xref: /linux/fs/ext4/fast_commit.c (revision d3d90cc2891c9cf4ecba7b85c0af716ab755c7e5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167 
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170 
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 	BUFFER_TRACE(bh, "");
174 	if (uptodate) {
175 		ext4_debug("%s: Block %lld up-to-date",
176 			   __func__, bh->b_blocknr);
177 		set_buffer_uptodate(bh);
178 	} else {
179 		ext4_debug("%s: Block %lld not up-to-date",
180 			   __func__, bh->b_blocknr);
181 		clear_buffer_uptodate(bh);
182 	}
183 
184 	unlock_buffer(bh);
185 }
186 
ext4_fc_reset_inode(struct inode * inode)187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 	struct ext4_inode_info *ei = EXT4_I(inode);
190 
191 	ei->i_fc_lblk_start = 0;
192 	ei->i_fc_lblk_len = 0;
193 }
194 
ext4_fc_init_inode(struct inode * inode)195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 	struct ext4_inode_info *ei = EXT4_I(inode);
198 
199 	ext4_fc_reset_inode(inode);
200 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 	INIT_LIST_HEAD(&ei->i_fc_list);
202 	INIT_LIST_HEAD(&ei->i_fc_dilist);
203 	init_waitqueue_head(&ei->i_fc_wait);
204 	atomic_set(&ei->i_fc_updates, 0);
205 }
206 
207 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 	wait_queue_head_t *wq;
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 #if (BITS_PER_LONG < 64)
215 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 			EXT4_STATE_FC_COMMITTING);
217 	wq = bit_waitqueue(&ei->i_state_flags,
218 				EXT4_STATE_FC_COMMITTING);
219 #else
220 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 			EXT4_STATE_FC_COMMITTING);
222 	wq = bit_waitqueue(&ei->i_flags,
223 				EXT4_STATE_FC_COMMITTING);
224 #endif
225 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 	schedule();
229 	finish_wait(wq, &wait.wq_entry);
230 }
231 
ext4_fc_disabled(struct super_block * sb)232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237 
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
ext4_fc_start_update(struct inode * inode)245 void ext4_fc_start_update(struct inode *inode)
246 {
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 
249 	if (ext4_fc_disabled(inode->i_sb))
250 		return;
251 
252 restart:
253 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 	if (list_empty(&ei->i_fc_list))
255 		goto out;
256 
257 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 		ext4_fc_wait_committing_inode(inode);
259 		goto restart;
260 	}
261 out:
262 	atomic_inc(&ei->i_fc_updates);
263 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265 
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
ext4_fc_stop_update(struct inode * inode)269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 	struct ext4_inode_info *ei = EXT4_I(inode);
272 
273 	if (ext4_fc_disabled(inode->i_sb))
274 		return;
275 
276 	if (atomic_dec_and_test(&ei->i_fc_updates))
277 		wake_up_all(&ei->i_fc_wait);
278 }
279 
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
ext4_fc_del(struct inode * inode)284 void ext4_fc_del(struct inode *inode)
285 {
286 	struct ext4_inode_info *ei = EXT4_I(inode);
287 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 	struct ext4_fc_dentry_update *fc_dentry;
289 
290 	if (ext4_fc_disabled(inode->i_sb))
291 		return;
292 
293 restart:
294 	spin_lock(&sbi->s_fc_lock);
295 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 		spin_unlock(&sbi->s_fc_lock);
297 		return;
298 	}
299 
300 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 		ext4_fc_wait_committing_inode(inode);
302 		goto restart;
303 	}
304 
305 	if (!list_empty(&ei->i_fc_list))
306 		list_del_init(&ei->i_fc_list);
307 
308 	/*
309 	 * Since this inode is getting removed, let's also remove all FC
310 	 * dentry create references, since it is not needed to log it anyways.
311 	 */
312 	if (list_empty(&ei->i_fc_dilist)) {
313 		spin_unlock(&sbi->s_fc_lock);
314 		return;
315 	}
316 
317 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 	list_del_init(&fc_dentry->fcd_list);
320 	list_del_init(&fc_dentry->fcd_dilist);
321 
322 	WARN_ON(!list_empty(&ei->i_fc_dilist));
323 	spin_unlock(&sbi->s_fc_lock);
324 
325 	release_dentry_name_snapshot(&fc_dentry->fcd_name);
326 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
327 
328 	return;
329 }
330 
331 /*
332  * Mark file system as fast commit ineligible, and record latest
333  * ineligible transaction tid. This means until the recorded
334  * transaction, commit operation would result in a full jbd2 commit.
335  */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)336 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
337 {
338 	struct ext4_sb_info *sbi = EXT4_SB(sb);
339 	tid_t tid;
340 	bool has_transaction = true;
341 	bool is_ineligible;
342 
343 	if (ext4_fc_disabled(sb))
344 		return;
345 
346 	if (handle && !IS_ERR(handle))
347 		tid = handle->h_transaction->t_tid;
348 	else {
349 		read_lock(&sbi->s_journal->j_state_lock);
350 		if (sbi->s_journal->j_running_transaction)
351 			tid = sbi->s_journal->j_running_transaction->t_tid;
352 		else
353 			has_transaction = false;
354 		read_unlock(&sbi->s_journal->j_state_lock);
355 	}
356 	spin_lock(&sbi->s_fc_lock);
357 	is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
358 	if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
359 		sbi->s_fc_ineligible_tid = tid;
360 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
361 	spin_unlock(&sbi->s_fc_lock);
362 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
363 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
364 }
365 
366 /*
367  * Generic fast commit tracking function. If this is the first time this we are
368  * called after a full commit, we initialize fast commit fields and then call
369  * __fc_track_fn() with update = 0. If we have already been called after a full
370  * commit, we pass update = 1. Based on that, the track function can determine
371  * if it needs to track a field for the first time or if it needs to just
372  * update the previously tracked value.
373  *
374  * If enqueue is set, this function enqueues the inode in fast commit list.
375  */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(handle_t * handle,struct inode *,void *,bool),void * args,int enqueue)376 static int ext4_fc_track_template(
377 	handle_t *handle, struct inode *inode,
378 	int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
379 	void *args, int enqueue)
380 {
381 	bool update = false;
382 	struct ext4_inode_info *ei = EXT4_I(inode);
383 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
384 	tid_t tid = 0;
385 	int ret;
386 
387 	tid = handle->h_transaction->t_tid;
388 	mutex_lock(&ei->i_fc_lock);
389 	if (tid == ei->i_sync_tid) {
390 		update = true;
391 	} else {
392 		ext4_fc_reset_inode(inode);
393 		ei->i_sync_tid = tid;
394 	}
395 	ret = __fc_track_fn(handle, inode, args, update);
396 	mutex_unlock(&ei->i_fc_lock);
397 
398 	if (!enqueue)
399 		return ret;
400 
401 	spin_lock(&sbi->s_fc_lock);
402 	if (list_empty(&EXT4_I(inode)->i_fc_list))
403 		list_add_tail(&EXT4_I(inode)->i_fc_list,
404 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
405 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
406 				&sbi->s_fc_q[FC_Q_STAGING] :
407 				&sbi->s_fc_q[FC_Q_MAIN]);
408 	spin_unlock(&sbi->s_fc_lock);
409 
410 	return ret;
411 }
412 
413 struct __track_dentry_update_args {
414 	struct dentry *dentry;
415 	int op;
416 };
417 
418 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(handle_t * handle,struct inode * inode,void * arg,bool update)419 static int __track_dentry_update(handle_t *handle, struct inode *inode,
420 				 void *arg, bool update)
421 {
422 	struct ext4_fc_dentry_update *node;
423 	struct ext4_inode_info *ei = EXT4_I(inode);
424 	struct __track_dentry_update_args *dentry_update =
425 		(struct __track_dentry_update_args *)arg;
426 	struct dentry *dentry = dentry_update->dentry;
427 	struct inode *dir = dentry->d_parent->d_inode;
428 	struct super_block *sb = inode->i_sb;
429 	struct ext4_sb_info *sbi = EXT4_SB(sb);
430 
431 	mutex_unlock(&ei->i_fc_lock);
432 
433 	if (IS_ENCRYPTED(dir)) {
434 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
435 					handle);
436 		mutex_lock(&ei->i_fc_lock);
437 		return -EOPNOTSUPP;
438 	}
439 
440 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
441 	if (!node) {
442 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
443 		mutex_lock(&ei->i_fc_lock);
444 		return -ENOMEM;
445 	}
446 
447 	node->fcd_op = dentry_update->op;
448 	node->fcd_parent = dir->i_ino;
449 	node->fcd_ino = inode->i_ino;
450 	take_dentry_name_snapshot(&node->fcd_name, dentry);
451 	INIT_LIST_HEAD(&node->fcd_dilist);
452 	spin_lock(&sbi->s_fc_lock);
453 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
454 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
455 		list_add_tail(&node->fcd_list,
456 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
457 	else
458 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
459 
460 	/*
461 	 * This helps us keep a track of all fc_dentry updates which is part of
462 	 * this ext4 inode. So in case the inode is getting unlinked, before
463 	 * even we get a chance to fsync, we could remove all fc_dentry
464 	 * references while evicting the inode in ext4_fc_del().
