xref: /linux/drivers/of/of_reserved_mem.c (revision bf373e4c786bfe989e637195252698f45b157a68)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/ioport.h>
16 #include <linux/libfdt.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 #include <linux/slab.h>
25 #include <linux/memblock.h>
26 #include <linux/kmemleak.h>
27 #include <linux/cma.h>
28 
29 #include "of_private.h"
30 
31 static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
32 static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
33 static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
34 static int reserved_mem_count;
35 
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)36 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
37 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
38 	phys_addr_t *res_base)
39 {
40 	phys_addr_t base;
41 	int err = 0;
42 
43 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
44 	align = !align ? SMP_CACHE_BYTES : align;
45 	base = memblock_phys_alloc_range(size, align, start, end);
46 	if (!base)
47 		return -ENOMEM;
48 
49 	*res_base = base;
50 	if (nomap) {
51 		err = memblock_mark_nomap(base, size);
52 		if (err)
53 			memblock_phys_free(base, size);
54 	}
55 
56 	if (!err)
57 		kmemleak_ignore_phys(base);
58 
59 	return err;
60 }
61 
62 /*
63  * alloc_reserved_mem_array() - allocate memory for the reserved_mem
64  * array using memblock
65  *
66  * This function is used to allocate memory for the reserved_mem
67  * array according to the total number of reserved memory regions
68  * defined in the DT.
69  * After the new array is allocated, the information stored in
70  * the initial static array is copied over to this new array and
71  * the new array is used from this point on.
72  */
alloc_reserved_mem_array(void)73 static void __init alloc_reserved_mem_array(void)
74 {
75 	struct reserved_mem *new_array;
76 	size_t alloc_size, copy_size, memset_size;
77 
78 	alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
79 	if (alloc_size == SIZE_MAX) {
80 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
81 		return;
82 	}
83 
84 	new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
85 	if (!new_array) {
86 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
87 		return;
88 	}
89 
90 	copy_size = array_size(reserved_mem_count, sizeof(*new_array));
91 	if (copy_size == SIZE_MAX) {
92 		memblock_free(new_array, alloc_size);
93 		total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
94 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
95 		return;
96 	}
97 
98 	memset_size = alloc_size - copy_size;
99 
100 	memcpy(new_array, reserved_mem, copy_size);
101 	memset(new_array + reserved_mem_count, 0, memset_size);
102 
103 	reserved_mem = new_array;
104 }
105 
106 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
107 /*
108  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
109  */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)110 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
111 					      phys_addr_t base, phys_addr_t size)
112 {
113 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
114 
115 	if (reserved_mem_count == total_reserved_mem_cnt) {
116 		pr_err("not enough space for all defined regions.\n");
117 		return;
118 	}
119 
120 	rmem->fdt_node = node;
121 	rmem->name = uname;
122 	rmem->base = base;
123 	rmem->size = size;
124 
125 	/* Call the region specific initialization function */
126 	fdt_init_reserved_mem_node(rmem);
127 
128 	reserved_mem_count++;
129 	return;
130 }
131 
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)132 static int __init early_init_dt_reserve_memory(phys_addr_t base,
133 					       phys_addr_t size, bool nomap)
134 {
135 	if (nomap) {
136 		/*
137 		 * If the memory is already reserved (by another region), we
138 		 * should not allow it to be marked nomap, but don't worry
139 		 * if the region isn't memory as it won't be mapped.
