1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/desc.h>
35 #include <asm/mtrr.h>
36 #include <asm/msr-index.h>
37 #include <asm/msr.h>
38 #include <asm/asm.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kvm_page_track.h>
41 #include <asm/kvm_vcpu_regs.h>
42 #include <asm/reboot.h>
43 #include <hyperv/hvhdk.h>
44
45 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
46
47 /*
48 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
49 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
50 */
51 #ifdef CONFIG_KVM_MAX_NR_VCPUS
52 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
53 #else
54 #define KVM_MAX_VCPUS 1024
55 #endif
56
57 /*
58 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
59 * might be larger than the actual number of VCPUs because the
60 * APIC ID encodes CPU topology information.
61 *
62 * In the worst case, we'll need less than one extra bit for the
63 * Core ID, and less than one extra bit for the Package (Die) ID,
64 * so ratio of 4 should be enough.
65 */
66 #define KVM_VCPU_ID_RATIO 4
67 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
68
69 /* memory slots that are not exposed to userspace */
70 #define KVM_INTERNAL_MEM_SLOTS 3
71
72 #define KVM_HALT_POLL_NS_DEFAULT 200000
73
74 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
75
76 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
77 KVM_DIRTY_LOG_INITIALLY_SET)
78
79 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
80 KVM_BUS_LOCK_DETECTION_EXIT)
81
82 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
83 KVM_X86_NOTIFY_VMEXIT_USER)
84
85 /* x86-specific vcpu->requests bit members */
86 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
87 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
88 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
89 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
90 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
91 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
92 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
93 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
94 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
95 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
96 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
97 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
98 #ifdef CONFIG_KVM_SMM
99 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
100 #endif
101 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
102 #define KVM_REQ_MCLOCK_INPROGRESS \
103 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104 #define KVM_REQ_SCAN_IOAPIC \
105 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
107 #define KVM_REQ_APIC_PAGE_RELOAD \
108 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
109 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
110 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
111 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
112 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
113 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
114 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
115 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
116 #define KVM_REQ_APICV_UPDATE \
117 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
118 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
119 #define KVM_REQ_TLB_FLUSH_GUEST \
120 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
121 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
122 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
123 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
124 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
125 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
126 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
127 #define KVM_REQ_HV_TLB_FLUSH \
128 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
129 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
130 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
131
132 #define CR0_RESERVED_BITS \
133 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
134 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
135 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
136
137 #define CR4_RESERVED_BITS \
138 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
139 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
140 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
141 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
142 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
143 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
144 | X86_CR4_LAM_SUP))
145
146 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
147
148
149
150 #define INVALID_PAGE (~(hpa_t)0)
151 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
152
153 /* KVM Hugepage definitions for x86 */
154 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
155 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
156 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
157 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
158 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
159 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
160 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
161
162 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
163 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
164 #define KVM_MMU_HASH_SHIFT 12
165 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
166 #define KVM_MIN_FREE_MMU_PAGES 5
167 #define KVM_REFILL_PAGES 25
168 #define KVM_MAX_CPUID_ENTRIES 256
169 #define KVM_NR_VAR_MTRR 8
170
171 #define ASYNC_PF_PER_VCPU 64
172
173 enum kvm_reg {
174 VCPU_REGS_RAX = __VCPU_REGS_RAX,
175 VCPU_REGS_RCX = __VCPU_REGS_RCX,
176 VCPU_REGS_RDX = __VCPU_REGS_RDX,
177 VCPU_REGS_RBX = __VCPU_REGS_RBX,
178 VCPU_REGS_RSP = __VCPU_REGS_RSP,
179 VCPU_REGS_RBP = __VCPU_REGS_RBP,
180 VCPU_REGS_RSI = __VCPU_REGS_RSI,
181 VCPU_REGS_RDI = __VCPU_REGS_RDI,
182 #ifdef CONFIG_X86_64
183 VCPU_REGS_R8 = __VCPU_REGS_R8,
184 VCPU_REGS_R9 = __VCPU_REGS_R9,
185 VCPU_REGS_R10 = __VCPU_REGS_R10,
186 VCPU_REGS_R11 = __VCPU_REGS_R11,
187 VCPU_REGS_R12 = __VCPU_REGS_R12,
188 VCPU_REGS_R13 = __VCPU_REGS_R13,
189 VCPU_REGS_R14 = __VCPU_REGS_R14,
190 VCPU_REGS_R15 = __VCPU_REGS_R15,
191 #endif
192 VCPU_REGS_RIP,
193 NR_VCPU_REGS,
194
195 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
196 VCPU_EXREG_CR0,
197 VCPU_EXREG_CR3,
198 VCPU_EXREG_CR4,
199 VCPU_EXREG_RFLAGS,
200 VCPU_EXREG_SEGMENTS,
201 VCPU_EXREG_EXIT_INFO_1,
202 VCPU_EXREG_EXIT_INFO_2,
203 };
204
205 enum {
206 VCPU_SREG_ES,
207 VCPU_SREG_CS,
208 VCPU_SREG_SS,
209 VCPU_SREG_DS,
210 VCPU_SREG_FS,
211 VCPU_SREG_GS,
212 VCPU_SREG_TR,
213 VCPU_SREG_LDTR,
214 };
215
216 enum exit_fastpath_completion {
217 EXIT_FASTPATH_NONE,
218 EXIT_FASTPATH_REENTER_GUEST,
219 EXIT_FASTPATH_EXIT_HANDLED,
220 EXIT_FASTPATH_EXIT_USERSPACE,
221 };
222 typedef enum exit_fastpath_completion fastpath_t;
223
224 struct x86_emulate_ctxt;
225 struct x86_exception;
226 union kvm_smram;
227 enum x86_intercept;
228 enum x86_intercept_stage;
229
230 #define KVM_NR_DB_REGS 4
231
232 #define DR6_BUS_LOCK (1 << 11)
233 #define DR6_BD (1 << 13)
234 #define DR6_BS (1 << 14)
235 #define DR6_BT (1 << 15)
236 #define DR6_RTM (1 << 16)
237 /*
238 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
239 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
240 * they will never be 0 for now, but when they are defined
241 * in the future it will require no code change.
242 *
243 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
244 */
245 #define DR6_ACTIVE_LOW 0xffff0ff0
246 #define DR6_VOLATILE 0x0001e80f
247 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
248
249 #define DR7_BP_EN_MASK 0x000000ff
250 #define DR7_GE (1 << 9)
251 #define DR7_GD (1 << 13)
252 #define DR7_FIXED_1 0x00000400
253 #define DR7_VOLATILE 0xffff2bff
254
255 #define KVM_GUESTDBG_VALID_MASK \
256 (KVM_GUESTDBG_ENABLE | \
257 KVM_GUESTDBG_SINGLESTEP | \
258 KVM_GUESTDBG_USE_HW_BP | \
259 KVM_GUESTDBG_USE_SW_BP | \
260 KVM_GUESTDBG_INJECT_BP | \
261 KVM_GUESTDBG_INJECT_DB | \
262 KVM_GUESTDBG_BLOCKIRQ)
263
264 #define PFERR_PRESENT_MASK BIT(0)
265 #define PFERR_WRITE_MASK BIT(1)
266 #define PFERR_USER_MASK BIT(2)
267 #define PFERR_RSVD_MASK BIT(3)
268 #define PFERR_FETCH_MASK BIT(4)
269 #define PFERR_PK_MASK BIT(5)
270 #define PFERR_SGX_MASK BIT(15)
271 #define PFERR_GUEST_RMP_MASK BIT_ULL(31)
272 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
273 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
274 #define PFERR_GUEST_ENC_MASK BIT_ULL(34)
275 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
276 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
277
278 /*
279 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
280 * when emulating instructions that triggers implicit access.
281 */
282 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
283 /*
284 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
285 * when the guest was accessing private memory.
286 */
287 #define PFERR_PRIVATE_ACCESS BIT_ULL(49)
288 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
289
290 /* apic attention bits */
291 #define KVM_APIC_CHECK_VAPIC 0
292 /*
293 * The following bit is set with PV-EOI, unset on EOI.
294 * We detect PV-EOI changes by guest by comparing
295 * this bit with PV-EOI in guest memory.
296 * See the implementation in apic_update_pv_eoi.
297 */
298 #define KVM_APIC_PV_EOI_PENDING 1
299
300 struct kvm_kernel_irq_routing_entry;
301
302 /*
303 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
304 * also includes TDP pages) to determine whether or not a page can be used in
305 * the given MMU context. This is a subset of the overall kvm_cpu_role to
306 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
307 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
308 *
309 * Upper-level shadow pages having gptes are tracked for write-protection via
310 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
311 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
312 * otherwise gfn_write_track will overflow and explosions will ensue.
313 *
314 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
315 * cannot be reused. The ability to reuse a SP is tracked by its role, which
316 * incorporates various mode bits and properties of the SP. Roughly speaking,
317 * the number of unique SPs that can theoretically be created is 2^n, where n
318 * is the number of bits that are used to compute the role.