465 	 * Also with this, we don't need to loop over all the inodes in
466 	 * sbi->s_fc_q to get the corresponding inode in
467 	 * ext4_fc_commit_dentry_updates().
468 	 */
469 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
470 		WARN_ON(!list_empty(&ei->i_fc_dilist));
471 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
472 	}
473 	spin_unlock(&sbi->s_fc_lock);
474 	mutex_lock(&ei->i_fc_lock);
475 
476 	return 0;
477 }
478 
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)479 void __ext4_fc_track_unlink(handle_t *handle,
480 		struct inode *inode, struct dentry *dentry)
481 {
482 	struct __track_dentry_update_args args;
483 	int ret;
484 
485 	args.dentry = dentry;
486 	args.op = EXT4_FC_TAG_UNLINK;
487 
488 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
489 					(void *)&args, 0);
490 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
491 }
492 
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)493 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
494 {
495 	struct inode *inode = d_inode(dentry);
496 
497 	if (ext4_fc_disabled(inode->i_sb))
498 		return;
499 
500 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
501 		return;
502 
503 	__ext4_fc_track_unlink(handle, inode, dentry);
504 }
505 
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)506 void __ext4_fc_track_link(handle_t *handle,
507 	struct inode *inode, struct dentry *dentry)
508 {
509 	struct __track_dentry_update_args args;
510 	int ret;
511 
512 	args.dentry = dentry;
513 	args.op = EXT4_FC_TAG_LINK;
514 
515 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
516 					(void *)&args, 0);
517 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
518 }
519 
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)520 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
521 {
522 	struct inode *inode = d_inode(dentry);
523 
524 	if (ext4_fc_disabled(inode->i_sb))
525 		return;
526 
527 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
528 		return;
529 
530 	__ext4_fc_track_link(handle, inode, dentry);
531 }
532 
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)533 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
534 			  struct dentry *dentry)
535 {
536 	struct __track_dentry_update_args args;
537 	int ret;
538 
539 	args.dentry = dentry;
540 	args.op = EXT4_FC_TAG_CREAT;
541 
542 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
543 					(void *)&args, 0);
544 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
545 }
546 
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)547 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
548 {
549 	struct inode *inode = d_inode(dentry);
550 
551 	if (ext4_fc_disabled(inode->i_sb))
552 		return;
553 
554 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
555 		return;
556 
557 	__ext4_fc_track_create(handle, inode, dentry);
558 }
559 
560 /* __track_fn for inode tracking */
__track_inode(handle_t * handle,struct inode * inode,void * arg,bool update)561 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
562 			 bool update)
563 {
564 	if (update)
565 		return -EEXIST;
566 
567 	EXT4_I(inode)->i_fc_lblk_len = 0;
568 
569 	return 0;
570 }
571 
ext4_fc_track_inode(handle_t * handle,struct inode * inode)572 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
573 {
574 	int ret;
575 
576 	if (S_ISDIR(inode->i_mode))
577 		return;
578 
579 	if (ext4_fc_disabled(inode->i_sb))
580 		return;
581 
582 	if (ext4_should_journal_data(inode)) {
583 		ext4_fc_mark_ineligible(inode->i_sb,
584 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
585 		return;
586 	}
587 
588 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
589 		return;
590 
591 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
592 	trace_ext4_fc_track_inode(handle, inode, ret);
593 }
594 
595 struct __track_range_args {
596 	ext4_lblk_t start, end;
597 };
598 
599 /* __track_fn for tracking data updates */
__track_range(handle_t * handle,struct inode * inode,void * arg,bool update)600 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
601 			 bool update)
602 {
603 	struct ext4_inode_info *ei = EXT4_I(inode);
604 	ext4_lblk_t oldstart;
605 	struct __track_range_args *__arg =
606 		(struct __track_range_args *)arg;
607 
608 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
609 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
610 		return -ECANCELED;
611 	}
612 
613 	oldstart = ei->i_fc_lblk_start;
614 
615 	if (update && ei->i_fc_lblk_len > 0) {
616 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
617 		ei->i_fc_lblk_len =
618 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
619 				ei->i_fc_lblk_start + 1;
620 	} else {
621 		ei->i_fc_lblk_start = __arg->start;
622 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
623 	}
624 
625 	return 0;
626 }
627 
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)628 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
629 			 ext4_lblk_t end)
630 {
631 	struct __track_range_args args;
632 	int ret;
633 
634 	if (S_ISDIR(inode->i_mode))
635 		return;
636 
637 	if (ext4_fc_disabled(inode->i_sb))
638 		return;
639 
640 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
641 		return;
642 
643 	if (ext4_has_inline_data(inode)) {
644 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
645 					handle);
646 		return;
647 	}
648 
649 	args.start = start;
650 	args.end = end;
651 
652 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
653 
654 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
655 }
656 
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)657 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
658 {
659 	blk_opf_t write_flags = REQ_SYNC;
660 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
661 
662 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
663 	if (test_opt(sb, BARRIER) && is_tail)
664 		write_flags |= REQ_FUA | REQ_PREFLUSH;
665 	lock_buffer(bh);
666 	set_buffer_dirty(bh);
667 	set_buffer_uptodate(bh);
668 	bh->b_end_io = ext4_end_buffer_io_sync;
669 	submit_bh(REQ_OP_WRITE | write_flags, bh);
670 	EXT4_SB(sb)->s_fc_bh = NULL;
671 }
672 
673 /* Ext4 commit path routines */
674 
675 /*
676  * Allocate len bytes on a fast commit buffer.
677  *
678  * During the commit time this function is used to manage fast commit
679  * block space. We don't split a fast commit log onto different
680  * blocks. So this function makes sure that if there's not enough space
681  * on the current block, the remaining space in the current block is
682  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
683  * new block is from jbd2 and CRC is updated to reflect the padding
684  * we added.
685  */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)686 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
687 {
688 	struct ext4_fc_tl tl;
689 	struct ext4_sb_info *sbi = EXT4_SB(sb);
690 	struct buffer_head *bh;
691 	int bsize = sbi->s_journal->j_blocksize;
692 	int ret, off = sbi->s_fc_bytes % bsize;
693 	int remaining;
694 	u8 *dst;
695 
696 	/*
697 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
698 	 * cannot fulfill the request.
699 	 */
700 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
701 		return NULL;
702 
703 	if (!sbi->s_fc_bh) {
704 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
705 		if (ret)
706 			return NULL;
707 		sbi->s_fc_bh = bh;
708 	}
709 	dst = sbi->s_fc_bh->b_data + off;
710 
711 	/*
712 	 * Allocate the bytes in the current block if we can do so while still
713 	 * leaving enough space for a PAD tlv.
714 	 */
715 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
716 	if (len <= remaining) {
717 		sbi->s_fc_bytes += len;
718 		return dst;
719 	}
720 
721 	/*
722 	 * Else, terminate the current block with a PAD tlv, then allocate a new
723 	 * block and allocate the bytes at the start of that new block.
724 	 */
725 
726 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
727 	tl.fc_len = cpu_to_le16(remaining);
728 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
729 	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
730 	*crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
731 
732 	ext4_fc_submit_bh(sb, false);
733 
734 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
735 	if (ret)
736 		return NULL;
737 	sbi->s_fc_bh = bh;
738 	sbi->s_fc_bytes += bsize - off + len;
739 	return sbi->s_fc_bh->b_data;
740 }
741 
742 /*
743  * Complete a fast commit by writing tail tag.
744  *
745  * Writing tail tag marks the end of a fast commit. In order to guarantee
746  * atomicity, after writing tail tag, even if there's space remaining
747  * in the block, next commit shouldn't use it. That's why tail tag
748  * has the length as that of the remaining space on the block.
