1 /*
2 * linux/drivers/video/pxafb.c
3 *
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
11 *
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
15 *
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
17 *
18 * Please direct your questions and comments on this driver to the following
19 * email address:
20 *
21 * linux-arm-kernel@lists.arm.linux.org.uk
22 *
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24 *
25 * Copyright (C) 2004, Intel Corporation
26 *
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
30 *
31 * Copyright (C) 2006-2008 Marvell International Ltd.
32 * All Rights Reserved
33 */
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 #include <linux/of_graph.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/soc/pxa/cpu.h>
61 #include <video/of_display_timing.h>
62 #include <video/videomode.h>
63
64 #include <asm/io.h>
65 #include <asm/irq.h>
66 #include <asm/div64.h>
67 #include <linux/platform_data/video-pxafb.h>
68
69 /*
70 * Complain if VAR is out of range.
71 */
72 #define DEBUG_VAR 1
73
74 #include "pxafb.h"
75 #include "pxa3xx-regs.h"
76
77 /* Bits which should not be set in machine configuration structures */
78 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
79 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
80 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
81
82 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
83 LCCR3_PCD | LCCR3_BPP(0xf))
84
85 static int pxafb_activate_var(struct fb_var_screeninfo *var,
86 struct pxafb_info *);
87 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
88 static void setup_base_frame(struct pxafb_info *fbi,
89 struct fb_var_screeninfo *var, int branch);
90 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
91 unsigned long offset, size_t size);
92
93 static unsigned long video_mem_size = 0;
94
95 static inline unsigned long
lcd_readl(struct pxafb_info * fbi,unsigned int off)96 lcd_readl(struct pxafb_info *fbi, unsigned int off)
97 {
98 return __raw_readl(fbi->mmio_base + off);
99 }
100
101 static inline void
lcd_writel(struct pxafb_info * fbi,unsigned int off,unsigned long val)102 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
103 {
104 __raw_writel(val, fbi->mmio_base + off);
105 }
106
pxafb_schedule_work(struct pxafb_info * fbi,u_int state)107 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
108 {
109 unsigned long flags;
110
111 local_irq_save(flags);
112 /*
113 * We need to handle two requests being made at the same time.
114 * There are two important cases:
115 * 1. When we are changing VT (C_REENABLE) while unblanking
116 * (C_ENABLE) We must perform the unblanking, which will
117 * do our REENABLE for us.
118 * 2. When we are blanking, but immediately unblank before
119 * we have blanked. We do the "REENABLE" thing here as
120 * well, just to be sure.
121 */
122 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
123 state = (u_int) -1;
124 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
125 state = C_REENABLE;
126
127 if (state != (u_int)-1) {
128 fbi->task_state = state;
129 schedule_work(&fbi->task);
130 }
131 local_irq_restore(flags);
132 }
133
chan_to_field(u_int chan,struct fb_bitfield * bf)134 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
135 {
136 chan &= 0xffff;
137 chan >>= 16 - bf->length;
138 return chan << bf->offset;
139 }
140
141 static int
pxafb_setpalettereg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)142 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
143 u_int trans, struct fb_info *info)
144 {
145 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
146 u_int val;
147
148 if (regno >= fbi->palette_size)
149 return 1;
150
151 if (fbi->fb.var.grayscale) {
152 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
153 return 0;
154 }
155
156 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
157 case LCCR4_PAL_FOR_0:
158 val = ((red >> 0) & 0xf800);
159 val |= ((green >> 5) & 0x07e0);
160 val |= ((blue >> 11) & 0x001f);
161 fbi->palette_cpu[regno] = val;
162 break;
163 case LCCR4_PAL_FOR_1:
164 val = ((red << 8) & 0x00f80000);
165 val |= ((green >> 0) & 0x0000fc00);
166 val |= ((blue >> 8) & 0x000000f8);
167 ((u32 *)(fbi->palette_cpu))[regno] = val;
168 break;
169 case LCCR4_PAL_FOR_2:
170 val = ((red << 8) & 0x00fc0000);
171 val |= ((green >> 0) & 0x0000fc00);
172 val |= ((blue >> 8) & 0x000000fc);
173 ((u32 *)(fbi->palette_cpu))[regno] = val;
174 break;
175 case LCCR4_PAL_FOR_3:
176 val = ((red << 8) & 0x00ff0000);
177 val |= ((green >> 0) & 0x0000ff00);
178 val |= ((blue >> 8) & 0x000000ff);
179 ((u32 *)(fbi->palette_cpu))[regno] = val;
180 break;
181 }
182
183 return 0;
184 }
185
186 static int
pxafb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)187 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
188 u_int trans, struct fb_info *info)
189 {
190 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
191 unsigned int val;
192 int ret = 1;
193
194 /*
195 * If inverse mode was selected, invert all the colours
196 * rather than the register number. The register number
197 * is what you poke into the framebuffer to produce the
198 * colour you requested.
199 */
200 if (fbi->cmap_inverse) {
201 red = 0xffff - red;
202 green = 0xffff - green;
203 blue = 0xffff - blue;
204 }
205
206 /*
207 * If greyscale is true, then we convert the RGB value
208 * to greyscale no matter what visual we are using.
209 */
210 if (fbi->fb.var.grayscale)
211 red = green = blue = (19595 * red + 38470 * green +
212 7471 * blue) >> 16;
213
214 switch (fbi->fb.fix.visual) {
215 case FB_VISUAL_TRUECOLOR:
216 /*
217 * 16-bit True Colour. We encode the RGB value
218 * according to the RGB bitfield information.
219 */
220 if (regno < 16) {
221 u32 *pal = fbi->fb.pseudo_palette;
222
223 val = chan_to_field(red, &fbi->fb.var.red);
224 val |= chan_to_field(green, &fbi->fb.var.green);
225 val |= chan_to_field(blue, &fbi->fb.var.blue);
226
227 pal[regno] = val;
228 ret = 0;
229 }
230 break;
231
232 case FB_VISUAL_STATIC_PSEUDOCOLOR:
233 case FB_VISUAL_PSEUDOCOLOR:
234 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
235 break;
236 }
237
238 return ret;
239 }
240
241 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
var_to_depth(struct fb_var_screeninfo * var)242 static inline int var_to_depth(struct fb_var_screeninfo *var)
243 {
244 return var->red.length + var->green.length +
245 var->blue.length + var->transp.length;
246 }
247
248 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
pxafb_var_to_bpp(struct fb_var_screeninfo * var)249 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
250 {
251 int bpp = -EINVAL;
252
253 switch (var->bits_per_pixel) {
254 case 1: bpp = 0; break;
255 case 2: bpp = 1; break;
256 case 4: bpp = 2; break;
257 case 8: bpp = 3; break;
258 case 16: bpp = 4; break;
259 case 24:
260 switch (var_to_depth(var)) {
261 case 18: bpp = 6; break; /* 18-bits/pixel packed */
262 case 19: bpp = 8; break; /* 19-bits/pixel packed */
263 case 24: bpp = 9; break;
264 }
265 break;
266 case 32:
267 switch (var_to_depth(var)) {
268 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
269 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
270 case 25: bpp = 10; break;
271 }
272 break;
273 }
274 return bpp;
275 }
276
277 /*
278 * pxafb_var_to_lccr3():
279 * Convert a bits per pixel value to the correct bit pattern for LCCR3
280 *
281 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
282 * implication of the acutal use of transparency bit, which we handle it
283 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
284 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
285 *
286 * Transparency for palette pixel formats is not supported at the moment.
287 */
pxafb_var_to_lccr3(struct fb_var_screeninfo * var)288 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
289 {
290 int bpp = pxafb_var_to_bpp(var);
291 uint32_t lccr3;
292
293 if (bpp < 0)
294 return 0;
295
296 lccr3 = LCCR3_BPP(bpp);
297
298 switch (var_to_depth(var)) {
299 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
300 case 18: lccr3 |= LCCR3_PDFOR_3; break;
301 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
302 break;
303 case 19:
304 case 25: lccr3 |= LCCR3_PDFOR_0; break;
305 }
306 return lccr3;
307 }
308
309 #define SET_PIXFMT(v, r, g, b, t) \
310 ({ \
311 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
312 (v)->transp.length = (t) ? (t) : 0; \
313 (v)->blue.length = (b); (v)->blue.offset = 0; \
314 (v)->green.length = (g); (v)->green.offset = (b); \
315 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
316 })
317
318 /* set the RGBT bitfields of fb_var_screeninf according to
319 * var->bits_per_pixel and given depth
320 */
pxafb_set_pixfmt(struct fb_var_screeninfo * var,int depth)321 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
322 {
323 if (depth == 0)
324 depth = var->bits_per_pixel;
325
326 if (var->bits_per_pixel < 16) {
327 /* indexed pixel formats */
328 var->red.offset = 0; var->red.length = 8;
329 var->green.offset = 0; var->green.length = 8;
330 var->blue.offset = 0; var->blue.length = 8;
331 var->transp.offset = 0; var->transp.length = 8;
332 }
333
334 switch (depth) {
335 case 16: var->transp.length ?
336 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
337 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
338 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
339 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
340 case 24: var->transp.length ?
341 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
342 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
343 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
344 }
345 }
346
347 #ifdef CONFIG_CPU_FREQ
348 /*
349 * pxafb_display_dma_period()
350 * Calculate the minimum period (in picoseconds) between two DMA
351 * requests for the LCD controller. If we hit this, it means we're
352 * doing nothing but LCD DMA.
