xref: /linux/lib/iov_iter.c (revision d3c82f618a9c2b764b7651afe16594ffeb50ade9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
15 
16 static __always_inline
copy_to_user_iter(void __user * iter_to,size_t progress,size_t len,void * from,void * priv2)17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 			 size_t len, void *from, void *priv2)
19 {
20 	if (should_fail_usercopy())
21 		return len;
22 	if (access_ok(iter_to, len)) {
23 		from += progress;
24 		instrument_copy_to_user(iter_to, from, len);
25 		len = raw_copy_to_user(iter_to, from, len);
26 	}
27 	return len;
28 }
29 
30 static __always_inline
copy_to_user_iter_nofault(void __user * iter_to,size_t progress,size_t len,void * from,void * priv2)31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 				 size_t len, void *from, void *priv2)
33 {
34 	ssize_t res;
35 
36 	if (should_fail_usercopy())
37 		return len;
38 
39 	from += progress;
40 	res = copy_to_user_nofault(iter_to, from, len);
41 	return res < 0 ? len : res;
42 }
43 
44 static __always_inline
copy_from_user_iter(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 			   size_t len, void *to, void *priv2)
47 {
48 	size_t res = len;
49 
50 	if (should_fail_usercopy())
51 		return len;
52 	if (access_ok(iter_from, len)) {
53 		to += progress;
54 		instrument_copy_from_user_before(to, iter_from, len);
55 		res = raw_copy_from_user(to, iter_from, len);
56 		instrument_copy_from_user_after(to, iter_from, len, res);
57 	}
58 	return res;
59 }
60 
61 static __always_inline
memcpy_to_iter(void * iter_to,size_t progress,size_t len,void * from,void * priv2)62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 		      size_t len, void *from, void *priv2)
64 {
65 	memcpy(iter_to, from + progress, len);
66 	return 0;
67 }
68 
69 static __always_inline
memcpy_from_iter(void * iter_from,size_t progress,size_t len,void * to,void * priv2)70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 			size_t len, void *to, void *priv2)
72 {
73 	memcpy(to + progress, iter_from, len);
74 	return 0;
75 }
76 
77 /*
78  * fault_in_iov_iter_readable - fault in iov iterator for reading
79  * @i: iterator
80  * @size: maximum length
81  *
82  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83  * @size.  For each iovec, fault in each page that constitutes the iovec.
84  *
85  * Returns the number of bytes not faulted in (like copy_to_user() and
86  * copy_from_user()).
87  *
88  * Always returns 0 for non-userspace iterators.
89  */
fault_in_iov_iter_readable(const struct iov_iter * i,size_t size)90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91 {
92 	if (iter_is_ubuf(i)) {
93 		size_t n = min(size, iov_iter_count(i));
94 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95 		return size - n;
96 	} else if (iter_is_iovec(i)) {
97 		size_t count = min(size, iov_iter_count(i));
98 		const struct iovec *p;
99 		size_t skip;
100 
101 		size -= count;
102 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 			size_t len = min(count, p->iov_len - skip);
104 			size_t ret;
105 
106 			if (unlikely(!len))
107 				continue;
108 			ret = fault_in_readable(p->iov_base + skip, len);
109 			count -= len - ret;
110 			if (ret)
111 				break;
112 		}
113 		return count + size;
114 	}
115 	return 0;
116 }
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
118 
119 /*
120  * fault_in_iov_iter_writeable - fault in iov iterator for writing
121  * @i: iterator
122  * @size: maximum length
123  *
124  * Faults in the iterator using get_user_pages(), i.e., without triggering
125  * hardware page faults.  This is primarily useful when we already know that
126  * some or all of the pages in @i aren't in memory.
127  *
128  * Returns the number of bytes not faulted in, like copy_to_user() and
129  * copy_from_user().
130  *
131  * Always returns 0 for non-user-space iterators.
132  */
fault_in_iov_iter_writeable(const struct iov_iter * i,size_t size)133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134 {
135 	if (iter_is_ubuf(i)) {
136 		size_t n = min(size, iov_iter_count(i));
137 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138 		return size - n;
139 	} else if (iter_is_iovec(i)) {
140 		size_t count = min(size, iov_iter_count(i));
141 		const struct iovec *p;
142 		size_t skip;
143 
144 		size -= count;
145 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 			size_t len = min(count, p->iov_len - skip);
147 			size_t ret;
148 
149 			if (unlikely(!len))
150 				continue;
151 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
152 			count -= len - ret;
153 			if (ret)
154 				break;
155 		}
156 		return count + size;
157 	}
158 	return 0;
159 }
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161 
iov_iter_init(struct iov_iter * i,unsigned int direction,const struct iovec * iov,unsigned long nr_segs,size_t count)162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 			const struct iovec *iov, unsigned long nr_segs,
164 			size_t count)
165 {
166 	WARN_ON(direction & ~(READ | WRITE));
167 	*i = (struct iov_iter) {
168 		.iter_type = ITER_IOVEC,
169 		.nofault = false,
170 		.data_source = direction,
171 		.__iov = iov,
172 		.nr_segs = nr_segs,
173 		.iov_offset = 0,
174 		.count = count
175 	};
176 }
177 EXPORT_SYMBOL(iov_iter_init);
178 
_copy_to_iter(const void * addr,size_t bytes,struct iov_iter * i)179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180 {
181 	if (WARN_ON_ONCE(i->data_source))
182 		return 0;
183 	if (user_backed_iter(i))
184 		might_fault();
185 	return iterate_and_advance(i, bytes, (void *)addr,
186 				   copy_to_user_iter, memcpy_to_iter);
187 }
188 EXPORT_SYMBOL(_copy_to_iter);
189 
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
copy_to_user_iter_mc(void __user * iter_to,size_t progress,size_t len,void * from,void * priv2)192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193 			    size_t len, void *from, void *priv2)
194 {
195 	if (access_ok(iter_to, len)) {
196 		from += progress;
197 		instrument_copy_to_user(iter_to, from, len);
198 		len = copy_mc_to_user(iter_to, from, len);
199 	}
200 	return len;
201 }
202 
203 static __always_inline
memcpy_to_iter_mc(void * iter_to,size_t progress,size_t len,void * from,void * priv2)204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205 			 size_t len, void *from, void *priv2)
206 {
207 	return copy_mc_to_kernel(iter_to, from + progress, len);
208 }
209 
210 /**
211  * _copy_mc_to_iter - copy to iter with source memory error exception handling
212  * @addr: source kernel address
213  * @bytes: total transfer length
214  * @i: destination iterator
215  *
216  * The pmem driver deploys this for the dax operation
217  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219  * successfully copied.
220  *
221  * The main differences between this and typical _copy_to_iter().
222  *
223  * * Typical tail/residue handling after a fault retries the copy
224  *   byte-by-byte until the fault happens again. Re-triggering machine
225  *   checks is potentially fatal so the implementation uses source
226  *   alignment and poison alignment assumptions to avoid re-triggering
227  *   hardware exceptions.
