATS_TOTAL; j++)
3099 rxq->stats[j] = 0;
3100 }
3101
3102 /* Don't disable MIB statistics counters */
3103 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3104 }
3105
3106 #else /* !defined(CONFIG_M5272) */
3107 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3108 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3109 {
3110 }
3111
fec_enet_clear_ethtool_stats(struct net_device * dev)3112 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3113 {
3114 }
3115 #endif /* !defined(CONFIG_M5272) */
3116
3117 /* ITR clock source is enet system clock (clk_ahb).
3118 * TCTT unit is cycle_ns * 64 cycle
3119 * So, the ICTT value = X us / (cycle_ns * 64)
3120 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3121 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3122 {
3123 struct fec_enet_private *fep = netdev_priv(ndev);
3124
3125 return us * (fep->itr_clk_rate / 64000) / 1000;
3126 }
3127
3128 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3129 static void fec_enet_itr_coal_set(struct net_device *ndev)
3130 {
3131 struct fec_enet_private *fep = netdev_priv(ndev);
3132 u32 rx_itr = 0, tx_itr = 0;
3133 int rx_ictt, tx_ictt;
3134
3135 rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3136 tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3137
3138 if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3139 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3140 rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3141 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3142 rx_itr |= FEC_ITR_ICTT(rx_ictt);
3143 }
3144
3145 if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3146 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3147 tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3148 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3149 tx_itr |= FEC_ITR_ICTT(tx_ictt);
3150 }
3151
3152 writel(tx_itr, fep->hwp + FEC_TXIC0);
3153 writel(rx_itr, fep->hwp + FEC_RXIC0);
3154 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3155 writel(tx_itr, fep->hwp + FEC_TXIC1);
3156 writel(rx_itr, fep->hwp + FEC_RXIC1);
3157 writel(tx_itr, fep->hwp + FEC_TXIC2);
3158 writel(rx_itr, fep->hwp + FEC_RXIC2);
3159 }
3160 }
3161
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3162 static int fec_enet_get_coalesce(struct net_device *ndev,
3163 struct ethtool_coalesce *ec,
3164 struct kernel_ethtool_coalesce *kernel_coal,
3165 struct netlink_ext_ack *extack)
3166 {
3167 struct fec_enet_private *fep = netdev_priv(ndev);
3168
3169 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3170 return -EOPNOTSUPP;
3171
3172 ec->rx_coalesce_usecs = fep->rx_time_itr;
3173 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3174
3175 ec->tx_coalesce_usecs = fep->tx_time_itr;
3176 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3177
3178 return 0;
3179 }
3180
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3181 static int fec_enet_set_coalesce(struct net_device *ndev,
3182 struct ethtool_coalesce *ec,
3183 struct kernel_ethtool_coalesce *kernel_coal,
3184 struct netlink_ext_ack *extack)
3185 {
3186 struct fec_enet_private *fep = netdev_priv(ndev);
3187 struct device *dev = &fep->pdev->dev;
3188 unsigned int cycle;
3189
3190 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3191 return -EOPNOTSUPP;
3192
3193 if (ec->rx_max_coalesced_frames > 255) {
3194 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3195 return -EINVAL;
3196 }
3197
3198 if (ec->tx_max_coalesced_frames > 255) {
3199 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3200 return -EINVAL;
3201 }
3202
3203 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3204 if (cycle > 0xFFFF) {
3205 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3206 return -EINVAL;
3207 }
3208
3209 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3210 if (cycle > 0xFFFF) {
3211 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3212 return -EINVAL;
3213 }
3214
3215 fep->rx_time_itr = ec->rx_coalesce_usecs;
3216 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3217
3218 fep->tx_time_itr = ec->tx_coalesce_usecs;
3219 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3220
3221 fec_enet_itr_coal_set(ndev);
3222
3223 return 0;
3224 }
3225
3226 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3227 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3228 {
3229 struct fec_enet_private *fep = netdev_priv(ndev);
3230
3231 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3232 return -EOPNOTSUPP;
3233
3234 if (!netif_running(ndev))
3235 return -ENETDOWN;
3236
3237 return phy_ethtool_get_eee(ndev->phydev, edata);
3238 }
3239
3240 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3241 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3242 {
3243 struct fec_enet_private *fep = netdev_priv(ndev);
3244
3245 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3246 return -EOPNOTSUPP;
3247
3248 if (!netif_running(ndev))
3249 return -ENETDOWN;
3250
3251 return phy_ethtool_set_eee(ndev->phydev, edata);
3252 }
3253
3254 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3255 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3256 {
3257 struct fec_enet_private *fep = netdev_priv(ndev);
3258
3259 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3260 wol->supported = WAKE_MAGIC;
3261 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3262 } else {
3263 wol->supported = wol->wolopts = 0;
3264 }
3265 }
3266
3267 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3268 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3269 {
3270 struct fec_enet_private *fep = netdev_priv(ndev);
3271
3272 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3273 return -EINVAL;
3274
3275 if (wol->wolopts & ~WAKE_MAGIC)
3276 return -EINVAL;
3277
3278 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3279 if (device_may_wakeup(&ndev->dev))
3280 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3281 else
3282 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3283
3284 return 0;
3285 }
3286
3287 static const struct ethtool_ops fec_enet_ethtool_ops = {
3288 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3289 ETHTOOL_COALESCE_MAX_FRAMES,
3290 .get_drvinfo = fec_enet_get_drvinfo,
3291 .get_regs_len = fec_enet_get_regs_len,
3292 .get_regs = fec_enet_get_regs,
3293 .nway_reset = phy_ethtool_nway_reset,
3294 .get_link = ethtool_op_get_link,
3295 .get_coalesce = fec_enet_get_coalesce,
3296 .set_coalesce = fec_enet_set_coalesce,
3297 #ifndef CONFIG_M5272
3298 .get_pauseparam = fec_enet_get_pauseparam,
3299 .set_pauseparam = fec_enet_set_pauseparam,
3300 .get_strings = fec_enet_get_strings,
3301 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3302 .get_sset_count = fec_enet_get_sset_count,
3303 #endif
3304 .get_ts_info = fec_enet_get_ts_info,
3305 .get_wol = fec_enet_get_wol,
3306 .set_wol = fec_enet_set_wol,
3307 .get_eee = fec_enet_get_eee,
3308 .set_eee = fec_enet_set_eee,
3309 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3310 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3311 .self_test = net_selftest,
3312 };
3313
fec_enet_free_buffers(struct net_device * ndev)3314 static void fec_enet_free_buffers(struct net_device *ndev)
3315 {
3316 struct fec_enet_private *fep = netdev_priv(ndev);
3317 unsigned int i;