319 *
320 * But, even though there are 20 bits in the mask below, not all combinations
321 * of modes and flags are possible:
322 *
323 * - invalid shadow pages are not accounted, mirror pages are not shadowed,
324 * so the bits are effectively 18.
325 *
326 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
327 * execonly and ad_disabled are only used for nested EPT which has
328 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
329 *
330 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
331 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
332 * paging has exactly one upper level, making level completely redundant
333 * when has_4_byte_gpte=1.
334 *
335 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
336 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
337 *
338 * Therefore, the maximum number of possible upper-level shadow pages for a
339 * single gfn is a bit less than 2^13.
340 */
341 union kvm_mmu_page_role {
342 u32 word;
343 struct {
344 unsigned level:4;
345 unsigned has_4_byte_gpte:1;
346 unsigned quadrant:2;
347 unsigned direct:1;
348 unsigned access:3;
349 unsigned invalid:1;
350 unsigned efer_nx:1;
351 unsigned cr0_wp:1;
352 unsigned smep_andnot_wp:1;
353 unsigned smap_andnot_wp:1;
354 unsigned ad_disabled:1;
355 unsigned guest_mode:1;
356 unsigned passthrough:1;
357 unsigned is_mirror:1;
358 unsigned :4;
359
360 /*
361 * This is left at the top of the word so that
362 * kvm_memslots_for_spte_role can extract it with a
363 * simple shift. While there is room, give it a whole
364 * byte so it is also faster to load it from memory.
365 */
366 unsigned smm:8;
367 };
368 };
369
370 /*
371 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
372 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
373 * including on nested transitions, if nothing in the full role changes then
374 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
375 * don't treat all-zero structure as valid data.
376 *
377 * The properties that are tracked in the extended role but not the page role
378 * are for things that either (a) do not affect the validity of the shadow page
379 * or (b) are indirectly reflected in the shadow page's role. For example,
380 * CR4.PKE only affects permission checks for software walks of the guest page
381 * tables (because KVM doesn't support Protection Keys with shadow paging), and
382 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
383 *
384 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
385 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
386 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
387 * SMAP aware regardless of CR0.WP.
388 */
389 union kvm_mmu_extended_role {
390 u32 word;
391 struct {
392 unsigned int valid:1;
393 unsigned int execonly:1;
394 unsigned int cr4_pse:1;
395 unsigned int cr4_pke:1;
396 unsigned int cr4_smap:1;
397 unsigned int cr4_smep:1;
398 unsigned int cr4_la57:1;
399 unsigned int efer_lma:1;
400 };
401 };
402
403 union kvm_cpu_role {
404 u64 as_u64;
405 struct {
406 union kvm_mmu_page_role base;
407 union kvm_mmu_extended_role ext;
408 };
409 };
410
411 struct kvm_rmap_head {
412 atomic_long_t val;
413 };
414
415 struct kvm_pio_request {
416 unsigned long count;
417 int in;
418 int port;
419 int size;
420 };
421
422 #define PT64_ROOT_MAX_LEVEL 5
423
424 struct rsvd_bits_validate {
425 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
426 u64 bad_mt_xwr;
427 };
428
429 struct kvm_mmu_root_info {
430 gpa_t pgd;
431 hpa_t hpa;
432 };
433
434 #define KVM_MMU_ROOT_INFO_INVALID \
435 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
436
437 #define KVM_MMU_NUM_PREV_ROOTS 3
438
439 #define KVM_MMU_ROOT_CURRENT BIT(0)
440 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
441 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
442
443 #define KVM_HAVE_MMU_RWLOCK
444
445 struct kvm_mmu_page;
446 struct kvm_page_fault;
447
448 /*
449 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
450 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
451 * current mmu mode.
452 */
453 struct kvm_mmu {
454 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
455 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
456 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
457 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
458 struct x86_exception *fault);
459 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
460 gpa_t gva_or_gpa, u64 access,
461 struct x86_exception *exception);
462 int (*sync_spte)(struct kvm_vcpu *vcpu,
463 struct kvm_mmu_page *sp, int i);
464 struct kvm_mmu_root_info root;
465 hpa_t mirror_root_hpa;
466 union kvm_cpu_role cpu_role;
467 union kvm_mmu_page_role root_role;
468
469 /*
470 * The pkru_mask indicates if protection key checks are needed. It
471 * consists of 16 domains indexed by page fault error code bits [4:1],
472 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
473 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
474 */
475 u32 pkru_mask;
476
477 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
478
479 /*
480 * Bitmap; bit set = permission fault
481 * Byte index: page fault error code [4:1]
482 * Bit index: pte permissions in ACC_* format
483 */
484 u8 permissions[16];
485
486 u64 *pae_root;
487 u64 *pml4_root;
488 u64 *pml5_root;
489
490 /*
491 * check zero bits on shadow page table entries, these
492 * bits include not only hardware reserved bits but also
493 * the bits spte never used.
494 */
495 struct rsvd_bits_validate shadow_zero_check;
496
497 struct rsvd_bits_validate guest_rsvd_check;
498
499 u64 pdptrs[4]; /* pae */
500 };
501
502 enum pmc_type {
503 KVM_PMC_GP = 0,
504 KVM_PMC_FIXED,
505 };
506
507 struct kvm_pmc {
508 enum pmc_type type;
509 u8 idx;
510 bool is_paused;
511 bool intr;
512 /*
513 * Base value of the PMC counter, relative to the *consumed* count in
514 * the associated perf_event. This value includes counter updates from
515 * the perf_event and emulated_count since the last time the counter
516 * was reprogrammed, but it is *not* the current value as seen by the
517 * guest or userspace.
518 *
519 * The count is relative to the associated perf_event so that KVM
520 * doesn't need to reprogram the perf_event every time the guest writes
521 * to the counter.
522 */
523 u64 counter;
524 /*
525 * PMC events triggered by KVM emulation that haven't been fully
526 * processed, i.e. haven't undergone overflow detection.
527 */
528 u64 emulated_counter;
529 u64 eventsel;
530 struct perf_event *perf_event;
531 struct kvm_vcpu *vcpu;
532 /*
533 * only for creating or reusing perf_event,
534 * eventsel value for general purpose counters,
535 * ctrl value for fixed counters.
536 */
537 u64 current_config;
538 };
539
540 /* More counters may conflict with other existing Architectural MSRs */
541 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
542 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8
543 #define KVM_MAX_NR_AMD_GP_COUNTERS 6
544 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
545 KVM_MAX_NR_AMD_GP_COUNTERS)
546
547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0
549 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
550 KVM_MAX_NR_AMD_FIXED_COUTNERS)
551
552 struct kvm_pmu {
553 u8 version;
554 unsigned nr_arch_gp_counters;
555 unsigned nr_arch_fixed_counters;
556 unsigned available_event_types;
557 u64 fixed_ctr_ctrl;
558 u64 fixed_ctr_ctrl_rsvd;
559 u64 global_ctrl;
560 u64 global_status;
561 u64 counter_bitmask[2];
562 u64 global_ctrl_rsvd;
563 u64 global_status_rsvd;
564 u64 reserved_bits;
565 u64 raw_event_mask;
566 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
567 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
568
569 /*
570 * Overlay the bitmap with a 64-bit atomic so that all bits can be
571 * set in a single access, e.g. to reprogram all counters when the PMU
572 * filter changes.
573 */
574 union {
575 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
576 atomic64_t __reprogram_pmi;
577 };
578 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
579 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
580
581 u64 ds_area;
582 u64 pebs_enable;
583 u64 pebs_enable_rsvd;
584 u64 pebs_data_cfg;
585 u64 pebs_data_cfg_rsvd;
586
587 /*
588 * If a guest counter is cross-mapped to host counter with different
589 * index, its PEBS capability will be temporarily disabled.
590 *
591 * The user should make sure that this mask is updated
592 * after disabling interrupts and before perf_guest_get_msrs();
593 */
594 u64 host_cross_mapped_mask;
595
596 /*
597 * The gate to release perf_events not marked in
598 * pmc_in_use only once in a vcpu time slice.
599 */
600 bool need_cleanup;
601
602 /*
603 * The total number of programmed perf_events and it helps to avoid
604 * redundant check before cleanup if guest don't use vPMU at all.
605 */
606 u8 event_count;
607 };
608
609 struct kvm_pmu_ops;
610
611 enum {
612 KVM_DEBUGREG_BP_ENABLED = BIT(0),
613 KVM_DEBUGREG_WONT_EXIT = BIT(1),
614 /*
615 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
616 * hardware on exit from or enter to guest. KVM needn't switch them.
617 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
618 * exit, host values need to be restored.