228  *
229  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
230  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231  *
232  * Return: number of bytes copied (may be %0)
233  */
_copy_mc_to_iter(const void * addr,size_t bytes,struct iov_iter * i)234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235 {
236 	if (WARN_ON_ONCE(i->data_source))
237 		return 0;
238 	if (user_backed_iter(i))
239 		might_fault();
240 	return iterate_and_advance(i, bytes, (void *)addr,
241 				   copy_to_user_iter_mc, memcpy_to_iter_mc);
242 }
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
245 
246 static __always_inline
__copy_from_iter(void * addr,size_t bytes,struct iov_iter * i)247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248 {
249 	return iterate_and_advance(i, bytes, addr,
250 				   copy_from_user_iter, memcpy_from_iter);
251 }
252 
_copy_from_iter(void * addr,size_t bytes,struct iov_iter * i)253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254 {
255 	if (WARN_ON_ONCE(!i->data_source))
256 		return 0;
257 
258 	if (user_backed_iter(i))
259 		might_fault();
260 	return __copy_from_iter(addr, bytes, i);
261 }
262 EXPORT_SYMBOL(_copy_from_iter);
263 
264 static __always_inline
copy_from_user_iter_nocache(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266 				   size_t len, void *to, void *priv2)
267 {
268 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269 }
270 
_copy_from_iter_nocache(void * addr,size_t bytes,struct iov_iter * i)271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272 {
273 	if (WARN_ON_ONCE(!i->data_source))
274 		return 0;
275 
276 	return iterate_and_advance(i, bytes, addr,
277 				   copy_from_user_iter_nocache,
278 				   memcpy_from_iter);
279 }
280 EXPORT_SYMBOL(_copy_from_iter_nocache);
281 
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
copy_from_user_iter_flushcache(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285 				      size_t len, void *to, void *priv2)
286 {
287 	return __copy_from_user_flushcache(to + progress, iter_from, len);
288 }
289 
290 static __always_inline
memcpy_from_iter_flushcache(void * iter_from,size_t progress,size_t len,void * to,void * priv2)291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292 				   size_t len, void *to, void *priv2)
293 {
294 	memcpy_flushcache(to + progress, iter_from, len);
295 	return 0;
296 }
297 
298 /**
299  * _copy_from_iter_flushcache - write destination through cpu cache
300  * @addr: destination kernel address
301  * @bytes: total transfer length
302  * @i: source iterator
303  *
304  * The pmem driver arranges for filesystem-dax to use this facility via
305  * dax_copy_from_iter() for ensuring that writes to persistent memory
306  * are flushed through the CPU cache. It is differentiated from
307  * _copy_from_iter_nocache() in that guarantees all data is flushed for
308  * all iterator types. The _copy_from_iter_nocache() only attempts to
309  * bypass the cache for the ITER_IOVEC case, and on some archs may use
310  * instructions that strand dirty-data in the cache.
311  *
312  * Return: number of bytes copied (may be %0)
313  */
_copy_from_iter_flushcache(void * addr,size_t bytes,struct iov_iter * i)314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315 {
316 	if (WARN_ON_ONCE(!i->data_source))
317 		return 0;
318 
319 	return iterate_and_advance(i, bytes, addr,
320 				   copy_from_user_iter_flushcache,
321 				   memcpy_from_iter_flushcache);
322 }
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324 #endif
325 
page_copy_sane(struct page * page,size_t offset,size_t n)326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327 {
328 	struct page *head;
329 	size_t v = n + offset;
330 
331 	/*
332 	 * The general case needs to access the page order in order
333 	 * to compute the page size.
334 	 * However, we mostly deal with order-0 pages and thus can
335 	 * avoid a possible cache line miss for requests that fit all
336 	 * page orders.
337 	 */
338 	if (n <= v && v <= PAGE_SIZE)
339 		return true;
340 
341 	head = compound_head(page);
342 	v += (page - head) << PAGE_SHIFT;
343 
344 	if (WARN_ON(n > v || v > page_size(head)))
345 		return false;
346 	return true;
347 }
348 
copy_page_to_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350 			 struct iov_iter *i)
351 {
352 	size_t res = 0;
353 	if (!page_copy_sane(page, offset, bytes))
354 		return 0;
355 	if (WARN_ON_ONCE(i->data_source))
356 		return 0;
357 	page += offset / PAGE_SIZE; // first subpage
358 	offset %= PAGE_SIZE;
359 	while (1) {
360 		void *kaddr = kmap_local_page(page);
361 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362 		n = _copy_to_iter(kaddr + offset, n, i);
363 		kunmap_local(kaddr);
364 		res += n;
365 		bytes -= n;
366 		if (!bytes || !n)
367 			break;
368 		offset += n;
369 		if (offset == PAGE_SIZE) {
370 			page++;
371 			offset = 0;
372 		}
373 	}
374 	return res;
375 }
376 EXPORT_SYMBOL(copy_page_to_iter);
377 
copy_page_to_iter_nofault(struct page * page,unsigned offset,size_t bytes,struct iov_iter * i)378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379 				 struct iov_iter *i)
380 {
381 	size_t res = 0;
382 
383 	if (!page_copy_sane(page, offset, bytes))
384 		return 0;
385 	if (WARN_ON_ONCE(i->data_source))
386 		return 0;
387 	page += offset / PAGE_SIZE; // first subpage
388 	offset %= PAGE_SIZE;
389 	while (1) {
390 		void *kaddr = kmap_local_page(page);
391 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392 
393 		n = iterate_and_advance(i, n, kaddr + offset,
394 					copy_to_user_iter_nofault,
395 					memcpy_to_iter);
396 		kunmap_local(kaddr);
397 		res += n;
398 		bytes -= n;
399 		if (!bytes || !n)
400 			break;
401 		offset += n;
402 		if (offset == PAGE_SIZE) {
403 			page++;
404 			offset = 0;
405 		}
406 	}
407 	return res;
408 }
409 EXPORT_SYMBOL(copy_page_to_iter_nofault);
410 
copy_page_from_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412 			 struct iov_iter *i)
413 {
414 	size_t res = 0;
415 	if (!page_copy_sane(page, offset, bytes))
416 		return 0;
417 	page += offset / PAGE_SIZE; // first subpage
418 	offset %= PAGE_SIZE;
419 	while (1) {
420 		void *kaddr = kmap_local_page(page);
421 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422 		n = _copy_from_iter(kaddr + offset, n, i);
423 		kunmap_local(kaddr);
424 		res += n;
425 		bytes -= n;
426 		if (!bytes || !n)
427 			break;
428 		offset += n;
429 		if (offset == PAGE_SIZE) {
430 			page++;
431 			offset = 0;
432 		}
433 	}
434 	return res;
435 }
436 EXPORT_SYMBOL(copy_page_from_iter);
437 
438 static __always_inline
zero_to_user_iter(void __user * iter_to,size_t progress,size_t len,void * priv,void * priv2)439 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440 			 size_t len, void *priv, void *priv2)
441 {
442 	return clear_user(iter_to, len);
443 }
444 
445 static __always_inline
zero_to_iter(void * iter_to,size_t progress,size_t len,void * priv,void * priv2)446 size_t zero_to_iter(void *iter_to, size_t progress,
447 		    size_t len, void *priv, void *priv2)
448 {
449 	memset(iter_to, 0, len);
450 	return 0;
451 }
452 
iov_iter_zero(size_t bytes,struct iov_iter * i)453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454 {
455 	return iterate_and_advance(i, bytes, NULL,
456 				   zero_to_user_iter, zero_to_iter);
457 }
458 EXPORT_SYMBOL(iov_iter_zero);
459 
copy_folio_from_iter_atomic(struct folio * folio,size_t offset,size_t bytes,struct iov_iter * i)460 size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset,
461 		size_t bytes, struct iov_iter *i)
462 {
463 	size_t n, copied = 0;
464 