3318 struct fec_enet_priv_tx_q *txq;
3319 struct fec_enet_priv_rx_q *rxq;
3320 unsigned int q;
3321
3322 for (q = 0; q < fep->num_rx_queues; q++) {
3323 rxq = fep->rx_queue[q];
3324 for (i = 0; i < rxq->bd.ring_size; i++)
3325 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3326
3327 for (i = 0; i < XDP_STATS_TOTAL; i++)
3328 rxq->stats[i] = 0;
3329
3330 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3331 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3332 page_pool_destroy(rxq->page_pool);
3333 rxq->page_pool = NULL;
3334 }
3335
3336 for (q = 0; q < fep->num_tx_queues; q++) {
3337 txq = fep->tx_queue[q];
3338 for (i = 0; i < txq->bd.ring_size; i++) {
3339 kfree(txq->tx_bounce[i]);
3340 txq->tx_bounce[i] = NULL;
3341
3342 if (!txq->tx_buf[i].buf_p) {
3343 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3344 continue;
3345 }
3346
3347 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3348 dev_kfree_skb(txq->tx_buf[i].buf_p);
3349 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3350 xdp_return_frame(txq->tx_buf[i].buf_p);
3351 } else {
3352 struct page *page = txq->tx_buf[i].buf_p;
3353
3354 page_pool_put_page(pp_page_to_nmdesc(page)->pp,
3355 page, 0, false);
3356 }
3357
3358 txq->tx_buf[i].buf_p = NULL;
3359 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3360 }
3361 }
3362 }
3363
fec_enet_free_queue(struct net_device * ndev)3364 static void fec_enet_free_queue(struct net_device *ndev)
3365 {
3366 struct fec_enet_private *fep = netdev_priv(ndev);
3367 int i;
3368 struct fec_enet_priv_tx_q *txq;
3369
3370 for (i = 0; i < fep->num_tx_queues; i++)
3371 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3372 txq = fep->tx_queue[i];
3373 fec_dma_free(&fep->pdev->dev,
3374 txq->bd.ring_size * TSO_HEADER_SIZE,
3375 txq->tso_hdrs, txq->tso_hdrs_dma);
3376 }
3377
3378 for (i = 0; i < fep->num_rx_queues; i++)
3379 kfree(fep->rx_queue[i]);
3380 for (i = 0; i < fep->num_tx_queues; i++)
3381 kfree(fep->tx_queue[i]);
3382 }
3383
fec_enet_alloc_queue(struct net_device * ndev)3384 static int fec_enet_alloc_queue(struct net_device *ndev)
3385 {
3386 struct fec_enet_private *fep = netdev_priv(ndev);
3387 int i;
3388 int ret = 0;
3389 struct fec_enet_priv_tx_q *txq;
3390
3391 for (i = 0; i < fep->num_tx_queues; i++) {
3392 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3393 if (!txq) {
3394 ret = -ENOMEM;
3395 goto alloc_failed;
3396 }
3397
3398 fep->tx_queue[i] = txq;
3399 txq->bd.ring_size = TX_RING_SIZE;
3400 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3401
3402 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3403 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3404
3405 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3406 txq->bd.ring_size * TSO_HEADER_SIZE,
3407 &txq->tso_hdrs_dma, GFP_KERNEL);
3408 if (!txq->tso_hdrs) {
3409 ret = -ENOMEM;
3410 goto alloc_failed;
3411 }
3412 }
3413
3414 for (i = 0; i < fep->num_rx_queues; i++) {
3415 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3416 GFP_KERNEL);
3417 if (!fep->rx_queue[i]) {
3418 ret = -ENOMEM;
3419 goto alloc_failed;
3420 }
3421
3422 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3423 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3424 }
3425 return ret;
3426
3427 alloc_failed:
3428 fec_enet_free_queue(ndev);
3429 return ret;
3430 }
3431
3432 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3433 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3434 {
3435 struct fec_enet_private *fep = netdev_priv(ndev);
3436 struct fec_enet_priv_rx_q *rxq;
3437 dma_addr_t phys_addr;
3438 struct bufdesc *bdp;
3439 struct page *page;
3440 int i, err;
3441
3442 rxq = fep->rx_queue[queue];
3443 bdp = rxq->bd.base;
3444
3445 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3446 if (err < 0) {
3447 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3448 return err;
3449 }
3450
3451 for (i = 0; i < rxq->bd.ring_size; i++) {
3452 page = page_pool_dev_alloc_pages(rxq->page_pool);
3453 if (!page)
3454 goto err_alloc;
3455
3456 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3457 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3458
3459 rxq->rx_skb_info[i].page = page;
3460 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3461 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3462
3463 if (fep->bufdesc_ex) {
3464 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3465 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3466 }
3467
3468 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3469 }
3470
3471 /* Set the last buffer to wrap. */
3472 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3473 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3474 return 0;
3475
3476 err_alloc:
3477 fec_enet_free_buffers(ndev);
3478 return -ENOMEM;
3479 }
3480
3481 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3482 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3483 {
3484 struct fec_enet_private *fep = netdev_priv(ndev);
3485 unsigned int i;
3486 struct bufdesc *bdp;
3487 struct fec_enet_priv_tx_q *txq;
3488
3489 txq = fep->tx_queue[queue];
3490 bdp = txq->bd.base;
3491 for (i = 0; i < txq->bd.ring_size; i++) {
3492 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3493 if (!txq->tx_bounce[i])
3494 goto err_alloc;
3495
3496 bdp->cbd_sc = cpu_to_fec16(0);
3497 bdp->cbd_bufaddr = cpu_to_fec32(0);
3498
3499 if (fep->bufdesc_ex) {
3500 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3501 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3502 }
3503
3504 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3505 }
3506
3507 /* Set the last buffer to wrap. */
3508 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3509 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3510
3511 return 0;
3512
3513 err_alloc:
3514 fec_enet_free_buffers(ndev);
3515 return -ENOMEM;
3516 }
3517
fec_enet_alloc_buffers(struct net_device * ndev)3518 static int fec_enet_alloc_buffers(struct net_device *ndev)
3519 {
3520 struct fec_enet_private *fep = netdev_priv(ndev);
3521 unsigned int i;
3522
3523 for (i = 0; i < fep->num_rx_queues; i++)
3524 if (fec_enet_alloc_rxq_buffers(ndev, i))
3525 return -ENOMEM;
3526
3527 for (i = 0; i < fep->num_tx_queues; i++)
3528 if (fec_enet_alloc_txq_buffers(ndev, i))
3529 return -ENOMEM;
3530 return 0;
3531 }
3532
3533 static int
fec_enet_open(struct net_device * ndev)3534 fec_enet_open(struct net_device *ndev)
3535 {
3536 struct fec_enet_private *fep = netdev_priv(ndev);
3537 int ret;
3538 bool reset_again;
3539
3540 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3541 if (ret < 0)
3542 return ret;
3543
3544 pinctrl_pm_select_default_state(&fep->pdev->dev);
3545 ret = fec_enet_clk_enable(ndev, true);
3546 if (ret)
3547 goto clk_enable;
3548
3549 /* During the first fec_enet_open call the PHY isn't probed at this
3550 * point. Therefore the phy_reset_after_clk_enable() call within
3551 * fec_enet_clk_enable() fails. As we need this reset in order to be
3552 * sure the PHY is working correctly we check if we need to reset again
3553 * later when the PHY is probed
3554 */
3555 if (ndev->phydev && ndev->phydev->drv)
3556 reset_again = false;
3557 else
3558 reset_again = true;
3559
3560 /* I should reset the ring buffers here, but I don't yet know
3561 * a simple way to do that.
