xref: /linux/mm/memory.c (revision 4cff5c05e076d2ee4e34122aa956b84a2eaac587)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/leafops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/shmem_fs.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/pgalloc.h>
80 #include <linux/uaccess.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 static vm_fault_t do_fault(struct vm_fault *vmf);
98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
99 static bool vmf_pte_changed(struct vm_fault *vmf);
100 
101 /*
102  * Return true if the original pte was a uffd-wp pte marker (so the pte was
103  * wr-protected).
104  */
105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
106 {
107 	if (!userfaultfd_wp(vmf->vma))
108 		return false;
109 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
110 		return false;
111 
112 	return pte_is_uffd_wp_marker(vmf->orig_pte);
113 }
114 
115 /*
116  * Randomize the address space (stacks, mmaps, brk, etc.).
117  *
118  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119  *   as ancient (libc5 based) binaries can segfault. )
120  */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 					1;
124 #else
125 					2;
126 #endif
127 
128 static const struct ctl_table mmu_sysctl_table[] = {
129 	{
130 		.procname	= "randomize_va_space",
131 		.data		= &randomize_va_space,
132 		.maxlen		= sizeof(int),
133 		.mode		= 0644,
134 		.proc_handler	= proc_dointvec,
135 	},
136 };
137 
138 static int __init init_mm_sysctl(void)
139 {
140 	register_sysctl_init("kernel", mmu_sysctl_table);
141 	return 0;
142 }
143 
144 subsys_initcall(init_mm_sysctl);
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /**
300  * free_pgd_range - Unmap and free page tables in the range
301  * @tlb: the mmu_gather containing pending TLB flush info
302  * @addr: virtual address start
303  * @end: virtual address end
304  * @floor: lowest address boundary
305  * @ceiling: highest address boundary
306  *
307  * This function tears down all user-level page tables in the
308  * specified virtual address range [@addr..@end). It is part of
309  * the memory unmap flow.
310  */
311 void free_pgd_range(struct mmu_gather *tlb,
312 			unsigned long addr, unsigned long end,
313 			unsigned long floor, unsigned long ceiling)
314 {
315 	pgd_t *pgd;
316 	unsigned long next;
317 
318 	/*
319 	 * The next few lines have given us lots of grief...
320 	 *
321 	 * Why are we testing PMD* at this top level?  Because often
322 	 * there will be no work to do at all, and we'd prefer not to
323 	 * go all the way down to the bottom just to discover that.
324 	 *
325 	 * Why all these "- 1"s?  Because 0 represents both the bottom
326 	 * of the address space and the top of it (using -1 for the
327 	 * top wouldn't help much: the masks would do the wrong thing).
328 	 * The rule is that addr 0 and floor 0 refer to the bottom of
329 	 * the address space, but end 0 and ceiling 0 refer to the top
330 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
331 	 * that end 0 case should be mythical).
332 	 *
333 	 * Wherever addr is brought up or ceiling brought down, we must
334 	 * be careful to reject "the opposite 0" before it confuses the
335 	 * subsequent tests.  But what about where end is brought down
336 	 * by PMD_SIZE below? no, end can't go down to 0 there.
337 	 *
338 	 * Whereas we round start (addr) and ceiling down, by different
339 	 * masks at different levels, in order to test whether a table
340 	 * now has no other vmas using it, so can be freed, we don't
341 	 * bother to round floor or end up - the tests don't need that.
342 	 */
343 
344 	addr &= PMD_MASK;
345 	if (addr < floor) {
346 		addr += PMD_SIZE;
347 		if (!addr)
348 			return;
349 	}
350 	if (ceiling) {
351 		ceiling &= PMD_MASK;
352 		if (!ceiling)
353 			return;
354 	}
355 	if (end - 1 > ceiling - 1)
356 		end -= PMD_SIZE;
357 	if (addr > end - 1)
358 		return;
359 	/*
360 	 * We add page table cache pages with PAGE_SIZE,
361 	 * (see pte_free_tlb()), flush the tlb if we need
362 	 */
363 	tlb_change_page_size(tlb, PAGE_SIZE);
364 	pgd = pgd_offset(tlb->mm, addr);
365 	do {
366 		next = pgd_addr_end(addr, end);
367 		if (pgd_none_or_clear_bad(pgd))
368 			continue;
369 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
370 	} while (pgd++, addr = next, addr != end);
371 }
372 
373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
374 		   struct vm_area_struct *vma, unsigned long floor,
375 		   unsigned long ceiling, bool mm_wr_locked)
376 {
377 	struct unlink_vma_file_batch vb;
378 
379 	tlb_free_vmas(tlb);
380 
381 	do {
382 		unsigned long addr = vma->vm_start;
383 		struct vm_area_struct *next;
384 
385 		/*
386 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
387 		 * be 0.  This will underflow and is okay.
388 		 */
389 		next = mas_find(mas, ceiling - 1);
390 		if (unlikely(xa_is_zero(next)))
391 			next = NULL;
392 
393 		/*
394 		 * Hide vma from rmap and truncate_pagecache before freeing
395 		 * pgtables
396 		 */
397 		if (mm_wr_locked)
398 			vma_start_write(vma);
399 		unlink_anon_vmas(vma);
400 
401 		unlink_file_vma_batch_init(&vb);
402 		unlink_file_vma_batch_add(&vb, vma);
403 
404 		/*
405 		 * Optimization: gather nearby vmas into one call down
406 		 */
407 		while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
408 			vma = next;
409 			next = mas_find(mas, ceiling - 1);
410 			if (unlikely(xa_is_zero(next)))
411 				next = NULL;
412 			if (mm_wr_locked)
413 				vma_start_write(vma);
414 			unlink_anon_vmas(vma);
415 			unlink_file_vma_batch_add(&vb, vma);
416 		}
417 		unlink_file_vma_batch_final(&vb);
418 
419 		free_pgd_range(tlb, addr, vma->vm_end,
420 			floor, next ? next->vm_start : ceiling);
421 		vma = next;
422 	} while (vma);
423 }
424 
425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
426 {
427 	spinlock_t *ptl = pmd_lock(mm, pmd);
428 
429 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
430 		mm_inc_nr_ptes(mm);
431 		/*
432 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 		 * visible before the pte is made visible to other CPUs by being
434 		 * put into page tables.
435 		 *
436 		 * The other side of the story is the pointer chasing in the page
437 		 * table walking code (when walking the page table without locking;
438 		 * ie. most of the time). Fortunately, these data accesses consist
439 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 		 * being the notable exception) will already guarantee loads are
441 		 * seen in-order. See the alpha page table accessors for the
442 		 * smp_rmb() barriers in page table walking code.
443 		 */
444 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 		pmd_populate(mm, pmd, *pte);
446 		*pte = NULL;
447 	}
448 	spin_unlock(ptl);
449 }
450 
451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
452 {
453 	pgtable_t new = pte_alloc_one(mm);
454 	if (!new)
455 		return -ENOMEM;
456 
457 	pmd_install(mm, pmd, &new);
458 	if (new)
459 		pte_free(mm, new);
460 	return 0;
461 }
462 
463 int __pte_alloc_kernel(pmd_t *pmd)
464 {
465 	pte_t *new = pte_alloc_one_kernel(&init_mm);
466 	if (!new)
467 		return -ENOMEM;
468 
469 	spin_lock(&init_mm.page_table_lock);
470 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
471 		smp_wmb(); /* See comment in pmd_install() */
472 		pmd_populate_kernel(&init_mm, pmd, new);
473 		new = NULL;
474 	}
475 	spin_unlock(&init_mm.page_table_lock);
476 	if (new)
477 		pte_free_kernel(&init_mm, new);
478 	return 0;
479 }
480 
481 static inline void init_rss_vec(int *rss)
482 {
483 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
484 }
485 
486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
487 {
488 	int i;
489 
490 	for (i = 0; i < NR_MM_COUNTERS; i++)
491 		if (rss[i])
492 			add_mm_counter(mm, i, rss[i]);
493 }
494 
495 static bool is_bad_page_map_ratelimited(void)
496 {
497 	static unsigned long resume;
498 	static unsigned long nr_shown;
499 	static unsigned long nr_unshown;
500 
501 	/*
502 	 * Allow a burst of 60 reports, then keep quiet for that minute;
503 	 * or allow a steady drip of one report per second.
504 	 */
505 	if (nr_shown == 60) {
506 		if (time_before(jiffies, resume)) {
507 			nr_unshown++;
508 			return true;
509 		}
510 		if (nr_unshown) {
511 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 				 nr_unshown);
513 			nr_unshown = 0;
514 		}
515 		nr_shown = 0;
516 	}
517 	if (nr_shown++ == 0)
518 		resume = jiffies + 60 * HZ;
519 	return false;
520 }
521 
522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr)
523 {
524 	unsigned long long pgdv, p4dv, pudv, pmdv;
525 	p4d_t p4d, *p4dp;
526 	pud_t pud, *pudp;
527 	pmd_t pmd, *pmdp;
528 	pgd_t *pgdp;
529 
530 	/*
531 	 * Although this looks like a fully lockless pgtable walk, it is not:
532 	 * see locking requirements for print_bad_page_map().
533 	 */
534 	pgdp = pgd_offset(mm, addr);
535 	pgdv = pgd_val(*pgdp);
536 
537 	if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) {
538 		pr_alert("pgd:%08llx\n", pgdv);
539 		return;
540 	}
541 
542 	p4dp = p4d_offset(pgdp, addr);
543 	p4d = p4dp_get(p4dp);
544 	p4dv = p4d_val(p4d);
545 
546 	if (!p4d_present(p4d) || p4d_leaf(p4d)) {
547 		pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv);
548 		return;
549 	}
550 
551 	pudp = pud_offset(p4dp, addr);
552 	pud = pudp_get(pudp);
553 	pudv = pud_val(pud);
554 
555 	if (!pud_present(pud) || pud_leaf(pud)) {
556 		pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv);
557 		return;
558 	}
559 
560 	pmdp = pmd_offset(pudp, addr);
561 	pmd = pmdp_get(pmdp);
562 	pmdv = pmd_val(pmd);
563 
564 	/*
565 	 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE,
566 	 * because the table should already be mapped by the caller and
567 	 * doing another map would be bad. print_bad_page_map() should
568 	 * already take care of printing the PTE.
569 	 */
570 	pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv,
571 		 p4dv, pudv, pmdv);
572 }
573 
574 /*
575  * This function is called to print an error when a bad page table entry (e.g.,
576  * corrupted page table entry) is found. For example, we might have a
577  * PFN-mapped pte in a region that doesn't allow it.
578  *
579  * The calling function must still handle the error.
580  *
581  * This function must be called during a proper page table walk, as it will
582  * re-walk the page table to dump information: the caller MUST prevent page
583  * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf
584  * page table lock.
585  */
586 static void print_bad_page_map(struct vm_area_struct *vma,
587 		unsigned long addr, unsigned long long entry, struct page *page,
588 		enum pgtable_level level)
589 {
590 	struct address_space *mapping;
591 	pgoff_t index;
592 
593 	if (is_bad_page_map_ratelimited())
594 		return;
595 
596 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
597 	index = linear_page_index(vma, addr);
598 
599 	pr_alert("BUG: Bad page map in process %s  %s:%08llx", current->comm,
600 		 pgtable_level_to_str(level), entry);
601 	__print_bad_page_map_pgtable(vma->vm_mm, addr);
602 	if (page)
603 		dump_page(page, "bad page map");
604 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
605 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
606 	pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
607 		 vma->vm_file,
608 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
609 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
610 		 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
611 		 mapping ? mapping->a_ops->read_folio : NULL);
612 	dump_stack();
613 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614 }
615 #define print_bad_pte(vma, addr, pte, page) \
616 	print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE)
617 
618 /**
619  * __vm_normal_page() - Get the "struct page" associated with a page table entry.
620  * @vma: The VMA mapping the page table entry.
621  * @addr: The address where the page table entry is mapped.
622  * @pfn: The PFN stored in the page table entry.
623  * @special: Whether the page table entry is marked "special".
624  * @level: The page table level for error reporting purposes only.
625  * @entry: The page table entry value for error reporting purposes only.
626  *
627  * "Special" mappings do not wish to be associated with a "struct page" (either
628  * it doesn't exist, or it exists but they don't want to touch it). In this
629  * case, NULL is returned here. "Normal" mappings do have a struct page and
630  * are ordinarily refcounted.
631  *
632  * Page mappings of the shared zero folios are always considered "special", as
633  * they are not ordinarily refcounted: neither the refcount nor the mapcount
634  * of these folios is adjusted when mapping them into user page tables.
635  * Selected page table walkers (such as GUP) can still identify mappings of the
636  * shared zero folios and work with the underlying "struct page".
637  *
638  * There are 2 broad cases. Firstly, an architecture may define a "special"
639  * page table entry bit, such as pte_special(), in which case this function is
640  * trivial. Secondly, an architecture may not have a spare page table
641  * entry bit, which requires a more complicated scheme, described below.
642  *
643  * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on
644  * page table entries that actually map "normal" pages: however, that page
645  * cannot be looked up through the PFN stored in the page table entry, but
646  * instead will be looked up through vm_ops->find_normal_page(). So far, this
647  * only applies to PTEs.
648  *
649  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
650  * special mapping (even if there are underlying and valid "struct pages").
651  * COWed pages of a VM_PFNMAP are always normal.
652  *
653  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
654  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
655  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
656  * mapping will always honor the rule
657  *
658  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
659  *
660  * And for normal mappings this is false.
661  *
662  * This restricts such mappings to be a linear translation from virtual address
663  * to pfn. To get around this restriction, we allow arbitrary mappings so long
664  * as the vma is not a COW mapping; in that case, we know that all ptes are
665  * special (because none can have been COWed).
666  *
667  *
668  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
669  *
670  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
671  * page" backing, however the difference is that _all_ pages with a struct
672  * page (that is, those where pfn_valid is true, except the shared zero
673  * folios) are refcounted and considered normal pages by the VM.
674  *
675  * The disadvantage is that pages are refcounted (which can be slower and
676  * simply not an option for some PFNMAP users). The advantage is that we
677  * don't have to follow the strict linearity rule of PFNMAP mappings in
678  * order to support COWable mappings.
679  *
680  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
681  *	   NULL if this is a "special" mapping.
682  */
683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma,
684 		unsigned long addr, unsigned long pfn, bool special,
685 		unsigned long long entry, enum pgtable_level level)
686 {
687 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
688 		if (unlikely(special)) {
689 #ifdef CONFIG_FIND_NORMAL_PAGE
690 			if (vma->vm_ops && vma->vm_ops->find_normal_page)
691 				return vma->vm_ops->find_normal_page(vma, addr);
692 #endif /* CONFIG_FIND_NORMAL_PAGE */
693 			if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
694 				return NULL;
695 			if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
696 				return NULL;
697 
698 			print_bad_page_map(vma, addr, entry, NULL, level);
699 			return NULL;
700 		}
701 		/*
702 		 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table
703 		 * mappings (incl. shared zero folios) are marked accordingly.
704 		 */
705 	} else {
706 		if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) {
707 			if (vma->vm_flags & VM_MIXEDMAP) {
708 				/* If it has a "struct page", it's "normal". */
709 				if (!pfn_valid(pfn))
710 					return NULL;
711 			} else {
712 				unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
713 
714 				/* Only CoW'ed anon folios are "normal". */
715 				if (pfn == vma->vm_pgoff + off)
716 					return NULL;
717 				if (!is_cow_mapping(vma->vm_flags))
718 					return NULL;
719 			}
720 		}
721 
722 		if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
723 			return NULL;
724 	}
725 
726 	if (unlikely(pfn > highest_memmap_pfn)) {
727 		/* Corrupted page table entry. */
728 		print_bad_page_map(vma, addr, entry, NULL, level);
729 		return NULL;
730 	}
731 	/*
732 	 * NOTE! We still have PageReserved() pages in the page tables.
733 	 * For example, VDSO mappings can cause them to exist.
734 	 */
735 	VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn));
736 	return pfn_to_page(pfn);
737 }
738 
739 /**
740  * vm_normal_page() - Get the "struct page" associated with a PTE
741  * @vma: The VMA mapping the @pte.
742  * @addr: The address where the @pte is mapped.
743  * @pte: The PTE.
744  *
745  * Get the "struct page" associated with a PTE. See __vm_normal_page()
746  * for details on "normal" and "special" mappings.
747  *
748  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
749  *	   NULL if this is a "special" mapping.
750  */
751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
752 			    pte_t pte)
753 {
754 	return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte),
755 				pte_val(pte), PGTABLE_LEVEL_PTE);
756 }
757 
758 /**
759  * vm_normal_folio() - Get the "struct folio" associated with a PTE
760  * @vma: The VMA mapping the @pte.
761  * @addr: The address where the @pte is mapped.
762  * @pte: The PTE.
763  *
764  * Get the "struct folio" associated with a PTE. See __vm_normal_page()
765  * for details on "normal" and "special" mappings.
766  *
767  * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
768  *	   NULL if this is a "special" mapping.
769  */
770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
771 			    pte_t pte)
772 {
773 	struct page *page = vm_normal_page(vma, addr, pte);
774 
775 	if (page)
776 		return page_folio(page);
777 	return NULL;
778 }
779 
780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
781 /**
782  * vm_normal_page_pmd() - Get the "struct page" associated with a PMD
783  * @vma: The VMA mapping the @pmd.
784  * @addr: The address where the @pmd is mapped.
785  * @pmd: The PMD.
786  *
787  * Get the "struct page" associated with a PTE. See __vm_normal_page()
788  * for details on "normal" and "special" mappings.
789  *
790  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
791  *	   NULL if this is a "special" mapping.
792  */
793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 				pmd_t pmd)
795 {
796 	return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd),
797 				pmd_val(pmd), PGTABLE_LEVEL_PMD);
798 }
799 
800 /**
801  * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD
802  * @vma: The VMA mapping the @pmd.
803  * @addr: The address where the @pmd is mapped.
804  * @pmd: The PMD.
805  *
806  * Get the "struct folio" associated with a PTE. See __vm_normal_page()
807  * for details on "normal" and "special" mappings.
808  *
809  * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
810  *	   NULL if this is a "special" mapping.
811  */
812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
813 				  unsigned long addr, pmd_t pmd)
814 {
815 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
816 
817 	if (page)
818 		return page_folio(page);
819 	return NULL;
820 }
821 
822 /**
823  * vm_normal_page_pud() - Get the "struct page" associated with a PUD
824  * @vma: The VMA mapping the @pud.
825  * @addr: The address where the @pud is mapped.
826  * @pud: The PUD.
827  *
828  * Get the "struct page" associated with a PUD. See __vm_normal_page()
829  * for details on "normal" and "special" mappings.
830  *
831  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
832  *	   NULL if this is a "special" mapping.
833  */
834 struct page *vm_normal_page_pud(struct vm_area_struct *vma,
835 		unsigned long addr, pud_t pud)
836 {
837 	return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud),
838 				pud_val(pud), PGTABLE_LEVEL_PUD);
839 }
840 #endif
841 
842 /**
843  * restore_exclusive_pte - Restore a device-exclusive entry
844  * @vma: VMA covering @address
845  * @folio: the mapped folio
846  * @page: the mapped folio page
847  * @address: the virtual address
848  * @ptep: pte pointer into the locked page table mapping the folio page
849  * @orig_pte: pte value at @ptep
850  *
851  * Restore a device-exclusive non-swap entry to an ordinary present pte.
852  *
853  * The folio and the page table must be locked, and MMU notifiers must have
854  * been called to invalidate any (exclusive) device mappings.
855  *
856  * Locking the folio makes sure that anybody who just converted the pte to
857  * a device-exclusive entry can map it into the device to make forward
858  * progress without others converting it back until the folio was unlocked.
859  *
860  * If the folio lock ever becomes an issue, we can stop relying on the folio
861  * lock; it might make some scenarios with heavy thrashing less likely to
862  * make forward progress, but these scenarios might not be valid use cases.
863  *
864  * Note that the folio lock does not protect against all cases of concurrent
865  * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
866  * must use MMU notifiers to sync against any concurrent changes.
867  */
868 static void restore_exclusive_pte(struct vm_area_struct *vma,
869 		struct folio *folio, struct page *page, unsigned long address,
870 		pte_t *ptep, pte_t orig_pte)
871 {
872 	pte_t pte;
873 
874 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
875 
876 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
877 	if (pte_swp_soft_dirty(orig_pte))
878 		pte = pte_mksoft_dirty(pte);
879 
880 	if (pte_swp_uffd_wp(orig_pte))
881 		pte = pte_mkuffd_wp(pte);
882 
883 	if ((vma->vm_flags & VM_WRITE) &&
884 	    can_change_pte_writable(vma, address, pte)) {
885 		if (folio_test_dirty(folio))
886 			pte = pte_mkdirty(pte);
887 		pte = pte_mkwrite(pte, vma);
888 	}
889 	set_pte_at(vma->vm_mm, address, ptep, pte);
890 
891 	/*
892 	 * No need to invalidate - it was non-present before. However
893 	 * secondary CPUs may have mappings that need invalidating.
894 	 */
895 	update_mmu_cache(vma, address, ptep);
896 }
897 
898 /*
899  * Tries to restore an exclusive pte if the page lock can be acquired without
900  * sleeping.
901  */
902 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
903 		unsigned long addr, pte_t *ptep, pte_t orig_pte)
904 {
905 	const softleaf_t entry = softleaf_from_pte(orig_pte);
906 	struct page *page = softleaf_to_page(entry);
907 	struct folio *folio = page_folio(page);
908 
909 	if (folio_trylock(folio)) {
910 		restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
911 		folio_unlock(folio);
912 		return 0;
913 	}
914 
915 	return -EBUSY;
916 }
917 
918 /*
919  * copy one vm_area from one task to the other. Assumes the page tables
920  * already present in the new task to be cleared in the whole range
921  * covered by this vma.