353 */
pxafb_display_dma_period(struct fb_var_screeninfo * var)354 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
355 {
356 /*
357 * Period = pixclock * bits_per_byte * bytes_per_transfer
358 * / memory_bits_per_pixel;
359 */
360 return var->pixclock * 8 * 16 / var->bits_per_pixel;
361 }
362 #endif
363
364 /*
365 * Select the smallest mode that allows the desired resolution to be
366 * displayed. If desired parameters can be rounded up.
367 */
pxafb_getmode(struct pxafb_mach_info * mach,struct fb_var_screeninfo * var)368 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
369 struct fb_var_screeninfo *var)
370 {
371 struct pxafb_mode_info *mode = NULL;
372 struct pxafb_mode_info *modelist = mach->modes;
373 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
374 unsigned int i;
375
376 for (i = 0; i < mach->num_modes; i++) {
377 if (modelist[i].xres >= var->xres &&
378 modelist[i].yres >= var->yres &&
379 modelist[i].xres < best_x &&
380 modelist[i].yres < best_y &&
381 modelist[i].bpp >= var->bits_per_pixel) {
382 best_x = modelist[i].xres;
383 best_y = modelist[i].yres;
384 mode = &modelist[i];
385 }
386 }
387
388 return mode;
389 }
390
pxafb_setmode(struct fb_var_screeninfo * var,struct pxafb_mode_info * mode)391 static void pxafb_setmode(struct fb_var_screeninfo *var,
392 struct pxafb_mode_info *mode)
393 {
394 var->xres = mode->xres;
395 var->yres = mode->yres;
396 var->bits_per_pixel = mode->bpp;
397 var->pixclock = mode->pixclock;
398 var->hsync_len = mode->hsync_len;
399 var->left_margin = mode->left_margin;
400 var->right_margin = mode->right_margin;
401 var->vsync_len = mode->vsync_len;
402 var->upper_margin = mode->upper_margin;
403 var->lower_margin = mode->lower_margin;
404 var->sync = mode->sync;
405 var->grayscale = mode->cmap_greyscale;
406 var->transp.length = mode->transparency;
407
408 /* set the initial RGBA bitfields */
409 pxafb_set_pixfmt(var, mode->depth);
410 }
411
pxafb_adjust_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)412 static int pxafb_adjust_timing(struct pxafb_info *fbi,
413 struct fb_var_screeninfo *var)
414 {
415 int line_length;
416
417 var->xres = max_t(int, var->xres, MIN_XRES);
418 var->yres = max_t(int, var->yres, MIN_YRES);
419
420 if (!(fbi->lccr0 & LCCR0_LCDT)) {
421 clamp_val(var->hsync_len, 1, 64);
422 clamp_val(var->vsync_len, 1, 64);
423 clamp_val(var->left_margin, 1, 255);
424 clamp_val(var->right_margin, 1, 255);
425 clamp_val(var->upper_margin, 1, 255);
426 clamp_val(var->lower_margin, 1, 255);
427 }
428
429 /* make sure each line is aligned on word boundary */
430 line_length = var->xres * var->bits_per_pixel / 8;
431 line_length = ALIGN(line_length, 4);
432 var->xres = line_length * 8 / var->bits_per_pixel;
433
434 /* we don't support xpan, force xres_virtual to be equal to xres */
435 var->xres_virtual = var->xres;
436
437 if (var->accel_flags & FB_ACCELF_TEXT)
438 var->yres_virtual = fbi->fb.fix.smem_len / line_length;
439 else
440 var->yres_virtual = max(var->yres_virtual, var->yres);
441
442 /* check for limits */
443 if (var->xres > MAX_XRES || var->yres > MAX_YRES)
444 return -EINVAL;
445
446 if (var->yres > var->yres_virtual)
447 return -EINVAL;
448
449 return 0;
450 }
451
452 /*
453 * pxafb_check_var():
454 * Get the video params out of 'var'. If a value doesn't fit, round it up,
455 * if it's too big, return -EINVAL.
456 *
457 * Round up in the following order: bits_per_pixel, xres,
458 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
459 * bitfields, horizontal timing, vertical timing.
460 */
pxafb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)461 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
462 {
463 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
464 struct pxafb_mach_info *inf = fbi->inf;
465 int err;
466
467 if (inf->fixed_modes) {
468 struct pxafb_mode_info *mode;
469
470 mode = pxafb_getmode(inf, var);
471 if (!mode)
472 return -EINVAL;
473 pxafb_setmode(var, mode);
474 }
475
476 /* do a test conversion to BPP fields to check the color formats */
477 err = pxafb_var_to_bpp(var);
478 if (err < 0)
479 return err;
480
481 pxafb_set_pixfmt(var, var_to_depth(var));
482
483 err = pxafb_adjust_timing(fbi, var);
484 if (err)
485 return err;
486
487 #ifdef CONFIG_CPU_FREQ
488 pr_debug("pxafb: dma period = %d ps\n",
489 pxafb_display_dma_period(var));
490 #endif
491
492 return 0;
493 }
494
495 /*
496 * pxafb_set_par():
497 * Set the user defined part of the display for the specified console
498 */
pxafb_set_par(struct fb_info * info)499 static int pxafb_set_par(struct fb_info *info)
500 {
501 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
502 struct fb_var_screeninfo *var = &info->var;
503
504 if (var->bits_per_pixel >= 16)
505 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
506 else if (!fbi->cmap_static)
507 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
508 else {
509 /*
510 * Some people have weird ideas about wanting static
511 * pseudocolor maps. I suspect their user space
512 * applications are broken.
513 */
514 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
515 }
516
517 fbi->fb.fix.line_length = var->xres_virtual *
518 var->bits_per_pixel / 8;
519 if (var->bits_per_pixel >= 16)
520 fbi->palette_size = 0;
521 else
522 fbi->palette_size = var->bits_per_pixel == 1 ?
523 4 : 1 << var->bits_per_pixel;
524
525 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
526
527 if (fbi->fb.var.bits_per_pixel >= 16)
528 fb_dealloc_cmap(&fbi->fb.cmap);
529 else
530 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
531
532 pxafb_activate_var(var, fbi);
533
534 return 0;
535 }
536
pxafb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)537 static int pxafb_pan_display(struct fb_var_screeninfo *var,
538 struct fb_info *info)
539 {
540 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
541 struct fb_var_screeninfo newvar;
542 int dma = DMA_MAX + DMA_BASE;
543
544 if (fbi->state != C_ENABLE)
545 return 0;
546
547 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
548 * was passed in and copy the rest from the old screeninfo.
549 */
550 memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
551 newvar.xoffset = var->xoffset;
552 newvar.yoffset = var->yoffset;
553 newvar.vmode &= ~FB_VMODE_YWRAP;
554 newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
555
556 setup_base_frame(fbi, &newvar, 1);
557
558 if (fbi->lccr0 & LCCR0_SDS)
559 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
560
561 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
562 return 0;
563 }
564
565 /*
566 * pxafb_blank():
567 * Blank the display by setting all palette values to zero. Note, the
568 * 16 bpp mode does not really use the palette, so this will not
569 * blank the display in all modes.
570 */
pxafb_blank(int blank,struct fb_info * info)571 static int pxafb_blank(int blank, struct fb_info *info)
572 {
573 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
574 int i;
575
576 switch (blank) {
577 case FB_BLANK_POWERDOWN:
578 case FB_BLANK_VSYNC_SUSPEND:
579 case FB_BLANK_HSYNC_SUSPEND:
580 case FB_BLANK_NORMAL:
581 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
582 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
583 for (i = 0; i < fbi->palette_size; i++)
584 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
585
586 pxafb_schedule_work(fbi, C_DISABLE);
587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588 break;
589
590 case FB_BLANK_UNBLANK:
591 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
592 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
593 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
594 fb_set_cmap(&fbi->fb.cmap, info);
595 pxafb_schedule_work(fbi, C_ENABLE);
596 }
597 return 0;
598 }
599
600 static const struct fb_ops pxafb_ops = {
601 .owner = THIS_MODULE,
602 FB_DEFAULT_IOMEM_OPS,
603 .fb_check_var = pxafb_check_var,
604 .fb_set_par = pxafb_set_par,
605 .fb_pan_display = pxafb_pan_display,
606 .fb_setcolreg = pxafb_setcolreg,
607 .fb_blank = pxafb_blank,
608 };
609
610 #ifdef CONFIG_FB_PXA_OVERLAY
overlay1fb_setup(struct pxafb_layer * ofb)611 static void overlay1fb_setup(struct pxafb_layer *ofb)
612 {
613 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
614 unsigned long start = ofb->video_mem_phys;
615 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
616 }
617
618 /* Depending on the enable status of overlay1/2, the DMA should be
619 * updated from FDADRx (when disabled) or FBRx (when enabled).