3562 */
3563
3564 ret = fec_enet_alloc_buffers(ndev);
3565 if (ret)
3566 goto err_enet_alloc;
3567
3568 /* Init MAC prior to mii bus probe */
3569 fec_restart(ndev);
3570
3571 /* Call phy_reset_after_clk_enable() again if it failed during
3572 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3573 */
3574 if (reset_again)
3575 fec_enet_phy_reset_after_clk_enable(ndev);
3576
3577 /* Probe and connect to PHY when open the interface */
3578 ret = fec_enet_mii_probe(ndev);
3579 if (ret)
3580 goto err_enet_mii_probe;
3581
3582 if (fep->quirks & FEC_QUIRK_ERR006687)
3583 imx6q_cpuidle_fec_irqs_used();
3584
3585 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3586 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3587
3588 napi_enable(&fep->napi);
3589 phy_start(ndev->phydev);
3590 netif_tx_start_all_queues(ndev);
3591
3592 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3593 FEC_WOL_FLAG_ENABLE);
3594
3595 return 0;
3596
3597 err_enet_mii_probe:
3598 fec_enet_free_buffers(ndev);
3599 err_enet_alloc:
3600 fec_enet_clk_enable(ndev, false);
3601 clk_enable:
3602 pm_runtime_mark_last_busy(&fep->pdev->dev);
3603 pm_runtime_put_autosuspend(&fep->pdev->dev);
3604 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3605 return ret;
3606 }
3607
3608 static int
fec_enet_close(struct net_device * ndev)3609 fec_enet_close(struct net_device *ndev)
3610 {
3611 struct fec_enet_private *fep = netdev_priv(ndev);
3612
3613 phy_stop(ndev->phydev);
3614
3615 if (netif_device_present(ndev)) {
3616 napi_disable(&fep->napi);
3617 netif_tx_disable(ndev);
3618 fec_stop(ndev);
3619 }
3620
3621 phy_disconnect(ndev->phydev);
3622
3623 if (fep->quirks & FEC_QUIRK_ERR006687)
3624 imx6q_cpuidle_fec_irqs_unused();
3625
3626 fec_enet_update_ethtool_stats(ndev);
3627
3628 fec_enet_clk_enable(ndev, false);
3629 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3630 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3631
3632 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3633 pm_runtime_mark_last_busy(&fep->pdev->dev);
3634 pm_runtime_put_autosuspend(&fep->pdev->dev);
3635
3636 fec_enet_free_buffers(ndev);
3637
3638 return 0;
3639 }
3640
3641 /* Set or clear the multicast filter for this adaptor.
3642 * Skeleton taken from sunlance driver.
3643 * The CPM Ethernet implementation allows Multicast as well as individual
3644 * MAC address filtering. Some of the drivers check to make sure it is
3645 * a group multicast address, and discard those that are not. I guess I
3646 * will do the same for now, but just remove the test if you want
3647 * individual filtering as well (do the upper net layers want or support
3648 * this kind of feature?).
3649 */
3650
3651 #define FEC_HASH_BITS 6 /* #bits in hash */
3652
set_multicast_list(struct net_device * ndev)3653 static void set_multicast_list(struct net_device *ndev)
3654 {
3655 struct fec_enet_private *fep = netdev_priv(ndev);
3656 struct netdev_hw_addr *ha;
3657 unsigned int crc, tmp;
3658 unsigned char hash;
3659 unsigned int hash_high = 0, hash_low = 0;
3660
3661 if (ndev->flags & IFF_PROMISC) {
3662 tmp = readl(fep->hwp + FEC_R_CNTRL);
3663 tmp |= 0x8;
3664 writel(tmp, fep->hwp + FEC_R_CNTRL);
3665 return;
3666 }
3667
3668 tmp = readl(fep->hwp + FEC_R_CNTRL);
3669 tmp &= ~0x8;
3670 writel(tmp, fep->hwp + FEC_R_CNTRL);
3671
3672 if (ndev->flags & IFF_ALLMULTI) {
3673 /* Catch all multicast addresses, so set the
3674 * filter to all 1's
3675 */
3676 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3677 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3678
3679 return;
3680 }
3681
3682 /* Add the addresses in hash register */
3683 netdev_for_each_mc_addr(ha, ndev) {
3684 /* calculate crc32 value of mac address */
3685 crc = ether_crc_le(ndev->addr_len, ha->addr);
3686
3687 /* only upper 6 bits (FEC_HASH_BITS) are used
3688 * which point to specific bit in the hash registers
3689 */
3690 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3691
3692 if (hash > 31)
3693 hash_high |= 1 << (hash - 32);
3694 else
3695 hash_low |= 1 << hash;
3696 }
3697
3698 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3699 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3700 }
3701
3702 /* Set a MAC change in hardware. */
3703 static int
fec_set_mac_address(struct net_device * ndev,void * p)3704 fec_set_mac_address(struct net_device *ndev, void *p)
3705 {
3706 struct sockaddr *addr = p;
3707
3708 if (addr) {
3709 if (!is_valid_ether_addr(addr->sa_data))
3710 return -EADDRNOTAVAIL;
3711 eth_hw_addr_set(ndev, addr->sa_data);
3712 }
3713
3714 /* Add netif status check here to avoid system hang in below case:
3715 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3716 * After ethx down, fec all clocks are gated off and then register
3717 * access causes system hang.
