xref: /linux/drivers/of/of_reserved_mem.c (revision 6044a1ee9dca906a807ba786421dc4254191ffd5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/ioport.h>
16 #include <linux/libfdt.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 #include <linux/slab.h>
25 #include <linux/memblock.h>
26 #include <linux/kmemleak.h>
27 #include <linux/cma.h>
28 #include <linux/dma-map-ops.h>
29 
30 #include "of_private.h"
31 
32 static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
33 static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
34 static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
35 static int reserved_mem_count;
36 
37 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
38 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
39 	phys_addr_t *res_base)
40 {
41 	phys_addr_t base;
42 	int err = 0;
43 
44 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
45 	align = !align ? SMP_CACHE_BYTES : align;
46 	base = memblock_phys_alloc_range(size, align, start, end);
47 	if (!base)
48 		return -ENOMEM;
49 
50 	*res_base = base;
51 	if (nomap) {
52 		err = memblock_mark_nomap(base, size);
53 		if (err)
54 			memblock_phys_free(base, size);
55 	}
56 
57 	if (!err)
58 		kmemleak_ignore_phys(base);
59 
60 	return err;
61 }
62 
63 /*
64  * alloc_reserved_mem_array() - allocate memory for the reserved_mem
65  * array using memblock
66  *
67  * This function is used to allocate memory for the reserved_mem
68  * array according to the total number of reserved memory regions
69  * defined in the DT.
70  * After the new array is allocated, the information stored in
71  * the initial static array is copied over to this new array and
72  * the new array is used from this point on.
73  */
74 static void __init alloc_reserved_mem_array(void)
75 {
76 	struct reserved_mem *new_array;
77 	size_t alloc_size, copy_size, memset_size;
78 
79 	alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
80 	if (alloc_size == SIZE_MAX) {
81 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
82 		return;
83 	}
84 
85 	new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
86 	if (!new_array) {
87 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
88 		return;
89 	}
90 
91 	copy_size = array_size(reserved_mem_count, sizeof(*new_array));
92 	if (copy_size == SIZE_MAX) {
93 		memblock_free(new_array, alloc_size);
94 		total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
95 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
96 		return;
97 	}
98 
99 	memset_size = alloc_size - copy_size;
100 
101 	memcpy(new_array, reserved_mem, copy_size);
102 	memset(new_array + reserved_mem_count, 0, memset_size);
103 
104 	reserved_mem = new_array;
105 }
106 
107 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
108 /*
109  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
110  */
111 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
112 					      phys_addr_t base, phys_addr_t size)
113 {
114 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
115 
116 	if (reserved_mem_count == total_reserved_mem_cnt) {
117 		pr_err("not enough space for all defined regions.\n");
118 		return;
119 	}
120 
121 	rmem->fdt_node = node;
122 	rmem->name = uname;
123 	rmem->base = base;
124 	rmem->size = size;
125 
126 	/* Call the region specific initialization function */
127 	fdt_init_reserved_mem_node(rmem);
128 
129 	reserved_mem_count++;
130 	return;
131 }
132 
133 static int __init early_init_dt_reserve_memory(phys_addr_t base,
134 					       phys_addr_t size, bool nomap)
135 {
136 	if (nomap) {
137 		/*
138 		 * If the memory is already reserved (by another region), we
139 		 * should not allow it to be marked nomap, but don't worry
140 		 * if the region isn't memory as it won't be mapped.