140 		 */
141 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
142 		    memblock_is_region_reserved(base, size))
143 			return -EBUSY;
144 
145 		return memblock_mark_nomap(base, size);
146 	}
147 	return memblock_reserve(base, size);
148 }
149 
150 /*
151  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
152  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)153 static int __init __reserved_mem_reserve_reg(unsigned long node,
154 					     const char *uname)
155 {
156 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
157 	phys_addr_t base, size;
158 	int len;
159 	const __be32 *prop;
160 	bool nomap;
161 
162 	prop = of_get_flat_dt_prop(node, "reg", &len);
163 	if (!prop)
164 		return -ENOENT;
165 
166 	if (len && len % t_len != 0) {
167 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
168 		       uname);
169 		return -EINVAL;
170 	}
171 
172 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
173 
174 	while (len >= t_len) {
175 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
176 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
177 
178 		if (size &&
179 		    early_init_dt_reserve_memory(base, size, nomap) == 0)
180 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
181 				uname, &base, (unsigned long)(size / SZ_1M));
182 		else
183 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
184 			       uname, &base, (unsigned long)(size / SZ_1M));
185 
186 		len -= t_len;
187 	}
188 	return 0;
189 }
190 
191 /*
192  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
193  * in /reserved-memory matches the values supported by the current implementation,
194  * also check if ranges property has been provided
195  */
__reserved_mem_check_root(unsigned long node)196 static int __init __reserved_mem_check_root(unsigned long node)
197 {
198 	const __be32 *prop;
199 
200 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
201 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
202 		return -EINVAL;
203 
204 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
205 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
206 		return -EINVAL;
207 
208 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
209 	if (!prop)
210 		return -EINVAL;
211 	return 0;
212 }
213 
214 static void __init __rmem_check_for_overlap(void);
215 
216 /**
217  * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
218  * reserved memory regions.
219  *
220  * This function is used to scan through the DT and store the
221  * information for the reserved memory regions that are defined using
222  * the "reg" property. The region node number, name, base address, and
223  * size are all stored in the reserved_mem array by calling the
224  * fdt_reserved_mem_save_node() function.
225  */
fdt_scan_reserved_mem_reg_nodes(void)226 void __init fdt_scan_reserved_mem_reg_nodes(void)
227 {
228 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
229 	const void *fdt = initial_boot_params;
230 	phys_addr_t base, size;
231 	const __be32 *prop;
232 	int node, child;
233 	int len;
234 
235 	if (!fdt)
236 		return;
237 
238 	node = fdt_path_offset(fdt, "/reserved-memory");
239 	if (node < 0) {
240 		pr_info("Reserved memory: No reserved-memory node in the DT\n");
241 		return;
242 	}
243 
244 	/* Attempt dynamic allocation of a new reserved_mem array */
245 	alloc_reserved_mem_array();
246 
247 	if (__reserved_mem_check_root(node)) {
248 		pr_err("Reserved memory: unsupported node format, ignoring\n");
249 		return;
250 	}
251 
252 	fdt_for_each_subnode(child, fdt, node) {
253 		const char *uname;
254 
255 		prop = of_get_flat_dt_prop(child, "reg", &len);
256 		if (!prop)
257 			continue;
258 		if (!of_fdt_device_is_available(fdt, child))
259 			continue;
260 
261 		uname = fdt_get_name(fdt, child, NULL);
262 		if (len && len % t_len != 0) {
263 			pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
264 			       uname);
265 			continue;
266 		}
267 
268 		if (len > t_len)
269 			pr_warn("%s() ignores %d regions in node '%s'\n",
270 				__func__, len / t_len - 1, uname);
271 
272 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
273 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
274 
275 		if (size)
276 			fdt_reserved_mem_save_node(child, uname, base, size);
277 	}
278 
279 	/* check for overlapping reserved regions */
280 	__rmem_check_for_overlap();
281 }
282 
283 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
284 
285 /*
286  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
287  */
fdt_scan_reserved_mem(void)288 int __init fdt_scan_reserved_mem(void)
289 {
290 	int node, child;
291 	int dynamic_nodes_cnt = 0, count = 0;
292 	int dynamic_nodes[MAX_RESERVED_REGIONS];
293 	const void *fdt = initial_boot_params;
294 
295 	node = fdt_path_offset(fdt, "/reserved-memory");
296 	if (node < 0)
297 		return -ENODEV;
298 
299 	if (__reserved_mem_check_root(node) != 0) {
300 		pr_err("Reserved memory: unsupported node format, ignoring\n");
301 		return -EINVAL;
302 	}
303 
304 	fdt_for_each_subnode(child, fdt, node) {
305 		const char *uname;
306 		int err;
307 
308 		if (!of_fdt_device_is_available(fdt, child))
309 			continue;
310 
311 		uname = fdt_get_name(fdt, child, NULL);
312 
313 		err = __reserved_mem_reserve_reg(child, uname);
314 		if (!err)
315 			count++;
316 		/*
317 		 * Save the nodes for the dynamically-placed regions
318 		 * into an array which will be used for allocation right
319 		 * after all the statically-placed regions are reserved
320 		 * or marked as no-map. This is done to avoid dynamically
321 		 * allocating from one of the statically-placed regions.