3718 */
3719 if (!netif_running(ndev))
3720 return 0;
3721
3722 fec_set_hw_mac_addr(ndev);
3723
3724 return 0;
3725 }
3726
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3727 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3728 netdev_features_t features)
3729 {
3730 struct fec_enet_private *fep = netdev_priv(netdev);
3731 netdev_features_t changed = features ^ netdev->features;
3732
3733 netdev->features = features;
3734
3735 /* Receive checksum has been changed */
3736 if (changed & NETIF_F_RXCSUM) {
3737 if (features & NETIF_F_RXCSUM)
3738 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3739 else
3740 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3741 }
3742 }
3743
fec_set_features(struct net_device * netdev,netdev_features_t features)3744 static int fec_set_features(struct net_device *netdev,
3745 netdev_features_t features)
3746 {
3747 struct fec_enet_private *fep = netdev_priv(netdev);
3748 netdev_features_t changed = features ^ netdev->features;
3749
3750 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3751 napi_disable(&fep->napi);
3752 netif_tx_lock_bh(netdev);
3753 fec_stop(netdev);
3754 fec_enet_set_netdev_features(netdev, features);
3755 fec_restart(netdev);
3756 netif_tx_wake_all_queues(netdev);
3757 netif_tx_unlock_bh(netdev);
3758 napi_enable(&fep->napi);
3759 } else {
3760 fec_enet_set_netdev_features(netdev, features);
3761 }
3762
3763 return 0;
3764 }
3765
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3766 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3767 struct net_device *sb_dev)
3768 {
3769 struct fec_enet_private *fep = netdev_priv(ndev);
3770 u16 vlan_tag = 0;
3771
3772 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3773 return netdev_pick_tx(ndev, skb, NULL);
3774
3775 /* VLAN is present in the payload.*/
3776 if (eth_type_vlan(skb->protocol)) {
3777 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3778
3779 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3780 /* VLAN is present in the skb but not yet pushed in the payload.*/
3781 } else if (skb_vlan_tag_present(skb)) {
3782 vlan_tag = skb->vlan_tci;
3783 } else {
3784 return vlan_tag;
3785 }
3786
3787 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3788 }
3789
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3790 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3791 {
3792 struct fec_enet_private *fep = netdev_priv(dev);
3793 bool is_run = netif_running(dev);
3794 struct bpf_prog *old_prog;
3795
3796 switch (bpf->command) {
3797 case XDP_SETUP_PROG:
3798 /* No need to support the SoCs that require to
3799 * do the frame swap because the performance wouldn't be
3800 * better than the skb mode.
3801 */
3802 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3803 return -EOPNOTSUPP;
3804
3805 if (!bpf->prog)
3806 xdp_features_clear_redirect_target(dev);
3807
3808 if (is_run) {
3809 napi_disable(&fep->napi);
3810 netif_tx_disable(dev);
3811 }
3812
3813 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3814 if (old_prog)
3815 bpf_prog_put(old_prog);
3816
3817 fec_restart(dev);
3818
3819 if (is_run) {
3820 napi_enable(&fep->napi);
3821 netif_tx_start_all_queues(dev);
3822 }
3823
3824 if (bpf->prog)
3825 xdp_features_set_redirect_target(dev, false);
3826
3827 return 0;
3828
3829 case XDP_SETUP_XSK_POOL:
3830 return -EOPNOTSUPP;
3831
3832 default:
3833 return -EOPNOTSUPP;
3834 }
3835 }
3836
3837 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3838 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3839 {
3840 if (unlikely(index < 0))
3841 return 0;
3842
3843 return (index % fep->num_tx_queues);
3844 }
3845
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3846 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3847 struct fec_enet_priv_tx_q *txq,
3848 void *frame, u32 dma_sync_len,
3849 bool ndo_xmit)
3850 {
3851 unsigned int index, status, estatus;
3852 struct bufdesc *bdp;
3853 dma_addr_t dma_addr;
3854 int entries_free;
3855 u16 frame_len;
3856
3857 entries_free = fec_enet_get_free_txdesc_num(txq);
3858 if (entries_free < MAX_SKB_FRAGS + 1) {
3859 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3860 return -EBUSY;
3861 }
3862
3863 /* Fill in a Tx ring entry */
3864 bdp = txq->bd.cur;
3865 status = fec16_to_cpu(bdp->cbd_sc);
3866 status &= ~BD_ENET_TX_STATS;
3867
3868 index = fec_enet_get_bd_index(bdp, &txq->bd);
3869
3870 if (ndo_xmit) {
3871 struct xdp_frame *xdpf = frame;
3872
3873 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3874 xdpf->len, DMA_TO_DEVICE);
3875 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3876 return -ENOMEM;
3877
3878 frame_len = xdpf->len;
3879 txq->tx_buf[index].buf_p = xdpf;
3880 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3881 } else {
3882 struct xdp_buff *xdpb = frame;
3883 struct page *page;
3884
3885 page = virt_to_page(xdpb->data);
3886 dma_addr = page_pool_get_dma_addr(page) +
3887 (xdpb->data - xdpb->data_hard_start);
3888 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3889 dma_sync_len, DMA_BIDIRECTIONAL);
3890 frame_len = xdpb->data_end - xdpb->data;
3891 txq->tx_buf[index].buf_p = page;
3892 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3893 }
3894
3895 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3896 if (fep->bufdesc_ex)
3897 estatus = BD_ENET_TX_INT;
3898
3899 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3900 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3901
3902 if (fep->bufdesc_ex) {
3903 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3904
3905 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3906 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3907
3908 ebdp->cbd_bdu = 0;
3909 ebdp->cbd_esc = cpu_to_fec32(estatus);
3910 }
3911
3912 /* Make sure the updates to rest of the descriptor are performed before
3913 * transferring ownership.
3914 */
3915 dma_wmb();
3916
3917 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3918 * it's the last BD of the frame, and to put the CRC on the end.