465 	if (!page_copy_sane(&folio->page, offset, bytes))
466 		return 0;
467 	if (WARN_ON_ONCE(!i->data_source))
468 		return 0;
469 
470 	do {
471 		char *to = kmap_local_folio(folio, offset);
472 
473 		n = bytes - copied;
474 		if (folio_test_partial_kmap(folio) &&
475 		    n > PAGE_SIZE - offset_in_page(offset))
476 			n = PAGE_SIZE - offset_in_page(offset);
477 
478 		pagefault_disable();
479 		n = __copy_from_iter(to, n, i);
480 		pagefault_enable();
481 		kunmap_local(to);
482 		copied += n;
483 		offset += n;
484 	} while (copied != bytes && n > 0);
485 
486 	return copied;
487 }
488 EXPORT_SYMBOL(copy_folio_from_iter_atomic);
489 
iov_iter_bvec_advance(struct iov_iter * i,size_t size)490 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
491 {
492 	const struct bio_vec *bvec, *end;
493 
494 	if (!i->count)
495 		return;
496 	i->count -= size;
497 
498 	size += i->iov_offset;
499 
500 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
501 		if (likely(size < bvec->bv_len))
502 			break;
503 		size -= bvec->bv_len;
504 	}
505 	i->iov_offset = size;
506 	i->nr_segs -= bvec - i->bvec;
507 	i->bvec = bvec;
508 }
509 
iov_iter_iovec_advance(struct iov_iter * i,size_t size)510 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
511 {
512 	const struct iovec *iov, *end;
513 
514 	if (!i->count)
515 		return;
516 	i->count -= size;
517 
518 	size += i->iov_offset; // from beginning of current segment
519 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
520 		if (likely(size < iov->iov_len))
521 			break;
522 		size -= iov->iov_len;
523 	}
524 	i->iov_offset = size;
525 	i->nr_segs -= iov - iter_iov(i);
526 	i->__iov = iov;
527 }
528 
iov_iter_folioq_advance(struct iov_iter * i,size_t size)529 static void iov_iter_folioq_advance(struct iov_iter *i, size_t size)
530 {
531 	const struct folio_queue *folioq = i->folioq;
532 	unsigned int slot = i->folioq_slot;
533 
534 	if (!i->count)
535 		return;
536 	i->count -= size;
537 
538 	if (slot >= folioq_nr_slots(folioq)) {
539 		folioq = folioq->next;
540 		slot = 0;
541 	}
542 
543 	size += i->iov_offset; /* From beginning of current segment. */
544 	do {
545 		size_t fsize = folioq_folio_size(folioq, slot);
546 
547 		if (likely(size < fsize))
548 			break;
549 		size -= fsize;
550 		slot++;
551 		if (slot >= folioq_nr_slots(folioq) && folioq->next) {
552 			folioq = folioq->next;
553 			slot = 0;
554 		}
555 	} while (size);
556 
557 	i->iov_offset = size;
558 	i->folioq_slot = slot;
559 	i->folioq = folioq;
560 }
561 
iov_iter_advance(struct iov_iter * i,size_t size)562 void iov_iter_advance(struct iov_iter *i, size_t size)
563 {
564 	if (unlikely(i->count < size))
565 		size = i->count;
566 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
567 		i->iov_offset += size;
568 		i->count -= size;
569 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
570 		/* iovec and kvec have identical layouts */
571 		iov_iter_iovec_advance(i, size);
572 	} else if (iov_iter_is_bvec(i)) {
573 		iov_iter_bvec_advance(i, size);
574 	} else if (iov_iter_is_folioq(i)) {
575 		iov_iter_folioq_advance(i, size);
576 	} else if (iov_iter_is_discard(i)) {
577 		i->count -= size;
578 	}
579 }
580 EXPORT_SYMBOL(iov_iter_advance);
581 
iov_iter_folioq_revert(struct iov_iter * i,size_t unroll)582 static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll)
583 {
584 	const struct folio_queue *folioq = i->folioq;
585 	unsigned int slot = i->folioq_slot;
586 
587 	for (;;) {
588 		size_t fsize;
589 
590 		if (slot == 0) {
591 			folioq = folioq->prev;
592 			slot = folioq_nr_slots(folioq);
593 		}
594 		slot--;
595 
596 		fsize = folioq_folio_size(folioq, slot);
597 		if (unroll <= fsize) {
598 			i->iov_offset = fsize - unroll;
599 			break;
600 		}
601 		unroll -= fsize;
602 	}
603 
604 	i->folioq_slot = slot;
605 	i->folioq = folioq;
606 }
607 
iov_iter_revert(struct iov_iter * i,size_t unroll)608 void iov_iter_revert(struct iov_iter *i, size_t unroll)
609 {
610 	if (!unroll)
611 		return;
612 	if (WARN_ON(unroll > MAX_RW_COUNT))
613 		return;
614 	i->count += unroll;
615 	if (unlikely(iov_iter_is_discard(i)))
616 		return;
617 	if (unroll <= i->iov_offset) {
618 		i->iov_offset -= unroll;
619 		return;
620 	}
621 	unroll -= i->iov_offset;
622 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
623 		BUG(); /* We should never go beyond the start of the specified
624 			* range since we might then be straying into pages that
625 			* aren't pinned.
626 			*/
627 	} else if (iov_iter_is_bvec(i)) {
628 		const struct bio_vec *bvec = i->bvec;
629 		while (1) {
630 			size_t n = (--bvec)->bv_len;
631 			i->nr_segs++;
632 			if (unroll <= n) {
633 				i->bvec = bvec;
634 				i->iov_offset = n - unroll;
635 				return;
636 			}
637 			unroll -= n;
638 		}
639 	} else if (iov_iter_is_folioq(i)) {
640 		i->iov_offset = 0;
641 		iov_iter_folioq_revert(i, unroll);
642 	} else { /* same logics for iovec and kvec */
643 		const struct iovec *iov = iter_iov(i);
644 		while (1) {
645 			size_t n = (--iov)->iov_len;
646 			i->nr_segs++;
647 			if (unroll <= n) {
648 				i->__iov = iov;
649 				i->iov_offset = n - unroll;
650 				return;
651 			}
652 			unroll -= n;
653 		}
654 	}
655 }
656 EXPORT_SYMBOL(iov_iter_revert);
657 
658 /*
659  * Return the count of just the current iov_iter segment.
660  */
iov_iter_single_seg_count(const struct iov_iter * i)661 size_t iov_iter_single_seg_count(const struct iov_iter *i)
662 {
663 	if (i->nr_segs > 1) {
664 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
665 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
666 		if (iov_iter_is_bvec(i))
667 			return min(i->count, i->bvec->bv_len - i->iov_offset);
668 	}
669 	if (unlikely(iov_iter_is_folioq(i)))
670 		return !i->count ? 0 :
671 			umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count);
672 	return i->count;
673 }
674 EXPORT_SYMBOL(iov_iter_single_seg_count);
675 
iov_iter_kvec(struct iov_iter * i,unsigned int direction,const struct kvec * kvec,unsigned long nr_segs,size_t count)676 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
677 			const struct kvec *kvec, unsigned long nr_segs,
678 			size_t count)
679 {
680 	WARN_ON(direction & ~(READ | WRITE));
681 	*i = (struct iov_iter){
682 		.iter_type = ITER_KVEC,
683 		.data_source = direction,
684 		.kvec = kvec,
685 		.nr_segs = nr_segs,
686 		.iov_offset = 0,
687 		.count = count
688 	};
689 }
690 EXPORT_SYMBOL(iov_iter_kvec);
691 
iov_iter_bvec(struct iov_iter * i,unsigned int direction,const struct bio_vec * bvec,unsigned long nr_segs,size_t count)692 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
693 			const struct bio_vec *bvec, unsigned long nr_segs,
694 			size_t count)
695 {
696 	WARN_ON(direction & ~(READ | WRITE));
697 	*i = (struct iov_iter){
698 		.iter_type = ITER_BVEC,
699 		.data_source = direction,
700 		.bvec = bvec,
701 		.nr_segs = nr_segs,
702 		.iov_offset = 0,
703 		.count = count
704 	};
705 }
706 EXPORT_SYMBOL(iov_iter_bvec);
707 
708 /**
709  * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
710  * @i: The iterator to initialise.
711  * @direction: The direction of the transfer.
712  * @folioq: The starting point in the folio queue.
713  * @first_slot: The first slot in the folio queue to use
714  * @offset: The offset into the folio in the first slot to start at
715  * @count: The size of the I/O buffer in bytes.
716  *
717  * Set up an I/O iterator to either draw data out of the pages attached to an
718  * inode or to inject data into those pages.  The pages *must* be prevented
719  * from evaporation, either by taking a ref on them or locking them by the
720  * caller.