749  */
ext4_fc_write_tail(struct super_block * sb,u32 crc)750 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
751 {
752 	struct ext4_sb_info *sbi = EXT4_SB(sb);
753 	struct ext4_fc_tl tl;
754 	struct ext4_fc_tail tail;
755 	int off, bsize = sbi->s_journal->j_blocksize;
756 	u8 *dst;
757 
758 	/*
759 	 * ext4_fc_reserve_space takes care of allocating an extra block if
760 	 * there's no enough space on this block for accommodating this tail.
761 	 */
762 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
763 	if (!dst)
764 		return -ENOSPC;
765 
766 	off = sbi->s_fc_bytes % bsize;
767 
768 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
769 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
770 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
771 
772 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
773 	dst += EXT4_FC_TAG_BASE_LEN;
774 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
775 	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
776 	dst += sizeof(tail.fc_tid);
777 	crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
778 			  dst - (u8 *)sbi->s_fc_bh->b_data);
779 	tail.fc_crc = cpu_to_le32(crc);
780 	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
781 	dst += sizeof(tail.fc_crc);
782 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
783 
784 	ext4_fc_submit_bh(sb, true);
785 
786 	return 0;
787 }
788 
789 /*
790  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
791  * Returns false if there's not enough space.
792  */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)793 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
794 			   u32 *crc)
795 {
796 	struct ext4_fc_tl tl;
797 	u8 *dst;
798 
799 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
800 	if (!dst)
801 		return false;
802 
803 	tl.fc_tag = cpu_to_le16(tag);
804 	tl.fc_len = cpu_to_le16(len);
805 
806 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
807 	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
808 
809 	return true;
810 }
811 
812 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)813 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
814 				   struct ext4_fc_dentry_update *fc_dentry)
815 {
816 	struct ext4_fc_dentry_info fcd;
817 	struct ext4_fc_tl tl;
818 	int dlen = fc_dentry->fcd_name.name.len;
819 	u8 *dst = ext4_fc_reserve_space(sb,
820 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
821 
822 	if (!dst)
823 		return false;
824 
825 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
826 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
827 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
828 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
829 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
830 	dst += EXT4_FC_TAG_BASE_LEN;
831 	memcpy(dst, &fcd, sizeof(fcd));
832 	dst += sizeof(fcd);
833 	memcpy(dst, fc_dentry->fcd_name.name.name, dlen);
834 
835 	return true;
836 }
837 
838 /*
839  * Writes inode in the fast commit space under TLV with tag @tag.
840  * Returns 0 on success, error on failure.
841  */
ext4_fc_write_inode(struct inode * inode,u32 * crc)842 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
843 {
844 	struct ext4_inode_info *ei = EXT4_I(inode);
845 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
846 	int ret;
847 	struct ext4_iloc iloc;
848 	struct ext4_fc_inode fc_inode;
849 	struct ext4_fc_tl tl;
850 	u8 *dst;
851 
852 	ret = ext4_get_inode_loc(inode, &iloc);
853 	if (ret)
854 		return ret;
855 
856 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
857 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
858 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
859 		inode_len += ei->i_extra_isize;
860 
861 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
862 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
863 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
864 
865 	ret = -ECANCELED;
866 	dst = ext4_fc_reserve_space(inode->i_sb,
867 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
868 	if (!dst)
869 		goto err;
870 
871 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
872 	dst += EXT4_FC_TAG_BASE_LEN;
873 	memcpy(dst, &fc_inode, sizeof(fc_inode));
874 	dst += sizeof(fc_inode);
875 	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
876 	ret = 0;
877 err:
878 	brelse(iloc.bh);
879 	return ret;
880 }
881 
882 /*
883  * Writes updated data ranges for the inode in question. Updates CRC.
884  * Returns 0 on success, error otherwise.
885  */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)886 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
887 {
888 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
889 	struct ext4_inode_info *ei = EXT4_I(inode);
890 	struct ext4_map_blocks map;
891 	struct ext4_fc_add_range fc_ext;
892 	struct ext4_fc_del_range lrange;
893 	struct ext4_extent *ex;
894 	int ret;
895 
896 	mutex_lock(&ei->i_fc_lock);
897 	if (ei->i_fc_lblk_len == 0) {
898 		mutex_unlock(&ei->i_fc_lock);
899 		return 0;
900 	}
901 	old_blk_size = ei->i_fc_lblk_start;
902 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
903 	ei->i_fc_lblk_len = 0;
904 	mutex_unlock(&ei->i_fc_lock);
905 
906 	cur_lblk_off = old_blk_size;
907 	ext4_debug("will try writing %d to %d for inode %ld\n",
908 		   cur_lblk_off, new_blk_size, inode->i_ino);
909 
910 	while (cur_lblk_off <= new_blk_size) {
911 		map.m_lblk = cur_lblk_off;
912 		map.m_len = new_blk_size - cur_lblk_off + 1;
913 		ret = ext4_map_blocks(NULL, inode, &map, 0);
914 		if (ret < 0)
915 			return -ECANCELED;
916 
917 		if (map.m_len == 0) {
918 			cur_lblk_off++;
919 			continue;
920 		}
921 
922 		if (ret == 0) {
923 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
924 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
925 			lrange.fc_len = cpu_to_le32(map.m_len);
926 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
927 					    sizeof(lrange), (u8 *)&lrange, crc))
928 				return -ENOSPC;
929 		} else {
930 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
931 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
932 
933 			/* Limit the number of blocks in one extent */
934 			map.m_len = min(max, map.m_len);
935 
936 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
937 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
938 			ex->ee_block = cpu_to_le32(map.m_lblk);
939 			ex->ee_len = cpu_to_le16(map.m_len);
940 			ext4_ext_store_pblock(ex, map.m_pblk);
941 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
942 				ext4_ext_mark_unwritten(ex);
943 			else
944 				ext4_ext_mark_initialized(ex);
945 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
946 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
947 				return -ENOSPC;
948 		}
949 
950 		cur_lblk_off += map.m_len;
951 	}
952 
953 	return 0;
954 }
955 
956 
957 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)958 static int ext4_fc_submit_inode_data_all(journal_t *journal)
959 {
960 	struct super_block *sb = journal->j_private;
961 	struct ext4_sb_info *sbi = EXT4_SB(sb);
962 	struct ext4_inode_info *ei;
963 	int ret = 0;
964 
965 	spin_lock(&sbi->s_fc_lock);
966 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
967 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
968 		while (atomic_read(&ei->i_fc_updates)) {
969 			DEFINE_WAIT(wait);
970 
971 			prepare_to_wait(&ei->i_fc_wait, &wait,
972 						TASK_UNINTERRUPTIBLE);
973 			if (atomic_read(&ei->i_fc_updates)) {
974 				spin_unlock(&sbi->s_fc_lock);
975 				schedule();
976 				spin_lock(&sbi->s_fc_lock);
977 			}
978 			finish_wait(&ei->i_fc_wait, &wait);
979 		}
980 		spin_unlock(&sbi->s_fc_lock);
981 		ret = jbd2_submit_inode_data(journal, ei->jinode);
982 		if (ret)
983 			return ret;
984 		spin_lock(&sbi->s_fc_lock);
985 	}
986 	spin_unlock(&sbi->s_fc_lock);
987 
988 	return ret;
989 }
990 
991 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)992 static int ext4_fc_wait_inode_data_all(journal_t *journal)
993 {
994 	struct super_block *sb = journal->j_private;
995 	struct ext4_sb_info *sbi = EXT4_SB(sb);
996 	struct ext4_inode_info *pos, *n;
997 	int ret = 0;
998 
999 	spin_lock(&sbi->s_fc_lock);
1000 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1001 		if (!ext4_test_inode_state(&pos->vfs_inode,
1002 					   EXT4_STATE_FC_COMMITTING))
1003 			continue;
1004 		spin_unlock(&sbi->s_fc_lock);
1005 
1006 		ret = jbd2_wait_inode_data(journal, pos->jinode);
1007 		if (ret)
1008 			return ret;
1009 		spin_lock(&sbi->s_fc_lock);
1010 	}
1011 	spin_unlock(&sbi->s_fc_lock);
1012 
1013 	return 0;
1014 }
1015 
1016 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)1017 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1018 __acquires(&sbi->s_fc_lock)
1019 __releases(&sbi->s_fc_lock)
1020 {
1021 	struct super_block *sb = journal->j_private;
1022 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1023 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1024 	struct inode *inode;
1025 	struct ext4_inode_info *ei;
1026 	int ret;
1027 
1028 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1029 		return 0;
1030 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1031 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1032 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1033 			spin_unlock(&sbi->s_fc_lock);
1034 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1035 				ret = -ENOSPC;
1036 				goto lock_and_exit;
1037 			}
1038 			spin_lock(&sbi->s_fc_lock);
1039 			continue;
1040 		}
1041 		/*
1042 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1043 		 * corresponding inode pointer
1044 		 */
1045 		WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1046 		ei = list_first_entry(&fc_dentry->fcd_dilist,
1047 				struct ext4_inode_info, i_fc_dilist);
1048 		inode = &ei->vfs_inode;
1049 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1050 
1051 		spin_unlock(&sbi->s_fc_lock);
1052 
1053 		/*
1054 		 * We first write the inode and then the create dirent. This
1055 		 * allows the recovery code to create an unnamed inode first
1056 		 * and then link it to a directory entry. This allows us
1057 		 * to use namei.c routines almost as is and simplifies
1058 		 * the recovery code.