322 		 */
323 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
324 			dynamic_nodes[dynamic_nodes_cnt] = child;
325 			dynamic_nodes_cnt++;
326 		}
327 	}
328 	for (int i = 0; i < dynamic_nodes_cnt; i++) {
329 		const char *uname;
330 		int err;
331 
332 		child = dynamic_nodes[i];
333 		uname = fdt_get_name(fdt, child, NULL);
334 		err = __reserved_mem_alloc_size(child, uname);
335 		if (!err)
336 			count++;
337 	}
338 	total_reserved_mem_cnt = count;
339 	return 0;
340 }
341 
342 /*
343  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
344  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
345  *	reserved regions to keep the reserved memory contiguous if possible.
346  */
__reserved_mem_alloc_in_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)347 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
348 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
349 	phys_addr_t *res_base)
350 {
351 	bool prev_bottom_up = memblock_bottom_up();
352 	bool bottom_up = false, top_down = false;
353 	int ret, i;
354 
355 	for (i = 0; i < reserved_mem_count; i++) {
356 		struct reserved_mem *rmem = &reserved_mem[i];
357 
358 		/* Skip regions that were not reserved yet */
359 		if (rmem->size == 0)
360 			continue;
361 
362 		/*
363 		 * If range starts next to an existing reservation, use bottom-up:
364 		 *	|....RRRR................RRRRRRRR..............|
365 		 *	       --RRRR------
366 		 */
367 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
368 			bottom_up = true;
369 
370 		/*
371 		 * If range ends next to an existing reservation, use top-down:
372 		 *	|....RRRR................RRRRRRRR..............|
373 		 *	              -------RRRR-----
374 		 */
375 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
376 			top_down = true;
377 	}
378 
379 	/* Change setting only if either bottom-up or top-down was selected */
380 	if (bottom_up != top_down)
381 		memblock_set_bottom_up(bottom_up);
382 
383 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
384 			start, end, nomap, res_base);
385 
386 	/* Restore old setting if needed */
387 	if (bottom_up != top_down)
388 		memblock_set_bottom_up(prev_bottom_up);
389 
390 	return ret;
391 }
392 
393 /*
394  * __reserved_mem_alloc_size() - allocate reserved memory described by
395  *	'size', 'alignment'  and 'alloc-ranges' properties.
396  */
__reserved_mem_alloc_size(unsigned long node,const char * uname)397 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
398 {
399 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
400 	phys_addr_t start = 0, end = 0;
401 	phys_addr_t base = 0, align = 0, size;
402 	int len;
403 	const __be32 *prop;
404 	bool nomap;
405 	int ret;
406 
407 	prop = of_get_flat_dt_prop(node, "size", &len);
408 	if (!prop)
409 		return -EINVAL;
410 
411 	if (len != dt_root_size_cells * sizeof(__be32)) {
412 		pr_err("invalid size property in '%s' node.\n", uname);
413 		return -EINVAL;
414 	}
415 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
416 
417 	prop = of_get_flat_dt_prop(node, "alignment", &len);
418 	if (prop) {
419 		if (len != dt_root_addr_cells * sizeof(__be32)) {
420 			pr_err("invalid alignment property in '%s' node.\n",
421 				uname);
422 			return -EINVAL;
423 		}
424 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
425 	}
426 
427 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
428 
429 	/* Need adjust the alignment to satisfy the CMA requirement */
430 	if (IS_ENABLED(CONFIG_CMA)
431 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
432 	    && of_get_flat_dt_prop(node, "reusable", NULL)
433 	    && !nomap)
434 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
435 
436 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
437 	if (prop) {
438 
439 		if (len % t_len != 0) {