619 */
620 KVM_DEBUGREG_AUTO_SWITCH = BIT(2),
621 };
622
623 struct kvm_mtrr {
624 u64 var[KVM_NR_VAR_MTRR * 2];
625 u64 fixed_64k;
626 u64 fixed_16k[2];
627 u64 fixed_4k[8];
628 u64 deftype;
629 };
630
631 /* Hyper-V SynIC timer */
632 struct kvm_vcpu_hv_stimer {
633 struct hrtimer timer;
634 int index;
635 union hv_stimer_config config;
636 u64 count;
637 u64 exp_time;
638 struct hv_message msg;
639 bool msg_pending;
640 };
641
642 /* Hyper-V synthetic interrupt controller (SynIC)*/
643 struct kvm_vcpu_hv_synic {
644 u64 version;
645 u64 control;
646 u64 msg_page;
647 u64 evt_page;
648 atomic64_t sint[HV_SYNIC_SINT_COUNT];
649 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
650 DECLARE_BITMAP(auto_eoi_bitmap, 256);
651 DECLARE_BITMAP(vec_bitmap, 256);
652 bool active;
653 bool dont_zero_synic_pages;
654 };
655
656 /* The maximum number of entries on the TLB flush fifo. */
657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
658 /*
659 * Note: the following 'magic' entry is made up by KVM to avoid putting
660 * anything besides GVA on the TLB flush fifo. It is theoretically possible
661 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
662 * which will look identical. KVM's action to 'flush everything' instead of
663 * flushing these particular addresses is, however, fully legitimate as
664 * flushing more than requested is always OK.
665 */
666 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
667
668 enum hv_tlb_flush_fifos {
669 HV_L1_TLB_FLUSH_FIFO,
670 HV_L2_TLB_FLUSH_FIFO,
671 HV_NR_TLB_FLUSH_FIFOS,
672 };
673
674 struct kvm_vcpu_hv_tlb_flush_fifo {
675 spinlock_t write_lock;
676 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
677 };
678
679 /* Hyper-V per vcpu emulation context */
680 struct kvm_vcpu_hv {
681 struct kvm_vcpu *vcpu;
682 u32 vp_index;
683 u64 hv_vapic;
684 s64 runtime_offset;
685 struct kvm_vcpu_hv_synic synic;
686 struct kvm_hyperv_exit exit;
687 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
688 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
689 bool enforce_cpuid;
690 struct {
691 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
692 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
693 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
694 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
695 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
696 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
697 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
698 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
699 } cpuid_cache;
700
701 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
702
703 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */
704 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
705
706 struct hv_vp_assist_page vp_assist_page;
707
708 struct {
709 u64 pa_page_gpa;
710 u64 vm_id;
711 u32 vp_id;
712 } nested;
713 };
714
715 struct kvm_hypervisor_cpuid {
716 u32 base;
717 u32 limit;
718 };
719
720 #ifdef CONFIG_KVM_XEN
721 /* Xen HVM per vcpu emulation context */
722 struct kvm_vcpu_xen {
723 u64 hypercall_rip;
724 u32 current_runstate;
725 u8 upcall_vector;
726 struct gfn_to_pfn_cache vcpu_info_cache;
727 struct gfn_to_pfn_cache vcpu_time_info_cache;
728 struct gfn_to_pfn_cache runstate_cache;
729 struct gfn_to_pfn_cache runstate2_cache;
730 u64 last_steal;
731 u64 runstate_entry_time;
732 u64 runstate_times[4];
733 unsigned long evtchn_pending_sel;
734 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
735 u32 timer_virq;
736 u64 timer_expires; /* In guest epoch */
737 atomic_t timer_pending;
738 struct hrtimer timer;
739 int poll_evtchn;
740 struct timer_list poll_timer;
741 struct kvm_hypervisor_cpuid cpuid;
742 };
743 #endif
744
745 struct kvm_queued_exception {
746 bool pending;
747 bool injected;
748 bool has_error_code;
749 u8 vector;
750 u32 error_code;
751 unsigned long payload;
752 bool has_payload;
753 };
754
755 /*
756 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
757 * unknown to the kernel, but need to be directly used by KVM. Note, these
758 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
759 */
760 enum kvm_only_cpuid_leafs {
761 CPUID_12_EAX = NCAPINTS,
762 CPUID_7_1_EDX,
763 CPUID_8000_0007_EDX,
764 CPUID_8000_0022_EAX,
765 CPUID_7_2_EDX,
766 CPUID_24_0_EBX,
767 NR_KVM_CPU_CAPS,
768
769 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
770 };
771
772 struct kvm_vcpu_arch {
773 /*
774 * rip and regs accesses must go through
775 * kvm_{register,rip}_{read,write} functions.
776 */
777 unsigned long regs[NR_VCPU_REGS];
778 u32 regs_avail;
779 u32 regs_dirty;
780
781 unsigned long cr0;
782 unsigned long cr0_guest_owned_bits;
783 unsigned long cr2;
784 unsigned long cr3;
785 unsigned long cr4;
786 unsigned long cr4_guest_owned_bits;
787 unsigned long cr4_guest_rsvd_bits;
788 unsigned long cr8;
789 u32 host_pkru;
790 u32 pkru;
791 u32 hflags;
792 u64 efer;
793 u64 host_debugctl;
794 u64 apic_base;
795 struct kvm_lapic *apic; /* kernel irqchip context */
796 bool load_eoi_exitmap_pending;
797 DECLARE_BITMAP(ioapic_handled_vectors, 256);
798 unsigned long apic_attention;
799 int32_t apic_arb_prio;
800 int mp_state;
801 u64 ia32_misc_enable_msr;
802 u64 smbase;
803 u64 smi_count;
804 bool at_instruction_boundary;
805 bool tpr_access_reporting;
806 bool xfd_no_write_intercept;
807 u64 ia32_xss;
808 u64 microcode_version;
809 u64 arch_capabilities;
810 u64 perf_capabilities;
811
812 /*
813 * Paging state of the vcpu
814 *
815 * If the vcpu runs in guest mode with two level paging this still saves
816 * the paging mode of the l1 guest. This context is always used to
817 * handle faults.
818 */
819 struct kvm_mmu *mmu;
820
821 /* Non-nested MMU for L1 */
822 struct kvm_mmu root_mmu;
823
824 /* L1 MMU when running nested */
825 struct kvm_mmu guest_mmu;
826
827 /*
828 * Paging state of an L2 guest (used for nested npt)
829 *
830 * This context will save all necessary information to walk page tables
831 * of an L2 guest. This context is only initialized for page table
832 * walking and not for faulting since we never handle l2 page faults on
833 * the host.
834 */
835 struct kvm_mmu nested_mmu;
836
837 /*
838 * Pointer to the mmu context currently used for
839 * gva_to_gpa translations.
840 */
841 struct kvm_mmu *walk_mmu;
842
843 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
844 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
845 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
846 struct kvm_mmu_memory_cache mmu_page_header_cache;
847 /*
848 * This cache is to allocate external page table. E.g. private EPT used
849 * by the TDX module.
850 */
851 struct kvm_mmu_memory_cache mmu_external_spt_cache;
852
853 /*
854 * QEMU userspace and the guest each have their own FPU state.
855 * In vcpu_run, we switch between the user and guest FPU contexts.
856 * While running a VCPU, the VCPU thread will have the guest FPU
857 * context.
858 *
859 * Note that while the PKRU state lives inside the fpu registers,
860 * it is switched out separately at VMENTER and VMEXIT time. The
861 * "guest_fpstate" state here contains the guest FPU context, with the
862 * host PRKU bits.
863 */
864 struct fpu_guest guest_fpu;
865
866 u64 xcr0;
867 u64 guest_supported_xcr0;
868
869 struct kvm_pio_request pio;
870 void *pio_data;
871 void *sev_pio_data;
872 unsigned sev_pio_count;
873
874 u8 event_exit_inst_len;
875
876 bool exception_from_userspace;
877
878 /* Exceptions to be injected to the guest. */
879 struct kvm_queued_exception exception;
880 /* Exception VM-Exits to be synthesized to L1. */
881 struct kvm_queued_exception exception_vmexit;
882
883 struct kvm_queued_interrupt {
884 bool injected;
885 bool soft;
886 u8 nr;
887 } interrupt;
888
889 int halt_request; /* real mode on Intel only */
890
891 int cpuid_nent;
892 struct kvm_cpuid_entry2 *cpuid_entries;
893 bool cpuid_dynamic_bits_dirty;
894 bool is_amd_compatible;
895
896 /*
897 * cpu_caps holds the effective guest capabilities, i.e. the features
898 * the vCPU is allowed to use. Typically, but not always, features can
899 * be used by the guest if and only if both KVM and userspace want to
900 * expose the feature to the guest.
901 *
902 * A common exception is for virtualization holes, i.e. when KVM can't
903 * prevent the guest from using a feature, in which case the vCPU "has"
904 * the feature regardless of what KVM or userspace desires.
905 *
906 * Note, features that don't require KVM involvement in any way are
907 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
908 * guest CPUID provided by userspace.
