1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/bitops.h> 26 #include <linux/bpf.h> 27 #include <linux/bpf_trace.h> 28 #include <linux/cacheflush.h> 29 #include <linux/clk.h> 30 #include <linux/crc32.h> 31 #include <linux/delay.h> 32 #include <linux/errno.h> 33 #include <linux/etherdevice.h> 34 #include <linux/fec.h> 35 #include <linux/filter.h> 36 #include <linux/gpio/consumer.h> 37 #include <linux/icmp.h> 38 #include <linux/if_vlan.h> 39 #include <linux/in.h> 40 #include <linux/interrupt.h> 41 #include <linux/io.h> 42 #include <linux/ioport.h> 43 #include <linux/ip.h> 44 #include <linux/irq.h> 45 #include <linux/kernel.h> 46 #include <linux/mdio.h> 47 #include <linux/mfd/syscon.h> 48 #include <linux/module.h> 49 #include <linux/netdevice.h> 50 #include <linux/of.h> 51 #include <linux/of_mdio.h> 52 #include <linux/of_net.h> 53 #include <linux/phy.h> 54 #include <linux/pinctrl/consumer.h> 55 #include <linux/phy_fixed.h> 56 #include <linux/platform_device.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/prefetch.h> 59 #include <linux/property.h> 60 #include <linux/ptrace.h> 61 #include <linux/regmap.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/skbuff.h> 64 #include <linux/slab.h> 65 #include <linux/spinlock.h> 66 #include <linux/string.h> 67 #include <linux/tcp.h> 68 #include <linux/udp.h> 69 #include <linux/workqueue.h> 70 #include <net/ip.h> 71 #include <net/page_pool/helpers.h> 72 #include <net/selftests.h> 73 #include <net/tso.h> 74 #include <net/xdp_sock_drv.h> 75 #include <soc/imx/cpuidle.h> 76 77 #include "fec.h" 78 79 static void set_multicast_list(struct net_device *ndev); 80 static void fec_enet_itr_coal_set(struct net_device *ndev); 81 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 82 int cpu, struct xdp_buff *xdp, 83 u32 dma_sync_len, int queue); 84 85 #define DRIVER_NAME "fec" 86 87 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 88 89 #define FEC_ENET_RSEM_V 0x84 90 #define FEC_ENET_RSFL_V 16 91 #define FEC_ENET_RAEM_V 0x8 92 #define FEC_ENET_RAFL_V 0x8 93 #define FEC_ENET_OPD_V 0xFFF0 94 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 95 96 #define FEC_ENET_XDP_PASS 0 97 #define FEC_ENET_XDP_CONSUMED BIT(0) 98 #define FEC_ENET_XDP_TX BIT(1) 99 #define FEC_ENET_XDP_REDIR BIT(2) 100 101 struct fec_devinfo { 102 u32 quirks; 103 }; 104 105 static const struct fec_devinfo fec_imx25_info = { 106 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 107 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 108 }; 109 110 static const struct fec_devinfo fec_imx27_info = { 111 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 112 FEC_QUIRK_HAS_MDIO_C45, 113 }; 114 115 static const struct fec_devinfo fec_imx28_info = { 116 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 117 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 118 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 119 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 120 }; 121 122 static const struct fec_devinfo fec_imx6q_info = { 123 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 124 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 125 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 126 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 127 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 128 }; 129 130 static const struct fec_devinfo fec_mvf600_info = { 131 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 132 FEC_QUIRK_HAS_MDIO_C45, 133 }; 134 135 static const struct fec_devinfo fec_imx6sx_info = { 136 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 137 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 138 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 139 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 140 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 141 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 142 FEC_QUIRK_HAS_MDIO_C45, 143 }; 144 145 static const struct fec_devinfo fec_imx6ul_info = { 146 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 147 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 148 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 149 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 150 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 151 FEC_QUIRK_HAS_MDIO_C45, 152 }; 153 154 static const struct fec_devinfo fec_imx8mq_info = { 155 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 156 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 157 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 158 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 159 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 160 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 161 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 162 FEC_QUIRK_HAS_MDIO_C45, 163 }; 164 165 static const struct fec_devinfo fec_imx8qm_info = { 166 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 167 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 168 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 169 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 170 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 171 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 172 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45 | 173 FEC_QUIRK_JUMBO_FRAME, 174 }; 175 176 static const struct fec_devinfo fec_s32v234_info = { 177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 181 FEC_QUIRK_HAS_MDIO_C45, 182 }; 183 184 static struct platform_device_id fec_devtype[] = { 185 { 186 /* keep it for coldfire */ 187 .name = DRIVER_NAME, 188 .driver_data = 0, 189 }, { 190 /* sentinel */ 191 } 192 }; 193 MODULE_DEVICE_TABLE(platform, fec_devtype); 194 195 static const struct of_device_id fec_dt_ids[] = { 196 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, }, 197 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, }, 198 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, }, 199 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, }, 200 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, }, 201 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, }, 202 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, }, 203 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, }, 204 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, }, 205 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, }, 206 { /* sentinel */ } 207 }; 208 MODULE_DEVICE_TABLE(of, fec_dt_ids); 209 210 static unsigned char macaddr[ETH_ALEN]; 211 module_param_array(macaddr, byte, NULL, 0); 212 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 213 214 #if defined(CONFIG_M5272) 215 /* 216 * Some hardware gets it MAC address out of local flash memory. 217 * if this is non-zero then assume it is the address to get MAC from. 218 */ 219 #if defined(CONFIG_NETtel) 220 #define FEC_FLASHMAC 0xf0006006 221 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 222 #define FEC_FLASHMAC 0xf0006000 223 #elif defined(CONFIG_CANCam) 224 #define FEC_FLASHMAC 0xf0020000 225 #elif defined (CONFIG_M5272C3) 226 #define FEC_FLASHMAC (0xffe04000 + 4) 227 #elif defined(CONFIG_MOD5272) 228 #define FEC_FLASHMAC 0xffc0406b 229 #else 230 #define FEC_FLASHMAC 0 231 #endif 232 #endif /* CONFIG_M5272 */ 233 234 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 235 * 236 * 2048 byte skbufs are allocated. However, alignment requirements 237 * varies between FEC variants. Worst case is 64, so round down by 64. 238 */ 239 #define MAX_JUMBO_BUF_SIZE (round_down(16384 - FEC_DRV_RESERVE_SPACE - 64, 64)) 240 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 241 #define PKT_MINBUF_SIZE 64 242 243 /* FEC receive acceleration */ 244 #define FEC_RACC_IPDIS BIT(1) 245 #define FEC_RACC_PRODIS BIT(2) 246 #define FEC_RACC_SHIFT16 BIT(7) 247 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 248 249 /* MIB Control Register */ 250 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 251 252 /* 253 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 254 * size bits. Other FEC hardware does not, so we need to take that into 255 * account when setting it. 256 */ 257 #ifndef CONFIG_M5272 258 #define OPT_ARCH_HAS_MAX_FL 1 259 #else 260 #define OPT_ARCH_HAS_MAX_FL 0 261 #endif 262 263 /* FEC MII MMFR bits definition */ 264 #define FEC_MMFR_ST (1 << 30) 265 #define FEC_MMFR_ST_C45 (0) 266 #define FEC_MMFR_OP_READ (2 << 28) 267 #define FEC_MMFR_OP_READ_C45 (3 << 28) 268 #define FEC_MMFR_OP_WRITE (1 << 28) 269 #define FEC_MMFR_OP_ADDR_WRITE (0) 270 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 271 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 272 #define FEC_MMFR_TA (2 << 16) 273 #define FEC_MMFR_DATA(v) (v & 0xffff) 274 /* FEC ECR bits definition */ 275 #define FEC_ECR_RESET BIT(0) 276 #define FEC_ECR_ETHEREN BIT(1) 277 #define FEC_ECR_MAGICEN BIT(2) 278 #define FEC_ECR_SLEEP BIT(3) 279 #define FEC_ECR_EN1588 BIT(4) 280 #define FEC_ECR_SPEED BIT(5) 281 #define FEC_ECR_BYTESWP BIT(8) 282 /* FEC RCR bits definition */ 283 #define FEC_RCR_LOOP BIT(0) 284 #define FEC_RCR_DRT BIT(1) 285 #define FEC_RCR_MII BIT(2) 286 #define FEC_RCR_PROMISC BIT(3) 287 #define FEC_RCR_BC_REJ BIT(4) 288 #define FEC_RCR_FLOWCTL BIT(5) 289 #define FEC_RCR_RGMII BIT(6) 290 #define FEC_RCR_RMII BIT(8) 291 #define FEC_RCR_10BASET BIT(9) 292 #define FEC_RCR_NLC BIT(30) 293 /* TX WMARK bits */ 294 #define FEC_TXWMRK_STRFWD BIT(8) 295 296 #define FEC_MII_TIMEOUT 30000 /* us */ 297 298 /* Transmitter timeout */ 299 #define TX_TIMEOUT (2 * HZ) 300 301 #define FEC_PAUSE_FLAG_AUTONEG 0x1 302 #define FEC_PAUSE_FLAG_ENABLE 0x2 303 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 304 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 305 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 306 307 /* Max number of allowed TCP segments for software TSO */ 308 #define FEC_MAX_TSO_SEGS 100 309 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 310 311 #define IS_TSO_HEADER(txq, addr) \ 312 ((addr >= txq->tso_hdrs_dma) && \ 313 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 314 315 static int mii_cnt; 316 317 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 318 struct bufdesc_prop *bd) 319 { 320 return (bdp >= bd->last) ? bd->base 321 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 322 } 323 324 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 325 struct bufdesc_prop *bd) 326 { 327 return (bdp <= bd->base) ? bd->last 328 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 329 } 330 331 static int fec_enet_get_bd_index(struct bufdesc *bdp, 332 struct bufdesc_prop *bd) 333 { 334 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 335 } 336 337 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 338 { 339 int entries; 340 341 entries = (((const char *)txq->dirty_tx - 342 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 343 344 return entries >= 0 ? entries : entries + txq->bd.ring_size; 345 } 346 347 static void swap_buffer(void *bufaddr, int len) 348 { 349 int i; 350 unsigned int *buf = bufaddr; 351 352 for (i = 0; i < len; i += 4, buf++) 353 swab32s(buf); 354 } 355 356 static void fec_dump(struct net_device *ndev) 357 { 358 struct fec_enet_private *fep = netdev_priv(ndev); 359 struct bufdesc *bdp; 360 struct fec_enet_priv_tx_q *txq; 361 int index = 0; 362 363 netdev_info(ndev, "TX ring dump\n"); 364 pr_info("Nr SC addr len SKB\n"); 365 366 txq = fep->tx_queue[0]; 367 bdp = txq->bd.base; 368 369 do { 370 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 371 index, 372 bdp == txq->bd.cur ? 'S' : ' ', 373 bdp == txq->dirty_tx ? 'H' : ' ', 374 fec16_to_cpu(bdp->cbd_sc), 375 fec32_to_cpu(bdp->cbd_bufaddr), 376 fec16_to_cpu(bdp->cbd_datlen), 377 txq->tx_buf[index].buf_p); 378 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 379 index++; 380 } while (bdp != txq->bd.base); 381 } 382 383 /* 384 * Coldfire does not support DMA coherent allocations, and has historically used 385 * a band-aid with a manual flush in fec_enet_rx_queue. 386 */ 387 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 388 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 389 gfp_t gfp) 390 { 391 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp); 392 } 393 394 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 395 dma_addr_t handle) 396 { 397 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL); 398 } 399 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 400 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 401 gfp_t gfp) 402 { 403 return dma_alloc_coherent(dev, size, handle, gfp); 404 } 405 406 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 407 dma_addr_t handle) 408 { 409 dma_free_coherent(dev, size, cpu_addr, handle); 410 } 411 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 412 413 struct fec_dma_devres { 414 size_t size; 415 void *vaddr; 416 dma_addr_t dma_handle; 417 }; 418 419 static void fec_dmam_release(struct device *dev, void *res) 420 { 421 struct fec_dma_devres *this = res; 422 423 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle); 424 } 425 426 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle, 427 gfp_t gfp) 428 { 429 struct fec_dma_devres *dr; 430 void *vaddr; 431 432 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp); 433 if (!dr) 434 return NULL; 435 vaddr = fec_dma_alloc(dev, size, handle, gfp); 436 if (!vaddr) { 437 devres_free(dr); 438 return NULL; 439 } 440 dr->vaddr = vaddr; 441 dr->dma_handle = *handle; 442 dr->size = size; 443 devres_add(dev, dr); 444 return vaddr; 445 } 446 447 static inline bool is_ipv4_pkt(struct sk_buff *skb) 448 { 449 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 450 } 451 452 static int 453 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 454 { 455 /* Only run for packets requiring a checksum. */ 456 if (skb->ip_summed != CHECKSUM_PARTIAL) 457 return 0; 458 459 if (unlikely(skb_cow_head(skb, 0))) 460 return -1; 461 462 if (is_ipv4_pkt(skb)) 463 ip_hdr(skb)->check = 0; 464 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 465 466 return 0; 467 } 468 469 static int 470 fec_enet_create_page_pool(struct fec_enet_private *fep, 471 struct fec_enet_priv_rx_q *rxq) 472 { 473 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 474 struct page_pool_params pp_params = { 475 .order = fep->pagepool_order, 476 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 477 .pool_size = rxq->bd.ring_size, 478 .nid = dev_to_node(&fep->pdev->dev), 479 .dev = &fep->pdev->dev, 480 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 481 .offset = FEC_ENET_XDP_HEADROOM, 482 .max_len = fep->rx_frame_size, 483 }; 484 int err; 485 486 rxq->page_pool = page_pool_create(&pp_params); 487 if (IS_ERR(rxq->page_pool)) { 488 err = PTR_ERR(rxq->page_pool); 489 rxq->page_pool = NULL; 490 return err; 491 } 492 493 return 0; 494 } 495 496 static void fec_txq_trigger_xmit(struct fec_enet_private *fep, 497 struct fec_enet_priv_tx_q *txq) 498 { 499 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 500 !readl(txq->bd.reg_desc_active) || 501 !readl(txq->bd.reg_desc_active) || 502 !readl(txq->bd.reg_desc_active) || 503 !readl(txq->bd.reg_desc_active)) 504 writel(0, txq->bd.reg_desc_active); 505 } 506 507 static struct bufdesc * 508 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 509 struct sk_buff *skb, 510 struct net_device *ndev) 511 { 512 struct fec_enet_private *fep = netdev_priv(ndev); 513 struct bufdesc *bdp = txq->bd.cur; 514 struct bufdesc_ex *ebdp; 515 int nr_frags = skb_shinfo(skb)->nr_frags; 516 int frag, frag_len; 517 unsigned short status; 518 unsigned int estatus = 0; 519 skb_frag_t *this_frag; 520 unsigned int index; 521 void *bufaddr; 522 dma_addr_t addr; 523 int i; 524 525 for (frag = 0; frag < nr_frags; frag++) { 526 this_frag = &skb_shinfo(skb)->frags[frag]; 527 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 528 ebdp = (struct bufdesc_ex *)bdp; 529 530 status = fec16_to_cpu(bdp->cbd_sc); 531 status &= ~BD_ENET_TX_STATS; 532 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 533 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 534 535 /* Handle the last BD specially */ 536 if (frag == nr_frags - 1) { 537 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 538 if (fep->bufdesc_ex) { 539 estatus |= BD_ENET_TX_INT; 540 if (unlikely(skb_shinfo(skb)->tx_flags & 541 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 542 estatus |= BD_ENET_TX_TS; 543 } 544 } 545 546 if (fep->bufdesc_ex) { 547 if (fep->quirks & FEC_QUIRK_HAS_AVB) 548 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 549 if (skb->ip_summed == CHECKSUM_PARTIAL) 550 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 551 552 ebdp->cbd_bdu = 0; 553 ebdp->cbd_esc = cpu_to_fec32(estatus); 554 } 555 556 bufaddr = skb_frag_address(this_frag); 557 558 index = fec_enet_get_bd_index(bdp, &txq->bd); 559 if (((unsigned long) bufaddr) & fep->tx_align || 560 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 561 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 562 bufaddr = txq->tx_bounce[index]; 563 564 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 565 swap_buffer(bufaddr, frag_len); 566 } 567 568 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 569 DMA_TO_DEVICE); 570 if (dma_mapping_error(&fep->pdev->dev, addr)) { 571 if (net_ratelimit()) 572 netdev_err(ndev, "Tx DMA memory map failed\n"); 573 goto dma_mapping_error; 574 } 575 576 bdp->cbd_bufaddr = cpu_to_fec32(addr); 577 bdp->cbd_datlen = cpu_to_fec16(frag_len); 578 /* Make sure the updates to rest of the descriptor are 579 * performed before transferring ownership. 580 */ 581 wmb(); 582 bdp->cbd_sc = cpu_to_fec16(status); 583 } 584 585 return bdp; 586 dma_mapping_error: 587 bdp = txq->bd.cur; 588 for (i = 0; i < frag; i++) { 589 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 590 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 591 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 592 } 593 return ERR_PTR(-ENOMEM); 594 } 595 596 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 597 struct sk_buff *skb, struct net_device *ndev) 598 { 599 struct fec_enet_private *fep = netdev_priv(ndev); 600 int nr_frags = skb_shinfo(skb)->nr_frags; 601 struct bufdesc *bdp, *last_bdp; 602 void *bufaddr; 603 dma_addr_t addr; 604 unsigned short status; 605 unsigned short buflen; 606 unsigned int estatus = 0; 607 unsigned int index; 608 int entries_free; 609 610 entries_free = fec_enet_get_free_txdesc_num(txq); 611 if (entries_free < MAX_SKB_FRAGS + 1) { 612 dev_kfree_skb_any(skb); 613 if (net_ratelimit()) 614 netdev_err(ndev, "NOT enough BD for SG!\n"); 615 return NETDEV_TX_OK; 616 } 617 618 /* Protocol checksum off-load for TCP and UDP. */ 619 if (fec_enet_clear_csum(skb, ndev)) { 620 dev_kfree_skb_any(skb); 621 return NETDEV_TX_OK; 622 } 623 624 /* Fill in a Tx ring entry */ 625 bdp = txq->bd.cur; 626 last_bdp = bdp; 627 status = fec16_to_cpu(bdp->cbd_sc); 628 status &= ~BD_ENET_TX_STATS; 629 630 /* Set buffer length and buffer pointer */ 631 bufaddr = skb->data; 632 buflen = skb_headlen(skb); 633 634 index = fec_enet_get_bd_index(bdp, &txq->bd); 635 if (((unsigned long) bufaddr) & fep->tx_align || 636 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 637 memcpy(txq->tx_bounce[index], skb->data, buflen); 638 bufaddr = txq->tx_bounce[index]; 639 640 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 641 swap_buffer(bufaddr, buflen); 642 } 643 644 /* Push the data cache so the CPM does not get stale memory data. */ 645 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 646 if (dma_mapping_error(&fep->pdev->dev, addr)) { 647 dev_kfree_skb_any(skb); 648 if (net_ratelimit()) 649 netdev_err(ndev, "Tx DMA memory map failed\n"); 650 return NETDEV_TX_OK; 651 } 652 653 if (nr_frags) { 654 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 655 if (IS_ERR(last_bdp)) { 656 dma_unmap_single(&fep->pdev->dev, addr, 657 buflen, DMA_TO_DEVICE); 658 dev_kfree_skb_any(skb); 659 return NETDEV_TX_OK; 660 } 661 } else { 662 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 663 if (fep->bufdesc_ex) { 664 estatus = BD_ENET_TX_INT; 665 if (unlikely(skb_shinfo(skb)->tx_flags & 666 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 667 estatus |= BD_ENET_TX_TS; 668 } 669 } 670 bdp->cbd_bufaddr = cpu_to_fec32(addr); 671 bdp->cbd_datlen = cpu_to_fec16(buflen); 672 673 if (fep->bufdesc_ex) { 674 675 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 676 677 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 678 fep->hwts_tx_en)) 679 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 680 681 if (fep->quirks & FEC_QUIRK_HAS_AVB) 682 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 683 684 if (skb->ip_summed == CHECKSUM_PARTIAL) 685 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 686 687 ebdp->cbd_bdu = 0; 688 ebdp->cbd_esc = cpu_to_fec32(estatus); 689 } 690 691 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 692 /* Save skb pointer */ 693 txq->tx_buf[index].buf_p = skb; 694 695 /* Make sure the updates to rest of the descriptor are performed before 696 * transferring ownership. 