721  */
iov_iter_folio_queue(struct iov_iter * i,unsigned int direction,const struct folio_queue * folioq,unsigned int first_slot,unsigned int offset,size_t count)722 void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
723 			  const struct folio_queue *folioq, unsigned int first_slot,
724 			  unsigned int offset, size_t count)
725 {
726 	BUG_ON(direction & ~1);
727 	*i = (struct iov_iter) {
728 		.iter_type = ITER_FOLIOQ,
729 		.data_source = direction,
730 		.folioq = folioq,
731 		.folioq_slot = first_slot,
732 		.count = count,
733 		.iov_offset = offset,
734 	};
735 }
736 EXPORT_SYMBOL(iov_iter_folio_queue);
737 
738 /**
739  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
740  * @i: The iterator to initialise.
741  * @direction: The direction of the transfer.
742  * @xarray: The xarray to access.
743  * @start: The start file position.
744  * @count: The size of the I/O buffer in bytes.
745  *
746  * Set up an I/O iterator to either draw data out of the pages attached to an
747  * inode or to inject data into those pages.  The pages *must* be prevented
748  * from evaporation, either by taking a ref on them or locking them by the
749  * caller.
750  */
iov_iter_xarray(struct iov_iter * i,unsigned int direction,struct xarray * xarray,loff_t start,size_t count)751 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
752 		     struct xarray *xarray, loff_t start, size_t count)
753 {
754 	BUG_ON(direction & ~1);
755 	*i = (struct iov_iter) {
756 		.iter_type = ITER_XARRAY,
757 		.data_source = direction,
758 		.xarray = xarray,
759 		.xarray_start = start,
760 		.count = count,
761 		.iov_offset = 0
762 	};
763 }
764 EXPORT_SYMBOL(iov_iter_xarray);
765 
766 /**
767  * iov_iter_discard - Initialise an I/O iterator that discards data
768  * @i: The iterator to initialise.
769  * @direction: The direction of the transfer.
770  * @count: The size of the I/O buffer in bytes.
771  *
772  * Set up an I/O iterator that just discards everything that's written to it.
773  * It's only available as a READ iterator.
774  */
iov_iter_discard(struct iov_iter * i,unsigned int direction,size_t count)775 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
776 {
777 	BUG_ON(direction != READ);
778 	*i = (struct iov_iter){
779 		.iter_type = ITER_DISCARD,
780 		.data_source = false,
781 		.count = count,
782 		.iov_offset = 0
783 	};
784 }
785 EXPORT_SYMBOL(iov_iter_discard);
786 
iov_iter_aligned_iovec(const struct iov_iter * i,unsigned addr_mask,unsigned len_mask)787 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
788 				   unsigned len_mask)
789 {
790 	const struct iovec *iov = iter_iov(i);
791 	size_t size = i->count;
792 	size_t skip = i->iov_offset;
793 
794 	do {
795 		size_t len = iov->iov_len - skip;
796 
797 		if (len > size)
798 			len = size;
799 		if (len & len_mask)
800 			return false;
801 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
802 			return false;
803 
804 		iov++;
805 		size -= len;
806 		skip = 0;
807 	} while (size);
808 
809 	return true;
810 }
811 
iov_iter_aligned_bvec(const struct iov_iter * i,unsigned addr_mask,unsigned len_mask)812 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
813 				  unsigned len_mask)
814 {
815 	const struct bio_vec *bvec = i->bvec;
816 	unsigned skip = i->iov_offset;
817 	size_t size = i->count;
818 
819 	do {
820 		size_t len = bvec->bv_len - skip;
821 
822 		if (len > size)
823 			len = size;
824 		if (len & len_mask)
825 			return false;
826 		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
827 			return false;
828 
829 		bvec++;
830 		size -= len;
831 		skip = 0;
832 	} while (size);
833 
834 	return true;
835 }
836 
837 /**
838  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
839  * 	are aligned to the parameters.
840  *
841  * @i: &struct iov_iter to restore
842  * @addr_mask: bit mask to check against the iov element's addresses
843  * @len_mask: bit mask to check against the iov element's lengths
844  *
845  * Return: false if any addresses or lengths intersect with the provided masks
846  */
iov_iter_is_aligned(const struct iov_iter * i,unsigned addr_mask,unsigned len_mask)847 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
848 			 unsigned len_mask)
849 {
850 	if (likely(iter_is_ubuf(i))) {
851 		if (i->count & len_mask)
852 			return false;
853 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
854 			return false;
855 		return true;
856 	}
857 
858 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
859 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
860 
861 	if (iov_iter_is_bvec(i))
862 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
863 
864 	/* With both xarray and folioq types, we're dealing with whole folios. */
865 	if (iov_iter_is_xarray(i)) {
866 		if (i->count & len_mask)
867 			return false;
868 		if ((i->xarray_start + i->iov_offset) & addr_mask)
869 			return false;
870 	}
871 	if (iov_iter_is_folioq(i)) {
872 		if (i->count & len_mask)
873 			return false;
874 		if (i->iov_offset & addr_mask)
875 			return false;
876 	}
877 
878 	return true;
879 }
880 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
881 
iov_iter_alignment_iovec(const struct iov_iter * i)882 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
883 {
884 	const struct iovec *iov = iter_iov(i);
885 	unsigned long res = 0;
886 	size_t size = i->count;
887 	size_t skip = i->iov_offset;
888 
889 	do {
890 		size_t len = iov->iov_len - skip;
891 		if (len) {
892 			res |= (unsigned long)iov->iov_base + skip;
893 			if (len > size)
894 				len = size;
895 			res |= len;
896 			size -= len;
897 		}
898 		iov++;
899 		skip = 0;
900 	} while (size);
901 	return res;
902 }
903 
iov_iter_alignment_bvec(const struct iov_iter * i)904 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
905 {
906 	const struct bio_vec *bvec = i->bvec;
907 	unsigned res = 0;
908 	size_t size = i->count;
909 	unsigned skip = i->iov_offset;
910 
911 	do {
912 		size_t len = bvec->bv_len - skip;
913 		res |= (unsigned long)bvec->bv_offset + skip;
914 		if (len > size)
915 			len = size;
916 		res |= len;
917 		bvec++;
918 		size -= len;
919 		skip = 0;
920 	} while (size);
921 
922 	return res;
923 }
924 
iov_iter_alignment(const struct iov_iter * i)925 unsigned long iov_iter_alignment(const struct iov_iter *i)
926 {
927 	if (likely(iter_is_ubuf(i))) {
928 		size_t size = i->count;
929 		if (size)
930 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
931 		return 0;
932 	}
933 
934 	/* iovec and kvec have identical layouts */
935 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
936 		return iov_iter_alignment_iovec(i);
937 
938 	if (iov_iter_is_bvec(i))
939 		return iov_iter_alignment_bvec(i);
940 
941 	/* With both xarray and folioq types, we're dealing with whole folios. */
942 	if (iov_iter_is_folioq(i))
943 		return i->iov_offset | i->count;
944 	if (iov_iter_is_xarray(i))
945 		return (i->xarray_start + i->iov_offset) | i->count;
946 
947 	return 0;
948 }
949 EXPORT_SYMBOL(iov_iter_alignment);
950 
iov_iter_gap_alignment(const struct iov_iter * i)951 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
952 {
953 	unsigned long res = 0;
954 	unsigned long v = 0;
955 	size_t size = i->count;
956 	unsigned k;
957 
958 	if (iter_is_ubuf(i))
959 		return 0;
960 
961 	if (WARN_ON(!iter_is_iovec(i)))
962 		return ~0U;
963 
964 	for (k = 0; k < i->nr_segs; k++) {
965 		const struct iovec *iov = iter_iov(i) + k;
966 		if (iov->iov_len) {
967 			unsigned long base = (unsigned long)iov->iov_base;
968 			if (v) // if not the first one
969 				res |= base | v; // this start | previous end
970 			v = base + iov->iov_len;
971 			if (size <= iov->iov_len)
972 				break;
973 			size -= iov->iov_len;
974 		}
975 	}
976 	return res;
977 }