909 */
910 u32 cpu_caps[NR_KVM_CPU_CAPS];
911
912 u64 reserved_gpa_bits;
913 int maxphyaddr;
914
915 /* emulate context */
916
917 struct x86_emulate_ctxt *emulate_ctxt;
918 bool emulate_regs_need_sync_to_vcpu;
919 bool emulate_regs_need_sync_from_vcpu;
920 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
921 unsigned long cui_linear_rip;
922
923 gpa_t time;
924 s8 pvclock_tsc_shift;
925 u32 pvclock_tsc_mul;
926 unsigned int hw_tsc_khz;
927 struct gfn_to_pfn_cache pv_time;
928 /* set guest stopped flag in pvclock flags field */
929 bool pvclock_set_guest_stopped_request;
930
931 struct {
932 u8 preempted;
933 u64 msr_val;
934 u64 last_steal;
935 struct gfn_to_hva_cache cache;
936 } st;
937
938 u64 l1_tsc_offset;
939 u64 tsc_offset; /* current tsc offset */
940 u64 last_guest_tsc;
941 u64 last_host_tsc;
942 u64 tsc_offset_adjustment;
943 u64 this_tsc_nsec;
944 u64 this_tsc_write;
945 u64 this_tsc_generation;
946 bool tsc_catchup;
947 bool tsc_always_catchup;
948 s8 virtual_tsc_shift;
949 u32 virtual_tsc_mult;
950 u32 virtual_tsc_khz;
951 s64 ia32_tsc_adjust_msr;
952 u64 msr_ia32_power_ctl;
953 u64 l1_tsc_scaling_ratio;
954 u64 tsc_scaling_ratio; /* current scaling ratio */
955
956 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
957 /* Number of NMIs pending injection, not including hardware vNMIs. */
958 unsigned int nmi_pending;
959 bool nmi_injected; /* Trying to inject an NMI this entry */
960 bool smi_pending; /* SMI queued after currently running handler */
961 u8 handling_intr_from_guest;
962
963 struct kvm_mtrr mtrr_state;
964 u64 pat;
965
966 unsigned switch_db_regs;
967 unsigned long db[KVM_NR_DB_REGS];
968 unsigned long dr6;
969 unsigned long dr7;
970 unsigned long eff_db[KVM_NR_DB_REGS];
971 unsigned long guest_debug_dr7;
972 u64 msr_platform_info;
973 u64 msr_misc_features_enables;
974
975 u64 mcg_cap;
976 u64 mcg_status;
977 u64 mcg_ctl;
978 u64 mcg_ext_ctl;
979 u64 *mce_banks;
980 u64 *mci_ctl2_banks;
981
982 /* Cache MMIO info */
983 u64 mmio_gva;
984 unsigned mmio_access;
985 gfn_t mmio_gfn;
986 u64 mmio_gen;
987
988 struct kvm_pmu pmu;
989
990 /* used for guest single stepping over the given code position */
991 unsigned long singlestep_rip;
992
993 #ifdef CONFIG_KVM_HYPERV
994 bool hyperv_enabled;
995 struct kvm_vcpu_hv *hyperv;
996 #endif
997 #ifdef CONFIG_KVM_XEN
998 struct kvm_vcpu_xen xen;
999 #endif
1000 cpumask_var_t wbinvd_dirty_mask;
1001
1002 unsigned long last_retry_eip;
1003 unsigned long last_retry_addr;
1004
1005 struct {
1006 bool halted;
1007 gfn_t gfns[ASYNC_PF_PER_VCPU];
1008 struct gfn_to_hva_cache data;
1009 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1010 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1011 u16 vec;
1012 u32 id;
1013 u32 host_apf_flags;
1014 bool send_always;
1015 bool delivery_as_pf_vmexit;
1016 bool pageready_pending;
1017 } apf;
1018
1019 /* OSVW MSRs (AMD only) */
1020 struct {
1021 u64 length;
1022 u64 status;
1023 } osvw;
1024
1025 struct {
1026 u64 msr_val;
1027 struct gfn_to_hva_cache data;
1028 } pv_eoi;
1029
1030 u64 msr_kvm_poll_control;
1031
1032 /* pv related host specific info */
1033 struct {
1034 bool pv_unhalted;
1035 } pv;
1036
1037 int pending_ioapic_eoi;
1038 int pending_external_vector;
1039 int highest_stale_pending_ioapic_eoi;
1040
1041 /* be preempted when it's in kernel-mode(cpl=0) */
1042 bool preempted_in_kernel;
1043
1044 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1045 bool l1tf_flush_l1d;
1046
1047 /* Host CPU on which VM-entry was most recently attempted */
1048 int last_vmentry_cpu;
1049
1050 /* AMD MSRC001_0015 Hardware Configuration */
1051 u64 msr_hwcr;
1052
1053 /* pv related cpuid info */
1054 struct {
1055 /*
1056 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1057 * leaf.
1058 */
1059 u32 features;
1060
1061 /*
1062 * indicates whether pv emulation should be disabled if features
1063 * are not present in the guest's cpuid
1064 */
1065 bool enforce;
1066 } pv_cpuid;
1067
1068 /* Protected Guests */
1069 bool guest_state_protected;
1070 bool guest_tsc_protected;
1071
1072 /*
1073 * Set when PDPTS were loaded directly by the userspace without
1074 * reading the guest memory
1075 */
1076 bool pdptrs_from_userspace;
1077
1078 #if IS_ENABLED(CONFIG_HYPERV)
1079 hpa_t hv_root_tdp;
1080 #endif
1081 };
1082
1083 struct kvm_lpage_info {
1084 int disallow_lpage;
1085 };
1086
1087 struct kvm_arch_memory_slot {
1088 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1089 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1090 unsigned short *gfn_write_track;
1091 };
1092
1093 /*
1094 * Track the mode of the optimized logical map, as the rules for decoding the
1095 * destination vary per mode. Enabling the optimized logical map requires all
1096 * software-enabled local APIs to be in the same mode, each addressable APIC to
1097 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1098 */
1099 enum kvm_apic_logical_mode {
1100 /* All local APICs are software disabled. */
1101 KVM_APIC_MODE_SW_DISABLED,
1102 /* All software enabled local APICs in xAPIC cluster addressing mode. */
1103 KVM_APIC_MODE_XAPIC_CLUSTER,
1104 /* All software enabled local APICs in xAPIC flat addressing mode. */
1105 KVM_APIC_MODE_XAPIC_FLAT,
1106 /* All software enabled local APICs in x2APIC mode. */
1107 KVM_APIC_MODE_X2APIC,
1108 /*
1109 * Optimized map disabled, e.g. not all local APICs in the same logical
1110 * mode, same logical ID assigned to multiple APICs, etc.
1111 */
1112 KVM_APIC_MODE_MAP_DISABLED,
1113 };
1114
1115 struct kvm_apic_map {
1116 struct rcu_head rcu;
1117 enum kvm_apic_logical_mode logical_mode;
1118 u32 max_apic_id;
1119 union {
1120 struct kvm_lapic *xapic_flat_map[8];
1121 struct kvm_lapic *xapic_cluster_map[16][4];
1122 };
1123 struct kvm_lapic *phys_map[];
1124 };
1125
1126 /* Hyper-V synthetic debugger (SynDbg)*/
1127 struct kvm_hv_syndbg {
1128 struct {
1129 u64 control;
1130 u64 status;
1131 u64 send_page;
1132 u64 recv_page;
1133 u64 pending_page;
1134 } control;
1135 u64 options;
1136 };
1137
1138 /* Current state of Hyper-V TSC page clocksource */
1139 enum hv_tsc_page_status {
1140 /* TSC page was not set up or disabled */
1141 HV_TSC_PAGE_UNSET = 0,
1142 /* TSC page MSR was written by the guest, update pending */
1143 HV_TSC_PAGE_GUEST_CHANGED,
1144 /* TSC page update was triggered from the host side */
1145 HV_TSC_PAGE_HOST_CHANGED,
1146 /* TSC page was properly set up and is currently active */
1147 HV_TSC_PAGE_SET,
1148 /* TSC page was set up with an inaccessible GPA */
1149 HV_TSC_PAGE_BROKEN,
1150 };
1151
1152 #ifdef CONFIG_KVM_HYPERV
1153 /* Hyper-V emulation context */
1154 struct kvm_hv {
1155 struct mutex hv_lock;
1156 u64 hv_guest_os_id;
1157 u64 hv_hypercall;
1158 u64 hv_tsc_page;
1159 enum hv_tsc_page_status hv_tsc_page_status;
1160
1161 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1162 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1163 u64 hv_crash_ctl;
1164
1165 struct ms_hyperv_tsc_page tsc_ref;
1166
1167 struct idr conn_to_evt;
1168
1169 u64 hv_reenlightenment_control;
1170 u64 hv_tsc_emulation_control;
1171 u64 hv_tsc_emulation_status;
1172 u64 hv_invtsc_control;
1173
1174 /* How many vCPUs have VP index != vCPU index */
1175 atomic_t num_mismatched_vp_indexes;
1176
1177 /*
1178 * How many SynICs use 'AutoEOI' feature
1179 * (protected by arch.apicv_update_lock)
1180 */
1181 unsigned int synic_auto_eoi_used;
1182
1183 struct kvm_hv_syndbg hv_syndbg;
1184
1185 bool xsaves_xsavec_checked;
1186 };
1187 #endif
1188
1189 struct msr_bitmap_range {
1190 u32 flags;
1191 u32 nmsrs;
1192 u32 base;
1193 unsigned long *bitmap;
1194 };
1195
1196 #ifdef CONFIG_KVM_XEN
1197 /* Xen emulation context */
1198 struct kvm_xen {
1199 struct mutex xen_lock;
1200 u32 xen_version;
1201 bool long_mode;
1202 bool runstate_update_flag;
1203 u8 upcall_vector;
1204 struct gfn_to_pfn_cache shinfo_cache;
1205 struct idr evtchn_ports;
1206 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1207
1208 struct kvm_xen_hvm_config hvm_config;
1209 };
1210 #endif
1211
1212 enum kvm_irqchip_mode {
1213 KVM_IRQCHIP_NONE,
1214 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1215 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1216 };
1217
1218 struct kvm_x86_msr_filter {
1219 u8 count;
1220 bool default_allow:1;
1221 struct msr_bitmap_range ranges[16];
1222 };
1223
1224 struct kvm_x86_pmu_event_filter {
1225 __u32 action;
1226 __u32 nevents;
1227 __u32 fixed_counter_bitmap;
1228 __u32 flags;
1229 __u32 nr_includes;
1230 __u32 nr_excludes;
1231 __u64 *includes;
1232 __u64 *excludes;
1233 __u64 events[];
1234 };
1235
1236 enum kvm_apicv_inhibit {
1237
1238 /********************************************************************/
1239 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1240 /********************************************************************/
1241
1242 /*
1243 * APIC acceleration is disabled by a module parameter
1244 * and/or not supported in hardware.