697 */ 698 wmb(); 699 700 /* Send it on its way. Tell FEC it's ready, interrupt when done, 701 * it's the last BD of the frame, and to put the CRC on the end. 702 */ 703 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 704 bdp->cbd_sc = cpu_to_fec16(status); 705 706 /* If this was the last BD in the ring, start at the beginning again. */ 707 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 708 709 skb_tx_timestamp(skb); 710 711 /* Make sure the update to bdp is performed before txq->bd.cur. */ 712 wmb(); 713 txq->bd.cur = bdp; 714 715 /* Trigger transmission start */ 716 fec_txq_trigger_xmit(fep, txq); 717 718 return 0; 719 } 720 721 static int 722 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 723 struct net_device *ndev, 724 struct bufdesc *bdp, int index, char *data, 725 int size, bool last_tcp, bool is_last) 726 { 727 struct fec_enet_private *fep = netdev_priv(ndev); 728 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 729 unsigned short status; 730 unsigned int estatus = 0; 731 dma_addr_t addr; 732 733 status = fec16_to_cpu(bdp->cbd_sc); 734 status &= ~BD_ENET_TX_STATS; 735 736 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 737 738 if (((unsigned long) data) & fep->tx_align || 739 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 740 memcpy(txq->tx_bounce[index], data, size); 741 data = txq->tx_bounce[index]; 742 743 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 744 swap_buffer(data, size); 745 } 746 747 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 748 if (dma_mapping_error(&fep->pdev->dev, addr)) { 749 dev_kfree_skb_any(skb); 750 if (net_ratelimit()) 751 netdev_err(ndev, "Tx DMA memory map failed\n"); 752 return NETDEV_TX_OK; 753 } 754 755 bdp->cbd_datlen = cpu_to_fec16(size); 756 bdp->cbd_bufaddr = cpu_to_fec32(addr); 757 758 if (fep->bufdesc_ex) { 759 if (fep->quirks & FEC_QUIRK_HAS_AVB) 760 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 761 if (skb->ip_summed == CHECKSUM_PARTIAL) 762 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 763 ebdp->cbd_bdu = 0; 764 ebdp->cbd_esc = cpu_to_fec32(estatus); 765 } 766 767 /* Handle the last BD specially */ 768 if (last_tcp) 769 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 770 if (is_last) { 771 status |= BD_ENET_TX_INTR; 772 if (fep->bufdesc_ex) 773 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 774 } 775 776 bdp->cbd_sc = cpu_to_fec16(status); 777 778 return 0; 779 } 780 781 static int 782 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 783 struct sk_buff *skb, struct net_device *ndev, 784 struct bufdesc *bdp, int index) 785 { 786 struct fec_enet_private *fep = netdev_priv(ndev); 787 int hdr_len = skb_tcp_all_headers(skb); 788 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 789 void *bufaddr; 790 unsigned long dmabuf; 791 unsigned short status; 792 unsigned int estatus = 0; 793 794 status = fec16_to_cpu(bdp->cbd_sc); 795 status &= ~BD_ENET_TX_STATS; 796 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 797 798 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 799 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 800 if (((unsigned long)bufaddr) & fep->tx_align || 801 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 802 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 803 bufaddr = txq->tx_bounce[index]; 804 805 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 806 swap_buffer(bufaddr, hdr_len); 807 808 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 809 hdr_len, DMA_TO_DEVICE); 810 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 811 dev_kfree_skb_any(skb); 812 if (net_ratelimit()) 813 netdev_err(ndev, "Tx DMA memory map failed\n"); 814 return NETDEV_TX_OK; 815 } 816 } 817 818 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 819 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 820 821 if (fep->bufdesc_ex) { 822 if (fep->quirks & FEC_QUIRK_HAS_AVB) 823 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 824 if (skb->ip_summed == CHECKSUM_PARTIAL) 825 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 826 ebdp->cbd_bdu = 0; 827 ebdp->cbd_esc = cpu_to_fec32(estatus); 828 } 829 830 bdp->cbd_sc = cpu_to_fec16(status); 831 832 return 0; 833 } 834 835 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 836 struct sk_buff *skb, 837 struct net_device *ndev) 838 { 839 struct fec_enet_private *fep = netdev_priv(ndev); 840 int hdr_len, total_len, data_left; 841 struct bufdesc *bdp = txq->bd.cur; 842 struct bufdesc *tmp_bdp; 843 struct bufdesc_ex *ebdp; 844 struct tso_t tso; 845 unsigned int index = 0; 846 int ret; 847 848 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 849 dev_kfree_skb_any(skb); 850 if (net_ratelimit()) 851 netdev_err(ndev, "NOT enough BD for TSO!\n"); 852 return NETDEV_TX_OK; 853 } 854 855 /* Protocol checksum off-load for TCP and UDP. */ 856 if (fec_enet_clear_csum(skb, ndev)) { 857 dev_kfree_skb_any(skb); 858 return NETDEV_TX_OK; 859 } 860 861 /* Initialize the TSO handler, and prepare the first payload */ 862 hdr_len = tso_start(skb, &tso); 863 864 total_len = skb->len - hdr_len; 865 while (total_len > 0) { 866 char *hdr; 867 868 index = fec_enet_get_bd_index(bdp, &txq->bd); 869 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 870 total_len -= data_left; 871 872 /* prepare packet headers: MAC + IP + TCP */ 873 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 874 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 875 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 876 if (ret) 877 goto err_release; 878 879 while (data_left > 0) { 880 int size; 881 882 size = min_t(int, tso.size, data_left); 883 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 884 index = fec_enet_get_bd_index(bdp, &txq->bd); 885 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 886 bdp, index, 887 tso.data, size, 888 size == data_left, 889 total_len == 0); 890 if (ret) 891 goto err_release; 892 893 data_left -= size; 894 tso_build_data(skb, &tso, size); 895 } 896 897 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 898 } 899 900 /* Save skb pointer */ 901 txq->tx_buf[index].buf_p = skb; 902 903 skb_tx_timestamp(skb); 904 txq->bd.cur = bdp; 905 906 /* Trigger transmission start */ 907 fec_txq_trigger_xmit(fep, txq); 908 909 return 0; 910 911 err_release: 912 /* Release all used data descriptors for TSO */ 913 tmp_bdp = txq->bd.cur; 914 915 while (tmp_bdp != bdp) { 916 /* Unmap data buffers */ 917 if (tmp_bdp->cbd_bufaddr && 918 !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr))) 919 dma_unmap_single(&fep->pdev->dev, 920 fec32_to_cpu(tmp_bdp->cbd_bufaddr), 921 fec16_to_cpu(tmp_bdp->cbd_datlen), 922 DMA_TO_DEVICE); 923 924 /* Clear standard buffer descriptor fields */ 925 tmp_bdp->cbd_sc = 0; 926 tmp_bdp->cbd_datlen = 0; 927 tmp_bdp->cbd_bufaddr = 0; 928 929 /* Handle extended descriptor if enabled */ 930 if (fep->bufdesc_ex) { 931 ebdp = (struct bufdesc_ex *)tmp_bdp; 932 ebdp->cbd_esc = 0; 933 } 934 935 tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd); 936 } 937 938 dev_kfree_skb_any(skb); 939 940 return ret; 941 } 942 943 static netdev_tx_t 944 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 945 { 946 struct fec_enet_private *fep = netdev_priv(ndev); 947 int entries_free; 948 unsigned short queue; 949 struct fec_enet_priv_tx_q *txq; 950 struct netdev_queue *nq; 951 int ret; 952 953 queue = skb_get_queue_mapping(skb); 954 txq = fep->tx_queue[queue]; 955 nq = netdev_get_tx_queue(ndev, queue); 956 957 if (skb_is_gso(skb)) 958 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 959 else 960 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 961 if (ret) 962 return ret; 963 964 entries_free = fec_enet_get_free_txdesc_num(txq); 965 if (entries_free <= txq->tx_stop_threshold) 966 netif_tx_stop_queue(nq); 967 968 return NETDEV_TX_OK; 969 } 970 971 /* Init RX & TX buffer descriptors 972 */ 973 static void fec_enet_bd_init(struct net_device *dev) 974 { 975 struct fec_enet_private *fep = netdev_priv(dev); 976 struct fec_enet_priv_tx_q *txq; 977 struct fec_enet_priv_rx_q *rxq; 978 struct bufdesc *bdp; 979 unsigned int i; 980 unsigned int q; 981 982 for (q = 0; q < fep->num_rx_queues; q++) { 983 /* Initialize the receive buffer descriptors. */ 984 rxq = fep->rx_queue[q]; 985 bdp = rxq->bd.base; 986 987 for (i = 0; i < rxq->bd.ring_size; i++) { 988 989 /* Initialize the BD for every fragment in the page. */ 990 if (bdp->cbd_bufaddr) 991 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 992 else 993 bdp->cbd_sc = cpu_to_fec16(0); 994 995 if (fep->bufdesc_ex) { 996 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 997 998 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 999 } 1000 1001 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1002 } 1003 1004 /* Set the last buffer to wrap */ 1005 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 1006 bdp->cbd_sc |= cpu_to_fec16(BD_ENET_RX_WRAP); 1007 1008 rxq->bd.cur = rxq->bd.base; 1009 } 1010 1011 for (q = 0; q < fep->num_tx_queues; q++) { 1012 /* ...and the same for transmit */ 1013 txq = fep->tx_queue[q]; 1014 bdp = txq->bd.base; 1015 txq->bd.cur = bdp; 1016 1017 for (i = 0; i < txq->bd.ring_size; i++) { 1018 struct page *page; 1019 1020 /* Initialize the BD for every fragment in the page. */ 1021 bdp->cbd_sc = cpu_to_fec16(0); 1022 1023 switch (txq->tx_buf[i].type) { 1024 case FEC_TXBUF_T_SKB: 1025 if (bdp->cbd_bufaddr && 1026 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1027 dma_unmap_single(&fep->pdev->dev, 1028 fec32_to_cpu(bdp->cbd_bufaddr), 1029 fec16_to_cpu(bdp->cbd_datlen), 1030 DMA_TO_DEVICE); 1031 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 1032 break; 1033 case FEC_TXBUF_T_XDP_NDO: 1034 dma_unmap_single(&fep->pdev->dev, 1035 fec32_to_cpu(bdp->cbd_bufaddr), 1036 fec16_to_cpu(bdp->cbd_datlen), 1037 DMA_TO_DEVICE); 1038 xdp_return_frame(txq->tx_buf[i].buf_p); 1039 break; 1040 case FEC_TXBUF_T_XDP_TX: 1041 page = txq->tx_buf[i].buf_p; 1042 page_pool_put_page(pp_page_to_nmdesc(page)->pp, 1043 page, 0, false); 1044 break; 1045 case FEC_TXBUF_T_XSK_TX: 1046 xsk_buff_free(txq->tx_buf[i].buf_p); 1047 break; 1048 default: 1049 break; 1050 } 1051 1052 txq->tx_buf[i].buf_p = NULL; 1053 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1054 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 1055 bdp->cbd_bufaddr = cpu_to_fec32(0); 1056 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1057 } 1058 1059 /* Set the last buffer to wrap */ 1060 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 1061 bdp->cbd_sc |= cpu_to_fec16(BD_ENET_TX_WRAP); 1062 txq->dirty_tx = bdp; 1063 } 1064 } 1065 1066 static void fec_enet_active_rxring(struct net_device *ndev) 1067 { 1068 struct fec_enet_private *fep = netdev_priv(ndev); 1069 int i; 1070 1071 for (i = 0; i < fep->num_rx_queues; i++) 1072 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1073 } 1074 1075 static void fec_enet_enable_ring(struct net_device *ndev) 1076 { 1077 struct fec_enet_private *fep = netdev_priv(ndev); 1078 struct fec_enet_priv_tx_q *txq; 1079 struct fec_enet_priv_rx_q *rxq; 1080 int i; 1081 1082 for (i = 0; i < fep->num_rx_queues; i++) { 1083 rxq = fep->rx_queue[i]; 1084 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1085 writel(fep->max_buf_size, fep->hwp + FEC_R_BUFF_SIZE(i)); 1086 1087 /* enable DMA1/2 */ 1088 if (i) 1089 writel(RCMR_MATCHEN | RCMR_CMP(i), 1090 fep->hwp + FEC_RCMR(i)); 1091 } 1092 1093 for (i = 0; i < fep->num_tx_queues; i++) { 1094 txq = fep->tx_queue[i]; 1095 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1096 1097 /* enable DMA1/2 */ 1098 if (i) 1099 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1100 fep->hwp + FEC_DMA_CFG(i)); 1101 } 1102 } 1103 1104 /* Whack a reset. We should wait for this. 1105 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1106 * instead of reset MAC itself. 1107 */ 1108 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol) 1109 { 1110 u32 val; 1111 1112 if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1113 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1114 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1115 writel(0, fep->hwp + FEC_ECNTRL); 1116 } else { 1117 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL); 1118 udelay(10); 1119 } 1120 } else { 1121 val = readl(fep->hwp + FEC_ECNTRL); 1122 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1123 writel(val, fep->hwp + FEC_ECNTRL); 1124 } 1125 } 1126 1127 static void fec_set_hw_mac_addr(struct net_device *ndev) 1128 { 1129 struct fec_enet_private *fep = netdev_priv(ndev); 1130 1131 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 1132 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 1133 fep->hwp + FEC_ADDR_LOW); 1134 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 1135 fep->hwp + FEC_ADDR_HIGH); 1136 } 1137 1138 /* 1139 * This function is called to start or restart the FEC during a link 1140 * change, transmit timeout, or to reconfigure the FEC. The network 1141 * packet processing for this device must be stopped before this call. 1142 */ 1143 static void 1144 fec_restart(struct net_device *ndev) 1145 { 1146 struct fec_enet_private *fep = netdev_priv(ndev); 1147 u32 ecntl = FEC_ECR_ETHEREN; 1148 u32 rcntl = FEC_RCR_MII; 1149 1150 if (OPT_ARCH_HAS_MAX_FL) 1151 rcntl |= (fep->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN) << 16; 1152 1153 if (fep->bufdesc_ex) 1154 fec_ptp_save_state(fep); 1155 1156 fec_ctrl_reset(fep, false); 1157 1158 /* 1159 * enet-mac reset will reset mac address registers too, 1160 * so need to reconfigure it. 1161 */ 1162 fec_set_hw_mac_addr(ndev); 1163 1164 /* Clear any outstanding interrupt, except MDIO. */ 1165 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1166 1167 fec_enet_bd_init(ndev); 1168 1169 fec_enet_enable_ring(ndev); 1170 1171 /* Enable MII mode */ 1172 if (fep->full_duplex == DUPLEX_FULL) { 1173 /* FD enable */ 1174 writel(0x04, fep->hwp + FEC_X_CNTRL); 1175 } else { 1176 /* No Rcv on Xmit */ 1177 rcntl |= FEC_RCR_DRT; 1178 writel(0x0, fep->hwp + FEC_X_CNTRL); 1179 } 1180 1181 /* Set MII speed */ 1182 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1183 1184 #if !defined(CONFIG_M5272) 1185 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1186 u32 val = readl(fep->hwp + FEC_RACC); 1187 1188 /* align IP header */ 1189 val |= FEC_RACC_SHIFT16; 1190 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1191 /* set RX checksum */ 1192 val |= FEC_RACC_OPTIONS; 1193 else 1194 val &= ~FEC_RACC_OPTIONS; 1195 writel(val, fep->hwp + FEC_RACC); 1196 writel(min(fep->rx_frame_size, fep->max_buf_size), fep->hwp + FEC_FTRL); 1197 } 1198 #endif 1199 1200 /* 1201 * The phy interface and speed need to get configured 1202 * differently on enet-mac. 1203 */ 1204 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1205 /* Enable flow control and length check */ 1206 rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL; 1207 1208 /* RGMII, RMII or MII */ 1209 if (phy_interface_mode_is_rgmii(fep->phy_interface)) 1210 rcntl |= FEC_RCR_RGMII; 1211 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1212 rcntl |= FEC_RCR_RMII; 1213 else 1214 rcntl &= ~FEC_RCR_RMII; 1215 1216 /* 1G, 100M or 10M */ 1217 if (ndev->phydev) { 1218 if (ndev->phydev->speed == SPEED_1000) 1219 ecntl |= FEC_ECR_SPEED; 1220 else if (ndev->phydev->speed == SPEED_100) 1221 rcntl &= ~FEC_RCR_10BASET; 1222 else 1223 rcntl |= FEC_RCR_10BASET; 1224 } 1225 } else { 1226 #ifdef FEC_MIIGSK_ENR 1227 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1228 u32 cfgr; 1229 /* disable the gasket and wait */ 1230 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1231 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1232 udelay(1); 1233 1234 /* 1235 * configure the gasket: 1236 * RMII, 50 MHz, no loopback, no echo 1237 * MII, 25 MHz, no loopback, no echo 1238 */ 1239 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1240 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1241 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1242 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1243 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1244 1245 /* re-enable the gasket */ 1246 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1247 } 1248 #endif 1249 } 1250 1251 #if !defined(CONFIG_M5272) 1252 /* enable pause frame*/ 1253 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1254 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1255 ndev->phydev && ndev->phydev->pause)) { 1256 rcntl |= FEC_RCR_FLOWCTL; 1257 1258 /* set FIFO threshold parameter to reduce overrun */ 1259 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1260 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1261 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1262 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1263 1264 /* OPD */ 1265 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1266 } else { 1267 rcntl &= ~FEC_RCR_FLOWCTL; 1268 } 1269 #endif /* !defined(CONFIG_M5272) */ 1270 1271 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1272 1273 /* Setup multicast filter. */ 1274 set_multicast_list(ndev); 1275 #ifndef CONFIG_M5272 1276 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1277 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1278 #endif 1279 1280 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1281 /* enable ENET endian swap */ 1282 ecntl |= FEC_ECR_BYTESWP; 1283 1284 /* When Jumbo Frame is enabled, the FIFO may not be large enough 1285 * to hold an entire frame. In such cases, if the MTU exceeds 1286 * (PKT_MAXBUF_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN), configure 1287 * the interface to operate in cut-through mode, triggered by 1288 * the FIFO threshold. 1289 * Otherwise, enable the ENET store-and-forward mode. 1290 */ 1291 if ((fep->quirks & FEC_QUIRK_JUMBO_FRAME) && 1292 (ndev->mtu > (PKT_MAXBUF_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN))) 1293 writel(0xF, fep->hwp + FEC_X_WMRK); 1294 else 1295 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK); 1296 } 1297 1298 if (fep->bufdesc_ex) 1299 ecntl |= FEC_ECR_EN1588; 1300 1301 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1302 fep->rgmii_txc_dly) 1303 ecntl |= FEC_ENET_TXC_DLY; 1304 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1305 fep->rgmii_rxc_dly) 1306 ecntl |= FEC_ENET_RXC_DLY; 1307 1308 #ifndef CONFIG_M5272 1309 /* Enable the MIB statistic event counters */ 1310 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1311 #endif 1312 1313 /* And last, enable the transmit and receive processing */ 1314 writel(ecntl, fep->hwp + FEC_ECNTRL); 1315 fec_enet_active_rxring(ndev); 1316 1317 if (fep->bufdesc_ex) { 1318 fec_ptp_start_cyclecounter(ndev); 1319 fec_ptp_restore_state(fep); 1320 } 1321 1322 /* Enable interrupts we wish to service */ 1323 if (fep->link) 1324 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1325 else 1326 writel(0, fep->hwp + FEC_IMASK); 1327 1328 /* Init the interrupt coalescing */ 1329 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1330 fec_enet_itr_coal_set(ndev); 1331 } 1332 1333 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1334 { 1335 if (!(of_machine_is_compatible("fsl,imx8qm") || 1336 of_machine_is_compatible("fsl,imx8qp") || 1337 of_machine_is_compatible("fsl,imx8qxp") || 1338 of_machine_is_compatible("fsl,imx8dx") || 1339 of_machine_is_compatible("fsl,imx8dxl"))) 1340 return 0; 1341 1342 return imx_scu_get_handle(&fep->ipc_handle); 1343 } 1344 1345 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1346 { 1347 struct device_node *np = fep->pdev->dev.of_node; 1348 u32 rsrc_id, val; 1349 int idx; 1350 1351 if (!np || !fep->ipc_handle) 1352 return; 1353 1354 idx = of_alias_get_id(np, "ethernet"); 1355 if (idx < 0) 1356 idx = 0; 1357 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1358 1359 val = enabled ? 