141 		 */
142 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
143 		    memblock_is_region_reserved(base, size))
144 			return -EBUSY;
145 
146 		return memblock_mark_nomap(base, size);
147 	}
148 	return memblock_reserve(base, size);
149 }
150 
151 /*
152  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
153  */
154 static int __init __reserved_mem_reserve_reg(unsigned long node,
155 					     const char *uname)
156 {
157 	phys_addr_t base, size;
158 	int i, len;
159 	const __be32 *prop;
160 	bool nomap;
161 
162 	prop = of_flat_dt_get_addr_size_prop(node, "reg", &len);
163 	if (!prop)
164 		return -ENOENT;
165 
166 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
167 
168 	for (i = 0; i < len; i++) {
169 		u64 b, s;
170 
171 		of_flat_dt_read_addr_size(prop, i, &b, &s);
172 
173 		base = b;
174 		size = s;
175 
176 		if (size && early_init_dt_reserve_memory(base, size, nomap) == 0) {
177 			/* Architecture specific contiguous memory fixup. */
178 			if (of_flat_dt_is_compatible(node, "shared-dma-pool") &&
179 			    of_get_flat_dt_prop(node, "reusable", NULL))
180 				dma_contiguous_early_fixup(base, size);
181 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
182 				uname, &base, (unsigned long)(size / SZ_1M));
183 		} else {
184 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
185 			       uname, &base, (unsigned long)(size / SZ_1M));
186 		}
187 	}
188 	return 0;
189 }
190 
191 /*
192  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
193  * in /reserved-memory matches the values supported by the current implementation,
194  * also check if ranges property has been provided
195  */
196 static int __init __reserved_mem_check_root(unsigned long node)
197 {
198 	const __be32 *prop;
199 
200 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
201 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
202 		return -EINVAL;
203 
204 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
205 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
206 		return -EINVAL;
207 
208 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
209 	if (!prop)
210 		return -EINVAL;
211 	return 0;
212 }
213 
214 static void __init __rmem_check_for_overlap(void);
215 
216 /**
217  * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
218  * reserved memory regions.
219  *
220  * This function is used to scan through the DT and store the
221  * information for the reserved memory regions that are defined using
222  * the "reg" property. The region node number, name, base address, and
223  * size are all stored in the reserved_mem array by calling the
224  * fdt_reserved_mem_save_node() function.
225  */
226 void __init fdt_scan_reserved_mem_reg_nodes(void)
227 {
228 	const void *fdt = initial_boot_params;
229 	phys_addr_t base, size;
230 	int node, child;
231 
232 	if (!fdt)
233 		return;
234 
235 	node = fdt_path_offset(fdt, "/reserved-memory");
236 	if (node < 0) {
237 		pr_info("Reserved memory: No reserved-memory node in the DT\n");
238 		return;
239 	}
240 
241 	/* Attempt dynamic allocation of a new reserved_mem array */
242 	alloc_reserved_mem_array();
243 
244 	if (__reserved_mem_check_root(node)) {
245 		pr_err("Reserved memory: unsupported node format, ignoring\n");
246 		return;
247 	}
248 
249 	fdt_for_each_subnode(child, fdt, node) {
250 		const char *uname;
251 		u64 b, s;
252 
253 		if (!of_fdt_device_is_available(fdt, child))
254 			continue;
255 
256 		if (!of_flat_dt_get_addr_size(child, "reg", &b, &s))
257 			continue;
258 
259 		base = b;
260 		size = s;
261 
262 		if (size) {
263 			uname = fdt_get_name(fdt, child, NULL);
264 			fdt_reserved_mem_save_node(child, uname, base, size);
265 		}
266 	}
267 
268 	/* check for overlapping reserved regions */
269 	__rmem_check_for_overlap();
270 }
271 
272 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
273 
274 /*
275  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
276  */
277 int __init fdt_scan_reserved_mem(void)
278 {
279 	int node, child;
280 	int dynamic_nodes_cnt = 0, count = 0;
281 	int dynamic_nodes[MAX_RESERVED_REGIONS];
282 	const void *fdt = initial_boot_params;
283 
284 	node = fdt_path_offset(fdt, "/reserved-memory");
285 	if (node < 0)
286 		return -ENODEV;
287 
288 	if (__reserved_mem_check_root(node) != 0) {
289 		pr_err("Reserved memory: unsupported node format, ignoring\n");
290 		return -EINVAL;
291 	}
292 
293 	fdt_for_each_subnode(child, fdt, node) {
294 		const char *uname;
295 		int err;
296 
297 		if (!of_fdt_device_is_available(fdt, child))
298 			continue;
299 
300 		uname = fdt_get_name(fdt, child, NULL);
301 
302 		err = __reserved_mem_reserve_reg(child, uname);
303 		if (!err)
304 			count++;
305 		/*
306 		 * Save the nodes for the dynamically-placed regions
307 		 * into an array which will be used for allocation right
308 		 * after all the statically-placed regions are reserved
309 		 * or marked as no-map. This is done to avoid dynamically
310 		 * allocating from one of the statically-placed regions.