1059 		 */
1060 		ret = ext4_fc_write_inode(inode, crc);
1061 		if (ret)
1062 			goto lock_and_exit;
1063 
1064 		ret = ext4_fc_write_inode_data(inode, crc);
1065 		if (ret)
1066 			goto lock_and_exit;
1067 
1068 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1069 			ret = -ENOSPC;
1070 			goto lock_and_exit;
1071 		}
1072 
1073 		spin_lock(&sbi->s_fc_lock);
1074 	}
1075 	return 0;
1076 lock_and_exit:
1077 	spin_lock(&sbi->s_fc_lock);
1078 	return ret;
1079 }
1080 
ext4_fc_perform_commit(journal_t * journal)1081 static int ext4_fc_perform_commit(journal_t *journal)
1082 {
1083 	struct super_block *sb = journal->j_private;
1084 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1085 	struct ext4_inode_info *iter;
1086 	struct ext4_fc_head head;
1087 	struct inode *inode;
1088 	struct blk_plug plug;
1089 	int ret = 0;
1090 	u32 crc = 0;
1091 
1092 	ret = ext4_fc_submit_inode_data_all(journal);
1093 	if (ret)
1094 		return ret;
1095 
1096 	ret = ext4_fc_wait_inode_data_all(journal);
1097 	if (ret)
1098 		return ret;
1099 
1100 	/*
1101 	 * If file system device is different from journal device, issue a cache
1102 	 * flush before we start writing fast commit blocks.
1103 	 */
1104 	if (journal->j_fs_dev != journal->j_dev)
1105 		blkdev_issue_flush(journal->j_fs_dev);
1106 
1107 	blk_start_plug(&plug);
1108 	if (sbi->s_fc_bytes == 0) {
1109 		/*
1110 		 * Add a head tag only if this is the first fast commit
1111 		 * in this TID.
1112 		 */
1113 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1114 		head.fc_tid = cpu_to_le32(
1115 			sbi->s_journal->j_running_transaction->t_tid);
1116 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1117 			(u8 *)&head, &crc)) {
1118 			ret = -ENOSPC;
1119 			goto out;
1120 		}
1121 	}
1122 
1123 	spin_lock(&sbi->s_fc_lock);
1124 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1125 	if (ret) {
1126 		spin_unlock(&sbi->s_fc_lock);
1127 		goto out;
1128 	}
1129 
1130 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1131 		inode = &iter->vfs_inode;
1132 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1133 			continue;
1134 
1135 		spin_unlock(&sbi->s_fc_lock);
1136 		ret = ext4_fc_write_inode_data(inode, &crc);
1137 		if (ret)
1138 			goto out;
1139 		ret = ext4_fc_write_inode(inode, &crc);
1140 		if (ret)
1141 			goto out;
1142 		spin_lock(&sbi->s_fc_lock);
1143 	}
1144 	spin_unlock(&sbi->s_fc_lock);
1145 
1146 	ret = ext4_fc_write_tail(sb, crc);
1147 
1148 out:
1149 	blk_finish_plug(&plug);
1150 	return ret;
1151 }
1152 
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks,tid_t commit_tid)1153 static void ext4_fc_update_stats(struct super_block *sb, int status,
1154 				 u64 commit_time, int nblks, tid_t commit_tid)
1155 {
1156 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1157 
1158 	ext4_debug("Fast commit ended with status = %d for tid %u",
1159 			status, commit_tid);
1160 	if (status == EXT4_FC_STATUS_OK) {
1161 		stats->fc_num_commits++;
1162 		stats->fc_numblks += nblks;
1163 		if (likely(stats->s_fc_avg_commit_time))
1164 			stats->s_fc_avg_commit_time =
1165 				(commit_time +
1166 				 stats->s_fc_avg_commit_time * 3) / 4;
1167 		else
1168 			stats->s_fc_avg_commit_time = commit_time;
1169 	} else if (status == EXT4_FC_STATUS_FAILED ||
1170 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1171 		if (status == EXT4_FC_STATUS_FAILED)
1172 			stats->fc_failed_commits++;
1173 		stats->fc_ineligible_commits++;
1174 	} else {
1175 		stats->fc_skipped_commits++;
1176 	}
1177 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1178 }
1179 
1180 /*
1181  * The main commit entry point. Performs a fast commit for transaction
1182  * commit_tid if needed. If it's not possible to perform a fast commit
1183  * due to various reasons, we fall back to full commit. Returns 0
1184  * on success, error otherwise.
1185  */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1186 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1187 {
1188 	struct super_block *sb = journal->j_private;
1189 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1190 	int nblks = 0, ret, bsize = journal->j_blocksize;
1191 	int subtid = atomic_read(&sbi->s_fc_subtid);
1192 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1193 	ktime_t start_time, commit_time;
1194 
1195 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1196 		return jbd2_complete_transaction(journal, commit_tid);
1197 
1198 	trace_ext4_fc_commit_start(sb, commit_tid);
1199 
1200 	start_time = ktime_get();
1201 
1202 restart_fc:
1203 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1204 	if (ret == -EALREADY) {
1205 		/* There was an ongoing commit, check if we need to restart */
1206 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1207 		    tid_gt(commit_tid, journal->j_commit_sequence))
1208 			goto restart_fc;
1209 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1210 				commit_tid);
1211 		return 0;
1212 	} else if (ret) {
1213 		/*
1214 		 * Commit couldn't start. Just update stats and perform a
1215 		 * full commit.
1216 		 */
1217 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1218 				commit_tid);
1219 		return jbd2_complete_transaction(journal, commit_tid);
1220 	}
1221 
1222 	/*
1223 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1224 	 * if we are fast commit ineligible.
1225 	 */
1226 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1227 		status = EXT4_FC_STATUS_INELIGIBLE;
1228 		goto fallback;
1229 	}
1230 
1231 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1232 	ret = ext4_fc_perform_commit(journal);
1233 	if (ret < 0) {
1234 		status = EXT4_FC_STATUS_FAILED;
1235 		goto fallback;
1236 	}
1237 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1238 	ret = jbd2_fc_wait_bufs(journal, nblks);
1239 	if (ret < 0) {
1240 		status = EXT4_FC_STATUS_FAILED;
1241 		goto fallback;
1242 	}
1243 	atomic_inc(&sbi->s_fc_subtid);
1244 	ret = jbd2_fc_end_commit(journal);
1245 	/*
1246 	 * weight the commit time higher than the average time so we
1247 	 * don't react too strongly to vast changes in the commit time
1248 	 */
1249 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1250 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1251 	return ret;
1252 
1253 fallback:
1254 	ret = jbd2_fc_end_commit_fallback(journal);
1255 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Fast commit cleanup routine. This is called after every fast commit and
1261  * full commit. full is true if we are called after a full commit.