440 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
441 			       uname);
442 			return -EINVAL;
443 		}
444 
445 		while (len > 0) {
446 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
447 			end = start + dt_mem_next_cell(dt_root_size_cells,
448 						       &prop);
449 
450 			base = 0;
451 			ret = __reserved_mem_alloc_in_range(size, align,
452 					start, end, nomap, &base);
453 			if (ret == 0) {
454 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
455 					uname, &base,
456 					(unsigned long)(size / SZ_1M));
457 				break;
458 			}
459 			len -= t_len;
460 		}
461 
462 	} else {
463 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
464 							0, 0, nomap, &base);
465 		if (ret == 0)
466 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
467 				uname, &base, (unsigned long)(size / SZ_1M));
468 	}
469 
470 	if (base == 0) {
471 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
472 		       uname, (unsigned long)(size / SZ_1M));
473 		return -ENOMEM;
474 	}
475 
476 	/* Save region in the reserved_mem array */
477 	fdt_reserved_mem_save_node(node, uname, base, size);
478 	return 0;
479 }
480 
481 static const struct of_device_id __rmem_of_table_sentinel
482 	__used __section("__reservedmem_of_table_end");
483 
484 /*
485  * __reserved_mem_init_node() - call region specific reserved memory init code
486  */
__reserved_mem_init_node(struct reserved_mem * rmem)487 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
488 {
489 	extern const struct of_device_id __reservedmem_of_table[];
490 	const struct of_device_id *i;
491 	int ret = -ENOENT;
492 
493 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
494 		reservedmem_of_init_fn initfn = i->data;
495 		const char *compat = i->compatible;
496 
497 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
498 			continue;
499 
500 		ret = initfn(rmem);
501 		if (ret == 0) {
502 			pr_info("initialized node %s, compatible id %s\n",
503 				rmem->name, compat);
504 			break;
505 		}
506 	}
507 	return ret;
508 }
509 
__rmem_cmp(const void * a,const void * b)510 static int __init __rmem_cmp(const void *a, const void *b)
511 {
512 	const struct reserved_mem *ra = a, *rb = b;
513 
514 	if (ra->base < rb->base)
515 		return -1;
516 
517 	if (ra->base > rb->base)
518 		return 1;
519 
520 	/*
521 	 * Put the dynamic allocations (address == 0, size == 0) before static
522 	 * allocations at address 0x0 so that overlap detection works
523 	 * correctly.
524 	 */
525 	if (ra->size < rb->size)
526 		return -1;
527 	if (ra->size > rb->size)
528 		return 1;
529 
530 	if (ra->fdt_node < rb->fdt_node)
531 		return -1;
532 	if (ra->fdt_node > rb->fdt_node)
533 		return 1;
534 
535 	return 0;
536 }
537 
__rmem_check_for_overlap(void)538 static void __init __rmem_check_for_overlap(void)
539 {
540 	int i;
541 
542 	if (reserved_mem_count < 2)
543 		return;
544 
545 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
546 	     __rmem_cmp, NULL);
547 	for (i = 0; i < reserved_mem_count - 1; i++) {
548 		struct reserved_mem *this, *next;
549 
550 		this = &reserved_mem[i];
551 		next = &reserved_mem[i + 1];
552 
553 		if (this->base + this->size > next->base) {
554 			phys_addr_t this_end, next_end;
555 
556 			this_end = this->base + this->size;
557 			next_end = next->base + next->size;
558 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
559 			       this->name, &this->base, &this_end,
560 			       next->name, &next->base, &next_end);
561 		}
562 	}
563 }
564 
565 /**
566  * fdt_init_reserved_mem_node() - Initialize a reserved memory region
567  * @rmem: reserved_mem struct of the memory region to be initialized.
568  *
569  * This function is used to call the region specific initialization
570  * function for a reserved memory region.