978 EXPORT_SYMBOL(iov_iter_gap_alignment);
979 
want_pages_array(struct page *** res,size_t size,size_t start,unsigned int maxpages)980 static int want_pages_array(struct page ***res, size_t size,
981 			    size_t start, unsigned int maxpages)
982 {
983 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
984 
985 	if (count > maxpages)
986 		count = maxpages;
987 	WARN_ON(!count);	// caller should've prevented that
988 	if (!*res) {
989 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
990 		if (!*res)
991 			return 0;
992 	}
993 	return count;
994 }
995 
iter_folioq_get_pages(struct iov_iter * iter,struct page *** ppages,size_t maxsize,unsigned maxpages,size_t * _start_offset)996 static ssize_t iter_folioq_get_pages(struct iov_iter *iter,
997 				     struct page ***ppages, size_t maxsize,
998 				     unsigned maxpages, size_t *_start_offset)
999 {
1000 	const struct folio_queue *folioq = iter->folioq;
1001 	struct page **pages;
1002 	unsigned int slot = iter->folioq_slot;
1003 	size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset;
1004 
1005 	if (slot >= folioq_nr_slots(folioq)) {
1006 		folioq = folioq->next;
1007 		slot = 0;
1008 		if (WARN_ON(iov_offset != 0))
1009 			return -EIO;
1010 	}
1011 
1012 	maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages);
1013 	if (!maxpages)
1014 		return -ENOMEM;
1015 	*_start_offset = iov_offset & ~PAGE_MASK;
1016 	pages = *ppages;
1017 
1018 	for (;;) {
1019 		struct folio *folio = folioq_folio(folioq, slot);
1020 		size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot);
1021 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1022 
1023 		if (offset < fsize) {
1024 			part = umin(part, umin(maxsize - extracted, fsize - offset));
1025 			count -= part;
1026 			iov_offset += part;
1027 			extracted += part;
1028 
1029 			*pages = folio_page(folio, offset / PAGE_SIZE);
1030 			get_page(*pages);
1031 			pages++;
1032 			maxpages--;
1033 		}
1034 
1035 		if (maxpages == 0 || extracted >= maxsize)
1036 			break;
1037 
1038 		if (iov_offset >= fsize) {
1039 			iov_offset = 0;
1040 			slot++;
1041 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
1042 				folioq = folioq->next;
1043 				slot = 0;
1044 			}
1045 		}
1046 	}
1047 
1048 	iter->count = count;
1049 	iter->iov_offset = iov_offset;
1050 	iter->folioq = folioq;
1051 	iter->folioq_slot = slot;
1052 	return extracted;
1053 }
1054 
iter_xarray_populate_pages(struct page ** pages,struct xarray * xa,pgoff_t index,unsigned int nr_pages)1055 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1056 					  pgoff_t index, unsigned int nr_pages)
1057 {
1058 	XA_STATE(xas, xa, index);
1059 	struct folio *folio;
1060 	unsigned int ret = 0;
1061 
1062 	rcu_read_lock();
1063 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
1064 		if (xas_retry(&xas, folio))
1065 			continue;
1066 
1067 		/* Has the folio moved or been split? */
1068 		if (unlikely(folio != xas_reload(&xas))) {
1069 			xas_reset(&xas);
1070 			continue;
1071 		}
1072 
1073 		pages[ret] = folio_file_page(folio, xas.xa_index);
1074 		folio_get(folio);
1075 		if (++ret == nr_pages)
1076 			break;
1077 	}
1078 	rcu_read_unlock();
1079 	return ret;
1080 }
1081 
iter_xarray_get_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned maxpages,size_t * _start_offset)1082 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1083 				     struct page ***pages, size_t maxsize,
1084 				     unsigned maxpages, size_t *_start_offset)
1085 {
1086 	unsigned nr, offset, count;
1087 	pgoff_t index;
1088 	loff_t pos;
1089 
1090 	pos = i->xarray_start + i->iov_offset;
1091 	index = pos >> PAGE_SHIFT;
1092 	offset = pos & ~PAGE_MASK;
1093 	*_start_offset = offset;
1094 
1095 	count = want_pages_array(pages, maxsize, offset, maxpages);
1096 	if (!count)
1097 		return -ENOMEM;
1098 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1099 	if (nr == 0)
1100 		return 0;
1101 
1102 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1103 	i->iov_offset += maxsize;
1104 	i->count -= maxsize;
1105 	return maxsize;
1106 }
1107 
1108 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
first_iovec_segment(const struct iov_iter * i,size_t * size)1109 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1110 {
1111 	size_t skip;
1112 	long k;
1113 
1114 	if (iter_is_ubuf(i))
1115 		return (unsigned long)i->ubuf + i->iov_offset;
1116 
1117 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1118 		const struct iovec *iov = iter_iov(i) + k;
1119 		size_t len = iov->iov_len - skip;
1120 
1121 		if (unlikely(!len))
1122 			continue;
1123 		if (*size > len)
1124 			*size = len;
1125 		return (unsigned long)iov->iov_base + skip;
1126 	}
1127 	BUG(); // if it had been empty, we wouldn't get called
1128 }
1129 
1130 /* must be done on non-empty ITER_BVEC one */
first_bvec_segment(const struct iov_iter * i,size_t * size,size_t * start)1131 static struct page *first_bvec_segment(const struct iov_iter *i,
1132 				       size_t *size, size_t *start)
1133 {
1134 	struct page *page;
1135 	size_t skip = i->iov_offset, len;
1136 
1137 	len = i->bvec->bv_len - skip;
1138 	if (*size > len)
1139 		*size = len;
1140 	skip += i->bvec->bv_offset;
1141 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1142 	*start = skip % PAGE_SIZE;
1143 	return page;
1144 }
1145 
__iov_iter_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,size_t * start)1146 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1147 		   struct page ***pages, size_t maxsize,
1148 		   unsigned int maxpages, size_t *start)
1149 {
1150 	unsigned int n, gup_flags = 0;
1151 
1152 	if (maxsize > i->count)
1153 		maxsize = i->count;
1154 	if (!maxsize)
1155 		return 0;
1156 	if (maxsize > MAX_RW_COUNT)
1157 		maxsize = MAX_RW_COUNT;
1158 
1159 	if (likely(user_backed_iter(i))) {
1160 		unsigned long addr;
1161 		int res;
1162 
1163 		if (iov_iter_rw(i) != WRITE)
1164 			gup_flags |= FOLL_WRITE;
1165 		if (i->nofault)
1166 			gup_flags |= FOLL_NOFAULT;
1167 
1168 		addr = first_iovec_segment(i, &maxsize);
1169 		*start = addr % PAGE_SIZE;
1170 		addr &= PAGE_MASK;
1171 		n = want_pages_array(pages, maxsize, *start, maxpages);
1172 		if (!n)
1173 			return -ENOMEM;
1174 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1175 		if (unlikely(res <= 0))
1176 			return res;
1177 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1178 		iov_iter_advance(i, maxsize);
1179 		return maxsize;
1180 	}
1181 	if (iov_iter_is_bvec(i)) {
1182 		struct page **p;
1183 		struct page *page;
1184 
1185 		page = first_bvec_segment(i, &maxsize, start);
1186 		n = want_pages_array(pages, maxsize, *start, maxpages);
1187 		if (!n)
1188 			return -ENOMEM;
1189 		p = *pages;
1190 		for (int k = 0; k < n; k++) {
1191 			struct folio *folio = page_folio(page + k);
1192 			p[k] = page + k;
1193 			if (!folio_test_slab(folio))
1194 				folio_get(folio);
1195 		}
1196 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1197 		i->count -= maxsize;
1198 		i->iov_offset += maxsize;
1199 		if (i->iov_offset == i->bvec->bv_len) {
1200 			i->iov_offset = 0;
1201 			i->bvec++;
1202 			i->nr_segs--;
1203 		}
1204 		return maxsize;
1205 	}
1206 	if (iov_iter_is_folioq(i))
1207 		return iter_folioq_get_pages(i, pages, maxsize, maxpages, start);
1208 	if (iov_iter_is_xarray(i))
1209 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1210 	return -EFAULT;
1211 }
1212 
iov_iter_get_pages2(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1213 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1214 		size_t maxsize, unsigned maxpages, size_t *start)
1215 {
1216 	if (!maxpages)
1217 		return 0;
1218 	BUG_ON(!pages);
1219 
1220 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1221 }
1222 EXPORT_SYMBOL(iov_iter_get_pages2);
1223 