1262  */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1263 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1264 {
1265 	struct super_block *sb = journal->j_private;
1266 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1267 	struct ext4_inode_info *iter, *iter_n;
1268 	struct ext4_fc_dentry_update *fc_dentry;
1269 
1270 	if (full && sbi->s_fc_bh)
1271 		sbi->s_fc_bh = NULL;
1272 
1273 	trace_ext4_fc_cleanup(journal, full, tid);
1274 	jbd2_fc_release_bufs(journal);
1275 
1276 	spin_lock(&sbi->s_fc_lock);
1277 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1278 				 i_fc_list) {
1279 		list_del_init(&iter->i_fc_list);
1280 		ext4_clear_inode_state(&iter->vfs_inode,
1281 				       EXT4_STATE_FC_COMMITTING);
1282 		if (tid_geq(tid, iter->i_sync_tid)) {
1283 			ext4_fc_reset_inode(&iter->vfs_inode);
1284 		} else if (full) {
1285 			/*
1286 			 * We are called after a full commit, inode has been
1287 			 * modified while the commit was running. Re-enqueue
1288 			 * the inode into STAGING, which will then be splice
1289 			 * back into MAIN. This cannot happen during
1290 			 * fastcommit because the journal is locked all the
1291 			 * time in that case (and tid doesn't increase so
1292 			 * tid check above isn't reliable).
1293 			 */
1294 			list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1295 				      &sbi->s_fc_q[FC_Q_STAGING]);
1296 		}
1297 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1298 		smp_mb();
1299 #if (BITS_PER_LONG < 64)
1300 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1301 #else
1302 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1303 #endif
1304 	}
1305 
1306 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1307 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1308 					     struct ext4_fc_dentry_update,
1309 					     fcd_list);
1310 		list_del_init(&fc_dentry->fcd_list);
1311 		list_del_init(&fc_dentry->fcd_dilist);
1312 		spin_unlock(&sbi->s_fc_lock);
1313 
1314 		release_dentry_name_snapshot(&fc_dentry->fcd_name);
1315 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1316 		spin_lock(&sbi->s_fc_lock);
1317 	}
1318 
1319 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1320 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1321 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1322 				&sbi->s_fc_q[FC_Q_MAIN]);
1323 
1324 	if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1325 		sbi->s_fc_ineligible_tid = 0;
1326 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1327 	}
1328 
1329 	if (full)
1330 		sbi->s_fc_bytes = 0;
1331 	spin_unlock(&sbi->s_fc_lock);
1332 	trace_ext4_fc_stats(sb);
1333 }
1334 
1335 /* Ext4 Replay Path Routines */
1336 
1337 /* Helper struct for dentry replay routines */
1338 struct dentry_info_args {
1339 	int parent_ino, dname_len, ino, inode_len;
1340 	char *dname;
1341 };
1342 
1343 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1344 struct ext4_fc_tl_mem {
1345 	u16 fc_tag;
1346 	u16 fc_len;
1347 };
1348 
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl_mem * tl,u8 * val)1349 static inline void tl_to_darg(struct dentry_info_args *darg,
1350 			      struct ext4_fc_tl_mem *tl, u8 *val)
1351 {
1352 	struct ext4_fc_dentry_info fcd;
1353 
1354 	memcpy(&fcd, val, sizeof(fcd));
1355 
1356 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1357 	darg->ino = le32_to_cpu(fcd.fc_ino);
1358 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1359 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1360 }
1361 
ext4_fc_get_tl(struct ext4_fc_tl_mem * tl,u8 * val)1362 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1363 {
1364 	struct ext4_fc_tl tl_disk;
1365 
1366 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1367 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1368 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1369 }
1370 
1371 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1372 static int ext4_fc_replay_unlink(struct super_block *sb,
1373 				 struct ext4_fc_tl_mem *tl, u8 *val)
1374 {
1375 	struct inode *inode, *old_parent;
1376 	struct qstr entry;
1377 	struct dentry_info_args darg;
1378 	int ret = 0;
1379 
1380 	tl_to_darg(&darg, tl, val);
1381 
1382 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1383 			darg.parent_ino, darg.dname_len);
1384 
1385 	entry.name = darg.dname;
1386 	entry.len = darg.dname_len;
1387 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1388 
1389 	if (IS_ERR(inode)) {
1390 		ext4_debug("Inode %d not found", darg.ino);
1391 		return 0;
1392 	}
1393 
1394 	old_parent = ext4_iget(sb, darg.parent_ino,
1395 				EXT4_IGET_NORMAL);
1396 	if (IS_ERR(old_parent)) {
1397 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1398 		iput(inode);
1399 		return 0;
1400 	}
1401 
1402 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1403 	/* -ENOENT ok coz it might not exist anymore. */
1404 	if (ret == -ENOENT)
1405 		ret = 0;
1406 	iput(old_parent);
1407 	iput(inode);
1408 	return ret;
1409 }
1410 
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1411 static int ext4_fc_replay_link_internal(struct super_block *sb,
1412 				struct dentry_info_args *darg,
1413 				struct inode *inode)
1414 {
1415 	struct inode *dir = NULL;
1416 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1417 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1418 	int ret = 0;
1419 
1420 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1421 	if (IS_ERR(dir)) {
1422 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1423 		dir = NULL;
1424 		goto out;
1425 	}
1426 
1427 	dentry_dir = d_obtain_alias(dir);
1428 	if (IS_ERR(dentry_dir)) {
1429 		ext4_debug("Failed to obtain dentry");
1430 		dentry_dir = NULL;
1431 		goto out;
1432 	}
1433 
1434 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1435 	if (!dentry_inode) {
1436 		ext4_debug("Inode dentry not created.");
1437 		ret = -ENOMEM;
1438 		goto out;
1439 	}
1440 
1441 	ret = __ext4_link(dir, inode, dentry_inode);
1442 	/*
1443 	 * It's possible that link already existed since data blocks
1444 	 * for the dir in question got persisted before we crashed OR
1445 	 * we replayed this tag and crashed before the entire replay
1446 	 * could complete.
1447 	 */
1448 	if (ret && ret != -EEXIST) {
1449 		ext4_debug("Failed to link\n");
1450 		goto out;
1451 	}
1452 
1453 	ret = 0;
1454 out:
1455 	if (dentry_dir) {
1456 		d_drop(dentry_dir);
1457 		dput(dentry_dir);
1458 	} else if (dir) {
1459 		iput(dir);
1460 	}
1461 	if (dentry_inode) {
1462 		d_drop(dentry_inode);
1463 		dput(dentry_inode);
1464 	}
1465 
1466 	return ret;
1467 }
1468 
1469 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1470 static int ext4_fc_replay_link(struct super_block *sb,
1471 			       struct ext4_fc_tl_mem *tl, u8 *val)
1472 {
1473 	struct inode *inode;
1474 	struct dentry_info_args darg;
1475 	int ret = 0;
1476 
1477 	tl_to_darg(&darg, tl, val);
1478 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1479 			darg.parent_ino, darg.dname_len);
1480 
1481 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1482 	if (IS_ERR(inode)) {
1483 		ext4_debug("Inode not found.");
1484 		return 0;
1485 	}
1486 
1487 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1488 	iput(inode);
1489 	return ret;
1490 }
1491 
1492 /*
1493  * Record all the modified inodes during replay. We use this later to setup
1494  * block bitmaps correctly.
1495  */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1496 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1497 {
1498 	struct ext4_fc_replay_state *state;
1499 	int i;
1500 
1501 	state = &EXT4_SB(sb)->s_fc_replay_state;
1502 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1503 		if (state->fc_modified_inodes[i] == ino)
1504 			return 0;
1505 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1506 		int *fc_modified_inodes;
1507 
1508 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1509 				sizeof(int) * (state->fc_modified_inodes_size +
1510 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1511 				GFP_KERNEL);
1512 		if (!fc_modified_inodes)
1513 			return -ENOMEM;
1514 		state->fc_modified_inodes = fc_modified_inodes;
1515 		state->fc_modified_inodes_size +=
1516 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1517 	}
1518 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Inode replay function
1524  */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1525 static int ext4_fc_replay_inode(struct super_block *sb,
1526 				struct ext4_fc_tl_mem *tl, u8 *val)
1527 {
1528 	struct ext4_fc_inode fc_inode;
1529 	struct ext4_inode *raw_inode;
1530 	struct ext4_inode *raw_fc_inode;
1531 	struct inode *inode = NULL;
1532 	struct ext4_iloc iloc;
1533 	int inode_len, ino, ret, tag = tl->fc_tag;
1534 	struct ext4_extent_header *eh;
1535 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1536 
1537 	memcpy(&fc_inode, val, sizeof(fc_inode));
1538 
1539 	ino = le32_to_cpu(fc_inode.fc_ino);
1540 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1541 
1542 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1543 	if (!IS_ERR(inode)) {
1544 		ext4_ext_clear_bb(inode);
1545 		iput(inode);
1546 	}
1547 	inode = NULL;
1548 
1549 	ret = ext4_fc_record_modified_inode(sb, ino);
1550 	if (ret)
1551 		goto out;
1552 
1553 	raw_fc_inode = (struct ext4_inode *)
1554 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1555 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1556 	if (ret)
1557 		goto out;
1558 
1559 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1560 	raw_inode = ext4_raw_inode(&iloc);
1561 
1562 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1563 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1564 	       inode_len - off_gen);
1565 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1566 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1567 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1568 			memset(eh, 0, sizeof(*eh));
1569 			eh->eh_magic = EXT4_EXT_MAGIC;
1570 			eh->eh_max = cpu_to_le16(
1571 				(sizeof(raw_inode->i_block) -
1572 				 sizeof(struct ext4_extent_header))
1573 				 / sizeof(struct ext4_extent));
1574 		}
1575 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1576 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1577 			sizeof(raw_inode->i_block));
1578 	}
1579 
1580 	/* Immediately update the inode on disk. */
1581 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1582 	if (ret)
1583 		goto out;
1584 	ret = sync_dirty_buffer(iloc.bh);
1585 	if (ret)
1586 		goto out;
1587 	ret = ext4_mark_inode_used(sb, ino);
1588 	if (ret)
1589 		goto out;
1590 
1591 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1592 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1593 	if (IS_ERR(inode)) {
1594 		ext4_debug("Inode not found.");
1595 		return -EFSCORRUPTED;
1596 	}
1597 
1598 	/*
1599 	 * Our allocator could have made different decisions than before
1600 	 * crashing. This should be fixed but until then, we calculate
1601 	 * the number of blocks the inode.