620 */
overlay1fb_enable(struct pxafb_layer * ofb)621 static void overlay1fb_enable(struct pxafb_layer *ofb)
622 {
623 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
624 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
625
626 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
627 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
628 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
629 }
630
overlay1fb_disable(struct pxafb_layer * ofb)631 static void overlay1fb_disable(struct pxafb_layer *ofb)
632 {
633 uint32_t lccr5;
634
635 if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
636 return;
637
638 lccr5 = lcd_readl(ofb->fbi, LCCR5);
639
640 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
641
642 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
643 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
644 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
645
646 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
647 pr_warn("%s: timeout disabling overlay1\n", __func__);
648
649 lcd_writel(ofb->fbi, LCCR5, lccr5);
650 }
651
overlay2fb_setup(struct pxafb_layer * ofb)652 static void overlay2fb_setup(struct pxafb_layer *ofb)
653 {
654 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
655 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
656
657 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
658 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
659 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
660 } else {
661 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
662 switch (pfor) {
663 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
664 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
665 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
666 }
667 start[1] = start[0] + size;
668 start[2] = start[1] + size / div;
669 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
670 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
671 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
672 }
673 }
674
overlay2fb_enable(struct pxafb_layer * ofb)675 static void overlay2fb_enable(struct pxafb_layer *ofb)
676 {
677 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
678 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
679 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
680 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
681 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
682
683 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
684 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
685 else {
686 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
687 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
688 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
689 }
690 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
691 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
692 }
693
overlay2fb_disable(struct pxafb_layer * ofb)694 static void overlay2fb_disable(struct pxafb_layer *ofb)
695 {
696 uint32_t lccr5;
697
698 if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
699 return;
700
701 lccr5 = lcd_readl(ofb->fbi, LCCR5);
702
703 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
704
705 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
706 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
707 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
708 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
709 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
710
711 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
712 pr_warn("%s: timeout disabling overlay2\n", __func__);
713 }
714
715 static struct pxafb_layer_ops ofb_ops[] = {
716 [0] = {
717 .enable = overlay1fb_enable,
718 .disable = overlay1fb_disable,
719 .setup = overlay1fb_setup,
720 },
721 [1] = {
722 .enable = overlay2fb_enable,
723 .disable = overlay2fb_disable,
724 .setup = overlay2fb_setup,
725 },
726 };
727
overlayfb_open(struct fb_info * info,int user)728 static int overlayfb_open(struct fb_info *info, int user)
729 {
730 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
731
732 /* no support for framebuffer console on overlay */
733 if (user == 0)
734 return -ENODEV;
735
736 if (ofb->usage++ == 0) {
737 /* unblank the base framebuffer */
738 console_lock();
739 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
740 console_unlock();
741 }
742
743 return 0;
744 }
745
overlayfb_release(struct fb_info * info,int user)746 static int overlayfb_release(struct fb_info *info, int user)
747 {
748 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
749
750 if (ofb->usage == 1) {
751 ofb->ops->disable(ofb);
752 ofb->fb.var.height = -1;
753 ofb->fb.var.width = -1;
754 ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
755 ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
756
757 ofb->usage--;
758 }
759 return 0;
760 }
761
overlayfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)762 static int overlayfb_check_var(struct fb_var_screeninfo *var,
763 struct fb_info *info)
764 {
765 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
766 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
767 int xpos, ypos, pfor, bpp;
768
769 xpos = NONSTD_TO_XPOS(var->nonstd);
770 ypos = NONSTD_TO_YPOS(var->nonstd);
771 pfor = NONSTD_TO_PFOR(var->nonstd);
772
773 bpp = pxafb_var_to_bpp(var);
774 if (bpp < 0)
775 return -EINVAL;
776
777 /* no support for YUV format on overlay1 */
778 if (ofb->id == OVERLAY1 && pfor != 0)
779 return -EINVAL;
780
781 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
782 switch (pfor) {
783 case OVERLAY_FORMAT_RGB:
784 bpp = pxafb_var_to_bpp(var);
785 if (bpp < 0)
786 return -EINVAL;
787
788 pxafb_set_pixfmt(var, var_to_depth(var));
789 break;
790 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
791 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
792 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
793 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
794 default:
795 return -EINVAL;
796 }
797
798 /* each line must start at a 32-bit word boundary */
799 if ((xpos * bpp) % 32)
800 return -EINVAL;
801
802 /* xres must align on 32-bit word boundary */
803 var->xres = roundup(var->xres * bpp, 32) / bpp;
804
805 if ((xpos + var->xres > base_var->xres) ||
806 (ypos + var->yres > base_var->yres))
807 return -EINVAL;
808
809 var->xres_virtual = var->xres;
810 var->yres_virtual = max(var->yres, var->yres_virtual);
811 return 0;
812 }
813
overlayfb_check_video_memory(struct pxafb_layer * ofb)814 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
815 {
816 struct fb_var_screeninfo *var = &ofb->fb.var;
817 int pfor = NONSTD_TO_PFOR(var->nonstd);
818 int size, bpp = 0;
819
820 switch (pfor) {
821 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
822 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
823 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
824 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
825 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
826 }
827
828 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
829
830 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
831
832 if (ofb->video_mem) {
833 if (ofb->video_mem_size >= size)
834 return 0;
835 }
836 return -EINVAL;
837 }
838
overlayfb_set_par(struct fb_info * info)839 static int overlayfb_set_par(struct fb_info *info)
840 {
841 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
842 struct fb_var_screeninfo *var = &info->var;
843 int xpos, ypos, pfor, bpp, ret;
844
845 ret = overlayfb_check_video_memory(ofb);
846 if (ret)
847 return ret;
848
849 bpp = pxafb_var_to_bpp(var);
850 xpos = NONSTD_TO_XPOS(var->nonstd);
851 ypos = NONSTD_TO_YPOS(var->nonstd);
852 pfor = NONSTD_TO_PFOR(var->nonstd);
853
854 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
855 OVLxC1_BPP(bpp);
856 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
857
858 if (ofb->id == OVERLAY2)
859 ofb->control[1] |= OVL2C2_PFOR(pfor);
860
861 ofb->ops->setup(ofb);
862 ofb->ops->enable(ofb);
863 return 0;
864 }
865
866 static const struct fb_ops overlay_fb_ops = {
867 .owner = THIS_MODULE,
868 .fb_open = overlayfb_open,
869 .fb_release = overlayfb_release,
870 .fb_check_var = overlayfb_check_var,
871 .fb_set_par = overlayfb_set_par,
872 };
873
init_pxafb_overlay(struct pxafb_info * fbi,struct pxafb_layer * ofb,int id)874 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
875 int id)
876 {
877 sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
878
879 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
880 ofb->fb.fix.xpanstep = 0;
881 ofb->fb.fix.ypanstep = 1;
882
883 ofb->fb.var.activate = FB_ACTIVATE_NOW;
884 ofb->fb.var.height = -1;
885 ofb->fb.var.width = -1;
886 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
887
888 ofb->fb.fbops = &overlay_fb_ops;
889 ofb->fb.node = -1;
890 ofb->fb.pseudo_palette = NULL;
891
892 ofb->id = id;
893 ofb->ops = &ofb_ops[id];
894 ofb->usage = 0;
895 ofb->fbi = fbi;
896 init_completion(&ofb->branch_done);
897 }
898
pxafb_overlay_supported(void)899 static inline int pxafb_overlay_supported(void)
900 {
901 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
902 return 1;
903
904 return 0;
905 }
906
pxafb_overlay_map_video_memory(struct pxafb_info * pxafb,struct pxafb_layer * ofb)907 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
908 struct pxafb_layer *ofb)
909 {
910 /* We assume that user will use at most video_mem_size for overlay fb,
911 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
912 */
913 ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
914 GFP_KERNEL | __GFP_ZERO);
915 if (ofb->video_mem == NULL)
916 return -ENOMEM;
917
918 ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
919 ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
920
921 mutex_lock(&ofb->fb.mm_lock);
922 ofb->fb.fix.smem_start = ofb->video_mem_phys;
923 ofb->fb.fix.smem_len = pxafb->video_mem_size;
924 mutex_unlock(&ofb->fb.mm_lock);
925
926 ofb->fb.screen_base = ofb->video_mem;
927
928 return 0;
929 }
930
pxafb_overlay_init(struct pxafb_info * fbi)931 static void pxafb_overlay_init(struct pxafb_info *fbi)
932 {
933 int i, ret;
934
935 if (!pxafb_overlay_supported())
936 return;
937
938 for (i = 0; i < 2; i++) {
939 struct pxafb_layer *ofb = &fbi->overlay[i];
940 init_pxafb_overlay(fbi, ofb, i);
941 ret = register_framebuffer(&ofb->fb);
942 if (ret) {
943 dev_err(fbi->dev, "failed to register overlay %d\n", i);
944 continue;
945 }
946 ret = pxafb_overlay_map_video_memory(fbi, ofb);
947 if (ret) {
948 dev_err(fbi->dev,
949 "failed to map video memory for overlay %d\n",
950 i);
951 unregister_framebuffer(&ofb->fb);
952 continue;
953 }
954 ofb->registered = 1;
955 }
956
957 /* mask all IU/BS/EOF/SOF interrupts */
958 lcd_writel(fbi, LCCR5, ~0);
959
960 pr_info("PXA Overlay driver loaded successfully!\n");
961 }
962
pxafb_overlay_exit(struct pxafb_info * fbi)963 static void pxafb_overlay_exit(struct pxafb_info *fbi)
964 {
965 int i;
966
967 if (!pxafb_overlay_supported())
968 return;
969
970 for (i = 0; i < 2; i++) {
971 struct pxafb_layer *ofb = &fbi->overlay[i];
972 if (ofb->registered) {
973 if (ofb->video_mem)
974 free_pages_exact(ofb->video_mem,
975 ofb->video_mem_size);
976 unregister_framebuffer(&ofb->fb);
977 }
978 }
979 }
980 #else
pxafb_overlay_init(struct pxafb_info * fbi)981 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
pxafb_overlay_exit(struct pxafb_info * fbi)982 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
983 #endif /* CONFIG_FB_PXA_OVERLAY */
984
985 /*
986 * Calculate the PCD value from the clock rate (in picoseconds).