571  */
fdt_init_reserved_mem_node(struct reserved_mem * rmem)572 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
573 {
574 	unsigned long node = rmem->fdt_node;
575 	int err = 0;
576 	bool nomap;
577 
578 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
579 
580 	err = __reserved_mem_init_node(rmem);
581 	if (err != 0 && err != -ENOENT) {
582 		pr_info("node %s compatible matching fail\n", rmem->name);
583 		if (nomap)
584 			memblock_clear_nomap(rmem->base, rmem->size);
585 		else
586 			memblock_phys_free(rmem->base, rmem->size);
587 	} else {
588 		phys_addr_t end = rmem->base + rmem->size - 1;
589 		bool reusable =
590 			(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
591 
592 		pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
593 			&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
594 			nomap ? "nomap" : "map",
595 			reusable ? "reusable" : "non-reusable",
596 			rmem->name ? rmem->name : "unknown");
597 	}
598 }
599 
600 struct rmem_assigned_device {
601 	struct device *dev;
602 	struct reserved_mem *rmem;
603 	struct list_head list;
604 };
605 
606 static LIST_HEAD(of_rmem_assigned_device_list);
607 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
608 
609 /**
610  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
611  *					  given device
612  * @dev:	Pointer to the device to configure
613  * @np:		Pointer to the device_node with 'reserved-memory' property
614  * @idx:	Index of selected region
615  *
616  * This function assigns respective DMA-mapping operations based on reserved
617  * memory region specified by 'memory-region' property in @np node to the @dev
618  * device. When driver needs to use more than one reserved memory region, it
619  * should allocate child devices and initialize regions by name for each of
620  * child device.
621  *
622  * Returns error code or zero on success.
623  */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)624 int of_reserved_mem_device_init_by_idx(struct device *dev,
625 				       struct device_node *np, int idx)
626 {
627 	struct rmem_assigned_device *rd;
628 	struct device_node *target;
629 	struct reserved_mem *rmem;
630 	int ret;
631 
632 	if (!np || !dev)
633 		return -EINVAL;
634 
635 	target = of_parse_phandle(np, "memory-region", idx);
636 	if (!target)
637 		return -ENODEV;
638 
639 	if (!of_device_is_available(target)) {
640 		of_node_put(target);
641 		return 0;
642 	}
643 
644 	rmem = of_reserved_mem_lookup(target);
645 	of_node_put(target);
646 
647 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
648 		return -EINVAL;
649 
650 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
651 	if (!rd)
652 		return -ENOMEM;
653 
654 	ret = rmem->ops->device_init(rmem, dev);
655 	if (ret == 0) {
656 		rd->dev = dev;
657 		rd->rmem = rmem;
658 
659 		mutex_lock(&of_rmem_assigned_device_mutex);
660 		list_add(&rd->list, &of_rmem_assigned_device_list);
661 		mutex_unlock(&of_rmem_assigned_device_mutex);
662 
663 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
664 	} else {
665 		kfree(rd);
666 	}
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
671 
672 /**
673  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
674  *					   to given device
675  * @dev: pointer to the device to configure
676  * @np: pointer to the device node with 'memory-region' property
677  * @name: name of the selected memory region
678  *
679  * Returns: 0 on success or a negative error-code on failure.
680  */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)681 int of_reserved_mem_device_init_by_name(struct device *dev,
682 					struct device_node *np,
683 					const char *name)
684 {
685 	int idx = of_property_match_string(np, "memory-region-names", name);
686 
687 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
688 }
689 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
690 
691 /**
692  * of_reserved_mem_device_release() - release reserved memory device structures
693  * @dev:	Pointer to the device to deconfigure
694  *
695  * This function releases structures allocated for memory region handling for
696  * the given device.
697  */
of_reserved_mem_device_release(struct device * dev)698 void of_reserved_mem_device_release(struct device *dev)
699 {
700 	struct rmem_assigned_device *rd, *tmp;
701 	LIST_HEAD(release_list);
702 
703 	mutex_lock(&of_rmem_assigned_device_mutex);
704 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
705 		if (rd->dev == dev)
706 			list_move_tail(&rd->list, &release_list);
707 	}
708 	mutex_unlock(&of_rmem_assigned_device_mutex);
709 
710 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
711 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
712 			rd->rmem->ops->device_release(rd->rmem, dev);
713 
714 		kfree(rd);
715 	}
716 }
717 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
718 
719 /**
720  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
721  * @np:		node pointer of the desired reserved-memory region
722  *
723  * This function allows drivers to acquire a reference to the reserved_mem
724  * struct based on a device node handle.