1602 	 */
1603 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1604 		ext4_ext_replay_set_iblocks(inode);
1605 
1606 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1607 	ext4_reset_inode_seed(inode);
1608 
1609 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1610 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1611 	sync_dirty_buffer(iloc.bh);
1612 	brelse(iloc.bh);
1613 out:
1614 	iput(inode);
1615 	if (!ret)
1616 		blkdev_issue_flush(sb->s_bdev);
1617 
1618 	return 0;
1619 }
1620 
1621 /*
1622  * Dentry create replay function.
1623  *
1624  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1625  * inode for which we are trying to create a dentry here, should already have
1626  * been replayed before we start here.
1627  */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1628 static int ext4_fc_replay_create(struct super_block *sb,
1629 				 struct ext4_fc_tl_mem *tl, u8 *val)
1630 {
1631 	int ret = 0;
1632 	struct inode *inode = NULL;
1633 	struct inode *dir = NULL;
1634 	struct dentry_info_args darg;
1635 
1636 	tl_to_darg(&darg, tl, val);
1637 
1638 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1639 			darg.parent_ino, darg.dname_len);
1640 
1641 	/* This takes care of update group descriptor and other metadata */
1642 	ret = ext4_mark_inode_used(sb, darg.ino);
1643 	if (ret)
1644 		goto out;
1645 
1646 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1647 	if (IS_ERR(inode)) {
1648 		ext4_debug("inode %d not found.", darg.ino);
1649 		inode = NULL;
1650 		ret = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	if (S_ISDIR(inode->i_mode)) {
1655 		/*
1656 		 * If we are creating a directory, we need to make sure that the
1657 		 * dot and dot dot dirents are setup properly.
1658 		 */
1659 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1660 		if (IS_ERR(dir)) {
1661 			ext4_debug("Dir %d not found.", darg.ino);
1662 			goto out;
1663 		}
1664 		ret = ext4_init_new_dir(NULL, dir, inode);
1665 		iput(dir);
1666 		if (ret) {
1667 			ret = 0;
1668 			goto out;
1669 		}
1670 	}
1671 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1672 	if (ret)
1673 		goto out;
1674 	set_nlink(inode, 1);
1675 	ext4_mark_inode_dirty(NULL, inode);
1676 out:
1677 	iput(inode);
1678 	return ret;
1679 }
1680 
1681 /*
1682  * Record physical disk regions which are in use as per fast commit area,
1683  * and used by inodes during replay phase. Our simple replay phase
1684  * allocator excludes these regions from allocation.
1685  */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1686 int ext4_fc_record_regions(struct super_block *sb, int ino,
1687 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1688 {
1689 	struct ext4_fc_replay_state *state;
1690 	struct ext4_fc_alloc_region *region;
1691 
1692 	state = &EXT4_SB(sb)->s_fc_replay_state;
1693 	/*
1694 	 * during replay phase, the fc_regions_valid may not same as
1695 	 * fc_regions_used, update it when do new additions.
1696 	 */
1697 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1698 		state->fc_regions_used = state->fc_regions_valid;
1699 	if (state->fc_regions_used == state->fc_regions_size) {
1700 		struct ext4_fc_alloc_region *fc_regions;
1701 
1702 		fc_regions = krealloc(state->fc_regions,
1703 				      sizeof(struct ext4_fc_alloc_region) *
1704 				      (state->fc_regions_size +
1705 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1706 				      GFP_KERNEL);
1707 		if (!fc_regions)
1708 			return -ENOMEM;
1709 		state->fc_regions_size +=
1710 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1711 		state->fc_regions = fc_regions;
1712 	}
1713 	region = &state->fc_regions[state->fc_regions_used++];
1714 	region->ino = ino;
1715 	region->lblk = lblk;
1716 	region->pblk = pblk;
1717 	region->len = len;
1718 
1719 	if (replay)
1720 		state->fc_regions_valid++;
1721 
1722 	return 0;
1723 }
1724 
1725 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1726 static int ext4_fc_replay_add_range(struct super_block *sb,
1727 				    struct ext4_fc_tl_mem *tl, u8 *val)
1728 {
1729 	struct ext4_fc_add_range fc_add_ex;
1730 	struct ext4_extent newex, *ex;
1731 	struct inode *inode;
1732 	ext4_lblk_t start, cur;
1733 	int remaining, len;
1734 	ext4_fsblk_t start_pblk;
1735 	struct ext4_map_blocks map;
1736 	struct ext4_ext_path *path = NULL;
1737 	int ret;
1738 
1739 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1740 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1741 
1742 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1743 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1744 		ext4_ext_get_actual_len(ex));
1745 
1746 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1747 	if (IS_ERR(inode)) {
1748 		ext4_debug("Inode not found.");
1749 		return 0;
1750 	}
1751 
1752 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1753 	if (ret)
1754 		goto out;
1755 
1756 	start = le32_to_cpu(ex->ee_block);
1757 	start_pblk = ext4_ext_pblock(ex);
1758 	len = ext4_ext_get_actual_len(ex);
1759 
1760 	cur = start;
1761 	remaining = len;
1762 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1763 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1764 		  inode->i_ino);
1765 
1766 	while (remaining > 0) {
1767 		map.m_lblk = cur;
1768 		map.m_len = remaining;
1769 		map.m_pblk = 0;
1770 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1771 
1772 		if (ret < 0)
1773 			goto out;
1774 
1775 		if (ret == 0) {
1776 			/* Range is not mapped */
1777 			path = ext4_find_extent(inode, cur, path, 0);
1778 			if (IS_ERR(path))
1779 				goto out;
1780 			memset(&newex, 0, sizeof(newex));
1781 			newex.ee_block = cpu_to_le32(cur);
1782 			ext4_ext_store_pblock(
1783 				&newex, start_pblk + cur - start);
1784 			newex.ee_len = cpu_to_le16(map.m_len);
1785 			if (ext4_ext_is_unwritten(ex))
1786 				ext4_ext_mark_unwritten(&newex);
1787 			down_write(&EXT4_I(inode)->i_data_sem);
1788 			path = ext4_ext_insert_extent(NULL, inode,
1789 						      path, &newex, 0);
1790 			up_write((&EXT4_I(inode)->i_data_sem));
1791 			if (IS_ERR(path))
1792 				goto out;
1793 			goto next;
1794 		}
1795 
1796 		if (start_pblk + cur - start != map.m_pblk) {
1797 			/*
1798 			 * Logical to physical mapping changed. This can happen
1799 			 * if this range was removed and then reallocated to
1800 			 * map to new physical blocks during a fast commit.
1801 			 */
1802 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1803 					ext4_ext_is_unwritten(ex),
1804 					start_pblk + cur - start);
1805 			if (ret)
1806 				goto out;
1807 			/*
1808 			 * Mark the old blocks as free since they aren't used
1809 			 * anymore. We maintain an array of all the modified
1810 			 * inodes. In case these blocks are still used at either
1811 			 * a different logical range in the same inode or in
1812 			 * some different inode, we will mark them as allocated
1813 			 * at the end of the FC replay using our array of
1814 			 * modified inodes.