987 * We take account of the PPCR clock setting.
988 * From PXA Developer's Manual:
989 *
990 * PixelClock = LCLK
991 * -------------
992 * 2 ( PCD + 1 )
993 *
994 * PCD = LCLK
995 * ------------- - 1
996 * 2(PixelClock)
997 *
998 * Where:
999 * LCLK = LCD/Memory Clock
1000 * PCD = LCCR3[7:0]
1001 *
1002 * PixelClock here is in Hz while the pixclock argument given is the
1003 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1004 *
1005 * The function get_lclk_frequency_10khz returns LCLK in units of
1006 * 10khz. Calling the result of this function lclk gives us the
1007 * following
1008 *
1009 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1010 * -------------------------------------- - 1
1011 * 2
1012 *
1013 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1014 */
get_pcd(struct pxafb_info * fbi,unsigned int pixclock)1015 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1016 unsigned int pixclock)
1017 {
1018 unsigned long long pcd;
1019
1020 /* FIXME: Need to take into account Double Pixel Clock mode
1021 * (DPC) bit? or perhaps set it based on the various clock
1022 * speeds */
1023 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1024 pcd *= pixclock;
1025 do_div(pcd, 100000000 * 2);
1026 /* no need for this, since we should subtract 1 anyway. they cancel */
1027 /* pcd += 1; */ /* make up for integer math truncations */
1028 return (unsigned int)pcd;
1029 }
1030
1031 /*
1032 * Some touchscreens need hsync information from the video driver to
1033 * function correctly. We export it here. Note that 'hsync_time' and
1034 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1035 * of the hsync period in seconds.
1036 */
set_hsync_time(struct pxafb_info * fbi,unsigned int pcd)1037 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1038 {
1039 unsigned long htime;
1040
1041 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1042 fbi->hsync_time = 0;
1043 return;
1044 }
1045
1046 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1047
1048 fbi->hsync_time = htime;
1049 }
1050
pxafb_get_hsync_time(struct device * dev)1051 unsigned long pxafb_get_hsync_time(struct device *dev)
1052 {
1053 struct pxafb_info *fbi = dev_get_drvdata(dev);
1054
1055 /* If display is blanked/suspended, hsync isn't active */
1056 if (!fbi || (fbi->state != C_ENABLE))
1057 return 0;
1058
1059 return fbi->hsync_time;
1060 }
1061 EXPORT_SYMBOL(pxafb_get_hsync_time);
1062
setup_frame_dma(struct pxafb_info * fbi,int dma,int pal,unsigned long start,size_t size)1063 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1064 unsigned long start, size_t size)
1065 {
1066 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1067 unsigned int dma_desc_off, pal_desc_off;
1068
1069 if (dma < 0 || dma >= DMA_MAX * 2)
1070 return -EINVAL;
1071
1072 dma_desc = &fbi->dma_buff->dma_desc[dma];
1073 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1074
1075 dma_desc->fsadr = start;
1076 dma_desc->fidr = 0;
1077 dma_desc->ldcmd = size;
1078
1079 if (pal < 0 || pal >= PAL_MAX * 2) {
1080 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1081 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1082 } else {
1083 pal_desc = &fbi->dma_buff->pal_desc[pal];
1084 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1085
1086 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1087 pal_desc->fidr = 0;
1088
1089 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1090 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1091 else
1092 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1093
1094 pal_desc->ldcmd |= LDCMD_PAL;
1095
1096 /* flip back and forth between palette and frame buffer */
1097 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1098 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1099 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1100 }
1101
1102 return 0;
1103 }
1104
setup_base_frame(struct pxafb_info * fbi,struct fb_var_screeninfo * var,int branch)1105 static void setup_base_frame(struct pxafb_info *fbi,
1106 struct fb_var_screeninfo *var,
1107 int branch)
1108 {
1109 struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1110 int nbytes, dma, pal, bpp = var->bits_per_pixel;
1111 unsigned long offset;
1112
1113 dma = DMA_BASE + (branch ? DMA_MAX : 0);
1114 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1115
1116 nbytes = fix->line_length * var->yres;
1117 offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1118
1119 if (fbi->lccr0 & LCCR0_SDS) {
1120 nbytes = nbytes / 2;
1121 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1122 }
1123
1124 setup_frame_dma(fbi, dma, pal, offset, nbytes);
1125 }
1126
1127 #ifdef CONFIG_FB_PXA_SMARTPANEL
setup_smart_dma(struct pxafb_info * fbi)1128 static int setup_smart_dma(struct pxafb_info *fbi)
1129 {
1130 struct pxafb_dma_descriptor *dma_desc;
1131 unsigned long dma_desc_off, cmd_buff_off;
1132
1133 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1134 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1135 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1136
1137 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1138 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1139 dma_desc->fidr = 0;
1140 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1141
1142 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1143 return 0;
1144 }
1145
pxafb_smart_flush(struct fb_info * info)1146 int pxafb_smart_flush(struct fb_info *info)
1147 {
1148 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1149 uint32_t prsr;
1150 int ret = 0;
1151
1152 /* disable controller until all registers are set up */
1153 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1154
1155 /* 1. make it an even number of commands to align on 32-bit boundary
1156 * 2. add the interrupt command to the end of the chain so we can
1157 * keep track of the end of the transfer
1158 */
1159
1160 while (fbi->n_smart_cmds & 1)
1161 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1162
1163 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1164 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1165 setup_smart_dma(fbi);
1166
1167 /* continue to execute next command */
1168 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1169 lcd_writel(fbi, PRSR, prsr);
1170
1171 /* stop the processor in case it executed "wait for sync" cmd */
1172 lcd_writel(fbi, CMDCR, 0x0001);
1173
1174 /* don't send interrupts for fifo underruns on channel 6 */
1175 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1176
1177 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1178 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1179 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1180 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1181 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1182 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1183
1184 /* begin sending */
1185 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1186
1187 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1188 pr_warn("%s: timeout waiting for command done\n", __func__);
1189 ret = -ETIMEDOUT;
1190 }
1191
1192 /* quick disable */
1193 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1194 lcd_writel(fbi, PRSR, prsr);
1195 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1196 lcd_writel(fbi, FDADR6, 0);
1197 fbi->n_smart_cmds = 0;
1198 return ret;
1199 }
1200
pxafb_smart_queue(struct fb_info * info,uint16_t * cmds,int n_cmds)1201 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1202 {
1203 int i;
1204 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1205
1206 for (i = 0; i < n_cmds; i++, cmds++) {
1207 /* if it is a software delay, flush and delay */
1208 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1209 pxafb_smart_flush(info);
1210 mdelay(*cmds & 0xff);
1211 continue;
1212 }
1213
1214 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1215 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1216 pxafb_smart_flush(info);
1217
1218 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1219 }
1220
1221 return 0;
1222 }
1223
__smart_timing(unsigned time_ns,unsigned long lcd_clk)1224 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1225 {
1226 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1227 return (t == 0) ? 1 : t;
1228 }
1229
setup_smart_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)1230 static void setup_smart_timing(struct pxafb_info *fbi,
1231 struct fb_var_screeninfo *var)
1232 {
1233 struct pxafb_mach_info *inf = fbi->inf;
1234 struct pxafb_mode_info *mode = &inf->modes[0];
1235 unsigned long lclk = clk_get_rate(fbi->clk);
1236 unsigned t1, t2, t3, t4;
1237
1238 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1239 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1240 t3 = mode->op_hold_time;
1241 t4 = mode->cmd_inh_time;
1242
1243 fbi->reg_lccr1 =
1244 LCCR1_DisWdth(var->xres) |
1245 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1246 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1247 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1248
1249 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1250 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1251 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1252 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1253
1254 /* FIXME: make this configurable */
1255 fbi->reg_cmdcr = 1;
1256 }
1257
pxafb_smart_thread(void * arg)1258 static int pxafb_smart_thread(void *arg)
1259 {
1260 struct pxafb_info *fbi = arg;
1261 struct pxafb_mach_info *inf = fbi->inf;
1262
1263 if (!inf->smart_update) {
1264 pr_err("%s: not properly initialized, thread terminated\n",
1265 __func__);
1266 return -EINVAL;
1267 }
1268
1269 pr_debug("%s(): task starting\n", __func__);
1270
1271 set_freezable();
1272 while (!kthread_should_stop()) {
1273
1274 if (try_to_freeze())
1275 continue;
1276
1277 mutex_lock(&fbi->ctrlr_lock);
1278
1279 if (fbi->state == C_ENABLE) {
1280 inf->smart_update(&fbi->fb);
1281 complete(&fbi->refresh_done);
1282 }
1283
1284 mutex_unlock(&fbi->ctrlr_lock);
1285
1286 set_current_state(TASK_INTERRUPTIBLE);
1287 schedule_timeout(msecs_to_jiffies(30));
1288 }
1289
1290 pr_debug("%s(): task ending\n", __func__);
1291 return 0;
1292 }
1293
pxafb_smart_init(struct pxafb_info * fbi)1294 static int pxafb_smart_init(struct pxafb_info *fbi)
1295 {
1296 if (!(fbi->lccr0 & LCCR0_LCDT))
1297 return 0;
1298
1299 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1300 fbi->n_smart_cmds = 0;
1301
1302 init_completion(&fbi->command_done);
1303 init_completion(&fbi->refresh_done);
1304
1305 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1306 "lcd_refresh");
1307 if (IS_ERR(fbi->smart_thread)) {
1308 pr_err("%s: unable to create kernel thread\n", __func__);
1309 return PTR_ERR(fbi->smart_thread);
1310 }
1311
1312 return 0;
1313 }
1314 #else
pxafb_smart_init(struct pxafb_info * fbi)1315 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1316 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1317
setup_parallel_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)1318 static void setup_parallel_timing(struct pxafb_info *fbi,
1319 struct fb_var_screeninfo *var)
1320 {
1321 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1322
1323 fbi->reg_lccr1 =
1324 LCCR1_DisWdth(var->xres) +
1325 LCCR1_HorSnchWdth(var->hsync_len) +
1326 LCCR1_BegLnDel(var->left_margin) +
1327 LCCR1_EndLnDel(var->right_margin);
1328
1329 /*
1330 * If we have a dual scan LCD, we need to halve
1331 * the YRES parameter.