iov_iter_get_pages_alloc2(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1224 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1225 		struct page ***pages, size_t maxsize, size_t *start)
1226 {
1227 	ssize_t len;
1228 
1229 	*pages = NULL;
1230 
1231 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1232 	if (len <= 0) {
1233 		kvfree(*pages);
1234 		*pages = NULL;
1235 	}
1236 	return len;
1237 }
1238 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1239 
iov_npages(const struct iov_iter * i,int maxpages)1240 static int iov_npages(const struct iov_iter *i, int maxpages)
1241 {
1242 	size_t skip = i->iov_offset, size = i->count;
1243 	const struct iovec *p;
1244 	int npages = 0;
1245 
1246 	for (p = iter_iov(i); size; skip = 0, p++) {
1247 		unsigned offs = offset_in_page(p->iov_base + skip);
1248 		size_t len = min(p->iov_len - skip, size);
1249 
1250 		if (len) {
1251 			size -= len;
1252 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1253 			if (unlikely(npages > maxpages))
1254 				return maxpages;
1255 		}
1256 	}
1257 	return npages;
1258 }
1259 
bvec_npages(const struct iov_iter * i,int maxpages)1260 static int bvec_npages(const struct iov_iter *i, int maxpages)
1261 {
1262 	size_t skip = i->iov_offset, size = i->count;
1263 	const struct bio_vec *p;
1264 	int npages = 0;
1265 
1266 	for (p = i->bvec; size; skip = 0, p++) {
1267 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1268 		size_t len = min(p->bv_len - skip, size);
1269 
1270 		size -= len;
1271 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1272 		if (unlikely(npages > maxpages))
1273 			return maxpages;
1274 	}
1275 	return npages;
1276 }
1277 
iov_iter_npages(const struct iov_iter * i,int maxpages)1278 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1279 {
1280 	if (unlikely(!i->count))
1281 		return 0;
1282 	if (likely(iter_is_ubuf(i))) {
1283 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1284 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1285 		return min(npages, maxpages);
1286 	}
1287 	/* iovec and kvec have identical layouts */
1288 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1289 		return iov_npages(i, maxpages);
1290 	if (iov_iter_is_bvec(i))
1291 		return bvec_npages(i, maxpages);
1292 	if (iov_iter_is_folioq(i)) {
1293 		unsigned offset = i->iov_offset % PAGE_SIZE;
1294 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1295 		return min(npages, maxpages);
1296 	}
1297 	if (iov_iter_is_xarray(i)) {
1298 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1299 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1300 		return min(npages, maxpages);
1301 	}
1302 	return 0;
1303 }
1304 EXPORT_SYMBOL(iov_iter_npages);
1305 
dup_iter(struct iov_iter * new,struct iov_iter * old,gfp_t flags)1306 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1307 {
1308 	*new = *old;
1309 	if (iov_iter_is_bvec(new))
1310 		return new->bvec = kmemdup(new->bvec,
1311 				    new->nr_segs * sizeof(struct bio_vec),
1312 				    flags);
1313 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1314 		/* iovec and kvec have identical layout */
1315 		return new->__iov = kmemdup(new->__iov,
1316 				   new->nr_segs * sizeof(struct iovec),
1317 				   flags);
1318 	return NULL;
1319 }
1320 EXPORT_SYMBOL(dup_iter);
1321 
copy_compat_iovec_from_user(struct iovec * iov,const struct iovec __user * uvec,u32 nr_segs)1322 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1323 		const struct iovec __user *uvec, u32 nr_segs)
1324 {
1325 	const struct compat_iovec __user *uiov =
1326 		(const struct compat_iovec __user *)uvec;
1327 	int ret = -EFAULT;
1328 	u32 i;
1329 
1330 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1331 		return -EFAULT;
1332 
1333 	for (i = 0; i < nr_segs; i++) {
1334 		compat_uptr_t buf;
1335 		compat_ssize_t len;
1336 
1337 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1338 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1339 
1340 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1341 		if (len < 0) {
1342 			ret = -EINVAL;
1343 			goto uaccess_end;
1344 		}
1345 		iov[i].iov_base = compat_ptr(buf);
1346 		iov[i].iov_len = len;
1347 	}
1348 
1349 	ret = 0;
1350 uaccess_end:
1351 	user_access_end();
1352 	return ret;
1353 }
1354 
copy_iovec_from_user(struct iovec * iov,const struct iovec __user * uiov,unsigned long nr_segs)1355 static __noclone int copy_iovec_from_user(struct iovec *iov,
1356 		const struct iovec __user *uiov, unsigned long nr_segs)
1357 {
1358 	int ret = -EFAULT;
1359 
1360 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1361 		return -EFAULT;
1362 
1363 	do {
1364 		void __user *buf;
1365 		ssize_t len;
1366 
1367 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1368 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1369 
1370 		/* check for size_t not fitting in ssize_t .. */
1371 		if (unlikely(len < 0)) {
1372 			ret = -EINVAL;
1373 			goto uaccess_end;
1374 		}
1375 		iov->iov_base = buf;
1376 		iov->iov_len = len;
1377 
1378 		uiov++; iov++;
1379 	} while (--nr_segs);
1380 
1381 	ret = 0;
1382 uaccess_end:
1383 	user_access_end();
1384 	return ret;
1385 }
1386 
iovec_from_user(const struct iovec __user * uvec,unsigned long nr_segs,unsigned long fast_segs,struct iovec * fast_iov,bool compat)1387 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1388 		unsigned long nr_segs, unsigned long fast_segs,
1389 		struct iovec *fast_iov, bool compat)
1390 {
1391 	struct iovec *iov = fast_iov;
1392 	int ret;
1393 
1394 	/*
1395 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1396 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1397 	 * traditionally returned zero for zero segments, so...
1398 	 */
1399 	if (nr_segs == 0)
1400 		return iov;
1401 	if (nr_segs > UIO_MAXIOV)
1402 		return ERR_PTR(-EINVAL);
1403 	if (nr_segs > fast_segs) {
1404 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1405 		if (!iov)
1406 			return ERR_PTR(-ENOMEM);
1407 	}
1408 
1409 	if (unlikely(compat))
1410 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1411 	else
1412 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1413 	if (ret) {
1414 		if (iov != fast_iov)
1415 			kfree(iov);
1416 		return ERR_PTR(ret);
1417 	}
1418 
1419 	return iov;
1420 }
1421 
1422 /*
1423  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1424  */
__import_iovec_ubuf(int type,const struct iovec __user * uvec,struct iovec ** iovp,struct iov_iter * i,bool compat)1425 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1426 				   struct iovec **iovp, struct iov_iter *i,
1427 				   bool compat)
1428 {
1429 	struct iovec *iov = *iovp;
1430 	ssize_t ret;
1431 
1432 	*iovp = NULL;
1433 
1434 	if (compat)
1435 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1436 	else
1437 		ret = copy_iovec_from_user(iov, uvec, 1);
1438 	if (unlikely(ret))
1439 		return ret;
1440 
1441 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1442 	if (unlikely(ret))
1443 		return ret;
1444 	return i->count;
1445 }
1446 
__import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i,bool compat)1447 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1448 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1449 		 struct iov_iter *i, bool compat)
1450 {
1451 	ssize_t total_len = 0;
1452 	unsigned long seg;
1453 	struct iovec *iov;
1454 
1455 	if (nr_segs == 1)
1456 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1457 
1458 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1459 	if (IS_ERR(iov)) {
1460 		*iovp = NULL;
1461 		return PTR_ERR(iov);
1462 	}
1463 
1464 	/*
1465 	 * According to the Single Unix Specification we should return EINVAL if
1466 	 * an element length is < 0 when cast to ssize_t or if the total length
1467 	 * would overflow the ssize_t return value of the system call.