1245 */
1246 APICV_INHIBIT_REASON_DISABLED,
1247
1248 /*
1249 * APIC acceleration is inhibited because AutoEOI feature is
1250 * being used by a HyperV guest.
1251 */
1252 APICV_INHIBIT_REASON_HYPERV,
1253
1254 /*
1255 * APIC acceleration is inhibited because the userspace didn't yet
1256 * enable the kernel/split irqchip.
1257 */
1258 APICV_INHIBIT_REASON_ABSENT,
1259
1260 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1261 * (out of band, debug measure of blocking all interrupts on this vCPU)
1262 * was enabled, to avoid AVIC/APICv bypassing it.
1263 */
1264 APICV_INHIBIT_REASON_BLOCKIRQ,
1265
1266 /*
1267 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1268 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1269 */
1270 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1271
1272 /*
1273 * For simplicity, the APIC acceleration is inhibited
1274 * first time either APIC ID or APIC base are changed by the guest
1275 * from their reset values.
1276 */
1277 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1278 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1279
1280 /******************************************************/
1281 /* INHIBITs that are relevant only to the AMD's AVIC. */
1282 /******************************************************/
1283
1284 /*
1285 * AVIC is inhibited on a vCPU because it runs a nested guest.
1286 *
1287 * This is needed because unlike APICv, the peers of this vCPU
1288 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1289 * a vCPU runs nested.
1290 */
1291 APICV_INHIBIT_REASON_NESTED,
1292
1293 /*
1294 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1295 * which cannot be injected when the AVIC is enabled, thus AVIC
1296 * is inhibited while KVM waits for IRQ window.
1297 */
1298 APICV_INHIBIT_REASON_IRQWIN,
1299
1300 /*
1301 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1302 * which AVIC doesn't support for edge triggered interrupts.
1303 */
1304 APICV_INHIBIT_REASON_PIT_REINJ,
1305
1306 /*
1307 * AVIC is disabled because SEV doesn't support it.
1308 */
1309 APICV_INHIBIT_REASON_SEV,
1310
1311 /*
1312 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1313 * mapping between logical ID and vCPU.
1314 */
1315 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1316
1317 NR_APICV_INHIBIT_REASONS,
1318 };
1319
1320 #define __APICV_INHIBIT_REASON(reason) \
1321 { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1322
1323 #define APICV_INHIBIT_REASONS \
1324 __APICV_INHIBIT_REASON(DISABLED), \
1325 __APICV_INHIBIT_REASON(HYPERV), \
1326 __APICV_INHIBIT_REASON(ABSENT), \
1327 __APICV_INHIBIT_REASON(BLOCKIRQ), \
1328 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
1329 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
1330 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
1331 __APICV_INHIBIT_REASON(NESTED), \
1332 __APICV_INHIBIT_REASON(IRQWIN), \
1333 __APICV_INHIBIT_REASON(PIT_REINJ), \
1334 __APICV_INHIBIT_REASON(SEV), \
1335 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1336
1337 struct kvm_arch {
1338 unsigned long n_used_mmu_pages;
1339 unsigned long n_requested_mmu_pages;
1340 unsigned long n_max_mmu_pages;
1341 unsigned int indirect_shadow_pages;
1342 u8 mmu_valid_gen;
1343 u8 vm_type;
1344 bool has_private_mem;
1345 bool has_protected_state;
1346 bool pre_fault_allowed;
1347 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1348 struct list_head active_mmu_pages;
1349 /*
1350 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1351 * replaced by an NX huge page. A shadow page is on this list if its
1352 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1353 * and there are no other conditions that prevent a huge page, e.g.
1354 * the backing host page is huge, dirtly logging is not enabled for its
1355 * memslot, etc... Note, zapping shadow pages on this list doesn't
1356 * guarantee an NX huge page will be created in its stead, e.g. if the
1357 * guest attempts to execute from the region then KVM obviously can't
1358 * create an NX huge page (without hanging the guest).
1359 */
1360 struct list_head possible_nx_huge_pages;
1361 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1362 struct kvm_page_track_notifier_head track_notifier_head;
1363 #endif
1364 /*
1365 * Protects marking pages unsync during page faults, as TDP MMU page
1366 * faults only take mmu_lock for read. For simplicity, the unsync
1367 * pages lock is always taken when marking pages unsync regardless of
1368 * whether mmu_lock is held for read or write.
1369 */
1370 spinlock_t mmu_unsync_pages_lock;
1371
1372 u64 shadow_mmio_value;
1373
1374 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1375 atomic_t noncoherent_dma_count;
1376 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1377 atomic_t assigned_device_count;
1378 struct kvm_pic *vpic;
1379 struct kvm_ioapic *vioapic;
1380 struct kvm_pit *vpit;
1381 atomic_t vapics_in_nmi_mode;
1382 struct mutex apic_map_lock;
1383 struct kvm_apic_map __rcu *apic_map;
1384 atomic_t apic_map_dirty;
1385
1386 bool apic_access_memslot_enabled;
1387 bool apic_access_memslot_inhibited;
1388
1389 /* Protects apicv_inhibit_reasons */
1390 struct rw_semaphore apicv_update_lock;
1391 unsigned long apicv_inhibit_reasons;
1392
1393 gpa_t wall_clock;
1394
1395 bool mwait_in_guest;
1396 bool hlt_in_guest;
1397 bool pause_in_guest;
1398 bool cstate_in_guest;
1399
1400 unsigned long irq_sources_bitmap;
1401 s64 kvmclock_offset;
1402
1403 /*
1404 * This also protects nr_vcpus_matched_tsc which is read from a
1405 * preemption-disabled region, so it must be a raw spinlock.
1406 */
1407 raw_spinlock_t tsc_write_lock;
1408 u64 last_tsc_nsec;
1409 u64 last_tsc_write;
1410 u32 last_tsc_khz;
1411 u64 last_tsc_offset;
1412 u64 cur_tsc_nsec;
1413 u64 cur_tsc_write;
1414 u64 cur_tsc_offset;
1415 u64 cur_tsc_generation;
1416 int nr_vcpus_matched_tsc;
1417
1418 u32 default_tsc_khz;
1419 bool user_set_tsc;
1420 u64 apic_bus_cycle_ns;
1421
1422 seqcount_raw_spinlock_t pvclock_sc;
1423 bool use_master_clock;
1424 u64 master_kernel_ns;
1425 u64 master_cycle_now;
1426 struct delayed_work kvmclock_update_work;
1427 struct delayed_work kvmclock_sync_work;
1428
1429 /* reads protected by irq_srcu, writes by irq_lock */
1430 struct hlist_head mask_notifier_list;
1431
1432 #ifdef CONFIG_KVM_HYPERV
1433 struct kvm_hv hyperv;
1434 #endif
1435
1436 #ifdef CONFIG_KVM_XEN
1437 struct kvm_xen xen;
1438 #endif
1439
1440 bool backwards_tsc_observed;
1441 bool boot_vcpu_runs_old_kvmclock;
1442 u32 bsp_vcpu_id;
1443
1444 u64 disabled_quirks;
1445
1446 enum kvm_irqchip_mode irqchip_mode;
1447 u8 nr_reserved_ioapic_pins;
1448
1449 bool disabled_lapic_found;
1450
1451 bool x2apic_format;
1452 bool x2apic_broadcast_quirk_disabled;
1453
1454 bool guest_can_read_msr_platform_info;
1455 bool exception_payload_enabled;
1456
1457 bool triple_fault_event;
1458
1459 bool bus_lock_detection_enabled;
1460 bool enable_pmu;
1461
1462 u32 notify_window;
1463 u32 notify_vmexit_flags;
1464 /*
1465 * If exit_on_emulation_error is set, and the in-kernel instruction
1466 * emulator fails to emulate an instruction, allow userspace
1467 * the opportunity to look at it.
