xref: /linux/arch/arm64/kernel/cpufeature.c (revision 971199ad2a0f1b2fbe14af13369704aff2999988)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 #include <linux/sched/isolation.h>
79 
80 #include <asm/cpu.h>
81 #include <asm/cpufeature.h>
82 #include <asm/cpu_ops.h>
83 #include <asm/fpsimd.h>
84 #include <asm/hwcap.h>
85 #include <asm/insn.h>
86 #include <asm/kvm_host.h>
87 #include <asm/mmu.h>
88 #include <asm/mmu_context.h>
89 #include <asm/mte.h>
90 #include <asm/hypervisor.h>
91 #include <asm/processor.h>
92 #include <asm/smp.h>
93 #include <asm/sysreg.h>
94 #include <asm/traps.h>
95 #include <asm/vectors.h>
96 #include <asm/virt.h>
97 
98 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
99 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
100 
101 #ifdef CONFIG_COMPAT
102 #define COMPAT_ELF_HWCAP_DEFAULT	\
103 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
104 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
105 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
106 				 COMPAT_HWCAP_LPAE)
107 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
108 unsigned int compat_elf_hwcap2 __read_mostly;
109 unsigned int compat_elf_hwcap3 __read_mostly;
110 #endif
111 
112 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
113 EXPORT_SYMBOL(system_cpucaps);
114 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
115 
116 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
117 
118 /*
119  * arm64_use_ng_mappings must be placed in the .data section, otherwise it
120  * ends up in the .bss section where it is initialized in early_map_kernel()
121  * after the MMU (with the idmap) was enabled. create_init_idmap() - which
122  * runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
123  * may end up generating an incorrect idmap page table attributes.
124  */
125 bool arm64_use_ng_mappings __read_mostly = false;
126 EXPORT_SYMBOL(arm64_use_ng_mappings);
127 
128 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
129 
130 /*
131  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
132  * support it?
133  */
134 static bool __read_mostly allow_mismatched_32bit_el0;
135 
136 /*
137  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
138  * seen at least one CPU capable of 32-bit EL0.
139  */
140 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
141 
142 /*
143  * Mask of CPUs supporting 32-bit EL0.
144  * Only valid if arm64_mismatched_32bit_el0 is enabled.
145  */
146 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
147 
dump_cpu_features(void)148 void dump_cpu_features(void)
149 {
150 	/* file-wide pr_fmt adds "CPU features: " prefix */
151 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
152 }
153 
154 #define __ARM64_MAX_POSITIVE(reg, field)				\
155 		((reg##_##field##_SIGNED ?				\
156 		  BIT(reg##_##field##_WIDTH - 1) :			\
157 		  BIT(reg##_##field##_WIDTH)) - 1)
158 
159 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
160 
161 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
162 		.sys_reg = SYS_##reg,					\
163 		.field_pos = reg##_##field##_SHIFT,			\
164 		.field_width = reg##_##field##_WIDTH,			\
165 		.sign = reg##_##field##_SIGNED,				\
166 		.min_field_value = min_value,				\
167 		.max_field_value = max_value,
168 
169 /*
170  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
171  * an implicit maximum that depends on the sign-ess of the field.
172  *
173  * An unsigned field will be capped at all ones, while a signed field
174  * will be limited to the positive half only.
175  */
176 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
177 	__ARM64_CPUID_FIELDS(reg, field,				\
178 			     SYS_FIELD_VALUE(reg, field, min_value),	\
179 			     __ARM64_MAX_POSITIVE(reg, field))
180 
181 /*
182  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
183  * implicit minimal value to max_value. This should be used when
184  * matching a non-implemented property.
185  */
186 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
187 	__ARM64_CPUID_FIELDS(reg, field,				\
188 			     __ARM64_MIN_NEGATIVE(reg, field),		\
189 			     SYS_FIELD_VALUE(reg, field, max_value))
190 
191 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
192 	{						\
193 		.sign = SIGNED,				\
194 		.visible = VISIBLE,			\
195 		.strict = STRICT,			\
196 		.type = TYPE,				\
197 		.shift = SHIFT,				\
198 		.width = WIDTH,				\
199 		.safe_val = SAFE_VAL,			\
200 	}
201 
202 /* Define a feature with unsigned values */
203 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
204 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
205 
206 /* Define a feature with a signed value */
207 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
208 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
209 
210 #define ARM64_FTR_END					\
211 	{						\
212 		.width = 0,				\
213 	}
214 
215 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
216 
217 static bool __system_matches_cap(unsigned int n);
218 
219 /*
220  * NOTE: Any changes to the visibility of features should be kept in
221  * sync with the documentation of the CPU feature register ABI.
222  */
223 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
238 	ARM64_FTR_END,
239 };
240 
241 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
245 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
250 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
252 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
253 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
256 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
257 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
259 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
261 	ARM64_FTR_END,
262 };
263 
264 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
265 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
266 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
267 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
272 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
274 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
276 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
277 	ARM64_FTR_END,
278 };
279 
280 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
281 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
282 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_LSFE_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
284 	ARM64_FTR_END,
285 };
286 
287 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
290 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
292 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
294 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
295 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
298 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
299 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
302 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
303 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
304 	ARM64_FTR_END,
305 };
306 
307 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
308 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
309 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
310 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
311 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
312 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
313 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
314 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
316 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
317 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
318 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
319 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
320 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
321 	ARM64_FTR_END,
322 };
323 
324 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
325 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
326 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
327 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
328 	ARM64_FTR_END,
329 };
330 
331 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
332 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
333 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
334 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
335 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
336 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
337 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
338 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
339 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
340 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
341 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
342 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
343 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
344 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
345 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
346 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
347 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
349 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
350 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
351 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
352 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
353 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
354 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
355 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
356 	ARM64_FTR_END,
357 };
358 
359 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
360 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
362 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
364 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
366 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
370 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
372 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
373 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
374 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
375 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
376 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
377 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
378 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
379 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
380 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
381 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
382 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
383 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
384 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
385 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
386 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
387 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
388 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
389 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
390 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
391 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
392 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
393 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
394 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
395 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
396 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
397 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
398 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
399 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
400 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
401 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
402 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
403 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
404 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
405 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
406 	ARM64_FTR_END,
407 };
408 
409 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
410 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
411 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
412 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
413 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
414 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
415 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
416 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
417 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
418 	ARM64_FTR_END,
419 };
420 
421 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
422 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
423 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
424 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
425 	/*
426 	 * Page size not being supported at Stage-2 is not fatal. You
427 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
428 	 * your favourite nesting hypervisor.
429 	 *
430 	 * There is a small corner case where the hypervisor explicitly
431 	 * advertises a given granule size at Stage-2 (value 2) on some
432 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
433 	 * vCPUs. Although this is not forbidden by the architecture, it
434 	 * indicates that the hypervisor is being silly (or buggy).
435 	 *
436 	 * We make no effort to cope with this and pretend that if these
437 	 * fields are inconsistent across vCPUs, then it isn't worth
438 	 * trying to bring KVM up.
439 	 */
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
442 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
443 	/*
444 	 * We already refuse to boot CPUs that don't support our configured
445 	 * page size, so we can only detect mismatches for a page size other
446 	 * than the one we're currently using. Unfortunately, SoCs like this
447 	 * exist in the wild so, even though we don't like it, we'll have to go
448 	 * along with it and treat them as non-strict.
449 	 */
450 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
451 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
453 
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
455 	/* Linux shouldn't care about secure memory */
456 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
457 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
459 	/*
460 	 * Differing PARange is fine as long as all peripherals and memory are mapped
461 	 * within the minimum PARange of all CPUs
462 	 */
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
464 	ARM64_FTR_END,
465 };
466 
467 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
468 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
470 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
471 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
472 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
473 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
474 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
477 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
478 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
479 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
480 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
481 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
482 	ARM64_FTR_END,
483 };
484 
485 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
486 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
487 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
488 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
489 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
490 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
492 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
493 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
494 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
495 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
496 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
497 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
498 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
499 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
500 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
501 	ARM64_FTR_END,
502 };
503 
504 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
505 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
506 		       FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
510 	ARM64_FTR_END,
511 };
512 
513 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
514 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
515 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
516 	ARM64_FTR_END,
517 };
518 
519 static const struct arm64_ftr_bits ftr_ctr[] = {
520 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
521 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
522 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
523 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
524 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
525 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
526 	/*
527 	 * Linux can handle differing I-cache policies. Userspace JITs will
528 	 * make use of *minLine.
529 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
530 	 */
531 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
532 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
533 	ARM64_FTR_END,
534 };
535 
536 static struct arm64_ftr_override __ro_after_init no_override = { };
537 
538 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
539 	.name		= "SYS_CTR_EL0",
540 	.ftr_bits	= ftr_ctr,
541 	.override	= &no_override,
542 };
543 
544 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
545 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
546 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
550 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
551 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
552 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
553 	ARM64_FTR_END,
554 };
555 
556 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
557 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
558 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
559 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
560 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
561 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
562 	/*
563 	 * We can instantiate multiple PMU instances with different levels
564 	 * of support.
565 	 */
566 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
567 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
568 	ARM64_FTR_END,
569 };
570 
571 static const struct arm64_ftr_bits ftr_mvfr0[] = {
572 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
578 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
579 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
580 	ARM64_FTR_END,
581 };
582 
583 static const struct arm64_ftr_bits ftr_mvfr1[] = {
584 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
585 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
586 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
587 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
588 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
589 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
590 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
591 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
592 	ARM64_FTR_END,
593 };
594 
595 static const struct arm64_ftr_bits ftr_mvfr2[] = {
596 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
597 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
598 	ARM64_FTR_END,
599 };
600 
601 static const struct arm64_ftr_bits ftr_dczid[] = {
602 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
603 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
604 	ARM64_FTR_END,
605 };
606 
607 static const struct arm64_ftr_bits ftr_gmid[] = {
608 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
609 	ARM64_FTR_END,
610 };
611 
612 static const struct arm64_ftr_bits ftr_id_isar0[] = {
613 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
614 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
615 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
616 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
617 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
618 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
619 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
620 	ARM64_FTR_END,
621 };
622 
623 static const struct arm64_ftr_bits ftr_id_isar5[] = {
624 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
625 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
626 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
627 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
628 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
629 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
630 	ARM64_FTR_END,
631 };
632 
633 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
634 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
635 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
636 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
637 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
638 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
639 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
640 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
641 
642 	/*
643 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
644 	 * external abort on speculative read. It is safe to assume that an
645 	 * SError might be generated than it will not be. Hence it has been
646 	 * classified as FTR_HIGHER_SAFE.
647 	 */
648 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
649 	ARM64_FTR_END,
650 };
651 
652 static const struct arm64_ftr_bits ftr_id_isar4[] = {
653 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
654 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
655 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
656 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
657 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
658 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
659 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
660 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
661 	ARM64_FTR_END,
662 };
663 
664 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
665 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
666 	ARM64_FTR_END,
667 };
668 
669 static const struct arm64_ftr_bits ftr_id_isar6[] = {
670 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
671 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
672 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
673 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
674 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
675 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
676 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
677 	ARM64_FTR_END,
678 };
679 
680 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
681 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
682 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
683 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
684 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
685 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
686 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
687 	ARM64_FTR_END,
688 };
689 
690 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
691 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
692 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
693 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
694 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
695 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
696 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
697 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
698 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
699 	ARM64_FTR_END,
700 };
701 
702 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
703 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
704 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
705 	ARM64_FTR_END,
706 };
707 
708 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
709 	/* [31:28] TraceFilt */
710 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
711 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
712 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
713 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
714 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
715 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
716 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
717 	ARM64_FTR_END,
718 };
719 
720 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
721 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
722 	ARM64_FTR_END,
723 };
724 
725 static const struct arm64_ftr_bits ftr_mpamidr[] = {
726 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
727 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
728 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
729 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
730 	ARM64_FTR_END,
731 };
732 
733 /*
734  * Common ftr bits for a 32bit register with all hidden, strict
735  * attributes, with 4bit feature fields and a default safe value of
736  * 0. Covers the following 32bit registers:
737  * id_isar[1-3], id_mmfr[1-3]
738  */
739 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
740 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
741 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
742 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
743 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
744 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
745 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
746 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
747 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
748 	ARM64_FTR_END,
749 };
750 
751 /* Table for a single 32bit feature value */
752 static const struct arm64_ftr_bits ftr_single32[] = {
753 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
754 	ARM64_FTR_END,
755 };
756 
757 static const struct arm64_ftr_bits ftr_raz[] = {
758 	ARM64_FTR_END,
759 };
760 
761 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
762 		.sys_id = id,					\
763 		.reg = 	&(struct arm64_ftr_reg){		\
764 			.name = id_str,				\
765 			.override = (ovr),			\
766 			.ftr_bits = &((table)[0]),		\
767 	}}
768 
769 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
770 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
771 
772 #define ARM64_FTR_REG(id, table)		\
773 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
774 
775 struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
776 struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
777 struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
778 struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
779 struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
780 struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
781 struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
782 struct arm64_ftr_override __read_mostly id_aa64isar1_override;
783 struct arm64_ftr_override __read_mostly id_aa64isar2_override;
784 
785 struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
786 
787 static const struct __ftr_reg_entry {
788 	u32			sys_id;
789 	struct arm64_ftr_reg 	*reg;
790 } arm64_ftr_regs[] = {
791 
792 	/* Op1 = 0, CRn = 0, CRm = 1 */
793 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
794 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
795 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
796 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
797 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
798 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
799 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
800 
801 	/* Op1 = 0, CRn = 0, CRm = 2 */
802 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
803 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
804 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
805 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
806 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
807 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
808 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
809 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
810 
811 	/* Op1 = 0, CRn = 0, CRm = 3 */
812 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
813 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
814 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
815 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
816 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
817 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
818 
819 	/* Op1 = 0, CRn = 0, CRm = 4 */
820 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
821 			       &id_aa64pfr0_override),
822 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
823 			       &id_aa64pfr1_override),
824 	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
825 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
826 			       &id_aa64zfr0_override),
827 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
828 			       &id_aa64smfr0_override),
829 	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
830 
831 	/* Op1 = 0, CRn = 0, CRm = 5 */
832 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
833 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
834 
835 	/* Op1 = 0, CRn = 0, CRm = 6 */
836 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
837 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
838 			       &id_aa64isar1_override),
839 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
840 			       &id_aa64isar2_override),
841 	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
842 
843 	/* Op1 = 0, CRn = 0, CRm = 7 */
844 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
845 			       &id_aa64mmfr0_override),
846 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
847 			       &id_aa64mmfr1_override),
848 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
849 			       &id_aa64mmfr2_override),
850 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
851 	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
852 
853 	/* Op1 = 0, CRn = 10, CRm = 4 */
854 	ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
855 
856 	/* Op1 = 1, CRn = 0, CRm = 0 */
857 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
858 
859 	/* Op1 = 3, CRn = 0, CRm = 0 */
860 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
861 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
862 
863 	/* Op1 = 3, CRn = 14, CRm = 0 */
864 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
865 };
866 
search_cmp_ftr_reg(const void * id,const void * regp)867 static int search_cmp_ftr_reg(const void *id, const void *regp)
868 {
869 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
870 }
871 
872 /*
873  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
874  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
875  * ascending order of sys_id, we use binary search to find a matching
876  * entry.