3919 */
3920 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3921 bdp->cbd_sc = cpu_to_fec16(status);
3922
3923 /* If this was the last BD in the ring, start at the beginning again. */
3924 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3925
3926 /* Make sure the update to bdp are performed before txq->bd.cur. */
3927 dma_wmb();
3928
3929 txq->bd.cur = bdp;
3930
3931 /* Trigger transmission start */
3932 writel(0, txq->bd.reg_desc_active);
3933
3934 return 0;
3935 }
3936
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3937 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3938 int cpu, struct xdp_buff *xdp,
3939 u32 dma_sync_len)
3940 {
3941 struct fec_enet_priv_tx_q *txq;
3942 struct netdev_queue *nq;
3943 int queue, ret;
3944
3945 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3946 txq = fep->tx_queue[queue];
3947 nq = netdev_get_tx_queue(fep->netdev, queue);
3948
3949 __netif_tx_lock(nq, cpu);
3950
3951 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3952 txq_trans_cond_update(nq);
3953 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3954
3955 __netif_tx_unlock(nq);
3956
3957 return ret;
3958 }
3959
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3960 static int fec_enet_xdp_xmit(struct net_device *dev,
3961 int num_frames,
3962 struct xdp_frame **frames,
3963 u32 flags)
3964 {
3965 struct fec_enet_private *fep = netdev_priv(dev);
3966 struct fec_enet_priv_tx_q *txq;
3967 int cpu = smp_processor_id();
3968 unsigned int sent_frames = 0;
3969 struct netdev_queue *nq;
3970 unsigned int queue;
3971 int i;
3972
3973 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3974 txq = fep->tx_queue[queue];
3975 nq = netdev_get_tx_queue(fep->netdev, queue);
3976
3977 __netif_tx_lock(nq, cpu);
3978
3979 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3980 txq_trans_cond_update(nq);
3981 for (i = 0; i < num_frames; i++) {
3982 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3983 break;
3984 sent_frames++;
3985 }
3986
3987 __netif_tx_unlock(nq);
3988
3989 return sent_frames;
3990 }
3991
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3992 static int fec_hwtstamp_get(struct net_device *ndev,
3993 struct kernel_hwtstamp_config *config)
3994 {
3995 struct fec_enet_private *fep = netdev_priv(ndev);
3996
3997 if (!netif_running(ndev))
3998 return -EINVAL;
3999
4000 if (!fep->bufdesc_ex)
4001 return -EOPNOTSUPP;
4002
4003 fec_ptp_get(ndev, config);
4004
4005 return 0;
4006 }
4007
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4008 static int fec_hwtstamp_set(struct net_device *ndev,
4009 struct kernel_hwtstamp_config *config,
4010 struct netlink_ext_ack *extack)
4011 {
4012 struct fec_enet_private *fep = netdev_priv(ndev);
4013
4014 if (!netif_running(ndev))
4015 return -EINVAL;
4016
4017 if (!fep->bufdesc_ex)
4018 return -EOPNOTSUPP;
4019
4020 return fec_ptp_set(ndev, config, extack);
4021 }
4022
4023 static const struct net_device_ops fec_netdev_ops = {
4024 .ndo_open = fec_enet_open,
4025 .ndo_stop = fec_enet_close,
4026 .ndo_start_xmit = fec_enet_start_xmit,
4027 .ndo_select_queue = fec_enet_select_queue,
4028 .ndo_set_rx_mode = set_multicast_list,
4029 .ndo_validate_addr = eth_validate_addr,
4030 .ndo_tx_timeout = fec_timeout,
4031 .ndo_set_mac_address = fec_set_mac_address,
4032 .ndo_eth_ioctl = phy_do_ioctl_running,
4033 .ndo_set_features = fec_set_features,
4034 .ndo_bpf = fec_enet_bpf,
4035 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4036 .ndo_hwtstamp_get = fec_hwtstamp_get,
4037 .ndo_hwtstamp_set = fec_hwtstamp_set,
4038 };
4039
4040 static const unsigned short offset_des_active_rxq[] = {
4041 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4042 };
4043
4044 static const unsigned short offset_des_active_txq[] = {
4045 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4046 };
4047
4048 /*
4049 * XXX: We need to clean up on failure exits here.
4050 *
4051 */
fec_enet_init(struct net_device * ndev)4052 static int fec_enet_init(struct net_device *ndev)
4053 {
4054 struct fec_enet_private *fep = netdev_priv(ndev);
4055 struct bufdesc *cbd_base;
4056 dma_addr_t bd_dma;
4057 int bd_size;
4058 unsigned int i;
4059 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4060 sizeof(struct bufdesc);
4061 unsigned dsize_log2 = __fls(dsize);
4062 int ret;
4063
4064 WARN_ON(dsize != (1 << dsize_log2));
4065 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4066 fep->rx_align = 0xf;
4067 fep->tx_align = 0xf;
4068 #else
4069 fep->rx_align = 0x3;
4070 fep->tx_align = 0x3;
4071 #endif
4072 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4073 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4074 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4075 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4076
4077 /* Check mask of the streaming and coherent API */
4078 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4079 if (ret < 0) {
4080 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4081 return ret;
4082 }
4083
4084 ret = fec_enet_alloc_queue(ndev);
4085 if (ret)
4086 return ret;
4087
4088 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4089
4090 /* Allocate memory for buffer descriptors. */
4091 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4092 GFP_KERNEL);
4093 if (!cbd_base) {
4094 ret = -ENOMEM;
4095 goto free_queue_mem;
4096 }
4097
4098 /* Get the Ethernet address */
4099 ret = fec_get_mac(ndev);
4100 if (ret)
4101 goto free_queue_mem;
4102
4103 /* Set receive and transmit descriptor base. */
4104 for (i = 0; i < fep->num_rx_queues; i++) {
4105 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4106 unsigned size = dsize * rxq->bd.ring_size;
4107
4108 rxq->bd.qid = i;
4109 rxq->bd.base = cbd_base;
4110 rxq->bd.cur = cbd_base;
4111 rxq->bd.dma = bd_dma;
4112 rxq->bd.dsize = dsize;
4113 rxq->bd.dsize_log2 = dsize_log2;
4114 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4115 bd_dma += size;
4116 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4117 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4118 }
4119
4120 for (i = 0; i < fep->num_tx_queues; i++) {
4121 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4122 unsigned size = dsize * txq->bd.ring_size;
4123
4124 txq->bd.qid = i;
4125 txq->bd.base = cbd_base;
4126 txq->bd.cur = cbd_base;
4127 txq->bd.dma = bd_dma;
4128 txq->bd.dsize = dsize;
4129 txq->bd.dsize_log2 = dsize_log2;
4130 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4131 bd_dma += size;
4132 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4133 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4134 }
4135
4136
4137 /* The FEC Ethernet specific entries in the device structure */
4138 ndev->watchdog_timeo = TX_TIMEOUT;
4139 ndev->netdev_ops = &fec_netdev_ops;
4140 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4141
4142 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4143 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4144
4145 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4146 /* enable hw VLAN support */
4147 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4148
4149 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4150 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4151
4152 /* enable hw accelerator */
4153 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4154 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4155 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4156 }
4157
4158 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4159 fep->tx_align = 0;
4160 fep->rx_align = 0x3f;
4161 }
4162
4163 ndev->hw_features = ndev->features;
4164
4165 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4166 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4167 NETDEV_XDP_ACT_REDIRECT;
4168
4169 fec_restart(ndev);
4170
4171 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4172 fec_enet_clear_ethtool_stats(ndev);
4173 else
4174 fec_enet_update_ethtool_stats(ndev);
4175
4176 return 0;
4177
4178 free_queue_mem:
4179 fec_enet_free_queue(ndev);
4180 return ret;
4181 }
4182
fec_enet_deinit(struct net_device * ndev)4183 static void fec_enet_deinit(struct net_device *ndev)
4184 {
4185 struct fec_enet_private *fep = netdev_priv(ndev);
4186
4187 netif_napi_del(&fep->napi);
4188 fec_enet_free_queue(ndev);
4189 }
4190
4191 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4192 static int fec_reset_phy(struct platform_device *pdev)
4193 {
4194 struct gpio_desc *phy_reset;
4195 int msec = 1, phy_post_delay = 0;
4196 struct device_node *np = pdev->dev.of_node;
4197 int err;
4198
4199 if (!np)
4200 return 0;
4201
4202 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4203 /* A sane reset duration should not be longer than 1s */
4204 if (!err && msec > 1000)
4205 msec = 1;
4206
4207 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4208 /* valid reset duration should be less than 1s */
4209 if (!err && phy_post_delay > 1000)
4210 return -EINVAL;
4211
4212 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4213 GPIOD_OUT_HIGH);
4214 if (IS_ERR(phy_reset))
4215 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4216 "failed to get phy-reset-gpios\n");
4217
4218 if (!phy_reset)
4219 return 0;
4220
4221 if (msec > 20)
4222 msleep(msec);
4223 else
4224 usleep_range(msec * 1000, msec * 1000 + 1000);
4225
4226 gpiod_set_value_cansleep(phy_reset, 0);
4227
4228 if (!phy_post_delay)
4229 return 0;
4230
4231 if (phy_post_delay > 20)
4232 msleep(phy_post_delay);
4233 else
4234 usleep_range(phy_post_delay * 1000,
4235 phy_post_delay * 1000 + 1000);
4236
4237 return 0;
4238 }
4239 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4240 static int fec_reset_phy(struct platform_device *pdev)
4241 {
4242 /*
4243 * In case of platform probe, the reset has been done
4244 * by machine code.