725  *
726  * Returns a reserved_mem reference, or NULL on error.
727  */
of_reserved_mem_lookup(struct device_node * np)728 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
729 {
730 	const char *name;
731 	int i;
732 
733 	if (!np->full_name)
734 		return NULL;
735 
736 	name = kbasename(np->full_name);
737 	for (i = 0; i < reserved_mem_count; i++)
738 		if (!strcmp(reserved_mem[i].name, name))
739 			return &reserved_mem[i];
740 
741 	return NULL;
742 }
743 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
744 
745 /**
746  * of_reserved_mem_region_to_resource() - Get a reserved memory region as a resource
747  * @np:		node containing 'memory-region' property
748  * @idx:	index of 'memory-region' property to lookup
749  * @res:	Pointer to a struct resource to fill in with reserved region
750  *
751  * This function allows drivers to lookup a node's 'memory-region' property
752  * entries by index and return a struct resource for the entry.
753  *
754  * Returns 0 on success with @res filled in. Returns -ENODEV if 'memory-region'
755  * is missing or unavailable, -EINVAL for any other error.
756  */
of_reserved_mem_region_to_resource(const struct device_node * np,unsigned int idx,struct resource * res)757 int of_reserved_mem_region_to_resource(const struct device_node *np,
758 				       unsigned int idx, struct resource *res)
759 {
760 	struct reserved_mem *rmem;
761 
762 	if (!np)
763 		return -EINVAL;
764 
765 	struct device_node __free(device_node) *target = of_parse_phandle(np, "memory-region", idx);
766 	if (!target || !of_device_is_available(target))
767 		return -ENODEV;
768 
769 	rmem = of_reserved_mem_lookup(target);
770 	if (!rmem)
771 		return -EINVAL;
772 
773 	resource_set_range(res, rmem->base, rmem->size);
774 	res->name = rmem->name;
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(of_reserved_mem_region_to_resource);
778 
779 /**
780  * of_reserved_mem_region_to_resource_byname() - Get a reserved memory region as a resource
781  * @np:		node containing 'memory-region' property
782  * @name:	name of 'memory-region' property entry to lookup
783  * @res:	Pointer to a struct resource to fill in with reserved region
784  *
785  * This function allows drivers to lookup a node's 'memory-region' property
786  * entries by name and return a struct resource for the entry.
787  *
788  * Returns 0 on success with @res filled in, or a negative error-code on
789  * failure.
790  */
of_reserved_mem_region_to_resource_byname(const struct device_node * np,const char * name,struct resource * res)791 int of_reserved_mem_region_to_resource_byname(const struct device_node *np,
792 					      const char *name,
793 					      struct resource *res)
794 {
795 	int idx;
796 
797 	if (!name)
798 		return -EINVAL;
799 
800 	idx = of_property_match_string(np, "memory-region-names", name);
801 	if (idx < 0)
802 		return idx;
803 
804 	return of_reserved_mem_region_to_resource(np, idx, res);
805 }
806 EXPORT_SYMBOL_GPL(of_reserved_mem_region_to_resource_byname);
807 
808 /**
809  * of_reserved_mem_region_count() - Return the number of 'memory-region' entries
810  * @np:		node containing 'memory-region' property
811  *
812  * This function allows drivers to retrieve the number of entries for a node's
813  * 'memory-region' property.
814  *
815  * Returns the number of entries on success, or negative error code on a
816  * malformed property.
817  */
of_reserved_mem_region_count(const struct device_node * np)818 int of_reserved_mem_region_count(const struct device_node *np)
819 {
820 	return of_count_phandle_with_args(np, "memory-region", NULL);
821 }
822 EXPORT_SYMBOL_GPL(of_reserved_mem_region_count);
823