922  */
923 
924 static unsigned long
925 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
926 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
927 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
928 {
929 	vm_flags_t vm_flags = dst_vma->vm_flags;
930 	pte_t orig_pte = ptep_get(src_pte);
931 	softleaf_t entry = softleaf_from_pte(orig_pte);
932 	pte_t pte = orig_pte;
933 	struct folio *folio;
934 	struct page *page;
935 
936 	if (likely(softleaf_is_swap(entry))) {
937 		if (swap_dup_entry_direct(entry) < 0)
938 			return -EIO;
939 
940 		/* make sure dst_mm is on swapoff's mmlist. */
941 		if (unlikely(list_empty(&dst_mm->mmlist))) {
942 			spin_lock(&mmlist_lock);
943 			if (list_empty(&dst_mm->mmlist))
944 				list_add(&dst_mm->mmlist,
945 						&src_mm->mmlist);
946 			spin_unlock(&mmlist_lock);
947 		}
948 		/* Mark the swap entry as shared. */
949 		if (pte_swp_exclusive(orig_pte)) {
950 			pte = pte_swp_clear_exclusive(orig_pte);
951 			set_pte_at(src_mm, addr, src_pte, pte);
952 		}
953 		rss[MM_SWAPENTS]++;
954 	} else if (softleaf_is_migration(entry)) {
955 		folio = softleaf_to_folio(entry);
956 
957 		rss[mm_counter(folio)]++;
958 
959 		if (!softleaf_is_migration_read(entry) &&
960 				is_cow_mapping(vm_flags)) {
961 			/*
962 			 * COW mappings require pages in both parent and child
963 			 * to be set to read. A previously exclusive entry is
964 			 * now shared.
965 			 */
966 			entry = make_readable_migration_entry(
967 							swp_offset(entry));
968 			pte = softleaf_to_pte(entry);
969 			if (pte_swp_soft_dirty(orig_pte))
970 				pte = pte_swp_mksoft_dirty(pte);
971 			if (pte_swp_uffd_wp(orig_pte))
972 				pte = pte_swp_mkuffd_wp(pte);
973 			set_pte_at(src_mm, addr, src_pte, pte);
974 		}
975 	} else if (softleaf_is_device_private(entry)) {
976 		page = softleaf_to_page(entry);
977 		folio = page_folio(page);
978 
979 		/*
980 		 * Update rss count even for unaddressable pages, as
981 		 * they should treated just like normal pages in this
982 		 * respect.
983 		 *
984 		 * We will likely want to have some new rss counters
985 		 * for unaddressable pages, at some point. But for now
986 		 * keep things as they are.
987 		 */
988 		folio_get(folio);
989 		rss[mm_counter(folio)]++;
990 		/* Cannot fail as these pages cannot get pinned. */
991 		folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
992 
993 		/*
994 		 * We do not preserve soft-dirty information, because so
995 		 * far, checkpoint/restore is the only feature that
996 		 * requires that. And checkpoint/restore does not work
997 		 * when a device driver is involved (you cannot easily
998 		 * save and restore device driver state).
999 		 */
1000 		if (softleaf_is_device_private_write(entry) &&
1001 		    is_cow_mapping(vm_flags)) {
1002 			entry = make_readable_device_private_entry(
1003 							swp_offset(entry));
1004 			pte = swp_entry_to_pte(entry);
1005 			if (pte_swp_uffd_wp(orig_pte))
1006 				pte = pte_swp_mkuffd_wp(pte);
1007 			set_pte_at(src_mm, addr, src_pte, pte);
1008 		}
1009 	} else if (softleaf_is_device_exclusive(entry)) {
1010 		/*
1011 		 * Make device exclusive entries present by restoring the
1012 		 * original entry then copying as for a present pte. Device
1013 		 * exclusive entries currently only support private writable
1014 		 * (ie. COW) mappings.
1015 		 */
1016 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
1017 		if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
1018 			return -EBUSY;
1019 		return -ENOENT;
1020 	} else if (softleaf_is_marker(entry)) {
1021 		pte_marker marker = copy_pte_marker(entry, dst_vma);
1022 
1023 		if (marker)
1024 			set_pte_at(dst_mm, addr, dst_pte,
1025 				   make_pte_marker(marker));
1026 		return 0;
1027 	}
1028 	if (!userfaultfd_wp(dst_vma))
1029 		pte = pte_swp_clear_uffd_wp(pte);
1030 	set_pte_at(dst_mm, addr, dst_pte, pte);
1031 	return 0;
1032 }
1033 
1034 /*
1035  * Copy a present and normal page.
1036  *
1037  * NOTE! The usual case is that this isn't required;
1038  * instead, the caller can just increase the page refcount
1039  * and re-use the pte the traditional way.
1040  *
1041  * And if we need a pre-allocated page but don't yet have
1042  * one, return a negative error to let the preallocation
1043  * code know so that it can do so outside the page table
1044  * lock.
1045  */
1046 static inline int
1047 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1048 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
1049 		  struct folio **prealloc, struct page *page)
1050 {
1051 	struct folio *new_folio;
1052 	pte_t pte;
1053 
1054 	new_folio = *prealloc;
1055 	if (!new_folio)
1056 		return -EAGAIN;
1057 
1058 	/*
1059 	 * We have a prealloc page, all good!  Take it
1060 	 * over and copy the page & arm it.
1061 	 */
1062 
1063 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
1064 		return -EHWPOISON;
1065 
1066 	*prealloc = NULL;
1067 	__folio_mark_uptodate(new_folio);
1068 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
1069 	folio_add_lru_vma(new_folio, dst_vma);
1070 	rss[MM_ANONPAGES]++;
1071 
1072 	/* All done, just insert the new page copy in the child */
1073 	pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
1074 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
1075 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
1076 		/* Uffd-wp needs to be delivered to dest pte as well */
1077 		pte = pte_mkuffd_wp(pte);
1078 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
1079 	return 0;
1080 }
1081 
1082 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
1083 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
1084 		pte_t pte, unsigned long addr, int nr)
1085 {
1086 	struct mm_struct *src_mm = src_vma->vm_mm;
1087 
1088 	/* If it's a COW mapping, write protect it both processes. */
1089 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
1090 		wrprotect_ptes(src_mm, addr, src_pte, nr);
1091 		pte = pte_wrprotect(pte);
1092 	}
1093 
1094 	/* If it's a shared mapping, mark it clean in the child. */
1095 	if (src_vma->vm_flags & VM_SHARED)
1096 		pte = pte_mkclean(pte);
1097 	pte = pte_mkold(pte);
1098 
1099 	if (!userfaultfd_wp(dst_vma))
1100 		pte = pte_clear_uffd_wp(pte);
1101 
1102 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
1103 }
1104 
1105 /*
1106  * Copy one present PTE, trying to batch-process subsequent PTEs that map
1107  * consecutive pages of the same folio by copying them as well.
1108  *
1109  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
1110  * Otherwise, returns the number of copied PTEs (at least 1).
1111  */
1112 static inline int
1113 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1114 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
1115 		 int max_nr, int *rss, struct folio **prealloc)
1116 {
1117 	fpb_t flags = FPB_MERGE_WRITE;
1118 	struct page *page;
1119 	struct folio *folio;
1120 	int err, nr;
1121 
1122 	page = vm_normal_page(src_vma, addr, pte);
1123 	if (unlikely(!page))
1124 		goto copy_pte;
1125 
1126 	folio = page_folio(page);
1127 
1128 	/*
1129 	 * If we likely have to copy, just don't bother with batching. Make
1130 	 * sure that the common "small folio" case is as fast as possible
1131 	 * by keeping the batching logic separate.
1132 	 */
1133 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1134 		if (!(src_vma->vm_flags & VM_SHARED))
1135 			flags |= FPB_RESPECT_DIRTY;
1136 		if (vma_soft_dirty_enabled(src_vma))
1137 			flags |= FPB_RESPECT_SOFT_DIRTY;
1138 
1139 		nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags);
1140 		folio_ref_add(folio, nr);
1141 		if (folio_test_anon(folio)) {
1142 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1143 								  nr, dst_vma, src_vma))) {
1144 				folio_ref_sub(folio, nr);
1145 				return -EAGAIN;
1146 			}
1147 			rss[MM_ANONPAGES] += nr;
1148 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1149 		} else {
1150 			folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1151 			rss[mm_counter_file(folio)] += nr;
1152 		}
1153 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1154 				    addr, nr);
1155 		return nr;
1156 	}
1157 
1158 	folio_get(folio);
1159 	if (folio_test_anon(folio)) {
1160 		/*
1161 		 * If this page may have been pinned by the parent process,
1162 		 * copy the page immediately for the child so that we'll always
1163 		 * guarantee the pinned page won't be randomly replaced in the
1164 		 * future.
1165 		 */
1166 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1167 			/* Page may be pinned, we have to copy. */
1168 			folio_put(folio);
1169 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1170 						addr, rss, prealloc, page);
1171 			return err ? err : 1;
1172 		}
1173 		rss[MM_ANONPAGES]++;
1174 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1175 	} else {
1176 		folio_dup_file_rmap_pte(folio, page, dst_vma);
1177 		rss[mm_counter_file(folio)]++;
1178 	}
1179 
1180 copy_pte:
1181 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1182 	return 1;
1183 }
1184 
1185 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1186 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1187 {
1188 	struct folio *new_folio;
1189 
1190 	if (need_zero)
1191 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1192 	else
1193 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1194 
1195 	if (!new_folio)
1196 		return NULL;
1197 
1198 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1199 		folio_put(new_folio);
1200 		return NULL;
1201 	}
1202 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1203 
1204 	return new_folio;
1205 }
1206 
1207 static int
1208 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1209 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1210 	       unsigned long end)
1211 {
1212 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1213 	struct mm_struct *src_mm = src_vma->vm_mm;
1214 	pte_t *orig_src_pte, *orig_dst_pte;
1215 	pte_t *src_pte, *dst_pte;
1216 	pmd_t dummy_pmdval;
1217 	pte_t ptent;
1218 	spinlock_t *src_ptl, *dst_ptl;
1219 	int progress, max_nr, ret = 0;
1220 	int rss[NR_MM_COUNTERS];
1221 	softleaf_t entry = softleaf_mk_none();
1222 	struct folio *prealloc = NULL;
1223 	int nr;
1224 
1225 again:
1226 	progress = 0;
1227 	init_rss_vec(rss);
1228 
1229 	/*
1230 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1231 	 * error handling here, assume that exclusive mmap_lock on dst and src
1232 	 * protects anon from unexpected THP transitions; with shmem and file
1233 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1234 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1235 	 * can remove such assumptions later, but this is good enough for now.
1236 	 */
1237 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1238 	if (!dst_pte) {
1239 		ret = -ENOMEM;
1240 		goto out;
1241 	}
1242 
1243 	/*
1244 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1245 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1246 	 * the PTE page is stable, and there is no need to get pmdval and do
1247 	 * pmd_same() check.
1248 	 */
1249 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1250 					   &src_ptl);
1251 	if (!src_pte) {
1252 		pte_unmap_unlock(dst_pte, dst_ptl);
1253 		/* ret == 0 */
1254 		goto out;
1255 	}
1256 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1257 	orig_src_pte = src_pte;
1258 	orig_dst_pte = dst_pte;
1259 	lazy_mmu_mode_enable();
1260 
1261 	do {
1262 		nr = 1;
1263 
1264 		/*
1265 		 * We are holding two locks at this point - either of them
1266 		 * could generate latencies in another task on another CPU.
1267 		 */
1268 		if (progress >= 32) {
1269 			progress = 0;
1270 			if (need_resched() ||
1271 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1272 				break;
1273 		}
1274 		ptent = ptep_get(src_pte);
1275 		if (pte_none(ptent)) {
1276 			progress++;
1277 			continue;
1278 		}
1279 		if (unlikely(!pte_present(ptent))) {
1280 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1281 						  dst_pte, src_pte,
1282 						  dst_vma, src_vma,
1283 						  addr, rss);
1284 			if (ret == -EIO) {
1285 				entry = softleaf_from_pte(ptep_get(src_pte));
1286 				break;
1287 			} else if (ret == -EBUSY) {
1288 				break;
1289 			} else if (!ret) {
1290 				progress += 8;
1291 				continue;
1292 			}
1293 			ptent = ptep_get(src_pte);
1294 			VM_WARN_ON_ONCE(!pte_present(ptent));
1295 
1296 			/*
1297 			 * Device exclusive entry restored, continue by copying
1298 			 * the now present pte.
1299 			 */
1300 			WARN_ON_ONCE(ret != -ENOENT);
1301 		}
1302 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1303 		max_nr = (end - addr) / PAGE_SIZE;
1304 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1305 					ptent, addr, max_nr, rss, &prealloc);
1306 		/*
1307 		 * If we need a pre-allocated page for this pte, drop the
1308 		 * locks, allocate, and try again.
1309 		 * If copy failed due to hwpoison in source page, break out.
1310 		 */
1311 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1312 			break;
1313 		if (unlikely(prealloc)) {
1314 			/*
1315 			 * pre-alloc page cannot be reused by next time so as
1316 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1317 			 * will allocate page according to address).  This
1318 			 * could only happen if one pinned pte changed.
1319 			 */
1320 			folio_put(prealloc);
1321 			prealloc = NULL;
1322 		}
1323 		nr = ret;
1324 		progress += 8 * nr;
1325 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1326 		 addr != end);
1327 
1328 	lazy_mmu_mode_disable();
1329 	pte_unmap_unlock(orig_src_pte, src_ptl);
1330 	add_mm_rss_vec(dst_mm, rss);
1331 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1332 	cond_resched();
1333 
1334 	if (ret == -EIO) {
1335 		VM_WARN_ON_ONCE(!entry.val);
1336 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1337 			ret = -ENOMEM;
1338 			goto out;
1339 		}
1340 		entry.val = 0;
1341 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1342 		goto out;
1343 	} else if (ret ==  -EAGAIN) {
1344 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1345 		if (!prealloc)
1346 			return -ENOMEM;
1347 	} else if (ret < 0) {
1348 		VM_WARN_ON_ONCE(1);
1349 	}
1350 
1351 	/* We've captured and resolved the error. Reset, try again. */
1352 	ret = 0;
1353 
1354 	if (addr != end)
1355 		goto again;
1356 out:
1357 	if (unlikely(prealloc))
1358 		folio_put(prealloc);
1359 	return ret;
1360 }
1361 
1362 static inline int
1363 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1364 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1365 	       unsigned long end)
1366 {
1367 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1368 	struct mm_struct *src_mm = src_vma->vm_mm;
1369 	pmd_t *src_pmd, *dst_pmd;
1370 	unsigned long next;
1371 
1372 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1373 	if (!dst_pmd)
1374 		return -ENOMEM;
1375 	src_pmd = pmd_offset(src_pud, addr);
1376 	do {
1377 		next = pmd_addr_end(addr, end);
1378 		if (pmd_is_huge(*src_pmd)) {
1379 			int err;
1380 
1381 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1382 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1383 					    addr, dst_vma, src_vma);
1384 			if (err == -ENOMEM)
1385 				return -ENOMEM;
1386 			if (!err)
1387 				continue;
1388 			/* fall through */
1389 		}
1390 		if (pmd_none_or_clear_bad(src_pmd))
1391 			continue;
1392 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1393 				   addr, next))
1394 			return -ENOMEM;
1395 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1396 	return 0;
1397 }
1398 
1399 static inline int
1400 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1401 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1402 	       unsigned long end)
1403 {
1404 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1405 	struct mm_struct *src_mm = src_vma->vm_mm;
1406 	pud_t *src_pud, *dst_pud;
1407 	unsigned long next;
1408 
1409 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1410 	if (!dst_pud)
1411 		return -ENOMEM;
1412 	src_pud = pud_offset(src_p4d, addr);
1413 	do {
1414 		next = pud_addr_end(addr, end);
1415 		if (pud_trans_huge(*src_pud)) {
1416 			int err;
1417 
1418 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1419 			err = copy_huge_pud(dst_mm, src_mm,
1420 					    dst_pud, src_pud, addr, src_vma);
1421 			if (err == -ENOMEM)
1422 				return -ENOMEM;
1423 			if (!err)
1424 				continue;
1425 			/* fall through */
1426 		}
1427 		if (pud_none_or_clear_bad(src_pud))
1428 			continue;
1429 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1430 				   addr, next))
1431 			return -ENOMEM;
1432 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1433 	return 0;
1434 }
1435 
1436 static inline int
1437 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1438 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1439 	       unsigned long end)
1440 {
1441 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1442 	p4d_t *src_p4d, *dst_p4d;
1443 	unsigned long next;
1444 
1445 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1446 	if (!dst_p4d)
1447 		return -ENOMEM;
1448 	src_p4d = p4d_offset(src_pgd, addr);
1449 	do {
1450 		next = p4d_addr_end(addr, end);
1451 		if (p4d_none_or_clear_bad(src_p4d))
1452 			continue;
1453 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1454 				   addr, next))
1455 			return -ENOMEM;
1456 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Return true if the vma needs to copy the pgtable during this fork().  Return
1462  * false when we can speed up fork() by allowing lazy page faults later until
1463  * when the child accesses the memory range.
1464  */
1465 static bool
1466 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1467 {
1468 	/*
1469 	 * We check against dst_vma as while sane VMA flags will have been
1470 	 * copied, VM_UFFD_WP may be set only on dst_vma.
1471 	 */
1472 	if (dst_vma->vm_flags & VM_COPY_ON_FORK)
1473 		return true;
1474 	/*
1475 	 * The presence of an anon_vma indicates an anonymous VMA has page
1476 	 * tables which naturally cannot be reconstituted on page fault.
1477 	 */
1478 	if (src_vma->anon_vma)
1479 		return true;
1480 
1481 	/*
1482 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1483 	 * becomes much lighter when there are big shared or private readonly
1484 	 * mappings. The tradeoff is that copy_page_range is more efficient
1485 	 * than faulting.
1486 	 */
1487 	return false;
1488 }
1489 
1490 int
1491 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1492 {
1493 	pgd_t *src_pgd, *dst_pgd;
1494 	unsigned long addr = src_vma->vm_start;
1495 	unsigned long end = src_vma->vm_end;
1496 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1497 	struct mm_struct *src_mm = src_vma->vm_mm;
1498 	struct mmu_notifier_range range;
1499 	unsigned long next;
1500 	bool is_cow;
1501 	int ret;
1502 
1503 	if (!vma_needs_copy(dst_vma, src_vma))
1504 		return 0;
1505 
1506 	if (is_vm_hugetlb_page(src_vma))
1507 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1508 
1509 	/*
1510 	 * We need to invalidate the secondary MMU mappings only when
1511 	 * there could be a permission downgrade on the ptes of the
1512 	 * parent mm. And a permission downgrade will only happen if
1513 	 * is_cow_mapping() returns true.
1514 	 */
1515 	is_cow = is_cow_mapping(src_vma->vm_flags);
1516 
1517 	if (is_cow) {
1518 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1519 					0, src_mm, addr, end);
1520 		mmu_notifier_invalidate_range_start(&range);
1521 		/*
1522 		 * Disabling preemption is not needed for the write side, as
1523 		 * the read side doesn't spin, but goes to the mmap_lock.
1524 		 *
1525 		 * Use the raw variant of the seqcount_t write API to avoid
1526 		 * lockdep complaining about preemptibility.
1527 		 */
1528 		vma_assert_write_locked(src_vma);
1529 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1530 	}
1531 
1532 	ret = 0;
1533 	dst_pgd = pgd_offset(dst_mm, addr);
1534 	src_pgd = pgd_offset(src_mm, addr);
1535 	do {
1536 		next = pgd_addr_end(addr, end);
1537 		if (pgd_none_or_clear_bad(src_pgd))
1538 			continue;
1539 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1540 					    addr, next))) {
1541 			ret = -ENOMEM;
1542 			break;
1543 		}
1544 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1545 
1546 	if (is_cow) {
1547 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1548 		mmu_notifier_invalidate_range_end(&range);
1549 	}
1550 	return ret;
1551 }
1552 
1553 /* Whether we should zap all COWed (private) pages too */
1554 static inline bool should_zap_cows(struct zap_details *details)
1555 {
1556 	/* By default, zap all pages */
1557 	if (!details || details->reclaim_pt)
1558 		return true;
1559 
1560 	/* Or, we zap COWed pages only if the caller wants to */
1561 	return details->even_cows;
1562 }
1563 
1564 /* Decides whether we should zap this folio with the folio pointer specified */
1565 static inline bool should_zap_folio(struct zap_details *details,
1566 				    struct folio *folio)
1567 {
1568 	/* If we can make a decision without *folio.. */
1569 	if (should_zap_cows(details))
1570 		return true;
1571 
1572 	/* Otherwise we should only zap non-anon folios */
1573 	return !folio_test_anon(folio);
1574 }
1575 
1576 static inline bool zap_drop_markers(struct zap_details *details)
1577 {
1578 	if (!details)
1579 		return false;
1580 
1581 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1582 }
1583 
1584 /*
1585  * This function makes sure that we'll replace the none pte with an uffd-wp
1586  * swap special pte marker when necessary. Must be with the pgtable lock held.
1587  *
1588  * Returns true if uffd-wp ptes was installed, false otherwise.