1468 */
1469 bool exit_on_emulation_error;
1470
1471 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1472 u32 user_space_msr_mask;
1473 struct kvm_x86_msr_filter __rcu *msr_filter;
1474
1475 u32 hypercall_exit_enabled;
1476
1477 /* Guest can access the SGX PROVISIONKEY. */
1478 bool sgx_provisioning_allowed;
1479
1480 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1481 struct vhost_task *nx_huge_page_recovery_thread;
1482 u64 nx_huge_page_last;
1483 struct once nx_once;
1484
1485 #ifdef CONFIG_X86_64
1486 #ifdef CONFIG_KVM_PROVE_MMU
1487 /*
1488 * The number of TDP MMU pages across all roots. Used only to sanity
1489 * check that KVM isn't leaking TDP MMU pages.
1490 */
1491 atomic64_t tdp_mmu_pages;
1492 #endif
1493
1494 /*
1495 * List of struct kvm_mmu_pages being used as roots.
1496 * All struct kvm_mmu_pages in the list should have
1497 * tdp_mmu_page set.
1498 *
1499 * For reads, this list is protected by:
1500 * RCU alone or
1501 * the MMU lock in read mode + RCU or
1502 * the MMU lock in write mode
1503 *
1504 * For writes, this list is protected by tdp_mmu_pages_lock; see
1505 * below for the details.
1506 *
1507 * Roots will remain in the list until their tdp_mmu_root_count
1508 * drops to zero, at which point the thread that decremented the
1509 * count to zero should removed the root from the list and clean
1510 * it up, freeing the root after an RCU grace period.
1511 */
1512 struct list_head tdp_mmu_roots;
1513
1514 /*
1515 * Protects accesses to the following fields when the MMU lock
1516 * is held in read mode:
1517 * - tdp_mmu_roots (above)
1518 * - the link field of kvm_mmu_page structs used by the TDP MMU
1519 * - possible_nx_huge_pages;
1520 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1521 * by the TDP MMU
1522 * Because the lock is only taken within the MMU lock, strictly
1523 * speaking it is redundant to acquire this lock when the thread
1524 * holds the MMU lock in write mode. However it often simplifies
1525 * the code to do so.
1526 */
1527 spinlock_t tdp_mmu_pages_lock;
1528 #endif /* CONFIG_X86_64 */
1529
1530 /*
1531 * If set, at least one shadow root has been allocated. This flag
1532 * is used as one input when determining whether certain memslot
1533 * related allocations are necessary.
1534 */
1535 bool shadow_root_allocated;
1536
1537 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1538 /*
1539 * If set, the VM has (or had) an external write tracking user, and
1540 * thus all write tracking metadata has been allocated, even if KVM
1541 * itself isn't using write tracking.
1542 */
1543 bool external_write_tracking_enabled;
1544 #endif
1545
1546 #if IS_ENABLED(CONFIG_HYPERV)
1547 hpa_t hv_root_tdp;
1548 spinlock_t hv_root_tdp_lock;
1549 struct hv_partition_assist_pg *hv_pa_pg;
1550 #endif
1551 /*
1552 * VM-scope maximum vCPU ID. Used to determine the size of structures
1553 * that increase along with the maximum vCPU ID, in which case, using
1554 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1555 */
1556 u32 max_vcpu_ids;
1557
1558 bool disable_nx_huge_pages;
1559
1560 /*
1561 * Memory caches used to allocate shadow pages when performing eager
1562 * page splitting. No need for a shadowed_info_cache since eager page
1563 * splitting only allocates direct shadow pages.
1564 *
1565 * Protected by kvm->slots_lock.
1566 */
1567 struct kvm_mmu_memory_cache split_shadow_page_cache;
1568 struct kvm_mmu_memory_cache split_page_header_cache;
1569
1570 /*
1571 * Memory cache used to allocate pte_list_desc structs while splitting
1572 * huge pages. In the worst case, to split one huge page, 512
1573 * pte_list_desc structs are needed to add each lower level leaf sptep
1574 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1575 * page table.
1576 *
1577 * Protected by kvm->slots_lock.
1578 */
1579 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1580 struct kvm_mmu_memory_cache split_desc_cache;
1581
1582 gfn_t gfn_direct_bits;
1583
1584 /*
1585 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1586 * value indicates CPU dirty logging is unsupported or disabled in
1587 * current VM.
1588 */
1589 int cpu_dirty_log_size;
1590 };
1591
1592 struct kvm_vm_stat {
1593 struct kvm_vm_stat_generic generic;
1594 u64 mmu_shadow_zapped;
1595 u64 mmu_pte_write;
1596 u64 mmu_pde_zapped;
1597 u64 mmu_flooded;
1598 u64 mmu_recycled;
1599 u64 mmu_cache_miss;
1600 u64 mmu_unsync;
1601 union {
1602 struct {
1603 atomic64_t pages_4k;
1604 atomic64_t pages_2m;
1605 atomic64_t pages_1g;
1606 };
1607 atomic64_t pages[KVM_NR_PAGE_SIZES];
1608 };
1609 u64 nx_lpage_splits;
1610 u64 max_mmu_page_hash_collisions;
1611 u64 max_mmu_rmap_size;
1612 };
1613
1614 struct kvm_vcpu_stat {
1615 struct kvm_vcpu_stat_generic generic;
1616 u64 pf_taken;
1617 u64 pf_fixed;
1618 u64 pf_emulate;
1619 u64 pf_spurious;
1620 u64 pf_fast;
1621 u64 pf_mmio_spte_created;
1622 u64 pf_guest;
1623 u64 tlb_flush;
1624 u64 invlpg;
1625
1626 u64 exits;
1627 u64 io_exits;
1628 u64 mmio_exits;
1629 u64 signal_exits;
1630 u64 irq_window_exits;
1631 u64 nmi_window_exits;
1632 u64 l1d_flush;
1633 u64 halt_exits;
1634 u64 request_irq_exits;
1635 u64 irq_exits;
1636 u64 host_state_reload;
1637 u64 fpu_reload;
1638 u64 insn_emulation;
1639 u64 insn_emulation_fail;
1640 u64 hypercalls;
1641 u64 irq_injections;
1642 u64 nmi_injections;
1643 u64 req_event;
1644 u64 nested_run;
1645 u64 directed_yield_attempted;
1646 u64 directed_yield_successful;
1647 u64 preemption_reported;
1648 u64 preemption_other;
1649 u64 guest_mode;
1650 u64 notify_window_exits;
1651 };
1652
1653 struct x86_instruction_info;
1654
1655 struct msr_data {
1656 bool host_initiated;
1657 u32 index;
1658 u64 data;
1659 };
1660
1661 struct kvm_lapic_irq {
1662 u32 vector;
1663 u16 delivery_mode;
1664 u16 dest_mode;
1665 bool level;
1666 u16 trig_mode;
1667 u32 shorthand;
1668 u32 dest_id;
1669 bool msi_redir_hint;
1670 };
1671
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1672 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1673 {
1674 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1675 }
1676
1677 struct kvm_x86_ops {
1678 const char *name;
1679
1680 int (*check_processor_compatibility)(void);
1681
1682 int (*enable_virtualization_cpu)(void);
1683 void (*disable_virtualization_cpu)(void);
1684 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1685
1686 void (*hardware_unsetup)(void);
1687 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1688 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1689
1690 unsigned int vm_size;
1691 int (*vm_init)(struct kvm *kvm);
1692 void (*vm_destroy)(struct kvm *kvm);
1693 void (*vm_pre_destroy)(struct kvm *kvm);
1694
1695 /* Create, but do not attach this VCPU */
1696 int (*vcpu_precreate)(struct kvm *kvm);
1697 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1698 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1699 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1700
1701 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1702 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1703 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1704
1705 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1706 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1707 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1708 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1709 void (*get_segment)(struct kvm_vcpu *vcpu,
1710 struct kvm_segment *var, int seg);
1711 int (*get_cpl)(struct kvm_vcpu *vcpu);
1712 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1713 void (*set_segment)(struct kvm_vcpu *vcpu,
1714 struct kvm_segment *var, int seg);
1715 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1716 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1717 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1718 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1719 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1720 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1721 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1722 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1723 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1724 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1725 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1726 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1727 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1728 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1729 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1730 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1731 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1732 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1733
1734 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1735 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1736 #if IS_ENABLED(CONFIG_HYPERV)
1737 int (*flush_remote_tlbs)(struct kvm *kvm);
1738 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1739 gfn_t nr_pages);
1740 #endif
1741
1742 /*
1743 * Flush any TLB entries associated with the given GVA.