877  *
878  * returns - Upon success,  matching ftr_reg entry for id.
879  *         - NULL on failure. It is upto the caller to decide
880  *	     the impact of a failure.
881  */
get_arm64_ftr_reg_nowarn(u32 sys_id)882 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
883 {
884 	const struct __ftr_reg_entry *ret;
885 
886 	ret = bsearch((const void *)(unsigned long)sys_id,
887 			arm64_ftr_regs,
888 			ARRAY_SIZE(arm64_ftr_regs),
889 			sizeof(arm64_ftr_regs[0]),
890 			search_cmp_ftr_reg);
891 	if (ret)
892 		return ret->reg;
893 	return NULL;
894 }
895 
896 /*
897  * get_arm64_ftr_reg - Looks up a feature register entry using
898  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
899  *
900  * returns - Upon success,  matching ftr_reg entry for id.
901  *         - NULL on failure but with an WARN_ON().
902  */
get_arm64_ftr_reg(u32 sys_id)903 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
904 {
905 	struct arm64_ftr_reg *reg;
906 
907 	reg = get_arm64_ftr_reg_nowarn(sys_id);
908 
909 	/*
910 	 * Requesting a non-existent register search is an error. Warn
911 	 * and let the caller handle it.
912 	 */
913 	WARN_ON(!reg);
914 	return reg;
915 }
916 
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)917 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
918 			       s64 ftr_val)
919 {
920 	u64 mask = arm64_ftr_mask(ftrp);
921 
922 	reg &= ~mask;
923 	reg |= (ftr_val << ftrp->shift) & mask;
924 	return reg;
925 }
926 
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)927 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
928 				s64 cur)
929 {
930 	s64 ret = 0;
931 
932 	switch (ftrp->type) {
933 	case FTR_EXACT:
934 		ret = ftrp->safe_val;
935 		break;
936 	case FTR_LOWER_SAFE:
937 		ret = min(new, cur);
938 		break;
939 	case FTR_HIGHER_OR_ZERO_SAFE:
940 		if (!cur || !new)
941 			break;
942 		fallthrough;
943 	case FTR_HIGHER_SAFE:
944 		ret = max(new, cur);
945 		break;
946 	default:
947 		BUG();
948 	}
949 
950 	return ret;
951 }
952 
sort_ftr_regs(void)953 static void __init sort_ftr_regs(void)
954 {
955 	unsigned int i;
956 
957 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
958 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
959 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
960 		unsigned int j = 0;
961 
962 		/*
963 		 * Features here must be sorted in descending order with respect
964 		 * to their shift values and should not overlap with each other.
965 		 */
966 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
967 			unsigned int width = ftr_reg->ftr_bits[j].width;
968 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
969 			unsigned int prev_shift;
970 
971 			WARN((shift  + width) > 64,
972 				"%s has invalid feature at shift %d\n",
973 				ftr_reg->name, shift);
974 
975 			/*
976 			 * Skip the first feature. There is nothing to
977 			 * compare against for now.
978 			 */
979 			if (j == 0)
980 				continue;
981 
982 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
983 			WARN((shift + width) > prev_shift,
984 				"%s has feature overlap at shift %d\n",
985 				ftr_reg->name, shift);
986 		}
987 
988 		/*
989 		 * Skip the first register. There is nothing to
990 		 * compare against for now.
991 		 */
992 		if (i == 0)
993 			continue;
994 		/*
995 		 * Registers here must be sorted in ascending order with respect
996 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
997 		 * to work correctly.
998 		 */
999 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
1000 	}
1001 }
1002 
1003 /*
1004  * Initialise the CPU feature register from Boot CPU values.
1005  * Also initiliases the strict_mask for the register.
1006  * Any bits that are not covered by an arm64_ftr_bits entry are considered
1007  * RES0 for the system-wide value, and must strictly match.
1008  */
init_cpu_ftr_reg(u32 sys_reg,u64 new)1009 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1010 {
1011 	u64 val = 0;
1012 	u64 strict_mask = ~0x0ULL;
1013 	u64 user_mask = 0;
1014 	u64 valid_mask = 0;
1015 
1016 	const struct arm64_ftr_bits *ftrp;
1017 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1018 
1019 	if (!reg)
1020 		return;
1021 
1022 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1023 		u64 ftr_mask = arm64_ftr_mask(ftrp);
1024 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1025 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1026 
1027 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
1028 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1029 			char *str = NULL;
1030 
1031 			if (ftr_ovr != tmp) {
1032 				/* Unsafe, remove the override */
1033 				reg->override->mask &= ~ftr_mask;
1034 				reg->override->val &= ~ftr_mask;
1035 				tmp = ftr_ovr;
1036 				str = "ignoring override";
1037 			} else if (ftr_new != tmp) {
1038 				/* Override was valid */
1039 				ftr_new = tmp;
1040 				str = "forced";
1041 			} else {
1042 				/* Override was the safe value */
1043 				str = "already set";
1044 			}
1045 
1046 			pr_warn("%s[%d:%d]: %s to %llx\n",
1047 				reg->name,
1048 				ftrp->shift + ftrp->width - 1,
1049 				ftrp->shift, str,
1050 				tmp & (BIT(ftrp->width) - 1));
1051 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1052 			reg->override->val &= ~ftr_mask;
1053 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1054 				reg->name,
1055 				ftrp->shift + ftrp->width - 1,
1056 				ftrp->shift);
1057 		}
1058 
1059 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1060 
1061 		valid_mask |= ftr_mask;
1062 		if (!ftrp->strict)
1063 			strict_mask &= ~ftr_mask;
1064 		if (ftrp->visible)
1065 			user_mask |= ftr_mask;
1066 		else
1067 			reg->user_val = arm64_ftr_set_value(ftrp,
1068 							    reg->user_val,
1069 							    ftrp->safe_val);
1070 	}
1071 
1072 	val &= valid_mask;
1073 
1074 	reg->sys_val = val;
1075 	reg->strict_mask = strict_mask;
1076 	reg->user_mask = user_mask;
1077 }
1078 
1079 extern const struct arm64_cpu_capabilities arm64_errata[];
1080 static const struct arm64_cpu_capabilities arm64_features[];
1081 
1082 static void __init
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)1083 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1084 {
1085 	for (; caps->matches; caps++) {
1086 		if (WARN(caps->capability >= ARM64_NCAPS,
1087 			"Invalid capability %d\n", caps->capability))
1088 			continue;
1089 		if (WARN(cpucap_ptrs[caps->capability],
1090 			"Duplicate entry for capability %d\n",
1091 			caps->capability))
1092 			continue;
1093 		cpucap_ptrs[caps->capability] = caps;
1094 	}
1095 }
1096 
init_cpucap_indirect_list(void)1097 static void __init init_cpucap_indirect_list(void)
1098 {
1099 	init_cpucap_indirect_list_from_array(arm64_features);
1100 	init_cpucap_indirect_list_from_array(arm64_errata);
1101 }
1102 
1103 static void __init setup_boot_cpu_capabilities(void);
1104 
init_32bit_cpu_features(struct cpuinfo_32bit * info)1105 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1106 {
1107 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1108 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1109 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1110 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1111 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1112 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1113 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1114 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1115 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1116 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1117 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1118 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1119 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1120 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1121 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1122 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1123 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1124 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1125 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1126 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1127 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1128 }
1129 
1130 #ifdef CONFIG_ARM64_PSEUDO_NMI
1131 static bool enable_pseudo_nmi;
1132 
early_enable_pseudo_nmi(char * p)1133 static int __init early_enable_pseudo_nmi(char *p)
1134 {
1135 	return kstrtobool(p, &enable_pseudo_nmi);
1136 }
1137 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1138 
detect_system_supports_pseudo_nmi(void)1139 static __init void detect_system_supports_pseudo_nmi(void)
1140 {
1141 	struct device_node *np;
1142 
1143 	if (!enable_pseudo_nmi)
1144 		return;
1145 
1146 	/*
1147 	 * Detect broken MediaTek firmware that doesn't properly save and
1148 	 * restore GIC priorities.
1149 	 */
1150 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1151 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1152 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1153 		enable_pseudo_nmi = false;
1154 	}
1155 	of_node_put(np);
1156 }
1157 #else /* CONFIG_ARM64_PSEUDO_NMI */
detect_system_supports_pseudo_nmi(void)1158 static inline void detect_system_supports_pseudo_nmi(void) { }
1159 #endif
1160 
init_cpu_features(struct cpuinfo_arm64 * info)1161 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1162 {
1163 	/* Before we start using the tables, make sure it is sorted */
1164 	sort_ftr_regs();
1165 
1166 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1167 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1168 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1169 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1170 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1171 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1172 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1173 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1174 	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1175 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1176 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1177 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1178 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1179 	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1180 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1181 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1182 	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1183 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1184 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1185 	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1186 
1187 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1188 		init_32bit_cpu_features(&info->aarch32);
1189 
1190 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1191 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1192 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1193 
1194 		vec_init_vq_map(ARM64_VEC_SVE);
1195 
1196 		cpacr_restore(cpacr);
1197 	}
1198 
1199 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1200 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1201 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1202 
1203 		vec_init_vq_map(ARM64_VEC_SME);
1204 
1205 		cpacr_restore(cpacr);
1206 	}
1207 
1208 	if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1209 		info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1210 		init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1211 	}
1212 
1213 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1214 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1215 }
1216 
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1217 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1218 {
1219 	const struct arm64_ftr_bits *ftrp;
1220 
1221 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1222 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1223 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1224 
1225 		if (ftr_cur == ftr_new)
1226 			continue;
1227 		/* Find a safe value */
1228 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1229 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1230 	}
1231 
1232 }
1233 
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1234 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1235 {
1236 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1237 
1238 	if (!regp)
1239 		return 0;
1240 
1241 	update_cpu_ftr_reg(regp, val);
1242 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1243 		return 0;
1244 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1245 			regp->name, boot, cpu, val);
1246 	return 1;
1247 }
1248 
relax_cpu_ftr_reg(u32 sys_id,int field)1249 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1250 {
1251 	const struct arm64_ftr_bits *ftrp;
1252 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1253 
1254 	if (!regp)
1255 		return;
1256 
1257 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1258 		if (ftrp->shift == field) {
1259 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1260 			break;
1261 		}
1262 	}
1263 
1264 	/* Bogus field? */
1265 	WARN_ON(!ftrp->width);
1266 }
1267 
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1268 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1269 					 struct cpuinfo_arm64 *boot)
1270 {
1271 	static bool boot_cpu_32bit_regs_overridden = false;
1272 
1273 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1274 		return;
1275 
1276 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1277 		return;
1278 
1279 	boot->aarch32 = info->aarch32;
1280 	init_32bit_cpu_features(&boot->aarch32);
1281 	boot_cpu_32bit_regs_overridden = true;
1282 }
1283 
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1284 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1285 				     struct cpuinfo_32bit *boot)
1286 {
1287 	int taint = 0;
1288 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1289 
1290 	/*
1291 	 * If we don't have AArch32 at EL1, then relax the strictness of
1292 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1293 	 */
1294 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1295 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1296 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1297 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1298 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1299 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1300 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1301 	}
1302 
1303 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1304 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1305 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1306 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1307 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1308 				      info->reg_id_isar0, boot->reg_id_isar0);
1309 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1310 				      info->reg_id_isar1, boot->reg_id_isar1);
1311 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1312 				      info->reg_id_isar2, boot->reg_id_isar2);
1313 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1314 				      info->reg_id_isar3, boot->reg_id_isar3);
1315 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1316 				      info->reg_id_isar4, boot->reg_id_isar4);
1317 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1318 				      info->reg_id_isar5, boot->reg_id_isar5);
1319 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1320 				      info->reg_id_isar6, boot->reg_id_isar6);
1321 
1322 	/*
1323 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1324 	 * ACTLR formats could differ across CPUs and therefore would have to
1325 	 * be trapped for virtualization anyway.