4245 */
4246 return 0;
4247 }
4248 #endif /* CONFIG_OF */
4249
4250 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4251 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4252 {
4253 struct device_node *np = pdev->dev.of_node;
4254
4255 *num_tx = *num_rx = 1;
4256
4257 if (!np || !of_device_is_available(np))
4258 return;
4259
4260 /* parse the num of tx and rx queues */
4261 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4262
4263 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4264
4265 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4266 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4267 *num_tx);
4268 *num_tx = 1;
4269 return;
4270 }
4271
4272 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4273 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4274 *num_rx);
4275 *num_rx = 1;
4276 return;
4277 }
4278
4279 }
4280
fec_enet_get_irq_cnt(struct platform_device * pdev)4281 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4282 {
4283 int irq_cnt = platform_irq_count(pdev);
4284
4285 if (irq_cnt > FEC_IRQ_NUM)
4286 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4287 else if (irq_cnt == 2)
4288 irq_cnt = 1; /* last for pps */
4289 else if (irq_cnt <= 0)
4290 irq_cnt = 1; /* At least 1 irq is needed */
4291 return irq_cnt;
4292 }
4293
fec_enet_get_wakeup_irq(struct platform_device * pdev)4294 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4295 {
4296 struct net_device *ndev = platform_get_drvdata(pdev);
4297 struct fec_enet_private *fep = netdev_priv(ndev);
4298
4299 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4300 fep->wake_irq = fep->irq[2];
4301 else
4302 fep->wake_irq = fep->irq[0];
4303 }
4304
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4305 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4306 struct device_node *np)
4307 {
4308 struct device_node *gpr_np;
4309 u32 out_val[3];
4310 int ret = 0;
4311
4312 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4313 if (!gpr_np)
4314 return 0;
4315
4316 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4317 ARRAY_SIZE(out_val));
4318 if (ret) {
4319 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4320 goto out;
4321 }
4322
4323 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4324 if (IS_ERR(fep->stop_gpr.gpr)) {
4325 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4326 ret = PTR_ERR(fep->stop_gpr.gpr);
4327 fep->stop_gpr.gpr = NULL;
4328 goto out;
4329 }
4330
4331 fep->stop_gpr.reg = out_val[1];
4332 fep->stop_gpr.bit = out_val[2];
4333
4334 out:
4335 of_node_put(gpr_np);
4336
4337 return ret;
4338 }
4339
4340 static int
fec_probe(struct platform_device * pdev)4341 fec_probe(struct platform_device *pdev)
4342 {
4343 struct fec_enet_private *fep;
4344 struct fec_platform_data *pdata;
4345 phy_interface_t interface;
4346 struct net_device *ndev;
4347 int i, irq, ret = 0;
4348 static int dev_id;
4349 struct device_node *np = pdev->dev.of_node, *phy_node;
4350 int num_tx_qs;
4351 int num_rx_qs;
4352 char irq_name[8];
4353 int irq_cnt;
4354 const struct fec_devinfo *dev_info;
4355
4356 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4357
4358 /* Init network device */
4359 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4360 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4361 if (!ndev)
4362 return -ENOMEM;
4363
4364 SET_NETDEV_DEV(ndev, &pdev->dev);
4365
4366 /* setup board info structure */
4367 fep = netdev_priv(ndev);
4368
4369 dev_info = device_get_match_data(&pdev->dev);
4370 if (!dev_info)
4371 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4372 if (dev_info)
4373 fep->quirks = dev_info->quirks;
4374
4375 fep->netdev = ndev;
4376 fep->num_rx_queues = num_rx_qs;
4377 fep->num_tx_queues = num_tx_qs;
4378
4379 #if !defined(CONFIG_M5272)
4380 /* default enable pause frame auto negotiation */
4381 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4382 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4383 #endif
4384
4385 /* Select default pin state */
4386 pinctrl_pm_select_default_state(&pdev->dev);
4387
4388 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4389 if (IS_ERR(fep->hwp)) {
4390 ret = PTR_ERR(fep->hwp);
4391 goto failed_ioremap;
4392 }
4393
4394 fep->pdev = pdev;
4395 fep->dev_id = dev_id++;
4396
4397 platform_set_drvdata(pdev, ndev);
4398
4399 if ((of_machine_is_compatible("fsl,imx6q") ||
4400 of_machine_is_compatible("fsl,imx6dl")) &&
4401 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4402 fep->quirks |= FEC_QUIRK_ERR006687;
4403
4404 ret = fec_enet_ipc_handle_init(fep);
4405 if (ret)
4406 goto failed_ipc_init;
4407
4408 if (of_property_read_bool(np, "fsl,magic-packet"))
4409 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4410
4411 ret = fec_enet_init_stop_mode(fep, np);
4412 if (ret)
4413 goto failed_stop_mode;
4414
4415 phy_node = of_parse_phandle(np, "phy-handle", 0);
4416 if (!phy_node && of_phy_is_fixed_link(np)) {
4417 ret = of_phy_register_fixed_link(np);
4418 if (ret < 0) {
4419 dev_err(&pdev->dev,
4420 "broken fixed-link specification\n");
4421 goto failed_phy;
4422 }
4423 phy_node = of_node_get(np);
4424 }
4425 fep->phy_node = phy_node;
4426
4427 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4428 if (ret) {
4429 pdata = dev_get_platdata(&pdev->dev);
4430 if (pdata)
4431 fep->phy_interface = pdata->phy;
4432 else
4433 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4434 } else {
4435 fep->phy_interface = interface;
4436 }
4437
4438 ret = fec_enet_parse_rgmii_delay(fep, np);
4439 if (ret)
4440 goto failed_rgmii_delay;
4441