1 : 0; 1360 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1361 } 1362 1363 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1364 { 1365 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1366 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1367 1368 if (stop_gpr->gpr) { 1369 if (enabled) 1370 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1371 BIT(stop_gpr->bit), 1372 BIT(stop_gpr->bit)); 1373 else 1374 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1375 BIT(stop_gpr->bit), 0); 1376 } else if (pdata && pdata->sleep_mode_enable) { 1377 pdata->sleep_mode_enable(enabled); 1378 } else { 1379 fec_enet_ipg_stop_set(fep, enabled); 1380 } 1381 } 1382 1383 static void fec_irqs_disable(struct net_device *ndev) 1384 { 1385 struct fec_enet_private *fep = netdev_priv(ndev); 1386 1387 writel(0, fep->hwp + FEC_IMASK); 1388 } 1389 1390 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1391 { 1392 struct fec_enet_private *fep = netdev_priv(ndev); 1393 1394 writel(0, fep->hwp + FEC_IMASK); 1395 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1396 } 1397 1398 static void 1399 fec_stop(struct net_device *ndev) 1400 { 1401 struct fec_enet_private *fep = netdev_priv(ndev); 1402 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII; 1403 u32 val; 1404 1405 /* We cannot expect a graceful transmit stop without link !!! */ 1406 if (fep->link) { 1407 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1408 udelay(10); 1409 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1410 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1411 } 1412 1413 if (fep->bufdesc_ex) 1414 fec_ptp_save_state(fep); 1415 1416 fec_ctrl_reset(fep, true); 1417 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1418 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1419 1420 /* We have to keep ENET enabled to have MII interrupt stay working */ 1421 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1422 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1423 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL); 1424 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1425 } 1426 1427 if (fep->bufdesc_ex) { 1428 val = readl(fep->hwp + FEC_ECNTRL); 1429 val |= FEC_ECR_EN1588; 1430 writel(val, fep->hwp + FEC_ECNTRL); 1431 1432 fec_ptp_start_cyclecounter(ndev); 1433 fec_ptp_restore_state(fep); 1434 } 1435 } 1436 1437 static void 1438 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1439 { 1440 struct fec_enet_private *fep = netdev_priv(ndev); 1441 1442 fec_dump(ndev); 1443 1444 ndev->stats.tx_errors++; 1445 1446 schedule_work(&fep->tx_timeout_work); 1447 } 1448 1449 static void fec_enet_timeout_work(struct work_struct *work) 1450 { 1451 struct fec_enet_private *fep = 1452 container_of(work, struct fec_enet_private, tx_timeout_work); 1453 struct net_device *ndev = fep->netdev; 1454 1455 rtnl_lock(); 1456 if (netif_device_present(ndev) || netif_running(ndev)) { 1457 napi_disable(&fep->napi); 1458 netif_tx_lock_bh(ndev); 1459 fec_restart(ndev); 1460 netif_tx_wake_all_queues(ndev); 1461 netif_tx_unlock_bh(ndev); 1462 napi_enable(&fep->napi); 1463 } 1464 rtnl_unlock(); 1465 } 1466 1467 static void 1468 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1469 struct skb_shared_hwtstamps *hwtstamps) 1470 { 1471 unsigned long flags; 1472 u64 ns; 1473 1474 spin_lock_irqsave(&fep->tmreg_lock, flags); 1475 ns = timecounter_cyc2time(&fep->tc, ts); 1476 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1477 1478 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1479 hwtstamps->hwtstamp = ns_to_ktime(ns); 1480 } 1481 1482 static bool fec_enet_xsk_xmit(struct fec_enet_private *fep, 1483 struct xsk_buff_pool *pool, 1484 u32 queue) 1485 { 1486 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue]; 1487 struct xdp_desc *xsk_desc = pool->tx_descs; 1488 int cpu = smp_processor_id(); 1489 int free_bds, budget, batch; 1490 struct netdev_queue *nq; 1491 struct bufdesc *bdp; 1492 dma_addr_t dma; 1493 u32 estatus; 1494 u16 status; 1495 int i, j; 1496 1497 nq = netdev_get_tx_queue(fep->netdev, queue); 1498 __netif_tx_lock(nq, cpu); 1499 1500 txq_trans_cond_update(nq); 1501 free_bds = fec_enet_get_free_txdesc_num(txq); 1502 if (!free_bds) 1503 goto tx_unlock; 1504 1505 budget = min(free_bds, FEC_XSK_TX_BUDGET_MAX); 1506 batch = xsk_tx_peek_release_desc_batch(pool, budget); 1507 if (!batch) 1508 goto tx_unlock; 1509 1510 bdp = txq->bd.cur; 1511 for (i = 0; i < batch; i++) { 1512 dma = xsk_buff_raw_get_dma(pool, xsk_desc[i].addr); 1513 xsk_buff_raw_dma_sync_for_device(pool, dma, xsk_desc[i].len); 1514 1515 j = fec_enet_get_bd_index(bdp, &txq->bd); 1516 txq->tx_buf[j].type = FEC_TXBUF_T_XSK_XMIT; 1517 txq->tx_buf[j].buf_p = NULL; 1518 1519 status = fec16_to_cpu(bdp->cbd_sc); 1520 status &= ~BD_ENET_TX_STATS; 1521 status |= BD_ENET_TX_INTR | BD_ENET_TX_LAST; 1522 bdp->cbd_datlen = cpu_to_fec16(xsk_desc[i].len); 1523 bdp->cbd_bufaddr = cpu_to_fec32(dma); 1524 1525 if (fep->bufdesc_ex) { 1526 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1527 1528 estatus = BD_ENET_TX_INT; 1529 if (fep->quirks & FEC_QUIRK_HAS_AVB) 1530 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 1531 1532 ebdp->cbd_bdu = 0; 1533 ebdp->cbd_esc = cpu_to_fec32(estatus); 1534 } 1535 1536 /* Make sure the updates to rest of the descriptor are performed 1537 * before transferring ownership. 1538 */ 1539 dma_wmb(); 1540 1541 /* Send it on its way. Tell FEC it's ready, interrupt when done, 1542 * it's the last BD of the frame, and to put the CRC on the end. 1543 */ 1544 status |= BD_ENET_TX_READY | BD_ENET_TX_TC; 1545 bdp->cbd_sc = cpu_to_fec16(status); 1546 dma_wmb(); 1547 1548 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1549 txq->bd.cur = bdp; 1550 } 1551 1552 /* Trigger transmission start */ 1553 fec_txq_trigger_xmit(fep, txq); 1554 1555 __netif_tx_unlock(nq); 1556 1557 return batch < budget; 1558 1559 tx_unlock: 1560 __netif_tx_unlock(nq); 1561 1562 return true; 1563 } 1564 1565 static int fec_enet_tx_queue(struct fec_enet_private *fep, 1566 u16 queue, int budget) 1567 { 1568 struct netdev_queue *nq = netdev_get_tx_queue(fep->netdev, queue); 1569 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue]; 1570 struct net_device *ndev = fep->netdev; 1571 struct bufdesc *bdp = txq->dirty_tx; 1572 int index, frame_len, entries_free; 1573 struct fec_tx_buffer *tx_buf; 1574 unsigned short status; 1575 struct sk_buff *skb; 1576 struct page *page; 1577 int xsk_cnt = 0; 1578 1579 /* get next bdp of dirty_tx */ 1580 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1581 1582 while (bdp != READ_ONCE(txq->bd.cur)) { 1583 /* Order the load of bd.cur and cbd_sc */ 1584 rmb(); 1585 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1586 if (status & BD_ENET_TX_READY) 1587 break; 1588 1589 index = fec_enet_get_bd_index(bdp, &txq->bd); 1590 tx_buf = &txq->tx_buf[index]; 1591 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1592 1593 switch (tx_buf->type) { 1594 case FEC_TXBUF_T_SKB: 1595 if (bdp->cbd_bufaddr && 1596 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1597 dma_unmap_single(&fep->pdev->dev, 1598 fec32_to_cpu(bdp->cbd_bufaddr), 1599 frame_len, DMA_TO_DEVICE); 1600 1601 bdp->cbd_bufaddr = cpu_to_fec32(0); 1602 skb = tx_buf->buf_p; 1603 if (!skb) 1604 goto tx_buf_done; 1605 1606 frame_len = skb->len; 1607 1608 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1609 * are to time stamp the packet, so we still need to check time 1610 * stamping enabled flag. 1611 */ 1612 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1613 fep->hwts_tx_en) && fep->bufdesc_ex) { 1614 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1615 struct skb_shared_hwtstamps shhwtstamps; 1616 1617 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1618 skb_tstamp_tx(skb, &shhwtstamps); 1619 } 1620 1621 /* Free the sk buffer associated with this last transmit */ 1622 napi_consume_skb(skb, budget); 1623 break; 1624 case FEC_TXBUF_T_XDP_NDO: 1625 /* Tx processing cannot call any XDP (or page pool) APIs if 1626 * the "budget" is 0. Because NAPI is called with budget of 1627 * 0 (such as netpoll) indicates we may be in an IRQ context, 1628 * however, we can't use the page pool from IRQ context. 1629 */ 1630 if (unlikely(!budget)) 1631 goto out; 1632 1633 dma_unmap_single(&fep->pdev->dev, 1634 fec32_to_cpu(bdp->cbd_bufaddr), 1635 frame_len, DMA_TO_DEVICE); 1636 bdp->cbd_bufaddr = cpu_to_fec32(0); 1637 xdp_return_frame_rx_napi(tx_buf->buf_p); 1638 break; 1639 case FEC_TXBUF_T_XDP_TX: 1640 if (unlikely(!budget)) 1641 goto out; 1642 1643 bdp->cbd_bufaddr = cpu_to_fec32(0); 1644 page = tx_buf->buf_p; 1645 /* The dma_sync_size = 0 as XDP_TX has already synced 1646 * DMA for_device 1647 */ 1648 page_pool_put_page(pp_page_to_nmdesc(page)->pp, page, 1649 0, true); 1650 break; 1651 case FEC_TXBUF_T_XSK_XMIT: 1652 bdp->cbd_bufaddr = cpu_to_fec32(0); 1653 xsk_cnt++; 1654 break; 1655 case FEC_TXBUF_T_XSK_TX: 1656 bdp->cbd_bufaddr = cpu_to_fec32(0); 1657 xsk_buff_free(tx_buf->buf_p); 1658 break; 1659 default: 1660 break; 1661 } 1662 1663 /* Check for errors. */ 1664 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1665 BD_ENET_TX_RL | BD_ENET_TX_UN | 1666 BD_ENET_TX_CSL)) { 1667 ndev->stats.tx_errors++; 1668 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1669 ndev->stats.tx_heartbeat_errors++; 1670 if (status & BD_ENET_TX_LC) /* Late collision */ 1671 ndev->stats.tx_window_errors++; 1672 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1673 ndev->stats.tx_aborted_errors++; 1674 if (status & BD_ENET_TX_UN) /* Underrun */ 1675 ndev->stats.tx_fifo_errors++; 1676 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1677 ndev->stats.tx_carrier_errors++; 1678 } else { 1679 ndev->stats.tx_packets++; 1680 ndev->stats.tx_bytes += frame_len; 1681 } 1682 1683 /* Deferred means some collisions occurred during transmit, 1684 * but we eventually sent the packet OK. 1685 */ 1686 if (status & BD_ENET_TX_DEF) 1687 ndev->stats.collisions++; 1688 1689 tx_buf->buf_p = NULL; 1690 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1691 tx_buf->type = FEC_TXBUF_T_SKB; 1692 1693 tx_buf_done: 1694 /* Make sure the update to bdp and tx_buf are performed 1695 * before dirty_tx 1696 */ 1697 wmb(); 1698 txq->dirty_tx = bdp; 1699 1700 /* Update pointer to next buffer descriptor to be transmitted */ 1701 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1702 1703 /* Since we have freed up a buffer, the ring is no longer full 1704 */ 1705 if (netif_tx_queue_stopped(nq)) { 1706 entries_free = fec_enet_get_free_txdesc_num(txq); 1707 if (entries_free >= txq->tx_wake_threshold) 1708 netif_tx_wake_queue(nq); 1709 } 1710 } 1711 1712 out: 1713 1714 /* ERR006358: Keep the transmitter going */ 1715 if (bdp != txq->bd.cur && 1716 readl(txq->bd.reg_desc_active) == 0) 1717 writel(0, txq->bd.reg_desc_active); 1718 1719 if (txq->xsk_pool) { 1720 struct xsk_buff_pool *pool = txq->xsk_pool; 1721 1722 if (xsk_cnt) 1723 xsk_tx_completed(pool, xsk_cnt); 1724 1725 if (xsk_uses_need_wakeup(pool)) 1726 xsk_set_tx_need_wakeup(pool); 1727 1728 /* If the condition is true, it indicates that there are still 1729 * packets to be transmitted, so return "budget" to make the 1730 * NAPI continue polling. 1731 */ 1732 if (!fec_enet_xsk_xmit(fep, pool, queue)) 1733 return budget; 1734 } 1735 1736 return 0; 1737 } 1738 1739 static int fec_enet_tx(struct net_device *ndev, int budget) 1740 { 1741 struct fec_enet_private *fep = netdev_priv(ndev); 1742 int i, count = 0; 1743 1744 /* Make sure that AVB queues are processed first. */ 1745 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1746 count += fec_enet_tx_queue(fep, i, budget); 1747 1748 return count; 1749 } 1750 1751 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1752 struct bufdesc *bdp, int index) 1753 { 1754 struct page *new_page; 1755 dma_addr_t phys_addr; 1756 1757 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1758 if (unlikely(!new_page)) 1759 return -ENOMEM; 1760 1761 rxq->rx_buf[index].page = new_page; 1762 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1763 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1764 1765 return 0; 1766 } 1767 1768 static int fec_enet_update_cbd_zc(struct fec_enet_priv_rx_q *rxq, 1769 struct bufdesc *bdp, int index) 1770 { 1771 struct xdp_buff *new_xdp; 1772 dma_addr_t phys_addr; 1773 1774 new_xdp = xsk_buff_alloc(rxq->xsk_pool); 1775 if (unlikely(!new_xdp)) 1776 return -ENOMEM; 1777 1778 rxq->rx_buf[index].xdp = new_xdp; 1779 phys_addr = xsk_buff_xdp_get_dma(new_xdp); 1780 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1781 1782 return 0; 1783 } 1784 1785 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb) 1786 { 1787 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) { 1788 const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb); 1789 const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1790 1791 /* Push and remove the vlan tag */ 1792 1793 memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2); 1794 skb_pull(skb, VLAN_HLEN); 1795 __vlan_hwaccel_put_tag(skb, 1796 htons(ETH_P_8021Q), 1797 vlan_tag); 1798 } 1799 } 1800 1801 static int fec_rx_error_check(struct net_device *ndev, u16 status) 1802 { 1803 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1804 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1805 BD_ENET_RX_CL)) { 1806 ndev->stats.rx_errors++; 1807 1808 if (status & BD_ENET_RX_OV) { 1809 /* FIFO overrun */ 1810 ndev->stats.rx_fifo_errors++; 1811 return -EIO; 1812 } 1813 1814 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | 1815 BD_ENET_RX_LAST)) { 1816 /* Frame too long or too short. */ 1817 ndev->stats.rx_length_errors++; 1818 if ((status & BD_ENET_RX_LAST) && net_ratelimit()) 1819 netdev_err(ndev, "rcv is not +last\n"); 1820 } 1821 1822 /* CRC Error */ 1823 if (status & BD_ENET_RX_CR) 1824 ndev->stats.rx_crc_errors++; 1825 1826 /* Report late collisions as a frame error. */ 1827 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1828 ndev->stats.rx_frame_errors++; 1829 1830 return -EIO; 1831 } 1832 1833 return 0; 1834 } 1835 1836 static struct sk_buff *fec_build_skb(struct fec_enet_private *fep, 1837 struct fec_enet_priv_rx_q *rxq, 1838 struct bufdesc *bdp, 1839 struct page *page, u32 len) 1840 { 1841 struct net_device *ndev = fep->netdev; 1842 struct bufdesc_ex *ebdp; 1843 struct sk_buff *skb; 1844 1845 skb = build_skb(page_address(page), 1846 PAGE_SIZE << fep->pagepool_order); 1847 if (unlikely(!skb)) { 1848 page_pool_recycle_direct(rxq->page_pool, page); 1849 ndev->stats.rx_dropped++; 1850 if (net_ratelimit()) 1851 netdev_err(ndev, "build_skb failed\n"); 1852 1853 return NULL; 1854 } 1855 1856 skb_reserve(skb, FEC_ENET_XDP_HEADROOM + fep->rx_shift); 1857 skb_put(skb, len); 1858 skb_mark_for_recycle(skb); 1859 1860 /* Get offloads from the enhanced buffer descriptor */ 1861 if (fep->bufdesc_ex) { 1862 ebdp = (struct bufdesc_ex *)bdp; 1863 1864 /* If this is a VLAN packet remove the VLAN Tag */ 1865 if (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)) 1866 fec_enet_rx_vlan(ndev, skb); 1867 1868 /* Get receive timestamp from the skb */ 1869 if (fep->hwts_rx_en) 1870 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1871 skb_hwtstamps(skb)); 1872 1873 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) { 1874 if (!(ebdp->cbd_esc & 1875 cpu_to_fec32(FLAG_RX_CSUM_ERROR))) 1876 /* don't check it */ 1877 skb->ip_summed = CHECKSUM_UNNECESSARY; 1878 else 1879 skb_checksum_none_assert(skb); 1880 } 1881 } 1882 1883 skb->protocol = eth_type_trans(skb, ndev); 1884 skb_record_rx_queue(skb, rxq->bd.qid); 1885 1886 return skb; 1887 } 1888 1889 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1890 * When we update through the ring, if the next incoming buffer has 1891 * not been given to the system, we just set the empty indicator, 1892 * effectively tossing the packet. 1893 */ 1894 static int fec_enet_rx_queue(struct fec_enet_private *fep, 1895 u16 queue, int budget) 1896 { 1897 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue]; 1898 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1899 struct net_device *ndev = fep->netdev; 1900 struct bufdesc *bdp = rxq->bd.cur; 1901 u32 sub_len = 4 + fep->rx_shift; 1902 int pkt_received = 0; 1903 u16 status, pkt_len; 1904 struct sk_buff *skb; 1905 struct page *page; 1906 dma_addr_t dma; 1907 int index; 1908 1909 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 1910 /* 1911 * Hacky flush of all caches instead of using the DMA API for the TSO 1912 * headers. 1913 */ 1914 flush_cache_all(); 1915 #endif 1916 1917 /* First, grab all of the stats for the incoming packet. 1918 * These get messed up if we get called due to a busy condition. 1919 */ 1920 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1921 1922 if (pkt_received >= budget) 1923 break; 1924 pkt_received++; 1925 1926 writel(FEC_ENET_RXF_GET(queue), fep->hwp + FEC_IEVENT); 1927 1928 /* Check for errors. */ 1929 status ^= BD_ENET_RX_LAST; 1930 if (unlikely(fec_rx_error_check(ndev, status))) 1931 goto rx_processing_done; 1932 1933 /* Process the incoming frame. */ 1934 ndev->stats.rx_packets++; 1935 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1936 ndev->stats.rx_bytes += pkt_len - fep->rx_shift; 1937 1938 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1939 page = rxq->rx_buf[index].page; 1940 dma = fec32_to_cpu(bdp->cbd_bufaddr); 1941 if (fec_enet_update_cbd(rxq, bdp, index)) { 1942 ndev->stats.rx_dropped++; 1943 goto rx_processing_done; 1944 } 1945 1946 dma_sync_single_for_cpu(&fep->pdev->dev, dma, pkt_len, 1947 DMA_FROM_DEVICE); 1948 prefetch(page_address(page)); 1949 1950 if (unlikely(need_swap)) { 1951 u8 *data; 1952 1953 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1954 swap_buffer(data, pkt_len); 1955 } 1956 1957 /* The packet length includes FCS, but we don't want to 1958 * include that when passing upstream as it messes up 1959 * bridging applications. 1960 */ 1961 skb = fec_build_skb(fep, rxq, bdp, page, pkt_len - sub_len); 1962 if (!skb) 1963 goto rx_processing_done; 1964 1965 napi_gro_receive(&fep->napi, skb); 1966 1967 rx_processing_done: 1968 /* Clear the status flags for this buffer */ 1969 status &= ~BD_ENET_RX_STATS; 1970 1971 /* Mark the buffer empty */ 1972 status |= BD_ENET_RX_EMPTY; 1973 1974 if (fep->bufdesc_ex) { 1975 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1976 1977 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1978 ebdp->cbd_prot = 0; 1979 ebdp->cbd_bdu = 0; 1980 } 1981 /* Make sure the updates to rest of the descriptor are 1982 * performed before transferring ownership. 1983 */ 1984 wmb(); 1985 bdp->cbd_sc = cpu_to_fec16(status); 1986 1987 /* Update BD pointer to next entry */ 1988 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1989 1990 /* Doing this here will keep the FEC running while we process 1991 * incoming frames. On a heavily loaded network, we should be 1992 * able to keep up at the expense of system resources. 1993 */ 1994 writel(0, rxq->bd.reg_desc_active); 1995 } 1996 rxq->bd.cur = bdp; 1997 1998 return pkt_received; 1999 } 2000 2001 static void fec_xdp_drop(struct fec_enet_priv_rx_q *rxq, 2002 struct xdp_buff *xdp, u32 sync) 2003 { 2004 struct page *page = virt_to_head_page(xdp->data); 2005 2006 page_pool_put_page(rxq->page_pool, page, sync, true); 2007 } 2008 2009 static int 2010 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 2011 { 2012 if (unlikely(index < 0)) 2013 return 0; 2014 2015 return (index % fep->num_tx_queues); 2016 } 2017 2018 static int fec_enet_rx_queue_xdp(struct fec_enet_private *fep, int queue, 2019 int budget, struct bpf_prog *prog) 2020 { 2021 u32 data_start = FEC_ENET_XDP_HEADROOM + fep->rx_shift; 2022 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue]; 2023 struct net_device *ndev = fep->netdev; 2024 struct bufdesc *bdp = rxq->bd.cur; 2025 u32 sub_len = 4 + fep->rx_shift; 2026 int cpu = smp_processor_id(); 2027 int pkt_received = 0; 2028 struct sk_buff *skb; 2029 u16 status, pkt_len; 2030 struct xdp_buff xdp; 2031 int tx_qid = queue; 2032 struct page *page; 2033 u32 xdp_res = 0; 2034 dma_addr_t dma; 2035 int index, err; 2036 u32 act, sync; 2037 2038 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 2039 /* 2040 * Hacky flush of all caches instead of using the DMA API for the TSO 2041 * headers. 2042 */ 2043 flush_cache_all(); 2044 #endif 2045 2046 if (unlikely(tx_qid >= fep->num_tx_queues)) 2047 tx_qid = fec_enet_xdp_get_tx_queue(fep, cpu); 2048 2049 xdp_init_buff(&xdp, PAGE_SIZE << fep->pagepool_order, &rxq->xdp_rxq); 2050 2051 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 2052 if (pkt_received >= budget) 2053 break; 2054 pkt_received++; 2055 2056 writel(FEC_ENET_RXF_GET(queue), fep->hwp + FEC_IEVENT); 2057 2058 /* Check for errors. */ 2059 status ^= BD_ENET_RX_LAST; 2060 if (unlikely(fec_rx_error_check(ndev, status))) 2061 goto rx_processing_done; 2062 2063 /* Process the incoming frame. */ 2064 ndev->stats.rx_packets++; 2065 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 2066 ndev->stats.rx_bytes += pkt_len - fep->rx_shift; 2067 2068 index = fec_enet_get_bd_index(bdp, &rxq->bd); 2069 page = rxq->rx_buf[index].page; 2070 dma = fec32_to_cpu(bdp->cbd_bufaddr); 2071 2072 if (fec_enet_update_cbd(rxq, bdp, index)) { 2073 ndev->stats.rx_dropped++; 2074 goto rx_processing_done; 2075 } 2076 2077 dma_sync_single_for_cpu(&fep->pdev->dev, dma, pkt_len, 2078 DMA_FROM_DEVICE); 2079 prefetch(page_address(page)); 2080 2081 xdp_buff_clear_frags_flag(&xdp); 2082 /* subtract 16bit shift and FCS */ 2083 pkt_len -= sub_len; 2084 xdp_prepare_buff(&xdp, page_address(page), data_start, 2085 pkt_len, false); 2086 2087 act = bpf_prog_run_xdp(prog, &xdp); 2088 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync 2089 * for_device cover max len CPU touch. 