1589  */
1590 static inline bool
1591 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1592 			      unsigned long addr, pte_t *pte, int nr,
1593 			      struct zap_details *details, pte_t pteval)
1594 {
1595 	bool was_installed = false;
1596 
1597 	if (!uffd_supports_wp_marker())
1598 		return false;
1599 
1600 	/* Zap on anonymous always means dropping everything */
1601 	if (vma_is_anonymous(vma))
1602 		return false;
1603 
1604 	if (zap_drop_markers(details))
1605 		return false;
1606 
1607 	for (;;) {
1608 		/* the PFN in the PTE is irrelevant. */
1609 		if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1610 			was_installed = true;
1611 		if (--nr == 0)
1612 			break;
1613 		pte++;
1614 		addr += PAGE_SIZE;
1615 	}
1616 
1617 	return was_installed;
1618 }
1619 
1620 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1621 		struct vm_area_struct *vma, struct folio *folio,
1622 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1623 		unsigned long addr, struct zap_details *details, int *rss,
1624 		bool *force_flush, bool *force_break, bool *any_skipped)
1625 {
1626 	struct mm_struct *mm = tlb->mm;
1627 	bool delay_rmap = false;
1628 
1629 	if (!folio_test_anon(folio)) {
1630 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1631 		if (pte_dirty(ptent)) {
1632 			folio_mark_dirty(folio);
1633 			if (tlb_delay_rmap(tlb)) {
1634 				delay_rmap = true;
1635 				*force_flush = true;
1636 			}
1637 		}
1638 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1639 			folio_mark_accessed(folio);
1640 		rss[mm_counter(folio)] -= nr;
1641 	} else {
1642 		/* We don't need up-to-date accessed/dirty bits. */
1643 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1644 		rss[MM_ANONPAGES] -= nr;
1645 	}
1646 	/* Checking a single PTE in a batch is sufficient. */
1647 	arch_check_zapped_pte(vma, ptent);
1648 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1649 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1650 		*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1651 							     nr, details, ptent);
1652 
1653 	if (!delay_rmap) {
1654 		folio_remove_rmap_ptes(folio, page, nr, vma);
1655 
1656 		if (unlikely(folio_mapcount(folio) < 0))
1657 			print_bad_pte(vma, addr, ptent, page);
1658 	}
1659 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1660 		*force_flush = true;
1661 		*force_break = true;
1662 	}
1663 }
1664 
1665 /*
1666  * Zap or skip at least one present PTE, trying to batch-process subsequent
1667  * PTEs that map consecutive pages of the same folio.
1668  *
1669  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1670  */
1671 static inline int zap_present_ptes(struct mmu_gather *tlb,
1672 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1673 		unsigned int max_nr, unsigned long addr,
1674 		struct zap_details *details, int *rss, bool *force_flush,
1675 		bool *force_break, bool *any_skipped)
1676 {
1677 	struct mm_struct *mm = tlb->mm;
1678 	struct folio *folio;
1679 	struct page *page;
1680 	int nr;
1681 
1682 	page = vm_normal_page(vma, addr, ptent);
1683 	if (!page) {
1684 		/* We don't need up-to-date accessed/dirty bits. */
1685 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1686 		arch_check_zapped_pte(vma, ptent);
1687 		tlb_remove_tlb_entry(tlb, pte, addr);
1688 		if (userfaultfd_pte_wp(vma, ptent))
1689 			*any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1690 						pte, 1, details, ptent);
1691 		ksm_might_unmap_zero_page(mm, ptent);
1692 		return 1;
1693 	}
1694 
1695 	folio = page_folio(page);
1696 	if (unlikely(!should_zap_folio(details, folio))) {
1697 		*any_skipped = true;
1698 		return 1;
1699 	}
1700 
1701 	/*
1702 	 * Make sure that the common "small folio" case is as fast as possible
1703 	 * by keeping the batching logic separate.
1704 	 */
1705 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1706 		nr = folio_pte_batch(folio, pte, ptent, max_nr);
1707 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1708 				       addr, details, rss, force_flush,
1709 				       force_break, any_skipped);
1710 		return nr;
1711 	}
1712 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1713 			       details, rss, force_flush, force_break, any_skipped);
1714 	return 1;
1715 }
1716 
1717 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1718 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1719 		unsigned int max_nr, unsigned long addr,
1720 		struct zap_details *details, int *rss, bool *any_skipped)
1721 {
1722 	softleaf_t entry;
1723 	int nr = 1;
1724 
1725 	*any_skipped = true;
1726 	entry = softleaf_from_pte(ptent);
1727 	if (softleaf_is_device_private(entry) ||
1728 	    softleaf_is_device_exclusive(entry)) {
1729 		struct page *page = softleaf_to_page(entry);
1730 		struct folio *folio = page_folio(page);
1731 
1732 		if (unlikely(!should_zap_folio(details, folio)))
1733 			return 1;
1734 		/*
1735 		 * Both device private/exclusive mappings should only
1736 		 * work with anonymous page so far, so we don't need to
1737 		 * consider uffd-wp bit when zap. For more information,
1738 		 * see zap_install_uffd_wp_if_needed().
1739 		 */
1740 		WARN_ON_ONCE(!vma_is_anonymous(vma));
1741 		rss[mm_counter(folio)]--;
1742 		folio_remove_rmap_pte(folio, page, vma);
1743 		folio_put(folio);
1744 	} else if (softleaf_is_swap(entry)) {
1745 		/* Genuine swap entries, hence a private anon pages */
1746 		if (!should_zap_cows(details))
1747 			return 1;
1748 
1749 		nr = swap_pte_batch(pte, max_nr, ptent);
1750 		rss[MM_SWAPENTS] -= nr;
1751 		swap_put_entries_direct(entry, nr);
1752 	} else if (softleaf_is_migration(entry)) {
1753 		struct folio *folio = softleaf_to_folio(entry);
1754 
1755 		if (!should_zap_folio(details, folio))
1756 			return 1;
1757 		rss[mm_counter(folio)]--;
1758 	} else if (softleaf_is_uffd_wp_marker(entry)) {
1759 		/*
1760 		 * For anon: always drop the marker; for file: only
1761 		 * drop the marker if explicitly requested.
1762 		 */
1763 		if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1764 			return 1;
1765 	} else if (softleaf_is_guard_marker(entry)) {
1766 		/*
1767 		 * Ordinary zapping should not remove guard PTE
1768 		 * markers. Only do so if we should remove PTE markers
1769 		 * in general.
1770 		 */
1771 		if (!zap_drop_markers(details))
1772 			return 1;
1773 	} else if (softleaf_is_hwpoison(entry) ||
1774 		   softleaf_is_poison_marker(entry)) {
1775 		if (!should_zap_cows(details))
1776 			return 1;
1777 	} else {
1778 		/* We should have covered all the swap entry types */
1779 		pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1780 		WARN_ON_ONCE(1);
1781 	}
1782 	clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1783 	*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1784 
1785 	return nr;
1786 }
1787 
1788 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1789 				   struct vm_area_struct *vma, pte_t *pte,
1790 				   unsigned long addr, unsigned long end,
1791 				   struct zap_details *details, int *rss,
1792 				   bool *force_flush, bool *force_break,
1793 				   bool *any_skipped)
1794 {
1795 	pte_t ptent = ptep_get(pte);
1796 	int max_nr = (end - addr) / PAGE_SIZE;
1797 	int nr = 0;
1798 
1799 	/* Skip all consecutive none ptes */
1800 	if (pte_none(ptent)) {
1801 		for (nr = 1; nr < max_nr; nr++) {
1802 			ptent = ptep_get(pte + nr);
1803 			if (!pte_none(ptent))
1804 				break;
1805 		}
1806 		max_nr -= nr;
1807 		if (!max_nr)
1808 			return nr;
1809 		pte += nr;
1810 		addr += nr * PAGE_SIZE;
1811 	}
1812 
1813 	if (pte_present(ptent))
1814 		nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1815 				       details, rss, force_flush, force_break,
1816 				       any_skipped);
1817 	else
1818 		nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1819 					  details, rss, any_skipped);
1820 
1821 	return nr;
1822 }
1823 
1824 static bool pte_table_reclaim_possible(unsigned long start, unsigned long end,
1825 		struct zap_details *details)
1826 {
1827 	if (!IS_ENABLED(CONFIG_PT_RECLAIM))
1828 		return false;
1829 	/* Only zap if we are allowed to and cover the full page table. */
1830 	return details && details->reclaim_pt && (end - start >= PMD_SIZE);
1831 }
1832 
1833 static bool zap_empty_pte_table(struct mm_struct *mm, pmd_t *pmd,
1834 		spinlock_t *ptl, pmd_t *pmdval)
1835 {
1836 	spinlock_t *pml = pmd_lockptr(mm, pmd);
1837 
1838 	if (ptl != pml && !spin_trylock(pml))
1839 		return false;
1840 
1841 	*pmdval = pmdp_get(pmd);
1842 	pmd_clear(pmd);
1843 	if (ptl != pml)
1844 		spin_unlock(pml);
1845 	return true;
1846 }
1847 
1848 static bool zap_pte_table_if_empty(struct mm_struct *mm, pmd_t *pmd,
1849 		unsigned long addr, pmd_t *pmdval)
1850 {
1851 	spinlock_t *pml, *ptl = NULL;
1852 	pte_t *start_pte, *pte;
1853 	int i;
1854 
1855 	pml = pmd_lock(mm, pmd);
1856 	start_pte = pte_offset_map_rw_nolock(mm, pmd, addr, pmdval, &ptl);
1857 	if (!start_pte)
1858 		goto out_ptl;
1859 	if (ptl != pml)
1860 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1861 
1862 	for (i = 0, pte = start_pte; i < PTRS_PER_PTE; i++, pte++) {
1863 		if (!pte_none(ptep_get(pte)))
1864 			goto out_ptl;
1865 	}
1866 	pte_unmap(start_pte);
1867 
1868 	pmd_clear(pmd);
1869 
1870 	if (ptl != pml)
1871 		spin_unlock(ptl);
1872 	spin_unlock(pml);
1873 	return true;
1874 out_ptl:
1875 	if (start_pte)
1876 		pte_unmap_unlock(start_pte, ptl);
1877 	if (ptl != pml)
1878 		spin_unlock(pml);
1879 	return false;
1880 }
1881 
1882 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1883 				struct vm_area_struct *vma, pmd_t *pmd,
1884 				unsigned long addr, unsigned long end,
1885 				struct zap_details *details)
1886 {
1887 	bool can_reclaim_pt = pte_table_reclaim_possible(addr, end, details);
1888 	bool force_flush = false, force_break = false;
1889 	struct mm_struct *mm = tlb->mm;
1890 	int rss[NR_MM_COUNTERS];
1891 	spinlock_t *ptl;
1892 	pte_t *start_pte;
1893 	pte_t *pte;
1894 	pmd_t pmdval;
1895 	unsigned long start = addr;
1896 	bool direct_reclaim = true;
1897 	int nr;
1898 
1899 retry:
1900 	tlb_change_page_size(tlb, PAGE_SIZE);
1901 	init_rss_vec(rss);
1902 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1903 	if (!pte)
1904 		return addr;
1905 
1906 	flush_tlb_batched_pending(mm);
1907 	lazy_mmu_mode_enable();
1908 	do {
1909 		bool any_skipped = false;
1910 
1911 		if (need_resched()) {
1912 			direct_reclaim = false;
1913 			break;
1914 		}
1915 
1916 		nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1917 				      &force_flush, &force_break, &any_skipped);
1918 		if (any_skipped)
1919 			can_reclaim_pt = false;
1920 		if (unlikely(force_break)) {
1921 			addr += nr * PAGE_SIZE;
1922 			direct_reclaim = false;
1923 			break;
1924 		}
1925 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1926 
1927 	/*
1928 	 * Fast path: try to hold the pmd lock and unmap the PTE page.
1929 	 *
1930 	 * If the pte lock was released midway (retry case), or if the attempt
1931 	 * to hold the pmd lock failed, then we need to recheck all pte entries
1932 	 * to ensure they are still none, thereby preventing the pte entries
1933 	 * from being repopulated by another thread.
1934 	 */
1935 	if (can_reclaim_pt && direct_reclaim && addr == end)
1936 		direct_reclaim = zap_empty_pte_table(mm, pmd, ptl, &pmdval);
1937 
1938 	add_mm_rss_vec(mm, rss);
1939 	lazy_mmu_mode_disable();
1940 
1941 	/* Do the actual TLB flush before dropping ptl */
1942 	if (force_flush) {
1943 		tlb_flush_mmu_tlbonly(tlb);
1944 		tlb_flush_rmaps(tlb, vma);
1945 	}
1946 	pte_unmap_unlock(start_pte, ptl);
1947 
1948 	/*
1949 	 * If we forced a TLB flush (either due to running out of
1950 	 * batch buffers or because we needed to flush dirty TLB
1951 	 * entries before releasing the ptl), free the batched
1952 	 * memory too. Come back again if we didn't do everything.
1953 	 */
1954 	if (force_flush)
1955 		tlb_flush_mmu(tlb);
1956 
1957 	if (addr != end) {
1958 		cond_resched();
1959 		force_flush = false;
1960 		force_break = false;
1961 		goto retry;
1962 	}
1963 
1964 	if (can_reclaim_pt) {
1965 		if (direct_reclaim || zap_pte_table_if_empty(mm, pmd, start, &pmdval)) {
1966 			pte_free_tlb(tlb, pmd_pgtable(pmdval), addr);
1967 			mm_dec_nr_ptes(mm);
1968 		}
1969 	}
1970 
1971 	return addr;
1972 }
1973 
1974 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1975 				struct vm_area_struct *vma, pud_t *pud,
1976 				unsigned long addr, unsigned long end,
1977 				struct zap_details *details)
1978 {
1979 	pmd_t *pmd;
1980 	unsigned long next;
1981 
1982 	pmd = pmd_offset(pud, addr);
1983 	do {
1984 		next = pmd_addr_end(addr, end);
1985 		if (pmd_is_huge(*pmd)) {
1986 			if (next - addr != HPAGE_PMD_SIZE)
1987 				__split_huge_pmd(vma, pmd, addr, false);
1988 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1989 				addr = next;
1990 				continue;
1991 			}
1992 			/* fall through */
1993 		} else if (details && details->single_folio &&
1994 			   folio_test_pmd_mappable(details->single_folio) &&
1995 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1996 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1997 			/*
1998 			 * Take and drop THP pmd lock so that we cannot return
1999 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
2000 			 * but not yet decremented compound_mapcount().
2001 			 */
2002 			spin_unlock(ptl);
2003 		}
2004 		if (pmd_none(*pmd)) {
2005 			addr = next;
2006 			continue;
2007 		}
2008 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
2009 		if (addr != next)
2010 			pmd--;
2011 	} while (pmd++, cond_resched(), addr != end);
2012 
2013 	return addr;
2014 }
2015 
2016 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
2017 				struct vm_area_struct *vma, p4d_t *p4d,
2018 				unsigned long addr, unsigned long end,
2019 				struct zap_details *details)
2020 {
2021 	pud_t *pud;
2022 	unsigned long next;
2023 
2024 	pud = pud_offset(p4d, addr);
2025 	do {
2026 		next = pud_addr_end(addr, end);
2027 		if (pud_trans_huge(*pud)) {
2028 			if (next - addr != HPAGE_PUD_SIZE)
2029 				split_huge_pud(vma, pud, addr);
2030 			else if (zap_huge_pud(tlb, vma, pud, addr))
2031 				goto next;
2032 			/* fall through */
2033 		}
2034 		if (pud_none_or_clear_bad(pud))
2035 			continue;
2036 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
2037 next:
2038 		cond_resched();
2039 	} while (pud++, addr = next, addr != end);
2040 
2041 	return addr;
2042 }
2043 
2044 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
2045 				struct vm_area_struct *vma, pgd_t *pgd,
2046 				unsigned long addr, unsigned long end,
2047 				struct zap_details *details)
2048 {
2049 	p4d_t *p4d;
2050 	unsigned long next;
2051 
2052 	p4d = p4d_offset(pgd, addr);
2053 	do {
2054 		next = p4d_addr_end(addr, end);
2055 		if (p4d_none_or_clear_bad(p4d))
2056 			continue;
2057 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
2058 	} while (p4d++, addr = next, addr != end);
2059 
2060 	return addr;
2061 }
2062 
2063 void unmap_page_range(struct mmu_gather *tlb,
2064 			     struct vm_area_struct *vma,
2065 			     unsigned long addr, unsigned long end,
2066 			     struct zap_details *details)
2067 {
2068 	pgd_t *pgd;
2069 	unsigned long next;
2070 
2071 	BUG_ON(addr >= end);
2072 	tlb_start_vma(tlb, vma);
2073 	pgd = pgd_offset(vma->vm_mm, addr);
2074 	do {
2075 		next = pgd_addr_end(addr, end);
2076 		if (pgd_none_or_clear_bad(pgd))
2077 			continue;
2078 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
2079 	} while (pgd++, addr = next, addr != end);
2080 	tlb_end_vma(tlb, vma);
2081 }
2082 
2083 
2084 static void unmap_single_vma(struct mmu_gather *tlb,
2085 		struct vm_area_struct *vma, unsigned long start_addr,
2086 		unsigned long end_addr, struct zap_details *details)
2087 {
2088 	unsigned long start = max(vma->vm_start, start_addr);
2089 	unsigned long end;
2090 
2091 	if (start >= vma->vm_end)
2092 		return;
2093 	end = min(vma->vm_end, end_addr);
2094 	if (end <= vma->vm_start)
2095 		return;
2096 
2097 	if (vma->vm_file)
2098 		uprobe_munmap(vma, start, end);
2099 
2100 	if (start != end) {
2101 		if (unlikely(is_vm_hugetlb_page(vma))) {
2102 			/*
2103 			 * It is undesirable to test vma->vm_file as it
2104 			 * should be non-null for valid hugetlb area.
2105 			 * However, vm_file will be NULL in the error
2106 			 * cleanup path of mmap_region. When
2107 			 * hugetlbfs ->mmap method fails,
2108 			 * mmap_region() nullifies vma->vm_file
2109 			 * before calling this function to clean up.
2110 			 * Since no pte has actually been setup, it is
2111 			 * safe to do nothing in this case.
2112 			 */
2113 			if (vma->vm_file) {
2114 				zap_flags_t zap_flags = details ?
2115 				    details->zap_flags : 0;
2116 				__unmap_hugepage_range(tlb, vma, start, end,
2117 							     NULL, zap_flags);
2118 			}
2119 		} else
2120 			unmap_page_range(tlb, vma, start, end, details);
2121 	}
2122 }
2123 
2124 /**
2125  * unmap_vmas - unmap a range of memory covered by a list of vma's
2126  * @tlb: address of the caller's struct mmu_gather
2127  * @mas: the maple state
2128  * @vma: the starting vma
2129  * @start_addr: virtual address at which to start unmapping
2130  * @end_addr: virtual address at which to end unmapping
2131  * @tree_end: The maximum index to check
2132  *
2133  * Unmap all pages in the vma list.
2134  *
2135  * Only addresses between `start' and `end' will be unmapped.
2136  *
2137  * The VMA list must be sorted in ascending virtual address order.
2138  *
2139  * unmap_vmas() assumes that the caller will flush the whole unmapped address
2140  * range after unmap_vmas() returns.  So the only responsibility here is to
2141  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
2142  * drops the lock and schedules.
2143  */
2144 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2145 		struct vm_area_struct *vma, unsigned long start_addr,
2146 		unsigned long end_addr, unsigned long tree_end)
2147 {
2148 	struct mmu_notifier_range range;
2149 	struct zap_details details = {
2150 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
2151 		/* Careful - we need to zap private pages too! */
2152 		.even_cows = true,
2153 	};
2154 
2155 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
2156 				start_addr, end_addr);
2157 	mmu_notifier_invalidate_range_start(&range);
2158 	do {
2159 		unsigned long start = start_addr;
2160 		unsigned long end = end_addr;
2161 		hugetlb_zap_begin(vma, &start, &end);
2162 		unmap_single_vma(tlb, vma, start, end, &details);
2163 		hugetlb_zap_end(vma, &details);
2164 		vma = mas_find(mas, tree_end - 1);
2165 	} while (vma && likely(!xa_is_zero(vma)));
2166 	mmu_notifier_invalidate_range_end(&range);
2167 }
2168 
2169 /**
2170  * zap_page_range_single_batched - remove user pages in a given range
2171  * @tlb: pointer to the caller's struct mmu_gather
2172  * @vma: vm_area_struct holding the applicable pages
2173  * @address: starting address of pages to remove
2174  * @size: number of bytes to remove
2175  * @details: details of shared cache invalidation
2176  *
2177  * @tlb shouldn't be NULL.  The range must fit into one VMA.  If @vma is for
2178  * hugetlb, @tlb is flushed and re-initialized by this function.
2179  */
2180 void zap_page_range_single_batched(struct mmu_gather *tlb,
2181 		struct vm_area_struct *vma, unsigned long address,
2182 		unsigned long size, struct zap_details *details)
2183 {
2184 	const unsigned long end = address + size;
2185 	struct mmu_notifier_range range;
2186 
2187 	VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2188 
2189 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2190 				address, end);
2191 	hugetlb_zap_begin(vma, &range.start, &range.end);
2192 	update_hiwater_rss(vma->vm_mm);
2193 	mmu_notifier_invalidate_range_start(&range);
2194 	/*
2195 	 * unmap 'address-end' not 'range.start-range.end' as range
2196 	 * could have been expanded for hugetlb pmd sharing.
2197 	 */
2198 	unmap_single_vma(tlb, vma, address, end, details);
2199 	mmu_notifier_invalidate_range_end(&range);
2200 	if (is_vm_hugetlb_page(vma)) {
2201 		/*
2202 		 * flush tlb and free resources before hugetlb_zap_end(), to
2203 		 * avoid concurrent page faults' allocation failure.