4442 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4443 if (IS_ERR(fep->clk_ipg)) {
4444 ret = PTR_ERR(fep->clk_ipg);
4445 goto failed_clk;
4446 }
4447
4448 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4449 if (IS_ERR(fep->clk_ahb)) {
4450 ret = PTR_ERR(fep->clk_ahb);
4451 goto failed_clk;
4452 }
4453
4454 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4455
4456 /* enet_out is optional, depends on board */
4457 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4458 if (IS_ERR(fep->clk_enet_out)) {
4459 ret = PTR_ERR(fep->clk_enet_out);
4460 goto failed_clk;
4461 }
4462
4463 fep->ptp_clk_on = false;
4464 mutex_init(&fep->ptp_clk_mutex);
4465
4466 /* clk_ref is optional, depends on board */
4467 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4468 if (IS_ERR(fep->clk_ref)) {
4469 ret = PTR_ERR(fep->clk_ref);
4470 goto failed_clk;
4471 }
4472 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4473
4474 /* clk_2x_txclk is optional, depends on board */
4475 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4476 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4477 if (IS_ERR(fep->clk_2x_txclk))
4478 fep->clk_2x_txclk = NULL;
4479 }
4480
4481 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4482 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4483 if (IS_ERR(fep->clk_ptp)) {
4484 fep->clk_ptp = NULL;
4485 fep->bufdesc_ex = false;
4486 }
4487
4488 ret = fec_enet_clk_enable(ndev, true);
4489 if (ret)
4490 goto failed_clk;
4491
4492 ret = clk_prepare_enable(fep->clk_ipg);
4493 if (ret)
4494 goto failed_clk_ipg;
4495 ret = clk_prepare_enable(fep->clk_ahb);
4496 if (ret)
4497 goto failed_clk_ahb;
4498
4499 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4500 if (!IS_ERR(fep->reg_phy)) {
4501 ret = regulator_enable(fep->reg_phy);
4502 if (ret) {
4503 dev_err(&pdev->dev,
4504 "Failed to enable phy regulator: %d\n", ret);
4505 goto failed_regulator;
4506 }
4507 } else {
4508 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4509 ret = -EPROBE_DEFER;
4510 goto failed_regulator;
4511 }
4512 fep->reg_phy = NULL;
4513 }
4514
4515 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4516 pm_runtime_use_autosuspend(&pdev->dev);
4517 pm_runtime_get_noresume(&pdev->dev);
4518 pm_runtime_set_active(&pdev->dev);
4519 pm_runtime_enable(&pdev->dev);
4520
4521 ret = fec_reset_phy(pdev);
4522 if (ret)
4523 goto failed_reset;
4524
4525 irq_cnt = fec_enet_get_irq_cnt(pdev);
4526 if (fep->bufdesc_ex)
4527 fec_ptp_init(pdev, irq_cnt);
4528
4529 ret = fec_enet_init(ndev);
4530 if (ret)
4531 goto failed_init;
4532
4533 for (i = 0; i < irq_cnt; i++) {
4534 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4535 irq = platform_get_irq_byname_optional(pdev, irq_name);
4536 if (irq < 0)
4537 irq = platform_get_irq(pdev, i);
4538 if (irq < 0) {
4539 ret = irq;
4540 goto failed_irq;
4541 }
4542 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4543 0, pdev->name, ndev);
4544 if (ret)
4545 goto failed_irq;
4546
4547 fep->irq[i] = irq;
4548 }
4549
4550 /* Decide which interrupt line is wakeup capable */
4551 fec_enet_get_wakeup_irq(pdev);
4552
4553 ret = fec_enet_mii_init(pdev);
4554 if (ret)
4555 goto failed_mii_init;
4556
4557 /* Carrier starts down, phylib will bring it up */
4558 netif_carrier_off(ndev);
4559 fec_enet_clk_enable(ndev, false);
4560 pinctrl_pm_select_sleep_state(&pdev->dev);
4561
4562 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4563
4564 ret = register_netdev(ndev);
4565 if (ret)
4566 goto failed_register;
4567
4568 device_init_wakeup(&ndev->dev, fep->wol_flag &
4569 FEC_WOL_HAS_MAGIC_PACKET);
4570
4571 if (fep->bufdesc_ex && fep->ptp_clock)
4572 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4573
4574 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4575
4576 pm_runtime_mark_last_busy(&pdev->dev);
4577 pm_runtime_put_autosuspend(&pdev->dev);
4578
4579 return 0;
4580
4581 failed_register:
4582 fec_enet_mii_remove(fep);
4583 failed_mii_init:
4584 failed_irq:
4585 fec_enet_deinit(ndev);
4586 failed_init:
4587 fec_ptp_stop(pdev);
4588 failed_reset:
4589 pm_runtime_put_noidle(&pdev->dev);
4590 pm_runtime_disable(&pdev->dev);
4591 if (fep->reg_phy)
4592 regulator_disable(fep->reg_phy);
4593 failed_regulator:
4594 clk_disable_unprepare(fep->clk_ahb);
4595 failed_clk_ahb:
4596 clk_disable_unprepare(fep->clk_ipg);
4597 failed_clk_ipg:
4598 fec_enet_clk_enable(ndev, false);
4599 failed_clk:
4600 failed_rgmii_delay:
4601 if (of_phy_is_fixed_link(np))
4602 of_phy_deregister_fixed_link(np);
4603 of_node_put(phy_node);
4604 failed_stop_mode:
4605 failed_ipc_init:
4606 failed_phy:
4607 dev_id--;
4608 failed_ioremap:
4609 free_netdev(ndev);
4610
4611 return ret;
4612 }
4613
4614 static void
fec_drv_remove(struct platform_device * pdev)4615 fec_drv_remove(struct platform_device *pdev)
4616 {
4617 struct net_device *ndev = platform_get_drvdata(pdev);
4618 struct fec_enet_private *fep = netdev_priv(ndev);
4619 struct device_node *np = pdev->dev.of_node;
4620 int ret;
4621
4622 ret = pm_runtime_get_sync(&pdev->dev);
4623 if (ret < 0)
4624 dev_err(&pdev->dev,
4625 "Failed to resume device in remove callback (%pe)\n",
4626 ERR_PTR(ret));
4627
4628 cancel_work_sync(&fep->tx_timeout_work);
4629 fec_ptp_stop(pdev);
4630 unregister_netdev(ndev);
4631 fec_enet_mii_remove(fep);
4632 if (fep->reg_phy)
4633 regulator_disable(fep->reg_phy);
4634
4635 if (of_phy_is_fixed_link(np))
4636 of_phy_deregister_fixed_link(np);
4637 of_node_put(fep->phy_node);
4638
4639 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4640 * disabling them again.