2090 */ 2091 sync = xdp.data_end - xdp.data; 2092 sync = max(sync, pkt_len); 2093 2094 switch (act) { 2095 case XDP_PASS: 2096 rxq->stats[RX_XDP_PASS]++; 2097 /* The packet length includes FCS, but we don't want to 2098 * include that when passing upstream as it messes up 2099 * bridging applications. 2100 */ 2101 skb = fec_build_skb(fep, rxq, bdp, page, pkt_len); 2102 if (!skb) 2103 trace_xdp_exception(ndev, prog, XDP_PASS); 2104 else 2105 napi_gro_receive(&fep->napi, skb); 2106 2107 break; 2108 case XDP_REDIRECT: 2109 rxq->stats[RX_XDP_REDIRECT]++; 2110 err = xdp_do_redirect(ndev, &xdp, prog); 2111 if (unlikely(err)) { 2112 fec_xdp_drop(rxq, &xdp, sync); 2113 trace_xdp_exception(ndev, prog, XDP_REDIRECT); 2114 } else { 2115 xdp_res |= FEC_ENET_XDP_REDIR; 2116 } 2117 break; 2118 case XDP_TX: 2119 rxq->stats[RX_XDP_TX]++; 2120 err = fec_enet_xdp_tx_xmit(fep, cpu, &xdp, sync, tx_qid); 2121 if (unlikely(err)) { 2122 rxq->stats[RX_XDP_TX_ERRORS]++; 2123 fec_xdp_drop(rxq, &xdp, sync); 2124 trace_xdp_exception(ndev, prog, XDP_TX); 2125 } else { 2126 xdp_res |= FEC_ENET_XDP_TX; 2127 } 2128 break; 2129 default: 2130 bpf_warn_invalid_xdp_action(ndev, prog, act); 2131 fallthrough; 2132 case XDP_ABORTED: 2133 trace_xdp_exception(ndev, prog, act); 2134 /* handle aborts by dropping packet */ 2135 fallthrough; 2136 case XDP_DROP: 2137 rxq->stats[RX_XDP_DROP]++; 2138 fec_xdp_drop(rxq, &xdp, sync); 2139 break; 2140 } 2141 2142 rx_processing_done: 2143 /* Clear the status flags for this buffer */ 2144 status &= ~BD_ENET_RX_STATS; 2145 /* Mark the buffer empty */ 2146 status |= BD_ENET_RX_EMPTY; 2147 2148 if (fep->bufdesc_ex) { 2149 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2150 2151 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2152 ebdp->cbd_prot = 0; 2153 ebdp->cbd_bdu = 0; 2154 } 2155 2156 /* Make sure the updates to rest of the descriptor are 2157 * performed before transferring ownership. 2158 */ 2159 dma_wmb(); 2160 bdp->cbd_sc = cpu_to_fec16(status); 2161 2162 /* Update BD pointer to next entry */ 2163 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2164 2165 /* Doing this here will keep the FEC running while we process 2166 * incoming frames. On a heavily loaded network, we should be 2167 * able to keep up at the expense of system resources. 2168 */ 2169 writel(0, rxq->bd.reg_desc_active); 2170 } 2171 2172 rxq->bd.cur = bdp; 2173 2174 if (xdp_res & FEC_ENET_XDP_REDIR) 2175 xdp_do_flush(); 2176 2177 if (xdp_res & FEC_ENET_XDP_TX) 2178 /* Trigger transmission start */ 2179 fec_txq_trigger_xmit(fep, fep->tx_queue[tx_qid]); 2180 2181 return pkt_received; 2182 } 2183 2184 static struct sk_buff *fec_build_skb_zc(struct xdp_buff *xsk, 2185 struct napi_struct *napi) 2186 { 2187 size_t len = xdp_get_buff_len(xsk); 2188 struct sk_buff *skb; 2189 2190 skb = napi_alloc_skb(napi, len); 2191 if (unlikely(!skb)) { 2192 xsk_buff_free(xsk); 2193 return NULL; 2194 } 2195 2196 skb_put_data(skb, xsk->data, len); 2197 xsk_buff_free(xsk); 2198 2199 return skb; 2200 } 2201 2202 static int fec_enet_xsk_tx_xmit(struct fec_enet_private *fep, 2203 struct xdp_buff *xsk, int cpu, 2204 int queue) 2205 { 2206 struct netdev_queue *nq = netdev_get_tx_queue(fep->netdev, queue); 2207 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue]; 2208 u32 offset = xsk->data - xsk->data_hard_start; 2209 u32 headroom = txq->xsk_pool->headroom; 2210 u32 len = xsk->data_end - xsk->data; 2211 u32 index, status, estatus; 2212 struct bufdesc *bdp; 2213 dma_addr_t dma; 2214 2215 __netif_tx_lock(nq, cpu); 2216 2217 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 2218 txq_trans_cond_update(nq); 2219 2220 if (!fec_enet_get_free_txdesc_num(txq)) { 2221 __netif_tx_unlock(nq); 2222 2223 return -EBUSY; 2224 } 2225 2226 /* Fill in a Tx ring entry */ 2227 bdp = txq->bd.cur; 2228 status = fec16_to_cpu(bdp->cbd_sc); 2229 status &= ~BD_ENET_TX_STATS; 2230 2231 index = fec_enet_get_bd_index(bdp, &txq->bd); 2232 dma = xsk_buff_xdp_get_frame_dma(xsk) + headroom + offset; 2233 2234 xsk_buff_raw_dma_sync_for_device(txq->xsk_pool, dma, len); 2235 2236 txq->tx_buf[index].buf_p = xsk; 2237 txq->tx_buf[index].type = FEC_TXBUF_T_XSK_TX; 2238 2239 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 2240 if (fep->bufdesc_ex) 2241 estatus = BD_ENET_TX_INT; 2242 2243 bdp->cbd_bufaddr = cpu_to_fec32(dma); 2244 bdp->cbd_datlen = cpu_to_fec16(len); 2245 2246 if (fep->bufdesc_ex) { 2247 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2248 2249 if (fep->quirks & FEC_QUIRK_HAS_AVB) 2250 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 2251 2252 ebdp->cbd_bdu = 0; 2253 ebdp->cbd_esc = cpu_to_fec32(estatus); 2254 } 2255 2256 dma_wmb(); 2257 status |= BD_ENET_TX_READY | BD_ENET_TX_TC; 2258 bdp->cbd_sc = cpu_to_fec16(status); 2259 dma_wmb(); 2260 2261 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2262 txq->bd.cur = bdp; 2263 2264 __netif_tx_unlock(nq); 2265 2266 return 0; 2267 } 2268 2269 static int fec_enet_rx_queue_xsk(struct fec_enet_private *fep, int queue, 2270 int budget, struct bpf_prog *prog) 2271 { 2272 u32 data_start = FEC_ENET_XDP_HEADROOM + fep->rx_shift; 2273 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue]; 2274 struct net_device *ndev = fep->netdev; 2275 struct bufdesc *bdp = rxq->bd.cur; 2276 u32 sub_len = 4 + fep->rx_shift; 2277 int cpu = smp_processor_id(); 2278 bool wakeup_xsk = false; 2279 struct xdp_buff *xsk; 2280 int pkt_received = 0; 2281 struct sk_buff *skb; 2282 u16 status, pkt_len; 2283 u32 xdp_res = 0; 2284 int index, err; 2285 u32 act; 2286 2287 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 2288 /* 2289 * Hacky flush of all caches instead of using the DMA API for the TSO 2290 * headers. 2291 */ 2292 flush_cache_all(); 2293 #endif 2294 2295 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 2296 if (unlikely(pkt_received >= budget)) 2297 break; 2298 2299 writel(FEC_ENET_RXF_GET(queue), fep->hwp + FEC_IEVENT); 2300 2301 index = fec_enet_get_bd_index(bdp, &rxq->bd); 2302 xsk = rxq->rx_buf[index].xdp; 2303 if (unlikely(!xsk)) { 2304 if (fec_enet_update_cbd_zc(rxq, bdp, index)) 2305 break; 2306 2307 if (fep->bufdesc_ex) { 2308 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2309 2310 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2311 ebdp->cbd_prot = 0; 2312 ebdp->cbd_bdu = 0; 2313 } 2314 2315 dma_wmb(); 2316 status &= ~BD_ENET_RX_STATS; 2317 status |= BD_ENET_RX_EMPTY; 2318 bdp->cbd_sc = cpu_to_fec16(status); 2319 break; 2320 } 2321 2322 pkt_received++; 2323 /* Check for errors. */ 2324 status ^= BD_ENET_RX_LAST; 2325 if (unlikely(fec_rx_error_check(ndev, status))) 2326 goto rx_processing_done; 2327 2328 /* Process the incoming frame. */ 2329 ndev->stats.rx_packets++; 2330 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 2331 ndev->stats.rx_bytes += pkt_len - fep->rx_shift; 2332 2333 if (fec_enet_update_cbd_zc(rxq, bdp, index)) { 2334 ndev->stats.rx_dropped++; 2335 goto rx_processing_done; 2336 } 2337 2338 pkt_len -= sub_len; 2339 xsk->data = xsk->data_hard_start + data_start; 2340 /* Subtract FCS and 16bit shift */ 2341 xsk->data_end = xsk->data + pkt_len; 2342 xsk->data_meta = xsk->data; 2343 xsk_buff_dma_sync_for_cpu(xsk); 2344 2345 /* If the XSK pool is enabled before the bpf program is 2346 * installed, or the bpf program is uninstalled before 2347 * the XSK pool is disabled. prog will be NULL and we 2348 * need to set a default XDP_PASS action. 2349 */ 2350 if (unlikely(!prog)) 2351 act = XDP_PASS; 2352 else 2353 act = bpf_prog_run_xdp(prog, xsk); 2354 2355 switch (act) { 2356 case XDP_PASS: 2357 rxq->stats[RX_XDP_PASS]++; 2358 skb = fec_build_skb_zc(xsk, &fep->napi); 2359 if (unlikely(!skb)) { 2360 ndev->stats.rx_dropped++; 2361 trace_xdp_exception(ndev, prog, XDP_PASS); 2362 } else { 2363 napi_gro_receive(&fep->napi, skb); 2364 } 2365 2366 break; 2367 case XDP_TX: 2368 rxq->stats[RX_XDP_TX]++; 2369 err = fec_enet_xsk_tx_xmit(fep, xsk, cpu, queue); 2370 if (unlikely(err)) { 2371 rxq->stats[RX_XDP_TX_ERRORS]++; 2372 xsk_buff_free(xsk); 2373 trace_xdp_exception(ndev, prog, XDP_TX); 2374 } else { 2375 xdp_res |= FEC_ENET_XDP_TX; 2376 } 2377 break; 2378 case XDP_REDIRECT: 2379 rxq->stats[RX_XDP_REDIRECT]++; 2380 err = xdp_do_redirect(ndev, xsk, prog); 2381 if (unlikely(err)) { 2382 if (err == -ENOBUFS) 2383 wakeup_xsk = true; 2384 2385 rxq->stats[RX_XDP_DROP]++; 2386 xsk_buff_free(xsk); 2387 trace_xdp_exception(ndev, prog, XDP_REDIRECT); 2388 } else { 2389 xdp_res |= FEC_ENET_XDP_REDIR; 2390 } 2391 break; 2392 default: 2393 bpf_warn_invalid_xdp_action(ndev, prog, act); 2394 fallthrough; 2395 case XDP_ABORTED: 2396 trace_xdp_exception(ndev, prog, act); 2397 fallthrough; 2398 case XDP_DROP: 2399 rxq->stats[RX_XDP_DROP]++; 2400 xsk_buff_free(xsk); 2401 break; 2402 } 2403 2404 rx_processing_done: 2405 /* Clear the status flags for this buffer */ 2406 status &= ~BD_ENET_RX_STATS; 2407 /* Mark the buffer empty */ 2408 status |= BD_ENET_RX_EMPTY; 2409 2410 if (fep->bufdesc_ex) { 2411 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2412 2413 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2414 ebdp->cbd_prot = 0; 2415 ebdp->cbd_bdu = 0; 2416 } 2417 2418 /* Make sure the updates to rest of the descriptor are 2419 * performed before transferring ownership. 2420 */ 2421 dma_wmb(); 2422 bdp->cbd_sc = cpu_to_fec16(status); 2423 2424 /* Update BD pointer to next entry */ 2425 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2426 2427 /* Doing this here will keep the FEC running while we process 2428 * incoming frames. On a heavily loaded network, we should be 2429 * able to keep up at the expense of system resources. 2430 */ 2431 writel(0, rxq->bd.reg_desc_active); 2432 } 2433 2434 rxq->bd.cur = bdp; 2435 2436 if (xdp_res & FEC_ENET_XDP_REDIR) 2437 xdp_do_flush(); 2438 2439 if (xdp_res & FEC_ENET_XDP_TX) 2440 fec_txq_trigger_xmit(fep, fep->tx_queue[queue]); 2441 2442 if (rxq->xsk_pool && xsk_uses_need_wakeup(rxq->xsk_pool)) { 2443 if (wakeup_xsk) 2444 xsk_set_rx_need_wakeup(rxq->xsk_pool); 2445 else 2446 xsk_clear_rx_need_wakeup(rxq->xsk_pool); 2447 } 2448 2449 return pkt_received; 2450 } 2451 2452 static int fec_enet_rx(struct net_device *ndev, int budget) 2453 { 2454 struct fec_enet_private *fep = netdev_priv(ndev); 2455 struct bpf_prog *prog = READ_ONCE(fep->xdp_prog); 2456 int i, done = 0; 2457 2458 /* Make sure that AVB queues are processed first. */ 2459 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2460 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 2461 int batch = budget - done; 2462 2463 if (rxq->xsk_pool) 2464 done += fec_enet_rx_queue_xsk(fep, i, batch, prog); 2465 else if (prog) 2466 done += fec_enet_rx_queue_xdp(fep, i, batch, prog); 2467 else 2468 done += fec_enet_rx_queue(fep, i, batch); 2469 } 2470 2471 return done; 2472 } 2473 2474 static bool fec_enet_collect_events(struct fec_enet_private *fep) 2475 { 2476 uint int_events; 2477 2478 int_events = readl(fep->hwp + FEC_IEVENT); 2479 2480 /* Don't clear MDIO events, we poll for those */ 2481 int_events &= ~FEC_ENET_MII; 2482 2483 writel(int_events, fep->hwp + FEC_IEVENT); 2484 2485 return int_events != 0; 2486 } 2487 2488 static irqreturn_t 2489 fec_enet_interrupt(int irq, void *dev_id) 2490 { 2491 struct net_device *ndev = dev_id; 2492 struct fec_enet_private *fep = netdev_priv(ndev); 2493 irqreturn_t ret = IRQ_NONE; 2494 2495 if (fec_enet_collect_events(fep) && fep->link) { 2496 ret = IRQ_HANDLED; 2497 2498 if (napi_schedule_prep(&fep->napi)) { 2499 /* Disable interrupts */ 2500 writel(0, fep->hwp + FEC_IMASK); 2501 __napi_schedule(&fep->napi); 2502 } 2503 } 2504 2505 return ret; 2506 } 2507 2508 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 2509 { 2510 struct net_device *ndev = napi->dev; 2511 struct fec_enet_private *fep = netdev_priv(ndev); 2512 int rx_done = 0, tx_done = 0; 2513 int max_done; 2514 2515 do { 2516 rx_done += fec_enet_rx(ndev, budget - rx_done); 2517 tx_done += fec_enet_tx(ndev, budget); 2518 max_done = max(rx_done, tx_done); 2519 } while ((max_done < budget) && fec_enet_collect_events(fep)); 2520 2521 if (max_done < budget) { 2522 napi_complete_done(napi, max_done); 2523 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 2524 return max_done; 2525 } 2526 2527 return budget; 2528 } 2529 2530 /* ------------------------------------------------------------------------- */ 2531 static int fec_get_mac(struct net_device *ndev) 2532 { 2533 struct fec_enet_private *fep = netdev_priv(ndev); 2534 unsigned char *iap, tmpaddr[ETH_ALEN]; 2535 int ret; 2536 2537 /* 2538 * try to get mac address in following order: 2539 * 2540 * 1) module parameter via kernel command line in form 2541 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 2542 */ 2543 iap = macaddr; 2544 2545 /* 2546 * 2) from device tree data 2547 */ 2548 if (!is_valid_ether_addr(iap)) { 2549 struct device_node *np = fep->pdev->dev.of_node; 2550 if (np) { 2551 ret = of_get_mac_address(np, tmpaddr); 2552 if (!ret) 2553 iap = tmpaddr; 2554 else if (ret == -EPROBE_DEFER) 2555 return ret; 2556 } 2557 } 2558 2559 /* 2560 * 3) from flash or fuse (via platform data) 2561 */ 2562 if (!is_valid_ether_addr(iap)) { 2563 #ifdef CONFIG_M5272 2564 if (FEC_FLASHMAC) 2565 iap = (unsigned char *)FEC_FLASHMAC; 2566 #else 2567 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 2568 2569 if (pdata) 2570 iap = (unsigned char *)&pdata->mac; 2571 #endif 2572 } 2573 2574 /* 2575 * 4) FEC mac registers set by bootloader 2576 */ 2577 if (!is_valid_ether_addr(iap)) { 2578 *((__be32 *) &tmpaddr[0]) = 2579 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 2580 *((__be16 *) &tmpaddr[4]) = 2581 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 2582 iap = &tmpaddr[0]; 2583 } 2584 2585 /* 2586 * 5) random mac address 2587 */ 2588 if (!is_valid_ether_addr(iap)) { 2589 /* Report it and use a random ethernet address instead */ 2590 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 2591 eth_hw_addr_random(ndev); 2592 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 2593 ndev->dev_addr); 2594 return 0; 2595 } 2596 2597 /* Adjust MAC if using macaddr */ 2598 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 2599 2600 return 0; 2601 } 2602 2603 /* ------------------------------------------------------------------------- */ 2604 2605 /* 2606 * Phy section 2607 */ 2608 2609 /* LPI Sleep Ts count base on tx clk (clk_ref). 2610 * The lpi sleep cnt value = X us / (cycle_ns). 2611 */ 2612 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 2613 { 2614 struct fec_enet_private *fep = netdev_priv(ndev); 2615 2616 return us * (fep->clk_ref_rate / 1000) / 1000; 2617 } 2618 2619 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer, 2620 bool enable) 2621 { 2622 struct fec_enet_private *fep = netdev_priv(ndev); 2623 unsigned int sleep_cycle, wake_cycle; 2624 2625 if (enable) { 2626 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer); 2627 wake_cycle = sleep_cycle; 2628 } else { 2629 sleep_cycle = 0; 2630 wake_cycle = 0; 2631 } 2632 2633 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 2634 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 2635 2636 return 0; 2637 } 2638 2639 static void fec_enet_adjust_link(struct net_device *ndev) 2640 { 2641 struct fec_enet_private *fep = netdev_priv(ndev); 2642 struct phy_device *phy_dev = ndev->phydev; 2643 int status_change = 0; 2644 2645 /* 2646 * If the netdev is down, or is going down, we're not interested 2647 * in link state events, so just mark our idea of the link as down 2648 * and ignore the event. 2649 */ 2650 if (!netif_running(ndev) || !netif_device_present(ndev)) { 2651 fep->link = 0; 2652 } else if (phy_dev->link) { 2653 if (!fep->link) { 2654 fep->link = phy_dev->link; 2655 status_change = 1; 2656 } 2657 2658 if (fep->full_duplex != phy_dev->duplex) { 2659 fep->full_duplex = phy_dev->duplex; 2660 status_change = 1; 2661 } 2662 2663 if (phy_dev->speed != fep->speed) { 2664 fep->speed = phy_dev->speed; 2665 status_change = 1; 2666 } 2667 2668 /* if any of the above changed restart the FEC */ 2669 if (status_change) { 2670 netif_stop_queue(ndev); 2671 napi_disable(&fep->napi); 2672 netif_tx_lock_bh(ndev); 2673 fec_restart(ndev); 2674 netif_tx_wake_all_queues(ndev); 2675 netif_tx_unlock_bh(ndev); 2676 napi_enable(&fep->napi); 2677 } 2678 if (fep->quirks & FEC_QUIRK_HAS_EEE) 2679 fec_enet_eee_mode_set(ndev, 2680 phy_dev->eee_cfg.tx_lpi_timer, 2681 phy_dev->enable_tx_lpi); 2682 } else { 2683 if (fep->link) { 2684 netif_stop_queue(ndev); 2685 napi_disable(&fep->napi); 2686 netif_tx_lock_bh(ndev); 2687 fec_stop(ndev); 2688 netif_tx_unlock_bh(ndev); 2689 napi_enable(&fep->napi); 2690 fep->link = phy_dev->link; 2691 status_change = 1; 2692 } 2693 } 2694 2695 if (status_change) 2696 phy_print_status(phy_dev); 2697 } 2698 2699 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2700 { 2701 uint ievent; 2702 int ret; 2703 2704 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2705 ievent & FEC_ENET_MII, 2, 30000); 2706 2707 if (!ret) 2708 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2709 2710 return ret; 2711 } 2712 2713 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2714 { 2715 struct fec_enet_private *fep = bus->priv; 2716 struct device *dev = &fep->pdev->dev; 2717 int ret = 0, frame_start, frame_addr, frame_op; 2718 2719 ret = pm_runtime_resume_and_get(dev); 2720 if (ret < 0) 2721 return ret; 2722 2723 /* C22 read */ 2724 frame_op = FEC_MMFR_OP_READ; 2725 frame_start = FEC_MMFR_ST; 2726 frame_addr = regnum; 2727 2728 /* start a read op */ 2729 writel(frame_start | frame_op | 2730 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2731 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2732 2733 /* wait for end of transfer */ 2734 ret = fec_enet_mdio_wait(fep); 2735 if (ret) { 2736 netdev_err(fep->netdev, "MDIO read timeout\n"); 2737 goto out; 2738 } 2739 2740 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2741 2742 out: 2743 pm_runtime_put_autosuspend(dev); 2744 2745 return ret; 2746 } 2747 2748 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2749 int devad, int regnum) 2750 { 2751 struct fec_enet_private *fep = bus->priv; 2752 struct device *dev = &fep->pdev->dev; 2753 int ret = 0, frame_start, frame_op; 2754 2755 ret = pm_runtime_resume_and_get(dev); 2756 if (ret < 0) 2757 return ret; 2758 2759 frame_start = FEC_MMFR_ST_C45; 2760 2761 /* write address */ 2762 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2763 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2764 FEC_MMFR_TA | (regnum & 0xFFFF), 2765 fep->hwp + FEC_MII_DATA); 2766 2767 /* wait for end of transfer */ 2768 ret = fec_enet_mdio_wait(fep); 2769 if (ret) { 2770 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2771 goto out; 2772 } 2773 2774 frame_op = FEC_MMFR_OP_READ_C45; 2775 2776 /* start a read op */ 2777 writel(frame_start | frame_op | 2778 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2779 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2780 2781 /* wait for end of transfer */ 2782 ret = fec_enet_mdio_wait(fep); 2783 if (ret) { 2784 netdev_err(fep->netdev, "MDIO read timeout\n"); 2785 goto out; 2786 } 2787 2788 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2789 2790 out: 2791 pm_runtime_put_autosuspend(dev); 2792 2793 return ret; 2794 } 2795 2796 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2797 u16 value) 2798 { 2799 struct fec_enet_private *fep = bus->priv; 2800 struct device *dev = &fep->pdev->dev; 2801 int ret, frame_start, frame_addr; 2802 2803 ret = pm_runtime_resume_and_get(dev); 2804 if (ret < 0) 2805 return ret; 2806 2807 /* C22 write */ 2808 frame_start = FEC_MMFR_ST; 2809 frame_addr = regnum; 2810 2811 /* start a write op */ 2812 writel(frame_start | FEC_MMFR_OP_WRITE | 2813 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2814 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2815 fep->hwp + FEC_MII_DATA); 2816 2817 /* wait for end of transfer */ 2818 ret = fec_enet_mdio_wait(fep); 2819 if (ret) 2820 netdev_err(fep->netdev, "MDIO write timeout\n"); 2821 2822 pm_runtime_put_autosuspend(dev); 2823 2824 return ret; 2825 } 2826 2827 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2828 int devad, int regnum, u16 value) 2829 { 2830 struct fec_enet_private *fep = bus->priv; 2831 struct device *dev = &fep->pdev->dev; 2832 int ret, frame_start; 2833 2834 ret = pm_runtime_resume_and_get(dev); 2835 if (ret < 0) 2836 return ret; 2837 2838 frame_start = FEC_MMFR_ST_C45; 2839 2840 /* write address */ 2841 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2842 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2843 FEC_MMFR_TA | (regnum & 0xFFFF), 2844 fep->hwp + FEC_MII_DATA); 2845 2846 /* wait for end of transfer */ 2847 ret = fec_enet_mdio_wait(fep); 2848 if (ret) { 2849 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2850 goto out; 2851 } 2852 2853 /* start a write op */ 2854 writel(frame_start | FEC_MMFR_OP_WRITE | 2855 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2856 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2857 fep->hwp + FEC_MII_DATA); 2858 2859 /* wait for end of transfer */ 2860 ret = fec_enet_mdio_wait(fep); 2861 if (ret) 2862 netdev_err(fep->netdev, "MDIO write timeout\n"); 2863 2864 out: 2865 pm_runtime_put_autosuspend(dev); 2866 2867 return ret; 2868 } 2869 2870 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2871 { 2872 struct fec_enet_private *fep = netdev_priv(ndev); 2873 struct phy_device *phy_dev = ndev->phydev; 2874 2875 if (phy_dev) { 2876 phy_reset_after_clk_enable(phy_dev); 2877 } else if (fep->phy_node) { 2878 /* 2879 * If the PHY still is not bound to the MAC, but there is 2880 * OF PHY node and a matching PHY device instance already, 2881 * use the OF PHY node to obtain the PHY device instance, 2882 * and then use that PHY device instance when triggering 2883 * the PHY reset. 