311 		 */
312 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
313 			dynamic_nodes[dynamic_nodes_cnt] = child;
314 			dynamic_nodes_cnt++;
315 		}
316 	}
317 	for (int i = 0; i < dynamic_nodes_cnt; i++) {
318 		const char *uname;
319 		int err;
320 
321 		child = dynamic_nodes[i];
322 		uname = fdt_get_name(fdt, child, NULL);
323 		err = __reserved_mem_alloc_size(child, uname);
324 		if (!err)
325 			count++;
326 	}
327 	total_reserved_mem_cnt = count;
328 	return 0;
329 }
330 
331 /*
332  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
333  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
334  *	reserved regions to keep the reserved memory contiguous if possible.
335  */
336 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
337 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
338 	phys_addr_t *res_base)
339 {
340 	bool prev_bottom_up = memblock_bottom_up();
341 	bool bottom_up = false, top_down = false;
342 	int ret, i;
343 
344 	for (i = 0; i < reserved_mem_count; i++) {
345 		struct reserved_mem *rmem = &reserved_mem[i];
346 
347 		/* Skip regions that were not reserved yet */
348 		if (rmem->size == 0)
349 			continue;
350 
351 		/*
352 		 * If range starts next to an existing reservation, use bottom-up:
353 		 *	|....RRRR................RRRRRRRR..............|
354 		 *	       --RRRR------
355 		 */
356 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
357 			bottom_up = true;
358 
359 		/*
360 		 * If range ends next to an existing reservation, use top-down:
361 		 *	|....RRRR................RRRRRRRR..............|
362 		 *	              -------RRRR-----
363 		 */
364 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
365 			top_down = true;
366 	}
367 
368 	/* Change setting only if either bottom-up or top-down was selected */
369 	if (bottom_up != top_down)
370 		memblock_set_bottom_up(bottom_up);
371 
372 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
373 			start, end, nomap, res_base);
374 
375 	/* Restore old setting if needed */
376 	if (bottom_up != top_down)
377 		memblock_set_bottom_up(prev_bottom_up);
378 
379 	return ret;
380 }
381 
382 /*
383  * __reserved_mem_alloc_size() - allocate reserved memory described by
384  *	'size', 'alignment'  and 'alloc-ranges' properties.
385  */
386 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
387 {
388 	phys_addr_t start = 0, end = 0;
389 	phys_addr_t base = 0, align = 0, size;
390 	int i, len;
391 	const __be32 *prop;
392 	bool nomap;
393 	int ret;
394 
395 	prop = of_get_flat_dt_prop(node, "size", &len);
396 	if (!prop)
397 		return -EINVAL;
398 
399 	if (len != dt_root_size_cells * sizeof(__be32)) {
400 		pr_err("invalid size property in '%s' node.\n", uname);
401 		return -EINVAL;
402 	}
403 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
404 
405 	prop = of_get_flat_dt_prop(node, "alignment", &len);
406 	if (prop) {
407 		if (len != dt_root_addr_cells * sizeof(__be32)) {
408 			pr_err("invalid alignment property in '%s' node.\n",
409 				uname);
410 			return -EINVAL;
411 		}
412 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
413 	}
414 
415 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
416 
417 	/* Need adjust the alignment to satisfy the CMA requirement */
418 	if (IS_ENABLED(CONFIG_CMA)
419 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
420 	    && of_get_flat_dt_prop(node, "reusable", NULL)
421 	    && !nomap)
422 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
423 
424 	prop = of_flat_dt_get_addr_size_prop(node, "alloc-ranges", &len);
425 	if (prop) {
426 		for (i = 0; i < len; i++) {
427 			u64 b, s;
428 