2204 		 */
2205 		tlb_finish_mmu(tlb);
2206 		hugetlb_zap_end(vma, details);
2207 		tlb_gather_mmu(tlb, vma->vm_mm);
2208 	}
2209 }
2210 
2211 /**
2212  * zap_page_range_single - remove user pages in a given range
2213  * @vma: vm_area_struct holding the applicable pages
2214  * @address: starting address of pages to zap
2215  * @size: number of bytes to zap
2216  * @details: details of shared cache invalidation
2217  *
2218  * The range must fit into one VMA.
2219  */
2220 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2221 		unsigned long size, struct zap_details *details)
2222 {
2223 	struct mmu_gather tlb;
2224 
2225 	tlb_gather_mmu(&tlb, vma->vm_mm);
2226 	zap_page_range_single_batched(&tlb, vma, address, size, details);
2227 	tlb_finish_mmu(&tlb);
2228 }
2229 
2230 /**
2231  * zap_vma_ptes - remove ptes mapping the vma
2232  * @vma: vm_area_struct holding ptes to be zapped
2233  * @address: starting address of pages to zap
2234  * @size: number of bytes to zap
2235  *
2236  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2237  *
2238  * The entire address range must be fully contained within the vma.
2239  *
2240  */
2241 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2242 		unsigned long size)
2243 {
2244 	if (!range_in_vma(vma, address, address + size) ||
2245 	    		!(vma->vm_flags & VM_PFNMAP))
2246 		return;
2247 
2248 	zap_page_range_single(vma, address, size, NULL);
2249 }
2250 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2251 
2252 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2253 {
2254 	pgd_t *pgd;
2255 	p4d_t *p4d;
2256 	pud_t *pud;
2257 	pmd_t *pmd;
2258 
2259 	pgd = pgd_offset(mm, addr);
2260 	p4d = p4d_alloc(mm, pgd, addr);
2261 	if (!p4d)
2262 		return NULL;
2263 	pud = pud_alloc(mm, p4d, addr);
2264 	if (!pud)
2265 		return NULL;
2266 	pmd = pmd_alloc(mm, pud, addr);
2267 	if (!pmd)
2268 		return NULL;
2269 
2270 	VM_BUG_ON(pmd_trans_huge(*pmd));
2271 	return pmd;
2272 }
2273 
2274 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2275 		      spinlock_t **ptl)
2276 {
2277 	pmd_t *pmd = walk_to_pmd(mm, addr);
2278 
2279 	if (!pmd)
2280 		return NULL;
2281 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2282 }
2283 
2284 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2285 {
2286 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2287 	/*
2288 	 * Whoever wants to forbid the zeropage after some zeropages
2289 	 * might already have been mapped has to scan the page tables and
2290 	 * bail out on any zeropages. Zeropages in COW mappings can
2291 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2292 	 */
2293 	if (mm_forbids_zeropage(vma->vm_mm))
2294 		return false;
2295 	/* zeropages in COW mappings are common and unproblematic. */
2296 	if (is_cow_mapping(vma->vm_flags))
2297 		return true;
2298 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2299 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2300 		return true;
2301 	/*
2302 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2303 	 * find the shared zeropage and longterm-pin it, which would
2304 	 * be problematic as soon as the zeropage gets replaced by a different
2305 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2306 	 * now differ to what GUP looked up. FSDAX is incompatible to
2307 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2308 	 * check_vma_flags).
2309 	 */
2310 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2311 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2312 }
2313 
2314 static int validate_page_before_insert(struct vm_area_struct *vma,
2315 				       struct page *page)
2316 {
2317 	struct folio *folio = page_folio(page);
2318 
2319 	if (!folio_ref_count(folio))
2320 		return -EINVAL;
2321 	if (unlikely(is_zero_folio(folio))) {
2322 		if (!vm_mixed_zeropage_allowed(vma))
2323 			return -EINVAL;
2324 		return 0;
2325 	}
2326 	if (folio_test_anon(folio) || page_has_type(page))
2327 		return -EINVAL;
2328 	flush_dcache_folio(folio);
2329 	return 0;
2330 }
2331 
2332 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2333 				unsigned long addr, struct page *page,
2334 				pgprot_t prot, bool mkwrite)
2335 {
2336 	struct folio *folio = page_folio(page);
2337 	pte_t pteval = ptep_get(pte);
2338 
2339 	if (!pte_none(pteval)) {
2340 		if (!mkwrite)
2341 			return -EBUSY;
2342 
2343 		/* see insert_pfn(). */
2344 		if (pte_pfn(pteval) != page_to_pfn(page)) {
2345 			WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2346 			return -EFAULT;
2347 		}
2348 		pteval = maybe_mkwrite(pteval, vma);
2349 		pteval = pte_mkyoung(pteval);
2350 		if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2351 			update_mmu_cache(vma, addr, pte);
2352 		return 0;
2353 	}
2354 
2355 	/* Ok, finally just insert the thing.. */
2356 	pteval = mk_pte(page, prot);
2357 	if (unlikely(is_zero_folio(folio))) {
2358 		pteval = pte_mkspecial(pteval);
2359 	} else {
2360 		folio_get(folio);
2361 		pteval = mk_pte(page, prot);
2362 		if (mkwrite) {
2363 			pteval = pte_mkyoung(pteval);
2364 			pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2365 		}
2366 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2367 		folio_add_file_rmap_pte(folio, page, vma);
2368 	}
2369 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2370 	return 0;
2371 }
2372 
2373 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2374 			struct page *page, pgprot_t prot, bool mkwrite)
2375 {
2376 	int retval;
2377 	pte_t *pte;
2378 	spinlock_t *ptl;
2379 
2380 	retval = validate_page_before_insert(vma, page);
2381 	if (retval)
2382 		goto out;
2383 	retval = -ENOMEM;
2384 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2385 	if (!pte)
2386 		goto out;
2387 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2388 					mkwrite);
2389 	pte_unmap_unlock(pte, ptl);
2390 out:
2391 	return retval;
2392 }
2393 
2394 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2395 			unsigned long addr, struct page *page, pgprot_t prot)
2396 {
2397 	int err;
2398 
2399 	err = validate_page_before_insert(vma, page);
2400 	if (err)
2401 		return err;
2402 	return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2403 }
2404 
2405 /* insert_pages() amortizes the cost of spinlock operations
2406  * when inserting pages in a loop.
2407  */
2408 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2409 			struct page **pages, unsigned long *num, pgprot_t prot)
2410 {
2411 	pmd_t *pmd = NULL;
2412 	pte_t *start_pte, *pte;
2413 	spinlock_t *pte_lock;
2414 	struct mm_struct *const mm = vma->vm_mm;
2415 	unsigned long curr_page_idx = 0;
2416 	unsigned long remaining_pages_total = *num;
2417 	unsigned long pages_to_write_in_pmd;
2418 	int ret;
2419 more:
2420 	ret = -EFAULT;
2421 	pmd = walk_to_pmd(mm, addr);
2422 	if (!pmd)
2423 		goto out;
2424 
2425 	pages_to_write_in_pmd = min_t(unsigned long,
2426 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2427 
2428 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2429 	ret = -ENOMEM;
2430 	if (pte_alloc(mm, pmd))
2431 		goto out;
2432 
2433 	while (pages_to_write_in_pmd) {
2434 		int pte_idx = 0;
2435 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2436 
2437 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2438 		if (!start_pte) {
2439 			ret = -EFAULT;
2440 			goto out;
2441 		}
2442 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2443 			int err = insert_page_in_batch_locked(vma, pte,
2444 				addr, pages[curr_page_idx], prot);
2445 			if (unlikely(err)) {
2446 				pte_unmap_unlock(start_pte, pte_lock);
2447 				ret = err;
2448 				remaining_pages_total -= pte_idx;
2449 				goto out;
2450 			}
2451 			addr += PAGE_SIZE;
2452 			++curr_page_idx;
2453 		}
2454 		pte_unmap_unlock(start_pte, pte_lock);
2455 		pages_to_write_in_pmd -= batch_size;
2456 		remaining_pages_total -= batch_size;
2457 	}
2458 	if (remaining_pages_total)
2459 		goto more;
2460 	ret = 0;
2461 out:
2462 	*num = remaining_pages_total;
2463 	return ret;
2464 }
2465 
2466 /**
2467  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2468  * @vma: user vma to map to
2469  * @addr: target start user address of these pages
2470  * @pages: source kernel pages
2471  * @num: in: number of pages to map. out: number of pages that were *not*
2472  * mapped. (0 means all pages were successfully mapped).
2473  *
2474  * Preferred over vm_insert_page() when inserting multiple pages.
2475  *
2476  * In case of error, we may have mapped a subset of the provided
2477  * pages. It is the caller's responsibility to account for this case.
2478  *
2479  * The same restrictions apply as in vm_insert_page().
2480  */
2481 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2482 			struct page **pages, unsigned long *num)
2483 {
2484 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2485 
2486 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2487 		return -EFAULT;
2488 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2489 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2490 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2491 		vm_flags_set(vma, VM_MIXEDMAP);
2492 	}
2493 	/* Defer page refcount checking till we're about to map that page. */
2494 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2495 }
2496 EXPORT_SYMBOL(vm_insert_pages);
2497 
2498 /**
2499  * vm_insert_page - insert single page into user vma
2500  * @vma: user vma to map to
2501  * @addr: target user address of this page
2502  * @page: source kernel page
2503  *
2504  * This allows drivers to insert individual pages they've allocated
2505  * into a user vma. The zeropage is supported in some VMAs,
2506  * see vm_mixed_zeropage_allowed().
2507  *
2508  * The page has to be a nice clean _individual_ kernel allocation.
2509  * If you allocate a compound page, you need to have marked it as
2510  * such (__GFP_COMP), or manually just split the page up yourself
2511  * (see split_page()).
2512  *
2513  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2514  * took an arbitrary page protection parameter. This doesn't allow
2515  * that. Your vma protection will have to be set up correctly, which
2516  * means that if you want a shared writable mapping, you'd better
2517  * ask for a shared writable mapping!
2518  *
2519  * The page does not need to be reserved.
2520  *
2521  * Usually this function is called from f_op->mmap() handler
2522  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2523  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2524  * function from other places, for example from page-fault handler.
2525  *
2526  * Return: %0 on success, negative error code otherwise.
2527  */
2528 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2529 			struct page *page)
2530 {
2531 	if (addr < vma->vm_start || addr >= vma->vm_end)
2532 		return -EFAULT;
2533 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2534 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2535 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2536 		vm_flags_set(vma, VM_MIXEDMAP);
2537 	}
2538 	return insert_page(vma, addr, page, vma->vm_page_prot, false);
2539 }
2540 EXPORT_SYMBOL(vm_insert_page);
2541 
2542 /*
2543  * __vm_map_pages - maps range of kernel pages into user vma
2544  * @vma: user vma to map to
2545  * @pages: pointer to array of source kernel pages
2546  * @num: number of pages in page array
2547  * @offset: user's requested vm_pgoff
2548  *
2549  * This allows drivers to map range of kernel pages into a user vma.
2550  * The zeropage is supported in some VMAs, see
2551  * vm_mixed_zeropage_allowed().
2552  *
2553  * Return: 0 on success and error code otherwise.
2554  */
2555 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2556 				unsigned long num, unsigned long offset)
2557 {
2558 	unsigned long count = vma_pages(vma);
2559 	unsigned long uaddr = vma->vm_start;
2560 
2561 	/* Fail if the user requested offset is beyond the end of the object */
2562 	if (offset >= num)
2563 		return -ENXIO;
2564 
2565 	/* Fail if the user requested size exceeds available object size */
2566 	if (count > num - offset)
2567 		return -ENXIO;
2568 
2569 	return vm_insert_pages(vma, uaddr, pages + offset, &count);
2570 }
2571 
2572 /**
2573  * vm_map_pages - maps range of kernel pages starts with non zero offset
2574  * @vma: user vma to map to
2575  * @pages: pointer to array of source kernel pages
2576  * @num: number of pages in page array
2577  *
2578  * Maps an object consisting of @num pages, catering for the user's
2579  * requested vm_pgoff
2580  *
2581  * If we fail to insert any page into the vma, the function will return
2582  * immediately leaving any previously inserted pages present.  Callers
2583  * from the mmap handler may immediately return the error as their caller
2584  * will destroy the vma, removing any successfully inserted pages. Other
2585  * callers should make their own arrangements for calling unmap_region().
2586  *
2587  * Context: Process context. Called by mmap handlers.
2588  * Return: 0 on success and error code otherwise.
2589  */
2590 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2591 				unsigned long num)
2592 {
2593 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2594 }
2595 EXPORT_SYMBOL(vm_map_pages);
2596 
2597 /**
2598  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2599  * @vma: user vma to map to
2600  * @pages: pointer to array of source kernel pages
2601  * @num: number of pages in page array
2602  *
2603  * Similar to vm_map_pages(), except that it explicitly sets the offset
2604  * to 0. This function is intended for the drivers that did not consider
2605  * vm_pgoff.
2606  *
2607  * Context: Process context. Called by mmap handlers.
2608  * Return: 0 on success and error code otherwise.
2609  */
2610 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2611 				unsigned long num)
2612 {
2613 	return __vm_map_pages(vma, pages, num, 0);
2614 }
2615 EXPORT_SYMBOL(vm_map_pages_zero);
2616 
2617 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2618 			unsigned long pfn, pgprot_t prot, bool mkwrite)
2619 {
2620 	struct mm_struct *mm = vma->vm_mm;
2621 	pte_t *pte, entry;
2622 	spinlock_t *ptl;
2623 
2624 	pte = get_locked_pte(mm, addr, &ptl);
2625 	if (!pte)
2626 		return VM_FAULT_OOM;
2627 	entry = ptep_get(pte);
2628 	if (!pte_none(entry)) {
2629 		if (mkwrite) {
2630 			/*
2631 			 * For read faults on private mappings the PFN passed
2632 			 * in may not match the PFN we have mapped if the
2633 			 * mapped PFN is a writeable COW page.  In the mkwrite
2634 			 * case we are creating a writable PTE for a shared
2635 			 * mapping and we expect the PFNs to match. If they
2636 			 * don't match, we are likely racing with block
2637 			 * allocation and mapping invalidation so just skip the
2638 			 * update.
2639 			 */
2640 			if (pte_pfn(entry) != pfn) {
2641 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2642 				goto out_unlock;
2643 			}
2644 			entry = pte_mkyoung(entry);
2645 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2646 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2647 				update_mmu_cache(vma, addr, pte);
2648 		}
2649 		goto out_unlock;
2650 	}
2651 
2652 	/* Ok, finally just insert the thing.. */
2653 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2654 
2655 	if (mkwrite) {
2656 		entry = pte_mkyoung(entry);
2657 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2658 	}
2659 
2660 	set_pte_at(mm, addr, pte, entry);
2661 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2662 
2663 out_unlock:
2664 	pte_unmap_unlock(pte, ptl);
2665 	return VM_FAULT_NOPAGE;
2666 }
2667 
2668 /**
2669  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2670  * @vma: user vma to map to
2671  * @addr: target user address of this page
2672  * @pfn: source kernel pfn
2673  * @pgprot: pgprot flags for the inserted page
2674  *
2675  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2676  * to override pgprot on a per-page basis.
2677  *
2678  * This only makes sense for IO mappings, and it makes no sense for
2679  * COW mappings.  In general, using multiple vmas is preferable;
2680  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2681  * impractical.
2682  *
2683  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2684  * caching- and encryption bits different than those of @vma->vm_page_prot,
2685  * because the caching- or encryption mode may not be known at mmap() time.
2686  *
2687  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2688  * to set caching and encryption bits for those vmas (except for COW pages).
2689  * This is ensured by core vm only modifying these page table entries using
2690  * functions that don't touch caching- or encryption bits, using pte_modify()
2691  * if needed. (See for example mprotect()).
2692  *
2693  * Also when new page-table entries are created, this is only done using the
2694  * fault() callback, and never using the value of vma->vm_page_prot,
2695  * except for page-table entries that point to anonymous pages as the result
2696  * of COW.
2697  *
2698  * Context: Process context.  May allocate using %GFP_KERNEL.
2699  * Return: vm_fault_t value.
2700  */
2701 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2702 			unsigned long pfn, pgprot_t pgprot)
2703 {
2704 	/*
2705 	 * Technically, architectures with pte_special can avoid all these
2706 	 * restrictions (same for remap_pfn_range).  However we would like
2707 	 * consistency in testing and feature parity among all, so we should
2708 	 * try to keep these invariants in place for everybody.
2709 	 */
2710 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2711 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2712 						(VM_PFNMAP|VM_MIXEDMAP));
2713 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2714 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2715 
2716 	if (addr < vma->vm_start || addr >= vma->vm_end)
2717 		return VM_FAULT_SIGBUS;
2718 
2719 	if (!pfn_modify_allowed(pfn, pgprot))
2720 		return VM_FAULT_SIGBUS;
2721 
2722 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2723 
2724 	return insert_pfn(vma, addr, pfn, pgprot, false);
2725 }
2726 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2727 
2728 /**
2729  * vmf_insert_pfn - insert single pfn into user vma
2730  * @vma: user vma to map to
2731  * @addr: target user address of this page
2732  * @pfn: source kernel pfn
2733  *
2734  * Similar to vm_insert_page, this allows drivers to insert individual pages
2735  * they've allocated into a user vma. Same comments apply.
2736  *
2737  * This function should only be called from a vm_ops->fault handler, and
2738  * in that case the handler should return the result of this function.
2739  *
2740  * vma cannot be a COW mapping.
2741  *
2742  * As this is called only for pages that do not currently exist, we
2743  * do not need to flush old virtual caches or the TLB.
2744  *
2745  * Context: Process context.  May allocate using %GFP_KERNEL.
2746  * Return: vm_fault_t value.
2747  */
2748 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2749 			unsigned long pfn)
2750 {
2751 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2752 }
2753 EXPORT_SYMBOL(vmf_insert_pfn);
2754 
2755 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn,
2756 			bool mkwrite)
2757 {
2758 	if (unlikely(is_zero_pfn(pfn)) &&
2759 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2760 		return false;
2761 	/* these checks mirror the abort conditions in vm_normal_page */
2762 	if (vma->vm_flags & VM_MIXEDMAP)
2763 		return true;
2764 	if (is_zero_pfn(pfn))
2765 		return true;
2766 	return false;
2767 }
2768 
2769 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2770 		unsigned long addr, unsigned long pfn, bool mkwrite)
2771 {
2772 	pgprot_t pgprot = vma->vm_page_prot;
2773 	int err;
2774 
2775 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2776 		return VM_FAULT_SIGBUS;
2777 
2778 	if (addr < vma->vm_start || addr >= vma->vm_end)
2779 		return VM_FAULT_SIGBUS;
2780 
2781 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2782 
2783 	if (!pfn_modify_allowed(pfn, pgprot))
2784 		return VM_FAULT_SIGBUS;
2785 
2786 	/*
2787 	 * If we don't have pte special, then we have to use the pfn_valid()
2788 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2789 	 * refcount the page if pfn_valid is true (hence insert_page rather
2790 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2791 	 * without pte special, it would there be refcounted as a normal page.
2792 	 */
2793 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) {
2794 		struct page *page;
2795 
2796 		/*
2797 		 * At this point we are committed to insert_page()
2798 		 * regardless of whether the caller specified flags that
2799 		 * result in pfn_t_has_page() == false.
2800 		 */
2801 		page = pfn_to_page(pfn);
2802 		err = insert_page(vma, addr, page, pgprot, mkwrite);
2803 	} else {
2804 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2805 	}
2806 
2807 	if (err == -ENOMEM)
2808 		return VM_FAULT_OOM;
2809 	if (err < 0 && err != -EBUSY)
2810 		return VM_FAULT_SIGBUS;
2811 
2812 	return VM_FAULT_NOPAGE;
2813 }
2814 
2815 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2816 			bool write)
2817 {
2818 	pgprot_t pgprot = vmf->vma->vm_page_prot;
2819 	unsigned long addr = vmf->address;
2820 	int err;
2821 
2822 	if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2823 		return VM_FAULT_SIGBUS;
2824 
2825 	err = insert_page(vmf->vma, addr, page, pgprot, write);
2826 	if (err == -ENOMEM)
2827 		return VM_FAULT_OOM;
2828 	if (err < 0 && err != -EBUSY)
2829 		return VM_FAULT_SIGBUS;
2830 
2831 	return VM_FAULT_NOPAGE;
2832 }
2833 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2834 
2835 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2836 		unsigned long pfn)
2837 {
2838 	return __vm_insert_mixed(vma, addr, pfn, false);
2839 }
2840 EXPORT_SYMBOL(vmf_insert_mixed);
2841 
2842 /*
2843  *  If the insertion of PTE failed because someone else already added a
2844  *  different entry in the mean time, we treat that as success as we assume
2845  *  the same entry was actually inserted.