1815 			 */
1816 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1817 			goto next;
1818 		}
1819 
1820 		/* Range is mapped and needs a state change */
1821 		ext4_debug("Converting from %ld to %d %lld",
1822 				map.m_flags & EXT4_MAP_UNWRITTEN,
1823 			ext4_ext_is_unwritten(ex), map.m_pblk);
1824 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1825 					ext4_ext_is_unwritten(ex), map.m_pblk);
1826 		if (ret)
1827 			goto out;
1828 		/*
1829 		 * We may have split the extent tree while toggling the state.
1830 		 * Try to shrink the extent tree now.
1831 		 */
1832 		ext4_ext_replay_shrink_inode(inode, start + len);
1833 next:
1834 		cur += map.m_len;
1835 		remaining -= map.m_len;
1836 	}
1837 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1838 					sb->s_blocksize_bits);
1839 out:
1840 	ext4_free_ext_path(path);
1841 	iput(inode);
1842 	return 0;
1843 }
1844 
1845 /* Replay DEL_RANGE tag */
1846 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1847 ext4_fc_replay_del_range(struct super_block *sb,
1848 			 struct ext4_fc_tl_mem *tl, u8 *val)
1849 {
1850 	struct inode *inode;
1851 	struct ext4_fc_del_range lrange;
1852 	struct ext4_map_blocks map;
1853 	ext4_lblk_t cur, remaining;
1854 	int ret;
1855 
1856 	memcpy(&lrange, val, sizeof(lrange));
1857 	cur = le32_to_cpu(lrange.fc_lblk);
1858 	remaining = le32_to_cpu(lrange.fc_len);
1859 
1860 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1861 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1862 
1863 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1864 	if (IS_ERR(inode)) {
1865 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1866 		return 0;
1867 	}
1868 
1869 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1870 	if (ret)
1871 		goto out;
1872 
1873 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1874 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1875 			le32_to_cpu(lrange.fc_len));
1876 	while (remaining > 0) {
1877 		map.m_lblk = cur;
1878 		map.m_len = remaining;
1879 
1880 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1881 		if (ret < 0)
1882 			goto out;
1883 		if (ret > 0) {
1884 			remaining -= ret;
1885 			cur += ret;
1886 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1887 		} else {
1888 			remaining -= map.m_len;
1889 			cur += map.m_len;
1890 		}
1891 	}
1892 
1893 	down_write(&EXT4_I(inode)->i_data_sem);
1894 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1895 				le32_to_cpu(lrange.fc_lblk) +
1896 				le32_to_cpu(lrange.fc_len) - 1);
1897 	up_write(&EXT4_I(inode)->i_data_sem);
1898 	if (ret)
1899 		goto out;
1900 	ext4_ext_replay_shrink_inode(inode,
1901 		i_size_read(inode) >> sb->s_blocksize_bits);
1902 	ext4_mark_inode_dirty(NULL, inode);
1903 out:
1904 	iput(inode);
1905 	return 0;
1906 }
1907 
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1908 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1909 {
1910 	struct ext4_fc_replay_state *state;
1911 	struct inode *inode;
1912 	struct ext4_ext_path *path = NULL;
1913 	struct ext4_map_blocks map;
1914 	int i, ret, j;
1915 	ext4_lblk_t cur, end;
1916 
1917 	state = &EXT4_SB(sb)->s_fc_replay_state;
1918 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1919 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1920 			EXT4_IGET_NORMAL);
1921 		if (IS_ERR(inode)) {
1922 			ext4_debug("Inode %d not found.",
1923 				state->fc_modified_inodes[i]);
1924 			continue;
1925 		}
1926 		cur = 0;
1927 		end = EXT_MAX_BLOCKS;
1928 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1929 			iput(inode);
1930 			continue;
1931 		}
1932 		while (cur < end) {
1933 			map.m_lblk = cur;
1934 			map.m_len = end - cur;
1935 
1936 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1937 			if (ret < 0)
1938 				break;
1939 
1940 			if (ret > 0) {
1941 				path = ext4_find_extent(inode, map.m_lblk, path, 0);
1942 				if (!IS_ERR(path)) {
1943 					for (j = 0; j < path->p_depth; j++)
1944 						ext4_mb_mark_bb(inode->i_sb,
1945 							path[j].p_block, 1, true);
1946 				} else {
1947 					path = NULL;
1948 				}
1949 				cur += ret;
1950 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1951 							map.m_len, true);
1952 			} else {
1953 				cur = cur + (map.m_len ? map.m_len : 1);
1954 			}
1955 		}
1956 		iput(inode);
1957 	}
1958 
1959 	ext4_free_ext_path(path);
1960 }
1961 
1962 /*
1963  * Check if block is in excluded regions for block allocation. The simple
1964  * allocator that runs during replay phase is calls this function to see
1965  * if it is okay to use a block.
1966  */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1967 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1968 {
1969 	int i;
1970 	struct ext4_fc_replay_state *state;
1971 
1972 	state = &EXT4_SB(sb)->s_fc_replay_state;
1973 	for (i = 0; i < state->fc_regions_valid; i++) {
1974 		if (state->fc_regions[i].ino == 0 ||
1975 			state->fc_regions[i].len == 0)
1976 			continue;
1977 		if (in_range(blk, state->fc_regions[i].pblk,
1978 					state->fc_regions[i].len))
1979 			return true;
1980 	}
1981 	return false;
1982 }
1983 
1984 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1985 void ext4_fc_replay_cleanup(struct super_block *sb)
1986 {
1987 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1988 
1989 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1990 	kfree(sbi->s_fc_replay_state.fc_regions);
1991 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1992 }
1993 
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)1994 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1995 				      int tag, int len)
1996 {
1997 	switch (tag) {
1998 	case EXT4_FC_TAG_ADD_RANGE:
1999 		return len == sizeof(struct ext4_fc_add_range);
2000 	case EXT4_FC_TAG_DEL_RANGE:
2001 		return len == sizeof(struct ext4_fc_del_range);
2002 	case EXT4_FC_TAG_CREAT:
2003 	case EXT4_FC_TAG_LINK:
2004 	case EXT4_FC_TAG_UNLINK:
2005 		len -= sizeof(struct ext4_fc_dentry_info);
2006 		return len >= 1 && len <= EXT4_NAME_LEN;
2007 	case EXT4_FC_TAG_INODE:
2008 		len -= sizeof(struct ext4_fc_inode);
2009 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2010 			len <= sbi->s_inode_size;
2011 	case EXT4_FC_TAG_PAD:
2012 		return true; /* padding can have any length */
2013 	case EXT4_FC_TAG_TAIL:
2014 		return len >= sizeof(struct ext4_fc_tail);
2015 	case EXT4_FC_TAG_HEAD:
2016 		return len == sizeof(struct ext4_fc_head);
2017 	}
2018 	return false;
2019 }
2020 
2021 /*
2022  * Recovery Scan phase handler
2023  *
2024  * This function is called during the scan phase and is responsible
2025  * for doing following things:
2026  * - Make sure the fast commit area has valid tags for replay
2027  * - Count number of tags that need to be replayed by the replay handler
2028  * - Verify CRC
2029  * - Create a list of excluded blocks for allocation during replay phase
2030  *
2031  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2032  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2033  * to indicate that scan has finished and JBD2 can now start replay phase.
2034  * It returns a negative error to indicate that there was an error. At the end
2035  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2036  * to indicate the number of tags that need to replayed during the replay phase.