1332 */
1333 lines_per_panel = var->yres;
1334 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1335 lines_per_panel /= 2;
1336
1337 fbi->reg_lccr2 =
1338 LCCR2_DisHght(lines_per_panel) +
1339 LCCR2_VrtSnchWdth(var->vsync_len) +
1340 LCCR2_BegFrmDel(var->upper_margin) +
1341 LCCR2_EndFrmDel(var->lower_margin);
1342
1343 fbi->reg_lccr3 = fbi->lccr3 |
1344 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1345 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1346 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1347 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1348
1349 if (pcd) {
1350 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1351 set_hsync_time(fbi, pcd);
1352 }
1353 }
1354
1355 /*
1356 * pxafb_activate_var():
1357 * Configures LCD Controller based on entries in var parameter.
1358 * Settings are only written to the controller if changes were made.
1359 */
pxafb_activate_var(struct fb_var_screeninfo * var,struct pxafb_info * fbi)1360 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1361 struct pxafb_info *fbi)
1362 {
1363 u_long flags;
1364
1365 /* Update shadow copy atomically */
1366 local_irq_save(flags);
1367
1368 #ifdef CONFIG_FB_PXA_SMARTPANEL
1369 if (fbi->lccr0 & LCCR0_LCDT)
1370 setup_smart_timing(fbi, var);
1371 else
1372 #endif
1373 setup_parallel_timing(fbi, var);
1374
1375 setup_base_frame(fbi, var, 0);
1376
1377 fbi->reg_lccr0 = fbi->lccr0 |
1378 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1379 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
1380
1381 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1382
1383 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1384 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1385 local_irq_restore(flags);
1386
1387 /*
1388 * Only update the registers if the controller is enabled
1389 * and something has changed.
1390 */
1391 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1392 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1393 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1394 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1395 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1396 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1397 ((fbi->lccr0 & LCCR0_SDS) &&
1398 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1399 pxafb_schedule_work(fbi, C_REENABLE);
1400
1401 return 0;
1402 }
1403
1404 /*
1405 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1406 * Do not call them directly; set_ctrlr_state does the correct serialisation
1407 * to ensure that things happen in the right way 100% of time time.
1408 * -- rmk
1409 */
__pxafb_backlight_power(struct pxafb_info * fbi,int on)1410 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1411 {
1412 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1413
1414 if (fbi->backlight_power)
1415 fbi->backlight_power(on);
1416 }
1417
__pxafb_lcd_power(struct pxafb_info * fbi,int on)1418 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1419 {
1420 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1421
1422 if (fbi->lcd_power)
1423 fbi->lcd_power(on, &fbi->fb.var);
1424
1425 if (fbi->lcd_supply && fbi->lcd_supply_enabled != on) {
1426 int ret;
1427
1428 if (on)
1429 ret = regulator_enable(fbi->lcd_supply);
1430 else
1431 ret = regulator_disable(fbi->lcd_supply);
1432
1433 if (ret < 0)
1434 pr_warn("Unable to %s LCD supply regulator: %d\n",
1435 on ? "enable" : "disable", ret);
1436 else
1437 fbi->lcd_supply_enabled = on;
1438 }
1439 }
1440
pxafb_enable_controller(struct pxafb_info * fbi)1441 static void pxafb_enable_controller(struct pxafb_info *fbi)
1442 {
1443 pr_debug("pxafb: Enabling LCD controller\n");
1444 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1445 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1446 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1447 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1448 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1449 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1450
1451 /* enable LCD controller clock */
1452 if (clk_prepare_enable(fbi->clk)) {
1453 pr_err("%s: Failed to prepare clock\n", __func__);
1454 return;
1455 }
1456
1457 if (fbi->lccr0 & LCCR0_LCDT)
1458 return;
1459
1460 /* Sequence from 11.7.10 */
1461 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1462 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1463 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1464 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1465 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1466
1467 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1468 if (fbi->lccr0 & LCCR0_SDS)
1469 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1470 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1471 }
1472
pxafb_disable_controller(struct pxafb_info * fbi)1473 static void pxafb_disable_controller(struct pxafb_info *fbi)
1474 {
1475 uint32_t lccr0;
1476
1477 #ifdef CONFIG_FB_PXA_SMARTPANEL
1478 if (fbi->lccr0 & LCCR0_LCDT) {
1479 wait_for_completion_timeout(&fbi->refresh_done,
1480 msecs_to_jiffies(200));
1481 return;
1482 }
1483 #endif
1484
1485 /* Clear LCD Status Register */
1486 lcd_writel(fbi, LCSR, 0xffffffff);
1487
1488 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1489 lcd_writel(fbi, LCCR0, lccr0);
1490 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1491
1492 wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200));
1493
1494 /* disable LCD controller clock */
1495 clk_disable_unprepare(fbi->clk);
1496 }
1497
1498 /*
1499 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1500 */
pxafb_handle_irq(int irq,void * dev_id)1501 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1502 {
1503 struct pxafb_info *fbi = dev_id;
1504 unsigned int lccr0, lcsr;
1505
1506 lcsr = lcd_readl(fbi, LCSR);
1507 if (lcsr & LCSR_LDD) {
1508 lccr0 = lcd_readl(fbi, LCCR0);
1509 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1510 complete(&fbi->disable_done);
1511 }
1512
1513 #ifdef CONFIG_FB_PXA_SMARTPANEL
1514 if (lcsr & LCSR_CMD_INT)
1515 complete(&fbi->command_done);
1516 #endif
1517 lcd_writel(fbi, LCSR, lcsr);
1518
1519 #ifdef CONFIG_FB_PXA_OVERLAY
1520 {
1521 unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1522 if (lcsr1 & LCSR1_BS(1))
1523 complete(&fbi->overlay[0].branch_done);
1524
1525 if (lcsr1 & LCSR1_BS(2))
1526 complete(&fbi->overlay[1].branch_done);
1527
1528 lcd_writel(fbi, LCSR1, lcsr1);
1529 }
1530 #endif
1531 return IRQ_HANDLED;
1532 }
1533
1534 /*
1535 * This function must be called from task context only, since it will
1536 * sleep when disabling the LCD controller, or if we get two contending
1537 * processes trying to alter state.
1538 */
set_ctrlr_state(struct pxafb_info * fbi,u_int state)1539 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1540 {
1541 u_int old_state;
1542
1543 mutex_lock(&fbi->ctrlr_lock);
1544
1545 old_state = fbi->state;
1546
1547 /*
1548 * Hack around fbcon initialisation.
1549 */
1550 if (old_state == C_STARTUP && state == C_REENABLE)
1551 state = C_ENABLE;
1552
1553 switch (state) {
1554 case C_DISABLE_CLKCHANGE:
1555 /*
1556 * Disable controller for clock change. If the
1557 * controller is already disabled, then do nothing.
1558 */
1559 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1560 fbi->state = state;
1561 /* TODO __pxafb_lcd_power(fbi, 0); */
1562 pxafb_disable_controller(fbi);
1563 }
1564 break;
1565
1566 case C_DISABLE_PM:
1567 case C_DISABLE:
1568 /*
1569 * Disable controller
1570 */
1571 if (old_state != C_DISABLE) {
1572 fbi->state = state;
1573 __pxafb_backlight_power(fbi, 0);
1574 __pxafb_lcd_power(fbi, 0);
1575 if (old_state != C_DISABLE_CLKCHANGE)
1576 pxafb_disable_controller(fbi);
1577 }
1578 break;
1579
1580 case C_ENABLE_CLKCHANGE:
1581 /*
1582 * Enable the controller after clock change. Only
1583 * do this if we were disabled for the clock change.
1584 */
1585 if (old_state == C_DISABLE_CLKCHANGE) {
1586 fbi->state = C_ENABLE;
1587 pxafb_enable_controller(fbi);
1588 /* TODO __pxafb_lcd_power(fbi, 1); */
1589 }
1590 break;
1591
1592 case C_REENABLE:
1593 /*
1594 * Re-enable the controller only if it was already
1595 * enabled. This is so we reprogram the control
1596 * registers.
1597 */
1598 if (old_state == C_ENABLE) {
1599 __pxafb_lcd_power(fbi, 0);
1600 pxafb_disable_controller(fbi);
1601 pxafb_enable_controller(fbi);
1602 __pxafb_lcd_power(fbi, 1);
1603 }
1604 break;
1605
1606 case C_ENABLE_PM:
1607 /*
1608 * Re-enable the controller after PM. This is not
1609 * perfect - think about the case where we were doing
1610 * a clock change, and we suspended half-way through.
1611 */
1612 if (old_state != C_DISABLE_PM)
1613 break;
1614 fallthrough;
1615
1616 case C_ENABLE:
1617 /*
1618 * Power up the LCD screen, enable controller, and
1619 * turn on the backlight.