429 			of_flat_dt_read_addr_size(prop, i, &b, &s);
430 
431 			start = b;
432 			end = b + s;
433 
434 			base = 0;
435 			ret = __reserved_mem_alloc_in_range(size, align,
436 					start, end, nomap, &base);
437 			if (ret == 0) {
438 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
439 					uname, &base,
440 					(unsigned long)(size / SZ_1M));
441 				break;
442 			}
443 		}
444 	} else {
445 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
446 							0, 0, nomap, &base);
447 		if (ret == 0)
448 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
449 				uname, &base, (unsigned long)(size / SZ_1M));
450 	}
451 
452 	if (base == 0) {
453 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
454 		       uname, (unsigned long)(size / SZ_1M));
455 		return -ENOMEM;
456 	}
457 	/* Architecture specific contiguous memory fixup. */
458 	if (of_flat_dt_is_compatible(node, "shared-dma-pool") &&
459 	    of_get_flat_dt_prop(node, "reusable", NULL))
460 		dma_contiguous_early_fixup(base, size);
461 	/* Save region in the reserved_mem array */
462 	fdt_reserved_mem_save_node(node, uname, base, size);
463 	return 0;
464 }
465 
466 static const struct of_device_id __rmem_of_table_sentinel
467 	__used __section("__reservedmem_of_table_end");
468 
469 /*
470  * __reserved_mem_init_node() - call region specific reserved memory init code
471  */
472 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
473 {
474 	extern const struct of_device_id __reservedmem_of_table[];
475 	const struct of_device_id *i;
476 	int ret = -ENOENT;
477 
478 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
479 		reservedmem_of_init_fn initfn = i->data;
480 		const char *compat = i->compatible;
481 
482 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
483 			continue;
484 
485 		ret = initfn(rmem);
486 		if (ret == 0) {
487 			pr_info("initialized node %s, compatible id %s\n",
488 				rmem->name, compat);
489 			break;
490 		}
491 	}
492 	return ret;
493 }
494 
495 static int __init __rmem_cmp(const void *a, const void *b)
496 {
497 	const struct reserved_mem *ra = a, *rb = b;
498 
499 	if (ra->base < rb->base)
500 		return -1;
501 
502 	if (ra->base > rb->base)
503 		return 1;
504 
505 	/*
506 	 * Put the dynamic allocations (address == 0, size == 0) before static
507 	 * allocations at address 0x0 so that overlap detection works
508 	 * correctly.
509 	 */
510 	if (ra->size < rb->size)
511 		return -1;
512 	if (ra->size > rb->size)
513 		return 1;
514 
515 	if (ra->fdt_node < rb->fdt_node)
516 		return -1;
517 	if (ra->fdt_node > rb->fdt_node)
518 		return 1;
519 
520 	return 0;
521 }
522 
523 static void __init __rmem_check_for_overlap(void)
524 {
525 	int i;
526 
527 	if (reserved_mem_count < 2)
528 		return;
529 
530 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
531 	     __rmem_cmp, NULL);
532 	for (i = 0; i < reserved_mem_count - 1; i++) {
533 		struct reserved_mem *this, *next;
534 
535 		this = &reserved_mem[i];
536 		next = &reserved_mem[i + 1];
537 
538 		if (this->base + this->size > next->base) {
539 			phys_addr_t this_end, next_end;
540 
541 			this_end = this->base + this->size;
542 			next_end = next->base + next->size;
543 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
544 			       this->name, &this->base, &this_end,
545 			       next->name, &next->base, &next_end);
546 		}
547 	}
548 }
549 
550 /**
551  * fdt_init_reserved_mem_node() - Initialize a reserved memory region
552  * @rmem: reserved_mem struct of the memory region to be initialized.
553  *
554  * This function is used to call the region specific initialization
555  * function for a reserved memory region.