1326 	 */
1327 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1328 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1329 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1330 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1331 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1332 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1333 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1334 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1335 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1336 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1337 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1338 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1339 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1340 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1341 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1342 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1343 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1344 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1345 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1346 				      info->reg_mvfr0, boot->reg_mvfr0);
1347 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1348 				      info->reg_mvfr1, boot->reg_mvfr1);
1349 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1350 				      info->reg_mvfr2, boot->reg_mvfr2);
1351 
1352 	return taint;
1353 }
1354 
1355 /*
1356  * Update system wide CPU feature registers with the values from a
1357  * non-boot CPU. Also performs SANITY checks to make sure that there
1358  * aren't any insane variations from that of the boot CPU.
1359  */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1360 void update_cpu_features(int cpu,
1361 			 struct cpuinfo_arm64 *info,
1362 			 struct cpuinfo_arm64 *boot)
1363 {
1364 	int taint = 0;
1365 
1366 	/*
1367 	 * The kernel can handle differing I-cache policies, but otherwise
1368 	 * caches should look identical. Userspace JITs will make use of
1369 	 * *minLine.
1370 	 */
1371 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1372 				      info->reg_ctr, boot->reg_ctr);
1373 
1374 	/*
1375 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1376 	 * could result in too much or too little memory being zeroed if a
1377 	 * process is preempted and migrated between CPUs.
1378 	 */
1379 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1380 				      info->reg_dczid, boot->reg_dczid);
1381 
1382 	/* If different, timekeeping will be broken (especially with KVM) */
1383 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1384 				      info->reg_cntfrq, boot->reg_cntfrq);
1385 
1386 	/*
1387 	 * The kernel uses self-hosted debug features and expects CPUs to
1388 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1389 	 * and BRPs to be identical.
1390 	 * ID_AA64DFR1 is currently RES0.
1391 	 */
1392 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1393 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1394 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1395 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1396 	/*
1397 	 * Even in big.LITTLE, processors should be identical instruction-set
1398 	 * wise.
1399 	 */
1400 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1401 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1402 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1403 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1404 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1405 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1406 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1407 				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1408 
1409 	/*
1410 	 * Differing PARange support is fine as long as all peripherals and
1411 	 * memory are mapped within the minimum PARange of all CPUs.
1412 	 * Linux should not care about secure memory.
1413 	 */
1414 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1415 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1416 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1417 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1418 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1419 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1420 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1421 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1422 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1423 				      info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1424 
1425 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1426 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1427 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1428 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1429 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1430 				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1431 
1432 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1433 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1434 
1435 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1436 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1437 
1438 	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1439 				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1440 
1441 	/* Probe vector lengths */
1442 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1443 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1444 		if (!system_capabilities_finalized()) {
1445 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1446 
1447 			vec_update_vq_map(ARM64_VEC_SVE);
1448 
1449 			cpacr_restore(cpacr);
1450 		}
1451 	}
1452 
1453 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1454 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1455 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1456 
1457 		/* Probe vector lengths */
1458 		if (!system_capabilities_finalized())
1459 			vec_update_vq_map(ARM64_VEC_SME);
1460 
1461 		cpacr_restore(cpacr);
1462 	}
1463 
1464 	if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1465 		info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1466 		taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1467 					info->reg_mpamidr, boot->reg_mpamidr);
1468 	}
1469 
1470 	/*
1471 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1472 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1473 	 * value is the same on all CPUs.
1474 	 */
1475 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1476 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1477 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1478 					      info->reg_gmid, boot->reg_gmid);
1479 	}
1480 
1481 	/*
1482 	 * If we don't have AArch32 at all then skip the checks entirely
1483 	 * as the register values may be UNKNOWN and we're not going to be
1484 	 * using them for anything.
1485 	 *
1486 	 * This relies on a sanitised view of the AArch64 ID registers
1487 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1488 	 */
1489 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1490 		lazy_init_32bit_cpu_features(info, boot);
1491 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1492 						   &boot->aarch32);
1493 	}
1494 
1495 	/*
1496 	 * Mismatched CPU features are a recipe for disaster. Don't even
1497 	 * pretend to support them.
1498 	 */
1499 	if (taint) {
1500 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1501 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1502 	}
1503 }
1504 
read_sanitised_ftr_reg(u32 id)1505 u64 read_sanitised_ftr_reg(u32 id)
1506 {
1507 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1508 
1509 	if (!regp)
1510 		return 0;
1511 	return regp->sys_val;
1512 }
1513 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1514 
1515 #define read_sysreg_case(r)	\
1516 	case r:		val = read_sysreg_s(r); break;
1517 
1518 /*
1519  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1520  * Read the system register on the current CPU
1521  */
__read_sysreg_by_encoding(u32 sys_id)1522 u64 __read_sysreg_by_encoding(u32 sys_id)
1523 {
1524 	struct arm64_ftr_reg *regp;
1525 	u64 val;
1526 
1527 	switch (sys_id) {
1528 	read_sysreg_case(SYS_ID_PFR0_EL1);
1529 	read_sysreg_case(SYS_ID_PFR1_EL1);
1530 	read_sysreg_case(SYS_ID_PFR2_EL1);
1531 	read_sysreg_case(SYS_ID_DFR0_EL1);
1532 	read_sysreg_case(SYS_ID_DFR1_EL1);
1533 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1534 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1535 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1536 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1537 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1538 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1539 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1540 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1541 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1542 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1543 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1544 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1545 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1546 	read_sysreg_case(SYS_MVFR0_EL1);
1547 	read_sysreg_case(SYS_MVFR1_EL1);
1548 	read_sysreg_case(SYS_MVFR2_EL1);
1549 
1550 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1551 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1552 	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1553 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1554 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1555 	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1556 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1557 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1558 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1559 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1560 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1561 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1562 	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1563 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1564 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1565 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1566 	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1567 
1568 	read_sysreg_case(SYS_CNTFRQ_EL0);
1569 	read_sysreg_case(SYS_CTR_EL0);
1570 	read_sysreg_case(SYS_DCZID_EL0);
1571 
1572 	default:
1573 		BUG();
1574 		return 0;
1575 	}
1576 
1577 	regp  = get_arm64_ftr_reg(sys_id);
1578 	if (regp) {
1579 		val &= ~regp->override->mask;
1580 		val |= (regp->override->val & regp->override->mask);
1581 	}
1582 
1583 	return val;
1584 }
1585 
1586 #include <linux/irqchip/arm-gic-v3.h>
1587 
1588 static bool
has_always(const struct arm64_cpu_capabilities * entry,int scope)1589 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1590 {
1591 	return true;
1592 }
1593 
1594 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1595 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1596 {
1597 	int val, min, max;
1598 	u64 tmp;
1599 
1600 	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1601 						entry->field_width,
1602 						entry->sign);
1603 
1604 	tmp = entry->min_field_value;
1605 	tmp <<= entry->field_pos;
1606 
1607 	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1608 						entry->field_width,
1609 						entry->sign);
1610 
1611 	tmp = entry->max_field_value;
1612 	tmp <<= entry->field_pos;
1613 
1614 	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1615 						entry->field_width,
1616 						entry->sign);
1617 
1618 	return val >= min && val <= max;
1619 }
1620 
1621 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1622 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1623 {
1624 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1625 	if (scope == SCOPE_SYSTEM)
1626 		return read_sanitised_ftr_reg(entry->sys_reg);
1627 	else
1628 		return __read_sysreg_by_encoding(entry->sys_reg);
1629 }
1630 
1631 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1632 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1633 {
1634 	int mask;
1635 	struct arm64_ftr_reg *regp;
1636 	u64 val = read_scoped_sysreg(entry, scope);
1637 
1638 	regp = get_arm64_ftr_reg(entry->sys_reg);
1639 	if (!regp)
1640 		return false;
1641 
1642 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1643 							  entry->field_pos,
1644 							  entry->field_width);
1645 	if (!mask)
1646 		return false;
1647 
1648 	return feature_matches(val, entry);
1649 }
1650 
1651 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1652 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1653 {
1654 	u64 val = read_scoped_sysreg(entry, scope);
1655 	return feature_matches(val, entry);
1656 }
1657 
system_32bit_el0_cpumask(void)1658 const struct cpumask *system_32bit_el0_cpumask(void)
1659 {
1660 	if (!system_supports_32bit_el0())
1661 		return cpu_none_mask;
1662 
1663 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1664 		return cpu_32bit_el0_mask;
1665 
1666 	return cpu_possible_mask;
1667 }
1668 
task_cpu_fallback_mask(struct task_struct * p)1669 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1670 {
1671 	return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1672 }
1673 
parse_32bit_el0_param(char * str)1674 static int __init parse_32bit_el0_param(char *str)
1675 {
1676 	allow_mismatched_32bit_el0 = true;
1677 	return 0;
1678 }
1679 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1680 
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1681 static ssize_t aarch32_el0_show(struct device *dev,
1682 				struct device_attribute *attr, char *buf)
1683 {
1684 	const struct cpumask *mask = system_32bit_el0_cpumask();
1685 
1686 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1687 }
1688 static const DEVICE_ATTR_RO(aarch32_el0);
1689 
aarch32_el0_sysfs_init(void)1690 static int __init aarch32_el0_sysfs_init(void)
1691 {
1692 	struct device *dev_root;
1693 	int ret = 0;
1694 
1695 	if (!allow_mismatched_32bit_el0)
1696 		return 0;
1697 
1698 	dev_root = bus_get_dev_root(&cpu_subsys);
1699 	if (dev_root) {
1700 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1701 		put_device(dev_root);
1702 	}
1703 	return ret;
1704 }
1705 device_initcall(aarch32_el0_sysfs_init);
1706 
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1707 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1708 {
1709 	if (!has_cpuid_feature(entry, scope))
1710 		return allow_mismatched_32bit_el0;
1711 
1712 	if (scope == SCOPE_SYSTEM)
1713 		pr_info("detected: 32-bit EL0 Support\n");
1714 
1715 	return true;
1716 }
1717 
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1718 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1719 {
1720 	bool has_sre;
1721 
1722 	if (!has_cpuid_feature(entry, scope))
1723 		return false;
1724 
1725 	has_sre = gic_enable_sre();
1726 	if (!has_sre)
1727 		pr_warn_once("%s present but disabled by higher exception level\n",
1728 			     entry->desc);
1729 
1730 	return has_sre;
1731 }
1732 
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1733 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1734 			  int scope)
1735 {
1736 	u64 ctr;
1737 
1738 	if (scope == SCOPE_SYSTEM)
1739 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1740 	else
1741 		ctr = read_cpuid_effective_cachetype();
1742 
1743 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1744 }
1745 
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1746 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1747 {
1748 	/*
1749 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1750 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1751 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1752 	 * value.
1753 	 */
1754 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1755 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1756 }
1757 
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1758 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1759 			  int scope)
1760 {
1761 	u64 ctr;
1762 
1763 	if (scope == SCOPE_SYSTEM)
1764 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1765 	else
1766 		ctr = read_cpuid_cachetype();
1767 
1768 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1769 }
1770 
1771 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1772 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1773 {
1774 	/*
1775 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1776 	 * may share TLB entries with a CPU stuck in the crashed
1777 	 * kernel.
1778 	 */
1779 	if (is_kdump_kernel())
1780 		return false;
1781 
1782 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1783 		return false;
1784 
1785 	return has_cpuid_feature(entry, scope);
1786 }
1787 
1788 static bool __meltdown_safe = true;
1789 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1790 
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1791 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1792 				int scope)
1793 {
1794 	/* List of CPUs that are not vulnerable and don't need KPTI */
1795 	static const struct midr_range kpti_safe_list[] = {
1796 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1797 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1798 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1799 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1800 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1801 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1802 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1803 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1804 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1805 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1806 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1807 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1808 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1809 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1810 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1811 		{ /* sentinel */ }
1812 	};
1813 	char const *str = "kpti command line option";
1814 	bool meltdown_safe;
1815 
1816 	meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1817 
1818 	/* Defer to CPU feature registers */
1819 	if (has_cpuid_feature(entry, scope))
1820 		meltdown_safe = true;
1821 
1822 	if (!meltdown_safe)
1823 		__meltdown_safe = false;
1824 
1825 	/*
1826 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1827 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1828 	 * ends as well as you might imagine. Don't even try. We cannot rely
1829 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1830 	 * because cpucap detection order may change. However, since we know
1831 	 * affected CPUs are always in a homogeneous configuration, it is
1832 	 * safe to rely on this_cpu_has_cap() here.