1620 */
1621 if (old_state != C_ENABLE) {
1622 fbi->state = C_ENABLE;
1623 pxafb_enable_controller(fbi);
1624 __pxafb_lcd_power(fbi, 1);
1625 __pxafb_backlight_power(fbi, 1);
1626 }
1627 break;
1628 }
1629 mutex_unlock(&fbi->ctrlr_lock);
1630 }
1631
1632 /*
1633 * Our LCD controller task (which is called when we blank or unblank)
1634 * via keventd.
1635 */
pxafb_task(struct work_struct * work)1636 static void pxafb_task(struct work_struct *work)
1637 {
1638 struct pxafb_info *fbi =
1639 container_of(work, struct pxafb_info, task);
1640 u_int state = xchg(&fbi->task_state, -1);
1641
1642 set_ctrlr_state(fbi, state);
1643 }
1644
1645 #ifdef CONFIG_CPU_FREQ
1646 /*
1647 * CPU clock speed change handler. We need to adjust the LCD timing
1648 * parameters when the CPU clock is adjusted by the power management
1649 * subsystem.
1650 *
1651 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1652 */
1653 static int
pxafb_freq_transition(struct notifier_block * nb,unsigned long val,void * data)1654 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1655 {
1656 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1657 /* TODO struct cpufreq_freqs *f = data; */
1658 u_int pcd;
1659
1660 switch (val) {
1661 case CPUFREQ_PRECHANGE:
1662 #ifdef CONFIG_FB_PXA_OVERLAY
1663 if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1664 #endif
1665 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1666 break;
1667
1668 case CPUFREQ_POSTCHANGE:
1669 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1670 set_hsync_time(fbi, pcd);
1671 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1672 LCCR3_PixClkDiv(pcd);
1673 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1674 break;
1675 }
1676 return 0;
1677 }
1678 #endif
1679
1680 #ifdef CONFIG_PM
1681 /*
1682 * Power management hooks. Note that we won't be called from IRQ context,
1683 * unlike the blank functions above, so we may sleep.
1684 */
pxafb_suspend(struct device * dev)1685 static int pxafb_suspend(struct device *dev)
1686 {
1687 struct pxafb_info *fbi = dev_get_drvdata(dev);
1688
1689 set_ctrlr_state(fbi, C_DISABLE_PM);
1690 return 0;
1691 }
1692
pxafb_resume(struct device * dev)1693 static int pxafb_resume(struct device *dev)
1694 {
1695 struct pxafb_info *fbi = dev_get_drvdata(dev);
1696
1697 set_ctrlr_state(fbi, C_ENABLE_PM);
1698 return 0;
1699 }
1700
1701 static const struct dev_pm_ops pxafb_pm_ops = {
1702 .suspend = pxafb_suspend,
1703 .resume = pxafb_resume,
1704 };
1705 #endif
1706
pxafb_init_video_memory(struct pxafb_info * fbi)1707 static int pxafb_init_video_memory(struct pxafb_info *fbi)
1708 {
1709 int size = PAGE_ALIGN(fbi->video_mem_size);
1710
1711 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1712 if (fbi->video_mem == NULL)
1713 return -ENOMEM;
1714
1715 fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1716 fbi->video_mem_size = size;
1717
1718 fbi->fb.fix.smem_start = fbi->video_mem_phys;
1719 fbi->fb.fix.smem_len = fbi->video_mem_size;
1720 fbi->fb.screen_base = fbi->video_mem;
1721
1722 return fbi->video_mem ? 0 : -ENOMEM;
1723 }
1724
pxafb_decode_mach_info(struct pxafb_info * fbi,struct pxafb_mach_info * inf)1725 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1726 struct pxafb_mach_info *inf)
1727 {
1728 unsigned int lcd_conn = inf->lcd_conn;
1729 struct pxafb_mode_info *m;
1730 int i;
1731
1732 fbi->cmap_inverse = inf->cmap_inverse;
1733 fbi->cmap_static = inf->cmap_static;
1734 fbi->lccr4 = inf->lccr4;
1735
1736 switch (lcd_conn & LCD_TYPE_MASK) {
1737 case LCD_TYPE_MONO_STN:
1738 fbi->lccr0 = LCCR0_CMS;
1739 break;
1740 case LCD_TYPE_MONO_DSTN:
1741 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1742 break;
1743 case LCD_TYPE_COLOR_STN:
1744 fbi->lccr0 = 0;
1745 break;
1746 case LCD_TYPE_COLOR_DSTN:
1747 fbi->lccr0 = LCCR0_SDS;
1748 break;
1749 case LCD_TYPE_COLOR_TFT:
1750 fbi->lccr0 = LCCR0_PAS;
1751 break;
1752 case LCD_TYPE_SMART_PANEL:
1753 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1754 break;
1755 default:
1756 /* fall back to backward compatibility way */
1757 fbi->lccr0 = inf->lccr0;
1758 fbi->lccr3 = inf->lccr3;
1759 goto decode_mode;
1760 }
1761
1762 if (lcd_conn == LCD_MONO_STN_8BPP)
1763 fbi->lccr0 |= LCCR0_DPD;
1764
1765 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1766
1767 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1768 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1769 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1770
1771 decode_mode:
1772 pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1773
1774 /* decide video memory size as follows:
1775 * 1. default to mode of maximum resolution
1776 * 2. allow platform to override
1777 * 3. allow module parameter to override
1778 */
1779 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1780 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1781 m->xres * m->yres * m->bpp / 8);
1782
1783 if (inf->video_mem_size > fbi->video_mem_size)
1784 fbi->video_mem_size = inf->video_mem_size;
1785
1786 if (video_mem_size > fbi->video_mem_size)
1787 fbi->video_mem_size = video_mem_size;
1788 }
1789
pxafb_init_fbinfo(struct device * dev,struct pxafb_mach_info * inf)1790 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev,
1791 struct pxafb_mach_info *inf)
1792 {
1793 struct pxafb_info *fbi;
1794 void *addr;
1795
1796 /* Alloc the pxafb_info and pseudo_palette in one step */
1797 fbi = devm_kzalloc(dev, sizeof(struct pxafb_info) + sizeof(u32) * 16,
1798 GFP_KERNEL);
1799 if (!fbi)
1800 return ERR_PTR(-ENOMEM);
1801
1802 fbi->dev = dev;
1803 fbi->inf = inf;
1804
1805 fbi->clk = devm_clk_get(dev, NULL);
1806 if (IS_ERR(fbi->clk))
1807 return ERR_CAST(fbi->clk);
1808
1809 strcpy(fbi->fb.fix.id, PXA_NAME);
1810
1811 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1812 fbi->fb.fix.type_aux = 0;
1813 fbi->fb.fix.xpanstep = 0;
1814 fbi->fb.fix.ypanstep = 1;
1815 fbi->fb.fix.ywrapstep = 0;
1816 fbi->fb.fix.accel = FB_ACCEL_NONE;
1817
1818 fbi->fb.var.nonstd = 0;
1819 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1820 fbi->fb.var.height = -1;
1821 fbi->fb.var.width = -1;
1822 fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1823 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1824
1825 fbi->fb.fbops = &pxafb_ops;
1826 fbi->fb.node = -1;
1827
1828 addr = fbi;
1829 addr = addr + sizeof(struct pxafb_info);
1830 fbi->fb.pseudo_palette = addr;
1831
1832 fbi->state = C_STARTUP;
1833 fbi->task_state = (u_char)-1;
1834
1835 pxafb_decode_mach_info(fbi, inf);
1836
1837 #ifdef CONFIG_FB_PXA_OVERLAY
1838 /* place overlay(s) on top of base */
1839 if (pxafb_overlay_supported())
1840 fbi->lccr0 |= LCCR0_OUC;
1841 #endif
1842
1843 init_waitqueue_head(&fbi->ctrlr_wait);
1844 INIT_WORK(&fbi->task, pxafb_task);
1845 mutex_init(&fbi->ctrlr_lock);
1846 init_completion(&fbi->disable_done);
1847
1848 return fbi;
1849 }
1850
1851 #ifdef CONFIG_FB_PXA_PARAMETERS
parse_opt_mode(struct device * dev,const char * this_opt,struct pxafb_mach_info * inf)1852 static int parse_opt_mode(struct device *dev, const char *this_opt,
1853 struct pxafb_mach_info *inf)
1854 {
1855 const char *name = this_opt+5;
1856 unsigned int namelen = strlen(name);
1857 int res_specified = 0, bpp_specified = 0;
1858 unsigned int xres = 0, yres = 0, bpp = 0;
1859 int yres_specified = 0;
1860 int i;
1861 for (i = namelen-1; i >= 0; i--) {
1862 switch (name[i]) {
1863 case '-':
1864 namelen = i;
1865 if (!bpp_specified && !yres_specified) {
1866 bpp = simple_strtoul(&name[i+1], NULL, 0);
1867 bpp_specified = 1;
1868 } else
1869 goto done;
1870 break;
1871 case 'x':
1872 if (!yres_specified) {
1873 yres = simple_strtoul(&name[i+1], NULL, 0);
1874 yres_specified = 1;
1875 } else
1876 goto done;
1877 break;
1878 case '0' ... '9':
1879 break;
1880 default:
1881 goto done;
1882 }
1883 }
1884 if (i < 0 && yres_specified) {
1885 xres = simple_strtoul(name, NULL, 0);
1886 res_specified = 1;
1887 }
1888 done:
1889 if (res_specified) {
1890 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1891 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1892 }
1893 if (bpp_specified)
1894 switch (bpp) {
1895 case 1:
1896 case 2:
1897 case 4:
1898 case 8:
1899 case 16:
1900 inf->modes[0].bpp = bpp;
1901 dev_info(dev, "overriding bit depth: %d\n", bpp);
1902 break;
1903 default:
1904 dev_err(dev, "Depth %d is not valid\n", bpp);
1905 return -EINVAL;
1906 }
1907 return 0;
1908 }
1909
parse_opt(struct device * dev,char * this_opt,struct pxafb_mach_info * inf)1910 static int parse_opt(struct device *dev, char *this_opt,
1911 struct pxafb_mach_info *inf)
1912 {
1913 struct pxafb_mode_info *mode = &inf->modes[0];
1914 char s[64];
1915
1916 s[0] = '\0';
1917
1918 if (!strncmp(this_opt, "vmem:", 5)) {
1919 video_mem_size = memparse(this_opt + 5, NULL);
1920 } else if (!strncmp(this_opt, "mode:", 5)) {
1921 return parse_opt_mode(dev, this_opt, inf);
1922 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1923 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1924 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1925 } else if (!strncmp(this_opt, "left:", 5)) {
1926 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1927 sprintf(s, "left: %u\n", mode->left_margin);
1928 } else if (!strncmp(this_opt, "right:", 6)) {
1929 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1930 sprintf(s, "right: %u\n", mode->right_margin);
1931 } else if (!strncmp(this_opt, "upper:", 6)) {
1932 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1933 sprintf(s, "upper: %u\n", mode->upper_margin);
1934 } else if (!strncmp(this_opt, "lower:", 6)) {
1935 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1936 sprintf(s, "lower: %u\n", mode->lower_margin);