1468 	 *
1469 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1470 	 * overflow case.
1471 	 */
1472 	for (seg = 0; seg < nr_segs; seg++) {
1473 		ssize_t len = (ssize_t)iov[seg].iov_len;
1474 
1475 		if (!access_ok(iov[seg].iov_base, len)) {
1476 			if (iov != *iovp)
1477 				kfree(iov);
1478 			*iovp = NULL;
1479 			return -EFAULT;
1480 		}
1481 
1482 		if (len > MAX_RW_COUNT - total_len) {
1483 			len = MAX_RW_COUNT - total_len;
1484 			iov[seg].iov_len = len;
1485 		}
1486 		total_len += len;
1487 	}
1488 
1489 	iov_iter_init(i, type, iov, nr_segs, total_len);
1490 	if (iov == *iovp)
1491 		*iovp = NULL;
1492 	else
1493 		*iovp = iov;
1494 	return total_len;
1495 }
1496 
1497 /**
1498  * import_iovec() - Copy an array of &struct iovec from userspace
1499  *     into the kernel, check that it is valid, and initialize a new
1500  *     &struct iov_iter iterator to access it.
1501  *
1502  * @type: One of %READ or %WRITE.
1503  * @uvec: Pointer to the userspace array.
1504  * @nr_segs: Number of elements in userspace array.
1505  * @fast_segs: Number of elements in @iov.
1506  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1507  *     on-stack) kernel array.
1508  * @i: Pointer to iterator that will be initialized on success.
1509  *
1510  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1511  * then this function places %NULL in *@iov on return. Otherwise, a new
1512  * array will be allocated and the result placed in *@iov. This means that
1513  * the caller may call kfree() on *@iov regardless of whether the small
1514  * on-stack array was used or not (and regardless of whether this function
1515  * returns an error or not).
1516  *
1517  * Return: Negative error code on error, bytes imported on success
1518  */
import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i)1519 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1520 		 unsigned nr_segs, unsigned fast_segs,
1521 		 struct iovec **iovp, struct iov_iter *i)
1522 {
1523 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1524 			      in_compat_syscall());
1525 }
1526 EXPORT_SYMBOL(import_iovec);
1527 
import_ubuf(int rw,void __user * buf,size_t len,struct iov_iter * i)1528 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1529 {
1530 	if (len > MAX_RW_COUNT)
1531 		len = MAX_RW_COUNT;
1532 	if (unlikely(!access_ok(buf, len)))
1533 		return -EFAULT;
1534 
1535 	iov_iter_ubuf(i, rw, buf, len);
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(import_ubuf);
1539 
1540 /**
1541  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1542  *     iov_iter_save_state() was called.
1543  *
1544  * @i: &struct iov_iter to restore
1545  * @state: state to restore from
1546  *
1547  * Used after iov_iter_save_state() to bring restore @i, if operations may
1548  * have advanced it.
1549  *
1550  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1551  */
iov_iter_restore(struct iov_iter * i,struct iov_iter_state * state)1552 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1553 {
1554 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1555 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1556 		return;
1557 	i->iov_offset = state->iov_offset;
1558 	i->count = state->count;
1559 	if (iter_is_ubuf(i))
1560 		return;
1561 	/*
1562 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1563 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1564 	 * need to track both of these, just one is enough and we can deduct
1565 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1566 	 * size, so we can just increment the iov pointer as they are unionzed.
1567 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1568 	 * not. Be safe and handle it separately.
1569 	 */
1570 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1571 	if (iov_iter_is_bvec(i))
1572 		i->bvec -= state->nr_segs - i->nr_segs;
1573 	else
1574 		i->__iov -= state->nr_segs - i->nr_segs;
1575 	i->nr_segs = state->nr_segs;
1576 }
1577 
1578 /*
1579  * Extract a list of contiguous pages from an ITER_FOLIOQ iterator.  This does
1580  * not get references on the pages, nor does it get a pin on them.
1581  */
iov_iter_extract_folioq_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1582 static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i,
1583 					     struct page ***pages, size_t maxsize,
1584 					     unsigned int maxpages,
1585 					     iov_iter_extraction_t extraction_flags,
1586 					     size_t *offset0)
1587 {
1588 	const struct folio_queue *folioq = i->folioq;
1589 	struct page **p;
1590 	unsigned int nr = 0;
1591 	size_t extracted = 0, offset, slot = i->folioq_slot;
1592 
1593 	if (slot >= folioq_nr_slots(folioq)) {
1594 		folioq = folioq->next;
1595 		slot = 0;
1596 		if (WARN_ON(i->iov_offset != 0))
1597 			return -EIO;
1598 	}
1599 
1600 	offset = i->iov_offset & ~PAGE_MASK;
1601 	*offset0 = offset;
1602 
1603 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1604 	if (!maxpages)
1605 		return -ENOMEM;
1606 	p = *pages;
1607 
1608 	for (;;) {
1609 		struct folio *folio = folioq_folio(folioq, slot);
1610 		size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot);
1611 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1612 
1613 		if (offset < fsize) {
1614 			part = umin(part, umin(maxsize - extracted, fsize - offset));
1615 			i->count -= part;
1616 			i->iov_offset += part;
1617 			extracted += part;
1618 
1619 			p[nr++] = folio_page(folio, offset / PAGE_SIZE);
1620 		}
1621 
1622 		if (nr >= maxpages || extracted >= maxsize)
1623 			break;
1624 
1625 		if (i->iov_offset >= fsize) {
1626 			i->iov_offset = 0;
1627 			slot++;
1628 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
1629 				folioq = folioq->next;
1630 				slot = 0;
1631 			}
1632 		}
1633 	}
1634 
1635 	i->folioq = folioq;
1636 	i->folioq_slot = slot;
1637 	return extracted;
1638 }
1639 
1640 /*
1641  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1642  * get references on the pages, nor does it get a pin on them.
1643  */
iov_iter_extract_xarray_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1644 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1645 					     struct page ***pages, size_t maxsize,
1646 					     unsigned int maxpages,
1647 					     iov_iter_extraction_t extraction_flags,
1648 					     size_t *offset0)
1649 {
1650 	struct page **p;
1651 	struct folio *folio;
1652 	unsigned int nr = 0, offset;
1653 	loff_t pos = i->xarray_start + i->iov_offset;
1654 	XA_STATE(xas, i->xarray, pos >> PAGE_SHIFT);
1655 
1656 	offset = pos & ~PAGE_MASK;
1657 	*offset0 = offset;
1658 
1659 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1660 	if (!maxpages)
1661 		return -ENOMEM;
1662 	p = *pages;
1663 
1664 	rcu_read_lock();
1665 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
1666 		if (xas_retry(&xas, folio))
1667 			continue;
1668 
1669 		/* Has the folio moved or been split? */
1670 		if (unlikely(folio != xas_reload(&xas))) {
1671 			xas_reset(&xas);
1672 			continue;
1673 		}
1674 
1675 		p[nr++] = folio_file_page(folio, xas.xa_index);
1676 		if (nr == maxpages)
1677 			break;
1678 	}
1679 	rcu_read_unlock();
1680 
1681 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1682 	iov_iter_advance(i, maxsize);
1683 	return maxsize;
1684 }
1685 
1686 /*
1687  * Extract a list of virtually contiguous pages from an ITER_BVEC iterator.
1688  * This does not get references on the pages, nor does it get a pin on them.