1833 	 */
1834 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1835 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1836 		__kpti_forced = -1;
1837 	}
1838 
1839 	/* Useful for KASLR robustness */
1840 	if (kaslr_enabled() && kaslr_requires_kpti()) {
1841 		if (!__kpti_forced) {
1842 			str = "KASLR";
1843 			__kpti_forced = 1;
1844 		}
1845 	}
1846 
1847 	if (cpu_mitigations_off() && !__kpti_forced) {
1848 		str = "mitigations=off";
1849 		__kpti_forced = -1;
1850 	}
1851 
1852 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1853 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1854 		return false;
1855 	}
1856 
1857 	/* Forced? */
1858 	if (__kpti_forced) {
1859 		pr_info_once("kernel page table isolation forced %s by %s\n",
1860 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1861 		return __kpti_forced > 0;
1862 	}
1863 
1864 	return !meltdown_safe;
1865 }
1866 
has_nv1(const struct arm64_cpu_capabilities * entry,int scope)1867 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1868 {
1869 	/*
1870 	 * Although the Apple M2 family appears to support NV1, the
1871 	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1872 	 * that it doesn't support NV1 at all.
1873 	 */
1874 	static const struct midr_range nv1_ni_list[] = {
1875 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1876 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1877 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1878 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1879 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1880 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1881 		{}
1882 	};
1883 
1884 	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1885 		!(has_cpuid_feature(entry, scope) ||
1886 		  is_midr_in_range_list(nv1_ni_list)));
1887 }
1888 
1889 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
has_lpa2_at_stage1(u64 mmfr0)1890 static bool has_lpa2_at_stage1(u64 mmfr0)
1891 {
1892 	unsigned int tgran;
1893 
1894 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1895 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1896 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1897 }
1898 
has_lpa2_at_stage2(u64 mmfr0)1899 static bool has_lpa2_at_stage2(u64 mmfr0)
1900 {
1901 	unsigned int tgran;
1902 
1903 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1904 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1905 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1906 }
1907 
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1908 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1909 {
1910 	u64 mmfr0;
1911 
1912 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1913 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1914 }
1915 #else
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1916 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1917 {
1918 	return false;
1919 }
1920 #endif
1921 
1922 #ifdef CONFIG_HW_PERF_EVENTS
has_pmuv3(const struct arm64_cpu_capabilities * entry,int scope)1923 static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1924 {
1925 	u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1926 	unsigned int pmuver;
1927 
1928 	/*
1929 	 * PMUVer follows the standard ID scheme for an unsigned field with the
1930 	 * exception of 0xF (IMP_DEF) which is treated specially and implies
1931 	 * FEAT_PMUv3 is not implemented.
1932 	 *
1933 	 * See DDI0487L.a D24.1.3.2 for more details.
1934 	 */
1935 	pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1936 						      ID_AA64DFR0_EL1_PMUVer_SHIFT);
1937 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1938 		return false;
1939 
1940 	return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1941 }
1942 #endif
1943 
cpu_enable_kpti(struct arm64_cpu_capabilities const * cap)1944 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1945 {
1946 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1947 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1948 
1949 		__this_cpu_write(this_cpu_vector, v);
1950 	}
1951 
1952 }
1953 
parse_kpti(char * str)1954 static int __init parse_kpti(char *str)
1955 {
1956 	bool enabled;
1957 	int ret = kstrtobool(str, &enabled);
1958 
1959 	if (ret)
1960 		return ret;
1961 
1962 	__kpti_forced = enabled ? 1 : -1;
1963 	return 0;
1964 }
1965 early_param("kpti", parse_kpti);
1966 
1967 #ifdef CONFIG_ARM64_HW_AFDBM
1968 static struct cpumask dbm_cpus __read_mostly;
1969 
__cpu_enable_hw_dbm(void)1970 static inline void __cpu_enable_hw_dbm(void)
1971 {
1972 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1973 
1974 	write_sysreg(tcr, tcr_el1);
1975 	isb();
1976 	local_flush_tlb_all();
1977 }
1978 
cpu_has_broken_dbm(void)1979 static bool cpu_has_broken_dbm(void)
1980 {
1981 	/* List of CPUs which have broken DBM support. */
1982 	static const struct midr_range cpus[] = {
1983 #ifdef CONFIG_ARM64_ERRATUM_1024718
1984 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1985 		/* Kryo4xx Silver (rdpe => r1p0) */
1986 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1987 #endif
1988 #ifdef CONFIG_ARM64_ERRATUM_2051678
1989 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1990 #endif
1991 		{},
1992 	};
1993 
1994 	return is_midr_in_range_list(cpus);
1995 }
1996 
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)1997 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1998 {
1999 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2000 	       !cpu_has_broken_dbm();
2001 }
2002 
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)2003 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2004 {
2005 	if (cpu_can_use_dbm(cap)) {
2006 		__cpu_enable_hw_dbm();
2007 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2008 	}
2009 }
2010 
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)2011 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2012 		       int __unused)
2013 {
2014 	/*
2015 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2016 	 * run a mix of CPUs with and without the feature. So, we
2017 	 * unconditionally enable the capability to allow any late CPU
2018 	 * to use the feature. We only enable the control bits on the
2019 	 * CPU, if it is supported.
2020 	 */
2021 
2022 	return true;
2023 }
2024 
2025 #endif
2026 
2027 #ifdef CONFIG_ARM64_AMU_EXTN
2028 
2029 /*
2030  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2031  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2032  * information regarding all the events that it supports. When a CPU bit is
2033  * set in the cpumask, the user of this feature can only rely on the presence
2034  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2035  * counters are enabled or access to these counters is enabled by code
2036  * executed at higher exception levels (firmware).
2037  */
2038 static struct cpumask amu_cpus __read_mostly;
2039 
cpu_has_amu_feat(int cpu)2040 bool cpu_has_amu_feat(int cpu)
2041 {
2042 	return cpumask_test_cpu(cpu, &amu_cpus);
2043 }
2044 
get_cpu_with_amu_feat(void)2045 int get_cpu_with_amu_feat(void)
2046 {
2047 	return cpumask_any(&amu_cpus);
2048 }
2049 
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)2050 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2051 {
2052 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2053 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2054 
2055 		/* 0 reference values signal broken/disabled counters */
2056 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2057 			update_freq_counters_refs();
2058 	}
2059 }
2060 
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)2061 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2062 		    int __unused)
2063 {
2064 	/*
2065 	 * The AMU extension is a non-conflicting feature: the kernel can
2066 	 * safely run a mix of CPUs with and without support for the
2067 	 * activity monitors extension. Therefore, unconditionally enable
2068 	 * the capability to allow any late CPU to use the feature.
2069 	 *
2070 	 * With this feature unconditionally enabled, the cpu_enable
2071 	 * function will be called for all CPUs that match the criteria,
2072 	 * including secondary and hotplugged, marking this feature as
2073 	 * present on that respective CPU. The enable function will also
2074 	 * print a detection message.
2075 	 */
2076 
2077 	return true;
2078 }
2079 #else
get_cpu_with_amu_feat(void)2080 int get_cpu_with_amu_feat(void)
2081 {
2082 	return nr_cpu_ids;
2083 }
2084 #endif
2085 
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)2086 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2087 {
2088 	return is_kernel_in_hyp_mode();
2089 }
2090 
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)2091 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2092 {
2093 	/*
2094 	 * Copy register values that aren't redirected by hardware.
2095 	 *
2096 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2097 	 * this value to tpidr_el2 before we patch the code. Once we've done
2098 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2099 	 * do anything here.
2100 	 */
2101 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2102 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2103 }
2104 
has_nested_virt_support(const struct arm64_cpu_capabilities * cap,int scope)2105 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2106 				    int scope)
2107 {
2108 	if (kvm_get_mode() != KVM_MODE_NV)
2109 		return false;
2110 
2111 	if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2112 		pr_warn("unavailable: %s\n", cap->desc);
2113 		return false;
2114 	}
2115 
2116 	return true;
2117 }
2118 
hvhe_possible(const struct arm64_cpu_capabilities * entry,int __unused)2119 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2120 			  int __unused)
2121 {
2122 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2123 }
2124 
cpu_supports_bbml2_noabort(void)2125 bool cpu_supports_bbml2_noabort(void)
2126 {
2127 	/*
2128 	 * We want to allow usage of BBML2 in as wide a range of kernel contexts
2129 	 * as possible. This list is therefore an allow-list of known-good
2130 	 * implementations that both support BBML2 and additionally, fulfill the
2131 	 * extra constraint of never generating TLB conflict aborts when using
2132 	 * the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2133 	 * kernel contexts difficult to prove safe against recursive aborts).
2134 	 *
2135 	 * Note that implementations can only be considered "known-good" if their
2136 	 * implementors attest to the fact that the implementation never raises
2137 	 * TLB conflict aborts for BBML2 mapping granularity changes.
2138 	 */
2139 	static const struct midr_range supports_bbml2_noabort_list[] = {
2140 		MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2141 		MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2142 		MIDR_REV_RANGE(MIDR_NEOVERSE_V3AE, 0, 2, 0xf),
2143 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_OLYMPUS),
2144 		MIDR_ALL_VERSIONS(MIDR_AMPERE1),
2145 		MIDR_ALL_VERSIONS(MIDR_AMPERE1A),
2146 		{}
2147 	};
2148 
2149 	/* Does our cpu guarantee to never raise TLB conflict aborts? */
2150 	if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2151 		return false;
2152 
2153 	/*
2154 	 * We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2155 	 * about whether the MIDR check passes.
2156 	 */
2157 
2158 	return true;
2159 }
2160 
has_bbml2_noabort(const struct arm64_cpu_capabilities * caps,int scope)2161 static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2162 {
2163 	return cpu_supports_bbml2_noabort();
2164 }
2165 
2166 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)2167 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2168 {
2169 	/*
2170 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2171 	 * is discarded once we return from the exception.
2172 	 */
2173 	WARN_ON_ONCE(in_interrupt());
2174 
2175 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2176 	set_pstate_pan(1);
2177 }
2178 #endif /* CONFIG_ARM64_PAN */
2179 
2180 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)2181 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2182 {
2183 	/* Firmware may have left a deferred SError in this register. */
2184 	write_sysreg_s(0, SYS_DISR_EL1);
2185 }
has_rasv1p1(const struct arm64_cpu_capabilities * __unused,int scope)2186 static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2187 {
2188 	const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2189 		{
2190 			ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2191 		},
2192 		{
2193 			ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2194 		},
2195 		{
2196 			ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2197 		},
2198 	};
2199 
2200 	return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2201 		(has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2202 		 has_cpuid_feature(&rasv1p1_caps[2], scope)));
2203 }
2204 #endif /* CONFIG_ARM64_RAS_EXTN */
2205 
2206 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)2207 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2208 {
2209 	int boot_val, sec_val;
2210 
2211 	/* We don't expect to be called with SCOPE_SYSTEM */
2212 	WARN_ON(scope == SCOPE_SYSTEM);
2213 	/*
2214 	 * The ptr-auth feature levels are not intercompatible with lower
2215 	 * levels. Hence we must match ptr-auth feature level of the secondary
2216 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2217 	 * from the sanitised register whereas direct register read is done for
2218 	 * the secondary CPUs.
2219 	 * The sanitised feature state is guaranteed to match that of the
2220 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2221 	 * a chance to update the state, with the capability.
2222 	 */
2223 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2224 					       entry->field_pos, entry->sign);
2225 	if (scope & SCOPE_BOOT_CPU)
2226 		return boot_val >= entry->min_field_value;
2227 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2228 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2229 					      entry->field_pos, entry->sign);
2230 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2231 }
2232 
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)2233 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2234 				     int scope)
2235 {
2236 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2237 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2238 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2239 
2240 	return apa || apa3 || api;
2241 }
2242 
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)2243 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2244 			     int __unused)
2245 {
2246 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2247 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2248 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2249 
2250 	return gpa || gpa3 || gpi;
2251 }
2252 #endif /* CONFIG_ARM64_PTR_AUTH */
2253 
2254 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)2255 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2256 {
2257 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2258 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2259 }
2260 #endif /* CONFIG_ARM64_E0PD */
2261 
2262 #ifdef CONFIG_ARM64_PSEUDO_NMI
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)2263 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2264 				   int scope)
2265 {
2266 	/*
2267 	 * ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2268 	 * feature, so will be detected earlier.