2037  */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)2038 static int ext4_fc_replay_scan(journal_t *journal,
2039 				struct buffer_head *bh, int off,
2040 				tid_t expected_tid)
2041 {
2042 	struct super_block *sb = journal->j_private;
2043 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2044 	struct ext4_fc_replay_state *state;
2045 	int ret = JBD2_FC_REPLAY_CONTINUE;
2046 	struct ext4_fc_add_range ext;
2047 	struct ext4_fc_tl_mem tl;
2048 	struct ext4_fc_tail tail;
2049 	__u8 *start, *end, *cur, *val;
2050 	struct ext4_fc_head head;
2051 	struct ext4_extent *ex;
2052 
2053 	state = &sbi->s_fc_replay_state;
2054 
2055 	start = (u8 *)bh->b_data;
2056 	end = start + journal->j_blocksize;
2057 
2058 	if (state->fc_replay_expected_off == 0) {
2059 		state->fc_cur_tag = 0;
2060 		state->fc_replay_num_tags = 0;
2061 		state->fc_crc = 0;
2062 		state->fc_regions = NULL;
2063 		state->fc_regions_valid = state->fc_regions_used =
2064 			state->fc_regions_size = 0;
2065 		/* Check if we can stop early */
2066 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2067 			!= EXT4_FC_TAG_HEAD)
2068 			return 0;
2069 	}
2070 
2071 	if (off != state->fc_replay_expected_off) {
2072 		ret = -EFSCORRUPTED;
2073 		goto out_err;
2074 	}
2075 
2076 	state->fc_replay_expected_off++;
2077 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2078 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2079 		ext4_fc_get_tl(&tl, cur);
2080 		val = cur + EXT4_FC_TAG_BASE_LEN;
2081 		if (tl.fc_len > end - val ||
2082 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2083 			ret = state->fc_replay_num_tags ?
2084 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2085 			goto out_err;
2086 		}
2087 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2088 			   tag2str(tl.fc_tag), bh->b_blocknr);
2089 		switch (tl.fc_tag) {
2090 		case EXT4_FC_TAG_ADD_RANGE:
2091 			memcpy(&ext, val, sizeof(ext));
2092 			ex = (struct ext4_extent *)&ext.fc_ex;
2093 			ret = ext4_fc_record_regions(sb,
2094 				le32_to_cpu(ext.fc_ino),
2095 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2096 				ext4_ext_get_actual_len(ex), 0);
2097 			if (ret < 0)
2098 				break;
2099 			ret = JBD2_FC_REPLAY_CONTINUE;
2100 			fallthrough;
2101 		case EXT4_FC_TAG_DEL_RANGE:
2102 		case EXT4_FC_TAG_LINK:
2103 		case EXT4_FC_TAG_UNLINK:
2104 		case EXT4_FC_TAG_CREAT:
2105 		case EXT4_FC_TAG_INODE:
2106 		case EXT4_FC_TAG_PAD:
2107 			state->fc_cur_tag++;
2108 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2109 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2110 			break;
2111 		case EXT4_FC_TAG_TAIL:
2112 			state->fc_cur_tag++;
2113 			memcpy(&tail, val, sizeof(tail));
2114 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2115 						EXT4_FC_TAG_BASE_LEN +
2116 						offsetof(struct ext4_fc_tail,
2117 						fc_crc));
2118 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2119 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2120 				state->fc_replay_num_tags = state->fc_cur_tag;
2121 				state->fc_regions_valid =
2122 					state->fc_regions_used;
2123 			} else {
2124 				ret = state->fc_replay_num_tags ?
2125 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2126 			}
2127 			state->fc_crc = 0;
2128 			break;
2129 		case EXT4_FC_TAG_HEAD:
2130 			memcpy(&head, val, sizeof(head));
2131 			if (le32_to_cpu(head.fc_features) &
2132 				~EXT4_FC_SUPPORTED_FEATURES) {
2133 				ret = -EOPNOTSUPP;
2134 				break;
2135 			}
2136 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2137 				ret = JBD2_FC_REPLAY_STOP;
2138 				break;
2139 			}
2140 			state->fc_cur_tag++;
2141 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2142 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2143 			break;
2144 		default:
2145 			ret = state->fc_replay_num_tags ?
2146 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2147 		}
2148 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2149 			break;
2150 	}
2151 
2152 out_err:
2153 	trace_ext4_fc_replay_scan(sb, ret, off);
2154 	return ret;
2155 }
2156 
2157 /*
2158  * Main recovery path entry point.
2159  * The meaning of return codes is similar as above.
2160  */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2161 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2162 				enum passtype pass, int off, tid_t expected_tid)
2163 {
2164 	struct super_block *sb = journal->j_private;
2165 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2166 	struct ext4_fc_tl_mem tl;
2167 	__u8 *start, *end, *cur, *val;
2168 	int ret = JBD2_FC_REPLAY_CONTINUE;
2169 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2170 	struct ext4_fc_tail tail;
2171 
2172 	if (pass == PASS_SCAN) {
2173 		state->fc_current_pass = PASS_SCAN;
2174 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2175 	}
2176 
2177 	if (state->fc_current_pass != pass) {
2178 		state->fc_current_pass = pass;
2179 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2180 	}
2181 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2182 		ext4_debug("Replay stops\n");
2183 		ext4_fc_set_bitmaps_and_counters(sb);
2184 		return 0;
2185 	}
2186 
2187 #ifdef CONFIG_EXT4_DEBUG
2188 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2189 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2190 		return JBD2_FC_REPLAY_STOP;
2191 	}
2192 #endif
2193 
2194 	start = (u8 *)bh->b_data;
2195 	end = start + journal->j_blocksize;
2196 
2197 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2198 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2199 		ext4_fc_get_tl(&tl, cur);
2200 		val = cur + EXT4_FC_TAG_BASE_LEN;
2201 
2202 		if (state->fc_replay_num_tags == 0) {
2203 			ret = JBD2_FC_REPLAY_STOP;
2204 			ext4_fc_set_bitmaps_and_counters(sb);
2205 			break;
2206 		}
2207 
2208 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2209 		state->fc_replay_num_tags--;
2210 		switch (tl.fc_tag) {
2211 		case EXT4_FC_TAG_LINK:
2212 			ret = ext4_fc_replay_link(sb, &tl, val);
2213 			break;
2214 		case EXT4_FC_TAG_UNLINK:
2215 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2216 			break;
2217 		case EXT4_FC_TAG_ADD_RANGE:
2218 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2219 			break;
2220 		case EXT4_FC_TAG_CREAT:
2221 			ret = ext4_fc_replay_create(sb, &tl, val);
2222 			break;
2223 		case EXT4_FC_TAG_DEL_RANGE:
2224 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2225 			break;
2226 		case EXT4_FC_TAG_INODE:
2227 			ret = ext4_fc_replay_inode(sb, &tl, val);
2228 			break;
2229 		case EXT4_FC_TAG_PAD:
2230 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2231 					     tl.fc_len, 0);
2232 			break;
2233 		case EXT4_FC_TAG_TAIL:
2234 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2235 					     0, tl.fc_len, 0);
2236 			memcpy(&tail, val, sizeof(tail));
2237 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2238 			break;
2239 		case EXT4_FC_TAG_HEAD:
2240 			break;
2241 		default:
2242 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2243 			ret = -ECANCELED;
2244 			break;
2245 		}
2246 		if (ret < 0)
2247 			break;
2248 		ret = JBD2_FC_REPLAY_CONTINUE;
2249 	}
2250 	return ret;
2251 }
2252 
ext4_fc_init(struct super_block * sb,journal_t * journal)2253 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2254 {
2255 	/*
2256 	 * We set replay callback even if fast commit disabled because we may
2257 	 * could still have fast commit blocks that need to be replayed even if
2258 	 * fast commit has now been turned off.
2259 	 */
2260 	journal->j_fc_replay_callback = ext4_fc_replay;
2261 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2262 		return;
2263 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2264 }
2265 
2266 static const char * const fc_ineligible_reasons[] = {
2267 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2268 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2269 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2270 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2271 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2272 	[EXT4_FC_REASON_RESIZE] = "Resize",
2273 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2274 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2275 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2276 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2277 };
2278 
ext4_fc_info_show(struct seq_file * seq,void * v)2279 int ext4_fc_info_show(struct seq_file *seq, void *v)
2280 {
2281 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2282 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2283 	int i;
2284 
2285 	if (v != SEQ_START_TOKEN)
2286 		return 0;
2287 
2288 	seq_printf(seq,
2289 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2290 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2291 		   stats->fc_numblks,
2292 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2293 	seq_puts(seq, "Ineligible reasons:\n");
2294 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2295 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2296 			stats->fc_ineligible_reason_count[i]);
2297 
2298 	return 0;
2299 }
2300 
ext4_fc_init_dentry_cache(void)2301 int __init ext4_fc_init_dentry_cache(void)
2302 {
2303 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2304 					   SLAB_RECLAIM_ACCOUNT);
2305 
2306 	if (ext4_fc_dentry_cachep == NULL)
2307 		return -ENOMEM;
2308 
2309 	return 0;
2310 }
2311 
ext4_fc_destroy_dentry_cache(void)2312 void ext4_fc_destroy_dentry_cache(void)
2313 {
2314 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2315 }
2316