556  */
557 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
558 {
559 	unsigned long node = rmem->fdt_node;
560 	int err = 0;
561 	bool nomap;
562 
563 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
564 
565 	err = __reserved_mem_init_node(rmem);
566 	if (err != 0 && err != -ENOENT) {
567 		pr_info("node %s compatible matching fail\n", rmem->name);
568 		if (nomap)
569 			memblock_clear_nomap(rmem->base, rmem->size);
570 		else
571 			memblock_phys_free(rmem->base, rmem->size);
572 	} else {
573 		phys_addr_t end = rmem->base + rmem->size - 1;
574 		bool reusable =
575 			(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
576 
577 		pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
578 			&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
579 			nomap ? "nomap" : "map",
580 			reusable ? "reusable" : "non-reusable",
581 			rmem->name ? rmem->name : "unknown");
582 	}
583 }
584 
585 struct rmem_assigned_device {
586 	struct device *dev;
587 	struct reserved_mem *rmem;
588 	struct list_head list;
589 };
590 
591 static LIST_HEAD(of_rmem_assigned_device_list);
592 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
593 
594 /**
595  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
596  *					  given device
597  * @dev:	Pointer to the device to configure
598  * @np:		Pointer to the device_node with 'reserved-memory' property
599  * @idx:	Index of selected region
600  *
601  * This function assigns respective DMA-mapping operations based on reserved
602  * memory region specified by 'memory-region' property in @np node to the @dev
603  * device. When driver needs to use more than one reserved memory region, it
604  * should allocate child devices and initialize regions by name for each of
605  * child device.
606  *
607  * Returns error code or zero on success.
608  */
609 int of_reserved_mem_device_init_by_idx(struct device *dev,
610 				       struct device_node *np, int idx)
611 {
612 	struct rmem_assigned_device *rd;
613 	struct device_node *target;
614 	struct reserved_mem *rmem;
615 	int ret;
616 
617 	if (!np || !dev)
618 		return -EINVAL;
619 
620 	target = of_parse_phandle(np, "memory-region", idx);
621 	if (!target)
622 		return -ENODEV;
623 
624 	if (!of_device_is_available(target)) {
625 		of_node_put(target);
626 		return 0;
627 	}
628 
629 	rmem = of_reserved_mem_lookup(target);
630 	of_node_put(target);
631 
632 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
633 		return -EINVAL;
634 
635 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
636 	if (!rd)
637 		return -ENOMEM;
638 
639 	ret = rmem->ops->device_init(rmem, dev);
640 	if (ret == 0) {
641 		rd->dev = dev;
642 		rd->rmem = rmem;
643 
644 		mutex_lock(&of_rmem_assigned_device_mutex);
645 		list_add(&rd->list, &of_rmem_assigned_device_list);
646 		mutex_unlock(&of_rmem_assigned_device_mutex);
647 
648 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
649 	} else {
650 		kfree(rd);
651 	}
652 
653 	return ret;
654 }
655 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
656 
657 /**
658  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
659  *					   to given device
660  * @dev: pointer to the device to configure
661  * @np: pointer to the device node with 'memory-region' property
662  * @name: name of the selected memory region
663  *
664  * Returns: 0 on success or a negative error-code on failure.
665  */
666 int of_reserved_mem_device_init_by_name(struct device *dev,
667 					struct device_node *np,
668 					const char *name)
669 {
670 	int idx = of_property_match_string(np, "memory-region-names", name);
671 
672 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
673 }
674 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
675 
676 /**
677  * of_reserved_mem_device_release() - release reserved memory device structures
678  * @dev:	Pointer to the device to deconfigure
679  *
680  * This function releases structures allocated for memory region handling for
681  * the given device.