2269 	 */
2270 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2271 	if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2272 		return false;
2273 
2274 	return enable_pseudo_nmi;
2275 }
2276 
has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities * entry,int scope)2277 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2278 				      int scope)
2279 {
2280 	/*
2281 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2282 	 * and there's no need to relax synchronization of writes to it, and
2283 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2284 	 * that.
2285 	 *
2286 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2287 	 * feature, so will be detected earlier.
2288 	 */
2289 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2290 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2291 		return false;
2292 
2293 	/*
2294 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2295 	 * hint for interrupt distribution, a DSB is not necessary when
2296 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2297 	 *
2298 	 * Linux itself doesn't use 1:N distribution, so has no need to
2299 	 * set PMHE. The only reason to have it set is if EL3 requires it
2300 	 * (and we can't change it).
2301 	 */
2302 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2303 }
2304 #endif
2305 
2306 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2307 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2308 {
2309 	/*
2310 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2311 	 * function entry points using BR is a requirement for
2312 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2313 	 * So, be strict and forbid other BRs using other registers to
2314 	 * jump onto a PACIxSP instruction:
2315 	 */
2316 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2317 	isb();
2318 }
2319 #endif /* CONFIG_ARM64_BTI */
2320 
2321 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2322 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2323 {
2324 	static bool cleared_zero_page = false;
2325 
2326 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2327 
2328 	mte_cpu_setup();
2329 
2330 	/*
2331 	 * Clear the tags in the zero page. This needs to be done via the
2332 	 * linear map which has the Tagged attribute. Since this page is
2333 	 * always mapped as pte_special(), set_pte_at() will not attempt to
2334 	 * clear the tags or set PG_mte_tagged.
2335 	 */
2336 	if (!cleared_zero_page) {
2337 		cleared_zero_page = true;
2338 		mte_clear_page_tags(lm_alias(empty_zero_page));
2339 	}
2340 
2341 	kasan_init_hw_tags_cpu();
2342 }
2343 #endif /* CONFIG_ARM64_MTE */
2344 
user_feature_fixup(void)2345 static void user_feature_fixup(void)
2346 {
2347 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2348 		struct arm64_ftr_reg *regp;
2349 
2350 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2351 		if (regp)
2352 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2353 	}
2354 
2355 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2356 		struct arm64_ftr_reg *regp;
2357 
2358 		regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2359 		if (regp)
2360 			regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2361 	}
2362 }
2363 
elf_hwcap_fixup(void)2364 static void elf_hwcap_fixup(void)
2365 {
2366 #ifdef CONFIG_COMPAT
2367 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2368 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2369 #endif /* CONFIG_COMPAT */
2370 }
2371 
2372 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2373 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2374 {
2375 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2376 }
2377 #endif /* CONFIG_KVM */
2378 
cpu_trap_el0_impdef(const struct arm64_cpu_capabilities * __unused)2379 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2380 {
2381 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2382 }
2383 
cpu_enable_dit(const struct arm64_cpu_capabilities * __unused)2384 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2385 {
2386 	set_pstate_dit(1);
2387 }
2388 
cpu_enable_mops(const struct arm64_cpu_capabilities * __unused)2389 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2390 {
2391 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2392 }
2393 
2394 #ifdef CONFIG_ARM64_POE
cpu_enable_poe(const struct arm64_cpu_capabilities * __unused)2395 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2396 {
2397 	sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2398 	sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2399 }
2400 #endif
2401 
2402 #ifdef CONFIG_ARM64_GCS
cpu_enable_gcs(const struct arm64_cpu_capabilities * __unused)2403 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2404 {
2405 	/* GCSPR_EL0 is always readable */
2406 	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2407 }
2408 #endif
2409 
2410 /* Internal helper functions to match cpu capability type */
2411 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2412 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2413 {
2414 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2415 }
2416 
2417 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2418 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2419 {
2420 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2421 }
2422 
2423 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2424 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2425 {
2426 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2427 }
2428 
2429 static bool
test_has_mpam(const struct arm64_cpu_capabilities * entry,int scope)2430 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2431 {
2432 	if (!has_cpuid_feature(entry, scope))
2433 		return false;
2434 
2435 	/* Check firmware actually enabled MPAM on this cpu. */
2436 	return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2437 }
2438 
2439 static void
cpu_enable_mpam(const struct arm64_cpu_capabilities * entry)2440 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2441 {
2442 	/*
2443 	 * Access by the kernel (at EL1) should use the reserved PARTID
2444 	 * which is configured unrestricted. This avoids priority-inversion
2445 	 * where latency sensitive tasks have to wait for a task that has
2446 	 * been throttled to release the lock.
2447 	 */
2448 	write_sysreg_s(0, SYS_MPAM1_EL1);
2449 }
2450 
2451 static bool
test_has_mpam_hcr(const struct arm64_cpu_capabilities * entry,int scope)2452 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2453 {
2454 	u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2455 
2456 	return idr & MPAMIDR_EL1_HAS_HCR;
2457 }
2458 
2459 static bool
test_has_gicv5_legacy(const struct arm64_cpu_capabilities * entry,int scope)2460 test_has_gicv5_legacy(const struct arm64_cpu_capabilities *entry, int scope)
2461 {
2462 	if (!this_cpu_has_cap(ARM64_HAS_GICV5_CPUIF))
2463 		return false;
2464 
2465 	return !!(read_sysreg_s(SYS_ICC_IDR0_EL1) & ICC_IDR0_EL1_GCIE_LEGACY);
2466 }
2467 
2468 static const struct arm64_cpu_capabilities arm64_features[] = {
2469 	{
2470 		.capability = ARM64_ALWAYS_BOOT,
2471 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2472 		.matches = has_always,
2473 	},
2474 	{
2475 		.capability = ARM64_ALWAYS_SYSTEM,
2476 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2477 		.matches = has_always,
2478 	},
2479 	{
2480 		.desc = "GICv3 CPU interface",
2481 		.capability = ARM64_HAS_GICV3_CPUIF,
2482 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2483 		.matches = has_useable_gicv3_cpuif,
2484 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2485 	},
2486 	{
2487 		.desc = "Enhanced Counter Virtualization",
2488 		.capability = ARM64_HAS_ECV,
2489 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2490 		.matches = has_cpuid_feature,
2491 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2492 	},
2493 	{
2494 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2495 		.capability = ARM64_HAS_ECV_CNTPOFF,
2496 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2497 		.matches = has_cpuid_feature,
2498 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2499 	},
2500 #ifdef CONFIG_ARM64_PAN
2501 	{
2502 		.desc = "Privileged Access Never",
2503 		.capability = ARM64_HAS_PAN,
2504 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2505 		.matches = has_cpuid_feature,
2506 		.cpu_enable = cpu_enable_pan,
2507 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2508 	},
2509 #endif /* CONFIG_ARM64_PAN */
2510 #ifdef CONFIG_ARM64_EPAN
2511 	{
2512 		.desc = "Enhanced Privileged Access Never",
2513 		.capability = ARM64_HAS_EPAN,
2514 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2515 		.matches = has_cpuid_feature,
2516 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2517 	},
2518 #endif /* CONFIG_ARM64_EPAN */
2519 #ifdef CONFIG_ARM64_LSE_ATOMICS
2520 	{
2521 		.desc = "LSE atomic instructions",
2522 		.capability = ARM64_HAS_LSE_ATOMICS,
2523 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2524 		.matches = has_cpuid_feature,
2525 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2526 	},
2527 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2528 	{
2529 		.desc = "Virtualization Host Extensions",
2530 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2531 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2532 		.matches = runs_at_el2,
2533 		.cpu_enable = cpu_copy_el2regs,
2534 	},
2535 	{
2536 		.desc = "Nested Virtualization Support",
2537 		.capability = ARM64_HAS_NESTED_VIRT,
2538 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2539 		.matches = has_nested_virt_support,
2540 		.match_list = (const struct arm64_cpu_capabilities []){
2541 			{
2542 				.matches = has_cpuid_feature,
2543 				ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2544 			},
2545 			{
2546 				.matches = has_cpuid_feature,
2547 				ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2548 			},
2549 			{ /* Sentinel */ }
2550 		},
2551 	},
2552 	{
2553 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2554 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2555 		.matches = has_32bit_el0,
2556 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2557 	},
2558 #ifdef CONFIG_KVM
2559 	{
2560 		.desc = "32-bit EL1 Support",
2561 		.capability = ARM64_HAS_32BIT_EL1,
2562 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2563 		.matches = has_cpuid_feature,
2564 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2565 	},
2566 	{
2567 		.desc = "Protected KVM",
2568 		.capability = ARM64_KVM_PROTECTED_MODE,
2569 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2570 		.matches = is_kvm_protected_mode,
2571 	},
2572 	{
2573 		.desc = "HCRX_EL2 register",
2574 		.capability = ARM64_HAS_HCX,
2575 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2576 		.matches = has_cpuid_feature,
2577 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2578 	},
2579 #endif
2580 	{
2581 		.desc = "Kernel page table isolation (KPTI)",
2582 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2583 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2584 		.cpu_enable = cpu_enable_kpti,
2585 		.matches = unmap_kernel_at_el0,
2586 		/*
2587 		 * The ID feature fields below are used to indicate that
2588 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2589 		 * more details.
2590 		 */
2591 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2592 	},
2593 	{
2594 		.capability = ARM64_HAS_FPSIMD,
2595 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2596 		.matches = has_cpuid_feature,
2597 		.cpu_enable = cpu_enable_fpsimd,
2598 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2599 	},
2600 #ifdef CONFIG_ARM64_PMEM
2601 	{
2602 		.desc = "Data cache clean to Point of Persistence",
2603 		.capability = ARM64_HAS_DCPOP,
2604 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2605 		.matches = has_cpuid_feature,
2606 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2607 	},
2608 	{
2609 		.desc = "Data cache clean to Point of Deep Persistence",
2610 		.capability = ARM64_HAS_DCPODP,
2611 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2612 		.matches = has_cpuid_feature,
2613 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2614 	},
2615 #endif
2616 #ifdef CONFIG_ARM64_SVE
2617 	{
2618 		.desc = "Scalable Vector Extension",
2619 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2620 		.capability = ARM64_SVE,
2621 		.cpu_enable = cpu_enable_sve,
2622 		.matches = has_cpuid_feature,
2623 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2624 	},
2625 #endif /* CONFIG_ARM64_SVE */
2626 #ifdef CONFIG_ARM64_RAS_EXTN
2627 	{
2628 		.desc = "RAS Extension Support",
2629 		.capability = ARM64_HAS_RAS_EXTN,
2630 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2631 		.matches = has_cpuid_feature,
2632 		.cpu_enable = cpu_clear_disr,
2633 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2634 	},
2635 	{
2636 		.desc = "RASv1p1 Extension Support",
2637 		.capability = ARM64_HAS_RASV1P1_EXTN,
2638 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2639 		.matches = has_rasv1p1,
2640 	},
2641 #endif /* CONFIG_ARM64_RAS_EXTN */
2642 #ifdef CONFIG_ARM64_AMU_EXTN
2643 	{
2644 		.desc = "Activity Monitors Unit (AMU)",
2645 		.capability = ARM64_HAS_AMU_EXTN,
2646 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2647 		.matches = has_amu,
2648 		.cpu_enable = cpu_amu_enable,
2649 		.cpus = &amu_cpus,
2650 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2651 	},
2652 #endif /* CONFIG_ARM64_AMU_EXTN */
2653 	{
2654 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2655 		.capability = ARM64_HAS_CACHE_IDC,
2656 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2657 		.matches = has_cache_idc,
2658 		.cpu_enable = cpu_emulate_effective_ctr,
2659 	},
2660 	{
2661 		.desc = "Instruction cache invalidation not required for I/D coherence",
2662 		.capability = ARM64_HAS_CACHE_DIC,
2663 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2664 		.matches = has_cache_dic,
2665 	},
2666 	{
2667 		.desc = "Stage-2 Force Write-Back",
2668 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2669 		.capability = ARM64_HAS_STAGE2_FWB,
2670 		.matches = has_cpuid_feature,
2671 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2672 	},
2673 	{
2674 		.desc = "ARMv8.4 Translation Table Level",
2675 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2676 		.capability = ARM64_HAS_ARMv8_4_TTL,
2677 		.matches = has_cpuid_feature,
2678 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2679 	},
2680 	{
2681 		.desc = "TLB range maintenance instructions",
2682 		.capability = ARM64_HAS_TLB_RANGE,
2683 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2684 		.matches = has_cpuid_feature,
2685 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2686 	},
2687 #ifdef CONFIG_ARM64_HW_AFDBM
2688 	{
2689 		.desc = "Hardware dirty bit management",
2690 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2691 		.capability = ARM64_HW_DBM,
2692 		.matches = has_hw_dbm,
2693 		.cpu_enable = cpu_enable_hw_dbm,
2694 		.cpus = &dbm_cpus,
2695 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2696 	},
2697 #endif
2698 #ifdef CONFIG_ARM64_HAFT
2699 	{
2700 		.desc = "Hardware managed Access Flag for Table Descriptors",
2701 		/*
2702 		 * Contrary to the page/block access flag, the table access flag
2703 		 * cannot be emulated in software (no access fault will occur).