1937 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1938 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1939 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1940 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1941 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1942 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1943 } else if (!strncmp(this_opt, "hsync:", 6)) {
1944 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1945 sprintf(s, "hsync: Active Low\n");
1946 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1947 } else {
1948 sprintf(s, "hsync: Active High\n");
1949 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1950 }
1951 } else if (!strncmp(this_opt, "vsync:", 6)) {
1952 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1953 sprintf(s, "vsync: Active Low\n");
1954 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1955 } else {
1956 sprintf(s, "vsync: Active High\n");
1957 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1958 }
1959 } else if (!strncmp(this_opt, "dpc:", 4)) {
1960 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1961 sprintf(s, "double pixel clock: false\n");
1962 inf->lccr3 &= ~LCCR3_DPC;
1963 } else {
1964 sprintf(s, "double pixel clock: true\n");
1965 inf->lccr3 |= LCCR3_DPC;
1966 }
1967 } else if (!strncmp(this_opt, "outputen:", 9)) {
1968 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1969 sprintf(s, "output enable: active low\n");
1970 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1971 } else {
1972 sprintf(s, "output enable: active high\n");
1973 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1974 }
1975 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1976 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1977 sprintf(s, "pixel clock polarity: falling edge\n");
1978 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1979 } else {
1980 sprintf(s, "pixel clock polarity: rising edge\n");
1981 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1982 }
1983 } else if (!strncmp(this_opt, "color", 5)) {
1984 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1985 } else if (!strncmp(this_opt, "mono", 4)) {
1986 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1987 } else if (!strncmp(this_opt, "active", 6)) {
1988 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1989 } else if (!strncmp(this_opt, "passive", 7)) {
1990 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1991 } else if (!strncmp(this_opt, "single", 6)) {
1992 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1993 } else if (!strncmp(this_opt, "dual", 4)) {
1994 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1995 } else if (!strncmp(this_opt, "4pix", 4)) {
1996 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1997 } else if (!strncmp(this_opt, "8pix", 4)) {
1998 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1999 } else {
2000 dev_err(dev, "unknown option: %s\n", this_opt);
2001 return -EINVAL;
2002 }
2003
2004 if (s[0] != '\0')
2005 dev_info(dev, "override %s", s);
2006
2007 return 0;
2008 }
2009
pxafb_parse_options(struct device * dev,char * options,struct pxafb_mach_info * inf)2010 static int pxafb_parse_options(struct device *dev, char *options,
2011 struct pxafb_mach_info *inf)
2012 {
2013 char *this_opt;
2014 int ret;
2015
2016 if (!options || !*options)
2017 return 0;
2018
2019 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2020
2021 /* could be made table driven or similar?... */
2022 while ((this_opt = strsep(&options, ",")) != NULL) {
2023 ret = parse_opt(dev, this_opt, inf);
2024 if (ret)
2025 return ret;
2026 }
2027 return 0;
2028 }
2029
2030 static char g_options[256] = "";
2031
2032 #ifndef MODULE
pxafb_setup_options(void)2033 static int __init pxafb_setup_options(void)
2034 {
2035 char *options = NULL;
2036
2037 if (fb_get_options("pxafb", &options))
2038 return -ENODEV;
2039
2040 if (options)
2041 strscpy(g_options, options, sizeof(g_options));
2042
2043 return 0;
2044 }
2045 #else
2046 #define pxafb_setup_options() (0)
2047
2048 module_param_string(options, g_options, sizeof(g_options), 0);
2049 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.rst)");
2050 #endif
2051
2052 #else
2053 #define pxafb_parse_options(...) (0)
2054 #define pxafb_setup_options() (0)
2055 #endif
2056
2057 #ifdef DEBUG_VAR
2058 /* Check for various illegal bit-combinations. Currently only
2059 * a warning is given. */
pxafb_check_options(struct device * dev,struct pxafb_mach_info * inf)2060 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
2061 {
2062 if (inf->lcd_conn)
2063 return;
2064
2065 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2066 dev_warn(dev, "machine LCCR0 setting contains "
2067 "illegal bits: %08x\n",
2068 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2069 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2070 dev_warn(dev, "machine LCCR3 setting contains "
2071 "illegal bits: %08x\n",
2072 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2073 if (inf->lccr0 & LCCR0_DPD &&
2074 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2075 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2076 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2077 dev_warn(dev, "Double Pixel Data (DPD) mode is "
2078 "only valid in passive mono"
2079 " single panel mode\n");
2080 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2081 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2082 dev_warn(dev, "Dual panel only valid in passive mode\n");
2083 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2084 (inf->modes->upper_margin || inf->modes->lower_margin))
2085 dev_warn(dev, "Upper and lower margins must be 0 in "
2086 "passive mode\n");
2087 }
2088 #else
2089 #define pxafb_check_options(...) do {} while (0)
2090 #endif
2091
2092 #if defined(CONFIG_OF)
2093 static const char * const lcd_types[] = {
2094 "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2095 "color-tft", "smart-panel", NULL
2096 };
2097
of_get_pxafb_display(struct device * dev,struct device_node * disp,struct pxafb_mach_info * info,u32 bus_width)2098 static int of_get_pxafb_display(struct device *dev, struct device_node *disp,
2099 struct pxafb_mach_info *info, u32 bus_width)
2100 {
2101 struct display_timings *timings;
2102 struct videomode vm;
2103 int i, ret = -EINVAL;
2104 const char *s;
2105
2106 ret = of_property_read_string(disp, "lcd-type", &s);
2107 if (ret)
2108 s = "color-tft";
2109
2110 i = match_string(lcd_types, -1, s);
2111 if (i < 0) {
2112 dev_err(dev, "lcd-type %s is unknown\n", s);
2113 return i;
2114 }
2115 info->lcd_conn |= LCD_CONN_TYPE(i);
2116 info->lcd_conn |= LCD_CONN_WIDTH(bus_width);
2117
2118 timings = of_get_display_timings(disp);
2119 if (!timings)
2120 return -EINVAL;
2121
2122 ret = -ENOMEM;
2123 info->modes = devm_kcalloc(dev, timings->num_timings,
2124 sizeof(info->modes[0]),
2125 GFP_KERNEL);
2126 if (!info->modes)
2127 goto out;
2128 info->num_modes = timings->num_timings;
2129
2130 for (i = 0; i < timings->num_timings; i++) {
2131 ret = videomode_from_timings(timings, &vm, i);
2132 if (ret) {
2133 dev_err(dev, "videomode_from_timings %d failed: %d\n",
2134 i, ret);
2135 goto out;
2136 }
2137 if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
2138 info->lcd_conn |= LCD_PCLK_EDGE_RISE;
2139 if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)
2140 info->lcd_conn |= LCD_PCLK_EDGE_FALL;
2141 if (vm.flags & DISPLAY_FLAGS_DE_HIGH)
2142 info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH;
2143 if (vm.flags & DISPLAY_FLAGS_DE_LOW)
2144 info->lcd_conn |= LCD_BIAS_ACTIVE_LOW;
2145 if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH)
2146 info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT;
2147 if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH)
2148 info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT;
2149
2150 info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000);
2151 info->modes[i].xres = vm.hactive;
2152 info->modes[i].yres = vm.vactive;
2153 info->modes[i].hsync_len = vm.hsync_len;
2154 info->modes[i].left_margin = vm.hback_porch;
2155 info->modes[i].right_margin = vm.hfront_porch;
2156 info->modes[i].vsync_len = vm.vsync_len;
2157 info->modes[i].upper_margin = vm.vback_porch;
2158 info->modes[i].lower_margin = vm.vfront_porch;
2159 }
2160 ret = 0;
2161
2162 out:
2163 display_timings_release(timings);
2164 return ret;
2165 }
2166
of_get_pxafb_mode_info(struct device * dev,struct pxafb_mach_info * info)2167 static int of_get_pxafb_mode_info(struct device *dev,
2168 struct pxafb_mach_info *info)
2169 {
2170 struct device_node *display, *np;
2171 u32 bus_width;
2172 int ret, i;
2173
2174 np = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
2175 if (!np) {
2176 dev_err(dev, "could not find endpoint\n");
2177 return -EINVAL;
2178 }
2179 ret = of_property_read_u32(np, "bus-width", &bus_width);
2180 if (ret) {
2181 dev_err(dev, "no bus-width specified: %d\n", ret);
2182 of_node_put(np);
2183 return ret;
2184 }
2185
2186 display = of_graph_get_remote_port_parent(np);
2187 of_node_put(np);
2188 if (!display) {
2189 dev_err(dev, "no display defined\n");
2190 return -EINVAL;
2191 }
2192
2193 ret = of_get_pxafb_display(dev, display, info, bus_width);
2194 of_node_put(display);
2195 if (ret)
2196 return ret;
2197
2198 for (i = 0; i < info->num_modes; i++)
2199 info->modes[i].bpp = bus_width;
2200
2201 return 0;
2202 }
2203
of_pxafb_of_mach_info(struct device * dev)2204 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2205 {
2206 int ret;
2207 struct pxafb_mach_info *info;
2208
2209 if (!dev->of_node)
2210 return NULL;
2211 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2212 if (!info)
2213 return ERR_PTR(-ENOMEM);
2214 ret = of_get_pxafb_mode_info(dev, info);
2215 if (ret)
2216 return ERR_PTR(ret);
2217
2218 /*
2219 * On purpose, neither lccrX registers nor video memory size can be
2220 * specified through device-tree, they are considered more a debug hack
2221 * available through command line.