2884 */ 2885 phy_dev = of_phy_find_device(fep->phy_node); 2886 phy_reset_after_clk_enable(phy_dev); 2887 if (phy_dev) 2888 put_device(&phy_dev->mdio.dev); 2889 } 2890 } 2891 2892 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2893 { 2894 struct fec_enet_private *fep = netdev_priv(ndev); 2895 int ret; 2896 2897 if (enable) { 2898 ret = clk_prepare_enable(fep->clk_enet_out); 2899 if (ret) 2900 return ret; 2901 2902 if (fep->clk_ptp) { 2903 mutex_lock(&fep->ptp_clk_mutex); 2904 ret = clk_prepare_enable(fep->clk_ptp); 2905 if (ret) { 2906 mutex_unlock(&fep->ptp_clk_mutex); 2907 goto failed_clk_ptp; 2908 } else { 2909 fep->ptp_clk_on = true; 2910 } 2911 mutex_unlock(&fep->ptp_clk_mutex); 2912 } 2913 2914 ret = clk_prepare_enable(fep->clk_ref); 2915 if (ret) 2916 goto failed_clk_ref; 2917 2918 ret = clk_prepare_enable(fep->clk_2x_txclk); 2919 if (ret) 2920 goto failed_clk_2x_txclk; 2921 2922 fec_enet_phy_reset_after_clk_enable(ndev); 2923 } else { 2924 clk_disable_unprepare(fep->clk_enet_out); 2925 if (fep->clk_ptp) { 2926 mutex_lock(&fep->ptp_clk_mutex); 2927 clk_disable_unprepare(fep->clk_ptp); 2928 fep->ptp_clk_on = false; 2929 mutex_unlock(&fep->ptp_clk_mutex); 2930 } 2931 clk_disable_unprepare(fep->clk_ref); 2932 clk_disable_unprepare(fep->clk_2x_txclk); 2933 } 2934 2935 return 0; 2936 2937 failed_clk_2x_txclk: 2938 if (fep->clk_ref) 2939 clk_disable_unprepare(fep->clk_ref); 2940 failed_clk_ref: 2941 if (fep->clk_ptp) { 2942 mutex_lock(&fep->ptp_clk_mutex); 2943 clk_disable_unprepare(fep->clk_ptp); 2944 fep->ptp_clk_on = false; 2945 mutex_unlock(&fep->ptp_clk_mutex); 2946 } 2947 failed_clk_ptp: 2948 clk_disable_unprepare(fep->clk_enet_out); 2949 2950 return ret; 2951 } 2952 2953 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2954 struct device_node *np) 2955 { 2956 u32 rgmii_tx_delay, rgmii_rx_delay; 2957 2958 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2959 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2960 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2961 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2962 return -EINVAL; 2963 } else if (rgmii_tx_delay == 2000) { 2964 fep->rgmii_txc_dly = true; 2965 } 2966 } 2967 2968 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2969 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2970 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2971 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2972 return -EINVAL; 2973 } else if (rgmii_rx_delay == 2000) { 2974 fep->rgmii_rxc_dly = true; 2975 } 2976 } 2977 2978 return 0; 2979 } 2980 2981 static int fec_enet_mii_probe(struct net_device *ndev) 2982 { 2983 struct fec_enet_private *fep = netdev_priv(ndev); 2984 struct phy_device *phy_dev; 2985 int ret; 2986 2987 if (fep->phy_node) { 2988 phy_dev = of_phy_connect(ndev, fep->phy_node, 2989 &fec_enet_adjust_link, 0, 2990 fep->phy_interface); 2991 if (!phy_dev) { 2992 netdev_err(ndev, "Unable to connect to phy\n"); 2993 return -ENODEV; 2994 } 2995 } else { 2996 /* check for attached phy */ 2997 phy_dev = phy_find_first(fep->mii_bus); 2998 if (fep->dev_id && phy_dev) 2999 phy_dev = phy_find_next(fep->mii_bus, phy_dev); 3000 3001 if (!phy_dev) { 3002 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 3003 phy_dev = fixed_phy_register_100fd(); 3004 if (IS_ERR(phy_dev)) { 3005 netdev_err(ndev, "could not register fixed PHY\n"); 3006 return PTR_ERR(phy_dev); 3007 } 3008 } 3009 3010 ret = phy_connect_direct(ndev, phy_dev, &fec_enet_adjust_link, 3011 fep->phy_interface); 3012 if (ret) { 3013 if (phy_is_pseudo_fixed_link(phy_dev)) 3014 fixed_phy_unregister(phy_dev); 3015 netdev_err(ndev, "could not attach to PHY\n"); 3016 return ret; 3017 } 3018 3019 } 3020 3021 /* mask with MAC supported features */ 3022 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 3023 phy_set_max_speed(phy_dev, 1000); 3024 phy_remove_link_mode(phy_dev, 3025 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 3026 phy_support_sym_pause(phy_dev); 3027 } 3028 else 3029 phy_set_max_speed(phy_dev, 100); 3030 3031 if (fep->quirks & FEC_QUIRK_HAS_EEE) 3032 phy_support_eee(phy_dev); 3033 3034 fep->link = 0; 3035 fep->full_duplex = 0; 3036 3037 phy_attached_info(phy_dev); 3038 3039 return 0; 3040 } 3041 3042 static int fec_enet_mii_init(struct platform_device *pdev) 3043 { 3044 static struct mii_bus *fec0_mii_bus; 3045 struct net_device *ndev = platform_get_drvdata(pdev); 3046 struct fec_enet_private *fep = netdev_priv(ndev); 3047 bool suppress_preamble = false; 3048 struct phy_device *phydev; 3049 struct device_node *node; 3050 int err = -ENXIO; 3051 u32 mii_speed, holdtime; 3052 u32 bus_freq; 3053 3054 /* 3055 * The i.MX28 dual fec interfaces are not equal. 3056 * Here are the differences: 3057 * 3058 * - fec0 supports MII & RMII modes while fec1 only supports RMII 3059 * - fec0 acts as the 1588 time master while fec1 is slave 3060 * - external phys can only be configured by fec0 3061 * 3062 * That is to say fec1 can not work independently. It only works 3063 * when fec0 is working. The reason behind this design is that the 3064 * second interface is added primarily for Switch mode. 3065 * 3066 * Because of the last point above, both phys are attached on fec0 3067 * mdio interface in board design, and need to be configured by 3068 * fec0 mii_bus. 3069 */ 3070 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 3071 /* fec1 uses fec0 mii_bus */ 3072 if (mii_cnt && fec0_mii_bus) { 3073 fep->mii_bus = fec0_mii_bus; 3074 mii_cnt++; 3075 return 0; 3076 } 3077 return -ENOENT; 3078 } 3079 3080 bus_freq = 2500000; /* 2.5MHz by default */ 3081 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 3082 if (node) { 3083 of_property_read_u32(node, "clock-frequency", &bus_freq); 3084 suppress_preamble = of_property_read_bool(node, 3085 "suppress-preamble"); 3086 } 3087 3088 /* 3089 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 3090 * 3091 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 3092 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 3093 * Reference Manual has an error on this, and gets fixed on i.MX6Q 3094 * document. 3095 */ 3096 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 3097 if (fep->quirks & FEC_QUIRK_ENET_MAC) 3098 mii_speed--; 3099 if (mii_speed > 63) { 3100 dev_err(&pdev->dev, 3101 "fec clock (%lu) too fast to get right mii speed\n", 3102 clk_get_rate(fep->clk_ipg)); 3103 err = -EINVAL; 3104 goto err_out; 3105 } 3106 3107 /* 3108 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 3109 * MII_SPEED) register that defines the MDIO output hold time. Earlier 3110 * versions are RAZ there, so just ignore the difference and write the 3111 * register always. 3112 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 3113 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 3114 * output. 3115 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 3116 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 3117 * holdtime cannot result in a value greater than 3. 3118 */ 3119 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 3120 3121 fep->phy_speed = mii_speed << 1 | holdtime << 8; 3122 3123 if (suppress_preamble) 3124 fep->phy_speed |= BIT(7); 3125 3126 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 3127 /* Clear MMFR to avoid to generate MII event by writing MSCR. 3128 * MII event generation condition: 3129 * - writing MSCR: 3130 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 3131 * mscr_reg_data_in[7:0] != 0 3132 * - writing MMFR: 3133 * - mscr[7:0]_not_zero 3134 */ 3135 writel(0, fep->hwp + FEC_MII_DATA); 3136 } 3137 3138 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 3139 3140 /* Clear any pending transaction complete indication */ 3141 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 3142 3143 fep->mii_bus = mdiobus_alloc(); 3144 if (fep->mii_bus == NULL) { 3145 err = -ENOMEM; 3146 goto err_out; 3147 } 3148 3149 fep->mii_bus->name = "fec_enet_mii_bus"; 3150 fep->mii_bus->read = fec_enet_mdio_read_c22; 3151 fep->mii_bus->write = fec_enet_mdio_write_c22; 3152 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 3153 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 3154 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 3155 } 3156 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 3157 pdev->name, fep->dev_id + 1); 3158 fep->mii_bus->priv = fep; 3159 fep->mii_bus->parent = &pdev->dev; 3160 3161 err = of_mdiobus_register(fep->mii_bus, node); 3162 if (err) 3163 goto err_out_free_mdiobus; 3164 of_node_put(node); 3165 3166 /* find all the PHY devices on the bus and set mac_managed_pm to true */ 3167 mdiobus_for_each_phy(fep->mii_bus, phydev) 3168 phydev->mac_managed_pm = true; 3169 3170 mii_cnt++; 3171 3172 /* save fec0 mii_bus */ 3173 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 3174 fec0_mii_bus = fep->mii_bus; 3175 3176 return 0; 3177 3178 err_out_free_mdiobus: 3179 mdiobus_free(fep->mii_bus); 3180 err_out: 3181 of_node_put(node); 3182 return err; 3183 } 3184 3185 static void fec_enet_mii_remove(struct fec_enet_private *fep) 3186 { 3187 if (--mii_cnt == 0) { 3188 mdiobus_unregister(fep->mii_bus); 3189 mdiobus_free(fep->mii_bus); 3190 } 3191 } 3192 3193 static void fec_enet_get_drvinfo(struct net_device *ndev, 3194 struct ethtool_drvinfo *info) 3195 { 3196 struct fec_enet_private *fep = netdev_priv(ndev); 3197 3198 strscpy(info->driver, fep->pdev->dev.driver->name, 3199 sizeof(info->driver)); 3200 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 3201 } 3202 3203 static int fec_enet_get_regs_len(struct net_device *ndev) 3204 { 3205 struct fec_enet_private *fep = netdev_priv(ndev); 3206 struct resource *r; 3207 int s = 0; 3208 3209 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 3210 if (r) 3211 s = resource_size(r); 3212 3213 return s; 3214 } 3215 3216 /* List of registers that can be safety be read to dump them with ethtool */ 3217 #if !defined(CONFIG_M5272) || defined(CONFIG_COMPILE_TEST) 3218 static __u32 fec_enet_register_version = 2; 3219 static u32 fec_enet_register_offset[] = { 3220 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 3221 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 3222 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 3223 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 3224 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 3225 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 3226 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 3227 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 3228 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 3229 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 3230 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 3231 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 3232 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 3233 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 3234 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 3235 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 3236 RMON_T_P_GTE2048, RMON_T_OCTETS, 3237 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 3238 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 3239 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 3240 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 3241 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 3242 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 3243 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 3244 RMON_R_P_GTE2048, RMON_R_OCTETS, 3245 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 3246 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 3247 }; 3248 /* for i.MX6ul */ 3249 static u32 fec_enet_register_offset_6ul[] = { 3250 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 3251 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 3252 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 3253 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 3254 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 3255 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 3256 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 3257 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 3258 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 3259 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 3260 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 3261 RMON_T_P_GTE2048, RMON_T_OCTETS, 3262 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 3263 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 3264 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 3265 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 3266 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 3267 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 3268 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 3269 RMON_R_P_GTE2048, RMON_R_OCTETS, 3270 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 3271 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 3272 }; 3273 #else 3274 static __u32 fec_enet_register_version = 1; 3275 static u32 fec_enet_register_offset[] = { 3276 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 3277 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 3278 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 3279 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 3280 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 3281 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 3282 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 3283 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 3284 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 3285 }; 3286 #endif 3287 3288 static void fec_enet_get_regs(struct net_device *ndev, 3289 struct ethtool_regs *regs, void *regbuf) 3290 { 3291 u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 3292 struct fec_enet_private *fep = netdev_priv(ndev); 3293 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 3294 u32 *reg_list = fec_enet_register_offset; 3295 struct device *dev = &fep->pdev->dev; 3296 u32 *buf = (u32 *)regbuf; 3297 u32 i, off; 3298 int ret; 3299 3300 #if !defined(CONFIG_M5272) || defined(CONFIG_COMPILE_TEST) 3301 if (of_machine_is_compatible("fsl,imx6ul")) { 3302 reg_list = fec_enet_register_offset_6ul; 3303 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 3304 } 3305 #endif 3306 3307 ret = pm_runtime_resume_and_get(dev); 3308 if (ret < 0) 3309 return; 3310 3311 regs->version = fec_enet_register_version; 3312 3313 memset(buf, 0, regs->len); 3314 3315 for (i = 0; i < reg_cnt; i++) { 3316 off = reg_list[i]; 3317 3318 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 3319 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 3320 continue; 3321 3322 off >>= 2; 3323 buf[off] = readl(&theregs[off]); 3324 } 3325 3326 pm_runtime_put_autosuspend(dev); 3327 } 3328 3329 static int fec_enet_get_ts_info(struct net_device *ndev, 3330 struct kernel_ethtool_ts_info *info) 3331 { 3332 struct fec_enet_private *fep = netdev_priv(ndev); 3333 3334 if (fep->bufdesc_ex) { 3335 3336 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 3337 SOF_TIMESTAMPING_TX_HARDWARE | 3338 SOF_TIMESTAMPING_RX_HARDWARE | 3339 SOF_TIMESTAMPING_RAW_HARDWARE; 3340 if (fep->ptp_clock) 3341 info->phc_index = ptp_clock_index(fep->ptp_clock); 3342 3343 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 3344 (1 << HWTSTAMP_TX_ON); 3345 3346 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 3347 (1 << HWTSTAMP_FILTER_ALL); 3348 return 0; 3349 } else { 3350 return ethtool_op_get_ts_info(ndev, info); 3351 } 3352 } 3353 3354 #if !defined(CONFIG_M5272) 3355 3356 static void fec_enet_get_pauseparam(struct net_device *ndev, 3357 struct ethtool_pauseparam *pause) 3358 { 3359 struct fec_enet_private *fep = netdev_priv(ndev); 3360 3361 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 3362 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 3363 pause->rx_pause = pause->tx_pause; 3364 } 3365 3366 static int fec_enet_set_pauseparam(struct net_device *ndev, 3367 struct ethtool_pauseparam *pause) 3368 { 3369 struct fec_enet_private *fep = netdev_priv(ndev); 3370 3371 if (!ndev->phydev) 3372 return -ENODEV; 3373 3374 if (pause->tx_pause != pause->rx_pause) { 3375 netdev_info(ndev, 3376 "hardware only support enable/disable both tx and rx"); 3377 return -EINVAL; 3378 } 3379 3380 fep->pause_flag = 0; 3381 3382 /* tx pause must be same as rx pause */ 3383 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 3384 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 3385 3386 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 3387 pause->autoneg); 3388 3389 if (pause->autoneg) { 3390 if (netif_running(ndev)) 3391 fec_stop(ndev); 3392 phy_start_aneg(ndev->phydev); 3393 } 3394 if (netif_running(ndev)) { 3395 napi_disable(&fep->napi); 3396 netif_tx_lock_bh(ndev); 3397 fec_restart(ndev); 3398 netif_tx_wake_all_queues(ndev); 3399 netif_tx_unlock_bh(ndev); 3400 napi_enable(&fep->napi); 3401 } 3402 3403 return 0; 3404 } 3405 3406 static const struct fec_stat { 3407 char name[ETH_GSTRING_LEN]; 3408 u16 offset; 3409 } fec_stats[] = { 3410 /* RMON TX */ 3411 { "tx_dropped", RMON_T_DROP }, 3412 { "tx_packets", RMON_T_PACKETS }, 3413 { "tx_broadcast", RMON_T_BC_PKT }, 3414 { "tx_multicast", RMON_T_MC_PKT }, 3415 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 3416 { "tx_undersize", RMON_T_UNDERSIZE }, 3417 { "tx_oversize", RMON_T_OVERSIZE }, 3418 { "tx_fragment", RMON_T_FRAG }, 3419 { "tx_jabber", RMON_T_JAB }, 3420 { "tx_collision", RMON_T_COL }, 3421 { "tx_64byte", RMON_T_P64 }, 3422 { "tx_65to127byte", RMON_T_P65TO127 }, 3423 { "tx_128to255byte", RMON_T_P128TO255 }, 3424 { "tx_256to511byte", RMON_T_P256TO511 }, 3425 { "tx_512to1023byte", RMON_T_P512TO1023 }, 3426 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 3427 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 3428 { "tx_octets", RMON_T_OCTETS }, 3429 3430 /* IEEE TX */ 3431 { "IEEE_tx_drop", IEEE_T_DROP }, 3432 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 3433 { "IEEE_tx_1col", IEEE_T_1COL }, 3434 { "IEEE_tx_mcol", IEEE_T_MCOL }, 3435 { "IEEE_tx_def", IEEE_T_DEF }, 3436 { "IEEE_tx_lcol", IEEE_T_LCOL }, 3437 { "IEEE_tx_excol", IEEE_T_EXCOL }, 3438 { "IEEE_tx_macerr", IEEE_T_MACERR }, 3439 { "IEEE_tx_cserr", IEEE_T_CSERR }, 3440 { "IEEE_tx_sqe", IEEE_T_SQE }, 3441 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 3442 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 3443 3444 /* RMON RX */ 3445 { "rx_packets", RMON_R_PACKETS }, 3446 { "rx_broadcast", RMON_R_BC_PKT }, 3447 { "rx_multicast", RMON_R_MC_PKT }, 3448 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 3449 { "rx_undersize", RMON_R_UNDERSIZE }, 3450 { "rx_oversize", RMON_R_OVERSIZE }, 3451 { "rx_fragment", RMON_R_FRAG }, 3452 { "rx_jabber", RMON_R_JAB }, 3453 { "rx_64byte", RMON_R_P64 }, 3454 { "rx_65to127byte", RMON_R_P65TO127 }, 3455 { "rx_128to255byte", RMON_R_P128TO255 }, 3456 { "rx_256to511byte", RMON_R_P256TO511 }, 3457 { "rx_512to1023byte", RMON_R_P512TO1023 }, 3458 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 3459 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 3460 { "rx_octets", RMON_R_OCTETS }, 3461 3462 /* IEEE RX */ 3463 { "IEEE_rx_drop", IEEE_R_DROP }, 3464 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 3465 { "IEEE_rx_crc", IEEE_R_CRC }, 3466 { "IEEE_rx_align", IEEE_R_ALIGN }, 3467 { "IEEE_rx_macerr", IEEE_R_MACERR }, 3468 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 3469 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 3470 }; 3471 