2704 		 * Therefore this should be used only if it's supported system
2705 		 * wide.
2706 		 */
2707 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2708 		.capability = ARM64_HAFT,
2709 		.matches = has_cpuid_feature,
2710 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2711 	},
2712 #endif
2713 	{
2714 		.desc = "CRC32 instructions",
2715 		.capability = ARM64_HAS_CRC32,
2716 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2717 		.matches = has_cpuid_feature,
2718 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2719 	},
2720 	{
2721 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2722 		.capability = ARM64_SSBS,
2723 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2724 		.matches = has_cpuid_feature,
2725 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2726 	},
2727 #ifdef CONFIG_ARM64_CNP
2728 	{
2729 		.desc = "Common not Private translations",
2730 		.capability = ARM64_HAS_CNP,
2731 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2732 		.matches = has_useable_cnp,
2733 		.cpu_enable = cpu_enable_cnp,
2734 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2735 	},
2736 #endif
2737 	{
2738 		.desc = "Speculation barrier (SB)",
2739 		.capability = ARM64_HAS_SB,
2740 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2741 		.matches = has_cpuid_feature,
2742 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2743 	},
2744 #ifdef CONFIG_ARM64_PTR_AUTH
2745 	{
2746 		.desc = "Address authentication (architected QARMA5 algorithm)",
2747 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2748 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2749 		.matches = has_address_auth_cpucap,
2750 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2751 	},
2752 	{
2753 		.desc = "Address authentication (architected QARMA3 algorithm)",
2754 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2755 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2756 		.matches = has_address_auth_cpucap,
2757 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2758 	},
2759 	{
2760 		.desc = "Address authentication (IMP DEF algorithm)",
2761 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2762 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2763 		.matches = has_address_auth_cpucap,
2764 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2765 	},
2766 	{
2767 		.capability = ARM64_HAS_ADDRESS_AUTH,
2768 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2769 		.matches = has_address_auth_metacap,
2770 	},
2771 	{
2772 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2773 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2774 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2775 		.matches = has_cpuid_feature,
2776 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2777 	},
2778 	{
2779 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2780 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2781 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2782 		.matches = has_cpuid_feature,
2783 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2784 	},
2785 	{
2786 		.desc = "Generic authentication (IMP DEF algorithm)",
2787 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2788 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2789 		.matches = has_cpuid_feature,
2790 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2791 	},
2792 	{
2793 		.capability = ARM64_HAS_GENERIC_AUTH,
2794 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2795 		.matches = has_generic_auth,
2796 	},
2797 #endif /* CONFIG_ARM64_PTR_AUTH */
2798 #ifdef CONFIG_ARM64_PSEUDO_NMI
2799 	{
2800 		/*
2801 		 * Depends on having GICv3
2802 		 */
2803 		.desc = "IRQ priority masking",
2804 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2805 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2806 		.matches = can_use_gic_priorities,
2807 	},
2808 	{
2809 		/*
2810 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2811 		 */
2812 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2813 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2814 		.matches = has_gic_prio_relaxed_sync,
2815 	},
2816 #endif
2817 #ifdef CONFIG_ARM64_E0PD
2818 	{
2819 		.desc = "E0PD",
2820 		.capability = ARM64_HAS_E0PD,
2821 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2822 		.cpu_enable = cpu_enable_e0pd,
2823 		.matches = has_cpuid_feature,
2824 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2825 	},
2826 #endif
2827 	{
2828 		.desc = "Random Number Generator",
2829 		.capability = ARM64_HAS_RNG,
2830 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2831 		.matches = has_cpuid_feature,
2832 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2833 	},
2834 #ifdef CONFIG_ARM64_BTI
2835 	{
2836 		.desc = "Branch Target Identification",
2837 		.capability = ARM64_BTI,
2838 #ifdef CONFIG_ARM64_BTI_KERNEL
2839 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2840 #else
2841 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2842 #endif
2843 		.matches = has_cpuid_feature,
2844 		.cpu_enable = bti_enable,
2845 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2846 	},
2847 #endif
2848 #ifdef CONFIG_ARM64_MTE
2849 	{
2850 		.desc = "Memory Tagging Extension",
2851 		.capability = ARM64_MTE,
2852 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2853 		.matches = has_cpuid_feature,
2854 		.cpu_enable = cpu_enable_mte,
2855 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2856 	},
2857 	{
2858 		.desc = "Asymmetric MTE Tag Check Fault",
2859 		.capability = ARM64_MTE_ASYMM,
2860 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2861 		.matches = has_cpuid_feature,
2862 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2863 	},
2864 	{
2865 		.desc = "FAR on MTE Tag Check Fault",
2866 		.capability = ARM64_MTE_FAR,
2867 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2868 		.matches = has_cpuid_feature,
2869 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2870 	},
2871 	{
2872 		.desc = "Store Only MTE Tag Check",
2873 		.capability = ARM64_MTE_STORE_ONLY,
2874 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2875 		.matches = has_cpuid_feature,
2876 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2877 	},
2878 #endif /* CONFIG_ARM64_MTE */
2879 	{
2880 		.desc = "RCpc load-acquire (LDAPR)",
2881 		.capability = ARM64_HAS_LDAPR,
2882 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2883 		.matches = has_cpuid_feature,
2884 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2885 	},
2886 	{
2887 		.desc = "Fine Grained Traps",
2888 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2889 		.capability = ARM64_HAS_FGT,
2890 		.matches = has_cpuid_feature,
2891 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2892 	},
2893 	{
2894 		.desc = "Fine Grained Traps 2",
2895 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2896 		.capability = ARM64_HAS_FGT2,
2897 		.matches = has_cpuid_feature,
2898 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2899 	},
2900 #ifdef CONFIG_ARM64_SME
2901 	{
2902 		.desc = "Scalable Matrix Extension",
2903 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2904 		.capability = ARM64_SME,
2905 		.matches = has_cpuid_feature,
2906 		.cpu_enable = cpu_enable_sme,
2907 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2908 	},
2909 	/* FA64 should be sorted after the base SME capability */
2910 	{
2911 		.desc = "FA64",
2912 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2913 		.capability = ARM64_SME_FA64,
2914 		.matches = has_cpuid_feature,
2915 		.cpu_enable = cpu_enable_fa64,
2916 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2917 	},
2918 	{
2919 		.desc = "SME2",
2920 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2921 		.capability = ARM64_SME2,
2922 		.matches = has_cpuid_feature,
2923 		.cpu_enable = cpu_enable_sme2,
2924 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2925 	},
2926 #endif /* CONFIG_ARM64_SME */
2927 	{
2928 		.desc = "WFx with timeout",
2929 		.capability = ARM64_HAS_WFXT,
2930 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2931 		.matches = has_cpuid_feature,
2932 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2933 	},
2934 	{
2935 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2936 		.capability = ARM64_HAS_TIDCP1,
2937 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2938 		.matches = has_cpuid_feature,
2939 		.cpu_enable = cpu_trap_el0_impdef,
2940 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2941 	},
2942 	{
2943 		.desc = "Data independent timing control (DIT)",
2944 		.capability = ARM64_HAS_DIT,
2945 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2946 		.matches = has_cpuid_feature,
2947 		.cpu_enable = cpu_enable_dit,
2948 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2949 	},
2950 	{
2951 		.desc = "Memory Copy and Memory Set instructions",
2952 		.capability = ARM64_HAS_MOPS,
2953 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2954 		.matches = has_cpuid_feature,
2955 		.cpu_enable = cpu_enable_mops,
2956 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2957 	},
2958 	{
2959 		.capability = ARM64_HAS_TCR2,
2960 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2961 		.matches = has_cpuid_feature,
2962 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2963 	},
2964 	{
2965 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2966 		.capability = ARM64_HAS_S1PIE,
2967 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2968 		.matches = has_cpuid_feature,
2969 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2970 	},
2971 	{
2972 		.desc = "VHE for hypervisor only",
2973 		.capability = ARM64_KVM_HVHE,
2974 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2975 		.matches = hvhe_possible,
2976 	},
2977 	{
2978 		.desc = "Enhanced Virtualization Traps",
2979 		.capability = ARM64_HAS_EVT,
2980 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2981 		.matches = has_cpuid_feature,
2982 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2983 	},
2984 	{
2985 		.desc = "BBM Level 2 without TLB conflict abort",
2986 		.capability = ARM64_HAS_BBML2_NOABORT,
2987 		.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
2988 		.matches = has_bbml2_noabort,
2989 	},
2990 	{
2991 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2992 		.capability = ARM64_HAS_LPA2,
2993 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2994 		.matches = has_lpa2,
2995 	},
2996 	{
2997 		.desc = "FPMR",
2998 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2999 		.capability = ARM64_HAS_FPMR,
3000 		.matches = has_cpuid_feature,
3001 		.cpu_enable = cpu_enable_fpmr,
3002 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3003 	},
3004 #ifdef CONFIG_ARM64_VA_BITS_52
3005 	{
3006 		.capability = ARM64_HAS_VA52,
3007 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3008 		.matches = has_cpuid_feature,
3009 #ifdef CONFIG_ARM64_64K_PAGES
3010 		.desc = "52-bit Virtual Addressing (LVA)",
3011 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3012 #else
3013 		.desc = "52-bit Virtual Addressing (LPA2)",
3014 #ifdef CONFIG_ARM64_4K_PAGES
3015 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3016 #else
3017 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3018 #endif
3019 #endif
3020 	},
3021 #endif
3022 	{
3023 		.desc = "Memory Partitioning And Monitoring",
3024 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3025 		.capability = ARM64_MPAM,
3026 		.matches = test_has_mpam,
3027 		.cpu_enable = cpu_enable_mpam,
3028 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3029 	},
3030 	{
3031 		.desc = "Memory Partitioning And Monitoring Virtualisation",
3032 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3033 		.capability = ARM64_MPAM_HCR,
3034 		.matches = test_has_mpam_hcr,
3035 	},
3036 	{
3037 		.desc = "NV1",
3038 		.capability = ARM64_HAS_HCR_NV1,
3039 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3040 		.matches = has_nv1,
3041 		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3042 	},
3043 #ifdef CONFIG_ARM64_POE
3044 	{
3045 		.desc = "Stage-1 Permission Overlay Extension (S1POE)",
3046 		.capability = ARM64_HAS_S1POE,
3047 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3048 		.matches = has_cpuid_feature,
3049 		.cpu_enable = cpu_enable_poe,
3050 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3051 	},
3052 #endif
3053 #ifdef CONFIG_ARM64_GCS
3054 	{
3055 		.desc = "Guarded Control Stack (GCS)",
3056 		.capability = ARM64_HAS_GCS,
3057 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3058 		.cpu_enable = cpu_enable_gcs,
3059 		.matches = has_cpuid_feature,
3060 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3061 	},
3062 #endif
3063 #ifdef CONFIG_HW_PERF_EVENTS
3064 	{
3065 		.desc = "PMUv3",
3066 		.capability = ARM64_HAS_PMUV3,
3067 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3068 		.matches = has_pmuv3,
3069 	},
3070 #endif
3071 	{
3072 		.desc = "SCTLR2",
3073 		.capability = ARM64_HAS_SCTLR2,
3074 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3075 		.matches = has_cpuid_feature,
3076 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3077 	},
3078 	{
3079 		.desc = "GICv5 CPU interface",
3080 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3081 		.capability = ARM64_HAS_GICV5_CPUIF,
3082 		.matches = has_cpuid_feature,
3083 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3084 	},
3085 	{
3086 		.desc = "GICv5 Legacy vCPU interface",
3087 		.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3088 		.capability = ARM64_HAS_GICV5_LEGACY,
3089 		.matches = test_has_gicv5_legacy,
3090 	},
3091 	{},
3092 };
3093 
3094 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
3095 		.matches = has_user_cpuid_feature,			\
3096 		ARM64_CPUID_FIELDS(reg, field, min_value)
3097 
3098 #define __HWCAP_CAP(name, cap_type, cap)					\
3099 		.desc = name,							\
3100 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
3101 		.hwcap_type = cap_type,						\
3102 		.hwcap = cap,							\
3103 
3104 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
3105 	{									\
3106 		__HWCAP_CAP(#cap, cap_type, cap)				\
3107 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
3108 	}
3109 
3110 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
3111 	{									\
3112 		__HWCAP_CAP(#cap, cap_type, cap)				\
3113 		.matches = cpucap_multi_entry_cap_matches,			\
3114 		.match_list = list,						\
3115 	}
3116 
3117 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
3118 	{									\
3119 		__HWCAP_CAP(#cap, cap_type, cap)				\
3120 		.matches = match,						\
3121 	}
3122 
3123 #define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap)		\
3124 	{									\
3125 		__HWCAP_CAP(#cap, cap_type, cap)				\
3126 		HWCAP_CPUID_MATCH(reg, field, min_value) 			\
3127 		.matches = match,						\
3128 	}
3129 
3130 #ifdef CONFIG_ARM64_PTR_AUTH
3131 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3132 	{
3133 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3134 	},
3135 	{
3136 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3137 	},
3138 	{
3139 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3140 	},
3141 	{},
3142 };
3143 
3144 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3145 	{
3146 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3147 	},
3148 	{
3149 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3150 	},
3151 	{
3152 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3153 	},
3154 	{},
3155 };
3156 #endif
3157 
3158 #ifdef CONFIG_ARM64_SVE
has_sve_feature(const struct arm64_cpu_capabilities * cap,int scope)3159 static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3160 {
3161 	return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3162 }
3163 #endif
3164 
3165 #ifdef CONFIG_ARM64_SME
has_sme_feature(const struct arm64_cpu_capabilities * cap,int scope)3166 static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3167 {
3168 	return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3169 }
3170 #endif
3171 
3172 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3173 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3174 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3175 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3176 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3177 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3178 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3179 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3180 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3181 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3182 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3183 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3184 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3185 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3186 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3187 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3188 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3189 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3190 	HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3191 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3192 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3193 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3194 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3195 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3196 	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3197 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3198 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3199 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3200 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3201 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3202 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3203 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3204 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3205 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3206 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3207 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3208 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3209 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3210 	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3211 	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3212 	HWCAP_CAP(ID_AA64ISAR3_EL1, LSFE, IMP, CAP_HWCAP, KERNEL_HWCAP_LSFE),
3213 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3214 #ifdef CONFIG_ARM64_SVE
3215 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3216 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3217 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3218 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3219 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3220 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3221 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3222 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3223 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3224 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3225 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3226 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3227 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3228 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3229 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3230 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3231 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3232 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3233 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3234 #endif
3235 #ifdef CONFIG_ARM64_GCS
3236 	HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3237 #endif
3238 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3239 #ifdef CONFIG_ARM64_BTI
3240 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3241 #endif
3242 #ifdef CONFIG_ARM64_PTR_AUTH
3243 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3244 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3245 #endif
3246 #ifdef CONFIG_ARM64_MTE
3247 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3248 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3249 	HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3250 	HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3251 #endif /* CONFIG_ARM64_MTE */
3252 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3253 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3254 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3255 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3256 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3257 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3258 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3259 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3260 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3261 #ifdef CONFIG_ARM64_SME
3262 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3263 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3264 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3265 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3266 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3267 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3268 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3269 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3270 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3271 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3272 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3273 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3274 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3275 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3276 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3277 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3278 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3279 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3280 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3281 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3282 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3283 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3284 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3285 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3286 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3287 	HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3288 #endif /* CONFIG_ARM64_SME */
3289 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3290 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3291 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3292 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3293 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3294 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3295 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3296 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3297 #ifdef CONFIG_ARM64_POE
3298 	HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3299 #endif
3300 	{},
3301 };
3302 
3303 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)3304 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3305 {
3306 	/*
3307 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3308 	 * in line with that of arm32 as in vfp_init(). We make sure that the
3309 	 * check is future proof, by making sure value is non-zero.