682  */
683 void of_reserved_mem_device_release(struct device *dev)
684 {
685 	struct rmem_assigned_device *rd, *tmp;
686 	LIST_HEAD(release_list);
687 
688 	mutex_lock(&of_rmem_assigned_device_mutex);
689 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
690 		if (rd->dev == dev)
691 			list_move_tail(&rd->list, &release_list);
692 	}
693 	mutex_unlock(&of_rmem_assigned_device_mutex);
694 
695 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
696 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
697 			rd->rmem->ops->device_release(rd->rmem, dev);
698 
699 		kfree(rd);
700 	}
701 }
702 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
703 
704 /**
705  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
706  * @np:		node pointer of the desired reserved-memory region
707  *
708  * This function allows drivers to acquire a reference to the reserved_mem
709  * struct based on a device node handle.
710  *
711  * Returns a reserved_mem reference, or NULL on error.
712  */
713 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
714 {
715 	const char *name;
716 	int i;
717 
718 	if (!np->full_name)
719 		return NULL;
720 
721 	name = kbasename(np->full_name);
722 	for (i = 0; i < reserved_mem_count; i++)
723 		if (!strcmp(reserved_mem[i].name, name))
724 			return &reserved_mem[i];
725 
726 	return NULL;
727 }
728 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
729 
730 /**
731  * of_reserved_mem_region_to_resource() - Get a reserved memory region as a resource
732  * @np:		node containing 'memory-region' property
733  * @idx:	index of 'memory-region' property to lookup
734  * @res:	Pointer to a struct resource to fill in with reserved region
735  *
736  * This function allows drivers to lookup a node's 'memory-region' property
737  * entries by index and return a struct resource for the entry.
738  *
739  * Returns 0 on success with @res filled in. Returns -ENODEV if 'memory-region'
740  * is missing or unavailable, -EINVAL for any other error.
741  */
742 int of_reserved_mem_region_to_resource(const struct device_node *np,
743 				       unsigned int idx, struct resource *res)
744 {
745 	struct reserved_mem *rmem;
746 
747 	if (!np)
748 		return -EINVAL;
749 
750 	struct device_node __free(device_node) *target = of_parse_phandle(np, "memory-region", idx);
751 	if (!target || !of_device_is_available(target))
752 		return -ENODEV;
753 
754 	rmem = of_reserved_mem_lookup(target);
755 	if (!rmem)
756 		return -EINVAL;
757 
758 	resource_set_range(res, rmem->base, rmem->size);
759 	res->flags = IORESOURCE_MEM;
760 	res->name = rmem->name;
761 	return 0;
762 }
763 EXPORT_SYMBOL_GPL(of_reserved_mem_region_to_resource);
764 
765 /**
766  * of_reserved_mem_region_to_resource_byname() - Get a reserved memory region as a resource
767  * @np:		node containing 'memory-region' property
768  * @name:	name of 'memory-region' property entry to lookup
769  * @res:	Pointer to a struct resource to fill in with reserved region
770  *
771  * This function allows drivers to lookup a node's 'memory-region' property
772  * entries by name and return a struct resource for the entry.
773  *
774  * Returns 0 on success with @res filled in, or a negative error-code on
775  * failure.
776  */
777 int of_reserved_mem_region_to_resource_byname(const struct device_node *np,
778 					      const char *name,
779 					      struct resource *res)
780 {
781 	int idx;
782 
783 	if (!name)
784 		return -EINVAL;
785 
786 	idx = of_property_match_string(np, "memory-region-names", name);
787 	if (idx < 0)
788 		return idx;
789 
790 	return of_reserved_mem_region_to_resource(np, idx, res);
791 }
792 EXPORT_SYMBOL_GPL(of_reserved_mem_region_to_resource_byname);
793 
794 /**
795  * of_reserved_mem_region_count() - Return the number of 'memory-region' entries
796  * @np:		node containing 'memory-region' property
797  *
798  * This function allows drivers to retrieve the number of entries for a node's
799  * 'memory-region' property.
800  *
801  * Returns the number of entries on success, or negative error code on a
802  * malformed property.
803  */
804 int of_reserved_mem_region_count(const struct device_node *np)
805 {
806 	return of_count_phandle_with_args(np, "memory-region", NULL);
807 }
808 EXPORT_SYMBOL_GPL(of_reserved_mem_region_count);
809