1689  */
iov_iter_extract_bvec_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1690 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1691 					   struct page ***pages, size_t maxsize,
1692 					   unsigned int maxpages,
1693 					   iov_iter_extraction_t extraction_flags,
1694 					   size_t *offset0)
1695 {
1696 	size_t skip = i->iov_offset, size = 0;
1697 	struct bvec_iter bi;
1698 	int k = 0;
1699 
1700 	if (i->nr_segs == 0)
1701 		return 0;
1702 
1703 	if (i->iov_offset == i->bvec->bv_len) {
1704 		i->iov_offset = 0;
1705 		i->nr_segs--;
1706 		i->bvec++;
1707 		skip = 0;
1708 	}
1709 	bi.bi_idx = 0;
1710 	bi.bi_size = maxsize;
1711 	bi.bi_bvec_done = skip;
1712 
1713 	maxpages = want_pages_array(pages, maxsize, skip, maxpages);
1714 
1715 	while (bi.bi_size && bi.bi_idx < i->nr_segs) {
1716 		struct bio_vec bv = bvec_iter_bvec(i->bvec, bi);
1717 
1718 		/*
1719 		 * The iov_iter_extract_pages interface only allows an offset
1720 		 * into the first page.  Break out of the loop if we see an
1721 		 * offset into subsequent pages, the caller will have to call
1722 		 * iov_iter_extract_pages again for the reminder.
1723 		 */
1724 		if (k) {
1725 			if (bv.bv_offset)
1726 				break;
1727 		} else {
1728 			*offset0 = bv.bv_offset;
1729 		}
1730 
1731 		(*pages)[k++] = bv.bv_page;
1732 		size += bv.bv_len;
1733 
1734 		if (k >= maxpages)
1735 			break;
1736 
1737 		/*
1738 		 * We are done when the end of the bvec doesn't align to a page
1739 		 * boundary as that would create a hole in the returned space.
1740 		 * The caller will handle this with another call to
1741 		 * iov_iter_extract_pages.
1742 		 */
1743 		if (bv.bv_offset + bv.bv_len != PAGE_SIZE)
1744 			break;
1745 
1746 		bvec_iter_advance_single(i->bvec, &bi, bv.bv_len);
1747 	}
1748 
1749 	iov_iter_advance(i, size);
1750 	return size;
1751 }
1752 
1753 /*
1754  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1755  * This does not get references on the pages, nor does it get a pin on them.
1756  */
iov_iter_extract_kvec_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1757 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1758 					   struct page ***pages, size_t maxsize,
1759 					   unsigned int maxpages,
1760 					   iov_iter_extraction_t extraction_flags,
1761 					   size_t *offset0)
1762 {
1763 	struct page **p, *page;
1764 	const void *kaddr;
1765 	size_t skip = i->iov_offset, offset, len, size;
1766 	int k;
1767 
1768 	for (;;) {
1769 		if (i->nr_segs == 0)
1770 			return 0;
1771 		size = min(maxsize, i->kvec->iov_len - skip);
1772 		if (size)
1773 			break;
1774 		i->iov_offset = 0;
1775 		i->nr_segs--;
1776 		i->kvec++;
1777 		skip = 0;
1778 	}
1779 
1780 	kaddr = i->kvec->iov_base + skip;
1781 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1782 	*offset0 = offset;
1783 
1784 	maxpages = want_pages_array(pages, size, offset, maxpages);
1785 	if (!maxpages)
1786 		return -ENOMEM;
1787 	p = *pages;
1788 
1789 	kaddr -= offset;
1790 	len = offset + size;
1791 	for (k = 0; k < maxpages; k++) {
1792 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1793 
1794 		if (is_vmalloc_or_module_addr(kaddr))
1795 			page = vmalloc_to_page(kaddr);
1796 		else
1797 			page = virt_to_page(kaddr);
1798 
1799 		p[k] = page;
1800 		len -= seg;
1801 		kaddr += PAGE_SIZE;
1802 	}
1803 
1804 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1805 	iov_iter_advance(i, size);
1806 	return size;
1807 }
1808 
1809 /*
1810  * Extract a list of contiguous pages from a user iterator and get a pin on
1811  * each of them.  This should only be used if the iterator is user-backed
1812  * (IOBUF/UBUF).
1813  *
1814  * It does not get refs on the pages, but the pages must be unpinned by the
1815  * caller once the transfer is complete.
1816  *
1817  * This is safe to be used where background IO/DMA *is* going to be modifying
1818  * the buffer; using a pin rather than a ref makes forces fork() to give the
1819  * child a copy of the page.
1820  */
iov_iter_extract_user_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1821 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1822 					   struct page ***pages,
1823 					   size_t maxsize,
1824 					   unsigned int maxpages,
1825 					   iov_iter_extraction_t extraction_flags,
1826 					   size_t *offset0)
1827 {
1828 	unsigned long addr;
1829 	unsigned int gup_flags = 0;
1830 	size_t offset;
1831 	int res;
1832 
1833 	if (i->data_source == ITER_DEST)
1834 		gup_flags |= FOLL_WRITE;
1835 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1836 		gup_flags |= FOLL_PCI_P2PDMA;
1837 	if (i->nofault)
1838 		gup_flags |= FOLL_NOFAULT;
1839 
1840 	addr = first_iovec_segment(i, &maxsize);
1841 	*offset0 = offset = addr % PAGE_SIZE;
1842 	addr &= PAGE_MASK;
1843 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1844 	if (!maxpages)
1845 		return -ENOMEM;
1846 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1847 	if (unlikely(res <= 0))
1848 		return res;
1849 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1850 	iov_iter_advance(i, maxsize);
1851 	return maxsize;
1852 }
1853 
1854 /**
1855  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1856  * @i: The iterator to extract from
1857  * @pages: Where to return the list of pages
1858  * @maxsize: The maximum amount of iterator to extract
1859  * @maxpages: The maximum size of the list of pages
1860  * @extraction_flags: Flags to qualify request
1861  * @offset0: Where to return the starting offset into (*@pages)[0]
1862  *
1863  * Extract a list of contiguous pages from the current point of the iterator,
1864  * advancing the iterator.  The maximum number of pages and the maximum amount
1865  * of page contents can be set.
1866  *
1867  * If *@pages is NULL, a page list will be allocated to the required size and
1868  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1869  * that the caller allocated a page list at least @maxpages in size and this
1870  * will be filled in.
1871  *
1872  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1873  * be allowed on the pages extracted.
1874  *
1875  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1876  * should be performed.
1877  *
1878  * Extra refs or pins on the pages may be obtained as follows:
1879  *
1880  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1881  *      added to the pages, but refs will not be taken.
1882  *      iov_iter_extract_will_pin() will return true.
1883  *
1884  *  (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
1885  *      pages are merely listed; no extra refs or pins are obtained.
1886  *      iov_iter_extract_will_pin() will return 0.
1887  *
1888  * Note also:
1889  *
1890  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1891  *
1892  * On success, the function sets *@pages to the new pagelist, if allocated, and
1893  * sets *offset0 to the offset into the first page.
1894  *
1895  * It may also return -ENOMEM and -EFAULT.
1896  */
iov_iter_extract_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1897 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1898 			       struct page ***pages,
1899 			       size_t maxsize,
1900 			       unsigned int maxpages,
1901 			       iov_iter_extraction_t extraction_flags,
1902 			       size_t *offset0)
1903 {
1904 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1905 	if (!maxsize)
1906 		return 0;
1907 
1908 	if (likely(user_backed_iter(i)))
1909 		return iov_iter_extract_user_pages(i, pages, maxsize,
1910 						   maxpages, extraction_flags,
1911 						   offset0);
1912 	if (iov_iter_is_kvec(i))
1913 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1914 						   maxpages, extraction_flags,
1915 						   offset0);
1916 	if (iov_iter_is_bvec(i))
1917 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1918 						   maxpages, extraction_flags,
1919 						   offset0);
1920 	if (iov_iter_is_folioq(i))
1921 		return iov_iter_extract_folioq_pages(i, pages, maxsize,
1922 						     maxpages, extraction_flags,
1923 						     offset0);
1924 	if (iov_iter_is_xarray(i))
1925 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1926 						     maxpages, extraction_flags,
1927 						     offset0);
1928 	return -EFAULT;
1929 }
1930 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1931