1744 * Does not need to flush GPA->HPA mappings.
1745 * Can potentially get non-canonical addresses through INVLPGs, which
1746 * the implementation may choose to ignore if appropriate.
1747 */
1748 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1749
1750 /*
1751 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1752 * does not need to flush GPA->HPA mappings.
1753 */
1754 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1755
1756 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1757 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1758 bool force_immediate_exit);
1759 int (*handle_exit)(struct kvm_vcpu *vcpu,
1760 enum exit_fastpath_completion exit_fastpath);
1761 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1762 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1763 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1764 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1765 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1766 unsigned char *hypercall_addr);
1767 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1768 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1769 void (*inject_exception)(struct kvm_vcpu *vcpu);
1770 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1771 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1772 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1773 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1774 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1775 /* Whether or not a virtual NMI is pending in hardware. */
1776 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1777 /*
1778 * Attempt to pend a virtual NMI in hardware. Returns %true on success
1779 * to allow using static_call_ret0 as the fallback.
1780 */
1781 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1782 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1783 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1784 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1785
1786 const bool x2apic_icr_is_split;
1787 const unsigned long required_apicv_inhibits;
1788 bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1789 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1790 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1791 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1792 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1793 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1794 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1795 int trig_mode, int vector);
1796 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1797 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1798 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1799 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1800
1801 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1802 int root_level);
1803
1804 /* Update external mapping with page table link. */
1805 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1806 void *external_spt);
1807 /* Update the external page table from spte getting set. */
1808 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1809 kvm_pfn_t pfn_for_gfn);
1810
1811 /* Update external page tables for page table about to be freed. */
1812 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1813 void *external_spt);
1814
1815 /* Update external page table from spte getting removed, and flush TLB. */
1816 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1817 kvm_pfn_t pfn_for_gfn);
1818
1819 bool (*has_wbinvd_exit)(void);
1820
1821 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1822 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1823 void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1824 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1825
1826 /*
1827 * Retrieve somewhat arbitrary exit/entry information. Intended to
1828 * be used only from within tracepoints or error paths.
1829 */
1830 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1831 u64 *info1, u64 *info2,
1832 u32 *intr_info, u32 *error_code);
1833
1834 void (*get_entry_info)(struct kvm_vcpu *vcpu,
1835 u32 *intr_info, u32 *error_code);
1836
1837 int (*check_intercept)(struct kvm_vcpu *vcpu,
1838 struct x86_instruction_info *info,
1839 enum x86_intercept_stage stage,
1840 struct x86_exception *exception);
1841 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1842
1843 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1844
1845 const struct kvm_x86_nested_ops *nested_ops;
1846
1847 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1848 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1849
1850 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1851 uint32_t guest_irq, bool set);
1852 void (*pi_start_assignment)(struct kvm *kvm);
1853 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1854 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1855 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1856 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1857
1858 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1859 bool *expired);
1860 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1861
1862 void (*setup_mce)(struct kvm_vcpu *vcpu);
1863
1864 #ifdef CONFIG_KVM_SMM
1865 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1866 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1867 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1868 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1869 #endif
1870
1871 int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1872 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1873 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1874 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1875 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1876 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1877 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1878 void (*guest_memory_reclaimed)(struct kvm *kvm);
1879
1880 int (*get_feature_msr)(u32 msr, u64 *data);
1881
1882 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1883 void *insn, int insn_len);
1884
1885 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1886 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1887
1888 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1889 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1890 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1891
1892 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1893
1894 /*
1895 * Returns vCPU specific APICv inhibit reasons
1896 */
1897 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1898
1899 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1900 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1901 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1902 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1903 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1904 };
1905
1906 struct kvm_x86_nested_ops {
1907 void (*leave_nested)(struct kvm_vcpu *vcpu);
1908 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1909 u32 error_code);
1910 int (*check_events)(struct kvm_vcpu *vcpu);
1911 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1912 void (*triple_fault)(struct kvm_vcpu *vcpu);
1913 int (*get_state)(struct kvm_vcpu *vcpu,
1914 struct kvm_nested_state __user *user_kvm_nested_state,
1915 unsigned user_data_size);
1916 int (*set_state)(struct kvm_vcpu *vcpu,
1917 struct kvm_nested_state __user *user_kvm_nested_state,
1918 struct kvm_nested_state *kvm_state);
1919 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1920 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1921
1922 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1923 uint16_t *vmcs_version);
1924 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1925 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1926 };
1927
1928 struct kvm_x86_init_ops {
1929 int (*hardware_setup)(void);
1930 unsigned int (*handle_intel_pt_intr)(void);
1931
1932 struct kvm_x86_ops *runtime_ops;
1933 struct kvm_pmu_ops *pmu_ops;
1934 };
1935
1936 struct kvm_arch_async_pf {
1937 u32 token;
1938 gfn_t gfn;
1939 unsigned long cr3;
1940 bool direct_map;
1941 u64 error_code;
1942 };
1943
1944 extern u32 __read_mostly kvm_nr_uret_msrs;
1945 extern bool __read_mostly allow_smaller_maxphyaddr;
1946 extern bool __read_mostly enable_apicv;
1947 extern bool __read_mostly enable_device_posted_irqs;
1948 extern struct kvm_x86_ops kvm_x86_ops;
1949
1950 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1951 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1952
1953 #define KVM_X86_OP(func) \
1954 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1955 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1956 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1957 #include <asm/kvm-x86-ops.h>
1958
1959 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1960 void kvm_x86_vendor_exit(void);
1961
1962 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1963 static inline struct kvm *kvm_arch_alloc_vm(void)
1964 {
1965 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1966 }
1967
1968 #define __KVM_HAVE_ARCH_VM_FREE
1969 void kvm_arch_free_vm(struct kvm *kvm);
1970
1971 #if IS_ENABLED(CONFIG_HYPERV)
1972 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1973 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1974 {
1975 if (kvm_x86_ops.flush_remote_tlbs &&
1976 !kvm_x86_call(flush_remote_tlbs)(kvm))
1977 return 0;
1978 else
1979 return -ENOTSUPP;
1980 }
1981
1982 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1983 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1984 u64 nr_pages)
1985 {
1986 if (!kvm_x86_ops.flush_remote_tlbs_range)
1987 return -EOPNOTSUPP;
1988
1989 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1990 }
1991 #endif /* CONFIG_HYPERV */
1992
1993 enum kvm_intr_type {
1994 /* Values are arbitrary, but must be non-zero. */
1995 KVM_HANDLING_IRQ = 1,
1996 KVM_HANDLING_NMI,
1997 };
1998
1999 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2000 #define kvm_arch_pmi_in_guest(vcpu) \
2001 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2002 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2003
2004 void __init kvm_mmu_x86_module_init(void);
2005 int kvm_mmu_vendor_module_init(void);
2006 void kvm_mmu_vendor_module_exit(void);
2007
2008 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2009 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2010 void kvm_mmu_init_vm(struct kvm *kvm);
2011 void kvm_mmu_uninit_vm(struct kvm *kvm);
2012
2013 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2014 struct kvm_memory_slot *slot);
2015
2016 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2017 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2018 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2019 const struct kvm_memory_slot *memslot,
2020 int start_level);
2021 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2022 const struct kvm_memory_slot *memslot,
2023 int target_level);
2024 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2025 const struct kvm_memory_slot *memslot,
2026 u64 start, u64 end,
2027 int target_level);
2028 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2029 const struct kvm_memory_slot *memslot);
2030 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2031 const struct kvm_memory_slot *memslot);
2032 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2033 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2034 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2035
2036 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2037
2038 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2039 const void *val, int bytes);
2040
2041 struct kvm_irq_mask_notifier {
2042 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2043 int irq;
2044 struct hlist_node link;
2045 };
2046
2047 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2048 struct kvm_irq_mask_notifier *kimn);
2049 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2050 struct kvm_irq_mask_notifier *kimn);
2051 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2052 bool mask);
2053
2054 extern bool tdp_enabled;
2055
2056 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2057
2058 /*
2059 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2060 * userspace I/O) to indicate that the emulation context
2061 * should be reused as is, i.e. skip initialization of
2062 * emulation context, instruction fetch and decode.
2063 *
2064 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2065 * Indicates that only select instructions (tagged with
2066 * EmulateOnUD) should be emulated (to minimize the emulator
2067 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
2068 *
2069 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2070 * decode the instruction length. For use *only* by
2071 * kvm_x86_ops.skip_emulated_instruction() implementations if
2072 * EMULTYPE_COMPLETE_USER_EXIT is not set.
2073 *
2074 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2075 * retry native execution under certain conditions,
2076 * Can only be set in conjunction with EMULTYPE_PF.
2077 *
2078 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2079 * triggered by KVM's magic "force emulation" prefix,
2080 * which is opt in via module param (off by default).
2081 * Bypasses EmulateOnUD restriction despite emulating
2082 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2083 * Used to test the full emulator from userspace.