3472 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 3473 3474 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 3475 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 3476 "rx_xdp_pass", /* RX_XDP_PASS, */ 3477 "rx_xdp_drop", /* RX_XDP_DROP, */ 3478 "rx_xdp_tx", /* RX_XDP_TX, */ 3479 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 3480 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 3481 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 3482 }; 3483 3484 static void fec_enet_update_ethtool_stats(struct net_device *dev) 3485 { 3486 struct fec_enet_private *fep = netdev_priv(dev); 3487 int i; 3488 3489 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 3490 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 3491 } 3492 3493 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 3494 { 3495 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 3496 struct fec_enet_priv_rx_q *rxq; 3497 int i, j; 3498 3499 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 3500 rxq = fep->rx_queue[i]; 3501 3502 for (j = 0; j < XDP_STATS_TOTAL; j++) 3503 xdp_stats[j] += rxq->stats[j]; 3504 } 3505 3506 memcpy(data, xdp_stats, sizeof(xdp_stats)); 3507 } 3508 3509 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 3510 { 3511 #ifdef CONFIG_PAGE_POOL_STATS 3512 struct page_pool_stats stats = {}; 3513 struct fec_enet_priv_rx_q *rxq; 3514 int i; 3515 3516 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 3517 rxq = fep->rx_queue[i]; 3518 3519 if (!rxq->page_pool) 3520 continue; 3521 3522 page_pool_get_stats(rxq->page_pool, &stats); 3523 } 3524 3525 page_pool_ethtool_stats_get(data, &stats); 3526 #endif 3527 } 3528 3529 static void fec_enet_get_ethtool_stats(struct net_device *dev, 3530 struct ethtool_stats *stats, u64 *data) 3531 { 3532 struct fec_enet_private *fep = netdev_priv(dev); 3533 3534 if (netif_running(dev)) 3535 fec_enet_update_ethtool_stats(dev); 3536 3537 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 3538 data += FEC_STATS_SIZE / sizeof(u64); 3539 3540 fec_enet_get_xdp_stats(fep, data); 3541 data += XDP_STATS_TOTAL; 3542 3543 fec_enet_page_pool_stats(fep, data); 3544 } 3545 3546 static void fec_enet_get_strings(struct net_device *netdev, 3547 u32 stringset, u8 *data) 3548 { 3549 int i; 3550 switch (stringset) { 3551 case ETH_SS_STATS: 3552 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 3553 ethtool_puts(&data, fec_stats[i].name); 3554 } 3555 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 3556 ethtool_puts(&data, fec_xdp_stat_strs[i]); 3557 } 3558 page_pool_ethtool_stats_get_strings(data); 3559 3560 break; 3561 case ETH_SS_TEST: 3562 net_selftest_get_strings(data); 3563 break; 3564 } 3565 } 3566 3567 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 3568 { 3569 int count; 3570 3571 switch (sset) { 3572 case ETH_SS_STATS: 3573 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 3574 count += page_pool_ethtool_stats_get_count(); 3575 return count; 3576 3577 case ETH_SS_TEST: 3578 return net_selftest_get_count(); 3579 default: 3580 return -EOPNOTSUPP; 3581 } 3582 } 3583 3584 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 3585 { 3586 struct fec_enet_private *fep = netdev_priv(dev); 3587 struct fec_enet_priv_rx_q *rxq; 3588 int i, j; 3589 3590 /* Disable MIB statistics counters */ 3591 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 3592 3593 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 3594 writel(0, fep->hwp + fec_stats[i].offset); 3595 3596 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 3597 rxq = fep->rx_queue[i]; 3598 for (j = 0; j < XDP_STATS_TOTAL; j++) 3599 rxq->stats[j] = 0; 3600 } 3601 3602 /* Don't disable MIB statistics counters */ 3603 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 3604 } 3605 3606 #else /* !defined(CONFIG_M5272) */ 3607 #define FEC_STATS_SIZE 0 3608 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 3609 { 3610 } 3611 3612 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 3613 { 3614 } 3615 #endif /* !defined(CONFIG_M5272) */ 3616 3617 /* ITR clock source is enet system clock (clk_ahb). 3618 * TCTT unit is cycle_ns * 64 cycle 3619 * So, the ICTT value = X us / (cycle_ns * 64) 3620 */ 3621 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 3622 { 3623 struct fec_enet_private *fep = netdev_priv(ndev); 3624 3625 return us * (fep->itr_clk_rate / 64000) / 1000; 3626 } 3627 3628 /* Set threshold for interrupt coalescing */ 3629 static void fec_enet_itr_coal_set(struct net_device *ndev) 3630 { 3631 struct fec_enet_private *fep = netdev_priv(ndev); 3632 u32 rx_itr = 0, tx_itr = 0; 3633 int rx_ictt, tx_ictt; 3634 3635 rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr); 3636 tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr); 3637 3638 if (rx_ictt > 0 && fep->rx_pkts_itr > 1) { 3639 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */ 3640 rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL; 3641 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3642 rx_itr |= FEC_ITR_ICTT(rx_ictt); 3643 } 3644 3645 if (tx_ictt > 0 && fep->tx_pkts_itr > 1) { 3646 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */ 3647 tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL; 3648 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3649 tx_itr |= FEC_ITR_ICTT(tx_ictt); 3650 } 3651 3652 writel(tx_itr, fep->hwp + FEC_TXIC0); 3653 writel(rx_itr, fep->hwp + FEC_RXIC0); 3654 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3655 writel(tx_itr, fep->hwp + FEC_TXIC1); 3656 writel(rx_itr, fep->hwp + FEC_RXIC1); 3657 writel(tx_itr, fep->hwp + FEC_TXIC2); 3658 writel(rx_itr, fep->hwp + FEC_RXIC2); 3659 } 3660 } 3661 3662 static int fec_enet_get_coalesce(struct net_device *ndev, 3663 struct ethtool_coalesce *ec, 3664 struct kernel_ethtool_coalesce *kernel_coal, 3665 struct netlink_ext_ack *extack) 3666 { 3667 struct fec_enet_private *fep = netdev_priv(ndev); 3668 3669 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3670 return -EOPNOTSUPP; 3671 3672 ec->rx_coalesce_usecs = fep->rx_time_itr; 3673 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3674 3675 ec->tx_coalesce_usecs = fep->tx_time_itr; 3676 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3677 3678 return 0; 3679 } 3680 3681 static int fec_enet_set_coalesce(struct net_device *ndev, 3682 struct ethtool_coalesce *ec, 3683 struct kernel_ethtool_coalesce *kernel_coal, 3684 struct netlink_ext_ack *extack) 3685 { 3686 struct fec_enet_private *fep = netdev_priv(ndev); 3687 struct device *dev = &fep->pdev->dev; 3688 unsigned int cycle; 3689 3690 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3691 return -EOPNOTSUPP; 3692 3693 if (ec->rx_max_coalesced_frames > 255) { 3694 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3695 return -EINVAL; 3696 } 3697 3698 if (ec->tx_max_coalesced_frames > 255) { 3699 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3700 return -EINVAL; 3701 } 3702 3703 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3704 if (cycle > 0xFFFF) { 3705 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3706 return -EINVAL; 3707 } 3708 3709 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3710 if (cycle > 0xFFFF) { 3711 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3712 return -EINVAL; 3713 } 3714 3715 fep->rx_time_itr = ec->rx_coalesce_usecs; 3716 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3717 3718 fep->tx_time_itr = ec->tx_coalesce_usecs; 3719 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3720 3721 fec_enet_itr_coal_set(ndev); 3722 3723 return 0; 3724 } 3725 3726 static int 3727 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata) 3728 { 3729 struct fec_enet_private *fep = netdev_priv(ndev); 3730 3731 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3732 return -EOPNOTSUPP; 3733 3734 if (!netif_running(ndev)) 3735 return -ENETDOWN; 3736 3737 return phy_ethtool_get_eee(ndev->phydev, edata); 3738 } 3739 3740 static int 3741 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata) 3742 { 3743 struct fec_enet_private *fep = netdev_priv(ndev); 3744 3745 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3746 return -EOPNOTSUPP; 3747 3748 if (!netif_running(ndev)) 3749 return -ENETDOWN; 3750 3751 return phy_ethtool_set_eee(ndev->phydev, edata); 3752 } 3753 3754 static void 3755 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3756 { 3757 struct fec_enet_private *fep = netdev_priv(ndev); 3758 3759 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3760 wol->supported = WAKE_MAGIC; 3761 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3762 } else { 3763 wol->supported = wol->wolopts = 0; 3764 } 3765 } 3766 3767 static int 3768 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3769 { 3770 struct fec_enet_private *fep = netdev_priv(ndev); 3771 3772 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3773 return -EINVAL; 3774 3775 if (wol->wolopts & ~WAKE_MAGIC) 3776 return -EINVAL; 3777 3778 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3779 if (device_may_wakeup(&ndev->dev)) 3780 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3781 else 3782 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3783 3784 return 0; 3785 } 3786 3787 static const struct ethtool_ops fec_enet_ethtool_ops = { 3788 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3789 ETHTOOL_COALESCE_MAX_FRAMES, 3790 .get_drvinfo = fec_enet_get_drvinfo, 3791 .get_regs_len = fec_enet_get_regs_len, 3792 .get_regs = fec_enet_get_regs, 3793 .nway_reset = phy_ethtool_nway_reset, 3794 .get_link = ethtool_op_get_link, 3795 .get_coalesce = fec_enet_get_coalesce, 3796 .set_coalesce = fec_enet_set_coalesce, 3797 #ifndef CONFIG_M5272 3798 .get_pauseparam = fec_enet_get_pauseparam, 3799 .set_pauseparam = fec_enet_set_pauseparam, 3800 .get_strings = fec_enet_get_strings, 3801 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3802 .get_sset_count = fec_enet_get_sset_count, 3803 #endif 3804 .get_ts_info = fec_enet_get_ts_info, 3805 .get_wol = fec_enet_get_wol, 3806 .set_wol = fec_enet_set_wol, 3807 .get_eee = fec_enet_get_eee, 3808 .set_eee = fec_enet_set_eee, 3809 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3810 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3811 .self_test = net_selftest, 3812 }; 3813 3814 static int fec_xdp_rxq_info_reg(struct fec_enet_private *fep, 3815 struct fec_enet_priv_rx_q *rxq) 3816 { 3817 struct net_device *ndev = fep->netdev; 3818 void *allocator; 3819 int type, err; 3820 3821 err = xdp_rxq_info_reg(&rxq->xdp_rxq, ndev, rxq->id, 0); 3822 if (err) { 3823 netdev_err(ndev, "Failed to register xdp rxq info\n"); 3824 return err; 3825 } 3826 3827 allocator = rxq->xsk_pool ? NULL : rxq->page_pool; 3828 type = rxq->xsk_pool ? MEM_TYPE_XSK_BUFF_POOL : MEM_TYPE_PAGE_POOL; 3829 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, type, allocator); 3830 if (err) { 3831 netdev_err(ndev, "Failed to register XDP mem model\n"); 3832 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3833 3834 return err; 3835 } 3836 3837 if (rxq->xsk_pool) 3838 xsk_pool_set_rxq_info(rxq->xsk_pool, &rxq->xdp_rxq); 3839 3840 return 0; 3841 } 3842 3843 static void fec_xdp_rxq_info_unreg(struct fec_enet_priv_rx_q *rxq) 3844 { 3845 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) { 3846 xdp_rxq_info_unreg_mem_model(&rxq->xdp_rxq); 3847 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3848 } 3849 } 3850 3851 static void fec_free_rxq_buffers(struct fec_enet_priv_rx_q *rxq) 3852 { 3853 bool xsk = !!rxq->xsk_pool; 3854 int i; 3855 3856 for (i = 0; i < rxq->bd.ring_size; i++) { 3857 union fec_rx_buffer *buf = &rxq->rx_buf[i]; 3858 3859 if (!buf->buf_p) 3860 continue; 3861 3862 if (xsk) 3863 xsk_buff_free(buf->xdp); 3864 else 3865 page_pool_put_full_page(rxq->page_pool, 3866 buf->page, false); 3867 3868 rxq->rx_buf[i].buf_p = NULL; 3869 } 3870 3871 if (!xsk) { 3872 page_pool_destroy(rxq->page_pool); 3873 rxq->page_pool = NULL; 3874 } 3875 } 3876 3877 static void fec_enet_free_buffers(struct net_device *ndev) 3878 { 3879 struct fec_enet_private *fep = netdev_priv(ndev); 3880 unsigned int i; 3881 struct fec_enet_priv_tx_q *txq; 3882 struct fec_enet_priv_rx_q *rxq; 3883 struct page *page; 3884 unsigned int q; 3885 3886 for (q = 0; q < fep->num_rx_queues; q++) { 3887 rxq = fep->rx_queue[q]; 3888 3889 fec_xdp_rxq_info_unreg(rxq); 3890 fec_free_rxq_buffers(rxq); 3891 3892 for (i = 0; i < XDP_STATS_TOTAL; i++) 3893 rxq->stats[i] = 0; 3894 } 3895 3896 for (q = 0; q < fep->num_tx_queues; q++) { 3897 txq = fep->tx_queue[q]; 3898 for (i = 0; i < txq->bd.ring_size; i++) { 3899 kfree(txq->tx_bounce[i]); 3900 txq->tx_bounce[i] = NULL; 3901 3902 switch (txq->tx_buf[i].type) { 3903 case FEC_TXBUF_T_SKB: 3904 dev_kfree_skb(txq->tx_buf[i].buf_p); 3905 break; 3906 case FEC_TXBUF_T_XDP_NDO: 3907 xdp_return_frame(txq->tx_buf[i].buf_p); 3908 break; 3909 case FEC_TXBUF_T_XDP_TX: 3910 page = txq->tx_buf[i].buf_p; 3911 page_pool_put_page(pp_page_to_nmdesc(page)->pp, 3912 page, 0, false); 3913 break; 3914 case FEC_TXBUF_T_XSK_TX: 3915 xsk_buff_free(txq->tx_buf[i].buf_p); 3916 break; 3917 default: 3918 break; 3919 } 3920 3921 txq->tx_buf[i].buf_p = NULL; 3922 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3923 } 3924 } 3925 } 3926 3927 static void fec_enet_free_queue(struct net_device *ndev) 3928 { 3929 struct fec_enet_private *fep = netdev_priv(ndev); 3930 int i; 3931 struct fec_enet_priv_tx_q *txq; 3932 3933 for (i = 0; i < fep->num_tx_queues; i++) 3934 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3935 txq = fep->tx_queue[i]; 3936 fec_dma_free(&fep->pdev->dev, 3937 txq->bd.ring_size * TSO_HEADER_SIZE, 3938 txq->tso_hdrs, txq->tso_hdrs_dma); 3939 } 3940 3941 for (i = 0; i < fep->num_rx_queues; i++) 3942 kfree(fep->rx_queue[i]); 3943 for (i = 0; i < fep->num_tx_queues; i++) 3944 kfree(fep->tx_queue[i]); 3945 } 3946 3947 static int fec_enet_alloc_queue(struct net_device *ndev) 3948 { 3949 struct fec_enet_private *fep = netdev_priv(ndev); 3950 int i; 3951 int ret = 0; 3952 struct fec_enet_priv_tx_q *txq; 3953 3954 for (i = 0; i < fep->num_tx_queues; i++) { 3955 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3956 if (!txq) { 3957 ret = -ENOMEM; 3958 goto alloc_failed; 3959 } 3960 3961 fep->tx_queue[i] = txq; 3962 txq->bd.ring_size = TX_RING_SIZE; 3963 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3964 3965 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3966 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3967 3968 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev, 3969 txq->bd.ring_size * TSO_HEADER_SIZE, 3970 &txq->tso_hdrs_dma, GFP_KERNEL); 3971 if (!txq->tso_hdrs) { 3972 ret = -ENOMEM; 3973 goto alloc_failed; 3974 } 3975 } 3976 3977 for (i = 0; i < fep->num_rx_queues; i++) { 3978 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3979 GFP_KERNEL); 3980 if (!fep->rx_queue[i]) { 3981 ret = -ENOMEM; 3982 goto alloc_failed; 3983 } 3984 3985 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3986 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3987 } 3988 return ret; 3989 3990 alloc_failed: 3991 fec_enet_free_queue(ndev); 3992 return ret; 3993 } 3994 3995 static int fec_alloc_rxq_buffers_pp(struct fec_enet_private *fep, 3996 struct fec_enet_priv_rx_q *rxq) 3997 { 3998 struct bufdesc *bdp = rxq->bd.base; 3999 dma_addr_t phys_addr; 4000 struct page *page; 4001 int i, err; 4002 4003 err = fec_enet_create_page_pool(fep, rxq); 4004 if (err < 0) { 4005 netdev_err(fep->netdev, "%s failed queue %d (%d)\n", 4006 __func__, rxq->bd.qid, err); 4007 return err; 4008 } 4009 4010 /* Some platforms require the RX buffer must be 64 bytes alignment. 4011 * Some platforms require 16 bytes alignment. And some platforms 4012 * require 4 bytes alignment. But since the page pool have been 4013 * introduced into the driver, the address of RX buffer is always 4014 * the page address plus FEC_ENET_XDP_HEADROOM, and 4015 * FEC_ENET_XDP_HEADROOM is 256 bytes. Therefore, this address can 4016 * satisfy all platforms. To prevent future modifications to 4017 * FEC_ENET_XDP_HEADROOM from ignoring this hardware limitation, a 4018 * BUILD_BUG_ON() test has been added, which ensures that 4019 * FEC_ENET_XDP_HEADROOM provides the required alignment. 4020 */ 4021 BUILD_BUG_ON(FEC_ENET_XDP_HEADROOM & 0x3f); 4022 4023 for (i = 0; i < rxq->bd.ring_size; i++) { 4024 page = page_pool_dev_alloc_pages(rxq->page_pool); 4025 if (!page) { 4026 err = -ENOMEM; 4027 goto free_rx_buffers; 4028 } 4029 4030 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 4031 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 4032 rxq->rx_buf[i].page = page; 4033 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 4034 } 4035 4036 return 0; 4037 4038 free_rx_buffers: 4039 fec_free_rxq_buffers(rxq); 4040 4041 return err; 4042 } 4043 4044 static int fec_alloc_rxq_buffers_zc(struct fec_enet_private *fep, 4045 struct fec_enet_priv_rx_q *rxq) 4046 { 4047 union fec_rx_buffer *buf = &rxq->rx_buf[0]; 4048 struct bufdesc *bdp = rxq->bd.base; 4049 dma_addr_t phys_addr; 4050 int i; 4051 4052 for (i = 0; i < rxq->bd.ring_size; i++) { 4053 buf[i].xdp = xsk_buff_alloc(rxq->xsk_pool); 4054 if (!buf[i].xdp) 4055 break; 4056 4057 phys_addr = xsk_buff_xdp_get_dma(buf[i].xdp); 4058 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 4059 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 4060 } 4061 4062 for (; i < rxq->bd.ring_size; i++) { 4063 buf[i].xdp = NULL; 4064 bdp->cbd_bufaddr = cpu_to_fec32(0); 4065 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 4066 } 4067 4068 return 0; 4069 } 4070 4071 static int 4072 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 4073 { 4074 struct fec_enet_private *fep = netdev_priv(ndev); 4075 struct fec_enet_priv_rx_q *rxq; 4076 int err; 4077 4078 rxq = fep->rx_queue[queue]; 4079 if (rxq->xsk_pool) { 4080 /* RX XDP ZC buffer pool may not be populated, e.g. 4081 * xdpsock TX-only. 4082 */ 4083 fec_alloc_rxq_buffers_zc(fep, rxq); 4084 } else { 4085 err = fec_alloc_rxq_buffers_pp(fep, rxq); 4086 if (err) 4087 goto free_buffers; 4088 } 4089 4090 err = fec_xdp_rxq_info_reg(fep, rxq); 4091 if (err) 4092 goto free_buffers; 4093 4094 return 0; 4095 4096 free_buffers: 4097 fec_enet_free_buffers(ndev); 4098 4099 return err; 4100 } 4101 4102 static int 4103 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 4104 { 4105 struct fec_enet_private *fep = netdev_priv(ndev); 4106 unsigned int i; 4107 struct bufdesc *bdp; 4108 struct fec_enet_priv_tx_q *txq; 4109 4110 txq = fep->tx_queue[queue]; 4111 bdp = txq->bd.base; 4112 for (i = 0; i < txq->bd.ring_size; i++) { 4113 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 4114 if (!txq->tx_bounce[i]) 4115 goto err_alloc; 4116 4117 bdp->cbd_sc = cpu_to_fec16(0); 4118 bdp->cbd_bufaddr = cpu_to_fec32(0); 4119 4120 if (fep->bufdesc_ex) { 4121 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 4122 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 4123 } 4124 4125 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 4126 } 4127 4128 /* Set the last buffer to wrap. */ 4129 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 4130 bdp->cbd_sc |= cpu_to_fec16(BD_ENET_TX_WRAP); 4131 4132 return 0; 4133 4134 err_alloc: 4135 fec_enet_free_buffers(ndev); 4136 return -ENOMEM; 4137 } 4138 4139 static int fec_enet_alloc_buffers(struct net_device *ndev) 4140 { 4141 struct fec_enet_private *fep = netdev_priv(ndev); 4142 unsigned int i; 4143 4144 for (i = 0; i < fep->num_rx_queues; i++) 4145 if (fec_enet_alloc_rxq_buffers(ndev, i)) 4146 return -ENOMEM; 4147 4148 for (i = 0; i < fep->num_tx_queues; i++) 4149 if (fec_enet_alloc_txq_buffers(ndev, i)) 4150 return -ENOMEM; 4151 return 0; 4152 } 4153 4154 static int 4155 fec_enet_open(struct net_device *ndev) 4156 { 4157 struct fec_enet_private *fep = netdev_priv(ndev); 4158 int ret; 4159 bool reset_again; 4160 4161 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 4162 if (ret < 0) 4163 return ret; 4164 4165 pinctrl_pm_select_default_state(&fep->pdev->dev); 4166 ret = fec_enet_clk_enable(ndev, true); 4167 if (ret) 4168 goto clk_enable; 4169 4170 /* During the first fec_enet_open call the PHY isn't probed at this 4171 * point. Therefore the phy_reset_after_clk_enable() call within 4172 * fec_enet_clk_enable() fails. As we need this reset in order to be 4173 * sure the PHY is working correctly we check if we need to reset again 4174 * later when the PHY is probed 4175 */ 4176 if (ndev->phydev && ndev->phydev->drv) 4177 reset_again = false; 4178 else 4179 reset_again = true; 4180 4181 /* I should reset the ring buffers here, but I don't yet know 4182 * a simple way to do that. 4183 */ 4184 4185 ret = fec_enet_alloc_buffers(ndev); 4186 if (ret) 4187 goto err_enet_alloc; 4188 4189 /* Init MAC prior to mii bus probe */ 4190 fec_restart(ndev); 4191 4192 /* Call phy_reset_after_clk_enable() again if it failed during 4193 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 4194 */ 4195 if (reset_again) 4196 fec_enet_phy_reset_after_clk_enable(ndev); 4197 4198 /* Probe and connect to PHY when open the interface */ 4199 ret = fec_enet_mii_probe(ndev); 4200 if (ret) 4201 goto err_enet_mii_probe; 4202 4203 if (fep->quirks & FEC_QUIRK_ERR006687) 4204 imx6q_cpuidle_fec_irqs_used(); 4205 4206 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 4207 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 4208 4209 napi_enable(&fep->napi); 4210 phy_start(ndev->phydev); 4211 netif_tx_start_all_queues(ndev); 4212 4213 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 4214 FEC_WOL_FLAG_ENABLE); 4215 4216 return 0; 4217 4218 err_enet_mii_probe: 4219 fec_enet_free_buffers(ndev); 4220 err_enet_alloc: 4221 fec_enet_clk_enable(ndev, false); 4222 clk_enable: 4223 pm_runtime_put_autosuspend(&fep->pdev->dev); 4224 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4225 return ret; 4226 } 4227 4228 static int 4229 fec_enet_close(struct net_device *ndev) 4230 { 4231 struct fec_enet_private *fep = netdev_priv(ndev); 4232 struct phy_device *phy_dev = ndev->phydev; 4233 4234 phy_stop(phy_dev); 4235 4236 if (netif_device_present(ndev)) { 4237 napi_disable(&fep->napi); 4238 netif_tx_disable(ndev); 4239 fec_stop(ndev); 4240 } 4241 4242 phy_disconnect(phy_dev); 4243 4244 if (!fep->phy_node && phy_is_pseudo_fixed_link(phy_dev)) 4245 fixed_phy_unregister(phy_dev); 4246 4247 if (fep->quirks & FEC_QUIRK_ERR006687) 4248 imx6q_cpuidle_fec_irqs_unused(); 4249 4250 fec_enet_update_ethtool_stats(ndev); 4251 4252 fec_enet_clk_enable(ndev, false); 4253 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 4254 cpu_latency_qos_remove_request(&fep->pm_qos_req); 4255 4256 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4257 pm_runtime_put_autosuspend(&fep->pdev->dev); 4258 4259 fec_enet_free_buffers(ndev); 4260 4261 return 0; 4262 } 4263 4264 /* Set or clear the multicast filter for this adaptor. 