2846  */
2847 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2848 		unsigned long addr, unsigned long pfn)
2849 {
2850 	return __vm_insert_mixed(vma, addr, pfn, true);
2851 }
2852 
2853 /*
2854  * maps a range of physical memory into the requested pages. the old
2855  * mappings are removed. any references to nonexistent pages results
2856  * in null mappings (currently treated as "copy-on-access")
2857  */
2858 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2859 			unsigned long addr, unsigned long end,
2860 			unsigned long pfn, pgprot_t prot)
2861 {
2862 	pte_t *pte, *mapped_pte;
2863 	spinlock_t *ptl;
2864 	int err = 0;
2865 
2866 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2867 	if (!pte)
2868 		return -ENOMEM;
2869 	lazy_mmu_mode_enable();
2870 	do {
2871 		BUG_ON(!pte_none(ptep_get(pte)));
2872 		if (!pfn_modify_allowed(pfn, prot)) {
2873 			err = -EACCES;
2874 			break;
2875 		}
2876 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2877 		pfn++;
2878 	} while (pte++, addr += PAGE_SIZE, addr != end);
2879 	lazy_mmu_mode_disable();
2880 	pte_unmap_unlock(mapped_pte, ptl);
2881 	return err;
2882 }
2883 
2884 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2885 			unsigned long addr, unsigned long end,
2886 			unsigned long pfn, pgprot_t prot)
2887 {
2888 	pmd_t *pmd;
2889 	unsigned long next;
2890 	int err;
2891 
2892 	pfn -= addr >> PAGE_SHIFT;
2893 	pmd = pmd_alloc(mm, pud, addr);
2894 	if (!pmd)
2895 		return -ENOMEM;
2896 	VM_BUG_ON(pmd_trans_huge(*pmd));
2897 	do {
2898 		next = pmd_addr_end(addr, end);
2899 		err = remap_pte_range(mm, pmd, addr, next,
2900 				pfn + (addr >> PAGE_SHIFT), prot);
2901 		if (err)
2902 			return err;
2903 	} while (pmd++, addr = next, addr != end);
2904 	return 0;
2905 }
2906 
2907 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2908 			unsigned long addr, unsigned long end,
2909 			unsigned long pfn, pgprot_t prot)
2910 {
2911 	pud_t *pud;
2912 	unsigned long next;
2913 	int err;
2914 
2915 	pfn -= addr >> PAGE_SHIFT;
2916 	pud = pud_alloc(mm, p4d, addr);
2917 	if (!pud)
2918 		return -ENOMEM;
2919 	do {
2920 		next = pud_addr_end(addr, end);
2921 		err = remap_pmd_range(mm, pud, addr, next,
2922 				pfn + (addr >> PAGE_SHIFT), prot);
2923 		if (err)
2924 			return err;
2925 	} while (pud++, addr = next, addr != end);
2926 	return 0;
2927 }
2928 
2929 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2930 			unsigned long addr, unsigned long end,
2931 			unsigned long pfn, pgprot_t prot)
2932 {
2933 	p4d_t *p4d;
2934 	unsigned long next;
2935 	int err;
2936 
2937 	pfn -= addr >> PAGE_SHIFT;
2938 	p4d = p4d_alloc(mm, pgd, addr);
2939 	if (!p4d)
2940 		return -ENOMEM;
2941 	do {
2942 		next = p4d_addr_end(addr, end);
2943 		err = remap_pud_range(mm, p4d, addr, next,
2944 				pfn + (addr >> PAGE_SHIFT), prot);
2945 		if (err)
2946 			return err;
2947 	} while (p4d++, addr = next, addr != end);
2948 	return 0;
2949 }
2950 
2951 static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr,
2952 		unsigned long end, unsigned long vm_start, unsigned long vm_end,
2953 		unsigned long pfn, pgoff_t *vm_pgoff_p)
2954 {
2955 	/*
2956 	 * There's a horrible special case to handle copy-on-write
2957 	 * behaviour that some programs depend on. We mark the "original"
2958 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2959 	 * See vm_normal_page() for details.
2960 	 */
2961 	if (is_cow_mapping(vm_flags)) {
2962 		if (addr != vm_start || end != vm_end)
2963 			return -EINVAL;
2964 		*vm_pgoff_p = pfn;
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2971 		unsigned long pfn, unsigned long size, pgprot_t prot)
2972 {
2973 	pgd_t *pgd;
2974 	unsigned long next;
2975 	unsigned long end = addr + PAGE_ALIGN(size);
2976 	struct mm_struct *mm = vma->vm_mm;
2977 	int err;
2978 
2979 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2980 		return -EINVAL;
2981 
2982 	VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS);
2983 
2984 	BUG_ON(addr >= end);
2985 	pfn -= addr >> PAGE_SHIFT;
2986 	pgd = pgd_offset(mm, addr);
2987 	flush_cache_range(vma, addr, end);
2988 	do {
2989 		next = pgd_addr_end(addr, end);
2990 		err = remap_p4d_range(mm, pgd, addr, next,
2991 				pfn + (addr >> PAGE_SHIFT), prot);
2992 		if (err)
2993 			return err;
2994 	} while (pgd++, addr = next, addr != end);
2995 
2996 	return 0;
2997 }
2998 
2999 /*
3000  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
3001  * must have pre-validated the caching bits of the pgprot_t.
3002  */
3003 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3004 		unsigned long pfn, unsigned long size, pgprot_t prot)
3005 {
3006 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
3007 
3008 	if (!error)
3009 		return 0;
3010 
3011 	/*
3012 	 * A partial pfn range mapping is dangerous: it does not
3013 	 * maintain page reference counts, and callers may free
3014 	 * pages due to the error. So zap it early.
3015 	 */
3016 	zap_page_range_single(vma, addr, size, NULL);
3017 	return error;
3018 }
3019 
3020 #ifdef __HAVE_PFNMAP_TRACKING
3021 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
3022 		unsigned long size, pgprot_t *prot)
3023 {
3024 	struct pfnmap_track_ctx *ctx;
3025 
3026 	if (pfnmap_track(pfn, size, prot))
3027 		return ERR_PTR(-EINVAL);
3028 
3029 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
3030 	if (unlikely(!ctx)) {
3031 		pfnmap_untrack(pfn, size);
3032 		return ERR_PTR(-ENOMEM);
3033 	}
3034 
3035 	ctx->pfn = pfn;
3036 	ctx->size = size;
3037 	kref_init(&ctx->kref);
3038 	return ctx;
3039 }
3040 
3041 void pfnmap_track_ctx_release(struct kref *ref)
3042 {
3043 	struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
3044 
3045 	pfnmap_untrack(ctx->pfn, ctx->size);
3046 	kfree(ctx);
3047 }
3048 
3049 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr,
3050 		unsigned long pfn, unsigned long size, pgprot_t prot)
3051 {
3052 	struct pfnmap_track_ctx *ctx = NULL;
3053 	int err;
3054 
3055 	size = PAGE_ALIGN(size);
3056 
3057 	/*
3058 	 * If we cover the full VMA, we'll perform actual tracking, and
3059 	 * remember to untrack when the last reference to our tracking
3060 	 * context from a VMA goes away. We'll keep tracking the whole pfn
3061 	 * range even during VMA splits and partial unmapping.
3062 	 *
3063 	 * If we only cover parts of the VMA, we'll only setup the cachemode
3064 	 * in the pgprot for the pfn range.
3065 	 */
3066 	if (addr == vma->vm_start && addr + size == vma->vm_end) {
3067 		if (vma->pfnmap_track_ctx)
3068 			return -EINVAL;
3069 		ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
3070 		if (IS_ERR(ctx))
3071 			return PTR_ERR(ctx);
3072 	} else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
3073 		return -EINVAL;
3074 	}
3075 
3076 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3077 	if (ctx) {
3078 		if (err)
3079 			kref_put(&ctx->kref, pfnmap_track_ctx_release);
3080 		else
3081 			vma->pfnmap_track_ctx = ctx;
3082 	}
3083 	return err;
3084 }
3085 
3086 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3087 		unsigned long pfn, unsigned long size, pgprot_t prot)
3088 {
3089 	return remap_pfn_range_track(vma, addr, pfn, size, prot);
3090 }
3091 #else
3092 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3093 		unsigned long pfn, unsigned long size, pgprot_t prot)
3094 {
3095 	return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3096 }
3097 #endif
3098 
3099 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn)
3100 {
3101 	/*
3102 	 * We set addr=VMA start, end=VMA end here, so this won't fail, but we
3103 	 * check it again on complete and will fail there if specified addr is
3104 	 * invalid.
3105 	 */
3106 	get_remap_pgoff(desc->vm_flags, desc->start, desc->end,
3107 			desc->start, desc->end, pfn, &desc->pgoff);
3108 	desc->vm_flags |= VM_REMAP_FLAGS;
3109 }
3110 
3111 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr,
3112 		unsigned long pfn, unsigned long size)
3113 {
3114 	unsigned long end = addr + PAGE_ALIGN(size);
3115 	int err;
3116 
3117 	err = get_remap_pgoff(vma->vm_flags, addr, end,
3118 			      vma->vm_start, vma->vm_end,
3119 			      pfn, &vma->vm_pgoff);
3120 	if (err)
3121 		return err;
3122 
3123 	vm_flags_set(vma, VM_REMAP_FLAGS);
3124 	return 0;
3125 }
3126 
3127 /**
3128  * remap_pfn_range - remap kernel memory to userspace
3129  * @vma: user vma to map to
3130  * @addr: target page aligned user address to start at
3131  * @pfn: page frame number of kernel physical memory address
3132  * @size: size of mapping area
3133  * @prot: page protection flags for this mapping
3134  *
3135  * Note: this is only safe if the mm semaphore is held when called.
3136  *
3137  * Return: %0 on success, negative error code otherwise.
3138  */
3139 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3140 		    unsigned long pfn, unsigned long size, pgprot_t prot)
3141 {
3142 	int err;
3143 
3144 	err = remap_pfn_range_prepare_vma(vma, addr, pfn, size);
3145 	if (err)
3146 		return err;
3147 
3148 	return do_remap_pfn_range(vma, addr, pfn, size, prot);
3149 }
3150 EXPORT_SYMBOL(remap_pfn_range);
3151 
3152 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
3153 		unsigned long pfn, unsigned long size, pgprot_t prot)
3154 {
3155 	return do_remap_pfn_range(vma, addr, pfn, size, prot);
3156 }
3157 
3158 /**
3159  * vm_iomap_memory - remap memory to userspace
3160  * @vma: user vma to map to
3161  * @start: start of the physical memory to be mapped
3162  * @len: size of area
3163  *
3164  * This is a simplified io_remap_pfn_range() for common driver use. The
3165  * driver just needs to give us the physical memory range to be mapped,
3166  * we'll figure out the rest from the vma information.
3167  *
3168  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
3169  * whatever write-combining details or similar.
3170  *
3171  * Return: %0 on success, negative error code otherwise.
3172  */
3173 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
3174 {
3175 	unsigned long vm_len, pfn, pages;
3176 
3177 	/* Check that the physical memory area passed in looks valid */
3178 	if (start + len < start)
3179 		return -EINVAL;
3180 	/*
3181 	 * You *really* shouldn't map things that aren't page-aligned,
3182 	 * but we've historically allowed it because IO memory might
3183 	 * just have smaller alignment.
3184 	 */
3185 	len += start & ~PAGE_MASK;
3186 	pfn = start >> PAGE_SHIFT;
3187 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
3188 	if (pfn + pages < pfn)
3189 		return -EINVAL;
3190 
3191 	/* We start the mapping 'vm_pgoff' pages into the area */
3192 	if (vma->vm_pgoff > pages)
3193 		return -EINVAL;
3194 	pfn += vma->vm_pgoff;
3195 	pages -= vma->vm_pgoff;
3196 
3197 	/* Can we fit all of the mapping? */
3198 	vm_len = vma->vm_end - vma->vm_start;
3199 	if (vm_len >> PAGE_SHIFT > pages)
3200 		return -EINVAL;
3201 
3202 	/* Ok, let it rip */
3203 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
3204 }
3205 EXPORT_SYMBOL(vm_iomap_memory);
3206 
3207 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
3208 				     unsigned long addr, unsigned long end,
3209 				     pte_fn_t fn, void *data, bool create,
3210 				     pgtbl_mod_mask *mask)
3211 {
3212 	pte_t *pte, *mapped_pte;
3213 	int err = 0;
3214 	spinlock_t *ptl;
3215 
3216 	if (create) {
3217 		mapped_pte = pte = (mm == &init_mm) ?
3218 			pte_alloc_kernel_track(pmd, addr, mask) :
3219 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
3220 		if (!pte)
3221 			return -ENOMEM;
3222 	} else {
3223 		mapped_pte = pte = (mm == &init_mm) ?
3224 			pte_offset_kernel(pmd, addr) :
3225 			pte_offset_map_lock(mm, pmd, addr, &ptl);
3226 		if (!pte)
3227 			return -EINVAL;
3228 	}
3229 
3230 	lazy_mmu_mode_enable();
3231 
3232 	if (fn) {
3233 		do {
3234 			if (create || !pte_none(ptep_get(pte))) {
3235 				err = fn(pte, addr, data);
3236 				if (err)
3237 					break;
3238 			}
3239 		} while (pte++, addr += PAGE_SIZE, addr != end);
3240 	}
3241 	*mask |= PGTBL_PTE_MODIFIED;
3242 
3243 	lazy_mmu_mode_disable();
3244 
3245 	if (mm != &init_mm)
3246 		pte_unmap_unlock(mapped_pte, ptl);
3247 	return err;
3248 }
3249 
3250 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3251 				     unsigned long addr, unsigned long end,
3252 				     pte_fn_t fn, void *data, bool create,
3253 				     pgtbl_mod_mask *mask)
3254 {
3255 	pmd_t *pmd;
3256 	unsigned long next;
3257 	int err = 0;
3258 
3259 	BUG_ON(pud_leaf(*pud));
3260 
3261 	if (create) {
3262 		pmd = pmd_alloc_track(mm, pud, addr, mask);
3263 		if (!pmd)
3264 			return -ENOMEM;
3265 	} else {
3266 		pmd = pmd_offset(pud, addr);
3267 	}
3268 	do {
3269 		next = pmd_addr_end(addr, end);
3270 		if (pmd_none(*pmd) && !create)
3271 			continue;
3272 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3273 			return -EINVAL;
3274 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3275 			if (!create)
3276 				continue;
3277 			pmd_clear_bad(pmd);
3278 		}
3279 		err = apply_to_pte_range(mm, pmd, addr, next,
3280 					 fn, data, create, mask);
3281 		if (err)
3282 			break;
3283 	} while (pmd++, addr = next, addr != end);
3284 
3285 	return err;
3286 }
3287 
3288 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3289 				     unsigned long addr, unsigned long end,
3290 				     pte_fn_t fn, void *data, bool create,
3291 				     pgtbl_mod_mask *mask)
3292 {
3293 	pud_t *pud;
3294 	unsigned long next;
3295 	int err = 0;
3296 
3297 	if (create) {
3298 		pud = pud_alloc_track(mm, p4d, addr, mask);
3299 		if (!pud)
3300 			return -ENOMEM;
3301 	} else {
3302 		pud = pud_offset(p4d, addr);
3303 	}
3304 	do {
3305 		next = pud_addr_end(addr, end);
3306 		if (pud_none(*pud) && !create)
3307 			continue;
3308 		if (WARN_ON_ONCE(pud_leaf(*pud)))
3309 			return -EINVAL;
3310 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3311 			if (!create)
3312 				continue;
3313 			pud_clear_bad(pud);
3314 		}
3315 		err = apply_to_pmd_range(mm, pud, addr, next,
3316 					 fn, data, create, mask);
3317 		if (err)
3318 			break;
3319 	} while (pud++, addr = next, addr != end);
3320 
3321 	return err;
3322 }
3323 
3324 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3325 				     unsigned long addr, unsigned long end,
3326 				     pte_fn_t fn, void *data, bool create,
3327 				     pgtbl_mod_mask *mask)
3328 {
3329 	p4d_t *p4d;
3330 	unsigned long next;
3331 	int err = 0;
3332 
3333 	if (create) {
3334 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
3335 		if (!p4d)
3336 			return -ENOMEM;
3337 	} else {
3338 		p4d = p4d_offset(pgd, addr);
3339 	}
3340 	do {
3341 		next = p4d_addr_end(addr, end);
3342 		if (p4d_none(*p4d) && !create)
3343 			continue;
3344 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3345 			return -EINVAL;
3346 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3347 			if (!create)
3348 				continue;
3349 			p4d_clear_bad(p4d);
3350 		}
3351 		err = apply_to_pud_range(mm, p4d, addr, next,
3352 					 fn, data, create, mask);
3353 		if (err)
3354 			break;
3355 	} while (p4d++, addr = next, addr != end);
3356 
3357 	return err;
3358 }
3359 
3360 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3361 				 unsigned long size, pte_fn_t fn,
3362 				 void *data, bool create)
3363 {
3364 	pgd_t *pgd;
3365 	unsigned long start = addr, next;
3366 	unsigned long end = addr + size;
3367 	pgtbl_mod_mask mask = 0;
3368 	int err = 0;
3369 
3370 	if (WARN_ON(addr >= end))
3371 		return -EINVAL;
3372 
3373 	pgd = pgd_offset(mm, addr);
3374 	do {
3375 		next = pgd_addr_end(addr, end);
3376 		if (pgd_none(*pgd) && !create)
3377 			continue;
3378 		if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3379 			err = -EINVAL;
3380 			break;
3381 		}
3382 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3383 			if (!create)
3384 				continue;
3385 			pgd_clear_bad(pgd);
3386 		}
3387 		err = apply_to_p4d_range(mm, pgd, addr, next,
3388 					 fn, data, create, &mask);
3389 		if (err)
3390 			break;
3391 	} while (pgd++, addr = next, addr != end);
3392 
3393 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3394 		arch_sync_kernel_mappings(start, start + size);
3395 
3396 	return err;
3397 }
3398 
3399 /*
3400  * Scan a region of virtual memory, filling in page tables as necessary
3401  * and calling a provided function on each leaf page table.
3402  */
3403 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3404 			unsigned long size, pte_fn_t fn, void *data)
3405 {
3406 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3407 }
3408 EXPORT_SYMBOL_GPL(apply_to_page_range);
3409 
3410 /*
3411  * Scan a region of virtual memory, calling a provided function on
3412  * each leaf page table where it exists.
3413  *
3414  * Unlike apply_to_page_range, this does _not_ fill in page tables
3415  * where they are absent.
3416  */
3417 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3418 				 unsigned long size, pte_fn_t fn, void *data)
3419 {
3420 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3421 }
3422 
3423 /*
3424  * handle_pte_fault chooses page fault handler according to an entry which was
3425  * read non-atomically.  Before making any commitment, on those architectures
3426  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3427  * parts, do_swap_page must check under lock before unmapping the pte and
3428  * proceeding (but do_wp_page is only called after already making such a check;
3429  * and do_anonymous_page can safely check later on).
3430  */
3431 static inline int pte_unmap_same(struct vm_fault *vmf)
3432 {
3433 	int same = 1;
3434 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3435 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3436 		spin_lock(vmf->ptl);
3437 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3438 		spin_unlock(vmf->ptl);
3439 	}
3440 #endif
3441 	pte_unmap(vmf->pte);
3442 	vmf->pte = NULL;
3443 	return same;
3444 }
3445 
3446 /*
3447  * Return:
3448  *	0:		copied succeeded
3449  *	-EHWPOISON:	copy failed due to hwpoison in source page
3450  *	-EAGAIN:	copied failed (some other reason)
3451  */
3452 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3453 				      struct vm_fault *vmf)
3454 {
3455 	int ret;
3456 	void *kaddr;
3457 	void __user *uaddr;
3458 	struct vm_area_struct *vma = vmf->vma;
3459 	struct mm_struct *mm = vma->vm_mm;
3460 	unsigned long addr = vmf->address;
3461 
3462 	if (likely(src)) {
3463 		if (copy_mc_user_highpage(dst, src, addr, vma))
3464 			return -EHWPOISON;
3465 		return 0;
3466 	}
3467 
3468 	/*
3469 	 * If the source page was a PFN mapping, we don't have
3470 	 * a "struct page" for it. We do a best-effort copy by
3471 	 * just copying from the original user address. If that
3472 	 * fails, we just zero-fill it. Live with it.
3473 	 */
3474 	kaddr = kmap_local_page(dst);
3475 	pagefault_disable();
3476 	uaddr = (void __user *)(addr & PAGE_MASK);
3477 
3478 	/*
3479 	 * On architectures with software "accessed" bits, we would
3480 	 * take a double page fault, so mark it accessed here.
3481 	 */
3482 	vmf->pte = NULL;
3483 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3484 		pte_t entry;
3485 
3486 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3487 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3488 			/*
3489 			 * Other thread has already handled the fault
3490 			 * and update local tlb only
3491 			 */
3492 			if (vmf->pte)
3493 				update_mmu_tlb(vma, addr, vmf->pte);
3494 			ret = -EAGAIN;
3495 			goto pte_unlock;
3496 		}
3497 
3498 		entry = pte_mkyoung(vmf->orig_pte);
3499 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3500 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3501 	}
3502 
3503 	/*
3504 	 * This really shouldn't fail, because the page is there
3505 	 * in the page tables. But it might just be unreadable,
3506 	 * in which case we just give up and fill the result with
3507 	 * zeroes.
3508 	 */
3509 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3510 		if (vmf->pte)
3511 			goto warn;
3512 
3513 		/* Re-validate under PTL if the page is still mapped */
3514 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3515 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3516 			/* The PTE changed under us, update local tlb */
3517 			if (vmf->pte)
3518 				update_mmu_tlb(vma, addr, vmf->pte);
3519 			ret = -EAGAIN;
3520 			goto pte_unlock;
3521 		}
3522 
3523 		/*
3524 		 * The same page can be mapped back since last copy attempt.
3525 		 * Try to copy again under PTL.