2222 */
2223 return info;
2224 }
2225 #else
of_pxafb_of_mach_info(struct device * dev)2226 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2227 {
2228 return NULL;
2229 }
2230 #endif
2231
pxafb_probe(struct platform_device * dev)2232 static int pxafb_probe(struct platform_device *dev)
2233 {
2234 struct pxafb_info *fbi;
2235 struct pxafb_mach_info *inf, *pdata;
2236 int i, irq, ret;
2237
2238 dev_dbg(&dev->dev, "pxafb_probe\n");
2239
2240 ret = -ENOMEM;
2241 pdata = dev_get_platdata(&dev->dev);
2242 inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL);
2243 if (!inf)
2244 goto failed;
2245
2246 if (pdata) {
2247 *inf = *pdata;
2248 inf->modes =
2249 devm_kmalloc_array(&dev->dev, pdata->num_modes,
2250 sizeof(inf->modes[0]), GFP_KERNEL);
2251 if (!inf->modes)
2252 goto failed;
2253 for (i = 0; i < inf->num_modes; i++)
2254 inf->modes[i] = pdata->modes[i];
2255 } else {
2256 inf = of_pxafb_of_mach_info(&dev->dev);
2257 }
2258
2259 if (IS_ERR_OR_NULL(inf))
2260 goto failed;
2261
2262 ret = pxafb_parse_options(&dev->dev, g_options, inf);
2263 if (ret < 0)
2264 goto failed;
2265
2266 pxafb_check_options(&dev->dev, inf);
2267
2268 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2269 inf->modes->xres,
2270 inf->modes->yres,
2271 inf->modes->bpp);
2272 if (inf->modes->xres == 0 ||
2273 inf->modes->yres == 0 ||
2274 inf->modes->bpp == 0) {
2275 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2276 ret = -EINVAL;
2277 goto failed;
2278 }
2279
2280 fbi = pxafb_init_fbinfo(&dev->dev, inf);
2281 if (IS_ERR(fbi)) {
2282 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2283 ret = PTR_ERR(fbi);
2284 goto failed;
2285 }
2286
2287 if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2288 fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2289
2290 fbi->backlight_power = inf->pxafb_backlight_power;
2291 fbi->lcd_power = inf->pxafb_lcd_power;
2292
2293 fbi->lcd_supply = devm_regulator_get_optional(&dev->dev, "lcd");
2294 if (IS_ERR(fbi->lcd_supply)) {
2295 if (PTR_ERR(fbi->lcd_supply) == -EPROBE_DEFER)
2296 return -EPROBE_DEFER;
2297
2298 fbi->lcd_supply = NULL;
2299 }
2300
2301 fbi->mmio_base = devm_platform_ioremap_resource(dev, 0);
2302 if (IS_ERR(fbi->mmio_base)) {
2303 dev_err(&dev->dev, "failed to get I/O memory\n");
2304 ret = PTR_ERR(fbi->mmio_base);
2305 goto failed;
2306 }
2307
2308 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2309 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2310 &fbi->dma_buff_phys, GFP_KERNEL);
2311 if (fbi->dma_buff == NULL) {
2312 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2313 ret = -ENOMEM;
2314 goto failed;
2315 }
2316
2317 ret = pxafb_init_video_memory(fbi);
2318 if (ret) {
2319 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2320 ret = -ENOMEM;
2321 goto failed_free_dma;
2322 }
2323
2324 irq = platform_get_irq(dev, 0);
2325 if (irq < 0) {
2326 ret = -ENODEV;
2327 goto failed_free_mem;
2328 }
2329
2330 ret = devm_request_irq(&dev->dev, irq, pxafb_handle_irq, 0, "LCD", fbi);
2331 if (ret) {
2332 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2333 ret = -EBUSY;
2334 goto failed_free_mem;
2335 }
2336
2337 ret = pxafb_smart_init(fbi);
2338 if (ret) {
2339 dev_err(&dev->dev, "failed to initialize smartpanel\n");
2340 goto failed_free_mem;
2341 }
2342
2343 /*
2344 * This makes sure that our colour bitfield
2345 * descriptors are correctly initialised.
2346 */
2347 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2348 if (ret) {
2349 dev_err(&dev->dev, "failed to get suitable mode\n");
2350 goto failed_free_mem;
2351 }
2352
2353 ret = pxafb_set_par(&fbi->fb);
2354 if (ret) {
2355 dev_err(&dev->dev, "Failed to set parameters\n");
2356 goto failed_free_mem;
2357 }
2358
2359 platform_set_drvdata(dev, fbi);
2360
2361 ret = register_framebuffer(&fbi->fb);
2362 if (ret < 0) {
2363 dev_err(&dev->dev,
2364 "Failed to register framebuffer device: %d\n", ret);
2365 goto failed_free_cmap;
2366 }
2367
2368 pxafb_overlay_init(fbi);
2369
2370 #ifdef CONFIG_CPU_FREQ
2371 fbi->freq_transition.notifier_call = pxafb_freq_transition;
2372 cpufreq_register_notifier(&fbi->freq_transition,
2373 CPUFREQ_TRANSITION_NOTIFIER);
2374 #endif
2375
2376 /*
2377 * Ok, now enable the LCD controller
2378 */
2379 set_ctrlr_state(fbi, C_ENABLE);
2380
2381 return 0;
2382
2383 failed_free_cmap:
2384 if (fbi->fb.cmap.len)
2385 fb_dealloc_cmap(&fbi->fb.cmap);
2386 failed_free_mem:
2387 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2388 failed_free_dma:
2389 dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2390 fbi->dma_buff, fbi->dma_buff_phys);
2391 failed:
2392 return ret;
2393 }
2394
pxafb_remove(struct platform_device * dev)2395 static void pxafb_remove(struct platform_device *dev)
2396 {
2397 struct pxafb_info *fbi = platform_get_drvdata(dev);
2398 struct fb_info *info;
2399
2400 if (!fbi)
2401 return;
2402
2403 info = &fbi->fb;
2404
2405 pxafb_overlay_exit(fbi);
2406 cancel_work_sync(&fbi->task);
2407 unregister_framebuffer(info);
2408
2409 pxafb_disable_controller(fbi);
2410
2411 if (fbi->fb.cmap.len)
2412 fb_dealloc_cmap(&fbi->fb.cmap);
2413
2414 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2415
2416 dma_free_coherent(&dev->dev, fbi->dma_buff_size, fbi->dma_buff,
2417 fbi->dma_buff_phys);
2418 }
2419
2420 static const struct of_device_id pxafb_of_dev_id[] = {
2421 { .compatible = "marvell,pxa270-lcdc", },
2422 { .compatible = "marvell,pxa300-lcdc", },
2423 { .compatible = "marvell,pxa2xx-lcdc", },
2424 { /* sentinel */ }
2425 };
2426 MODULE_DEVICE_TABLE(of, pxafb_of_dev_id);
2427
2428 static struct platform_driver pxafb_driver = {
2429 .probe = pxafb_probe,
2430 .remove = pxafb_remove,
2431 .driver = {
2432 .name = "pxa2xx-fb",
2433 .of_match_table = pxafb_of_dev_id,
2434 #ifdef CONFIG_PM
2435 .pm = &pxafb_pm_ops,
2436 #endif
2437 },
2438 };
2439
pxafb_init(void)2440 static int __init pxafb_init(void)
2441 {
2442 if (pxafb_setup_options())
2443 return -EINVAL;
2444
2445 return platform_driver_register(&pxafb_driver);
2446 }
2447
pxafb_exit(void)2448 static void __exit pxafb_exit(void)
2449 {
2450 platform_driver_unregister(&pxafb_driver);
2451 }
2452
2453 module_init(pxafb_init);
2454 module_exit(pxafb_exit);
2455
2456 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2457 MODULE_LICENSE("GPL");
2458