3310 	 */
3311 	u32 mvfr1;
3312 
3313 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3314 	if (scope == SCOPE_SYSTEM)
3315 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3316 	else
3317 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3318 
3319 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3320 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3321 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3322 }
3323 #endif
3324 
3325 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3326 #ifdef CONFIG_COMPAT
3327 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3328 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3329 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3330 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3331 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3332 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3333 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3334 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3335 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3336 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3337 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3338 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3339 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3340 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3341 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3342 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3343 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3344 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3345 #endif
3346 	{},
3347 };
3348 
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)3349 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3350 {
3351 	switch (cap->hwcap_type) {
3352 	case CAP_HWCAP:
3353 		cpu_set_feature(cap->hwcap);
3354 		break;
3355 #ifdef CONFIG_COMPAT
3356 	case CAP_COMPAT_HWCAP:
3357 		compat_elf_hwcap |= (u32)cap->hwcap;
3358 		break;
3359 	case CAP_COMPAT_HWCAP2:
3360 		compat_elf_hwcap2 |= (u32)cap->hwcap;
3361 		break;
3362 #endif
3363 	default:
3364 		WARN_ON(1);
3365 		break;
3366 	}
3367 }
3368 
3369 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)3370 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3371 {
3372 	bool rc;
3373 
3374 	switch (cap->hwcap_type) {
3375 	case CAP_HWCAP:
3376 		rc = cpu_have_feature(cap->hwcap);
3377 		break;
3378 #ifdef CONFIG_COMPAT
3379 	case CAP_COMPAT_HWCAP:
3380 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3381 		break;
3382 	case CAP_COMPAT_HWCAP2:
3383 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3384 		break;
3385 #endif
3386 	default:
3387 		WARN_ON(1);
3388 		rc = false;
3389 	}
3390 
3391 	return rc;
3392 }
3393 
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)3394 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3395 {
3396 	/* We support emulation of accesses to CPU ID feature registers */
3397 	cpu_set_named_feature(CPUID);
3398 	for (; hwcaps->matches; hwcaps++)
3399 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3400 			cap_set_elf_hwcap(hwcaps);
3401 }
3402 
update_cpu_capabilities(u16 scope_mask)3403 static void update_cpu_capabilities(u16 scope_mask)
3404 {
3405 	int i;
3406 	const struct arm64_cpu_capabilities *caps;
3407 
3408 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3409 	for (i = 0; i < ARM64_NCAPS; i++) {
3410 		bool match_all = false;
3411 		bool caps_set = false;
3412 		bool boot_cpu = false;
3413 
3414 		caps = cpucap_ptrs[i];
3415 		if (!caps || !(caps->type & scope_mask))
3416 			continue;
3417 
3418 		match_all = cpucap_match_all_early_cpus(caps);
3419 		caps_set = cpus_have_cap(caps->capability);
3420 		boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3421 
3422 		/*
3423 		 * Unless it's a match-all CPUs feature, avoid probing if
3424 		 * already detected.
3425 		 */
3426 		if (!match_all && caps_set)
3427 			continue;
3428 
3429 		/*
3430 		 * A match-all CPUs capability is only set when probing the
3431 		 * boot CPU. It may be cleared subsequently if not detected on
3432 		 * secondary ones.
3433 		 */
3434 		if (match_all && !caps_set && !boot_cpu)
3435 			continue;
3436 
3437 		if (!caps->matches(caps, cpucap_default_scope(caps))) {
3438 			if (match_all)
3439 				__clear_bit(caps->capability, system_cpucaps);
3440 			continue;
3441 		}
3442 
3443 		/*
3444 		 * Match-all CPUs capabilities are logged later when the
3445 		 * system capabilities are finalised.
3446 		 */
3447 		if (!match_all && caps->desc && !caps->cpus)
3448 			pr_info("detected: %s\n", caps->desc);
3449 
3450 		__set_bit(caps->capability, system_cpucaps);
3451 
3452 		if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3453 			set_bit(caps->capability, boot_cpucaps);
3454 	}
3455 }
3456 
3457 /*
3458  * Enable all the available capabilities on this CPU. The capabilities
3459  * with BOOT_CPU scope are handled separately and hence skipped here.
3460  */
cpu_enable_non_boot_scope_capabilities(void * __unused)3461 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3462 {
3463 	int i;
3464 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3465 
3466 	for_each_available_cap(i) {
3467 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3468 
3469 		if (WARN_ON(!cap))
3470 			continue;
3471 
3472 		if (!(cap->type & non_boot_scope))
3473 			continue;
3474 
3475 		if (cap->cpu_enable)
3476 			cap->cpu_enable(cap);
3477 	}
3478 	return 0;
3479 }
3480 
3481 /*
3482  * Run through the enabled capabilities and enable() it on all active
3483  * CPUs
3484  */
enable_cpu_capabilities(u16 scope_mask)3485 static void __init enable_cpu_capabilities(u16 scope_mask)
3486 {
3487 	int i;
3488 	const struct arm64_cpu_capabilities *caps;
3489 	bool boot_scope;
3490 
3491 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3492 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3493 
3494 	for (i = 0; i < ARM64_NCAPS; i++) {
3495 		caps = cpucap_ptrs[i];
3496 		if (!caps || !(caps->type & scope_mask) ||
3497 		    !cpus_have_cap(caps->capability))
3498 			continue;
3499 
3500 		if (boot_scope && caps->cpu_enable)
3501 			/*
3502 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3503 			 * before any secondary CPU boots. Thus, each secondary
3504 			 * will enable the capability as appropriate via
3505 			 * check_local_cpu_capabilities(). The only exception is
3506 			 * the boot CPU, for which the capability must be
3507 			 * enabled here. This approach avoids costly
3508 			 * stop_machine() calls for this case.
3509 			 */
3510 			caps->cpu_enable(caps);
3511 	}
3512 
3513 	/*
3514 	 * For all non-boot scope capabilities, use stop_machine()
3515 	 * as it schedules the work allowing us to modify PSTATE,
3516 	 * instead of on_each_cpu() which uses an IPI, giving us a
3517 	 * PSTATE that disappears when we return.
3518 	 */
3519 	if (!boot_scope)
3520 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3521 			     NULL, cpu_online_mask);
3522 }
3523 
3524 /*
3525  * Run through the list of capabilities to check for conflicts.
3526  * If the system has already detected a capability, take necessary
3527  * action on this CPU.
3528  */
verify_local_cpu_caps(u16 scope_mask)3529 static void verify_local_cpu_caps(u16 scope_mask)
3530 {
3531 	int i;
3532 	bool cpu_has_cap, system_has_cap;
3533 	const struct arm64_cpu_capabilities *caps;
3534 
3535 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3536 
3537 	for (i = 0; i < ARM64_NCAPS; i++) {
3538 		caps = cpucap_ptrs[i];
3539 		if (!caps || !(caps->type & scope_mask))
3540 			continue;
3541 
3542 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3543 		system_has_cap = cpus_have_cap(caps->capability);
3544 
3545 		if (system_has_cap) {
3546 			/*
3547 			 * Check if the new CPU misses an advertised feature,
3548 			 * which is not safe to miss.
3549 			 */
3550 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3551 				break;
3552 			/*
3553 			 * We have to issue cpu_enable() irrespective of
3554 			 * whether the CPU has it or not, as it is enabeld
3555 			 * system wide. It is upto the call back to take
3556 			 * appropriate action on this CPU.
3557 			 */
3558 			if (caps->cpu_enable)
3559 				caps->cpu_enable(caps);
3560 		} else {
3561 			/*
3562 			 * Check if the CPU has this capability if it isn't
3563 			 * safe to have when the system doesn't.
3564 			 */
3565 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3566 				break;
3567 		}
3568 	}
3569 
3570 	if (i < ARM64_NCAPS) {
3571 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3572 			smp_processor_id(), caps->capability,
3573 			caps->desc, system_has_cap, cpu_has_cap);
3574 
3575 		if (cpucap_panic_on_conflict(caps))
3576 			cpu_panic_kernel();
3577 		else
3578 			cpu_die_early();
3579 	}
3580 }
3581 
3582 /*
3583  * Check for CPU features that are used in early boot
3584  * based on the Boot CPU value.
3585  */
check_early_cpu_features(void)3586 static void check_early_cpu_features(void)
3587 {
3588 	verify_cpu_asid_bits();
3589 
3590 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3591 }
3592 
3593 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)3594 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3595 {
3596 
3597 	for (; caps->matches; caps++)
3598 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3599 			pr_crit("CPU%d: missing HWCAP: %s\n",
3600 					smp_processor_id(), caps->desc);
3601 			cpu_die_early();
3602 		}
3603 }
3604 
verify_local_elf_hwcaps(void)3605 static void verify_local_elf_hwcaps(void)
3606 {
3607 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3608 
3609 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3610 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3611 }
3612 
verify_sve_features(void)3613 static void verify_sve_features(void)
3614 {
3615 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3616 
3617 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3618 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3619 			smp_processor_id());
3620 		cpu_die_early();
3621 	}
3622 
3623 	cpacr_restore(cpacr);
3624 }
3625 
verify_sme_features(void)3626 static void verify_sme_features(void)
3627 {
3628 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3629 
3630 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3631 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3632 			smp_processor_id());
3633 		cpu_die_early();
3634 	}
3635 
3636 	cpacr_restore(cpacr);
3637 }
3638 
verify_hyp_capabilities(void)3639 static void verify_hyp_capabilities(void)
3640 {
3641 	u64 safe_mmfr1, mmfr0, mmfr1;
3642 	int parange, ipa_max;
3643 	unsigned int safe_vmid_bits, vmid_bits;
3644 
3645 	if (!IS_ENABLED(CONFIG_KVM))
3646 		return;
3647 
3648 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3649 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3650 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3651 
3652 	/* Verify VMID bits */
3653 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3654 	vmid_bits = get_vmid_bits(mmfr1);
3655 	if (vmid_bits < safe_vmid_bits) {
3656 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3657 		cpu_die_early();
3658 	}
3659 
3660 	/* Verify IPA range */
3661 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3662 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3663 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3664 	if (ipa_max < get_kvm_ipa_limit()) {
3665 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3666 		cpu_die_early();
3667 	}
3668 }
3669 
verify_mpam_capabilities(void)3670 static void verify_mpam_capabilities(void)
3671 {
3672 	u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3673 	u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3674 	u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3675 
3676 	if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3677 	    FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3678 		pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3679 		cpu_die_early();
3680 	}
3681 
3682 	cpu_idr = read_cpuid(MPAMIDR_EL1);
3683 	sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3684 	if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3685 	    FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3686 		pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3687 		cpu_die_early();
3688 	}
3689 
3690 	cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3691 	cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3692 	sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3693 	sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3694 	if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3695 		pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3696 		cpu_die_early();
3697 	}
3698 }
3699 
3700 /*
3701  * Run through the enabled system capabilities and enable() it on this CPU.