4265 * Skeleton taken from sunlance driver. 4266 * The CPM Ethernet implementation allows Multicast as well as individual 4267 * MAC address filtering. Some of the drivers check to make sure it is 4268 * a group multicast address, and discard those that are not. I guess I 4269 * will do the same for now, but just remove the test if you want 4270 * individual filtering as well (do the upper net layers want or support 4271 * this kind of feature?). 4272 */ 4273 4274 #define FEC_HASH_BITS 6 /* #bits in hash */ 4275 4276 static void set_multicast_list(struct net_device *ndev) 4277 { 4278 struct fec_enet_private *fep = netdev_priv(ndev); 4279 struct netdev_hw_addr *ha; 4280 unsigned int crc, tmp; 4281 unsigned char hash; 4282 unsigned int hash_high = 0, hash_low = 0; 4283 4284 if (ndev->flags & IFF_PROMISC) { 4285 tmp = readl(fep->hwp + FEC_R_CNTRL); 4286 tmp |= 0x8; 4287 writel(tmp, fep->hwp + FEC_R_CNTRL); 4288 return; 4289 } 4290 4291 tmp = readl(fep->hwp + FEC_R_CNTRL); 4292 tmp &= ~0x8; 4293 writel(tmp, fep->hwp + FEC_R_CNTRL); 4294 4295 if (ndev->flags & IFF_ALLMULTI) { 4296 /* Catch all multicast addresses, so set the 4297 * filter to all 1's 4298 */ 4299 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 4300 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 4301 4302 return; 4303 } 4304 4305 /* Add the addresses in hash register */ 4306 netdev_for_each_mc_addr(ha, ndev) { 4307 /* calculate crc32 value of mac address */ 4308 crc = ether_crc_le(ndev->addr_len, ha->addr); 4309 4310 /* only upper 6 bits (FEC_HASH_BITS) are used 4311 * which point to specific bit in the hash registers 4312 */ 4313 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 4314 4315 if (hash > 31) 4316 hash_high |= 1 << (hash - 32); 4317 else 4318 hash_low |= 1 << hash; 4319 } 4320 4321 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 4322 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 4323 } 4324 4325 /* Set a MAC change in hardware. */ 4326 static int 4327 fec_set_mac_address(struct net_device *ndev, void *p) 4328 { 4329 struct sockaddr *addr = p; 4330 4331 if (addr) { 4332 if (!is_valid_ether_addr(addr->sa_data)) 4333 return -EADDRNOTAVAIL; 4334 eth_hw_addr_set(ndev, addr->sa_data); 4335 } 4336 4337 /* Add netif status check here to avoid system hang in below case: 4338 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 4339 * After ethx down, fec all clocks are gated off and then register 4340 * access causes system hang. 4341 */ 4342 if (!netif_running(ndev)) 4343 return 0; 4344 4345 fec_set_hw_mac_addr(ndev); 4346 4347 return 0; 4348 } 4349 4350 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 4351 netdev_features_t features) 4352 { 4353 struct fec_enet_private *fep = netdev_priv(netdev); 4354 netdev_features_t changed = features ^ netdev->features; 4355 4356 netdev->features = features; 4357 4358 /* Receive checksum has been changed */ 4359 if (changed & NETIF_F_RXCSUM) { 4360 if (features & NETIF_F_RXCSUM) 4361 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4362 else 4363 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 4364 } 4365 } 4366 4367 static int fec_set_features(struct net_device *netdev, 4368 netdev_features_t features) 4369 { 4370 struct fec_enet_private *fep = netdev_priv(netdev); 4371 netdev_features_t changed = features ^ netdev->features; 4372 4373 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 4374 napi_disable(&fep->napi); 4375 netif_tx_lock_bh(netdev); 4376 fec_stop(netdev); 4377 fec_enet_set_netdev_features(netdev, features); 4378 fec_restart(netdev); 4379 netif_tx_wake_all_queues(netdev); 4380 netif_tx_unlock_bh(netdev); 4381 napi_enable(&fep->napi); 4382 } else { 4383 fec_enet_set_netdev_features(netdev, features); 4384 } 4385 4386 return 0; 4387 } 4388 4389 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 4390 struct net_device *sb_dev) 4391 { 4392 struct fec_enet_private *fep = netdev_priv(ndev); 4393 u16 vlan_tag = 0; 4394 4395 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 4396 return netdev_pick_tx(ndev, skb, NULL); 4397 4398 /* VLAN is present in the payload.*/ 4399 if (eth_type_vlan(skb->protocol)) { 4400 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 4401 4402 vlan_tag = ntohs(vhdr->h_vlan_TCI); 4403 /* VLAN is present in the skb but not yet pushed in the payload.*/ 4404 } else if (skb_vlan_tag_present(skb)) { 4405 vlan_tag = skb->vlan_tci; 4406 } else { 4407 return vlan_tag; 4408 } 4409 4410 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 4411 } 4412 4413 static void fec_free_rxq(struct fec_enet_priv_rx_q *rxq) 4414 { 4415 fec_xdp_rxq_info_unreg(rxq); 4416 fec_free_rxq_buffers(rxq); 4417 kfree(rxq); 4418 } 4419 4420 static struct fec_enet_priv_rx_q * 4421 fec_alloc_new_rxq_xsk(struct fec_enet_private *fep, int queue, 4422 struct xsk_buff_pool *pool) 4423 { 4424 struct fec_enet_priv_rx_q *old_rxq = fep->rx_queue[queue]; 4425 struct fec_enet_priv_rx_q *rxq; 4426 union fec_rx_buffer *buf; 4427 int i; 4428 4429 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 4430 if (!rxq) 4431 return NULL; 4432 4433 /* Copy the BD ring to the new rxq */ 4434 rxq->bd = old_rxq->bd; 4435 rxq->id = queue; 4436 rxq->xsk_pool = pool; 4437 buf = &rxq->rx_buf[0]; 4438 4439 for (i = 0; i < rxq->bd.ring_size; i++) { 4440 buf[i].xdp = xsk_buff_alloc(pool); 4441 /* RX XDP ZC buffer pool may not be populated, e.g. 4442 * xdpsock TX-only. 4443 */ 4444 if (!buf[i].xdp) 4445 break; 4446 } 4447 4448 if (fec_xdp_rxq_info_reg(fep, rxq)) 4449 goto free_buffers; 4450 4451 return rxq; 4452 4453 free_buffers: 4454 while (--i >= 0) 4455 xsk_buff_free(buf[i].xdp); 4456 4457 kfree(rxq); 4458 4459 return NULL; 4460 } 4461 4462 static struct fec_enet_priv_rx_q * 4463 fec_alloc_new_rxq_pp(struct fec_enet_private *fep, int queue) 4464 { 4465 struct fec_enet_priv_rx_q *old_rxq = fep->rx_queue[queue]; 4466 struct fec_enet_priv_rx_q *rxq; 4467 union fec_rx_buffer *buf; 4468 int i = 0; 4469 4470 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 4471 if (!rxq) 4472 return NULL; 4473 4474 rxq->bd = old_rxq->bd; 4475 rxq->id = queue; 4476 4477 if (fec_enet_create_page_pool(fep, rxq)) 4478 goto free_rxq; 4479 4480 buf = &rxq->rx_buf[0]; 4481 for (; i < rxq->bd.ring_size; i++) { 4482 buf[i].page = page_pool_dev_alloc_pages(rxq->page_pool); 4483 if (!buf[i].page) 4484 goto free_buffers; 4485 } 4486 4487 if (fec_xdp_rxq_info_reg(fep, rxq)) 4488 goto free_buffers; 4489 4490 return rxq; 4491 4492 free_buffers: 4493 while (--i >= 0) 4494 page_pool_put_full_page(rxq->page_pool, 4495 buf[i].page, false); 4496 4497 page_pool_destroy(rxq->page_pool); 4498 free_rxq: 4499 kfree(rxq); 4500 4501 return NULL; 4502 } 4503 4504 static void fec_init_rxq_bd_buffers(struct fec_enet_priv_rx_q *rxq, bool xsk) 4505 { 4506 union fec_rx_buffer *buf = &rxq->rx_buf[0]; 4507 struct bufdesc *bdp = rxq->bd.base; 4508 dma_addr_t dma; 4509 4510 for (int i = 0; i < rxq->bd.ring_size; i++) { 4511 if (xsk) 4512 dma = buf[i].xdp ? 4513 xsk_buff_xdp_get_dma(buf[i].xdp) : 0; 4514 else 4515 dma = page_pool_get_dma_addr(buf[i].page) + 4516 FEC_ENET_XDP_HEADROOM; 4517 4518 bdp->cbd_bufaddr = cpu_to_fec32(dma); 4519 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 4520 } 4521 } 4522 4523 static int fec_xsk_restart_napi(struct fec_enet_private *fep, 4524 struct xsk_buff_pool *pool, 4525 u16 queue) 4526 { 4527 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue]; 4528 struct net_device *ndev = fep->netdev; 4529 struct fec_enet_priv_rx_q *rxq; 4530 int err; 4531 4532 napi_disable(&fep->napi); 4533 netif_tx_disable(ndev); 4534 synchronize_rcu(); 4535 4536 rxq = pool ? fec_alloc_new_rxq_xsk(fep, queue, pool) : 4537 fec_alloc_new_rxq_pp(fep, queue); 4538 if (!rxq) { 4539 err = -ENOMEM; 4540 goto err_alloc_new_rxq; 4541 } 4542 4543 /* Replace the old rxq with the new rxq */ 4544 fec_free_rxq(fep->rx_queue[queue]); 4545 fep->rx_queue[queue] = rxq; 4546 fec_init_rxq_bd_buffers(rxq, !!pool); 4547 txq->xsk_pool = pool; 4548 4549 fec_restart(ndev); 4550 napi_enable(&fep->napi); 4551 netif_tx_start_all_queues(ndev); 4552 4553 return 0; 4554 4555 err_alloc_new_rxq: 4556 napi_enable(&fep->napi); 4557 netif_tx_start_all_queues(ndev); 4558 4559 return err; 4560 } 4561 4562 static int fec_enable_xsk_pool(struct fec_enet_private *fep, 4563 struct xsk_buff_pool *pool, 4564 u16 queue) 4565 { 4566 int err; 4567 4568 err = xsk_pool_dma_map(pool, &fep->pdev->dev, 0); 4569 if (err) { 4570 netdev_err(fep->netdev, "Failed to map xsk pool\n"); 4571 return err; 4572 } 4573 4574 if (!netif_running(fep->netdev)) { 4575 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue]; 4576 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue]; 4577 4578 rxq->xsk_pool = pool; 4579 txq->xsk_pool = pool; 4580 4581 return 0; 4582 } 4583 4584 err = fec_xsk_restart_napi(fep, pool, queue); 4585 if (err) { 4586 xsk_pool_dma_unmap(pool, 0); 4587 return err; 4588 } 4589 4590 return 0; 4591 } 4592 4593 static int fec_disable_xsk_pool(struct fec_enet_private *fep, 4594 u16 queue) 4595 { 4596 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue]; 4597 struct xsk_buff_pool *old_pool = txq->xsk_pool; 4598 int err; 4599 4600 if (!netif_running(fep->netdev)) { 4601 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue]; 4602 4603 xsk_pool_dma_unmap(old_pool, 0); 4604 rxq->xsk_pool = NULL; 4605 txq->xsk_pool = NULL; 4606 4607 return 0; 4608 } 4609 4610 err = fec_xsk_restart_napi(fep, NULL, queue); 4611 if (err) 4612 return err; 4613 4614 xsk_pool_dma_unmap(old_pool, 0); 4615 4616 return 0; 4617 } 4618 4619 static int fec_setup_xsk_pool(struct fec_enet_private *fep, 4620 struct xsk_buff_pool *pool, 4621 u16 queue) 4622 { 4623 if (queue >= fep->num_rx_queues || queue >= fep->num_tx_queues) 4624 return -ERANGE; 4625 4626 return pool ? fec_enable_xsk_pool(fep, pool, queue) : 4627 fec_disable_xsk_pool(fep, queue); 4628 } 4629 4630 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 4631 { 4632 struct fec_enet_private *fep = netdev_priv(dev); 4633 bool is_run = netif_running(dev); 4634 struct bpf_prog *old_prog; 4635 4636 /* No need to support the SoCs that require to do the frame swap 4637 * because the performance wouldn't be better than the skb mode. 4638 */ 4639 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 4640 return -EOPNOTSUPP; 4641 4642 switch (bpf->command) { 4643 case XDP_SETUP_PROG: 4644 if (!bpf->prog) 4645 xdp_features_clear_redirect_target(dev); 4646 4647 if (is_run) { 4648 napi_disable(&fep->napi); 4649 netif_tx_disable(dev); 4650 } 4651 4652 old_prog = xchg(&fep->xdp_prog, bpf->prog); 4653 if (old_prog) 4654 bpf_prog_put(old_prog); 4655 4656 fec_restart(dev); 4657 4658 if (is_run) { 4659 napi_enable(&fep->napi); 4660 netif_tx_start_all_queues(dev); 4661 } 4662 4663 if (bpf->prog) 4664 xdp_features_set_redirect_target(dev, false); 4665 4666 return 0; 4667 case XDP_SETUP_XSK_POOL: 4668 return fec_setup_xsk_pool(fep, bpf->xsk.pool, 4669 bpf->xsk.queue_id); 4670 default: 4671 return -EOPNOTSUPP; 4672 } 4673 } 4674 4675 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 4676 struct fec_enet_priv_tx_q *txq, 4677 void *frame, u32 dma_sync_len, 4678 bool ndo_xmit) 4679 { 4680 unsigned int index, status, estatus; 4681 struct bufdesc *bdp; 4682 dma_addr_t dma_addr; 4683 int entries_free; 4684 u16 frame_len; 4685 4686 entries_free = fec_enet_get_free_txdesc_num(txq); 4687 if (entries_free < MAX_SKB_FRAGS + 1) { 4688 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 4689 return -EBUSY; 4690 } 4691 4692 /* Fill in a Tx ring entry */ 4693 bdp = txq->bd.cur; 4694 status = fec16_to_cpu(bdp->cbd_sc); 4695 status &= ~BD_ENET_TX_STATS; 4696 4697 index = fec_enet_get_bd_index(bdp, &txq->bd); 4698 4699 if (ndo_xmit) { 4700 struct xdp_frame *xdpf = frame; 4701 4702 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 4703 xdpf->len, DMA_TO_DEVICE); 4704 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 4705 return -ENOMEM; 4706 4707 frame_len = xdpf->len; 4708 txq->tx_buf[index].buf_p = xdpf; 4709 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 4710 } else { 4711 struct xdp_buff *xdpb = frame; 4712 struct page *page; 4713 4714 page = virt_to_page(xdpb->data); 4715 dma_addr = page_pool_get_dma_addr(page) + 4716 (xdpb->data - xdpb->data_hard_start); 4717 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 4718 dma_sync_len, DMA_BIDIRECTIONAL); 4719 frame_len = xdpb->data_end - xdpb->data; 4720 txq->tx_buf[index].buf_p = page; 4721 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 4722 } 4723 4724 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 4725 if (fep->bufdesc_ex) 4726 estatus = BD_ENET_TX_INT; 4727 4728 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 4729 bdp->cbd_datlen = cpu_to_fec16(frame_len); 4730 4731 if (fep->bufdesc_ex) { 4732 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 4733 4734 if (fep->quirks & FEC_QUIRK_HAS_AVB) 4735 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 4736 4737 ebdp->cbd_bdu = 0; 4738 ebdp->cbd_esc = cpu_to_fec32(estatus); 4739 } 4740 4741 /* Make sure the updates to rest of the descriptor are performed before 4742 * transferring ownership. 4743 */ 4744 dma_wmb(); 4745 4746 /* Send it on its way. Tell FEC it's ready, interrupt when done, 4747 * it's the last BD of the frame, and to put the CRC on the end. 4748 */ 4749 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 4750 bdp->cbd_sc = cpu_to_fec16(status); 4751 4752 /* If this was the last BD in the ring, start at the beginning again. */ 4753 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 4754 4755 /* Make sure the update to bdp are performed before txq->bd.cur. */ 4756 dma_wmb(); 4757 4758 txq->bd.cur = bdp; 4759 4760 return 0; 4761 } 4762 4763 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 4764 int cpu, struct xdp_buff *xdp, 4765 u32 dma_sync_len, int queue) 4766 { 4767 struct netdev_queue *nq = netdev_get_tx_queue(fep->netdev, queue); 4768 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue]; 4769 int ret; 4770 4771 __netif_tx_lock(nq, cpu); 4772 4773 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 4774 txq_trans_cond_update(nq); 4775 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 4776 4777 __netif_tx_unlock(nq); 4778 4779 return ret; 4780 } 4781 4782 static int fec_enet_xdp_xmit(struct net_device *dev, 4783 int num_frames, 4784 struct xdp_frame **frames, 4785 u32 flags) 4786 { 4787 struct fec_enet_private *fep = netdev_priv(dev); 4788 struct fec_enet_priv_tx_q *txq; 4789 int cpu = smp_processor_id(); 4790 unsigned int sent_frames = 0; 4791 struct netdev_queue *nq; 4792 unsigned int queue; 4793 int i; 4794 4795 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 4796 txq = fep->tx_queue[queue]; 4797 nq = netdev_get_tx_queue(fep->netdev, queue); 4798 4799 __netif_tx_lock(nq, cpu); 4800 4801 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 4802 txq_trans_cond_update(nq); 4803 for (i = 0; i < num_frames; i++) { 4804 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 4805 break; 4806 sent_frames++; 4807 } 4808 4809 if (sent_frames) 4810 fec_txq_trigger_xmit(fep, txq); 4811 4812 __netif_tx_unlock(nq); 4813 4814 return sent_frames; 4815 } 4816 4817 static int fec_enet_xsk_wakeup(struct net_device *ndev, u32 queue, u32 flags) 4818 { 4819 struct fec_enet_private *fep = netdev_priv(ndev); 4820 struct fec_enet_priv_rx_q *rxq; 4821 4822 if (!netif_running(ndev) || !netif_carrier_ok(ndev)) 4823 return -ENETDOWN; 4824 4825 if (queue >= fep->num_rx_queues || queue >= fep->num_tx_queues) 4826 return -ERANGE; 4827 4828 rxq = fep->rx_queue[queue]; 4829 if (!rxq->xsk_pool) 4830 return -EINVAL; 4831 4832 if (!napi_if_scheduled_mark_missed(&fep->napi)) { 4833 if (likely(napi_schedule_prep(&fep->napi))) 4834 __napi_schedule(&fep->napi); 4835 } 4836 4837 return 0; 4838 } 4839 4840 static int fec_hwtstamp_get(struct net_device *ndev, 4841 struct kernel_hwtstamp_config *config) 4842 { 4843 struct fec_enet_private *fep = netdev_priv(ndev); 4844 4845 if (!netif_running(ndev)) 4846 return -EINVAL; 4847 4848 if (!fep->bufdesc_ex) 4849 return -EOPNOTSUPP; 4850 4851 fec_ptp_get(ndev, config); 4852 4853 return 0; 4854 } 4855 4856 static int fec_hwtstamp_set(struct net_device *ndev, 4857 struct kernel_hwtstamp_config *config, 4858 struct netlink_ext_ack *extack) 4859 { 4860 struct fec_enet_private *fep = netdev_priv(ndev); 4861 4862 if (!netif_running(ndev)) 4863 return -EINVAL; 4864 4865 if (!fep->bufdesc_ex) 4866 return -EOPNOTSUPP; 4867 4868 return fec_ptp_set(ndev, config, extack); 4869 } 4870 4871 static int fec_change_mtu(struct net_device *ndev, int new_mtu) 4872 { 4873 struct fec_enet_private *fep = netdev_priv(ndev); 4874 int order; 4875 4876 if (netif_running(ndev)) 4877 return -EBUSY; 4878 4879 order = get_order(new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN 4880 + FEC_DRV_RESERVE_SPACE); 4881 fep->rx_frame_size = (PAGE_SIZE << order) - FEC_DRV_RESERVE_SPACE; 4882 fep->pagepool_order = order; 4883 WRITE_ONCE(ndev->mtu, new_mtu); 4884 4885 return 0; 4886 } 4887 4888 static const struct net_device_ops fec_netdev_ops = { 4889 .ndo_open = fec_enet_open, 4890 .ndo_stop = fec_enet_close, 4891 .ndo_start_xmit = fec_enet_start_xmit, 4892 .ndo_select_queue = fec_enet_select_queue, 4893 .ndo_set_rx_mode = set_multicast_list, 4894 .ndo_validate_addr = eth_validate_addr, 4895 .ndo_tx_timeout = fec_timeout, 4896 .ndo_set_mac_address = fec_set_mac_address, 4897 .ndo_change_mtu = fec_change_mtu, 4898 .ndo_eth_ioctl = phy_do_ioctl_running, 4899 .ndo_set_features = fec_set_features, 4900 .ndo_bpf = fec_enet_bpf, 4901 .ndo_xdp_xmit = fec_enet_xdp_xmit, 4902 .ndo_xsk_wakeup = fec_enet_xsk_wakeup, 4903 .ndo_hwtstamp_get = fec_hwtstamp_get, 4904 .ndo_hwtstamp_set = fec_hwtstamp_set, 4905 }; 4906 4907 static const unsigned short offset_des_active_rxq[] = { 4908 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 4909 }; 4910 4911 static const unsigned short offset_des_active_txq[] = { 4912 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 4913 }; 4914 4915 /* 4916 * XXX: We need to clean up on failure exits here. 4917 * 4918 */ 4919 static int fec_enet_init(struct net_device *ndev) 4920 { 4921 struct fec_enet_private *fep = netdev_priv(ndev); 4922 struct bufdesc *cbd_base; 4923 dma_addr_t bd_dma; 4924 int bd_size; 4925 unsigned int i; 4926 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4927 sizeof(struct bufdesc); 4928 unsigned dsize_log2 = __fls(dsize); 4929 int ret; 4930 4931 WARN_ON(dsize != (1 << dsize_log2)); 4932 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4933 fep->tx_align = 0xf; 4934 #else 4935 fep->tx_align = 0x3; 4936 #endif 4937 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4938 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4939 