3526 		 */
3527 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3528 			/*
3529 			 * Give a warn in case there can be some obscure
3530 			 * use-case
3531 			 */
3532 warn:
3533 			WARN_ON_ONCE(1);
3534 			clear_page(kaddr);
3535 		}
3536 	}
3537 
3538 	ret = 0;
3539 
3540 pte_unlock:
3541 	if (vmf->pte)
3542 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3543 	pagefault_enable();
3544 	kunmap_local(kaddr);
3545 	flush_dcache_page(dst);
3546 
3547 	return ret;
3548 }
3549 
3550 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3551 {
3552 	struct file *vm_file = vma->vm_file;
3553 
3554 	if (vm_file)
3555 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3556 
3557 	/*
3558 	 * Special mappings (e.g. VDSO) do not have any file so fake
3559 	 * a default GFP_KERNEL for them.
3560 	 */
3561 	return GFP_KERNEL;
3562 }
3563 
3564 /*
3565  * Notify the address space that the page is about to become writable so that
3566  * it can prohibit this or wait for the page to get into an appropriate state.
3567  *
3568  * We do this without the lock held, so that it can sleep if it needs to.
3569  */
3570 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3571 {
3572 	vm_fault_t ret;
3573 	unsigned int old_flags = vmf->flags;
3574 
3575 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3576 
3577 	if (vmf->vma->vm_file &&
3578 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3579 		return VM_FAULT_SIGBUS;
3580 
3581 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3582 	/* Restore original flags so that caller is not surprised */
3583 	vmf->flags = old_flags;
3584 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3585 		return ret;
3586 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3587 		folio_lock(folio);
3588 		if (!folio->mapping) {
3589 			folio_unlock(folio);
3590 			return 0; /* retry */
3591 		}
3592 		ret |= VM_FAULT_LOCKED;
3593 	} else
3594 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3595 	return ret;
3596 }
3597 
3598 /*
3599  * Handle dirtying of a page in shared file mapping on a write fault.
3600  *
3601  * The function expects the page to be locked and unlocks it.
3602  */
3603 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3604 {
3605 	struct vm_area_struct *vma = vmf->vma;
3606 	struct address_space *mapping;
3607 	struct folio *folio = page_folio(vmf->page);
3608 	bool dirtied;
3609 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3610 
3611 	dirtied = folio_mark_dirty(folio);
3612 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3613 	/*
3614 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3615 	 * by truncate after folio_unlock().   The address_space itself remains
3616 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3617 	 * release semantics to prevent the compiler from undoing this copying.
3618 	 */
3619 	mapping = folio_raw_mapping(folio);
3620 	folio_unlock(folio);
3621 
3622 	if (!page_mkwrite)
3623 		file_update_time(vma->vm_file);
3624 
3625 	/*
3626 	 * Throttle page dirtying rate down to writeback speed.
3627 	 *
3628 	 * mapping may be NULL here because some device drivers do not
3629 	 * set page.mapping but still dirty their pages
3630 	 *
3631 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3632 	 * is pinning the mapping, as per above.
3633 	 */
3634 	if ((dirtied || page_mkwrite) && mapping) {
3635 		struct file *fpin;
3636 
3637 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3638 		balance_dirty_pages_ratelimited(mapping);
3639 		if (fpin) {
3640 			fput(fpin);
3641 			return VM_FAULT_COMPLETED;
3642 		}
3643 	}
3644 
3645 	return 0;
3646 }
3647 
3648 /*
3649  * Handle write page faults for pages that can be reused in the current vma
3650  *
3651  * This can happen either due to the mapping being with the VM_SHARED flag,
3652  * or due to us being the last reference standing to the page. In either
3653  * case, all we need to do here is to mark the page as writable and update
3654  * any related book-keeping.
3655  */
3656 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3657 	__releases(vmf->ptl)
3658 {
3659 	struct vm_area_struct *vma = vmf->vma;
3660 	pte_t entry;
3661 
3662 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3663 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3664 
3665 	if (folio) {
3666 		VM_BUG_ON(folio_test_anon(folio) &&
3667 			  !PageAnonExclusive(vmf->page));
3668 		/*
3669 		 * Clear the folio's cpupid information as the existing
3670 		 * information potentially belongs to a now completely
3671 		 * unrelated process.
3672 		 */
3673 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3674 	}
3675 
3676 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3677 	entry = pte_mkyoung(vmf->orig_pte);
3678 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3679 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3680 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3681 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3682 	count_vm_event(PGREUSE);
3683 }
3684 
3685 /*
3686  * We could add a bitflag somewhere, but for now, we know that all
3687  * vm_ops that have a ->map_pages have been audited and don't need
3688  * the mmap_lock to be held.
3689  */
3690 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3691 {
3692 	struct vm_area_struct *vma = vmf->vma;
3693 
3694 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3695 		return 0;
3696 	vma_end_read(vma);
3697 	return VM_FAULT_RETRY;
3698 }
3699 
3700 /**
3701  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3702  * @vmf: The vm_fault descriptor passed from the fault handler.
3703  *
3704  * When preparing to insert an anonymous page into a VMA from a
3705  * fault handler, call this function rather than anon_vma_prepare().
3706  * If this vma does not already have an associated anon_vma and we are
3707  * only protected by the per-VMA lock, the caller must retry with the
3708  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3709  * determine if this VMA can share its anon_vma, and that's not safe to
3710  * do with only the per-VMA lock held for this VMA.
3711  *
3712  * Return: 0 if fault handling can proceed.  Any other value should be
3713  * returned to the caller.
3714  */
3715 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3716 {
3717 	struct vm_area_struct *vma = vmf->vma;
3718 	vm_fault_t ret = 0;
3719 
3720 	if (likely(vma->anon_vma))
3721 		return 0;
3722 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3723 		if (!mmap_read_trylock(vma->vm_mm))
3724 			return VM_FAULT_RETRY;
3725 	}
3726 	if (__anon_vma_prepare(vma))
3727 		ret = VM_FAULT_OOM;
3728 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3729 		mmap_read_unlock(vma->vm_mm);
3730 	return ret;
3731 }
3732 
3733 /*
3734  * Handle the case of a page which we actually need to copy to a new page,
3735  * either due to COW or unsharing.
3736  *
3737  * Called with mmap_lock locked and the old page referenced, but
3738  * without the ptl held.
3739  *
3740  * High level logic flow:
3741  *
3742  * - Allocate a page, copy the content of the old page to the new one.
3743  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3744  * - Take the PTL. If the pte changed, bail out and release the allocated page
3745  * - If the pte is still the way we remember it, update the page table and all
3746  *   relevant references. This includes dropping the reference the page-table
3747  *   held to the old page, as well as updating the rmap.
3748  * - In any case, unlock the PTL and drop the reference we took to the old page.
3749  */
3750 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3751 {
3752 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3753 	struct vm_area_struct *vma = vmf->vma;
3754 	struct mm_struct *mm = vma->vm_mm;
3755 	struct folio *old_folio = NULL;
3756 	struct folio *new_folio = NULL;
3757 	pte_t entry;
3758 	int page_copied = 0;
3759 	struct mmu_notifier_range range;
3760 	vm_fault_t ret;
3761 	bool pfn_is_zero;
3762 
3763 	delayacct_wpcopy_start();
3764 
3765 	if (vmf->page)
3766 		old_folio = page_folio(vmf->page);
3767 	ret = vmf_anon_prepare(vmf);
3768 	if (unlikely(ret))
3769 		goto out;
3770 
3771 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3772 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3773 	if (!new_folio)
3774 		goto oom;
3775 
3776 	if (!pfn_is_zero) {
3777 		int err;
3778 
3779 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3780 		if (err) {
3781 			/*
3782 			 * COW failed, if the fault was solved by other,
3783 			 * it's fine. If not, userspace would re-fault on
3784 			 * the same address and we will handle the fault
3785 			 * from the second attempt.
3786 			 * The -EHWPOISON case will not be retried.
3787 			 */
3788 			folio_put(new_folio);
3789 			if (old_folio)
3790 				folio_put(old_folio);
3791 
3792 			delayacct_wpcopy_end();
3793 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3794 		}
3795 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3796 	}
3797 
3798 	__folio_mark_uptodate(new_folio);
3799 
3800 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3801 				vmf->address & PAGE_MASK,
3802 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3803 	mmu_notifier_invalidate_range_start(&range);
3804 
3805 	/*
3806 	 * Re-check the pte - we dropped the lock
3807 	 */
3808 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3809 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3810 		if (old_folio) {
3811 			if (!folio_test_anon(old_folio)) {
3812 				dec_mm_counter(mm, mm_counter_file(old_folio));
3813 				inc_mm_counter(mm, MM_ANONPAGES);
3814 			}
3815 		} else {
3816 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3817 			inc_mm_counter(mm, MM_ANONPAGES);
3818 		}
3819 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3820 		entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3821 		entry = pte_sw_mkyoung(entry);
3822 		if (unlikely(unshare)) {
3823 			if (pte_soft_dirty(vmf->orig_pte))
3824 				entry = pte_mksoft_dirty(entry);
3825 			if (pte_uffd_wp(vmf->orig_pte))
3826 				entry = pte_mkuffd_wp(entry);
3827 		} else {
3828 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3829 		}
3830 
3831 		/*
3832 		 * Clear the pte entry and flush it first, before updating the
3833 		 * pte with the new entry, to keep TLBs on different CPUs in
3834 		 * sync. This code used to set the new PTE then flush TLBs, but
3835 		 * that left a window where the new PTE could be loaded into
3836 		 * some TLBs while the old PTE remains in others.
3837 		 */
3838 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3839 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3840 		folio_add_lru_vma(new_folio, vma);
3841 		BUG_ON(unshare && pte_write(entry));
3842 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3843 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3844 		if (old_folio) {
3845 			/*
3846 			 * Only after switching the pte to the new page may
3847 			 * we remove the mapcount here. Otherwise another
3848 			 * process may come and find the rmap count decremented
3849 			 * before the pte is switched to the new page, and
3850 			 * "reuse" the old page writing into it while our pte
3851 			 * here still points into it and can be read by other
3852 			 * threads.
3853 			 *
3854 			 * The critical issue is to order this
3855 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3856 			 * above. Those stores are ordered by (if nothing else,)
3857 			 * the barrier present in the atomic_add_negative
3858 			 * in folio_remove_rmap_pte();
3859 			 *
3860 			 * Then the TLB flush in ptep_clear_flush ensures that
3861 			 * no process can access the old page before the
3862 			 * decremented mapcount is visible. And the old page
3863 			 * cannot be reused until after the decremented
3864 			 * mapcount is visible. So transitively, TLBs to
3865 			 * old page will be flushed before it can be reused.
3866 			 */
3867 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3868 		}
3869 
3870 		/* Free the old page.. */
3871 		new_folio = old_folio;
3872 		page_copied = 1;
3873 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3874 	} else if (vmf->pte) {
3875 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3876 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3877 	}
3878 
3879 	mmu_notifier_invalidate_range_end(&range);
3880 
3881 	if (new_folio)
3882 		folio_put(new_folio);
3883 	if (old_folio) {
3884 		if (page_copied)
3885 			free_swap_cache(old_folio);
3886 		folio_put(old_folio);
3887 	}
3888 
3889 	delayacct_wpcopy_end();
3890 	return 0;
3891 oom:
3892 	ret = VM_FAULT_OOM;
3893 out:
3894 	if (old_folio)
3895 		folio_put(old_folio);
3896 
3897 	delayacct_wpcopy_end();
3898 	return ret;
3899 }
3900 
3901 /**
3902  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3903  *			  writeable once the page is prepared
3904  *
3905  * @vmf: structure describing the fault
3906  * @folio: the folio of vmf->page
3907  *
3908  * This function handles all that is needed to finish a write page fault in a
3909  * shared mapping due to PTE being read-only once the mapped page is prepared.
3910  * It handles locking of PTE and modifying it.
3911  *
3912  * The function expects the page to be locked or other protection against
3913  * concurrent faults / writeback (such as DAX radix tree locks).
3914  *
3915  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3916  * we acquired PTE lock.
3917  */
3918 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3919 {
3920 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3921 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3922 				       &vmf->ptl);
3923 	if (!vmf->pte)
3924 		return VM_FAULT_NOPAGE;
3925 	/*
3926 	 * We might have raced with another page fault while we released the
3927 	 * pte_offset_map_lock.
3928 	 */
3929 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3930 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3931 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3932 		return VM_FAULT_NOPAGE;
3933 	}
3934 	wp_page_reuse(vmf, folio);
3935 	return 0;
3936 }
3937 
3938 /*
3939  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3940  * mapping
3941  */
3942 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3943 {
3944 	struct vm_area_struct *vma = vmf->vma;
3945 
3946 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3947 		vm_fault_t ret;
3948 
3949 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3950 		ret = vmf_can_call_fault(vmf);
3951 		if (ret)
3952 			return ret;
3953 
3954 		vmf->flags |= FAULT_FLAG_MKWRITE;
3955 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3956 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3957 			return ret;
3958 		return finish_mkwrite_fault(vmf, NULL);
3959 	}
3960 	wp_page_reuse(vmf, NULL);
3961 	return 0;
3962 }
3963 
3964 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3965 	__releases(vmf->ptl)
3966 {
3967 	struct vm_area_struct *vma = vmf->vma;
3968 	vm_fault_t ret = 0;
3969 
3970 	folio_get(folio);
3971 
3972 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3973 		vm_fault_t tmp;
3974 
3975 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3976 		tmp = vmf_can_call_fault(vmf);
3977 		if (tmp) {
3978 			folio_put(folio);
3979 			return tmp;
3980 		}
3981 
3982 		tmp = do_page_mkwrite(vmf, folio);
3983 		if (unlikely(!tmp || (tmp &
3984 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3985 			folio_put(folio);
3986 			return tmp;
3987 		}
3988 		tmp = finish_mkwrite_fault(vmf, folio);
3989 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3990 			folio_unlock(folio);
3991 			folio_put(folio);
3992 			return tmp;
3993 		}
3994 	} else {
3995 		wp_page_reuse(vmf, folio);
3996 		folio_lock(folio);
3997 	}
3998 	ret |= fault_dirty_shared_page(vmf);
3999 	folio_put(folio);
4000 
4001 	return ret;
4002 }
4003 
4004 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4005 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
4006 		struct vm_area_struct *vma)
4007 {
4008 	bool exclusive = false;
4009 
4010 	/* Let's just free up a large folio if only a single page is mapped. */
4011 	if (folio_large_mapcount(folio) <= 1)
4012 		return false;
4013 
4014 	/*
4015 	 * The assumption for anonymous folios is that each page can only get
4016 	 * mapped once into each MM. The only exception are KSM folios, which
4017 	 * are always small.
4018 	 *
4019 	 * Each taken mapcount must be paired with exactly one taken reference,
4020 	 * whereby the refcount must be incremented before the mapcount when
4021 	 * mapping a page, and the refcount must be decremented after the
4022 	 * mapcount when unmapping a page.
4023 	 *
4024 	 * If all folio references are from mappings, and all mappings are in
4025 	 * the page tables of this MM, then this folio is exclusive to this MM.
4026 	 */
4027 	if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
4028 		return false;
4029 
4030 	VM_WARN_ON_ONCE(folio_test_ksm(folio));
4031 
4032 	if (unlikely(folio_test_swapcache(folio))) {
4033 		/*
4034 		 * Note: freeing up the swapcache will fail if some PTEs are
4035 		 * still swap entries.
4036 		 */
4037 		if (!folio_trylock(folio))
4038 			return false;
4039 		folio_free_swap(folio);
4040 		folio_unlock(folio);
4041 	}
4042 
4043 	if (folio_large_mapcount(folio) != folio_ref_count(folio))
4044 		return false;
4045 
4046 	/* Stabilize the mapcount vs. refcount and recheck. */
4047 	folio_lock_large_mapcount(folio);
4048 	VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
4049 
4050 	if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
4051 		goto unlock;
4052 	if (folio_large_mapcount(folio) != folio_ref_count(folio))
4053 		goto unlock;
4054 
4055 	VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
4056 	VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
4057 	VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
4058 			folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
4059 
4060 	/*
4061 	 * Do we need the folio lock? Likely not. If there would have been
4062 	 * references from page migration/swapout, we would have detected
4063 	 * an additional folio reference and never ended up here.
4064 	 */
4065 	exclusive = true;
4066 unlock:
4067 	folio_unlock_large_mapcount(folio);
4068 	return exclusive;
4069 }
4070 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4071 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
4072 		struct vm_area_struct *vma)
4073 {
4074 	BUILD_BUG();
4075 }
4076 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4077 
4078 static bool wp_can_reuse_anon_folio(struct folio *folio,
4079 				    struct vm_area_struct *vma)
4080 {
4081 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
4082 		return __wp_can_reuse_large_anon_folio(folio, vma);
4083 
4084 	/*
4085 	 * We have to verify under folio lock: these early checks are
4086 	 * just an optimization to avoid locking the folio and freeing
4087 	 * the swapcache if there is little hope that we can reuse.
4088 	 *
4089 	 * KSM doesn't necessarily raise the folio refcount.
4090 	 */
4091 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
4092 		return false;
4093 	if (!folio_test_lru(folio))
4094 		/*
4095 		 * We cannot easily detect+handle references from
4096 		 * remote LRU caches or references to LRU folios.
4097 		 */
4098 		lru_add_drain();
4099 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
4100 		return false;
4101 	if (!folio_trylock(folio))
4102 		return false;
4103 	if (folio_test_swapcache(folio))
4104 		folio_free_swap(folio);
4105 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
4106 		folio_unlock(folio);
4107 		return false;
4108 	}
4109 	/*
4110 	 * Ok, we've got the only folio reference from our mapping
4111 	 * and the folio is locked, it's dark out, and we're wearing
4112 	 * sunglasses. Hit it.
4113 	 */
4114 	folio_move_anon_rmap(folio, vma);
4115 	folio_unlock(folio);
4116 	return true;
4117 }
4118 
4119 /*
4120  * This routine handles present pages, when
4121  * * users try to write to a shared page (FAULT_FLAG_WRITE)
4122  * * GUP wants to take a R/O pin on a possibly shared anonymous page
4123  *   (FAULT_FLAG_UNSHARE)
4124  *
4125  * It is done by copying the page to a new address and decrementing the
4126  * shared-page counter for the old page.
4127  *
4128  * Note that this routine assumes that the protection checks have been
4129  * done by the caller (the low-level page fault routine in most cases).
4130  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
4131  * done any necessary COW.
4132  *
4133  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
4134  * though the page will change only once the write actually happens. This
4135  * avoids a few races, and potentially makes it more efficient.
4136  *
4137  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4138  * but allow concurrent faults), with pte both mapped and locked.
4139  * We return with mmap_lock still held, but pte unmapped and unlocked.
4140  */
4141 static vm_fault_t do_wp_page(struct vm_fault *vmf)
4142 	__releases(vmf->ptl)
4143 {
4144 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4145 	struct vm_area_struct *vma = vmf->vma;
4146 	struct folio *folio = NULL;
4147 	pte_t pte;
4148 
4149 	if (likely(!unshare)) {
4150 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
4151 			if (!userfaultfd_wp_async(vma)) {
4152 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4153 				return handle_userfault(vmf, VM_UFFD_WP);
4154 			}
4155 
4156 			/*
4157 			 * Nothing needed (cache flush, TLB invalidations,
4158 			 * etc.) because we're only removing the uffd-wp bit,
4159 			 * which is completely invisible to the user.
4160 			 */
4161 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
4162 
4163 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4164 			/*
4165 			 * Update this to be prepared for following up CoW
4166 			 * handling
4167 			 */
4168 			vmf->orig_pte = pte;
4169 		}
4170 
4171 		/*
4172 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
4173 		 * is flushed in this case before copying.
4174 		 */
4175 		if (unlikely(userfaultfd_wp(vmf->vma) &&
4176 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
4177 			flush_tlb_page(vmf->vma, vmf->address);
4178 	}
4179 
4180 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
4181 
4182 	if (vmf->page)
4183 		folio = page_folio(vmf->page);
4184 
4185 	/*
4186 	 * Shared mapping: we are guaranteed to have VM_WRITE and
4187 	 * FAULT_FLAG_WRITE set at this point.
4188 	 */
4189 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4190 		/*
4191 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
4192 		 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
4193 		 *
4194 		 * We should not cow pages in a shared writeable mapping.
4195 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
4196 		 */
4197 		if (!vmf->page || is_fsdax_page(vmf->page)) {
4198 			vmf->page = NULL;
4199 			return wp_pfn_shared(vmf);
4200 		}
4201 		return wp_page_shared(vmf, folio);
4202 	}
4203 
4204 	/*
4205 	 * Private mapping: create an exclusive anonymous page copy if reuse
4206 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4207 	 *
4208 	 * If we encounter a page that is marked exclusive, we must reuse
4209 	 * the page without further checks.
4210 	 */
4211 	if (folio && folio_test_anon(folio) &&
4212 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
4213 		if (!PageAnonExclusive(vmf->page))
4214 			SetPageAnonExclusive(vmf->page);
4215 		if (unlikely(unshare)) {
4216 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4217 			return 0;
4218 		}
4219 		wp_page_reuse(vmf, folio);
4220 		return 0;
4221 	}
4222 	/*
4223 	 * Ok, we need to copy. Oh, well..
4224 	 */
4225 	if (folio)
4226 		folio_get(folio);
4227 
4228 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4229 #ifdef CONFIG_KSM
4230 	if (folio && folio_test_ksm(folio))
4231 		count_vm_event(COW_KSM);
4232 #endif
4233 	return wp_page_copy(vmf);
4234 }
4235 
4236 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4237 		unsigned long start_addr, unsigned long end_addr,
4238 		struct zap_details *details)
4239 {
4240 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4241 }
4242 
4243 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4244 					    pgoff_t first_index,
4245 					    pgoff_t last_index,
4246 					    struct zap_details *details)
4247 {
4248 	struct vm_area_struct *vma;
4249 	pgoff_t vba, vea, zba, zea;
4250 
4251 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
4252 		vba = vma->vm_pgoff;
4253 		vea = vba + vma_pages(vma) - 1;
4254 		zba = max(first_index, vba);
4255 		zea = min(last_index, vea);
4256 
4257 		unmap_mapping_range_vma(vma,
4258 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4259 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4260 				details);
4261 	}
4262 }
4263 
4264 /**
4265  * unmap_mapping_folio() - Unmap single folio from processes.