4641 */
4642 if (ret >= 0) {
4643 clk_disable_unprepare(fep->clk_ahb);
4644 clk_disable_unprepare(fep->clk_ipg);
4645 }
4646 pm_runtime_put_noidle(&pdev->dev);
4647 pm_runtime_disable(&pdev->dev);
4648
4649 fec_enet_deinit(ndev);
4650 free_netdev(ndev);
4651 }
4652
fec_suspend(struct device * dev)4653 static int fec_suspend(struct device *dev)
4654 {
4655 struct net_device *ndev = dev_get_drvdata(dev);
4656 struct fec_enet_private *fep = netdev_priv(ndev);
4657 int ret;
4658
4659 rtnl_lock();
4660 if (netif_running(ndev)) {
4661 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4662 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4663 phy_stop(ndev->phydev);
4664 napi_disable(&fep->napi);
4665 netif_tx_lock_bh(ndev);
4666 netif_device_detach(ndev);
4667 netif_tx_unlock_bh(ndev);
4668 fec_stop(ndev);
4669 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4670 fec_irqs_disable(ndev);
4671 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4672 } else {
4673 fec_irqs_disable_except_wakeup(ndev);
4674 if (fep->wake_irq > 0) {
4675 disable_irq(fep->wake_irq);
4676 enable_irq_wake(fep->wake_irq);
4677 }
4678 fec_enet_stop_mode(fep, true);
4679 }
4680 /* It's safe to disable clocks since interrupts are masked */
4681 fec_enet_clk_enable(ndev, false);
4682
4683 fep->rpm_active = !pm_runtime_status_suspended(dev);
4684 if (fep->rpm_active) {
4685 ret = pm_runtime_force_suspend(dev);
4686 if (ret < 0) {
4687 rtnl_unlock();
4688 return ret;
4689 }
4690 }
4691 }
4692 rtnl_unlock();
4693
4694 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4695 regulator_disable(fep->reg_phy);
4696
4697 /* SOC supply clock to phy, when clock is disabled, phy link down
4698 * SOC control phy regulator, when regulator is disabled, phy link down
4699 */
4700 if (fep->clk_enet_out || fep->reg_phy)
4701 fep->link = 0;
4702
4703 return 0;
4704 }
4705
fec_resume(struct device * dev)4706 static int fec_resume(struct device *dev)
4707 {
4708 struct net_device *ndev = dev_get_drvdata(dev);
4709 struct fec_enet_private *fep = netdev_priv(ndev);
4710 int ret;
4711 int val;
4712
4713 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4714 ret = regulator_enable(fep->reg_phy);
4715 if (ret)
4716 return ret;
4717 }
4718
4719 rtnl_lock();
4720 if (netif_running(ndev)) {
4721 if (fep->rpm_active)
4722 pm_runtime_force_resume(dev);
4723
4724 ret = fec_enet_clk_enable(ndev, true);
4725 if (ret) {
4726 rtnl_unlock();
4727 goto failed_clk;
4728 }
4729 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4730 fec_enet_stop_mode(fep, false);
4731 if (fep->wake_irq) {
4732 disable_irq_wake(fep->wake_irq);
4733 enable_irq(fep->wake_irq);
4734 }
4735
4736 val = readl(fep->hwp + FEC_ECNTRL);
4737 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4738 writel(val, fep->hwp + FEC_ECNTRL);
4739 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4740 } else {
4741 pinctrl_pm_select_default_state(&fep->pdev->dev);
4742 }
4743 fec_restart(ndev);
4744 netif_tx_lock_bh(ndev);
4745 netif_device_attach(ndev);
4746 netif_tx_unlock_bh(ndev);
4747 napi_enable(&fep->napi);
4748 phy_init_hw(ndev->phydev);
4749 phy_start(ndev->phydev);
4750 }
4751 rtnl_unlock();
4752
4753 return 0;
4754
4755 failed_clk:
4756 if (fep->reg_phy)
4757 regulator_disable(fep->reg_phy);
4758 return ret;
4759 }
4760
fec_runtime_suspend(struct device * dev)4761 static int fec_runtime_suspend(struct device *dev)
4762 {
4763 struct net_device *ndev = dev_get_drvdata(dev);
4764 struct fec_enet_private *fep = netdev_priv(ndev);
4765
4766 clk_disable_unprepare(fep->clk_ahb);
4767 clk_disable_unprepare(fep->clk_ipg);
4768
4769 return 0;
4770 }
4771
fec_runtime_resume(struct device * dev)4772 static int fec_runtime_resume(struct device *dev)
4773 {
4774 struct net_device *ndev = dev_get_drvdata(dev);
4775 struct fec_enet_private *fep = netdev_priv(ndev);
4776 int ret;
4777
4778 ret = clk_prepare_enable(fep->clk_ahb);
4779 if (ret)
4780 return ret;
4781 ret = clk_prepare_enable(fep->clk_ipg);
4782 if (ret)
4783 goto failed_clk_ipg;
4784
4785 return 0;
4786
4787 failed_clk_ipg:
4788 clk_disable_unprepare(fep->clk_ahb);
4789 return ret;
4790 }
4791
4792 static const struct dev_pm_ops fec_pm_ops = {
4793 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4794 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4795 };
4796
4797 static struct platform_driver fec_driver = {
4798 .driver = {
4799 .name = DRIVER_NAME,
4800 .pm = pm_ptr(&fec_pm_ops),
4801 .of_match_table = fec_dt_ids,
4802 .suppress_bind_attrs = true,
4803 },
4804 .id_table = fec_devtype,
4805 .probe = fec_probe,
4806 .remove = fec_drv_remove,
4807 };
4808
4809 module_platform_driver(fec_driver);
4810
4811 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4812 MODULE_LICENSE("GPL");
4813