2084 *
2085 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2086 * backdoor emulation, which is opt in via module param.
2087 * VMware backdoor emulation handles select instructions
2088 * and reinjects the #GP for all other cases.
2089 *
2090 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2091 * the CR2/GPA value pass on the stack is valid.
2092 *
2093 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2094 * state and inject single-step #DBs after skipping
2095 * an instruction (after completing userspace I/O).
2096 *
2097 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2098 * is attempting to write a gfn that contains one or
2099 * more of the PTEs used to translate the write itself,
2100 * and the owning page table is being shadowed by KVM.
2101 * If emulation of the faulting instruction fails and
2102 * this flag is set, KVM will exit to userspace instead
2103 * of retrying emulation as KVM cannot make forward
2104 * progress.
2105 *
2106 * If emulation fails for a write to guest page tables,
2107 * KVM unprotects (zaps) the shadow page for the target
2108 * gfn and resumes the guest to retry the non-emulatable
2109 * instruction (on hardware). Unprotecting the gfn
2110 * doesn't allow forward progress for a self-changing
2111 * access because doing so also zaps the translation for
2112 * the gfn, i.e. retrying the instruction will hit a
2113 * !PRESENT fault, which results in a new shadow page
2114 * and sends KVM back to square one.
2115 */
2116 #define EMULTYPE_NO_DECODE (1 << 0)
2117 #define EMULTYPE_TRAP_UD (1 << 1)
2118 #define EMULTYPE_SKIP (1 << 2)
2119 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
2120 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
2121 #define EMULTYPE_VMWARE_GP (1 << 5)
2122 #define EMULTYPE_PF (1 << 6)
2123 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2124 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
2125
kvm_can_emulate_event_vectoring(int emul_type)2126 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2127 {
2128 return !(emul_type & EMULTYPE_PF);
2129 }
2130
2131 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2132 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2133 void *insn, int insn_len);
2134 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2135 u64 *data, u8 ndata);
2136 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2137
2138 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2139
2140 void kvm_enable_efer_bits(u64);
2141 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2142 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2143 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2144 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2145 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2146 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2147 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2148 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2149 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2150 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2151 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2152 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2153 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2154
2155 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2156 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2157 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2158 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2159 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2160 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2161
2162 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2163 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2164 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2165 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2166
2167 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2168 int reason, bool has_error_code, u32 error_code);
2169
2170 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2171 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2172 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2173 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2174 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2175 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2176 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2177 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2178 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2179 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2180 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2181
2182 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2183 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2184
2185 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2186 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2187 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2188
2189 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2190 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2191 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2192 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2193 bool has_error_code, u32 error_code);
2194 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2195 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2196 struct x86_exception *fault);
2197 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2198 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2199
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2200 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2201 int irq_source_id, int level)
2202 {
2203 /* Logical OR for level trig interrupt */
2204 if (level)
2205 __set_bit(irq_source_id, irq_state);
2206 else
2207 __clear_bit(irq_source_id, irq_state);
2208
2209 return !!(*irq_state);
2210 }
2211
2212 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2213 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2214
2215 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2216 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2217
2218 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2219
2220 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2221 bool always_retry);
2222
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2223 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2224 gpa_t cr2_or_gpa)
2225 {
2226 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2227 }
2228
2229 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2230 ulong roots_to_free);
2231 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2232 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2233 struct x86_exception *exception);
2234 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2235 struct x86_exception *exception);
2236 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2237 struct x86_exception *exception);
2238
2239 bool kvm_apicv_activated(struct kvm *kvm);
2240 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2241 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2242 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2243 enum kvm_apicv_inhibit reason, bool set);
2244 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2245 enum kvm_apicv_inhibit reason, bool set);
2246
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2247 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2248 enum kvm_apicv_inhibit reason)
2249 {
2250 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2251 }
2252
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2253 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2254 enum kvm_apicv_inhibit reason)
2255 {
2256 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2257 }
2258
2259 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2260 void *insn, int insn_len);
2261 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2262 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2263 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2264 u64 addr, unsigned long roots);
2265 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2266 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2267
2268 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2269 int tdp_max_root_level, int tdp_huge_page_level);
2270
2271
2272 #ifdef CONFIG_KVM_PRIVATE_MEM
2273 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2274 #else
2275 #define kvm_arch_has_private_mem(kvm) false
2276 #endif
2277
2278 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2279
kvm_read_ldt(void)2280 static inline u16 kvm_read_ldt(void)
2281 {
2282 u16 ldt;
2283 asm("sldt %0" : "=g"(ldt));
2284 return ldt;
2285 }
2286
kvm_load_ldt(u16 sel)2287 static inline void kvm_load_ldt(u16 sel)
2288 {
2289 asm("lldt %0" : : "rm"(sel));
2290 }
2291
2292 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2293 static inline unsigned long read_msr(unsigned long msr)
2294 {
2295 u64 value;
2296
2297 rdmsrq(msr, value);
2298 return value;
2299 }
2300 #endif
2301
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2302 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2303 {
2304 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2305 }
2306
2307 #define TSS_IOPB_BASE_OFFSET 0x66
2308 #define TSS_BASE_SIZE 0x68
2309 #define TSS_IOPB_SIZE (65536 / 8)
2310 #define TSS_REDIRECTION_SIZE (256 / 8)
2311 #define RMODE_TSS_SIZE \
2312 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2313
2314 enum {
2315 TASK_SWITCH_CALL = 0,
2316 TASK_SWITCH_IRET = 1,
2317 TASK_SWITCH_JMP = 2,
2318 TASK_SWITCH_GATE = 3,
2319 };
2320
2321 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
2322
2323 #ifdef CONFIG_KVM_SMM
2324 #define HF_SMM_MASK (1 << 1)
2325 #define HF_SMM_INSIDE_NMI_MASK (1 << 2)
2326
2327 # define KVM_MAX_NR_ADDRESS_SPACES 2
2328 /* SMM is currently unsupported for guests with private memory. */
2329 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2330 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2331 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2332 #else
2333 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2334 #endif
2335
2336 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2337 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2338 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2339 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2340 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2341 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2342 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2343
2344 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2345 unsigned long ipi_bitmap_high, u32 min,
2346 unsigned long icr, int op_64_bit);
2347
2348 int kvm_add_user_return_msr(u32 msr);
2349 int kvm_find_user_return_msr(u32 msr);
2350 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2351 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2352
kvm_is_supported_user_return_msr(u32 msr)2353 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2354 {
2355 return kvm_find_user_return_msr(msr) >= 0;
2356 }
2357
2358 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2359 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2360 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2361 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2362
2363 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2364 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2365
2366 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2367 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2368 unsigned long *vcpu_bitmap);
2369
2370 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2371 struct kvm_async_pf *work);
2372 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2373 struct kvm_async_pf *work);
2374 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2375 struct kvm_async_pf *work);
2376 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2377 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2378 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2379
2380 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2381 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2382
2383 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2384 u32 size);
2385 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2386 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2387
2388 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2389 struct kvm_vcpu **dest_vcpu);
2390
2391 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2392 struct kvm_lapic_irq *irq);
2393
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2394 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2395 {
2396 /* We can only post Fixed and LowPrio IRQs */
2397 return (irq->delivery_mode == APIC_DM_FIXED ||
2398 irq->delivery_mode == APIC_DM_LOWEST);
2399 }
2400
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2401 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2402 {
2403 kvm_x86_call(vcpu_blocking)(vcpu);
2404 }
2405
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2406 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2407 {
2408 kvm_x86_call(vcpu_unblocking)(vcpu);
2409 }
2410
kvm_cpu_get_apicid(int mps_cpu)2411 static inline int kvm_cpu_get_apicid(int mps_cpu)
2412 {
2413 #ifdef CONFIG_X86_LOCAL_APIC
2414 return default_cpu_present_to_apicid(mps_cpu);
2415 #else
2416 WARN_ON_ONCE(1);
2417 return BAD_APICID;
2418 #endif
2419 }
2420
2421 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2422
2423 #define KVM_CLOCK_VALID_FLAGS \
2424 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2425
2426 #define KVM_X86_VALID_QUIRKS \
2427 (KVM_X86_QUIRK_LINT0_REENABLED | \
2428 KVM_X86_QUIRK_CD_NW_CLEARED | \
2429 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2430 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2431 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2432 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2433 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \
2434 KVM_X86_QUIRK_SLOT_ZAP_ALL | \
2435 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \
2436 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2437
2438 #define KVM_X86_CONDITIONAL_QUIRKS \
2439 (KVM_X86_QUIRK_CD_NW_CLEARED | \
2440 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2441
2442 /*
2443 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2444 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2445 * remaining 31 lower bits must be 0 to preserve ABI.
2446 */
2447 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
2448
kvm_arch_has_irq_bypass(void)2449 static inline bool kvm_arch_has_irq_bypass(void)
2450 {
2451 return enable_device_posted_irqs;
2452 }
2453
2454 #endif /* _ASM_X86_KVM_HOST_H */
2455