4266  * @folio: The locked folio to be unmapped.
4267  *
4268  * Unmap this folio from any userspace process which still has it mmaped.
4269  * Typically, for efficiency, the range of nearby pages has already been
4270  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
4271  * truncation or invalidation holds the lock on a folio, it may find that
4272  * the page has been remapped again: and then uses unmap_mapping_folio()
4273  * to unmap it finally.
4274  */
4275 void unmap_mapping_folio(struct folio *folio)
4276 {
4277 	struct address_space *mapping = folio->mapping;
4278 	struct zap_details details = { };
4279 	pgoff_t	first_index;
4280 	pgoff_t	last_index;
4281 
4282 	VM_BUG_ON(!folio_test_locked(folio));
4283 
4284 	first_index = folio->index;
4285 	last_index = folio_next_index(folio) - 1;
4286 
4287 	details.even_cows = false;
4288 	details.single_folio = folio;
4289 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
4290 
4291 	i_mmap_lock_read(mapping);
4292 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4293 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4294 					 last_index, &details);
4295 	i_mmap_unlock_read(mapping);
4296 }
4297 
4298 /**
4299  * unmap_mapping_pages() - Unmap pages from processes.
4300  * @mapping: The address space containing pages to be unmapped.
4301  * @start: Index of first page to be unmapped.
4302  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
4303  * @even_cows: Whether to unmap even private COWed pages.
4304  *
4305  * Unmap the pages in this address space from any userspace process which
4306  * has them mmaped.  Generally, you want to remove COWed pages as well when
4307  * a file is being truncated, but not when invalidating pages from the page
4308  * cache.
4309  */
4310 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4311 		pgoff_t nr, bool even_cows)
4312 {
4313 	struct zap_details details = { };
4314 	pgoff_t	first_index = start;
4315 	pgoff_t	last_index = start + nr - 1;
4316 
4317 	details.even_cows = even_cows;
4318 	if (last_index < first_index)
4319 		last_index = ULONG_MAX;
4320 
4321 	i_mmap_lock_read(mapping);
4322 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4323 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4324 					 last_index, &details);
4325 	i_mmap_unlock_read(mapping);
4326 }
4327 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4328 
4329 /**
4330  * unmap_mapping_range - unmap the portion of all mmaps in the specified
4331  * address_space corresponding to the specified byte range in the underlying
4332  * file.
4333  *
4334  * @mapping: the address space containing mmaps to be unmapped.
4335  * @holebegin: byte in first page to unmap, relative to the start of
4336  * the underlying file.  This will be rounded down to a PAGE_SIZE
4337  * boundary.  Note that this is different from truncate_pagecache(), which
4338  * must keep the partial page.  In contrast, we must get rid of
4339  * partial pages.
4340  * @holelen: size of prospective hole in bytes.  This will be rounded
4341  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
4342  * end of the file.
4343  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4344  * but 0 when invalidating pagecache, don't throw away private data.
4345  */
4346 void unmap_mapping_range(struct address_space *mapping,
4347 		loff_t const holebegin, loff_t const holelen, int even_cows)
4348 {
4349 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4350 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4351 
4352 	/* Check for overflow. */
4353 	if (sizeof(holelen) > sizeof(hlen)) {
4354 		long long holeend =
4355 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4356 		if (holeend & ~(long long)ULONG_MAX)
4357 			hlen = ULONG_MAX - hba + 1;
4358 	}
4359 
4360 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
4361 }
4362 EXPORT_SYMBOL(unmap_mapping_range);
4363 
4364 /*
4365  * Restore a potential device exclusive pte to a working pte entry
4366  */
4367 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4368 {
4369 	struct folio *folio = page_folio(vmf->page);
4370 	struct vm_area_struct *vma = vmf->vma;
4371 	struct mmu_notifier_range range;
4372 	vm_fault_t ret;
4373 
4374 	/*
4375 	 * We need a reference to lock the folio because we don't hold
4376 	 * the PTL so a racing thread can remove the device-exclusive
4377 	 * entry and unmap it. If the folio is free the entry must
4378 	 * have been removed already. If it happens to have already
4379 	 * been re-allocated after being freed all we do is lock and
4380 	 * unlock it.
4381 	 */
4382 	if (!folio_try_get(folio))
4383 		return 0;
4384 
4385 	ret = folio_lock_or_retry(folio, vmf);
4386 	if (ret) {
4387 		folio_put(folio);
4388 		return ret;
4389 	}
4390 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4391 				vma->vm_mm, vmf->address & PAGE_MASK,
4392 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4393 	mmu_notifier_invalidate_range_start(&range);
4394 
4395 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4396 				&vmf->ptl);
4397 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4398 		restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4399 				      vmf->pte, vmf->orig_pte);
4400 
4401 	if (vmf->pte)
4402 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4403 	folio_unlock(folio);
4404 	folio_put(folio);
4405 
4406 	mmu_notifier_invalidate_range_end(&range);
4407 	return 0;
4408 }
4409 
4410 /*
4411  * Check if we should call folio_free_swap to free the swap cache.
4412  * folio_free_swap only frees the swap cache to release the slot if swap
4413  * count is zero, so we don't need to check the swap count here.
4414  */
4415 static inline bool should_try_to_free_swap(struct swap_info_struct *si,
4416 					   struct folio *folio,
4417 					   struct vm_area_struct *vma,
4418 					   unsigned int extra_refs,
4419 					   unsigned int fault_flags)
4420 {
4421 	if (!folio_test_swapcache(folio))
4422 		return false;
4423 	/*
4424 	 * Always try to free swap cache for SWP_SYNCHRONOUS_IO devices. Swap
4425 	 * cache can help save some IO or memory overhead, but these devices
4426 	 * are fast, and meanwhile, swap cache pinning the slot deferring the
4427 	 * release of metadata or fragmentation is a more critical issue.
4428 	 */
4429 	if (data_race(si->flags & SWP_SYNCHRONOUS_IO))
4430 		return true;
4431 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4432 	    folio_test_mlocked(folio))
4433 		return true;
4434 	/*
4435 	 * If we want to map a page that's in the swapcache writable, we
4436 	 * have to detect via the refcount if we're really the exclusive
4437 	 * user. Try freeing the swapcache to get rid of the swapcache
4438 	 * reference only in case it's likely that we'll be the exclusive user.
4439 	 */
4440 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4441 		folio_ref_count(folio) == (extra_refs + folio_nr_pages(folio));
4442 }
4443 
4444 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4445 {
4446 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4447 				       vmf->address, &vmf->ptl);
4448 	if (!vmf->pte)
4449 		return 0;
4450 	/*
4451 	 * Be careful so that we will only recover a special uffd-wp pte into a
4452 	 * none pte.  Otherwise it means the pte could have changed, so retry.
4453 	 *
4454 	 * This should also cover the case where e.g. the pte changed
4455 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4456 	 * So pte_is_marker() check is not enough to safely drop the pte.
4457 	 */
4458 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4459 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4460 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4461 	return 0;
4462 }
4463 
4464 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4465 {
4466 	if (vma_is_anonymous(vmf->vma))
4467 		return do_anonymous_page(vmf);
4468 	else
4469 		return do_fault(vmf);
4470 }
4471 
4472 /*
4473  * This is actually a page-missing access, but with uffd-wp special pte
4474  * installed.  It means this pte was wr-protected before being unmapped.
4475  */
4476 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4477 {
4478 	/*
4479 	 * Just in case there're leftover special ptes even after the region
4480 	 * got unregistered - we can simply clear them.
4481 	 */
4482 	if (unlikely(!userfaultfd_wp(vmf->vma)))
4483 		return pte_marker_clear(vmf);
4484 
4485 	return do_pte_missing(vmf);
4486 }
4487 
4488 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4489 {
4490 	const softleaf_t entry = softleaf_from_pte(vmf->orig_pte);
4491 	const pte_marker marker = softleaf_to_marker(entry);
4492 
4493 	/*
4494 	 * PTE markers should never be empty.  If anything weird happened,
4495 	 * the best thing to do is to kill the process along with its mm.
4496 	 */
4497 	if (WARN_ON_ONCE(!marker))
4498 		return VM_FAULT_SIGBUS;
4499 
4500 	/* Higher priority than uffd-wp when data corrupted */
4501 	if (marker & PTE_MARKER_POISONED)
4502 		return VM_FAULT_HWPOISON;
4503 
4504 	/* Hitting a guard page is always a fatal condition. */
4505 	if (marker & PTE_MARKER_GUARD)
4506 		return VM_FAULT_SIGSEGV;
4507 
4508 	if (softleaf_is_uffd_wp_marker(entry))
4509 		return pte_marker_handle_uffd_wp(vmf);
4510 
4511 	/* This is an unknown pte marker */
4512 	return VM_FAULT_SIGBUS;
4513 }
4514 
4515 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4516 {
4517 	struct vm_area_struct *vma = vmf->vma;
4518 	struct folio *folio;
4519 	softleaf_t entry;
4520 
4521 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4522 	if (!folio)
4523 		return NULL;
4524 
4525 	entry = softleaf_from_pte(vmf->orig_pte);
4526 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4527 					   GFP_KERNEL, entry)) {
4528 		folio_put(folio);
4529 		return NULL;
4530 	}
4531 
4532 	return folio;
4533 }
4534 
4535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4536 /*
4537  * Check if the PTEs within a range are contiguous swap entries
4538  * and have consistent swapcache, zeromap.
4539  */
4540 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4541 {
4542 	unsigned long addr;
4543 	softleaf_t entry;
4544 	int idx;
4545 	pte_t pte;
4546 
4547 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4548 	idx = (vmf->address - addr) / PAGE_SIZE;
4549 	pte = ptep_get(ptep);
4550 
4551 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4552 		return false;
4553 	entry = softleaf_from_pte(pte);
4554 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4555 		return false;
4556 
4557 	/*
4558 	 * swap_read_folio() can't handle the case a large folio is hybridly
4559 	 * from different backends. And they are likely corner cases. Similar
4560 	 * things might be added once zswap support large folios.
4561 	 */
4562 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4563 		return false;
4564 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4565 		return false;
4566 
4567 	return true;
4568 }
4569 
4570 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4571 						     unsigned long addr,
4572 						     unsigned long orders)
4573 {
4574 	int order, nr;
4575 
4576 	order = highest_order(orders);
4577 
4578 	/*
4579 	 * To swap in a THP with nr pages, we require that its first swap_offset
4580 	 * is aligned with that number, as it was when the THP was swapped out.
4581 	 * This helps filter out most invalid entries.
4582 	 */
4583 	while (orders) {
4584 		nr = 1 << order;
4585 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4586 			break;
4587 		order = next_order(&orders, order);
4588 	}
4589 
4590 	return orders;
4591 }
4592 
4593 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4594 {
4595 	struct vm_area_struct *vma = vmf->vma;
4596 	unsigned long orders;
4597 	struct folio *folio;
4598 	unsigned long addr;
4599 	softleaf_t entry;
4600 	spinlock_t *ptl;
4601 	pte_t *pte;
4602 	gfp_t gfp;
4603 	int order;
4604 
4605 	/*
4606 	 * If uffd is active for the vma we need per-page fault fidelity to
4607 	 * maintain the uffd semantics.
4608 	 */
4609 	if (unlikely(userfaultfd_armed(vma)))
4610 		goto fallback;
4611 
4612 	/*
4613 	 * A large swapped out folio could be partially or fully in zswap. We
4614 	 * lack handling for such cases, so fallback to swapping in order-0
4615 	 * folio.
4616 	 */
4617 	if (!zswap_never_enabled())
4618 		goto fallback;
4619 
4620 	entry = softleaf_from_pte(vmf->orig_pte);
4621 	/*
4622 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4623 	 * and suitable for swapping THP.
4624 	 */
4625 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
4626 					  BIT(PMD_ORDER) - 1);
4627 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4628 	orders = thp_swap_suitable_orders(swp_offset(entry),
4629 					  vmf->address, orders);
4630 
4631 	if (!orders)
4632 		goto fallback;
4633 
4634 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4635 				  vmf->address & PMD_MASK, &ptl);
4636 	if (unlikely(!pte))
4637 		goto fallback;
4638 
4639 	/*
4640 	 * For do_swap_page, find the highest order where the aligned range is
4641 	 * completely swap entries with contiguous swap offsets.
4642 	 */
4643 	order = highest_order(orders);
4644 	while (orders) {
4645 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4646 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4647 			break;
4648 		order = next_order(&orders, order);
4649 	}
4650 
4651 	pte_unmap_unlock(pte, ptl);
4652 
4653 	/* Try allocating the highest of the remaining orders. */
4654 	gfp = vma_thp_gfp_mask(vma);
4655 	while (orders) {
4656 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4657 		folio = vma_alloc_folio(gfp, order, vma, addr);
4658 		if (folio) {
4659 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4660 							    gfp, entry))
4661 				return folio;
4662 			count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4663 			folio_put(folio);
4664 		}
4665 		count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4666 		order = next_order(&orders, order);
4667 	}
4668 
4669 fallback:
4670 	return __alloc_swap_folio(vmf);
4671 }
4672 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4673 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4674 {
4675 	return __alloc_swap_folio(vmf);
4676 }
4677 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4678 
4679 /* Sanity check that a folio is fully exclusive */
4680 static void check_swap_exclusive(struct folio *folio, swp_entry_t entry,
4681 				 unsigned int nr_pages)
4682 {
4683 	/* Called under PT locked and folio locked, the swap count is stable */
4684 	do {
4685 		VM_WARN_ON_ONCE_FOLIO(__swap_count(entry) != 1, folio);
4686 		entry.val++;
4687 	} while (--nr_pages);
4688 }
4689 
4690 /*
4691  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4692  * but allow concurrent faults), and pte mapped but not yet locked.
4693  * We return with pte unmapped and unlocked.
4694  *
4695  * We return with the mmap_lock locked or unlocked in the same cases
4696  * as does filemap_fault().
4697  */
4698 vm_fault_t do_swap_page(struct vm_fault *vmf)
4699 {
4700 	struct vm_area_struct *vma = vmf->vma;
4701 	struct folio *swapcache = NULL, *folio;
4702 	struct page *page;
4703 	struct swap_info_struct *si = NULL;
4704 	rmap_t rmap_flags = RMAP_NONE;
4705 	bool exclusive = false;
4706 	softleaf_t entry;
4707 	pte_t pte;
4708 	vm_fault_t ret = 0;
4709 	int nr_pages;
4710 	unsigned long page_idx;
4711 	unsigned long address;
4712 	pte_t *ptep;
4713 
4714 	if (!pte_unmap_same(vmf))
4715 		goto out;
4716 
4717 	entry = softleaf_from_pte(vmf->orig_pte);
4718 	if (unlikely(!softleaf_is_swap(entry))) {
4719 		if (softleaf_is_migration(entry)) {
4720 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4721 					     vmf->address);
4722 		} else if (softleaf_is_device_exclusive(entry)) {
4723 			vmf->page = softleaf_to_page(entry);
4724 			ret = remove_device_exclusive_entry(vmf);
4725 		} else if (softleaf_is_device_private(entry)) {
4726 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4727 				/*
4728 				 * migrate_to_ram is not yet ready to operate
4729 				 * under VMA lock.
4730 				 */
4731 				vma_end_read(vma);
4732 				ret = VM_FAULT_RETRY;
4733 				goto out;
4734 			}
4735 
4736 			vmf->page = softleaf_to_page(entry);
4737 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4738 					vmf->address, &vmf->ptl);
4739 			if (unlikely(!vmf->pte ||
4740 				     !pte_same(ptep_get(vmf->pte),
4741 							vmf->orig_pte)))
4742 				goto unlock;
4743 
4744 			/*
4745 			 * Get a page reference while we know the page can't be
4746 			 * freed.
4747 			 */
4748 			if (trylock_page(vmf->page)) {
4749 				struct dev_pagemap *pgmap;
4750 
4751 				get_page(vmf->page);
4752 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4753 				pgmap = page_pgmap(vmf->page);
4754 				ret = pgmap->ops->migrate_to_ram(vmf);
4755 				unlock_page(vmf->page);
4756 				put_page(vmf->page);
4757 			} else {
4758 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4759 			}
4760 		} else if (softleaf_is_hwpoison(entry)) {
4761 			ret = VM_FAULT_HWPOISON;
4762 		} else if (softleaf_is_marker(entry)) {
4763 			ret = handle_pte_marker(vmf);
4764 		} else {
4765 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4766 			ret = VM_FAULT_SIGBUS;
4767 		}
4768 		goto out;
4769 	}
4770 
4771 	/* Prevent swapoff from happening to us. */
4772 	si = get_swap_device(entry);
4773 	if (unlikely(!si))
4774 		goto out;
4775 
4776 	folio = swap_cache_get_folio(entry);
4777 	if (folio)
4778 		swap_update_readahead(folio, vma, vmf->address);
4779 	if (!folio) {
4780 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
4781 			folio = alloc_swap_folio(vmf);
4782 			if (folio) {
4783 				/*
4784 				 * folio is charged, so swapin can only fail due
4785 				 * to raced swapin and return NULL.
4786 				 */
4787 				swapcache = swapin_folio(entry, folio);
4788 				if (swapcache != folio)
4789 					folio_put(folio);
4790 				folio = swapcache;
4791 			}
4792 		} else {
4793 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf);
4794 		}
4795 
4796 		if (!folio) {
4797 			/*
4798 			 * Back out if somebody else faulted in this pte
4799 			 * while we released the pte lock.
4800 			 */
4801 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4802 					vmf->address, &vmf->ptl);
4803 			if (likely(vmf->pte &&
4804 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4805 				ret = VM_FAULT_OOM;
4806 			goto unlock;
4807 		}
4808 
4809 		/* Had to read the page from swap area: Major fault */
4810 		ret = VM_FAULT_MAJOR;
4811 		count_vm_event(PGMAJFAULT);
4812 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4813 	}
4814 
4815 	swapcache = folio;
4816 	ret |= folio_lock_or_retry(folio, vmf);
4817 	if (ret & VM_FAULT_RETRY)
4818 		goto out_release;
4819 
4820 	page = folio_file_page(folio, swp_offset(entry));
4821 	/*
4822 	 * Make sure folio_free_swap() or swapoff did not release the
4823 	 * swapcache from under us.  The page pin, and pte_same test
4824 	 * below, are not enough to exclude that.  Even if it is still
4825 	 * swapcache, we need to check that the page's swap has not
4826 	 * changed.
4827 	 */
4828 	if (unlikely(!folio_matches_swap_entry(folio, entry)))
4829 		goto out_page;
4830 
4831 	if (unlikely(PageHWPoison(page))) {
4832 		/*
4833 		 * hwpoisoned dirty swapcache pages are kept for killing
4834 		 * owner processes (which may be unknown at hwpoison time)
4835 		 */
4836 		ret = VM_FAULT_HWPOISON;
4837 		goto out_page;
4838 	}
4839 
4840 	/*
4841 	 * KSM sometimes has to copy on read faults, for example, if
4842 	 * folio->index of non-ksm folios would be nonlinear inside the
4843 	 * anon VMA -- the ksm flag is lost on actual swapout.
4844 	 */
4845 	folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4846 	if (unlikely(!folio)) {
4847 		ret = VM_FAULT_OOM;
4848 		folio = swapcache;
4849 		goto out_page;
4850 	} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4851 		ret = VM_FAULT_HWPOISON;
4852 		folio = swapcache;
4853 		goto out_page;
4854 	} else if (folio != swapcache)
4855 		page = folio_page(folio, 0);
4856 
4857 	/*
4858 	 * If we want to map a page that's in the swapcache writable, we
4859 	 * have to detect via the refcount if we're really the exclusive
4860 	 * owner. Try removing the extra reference from the local LRU
4861 	 * caches if required.
4862 	 */
4863 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
4864 	    !folio_test_ksm(folio) && !folio_test_lru(folio))
4865 		lru_add_drain();
4866 
4867 	folio_throttle_swaprate(folio, GFP_KERNEL);
4868 
4869 	/*
4870 	 * Back out if somebody else already faulted in this pte.
4871 	 */
4872 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4873 			&vmf->ptl);
4874 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4875 		goto out_nomap;
4876 
4877 	if (unlikely(!folio_test_uptodate(folio))) {
4878 		ret = VM_FAULT_SIGBUS;
4879 		goto out_nomap;
4880 	}
4881 
4882 	nr_pages = 1;
4883 	page_idx = 0;
4884 	address = vmf->address;
4885 	ptep = vmf->pte;
4886 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4887 		int nr = folio_nr_pages(folio);
4888 		unsigned long idx = folio_page_idx(folio, page);
4889 		unsigned long folio_start = address - idx * PAGE_SIZE;
4890 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4891 		pte_t *folio_ptep;
4892 		pte_t folio_pte;
4893 
4894 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4895 			goto check_folio;
4896 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4897 			goto check_folio;
4898 
4899 		folio_ptep = vmf->pte - idx;
4900 		folio_pte = ptep_get(folio_ptep);
4901 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4902 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4903 			goto check_folio;
4904 
4905 		page_idx = idx;
4906 		address = folio_start;
4907 		ptep = folio_ptep;
4908 		nr_pages = nr;
4909 		entry = folio->swap;
4910 		page = &folio->page;
4911 	}
4912 
4913 check_folio:
4914 	/*
4915 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4916 	 * must never point at an anonymous page in the swapcache that is
4917 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4918 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4919 	 * check after taking the PT lock and making sure that nobody
4920 	 * concurrently faulted in this page and set PG_anon_exclusive.