3702  * The capabilities were decided based on the available CPUs at the boot time.
3703  * Any new CPU should match the system wide status of the capability. If the
3704  * new CPU doesn't have a capability which the system now has enabled, we
3705  * cannot do anything to fix it up and could cause unexpected failures. So
3706  * we park the CPU.
3707  */
verify_local_cpu_capabilities(void)3708 static void verify_local_cpu_capabilities(void)
3709 {
3710 	/*
3711 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3712 	 * check_early_cpu_features(), as they need to be verified
3713 	 * on all secondary CPUs.
3714 	 */
3715 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3716 	verify_local_elf_hwcaps();
3717 
3718 	if (system_supports_sve())
3719 		verify_sve_features();
3720 
3721 	if (system_supports_sme())
3722 		verify_sme_features();
3723 
3724 	if (is_hyp_mode_available())
3725 		verify_hyp_capabilities();
3726 
3727 	if (system_supports_mpam())
3728 		verify_mpam_capabilities();
3729 }
3730 
check_local_cpu_capabilities(void)3731 void check_local_cpu_capabilities(void)
3732 {
3733 	/*
3734 	 * All secondary CPUs should conform to the early CPU features
3735 	 * in use by the kernel based on boot CPU.
3736 	 */
3737 	check_early_cpu_features();
3738 
3739 	/*
3740 	 * If we haven't finalised the system capabilities, this CPU gets
3741 	 * a chance to update the errata work arounds and local features.
3742 	 * Otherwise, this CPU should verify that it has all the system
3743 	 * advertised capabilities.
3744 	 */
3745 	if (!system_capabilities_finalized())
3746 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3747 	else
3748 		verify_local_cpu_capabilities();
3749 }
3750 
this_cpu_has_cap(unsigned int n)3751 bool this_cpu_has_cap(unsigned int n)
3752 {
3753 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3754 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3755 
3756 		if (cap)
3757 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3758 	}
3759 
3760 	return false;
3761 }
3762 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3763 
3764 /*
3765  * This helper function is used in a narrow window when,
3766  * - The system wide safe registers are set with all the SMP CPUs and,
3767  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3768  */
__system_matches_cap(unsigned int n)3769 static bool __maybe_unused __system_matches_cap(unsigned int n)
3770 {
3771 	if (n < ARM64_NCAPS) {
3772 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3773 
3774 		if (cap)
3775 			return cap->matches(cap, SCOPE_SYSTEM);
3776 	}
3777 	return false;
3778 }
3779 
cpu_set_feature(unsigned int num)3780 void cpu_set_feature(unsigned int num)
3781 {
3782 	set_bit(num, elf_hwcap);
3783 }
3784 
cpu_have_feature(unsigned int num)3785 bool cpu_have_feature(unsigned int num)
3786 {
3787 	return test_bit(num, elf_hwcap);
3788 }
3789 EXPORT_SYMBOL_GPL(cpu_have_feature);
3790 
cpu_get_elf_hwcap(void)3791 unsigned long cpu_get_elf_hwcap(void)
3792 {
3793 	/*
3794 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3795 	 * note that for userspace compatibility we guarantee that bits 62
3796 	 * and 63 will always be returned as 0.
3797 	 */
3798 	return elf_hwcap[0];
3799 }
3800 
cpu_get_elf_hwcap2(void)3801 unsigned long cpu_get_elf_hwcap2(void)
3802 {
3803 	return elf_hwcap[1];
3804 }
3805 
cpu_get_elf_hwcap3(void)3806 unsigned long cpu_get_elf_hwcap3(void)
3807 {
3808 	return elf_hwcap[2];
3809 }
3810 
setup_boot_cpu_capabilities(void)3811 static void __init setup_boot_cpu_capabilities(void)
3812 {
3813 	kvm_arm_target_impl_cpu_init();
3814 	/*
3815 	 * The boot CPU's feature register values have been recorded. Detect
3816 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3817 	 * patch alternatives for the available boot cpucaps.
3818 	 */
3819 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3820 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3821 	apply_boot_alternatives();
3822 }
3823 
setup_boot_cpu_features(void)3824 void __init setup_boot_cpu_features(void)
3825 {
3826 	/*
3827 	 * Initialize the indirect array of CPU capabilities pointers before we
3828 	 * handle the boot CPU.
3829 	 */
3830 	init_cpucap_indirect_list();
3831 
3832 	/*
3833 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3834 	 * setup_boot_cpu_capabilities() since it interacts with
3835 	 * can_use_gic_priorities().
3836 	 */
3837 	detect_system_supports_pseudo_nmi();
3838 
3839 	setup_boot_cpu_capabilities();
3840 }
3841 
setup_system_capabilities(void)3842 static void __init setup_system_capabilities(void)
3843 {
3844 	/*
3845 	 * The system-wide safe feature register values have been finalized.
3846 	 * Detect, enable, and patch alternatives for the available system
3847 	 * cpucaps.
3848 	 */
3849 	update_cpu_capabilities(SCOPE_SYSTEM);
3850 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3851 	apply_alternatives_all();
3852 
3853 	for (int i = 0; i < ARM64_NCAPS; i++) {
3854 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3855 
3856 		if (!caps || !caps->desc)
3857 			continue;
3858 
3859 		/*
3860 		 * Log any cpucaps with a cpumask as these aren't logged by
3861 		 * update_cpu_capabilities().
3862 		 */
3863 		if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3864 			pr_info("detected: %s on CPU%*pbl\n",
3865 				caps->desc, cpumask_pr_args(caps->cpus));
3866 
3867 		/* Log match-all CPUs capabilities */
3868 		if (cpucap_match_all_early_cpus(caps) &&
3869 		    cpus_have_cap(caps->capability))
3870 			pr_info("detected: %s\n", caps->desc);
3871 	}
3872 
3873 	/*
3874 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3875 	 */
3876 	if (system_uses_ttbr0_pan())
3877 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3878 }
3879 
setup_system_features(void)3880 void __init setup_system_features(void)
3881 {
3882 	setup_system_capabilities();
3883 
3884 	linear_map_maybe_split_to_ptes();
3885 	kpti_install_ng_mappings();
3886 
3887 	sve_setup();
3888 	sme_setup();
3889 
3890 	/*
3891 	 * Check for sane CTR_EL0.CWG value.
3892 	 */
3893 	if (!cache_type_cwg())
3894 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3895 			ARCH_DMA_MINALIGN);
3896 }
3897 
setup_user_features(void)3898 void __init setup_user_features(void)
3899 {
3900 	user_feature_fixup();
3901 
3902 	setup_elf_hwcaps(arm64_elf_hwcaps);
3903 
3904 	if (system_supports_32bit_el0()) {
3905 		setup_elf_hwcaps(compat_elf_hwcaps);
3906 		elf_hwcap_fixup();
3907 	}
3908 
3909 	minsigstksz_setup();
3910 }
3911 
enable_mismatched_32bit_el0(unsigned int cpu)3912 static int enable_mismatched_32bit_el0(unsigned int cpu)
3913 {
3914 	/*
3915 	 * The first 32-bit-capable CPU we detected and so can no longer
3916 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3917 	 * a 32-bit-capable CPU.
3918 	 */
3919 	static int lucky_winner = -1;
3920 
3921 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3922 	bool cpu_32bit = false;
3923 
3924 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
3925 		if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
3926 			pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
3927 		else
3928 			cpu_32bit = true;
3929 	}
3930 
3931 	if (cpu_32bit) {
3932 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3933 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3934 	}
3935 
3936 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3937 		return 0;
3938 
3939 	if (lucky_winner >= 0)
3940 		return 0;
3941 
3942 	/*
3943 	 * We've detected a mismatch. We need to keep one of our CPUs with
3944 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3945 	 * every CPU in the system for a 32-bit task.
3946 	 */
3947 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3948 							 cpu_active_mask);
3949 	get_cpu_device(lucky_winner)->offline_disabled = true;
3950 	setup_elf_hwcaps(compat_elf_hwcaps);
3951 	elf_hwcap_fixup();
3952 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3953 		cpu, lucky_winner);
3954 	return 0;
3955 }
3956 
init_32bit_el0_mask(void)3957 static int __init init_32bit_el0_mask(void)
3958 {
3959 	if (!allow_mismatched_32bit_el0)
3960 		return 0;
3961 
3962 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3963 		return -ENOMEM;
3964 
3965 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3966 				 "arm64/mismatched_32bit_el0:online",
3967 				 enable_mismatched_32bit_el0, NULL);
3968 }
3969 subsys_initcall_sync(init_32bit_el0_mask);
3970 
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)3971 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3972 {
3973 	cpu_enable_swapper_cnp();
3974 }
3975 
3976 /*
3977  * We emulate only the following system register space.
3978  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3979  * See Table C5-6 System instruction encodings for System register accesses,
3980  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3981  */
is_emulated(u32 id)3982 static inline bool __attribute_const__ is_emulated(u32 id)
3983 {
3984 	return (sys_reg_Op0(id) == 0x3 &&
3985 		sys_reg_CRn(id) == 0x0 &&
3986 		sys_reg_Op1(id) == 0x0 &&
3987 		(sys_reg_CRm(id) == 0 ||
3988 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3989 }
3990 
3991 /*
3992  * With CRm == 0, reg should be one of :
3993  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3994  */
emulate_id_reg(u32 id,u64 * valp)3995 static inline int emulate_id_reg(u32 id, u64 *valp)
3996 {
3997 	switch (id) {
3998 	case SYS_MIDR_EL1:
3999 		*valp = read_cpuid_id();
4000 		break;
4001 	case SYS_MPIDR_EL1:
4002 		*valp = SYS_MPIDR_SAFE_VAL;
4003 		break;
4004 	case SYS_REVIDR_EL1:
4005 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
4006 		*valp = 0;
4007 		break;
4008 	default:
4009 		return -EINVAL;
4010 	}
4011 
4012 	return 0;
4013 }
4014 
emulate_sys_reg(u32 id,u64 * valp)4015 static int emulate_sys_reg(u32 id, u64 *valp)
4016 {
4017 	struct arm64_ftr_reg *regp;
4018 
4019 	if (!is_emulated(id))
4020 		return -EINVAL;
4021 
4022 	if (sys_reg_CRm(id) == 0)
4023 		return emulate_id_reg(id, valp);
4024 
4025 	regp = get_arm64_ftr_reg_nowarn(id);
4026 	if (regp)
4027 		*valp = arm64_ftr_reg_user_value(regp);
4028 	else
4029 		/*
4030 		 * The untracked registers are either IMPLEMENTATION DEFINED
4031 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
4032 		 */
4033 		*valp = 0;
4034 	return 0;
4035 }
4036 
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)4037 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4038 {
4039 	int rc;
4040 	u64 val;
4041 
4042 	rc = emulate_sys_reg(sys_reg, &val);
4043 	if (!rc) {
4044 		pt_regs_write_reg(regs, rt, val);
4045 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4046 	}
4047 	return rc;
4048 }
4049 
try_emulate_mrs(struct pt_regs * regs,u32 insn)4050 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4051 {
4052 	u32 sys_reg, rt;
4053 
4054 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4055 		return false;
4056 
4057 	/*
4058 	 * sys_reg values are defined as used in mrs/msr instruction.
4059 	 * shift the imm value to get the encoding.
4060 	 */
4061 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4062 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4063 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
4064 }
4065 
arm64_get_meltdown_state(void)4066 enum mitigation_state arm64_get_meltdown_state(void)
4067 {
4068 	if (__meltdown_safe)
4069 		return SPECTRE_UNAFFECTED;
4070 
4071 	if (arm64_kernel_unmapped_at_el0())
4072 		return SPECTRE_MITIGATED;
4073 
4074 	return SPECTRE_VULNERABLE;
4075 }
4076 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)4077 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4078 			  char *buf)
4079 {
4080 	switch (arm64_get_meltdown_state()) {
4081 	case SPECTRE_UNAFFECTED:
4082 		return sprintf(buf, "Not affected\n");
4083 
4084 	case SPECTRE_MITIGATED:
4085 		return sprintf(buf, "Mitigation: PTI\n");
4086 
4087 	default:
4088 		return sprintf(buf, "Vulnerable\n");
4089 	}
4090 }
4091