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4940 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4941 4942 /* Check mask of the streaming and coherent API */ 4943 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4944 if (ret < 0) { 4945 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4946 return ret; 4947 } 4948 4949 ret = fec_enet_alloc_queue(ndev); 4950 if (ret) 4951 return ret; 4952 4953 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4954 4955 /* Allocate memory for buffer descriptors. */ 4956 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma, 4957 GFP_KERNEL); 4958 if (!cbd_base) { 4959 ret = -ENOMEM; 4960 goto free_queue_mem; 4961 } 4962 4963 /* Get the Ethernet address */ 4964 ret = fec_get_mac(ndev); 4965 if (ret) 4966 goto free_queue_mem; 4967 4968 /* Set receive and transmit descriptor base. */ 4969 for (i = 0; i < fep->num_rx_queues; i++) { 4970 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4971 unsigned size = dsize * rxq->bd.ring_size; 4972 4973 rxq->bd.qid = i; 4974 rxq->bd.base = cbd_base; 4975 rxq->bd.cur = cbd_base; 4976 rxq->bd.dma = bd_dma; 4977 rxq->bd.dsize = dsize; 4978 rxq->bd.dsize_log2 = dsize_log2; 4979 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4980 bd_dma += size; 4981 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4982 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4983 } 4984 4985 for (i = 0; i < fep->num_tx_queues; i++) { 4986 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4987 unsigned size = dsize * txq->bd.ring_size; 4988 4989 txq->bd.qid = i; 4990 txq->bd.base = cbd_base; 4991 txq->bd.cur = cbd_base; 4992 txq->bd.dma = bd_dma; 4993 txq->bd.dsize = dsize; 4994 txq->bd.dsize_log2 = dsize_log2; 4995 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4996 bd_dma += size; 4997 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4998 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4999 } 5000 5001 5002 /* The FEC Ethernet specific entries in the device structure */ 5003 ndev->watchdog_timeo = TX_TIMEOUT; 5004 ndev->netdev_ops = &fec_netdev_ops; 5005 ndev->ethtool_ops = &fec_enet_ethtool_ops; 5006 5007 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 5008 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 5009 5010 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 5011 /* enable hw VLAN support */ 5012 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 5013 5014 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 5015 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 5016 5017 /* enable hw accelerator */ 5018 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 5019 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 5020 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 5021 } 5022 5023 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) 5024 fep->tx_align = 0; 5025 5026 ndev->hw_features = ndev->features; 5027 5028 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 5029 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 5030 NETDEV_XDP_ACT_REDIRECT | 5031 NETDEV_XDP_ACT_XSK_ZEROCOPY; 5032 5033 fec_restart(ndev); 5034 5035 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 5036 fec_enet_clear_ethtool_stats(ndev); 5037 else 5038 fec_enet_update_ethtool_stats(ndev); 5039 5040 return 0; 5041 5042 free_queue_mem: 5043 fec_enet_free_queue(ndev); 5044 return ret; 5045 } 5046 5047 static void fec_enet_deinit(struct net_device *ndev) 5048 { 5049 struct fec_enet_private *fep = netdev_priv(ndev); 5050 5051 netif_napi_del(&fep->napi); 5052 fec_enet_free_queue(ndev); 5053 } 5054 5055 #ifdef CONFIG_OF 5056 static int fec_reset_phy(struct platform_device *pdev) 5057 { 5058 struct gpio_desc *phy_reset; 5059 int msec = 1, phy_post_delay = 0; 5060 struct device_node *np = pdev->dev.of_node; 5061 int err; 5062 5063 if (!np) 5064 return 0; 5065 5066 err = of_property_read_u32(np, "phy-reset-duration", &msec); 5067 /* A sane reset duration should not be longer than 1s */ 5068 if (!err && msec > 1000) 5069 msec = 1; 5070 5071 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 5072 /* valid reset duration should be less than 1s */ 5073 if (!err && phy_post_delay > 1000) 5074 return -EINVAL; 5075 5076 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 5077 GPIOD_OUT_HIGH); 5078 if (IS_ERR(phy_reset)) 5079 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 5080 "failed to get phy-reset-gpios\n"); 5081 5082 if (!phy_reset) 5083 return 0; 5084 5085 if (msec > 20) 5086 msleep(msec); 5087 else 5088 usleep_range(msec * 1000, msec * 1000 + 1000); 5089 5090 gpiod_set_value_cansleep(phy_reset, 0); 5091 5092 if (!phy_post_delay) 5093 return 0; 5094 5095 if (phy_post_delay > 20) 5096 msleep(phy_post_delay); 5097 else 5098 usleep_range(phy_post_delay * 1000, 5099 phy_post_delay * 1000 + 1000); 5100 5101 return 0; 5102 } 5103 #else /* CONFIG_OF */ 5104 static int fec_reset_phy(struct platform_device *pdev) 5105 { 5106 /* 5107 * In case of platform probe, the reset has been done 5108 * by machine code. 5109 */ 5110 return 0; 5111 } 5112 #endif /* CONFIG_OF */ 5113 5114 static void 5115 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 5116 { 5117 struct device_node *np = pdev->dev.of_node; 5118 5119 *num_tx = *num_rx = 1; 5120 5121 if (!np || !of_device_is_available(np)) 5122 return; 5123 5124 /* parse the num of tx and rx queues */ 5125 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 5126 5127 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 5128 5129 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 5130 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 5131 *num_tx); 5132 *num_tx = 1; 5133 return; 5134 } 5135 5136 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 5137 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 5138 *num_rx); 5139 *num_rx = 1; 5140 return; 5141 } 5142 5143 } 5144 5145 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 5146 { 5147 int irq_cnt = platform_irq_count(pdev); 5148 5149 if (irq_cnt > FEC_IRQ_NUM) 5150 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 5151 else if (irq_cnt == 2) 5152 irq_cnt = 1; /* last for pps */ 5153 else if (irq_cnt <= 0) 5154 irq_cnt = 1; /* At least 1 irq is needed */ 5155 return irq_cnt; 5156 } 5157 5158 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 5159 { 5160 struct net_device *ndev = platform_get_drvdata(pdev); 5161 struct fec_enet_private *fep = netdev_priv(ndev); 5162 5163 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 5164 fep->wake_irq = fep->irq[2]; 5165 else 5166 fep->wake_irq = fep->irq[0]; 5167 } 5168 5169 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 5170 struct device_node *np) 5171 { 5172 struct device_node *gpr_np; 5173 u32 out_val[3]; 5174 int ret = 0; 5175 5176 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 5177 if (!gpr_np) 5178 return 0; 5179 5180 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 5181 ARRAY_SIZE(out_val)); 5182 if (ret) { 5183 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 5184 goto out; 5185 } 5186 5187 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 5188 if (IS_ERR(fep->stop_gpr.gpr)) { 5189 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 5190 ret = PTR_ERR(fep->stop_gpr.gpr); 5191 fep->stop_gpr.gpr = NULL; 5192 goto out; 5193 } 5194 5195 fep->stop_gpr.reg = out_val[1]; 5196 fep->stop_gpr.bit = out_val[2]; 5197 5198 out: 5199 of_node_put(gpr_np); 5200 5201 return ret; 5202 } 5203 5204 static int 5205 fec_probe(struct platform_device *pdev) 5206 { 5207 struct fec_enet_private *fep; 5208 struct fec_platform_data *pdata; 5209 phy_interface_t interface; 5210 struct net_device *ndev; 5211 int i, irq, ret = 0; 5212 static int dev_id; 5213 struct device_node *np = pdev->dev.of_node, *phy_node; 5214 int num_tx_qs; 5215 int num_rx_qs; 5216 char irq_name[8]; 5217 int irq_cnt; 5218 const struct fec_devinfo *dev_info; 5219 5220 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 5221 5222 /* Init network device */ 5223 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 5224 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 5225 if (!ndev) 5226 return -ENOMEM; 5227 5228 SET_NETDEV_DEV(ndev, &pdev->dev); 5229 5230 /* setup board info structure */ 5231 fep = netdev_priv(ndev); 5232 5233 dev_info = device_get_match_data(&pdev->dev); 5234 if (!dev_info) 5235 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data; 5236 if (dev_info) 5237 fep->quirks = dev_info->quirks; 5238 5239 fep->netdev = ndev; 5240 fep->num_rx_queues = num_rx_qs; 5241 fep->num_tx_queues = num_tx_qs; 5242 5243 /* default enable pause frame auto negotiation */ 5244 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 5245 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 5246 5247 /* Select default pin state */ 5248 pinctrl_pm_select_default_state(&pdev->dev); 5249 5250 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 5251 if (IS_ERR(fep->hwp)) { 5252 ret = PTR_ERR(fep->hwp); 5253 goto failed_ioremap; 5254 } 5255 5256 fep->pdev = pdev; 5257 fep->dev_id = dev_id++; 5258 5259 platform_set_drvdata(pdev, ndev); 5260 5261 if ((of_machine_is_compatible("fsl,imx6q") || 5262 of_machine_is_compatible("fsl,imx6dl")) && 5263 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 5264 fep->quirks |= FEC_QUIRK_ERR006687; 5265 5266 ret = fec_enet_ipc_handle_init(fep); 5267 if (ret) 5268 goto failed_ipc_init; 5269 5270 if (of_property_read_bool(np, "fsl,magic-packet")) 5271 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 5272 5273 ret = fec_enet_init_stop_mode(fep, np); 5274 if (ret) 5275 goto failed_stop_mode; 5276 5277 phy_node = of_parse_phandle(np, "phy-handle", 0); 5278 if (!phy_node && of_phy_is_fixed_link(np)) { 5279 ret = of_phy_register_fixed_link(np); 5280 if (ret < 0) { 5281 dev_err(&pdev->dev, 5282 "broken fixed-link specification\n"); 5283 goto failed_phy; 5284 } 5285 phy_node = of_node_get(np); 5286 } 5287 fep->phy_node = phy_node; 5288 5289 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 5290 if (ret) { 5291 pdata = dev_get_platdata(&pdev->dev); 5292 if (pdata) 5293 fep->phy_interface = pdata->phy; 5294 else 5295 fep->phy_interface = PHY_INTERFACE_MODE_MII; 5296 } else { 5297 fep->phy_interface = interface; 5298 } 5299 5300 ret = fec_enet_parse_rgmii_delay(fep, np); 5301 if (ret) 5302 goto failed_rgmii_delay; 5303 5304 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 5305 if (IS_ERR(fep->clk_ipg)) { 5306 ret = PTR_ERR(fep->clk_ipg); 5307 goto failed_clk; 5308 } 5309 5310 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 5311 if (IS_ERR(fep->clk_ahb)) { 5312 ret = PTR_ERR(fep->clk_ahb); 5313 goto failed_clk; 5314 } 5315 5316 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 5317 5318 /* enet_out is optional, depends on board */ 5319 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 5320 if (IS_ERR(fep->clk_enet_out)) { 5321 ret = PTR_ERR(fep->clk_enet_out); 5322 goto failed_clk; 5323 } 5324 5325 fep->ptp_clk_on = false; 5326 mutex_init(&fep->ptp_clk_mutex); 5327 5328 /* clk_ref is optional, depends on board */ 5329 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 5330 if (IS_ERR(fep->clk_ref)) { 5331 ret = PTR_ERR(fep->clk_ref); 5332 goto failed_clk; 5333 } 5334 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 5335 5336 /* clk_2x_txclk is optional, depends on board */ 5337 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 5338 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 5339 if (IS_ERR(fep->clk_2x_txclk)) 5340 fep->clk_2x_txclk = NULL; 5341 } 5342 5343 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 5344 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 5345 if (IS_ERR(fep->clk_ptp)) { 5346 fep->clk_ptp = NULL; 5347 fep->bufdesc_ex = false; 5348 } 5349 5350 ret = fec_enet_clk_enable(ndev, true); 5351 if (ret) 5352 goto failed_clk; 5353 5354 ret = clk_prepare_enable(fep->clk_ipg); 5355 if (ret) 5356 goto failed_clk_ipg; 5357 ret = clk_prepare_enable(fep->clk_ahb); 5358 if (ret) 5359 goto failed_clk_ahb; 5360 5361 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 5362 if (!IS_ERR(fep->reg_phy)) { 5363 ret = regulator_enable(fep->reg_phy); 5364 if (ret) { 5365 dev_err(&pdev->dev, 5366 "Failed to enable phy regulator: %d\n", ret); 5367 goto failed_regulator; 5368 } 5369 } else { 5370 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 5371 ret = -EPROBE_DEFER; 5372 goto failed_regulator; 5373 } 5374 fep->reg_phy = NULL; 5375 } 5376 5377 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 5378 pm_runtime_use_autosuspend(&pdev->dev); 5379 pm_runtime_get_noresume(&pdev->dev); 5380 pm_runtime_set_active(&pdev->dev); 5381 pm_runtime_enable(&pdev->dev); 5382 5383 ret = fec_reset_phy(pdev); 5384 if (ret) 5385 goto failed_reset; 5386 5387 irq_cnt = fec_enet_get_irq_cnt(pdev); 5388 if (fep->bufdesc_ex) 5389 fec_ptp_init(pdev, irq_cnt); 5390 5391 ret = fec_enet_init(ndev); 5392 if (ret) 5393 goto failed_init; 5394 5395 for (i = 0; i < irq_cnt; i++) { 5396 snprintf(irq_name, sizeof(irq_name), "int%d", i); 5397 irq = platform_get_irq_byname_optional(pdev, irq_name); 5398 if (irq < 0) 5399 irq = platform_get_irq(pdev, i); 5400 if (irq < 0) { 5401 ret = irq; 5402 goto failed_irq; 5403 } 5404 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 5405 0, pdev->name, ndev); 5406 if (ret) 5407 goto failed_irq; 5408 5409 fep->irq[i] = irq; 5410 } 5411 5412 /* Decide which interrupt line is wakeup capable */ 5413 fec_enet_get_wakeup_irq(pdev); 5414 5415 ret = fec_enet_mii_init(pdev); 5416 if (ret) 5417 goto failed_mii_init; 5418 5419 /* Carrier starts down, phylib will bring it up */ 5420 netif_carrier_off(ndev); 5421 fec_enet_clk_enable(ndev, false); 5422 pinctrl_pm_select_sleep_state(&pdev->dev); 5423 5424 fep->pagepool_order = 0; 5425 fep->rx_frame_size = FEC_ENET_RX_FRSIZE; 5426 5427 if (fep->quirks & FEC_QUIRK_JUMBO_FRAME) 5428 fep->max_buf_size = MAX_JUMBO_BUF_SIZE; 5429 else 5430 fep->max_buf_size = PKT_MAXBUF_SIZE; 5431 5432 ndev->max_mtu = fep->max_buf_size - VLAN_ETH_HLEN - ETH_FCS_LEN; 5433 5434 if (fep->quirks & FEC_QUIRK_HAS_RACC) 5435 fep->rx_shift = 2; 5436 else 5437 fep->rx_shift = 0; 5438 5439 ret = register_netdev(ndev); 5440 if (ret) 5441 goto failed_register; 5442 5443 device_init_wakeup(&ndev->dev, fep->wol_flag & 5444 FEC_WOL_HAS_MAGIC_PACKET); 5445 5446 if (fep->bufdesc_ex && fep->ptp_clock) 5447 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 5448 5449 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 5450 5451 pm_runtime_put_autosuspend(&pdev->dev); 5452 5453 return 0; 5454 5455 failed_register: 5456 fec_enet_mii_remove(fep); 5457 failed_mii_init: 5458 failed_irq: 5459 fec_enet_deinit(ndev); 5460 failed_init: 5461 fec_ptp_stop(pdev); 5462 failed_reset: 5463 pm_runtime_put_noidle(&pdev->dev); 5464 pm_runtime_disable(&pdev->dev); 5465 if (fep->reg_phy) 5466 regulator_disable(fep->reg_phy); 5467 failed_regulator: 5468 clk_disable_unprepare(fep->clk_ahb); 5469 failed_clk_ahb: 5470 clk_disable_unprepare(fep->clk_ipg); 5471 failed_clk_ipg: 5472 fec_enet_clk_enable(ndev, false); 5473 failed_clk: 5474 failed_rgmii_delay: 5475 if (of_phy_is_fixed_link(np)) 5476 of_phy_deregister_fixed_link(np); 5477 of_node_put(phy_node); 5478 failed_stop_mode: 5479 failed_ipc_init: 5480 failed_phy: 5481 dev_id--; 5482 failed_ioremap: 5483 free_netdev(ndev); 5484 5485 return ret; 5486 } 5487 5488 static void 5489 fec_drv_remove(struct platform_device *pdev) 5490 { 5491 struct net_device *ndev = platform_get_drvdata(pdev); 5492 struct fec_enet_private *fep = netdev_priv(ndev); 5493 struct device_node *np = pdev->dev.of_node; 5494 int ret; 5495 5496 ret = pm_runtime_get_sync(&pdev->dev); 5497 if (ret < 0) 5498 dev_err(&pdev->dev, 5499 "Failed to resume device in remove callback (%pe)\n", 5500 ERR_PTR(ret)); 5501 5502 cancel_work_sync(&fep->tx_timeout_work); 5503 fec_ptp_stop(pdev); 5504 unregister_netdev(ndev); 5505 fec_enet_mii_remove(fep); 5506 if (fep->reg_phy) 5507 regulator_disable(fep->reg_phy); 5508 5509 if (of_phy_is_fixed_link(np)) 5510 of_phy_deregister_fixed_link(np); 5511 of_node_put(fep->phy_node); 5512 5513 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 5514 * disabling them again. 5515 */ 5516 if (ret >= 0) { 5517 clk_disable_unprepare(fep->clk_ahb); 5518 clk_disable_unprepare(fep->clk_ipg); 5519 } 5520 pm_runtime_put_noidle(&pdev->dev); 5521 pm_runtime_disable(&pdev->dev); 5522 5523 fec_enet_deinit(ndev); 5524 free_netdev(ndev); 5525 } 5526 5527 static int fec_suspend(struct device *dev) 5528 { 5529 struct net_device *ndev = dev_get_drvdata(dev); 5530 struct fec_enet_private *fep = netdev_priv(ndev); 5531 int ret; 5532 5533 rtnl_lock(); 5534 if (netif_running(ndev)) { 5535 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 5536 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 5537 phy_stop(ndev->phydev); 5538 napi_disable(&fep->napi); 5539 netif_tx_lock_bh(ndev); 5540 netif_device_detach(ndev); 5541 netif_tx_unlock_bh(ndev); 5542 fec_stop(ndev); 5543 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 5544 fec_irqs_disable(ndev); 5545 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 5546 } else { 5547 fec_irqs_disable_except_wakeup(ndev); 5548 if (fep->wake_irq > 0) { 5549 disable_irq(fep->wake_irq); 5550 enable_irq_wake(fep->wake_irq); 5551 } 5552 fec_enet_stop_mode(fep, true); 5553 } 5554 /* It's safe to disable clocks since interrupts are masked */ 5555 fec_enet_clk_enable(ndev, false); 5556 5557 fep->rpm_active = !pm_runtime_status_suspended(dev); 5558 if (fep->rpm_active) { 5559 ret = pm_runtime_force_suspend(dev); 5560 if (ret < 0) { 5561 rtnl_unlock(); 5562 return ret; 5563 } 5564 } 5565 } 5566 rtnl_unlock(); 5567 5568 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 5569 regulator_disable(fep->reg_phy); 5570 5571 /* SOC supply clock to phy, when clock is disabled, phy link down 5572 * SOC control phy regulator, when regulator is disabled, phy link down 5573 */ 5574 if (fep->clk_enet_out || fep->reg_phy) 5575 fep->link = 0; 5576 5577 return 0; 5578 } 5579 5580 static int fec_resume(struct device *dev) 5581 { 5582 struct net_device *ndev = dev_get_drvdata(dev); 5583 struct fec_enet_private *fep = netdev_priv(ndev); 5584 int ret; 5585 int val; 5586 5587 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 5588 ret = regulator_enable(fep->reg_phy); 5589 if (ret) 5590 return ret; 5591 } 5592 5593 rtnl_lock(); 5594 if (netif_running(ndev)) { 5595 if (fep->rpm_active) 5596 pm_runtime_force_resume(dev); 5597 5598 ret = fec_enet_clk_enable(ndev, true); 5599 if (ret) { 5600 rtnl_unlock(); 5601 goto failed_clk; 5602 } 5603 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 5604 fec_enet_stop_mode(fep, false); 5605 if (fep->wake_irq) { 5606 disable_irq_wake(fep->wake_irq); 5607 enable_irq(fep->wake_irq); 5608 } 5609 5610 val = readl(fep->hwp + FEC_ECNTRL); 5611 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 5612 writel(val, fep->hwp + FEC_ECNTRL); 5613 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 5614 } else { 5615 pinctrl_pm_select_default_state(&fep->pdev->dev); 5616 } 5617 fec_restart(ndev); 5618 netif_tx_lock_bh(ndev); 5619 netif_device_attach(ndev); 5620 netif_tx_unlock_bh(ndev); 5621 napi_enable(&fep->napi); 5622 phy_init_hw(ndev->phydev); 5623 phy_start(ndev->phydev); 5624 } 5625 rtnl_unlock(); 5626 5627 return 0; 5628 5629 failed_clk: 5630 if (fep->reg_phy) 5631 regulator_disable(fep->reg_phy); 5632 return ret; 5633 } 5634 5635 static int fec_runtime_suspend(struct device *dev) 5636 { 5637 struct net_device *ndev = dev_get_drvdata(dev); 5638 struct fec_enet_private *fep = netdev_priv(ndev); 5639 5640 clk_disable_unprepare(fep->clk_ahb); 5641 clk_disable_unprepare(fep->clk_ipg); 5642 5643 return 0; 5644 } 5645 5646 static int fec_runtime_resume(struct device *dev) 5647 { 5648 struct net_device *ndev = dev_get_drvdata(dev); 5649 struct fec_enet_private *fep = netdev_priv(ndev); 5650 int ret; 5651 5652 ret = clk_prepare_enable(fep->clk_ahb); 5653 if (ret) 5654 return ret; 5655 ret = clk_prepare_enable(fep->clk_ipg); 5656 if (ret) 5657 goto failed_clk_ipg; 5658 5659 return 0; 5660 5661 failed_clk_ipg: 5662 clk_disable_unprepare(fep->clk_ahb); 5663 return ret; 5664 } 5665 5666 static const struct dev_pm_ops fec_pm_ops = { 5667 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 5668 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 5669 }; 5670 5671 static struct platform_driver fec_driver = { 5672 .driver = { 5673 .name = DRIVER_NAME, 5674 .pm = pm_ptr(&fec_pm_ops), 5675 .of_match_table = fec_dt_ids, 5676 .suppress_bind_attrs = true, 5677 }, 5678 .id_table = fec_devtype, 5679 .probe = fec_probe, 5680 .remove = fec_drv_remove, 5681 }; 5682 5683 module_platform_driver(fec_driver); 5684 5685 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver"); 5686 MODULE_LICENSE("GPL"); 5687