4921 	 */
4922 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4923 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4924 
4925 	/*
4926 	 * If a large folio already belongs to anon mapping, then we
4927 	 * can just go on and map it partially.
4928 	 * If not, with the large swapin check above failing, the page table
4929 	 * have changed, so sub pages might got charged to the wrong cgroup,
4930 	 * or even should be shmem. So we have to free it and fallback.
4931 	 * Nothing should have touched it, both anon and shmem checks if a
4932 	 * large folio is fully appliable before use.
4933 	 *
4934 	 * This will be removed once we unify folio allocation in the swap cache
4935 	 * layer, where allocation of a folio stabilizes the swap entries.
4936 	 */
4937 	if (!folio_test_anon(folio) && folio_test_large(folio) &&
4938 	    nr_pages != folio_nr_pages(folio)) {
4939 		if (!WARN_ON_ONCE(folio_test_dirty(folio)))
4940 			swap_cache_del_folio(folio);
4941 		goto out_nomap;
4942 	}
4943 
4944 	/*
4945 	 * Check under PT lock (to protect against concurrent fork() sharing
4946 	 * the swap entry concurrently) for certainly exclusive pages.
4947 	 */
4948 	if (!folio_test_ksm(folio)) {
4949 		/*
4950 		 * The can_swapin_thp check above ensures all PTE have
4951 		 * same exclusiveness. Checking just one PTE is fine.
4952 		 */
4953 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4954 		if (exclusive)
4955 			check_swap_exclusive(folio, entry, nr_pages);
4956 		if (folio != swapcache) {
4957 			/*
4958 			 * We have a fresh page that is not exposed to the
4959 			 * swapcache -> certainly exclusive.
4960 			 */
4961 			exclusive = true;
4962 		} else if (exclusive && folio_test_writeback(folio) &&
4963 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4964 			/*
4965 			 * This is tricky: not all swap backends support
4966 			 * concurrent page modifications while under writeback.
4967 			 *
4968 			 * So if we stumble over such a page in the swapcache
4969 			 * we must not set the page exclusive, otherwise we can
4970 			 * map it writable without further checks and modify it
4971 			 * while still under writeback.
4972 			 *
4973 			 * For these problematic swap backends, simply drop the
4974 			 * exclusive marker: this is perfectly fine as we start
4975 			 * writeback only if we fully unmapped the page and
4976 			 * there are no unexpected references on the page after
4977 			 * unmapping succeeded. After fully unmapped, no
4978 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4979 			 * appear, so dropping the exclusive marker and mapping
4980 			 * it only R/O is fine.
4981 			 */
4982 			exclusive = false;
4983 		}
4984 	}
4985 
4986 	/*
4987 	 * Some architectures may have to restore extra metadata to the page
4988 	 * when reading from swap. This metadata may be indexed by swap entry
4989 	 * so this must be called before folio_put_swap().
4990 	 */
4991 	arch_swap_restore(folio_swap(entry, folio), folio);
4992 
4993 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4994 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4995 	pte = mk_pte(page, vma->vm_page_prot);
4996 	if (pte_swp_soft_dirty(vmf->orig_pte))
4997 		pte = pte_mksoft_dirty(pte);
4998 	if (pte_swp_uffd_wp(vmf->orig_pte))
4999 		pte = pte_mkuffd_wp(pte);
5000 
5001 	/*
5002 	 * Same logic as in do_wp_page(); however, optimize for pages that are
5003 	 * certainly not shared either because we just allocated them without
5004 	 * exposing them to the swapcache or because the swap entry indicates
5005 	 * exclusivity.
5006 	 */
5007 	if (!folio_test_ksm(folio) &&
5008 	    (exclusive || folio_ref_count(folio) == 1)) {
5009 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
5010 		    !pte_needs_soft_dirty_wp(vma, pte)) {
5011 			pte = pte_mkwrite(pte, vma);
5012 			if (vmf->flags & FAULT_FLAG_WRITE) {
5013 				pte = pte_mkdirty(pte);
5014 				vmf->flags &= ~FAULT_FLAG_WRITE;
5015 			}
5016 		}
5017 		rmap_flags |= RMAP_EXCLUSIVE;
5018 	}
5019 	folio_ref_add(folio, nr_pages - 1);
5020 	flush_icache_pages(vma, page, nr_pages);
5021 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
5022 
5023 	/* ksm created a completely new copy */
5024 	if (unlikely(folio != swapcache)) {
5025 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
5026 		folio_add_lru_vma(folio, vma);
5027 		folio_put_swap(swapcache, NULL);
5028 	} else if (!folio_test_anon(folio)) {
5029 		/*
5030 		 * We currently only expect !anon folios that are fully
5031 		 * mappable. See the comment after can_swapin_thp above.
5032 		 */
5033 		VM_WARN_ON_ONCE_FOLIO(folio_nr_pages(folio) != nr_pages, folio);
5034 		VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio);
5035 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
5036 		folio_put_swap(folio, NULL);
5037 	} else {
5038 		VM_WARN_ON_ONCE(nr_pages != 1 && nr_pages != folio_nr_pages(folio));
5039 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
5040 					 rmap_flags);
5041 		folio_put_swap(folio, nr_pages == 1 ? page : NULL);
5042 	}
5043 
5044 	VM_BUG_ON(!folio_test_anon(folio) ||
5045 			(pte_write(pte) && !PageAnonExclusive(page)));
5046 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
5047 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
5048 			pte, pte, nr_pages);
5049 
5050 	/*
5051 	 * Remove the swap entry and conditionally try to free up the swapcache.
5052 	 * Do it after mapping, so raced page faults will likely see the folio
5053 	 * in swap cache and wait on the folio lock.
5054 	 */
5055 	if (should_try_to_free_swap(si, folio, vma, nr_pages, vmf->flags))
5056 		folio_free_swap(folio);
5057 
5058 	folio_unlock(folio);
5059 	if (unlikely(folio != swapcache)) {
5060 		/*
5061 		 * Hold the lock to avoid the swap entry to be reused
5062 		 * until we take the PT lock for the pte_same() check
5063 		 * (to avoid false positives from pte_same). For
5064 		 * further safety release the lock after the folio_put_swap
5065 		 * so that the swap count won't change under a
5066 		 * parallel locked swapcache.
5067 		 */
5068 		folio_unlock(swapcache);
5069 		folio_put(swapcache);
5070 	}
5071 
5072 	if (vmf->flags & FAULT_FLAG_WRITE) {
5073 		ret |= do_wp_page(vmf);
5074 		if (ret & VM_FAULT_ERROR)
5075 			ret &= VM_FAULT_ERROR;
5076 		goto out;
5077 	}
5078 
5079 	/* No need to invalidate - it was non-present before */
5080 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
5081 unlock:
5082 	if (vmf->pte)
5083 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5084 out:
5085 	if (si)
5086 		put_swap_device(si);
5087 	return ret;
5088 out_nomap:
5089 	if (vmf->pte)
5090 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5091 out_page:
5092 	if (folio_test_swapcache(folio))
5093 		folio_free_swap(folio);
5094 	folio_unlock(folio);
5095 out_release:
5096 	folio_put(folio);
5097 	if (folio != swapcache) {
5098 		folio_unlock(swapcache);
5099 		folio_put(swapcache);
5100 	}
5101 	if (si)
5102 		put_swap_device(si);
5103 	return ret;
5104 }
5105 
5106 static bool pte_range_none(pte_t *pte, int nr_pages)
5107 {
5108 	int i;
5109 
5110 	for (i = 0; i < nr_pages; i++) {
5111 		if (!pte_none(ptep_get_lockless(pte + i)))
5112 			return false;
5113 	}
5114 
5115 	return true;
5116 }
5117 
5118 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
5119 {
5120 	struct vm_area_struct *vma = vmf->vma;
5121 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5122 	unsigned long orders;
5123 	struct folio *folio;
5124 	unsigned long addr;
5125 	pte_t *pte;
5126 	gfp_t gfp;
5127 	int order;
5128 
5129 	/*
5130 	 * If uffd is active for the vma we need per-page fault fidelity to
5131 	 * maintain the uffd semantics.
5132 	 */
5133 	if (unlikely(userfaultfd_armed(vma)))
5134 		goto fallback;
5135 
5136 	/*
5137 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
5138 	 * for this vma. Then filter out the orders that can't be allocated over
5139 	 * the faulting address and still be fully contained in the vma.
5140 	 */
5141 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
5142 					  BIT(PMD_ORDER) - 1);
5143 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
5144 
5145 	if (!orders)
5146 		goto fallback;
5147 
5148 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
5149 	if (!pte)
5150 		return ERR_PTR(-EAGAIN);
5151 
5152 	/*
5153 	 * Find the highest order where the aligned range is completely
5154 	 * pte_none(). Note that all remaining orders will be completely
5155 	 * pte_none().
5156 	 */
5157 	order = highest_order(orders);
5158 	while (orders) {
5159 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5160 		if (pte_range_none(pte + pte_index(addr), 1 << order))
5161 			break;
5162 		order = next_order(&orders, order);
5163 	}
5164 
5165 	pte_unmap(pte);
5166 
5167 	if (!orders)
5168 		goto fallback;
5169 
5170 	/* Try allocating the highest of the remaining orders. */
5171 	gfp = vma_thp_gfp_mask(vma);
5172 	while (orders) {
5173 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5174 		folio = vma_alloc_folio(gfp, order, vma, addr);
5175 		if (folio) {
5176 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
5177 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
5178 				folio_put(folio);
5179 				goto next;
5180 			}
5181 			folio_throttle_swaprate(folio, gfp);
5182 			/*
5183 			 * When a folio is not zeroed during allocation
5184 			 * (__GFP_ZERO not used) or user folios require special
5185 			 * handling, folio_zero_user() is used to make sure
5186 			 * that the page corresponding to the faulting address
5187 			 * will be hot in the cache after zeroing.
5188 			 */
5189 			if (user_alloc_needs_zeroing())
5190 				folio_zero_user(folio, vmf->address);
5191 			return folio;
5192 		}
5193 next:
5194 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
5195 		order = next_order(&orders, order);
5196 	}
5197 
5198 fallback:
5199 #endif
5200 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
5201 }
5202 
5203 /*
5204  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5205  * but allow concurrent faults), and pte mapped but not yet locked.
5206  * We return with mmap_lock still held, but pte unmapped and unlocked.
5207  */
5208 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5209 {
5210 	struct vm_area_struct *vma = vmf->vma;
5211 	unsigned long addr = vmf->address;
5212 	struct folio *folio;
5213 	vm_fault_t ret = 0;
5214 	int nr_pages = 1;
5215 	pte_t entry;
5216 
5217 	/* File mapping without ->vm_ops ? */
5218 	if (vma->vm_flags & VM_SHARED)
5219 		return VM_FAULT_SIGBUS;
5220 
5221 	/*
5222 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5223 	 * be distinguished from a transient failure of pte_offset_map().
5224 	 */
5225 	if (pte_alloc(vma->vm_mm, vmf->pmd))
5226 		return VM_FAULT_OOM;
5227 
5228 	/* Use the zero-page for reads */
5229 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5230 			!mm_forbids_zeropage(vma->vm_mm)) {
5231 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5232 						vma->vm_page_prot));
5233 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5234 				vmf->address, &vmf->ptl);
5235 		if (!vmf->pte)
5236 			goto unlock;
5237 		if (vmf_pte_changed(vmf)) {
5238 			update_mmu_tlb(vma, vmf->address, vmf->pte);
5239 			goto unlock;
5240 		}
5241 		ret = check_stable_address_space(vma->vm_mm);
5242 		if (ret)
5243 			goto unlock;
5244 		/* Deliver the page fault to userland, check inside PT lock */
5245 		if (userfaultfd_missing(vma)) {
5246 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5247 			return handle_userfault(vmf, VM_UFFD_MISSING);
5248 		}
5249 		goto setpte;
5250 	}
5251 
5252 	/* Allocate our own private page. */
5253 	ret = vmf_anon_prepare(vmf);
5254 	if (ret)
5255 		return ret;
5256 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5257 	folio = alloc_anon_folio(vmf);
5258 	if (IS_ERR(folio))
5259 		return 0;
5260 	if (!folio)
5261 		goto oom;
5262 
5263 	nr_pages = folio_nr_pages(folio);
5264 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5265 
5266 	/*
5267 	 * The memory barrier inside __folio_mark_uptodate makes sure that
5268 	 * preceding stores to the page contents become visible before
5269 	 * the set_pte_at() write.
5270 	 */
5271 	__folio_mark_uptodate(folio);
5272 
5273 	entry = folio_mk_pte(folio, vma->vm_page_prot);
5274 	entry = pte_sw_mkyoung(entry);
5275 	if (vma->vm_flags & VM_WRITE)
5276 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
5277 
5278 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5279 	if (!vmf->pte)
5280 		goto release;
5281 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5282 		update_mmu_tlb(vma, addr, vmf->pte);
5283 		goto release;
5284 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5285 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5286 		goto release;
5287 	}
5288 
5289 	ret = check_stable_address_space(vma->vm_mm);
5290 	if (ret)
5291 		goto release;
5292 
5293 	/* Deliver the page fault to userland, check inside PT lock */
5294 	if (userfaultfd_missing(vma)) {
5295 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5296 		folio_put(folio);
5297 		return handle_userfault(vmf, VM_UFFD_MISSING);
5298 	}
5299 
5300 	folio_ref_add(folio, nr_pages - 1);
5301 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5302 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5303 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5304 	folio_add_lru_vma(folio, vma);
5305 setpte:
5306 	if (vmf_orig_pte_uffd_wp(vmf))
5307 		entry = pte_mkuffd_wp(entry);
5308 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5309 
5310 	/* No need to invalidate - it was non-present before */
5311 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5312 unlock:
5313 	if (vmf->pte)
5314 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5315 	return ret;
5316 release:
5317 	folio_put(folio);
5318 	goto unlock;
5319 oom:
5320 	return VM_FAULT_OOM;
5321 }
5322 
5323 /*
5324  * The mmap_lock must have been held on entry, and may have been
5325  * released depending on flags and vma->vm_ops->fault() return value.
5326  * See filemap_fault() and __lock_page_retry().
5327  */
5328 static vm_fault_t __do_fault(struct vm_fault *vmf)
5329 {
5330 	struct vm_area_struct *vma = vmf->vma;
5331 	struct folio *folio;
5332 	vm_fault_t ret;
5333 
5334 	/*
5335 	 * Preallocate pte before we take page_lock because this might lead to
5336 	 * deadlocks for memcg reclaim which waits for pages under writeback:
5337 	 *				lock_page(A)
5338 	 *				SetPageWriteback(A)
5339 	 *				unlock_page(A)
5340 	 * lock_page(B)
5341 	 *				lock_page(B)
5342 	 * pte_alloc_one
5343 	 *   shrink_folio_list
5344 	 *     wait_on_page_writeback(A)
5345 	 *				SetPageWriteback(B)
5346 	 *				unlock_page(B)
5347 	 *				# flush A, B to clear the writeback
5348 	 */
5349 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5350 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5351 		if (!vmf->prealloc_pte)
5352 			return VM_FAULT_OOM;
5353 	}
5354 
5355 	ret = vma->vm_ops->fault(vmf);
5356 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5357 			    VM_FAULT_DONE_COW)))
5358 		return ret;
5359 
5360 	folio = page_folio(vmf->page);
5361 	if (unlikely(PageHWPoison(vmf->page))) {
5362 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
5363 		if (ret & VM_FAULT_LOCKED) {
5364 			if (page_mapped(vmf->page))
5365 				unmap_mapping_folio(folio);
5366 			/* Retry if a clean folio was removed from the cache. */
5367 			if (mapping_evict_folio(folio->mapping, folio))
5368 				poisonret = VM_FAULT_NOPAGE;
5369 			folio_unlock(folio);
5370 		}
5371 		folio_put(folio);
5372 		vmf->page = NULL;
5373 		return poisonret;
5374 	}
5375 
5376 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
5377 		folio_lock(folio);
5378 	else
5379 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5380 
5381 	return ret;
5382 }
5383 
5384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5385 static void deposit_prealloc_pte(struct vm_fault *vmf)
5386 {
5387 	struct vm_area_struct *vma = vmf->vma;
5388 
5389 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5390 	/*
5391 	 * We are going to consume the prealloc table,
5392 	 * count that as nr_ptes.
5393 	 */
5394 	mm_inc_nr_ptes(vma->vm_mm);
5395 	vmf->prealloc_pte = NULL;
5396 }
5397 
5398 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5399 {
5400 	struct vm_area_struct *vma = vmf->vma;
5401 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5402 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5403 	pmd_t entry;
5404 	vm_fault_t ret = VM_FAULT_FALLBACK;
5405 
5406 	/*
5407 	 * It is too late to allocate a small folio, we already have a large
5408 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
5409 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5410 	 * PMD mappings if THPs are disabled. As we already have a THP,
5411 	 * behave as if we are forcing a collapse.
5412 	 */
5413 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags,
5414 						     /* forced_collapse=*/ true))
5415 		return ret;
5416 
5417 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5418 		return ret;
5419 
5420 	if (folio_order(folio) != HPAGE_PMD_ORDER)
5421 		return ret;
5422 	page = &folio->page;
5423 
5424 	/*
5425 	 * Just backoff if any subpage of a THP is corrupted otherwise
5426 	 * the corrupted page may mapped by PMD silently to escape the
5427 	 * check.  This kind of THP just can be PTE mapped.  Access to
5428 	 * the corrupted subpage should trigger SIGBUS as expected.
5429 	 */
5430 	if (unlikely(folio_test_has_hwpoisoned(folio)))
5431 		return ret;
5432 
5433 	/*
5434 	 * Archs like ppc64 need additional space to store information
5435 	 * related to pte entry. Use the preallocated table for that.
5436 	 */
5437 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5438 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5439 		if (!vmf->prealloc_pte)
5440 			return VM_FAULT_OOM;
5441 	}
5442 
5443 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5444 	if (unlikely(!pmd_none(*vmf->pmd)))
5445 		goto out;
5446 
5447 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
5448 
5449 	entry = folio_mk_pmd(folio, vma->vm_page_prot);
5450 	if (write)
5451 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5452 
5453 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5454 	folio_add_file_rmap_pmd(folio, page, vma);
5455 
5456 	/*
5457 	 * deposit and withdraw with pmd lock held
5458 	 */
5459 	if (arch_needs_pgtable_deposit())
5460 		deposit_prealloc_pte(vmf);
5461 
5462 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5463 
5464 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5465 
5466 	/* fault is handled */
5467 	ret = 0;
5468 	count_vm_event(THP_FILE_MAPPED);
5469 out:
5470 	spin_unlock(vmf->ptl);
5471 	return ret;
5472 }
5473 #else
5474 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5475 {
5476 	return VM_FAULT_FALLBACK;
5477 }
5478 #endif
5479 
5480 /**
5481  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5482  * @vmf: Fault description.
5483  * @folio: The folio that contains @page.
5484  * @page: The first page to create a PTE for.
5485  * @nr: The number of PTEs to create.
5486  * @addr: The first address to create a PTE for.
5487  */
5488 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5489 		struct page *page, unsigned int nr, unsigned long addr)
5490 {
5491 	struct vm_area_struct *vma = vmf->vma;
5492 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5493 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5494 	pte_t entry;
5495 
5496 	flush_icache_pages(vma, page, nr);
5497 	entry = mk_pte(page, vma->vm_page_prot);
5498 
5499 	if (prefault && arch_wants_old_prefaulted_pte())
5500 		entry = pte_mkold(entry);
5501 	else
5502 		entry = pte_sw_mkyoung(entry);
5503 
5504 	if (write)
5505 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5506 	else if (pte_write(entry) && folio_test_dirty(folio))
5507 		entry = pte_mkdirty(entry);
5508 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5509 		entry = pte_mkuffd_wp(entry);
5510 	/* copy-on-write page */
5511 	if (write && !(vma->vm_flags & VM_SHARED)) {
5512 		VM_BUG_ON_FOLIO(nr != 1, folio);
5513 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5514 		folio_add_lru_vma(folio, vma);
5515 	} else {
5516 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5517 	}
5518 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5519 
5520 	/* no need to invalidate: a not-present page won't be cached */
5521 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5522 }
5523 
5524 static bool vmf_pte_changed(struct vm_fault *vmf)
5525 {
5526 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5527 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5528 
5529 	return !pte_none(ptep_get(vmf->pte));
5530 }
5531 
5532 /**
5533  * finish_fault - finish page fault once we have prepared the page to fault
5534  *
5535  * @vmf: structure describing the fault
5536  *
5537  * This function handles all that is needed to finish a page fault once the
5538  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5539  * given page, adds reverse page mapping, handles memcg charges and LRU
5540  * addition.
5541  *
5542  * The function expects the page to be locked and on success it consumes a
5543  * reference of a page being mapped (for the PTE which maps it).
5544  *
5545  * Return: %0 on success, %VM_FAULT_ code in case of error.
5546  */
5547 vm_fault_t finish_fault(struct vm_fault *vmf)
5548 {
5549 	struct vm_area_struct *vma = vmf->vma;
5550 	struct page *page;
5551 	struct folio *folio;
5552 	vm_fault_t ret;
5553 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5554 		      !(vma->vm_flags & VM_SHARED);
5555 	int type, nr_pages;
5556 	unsigned long addr;
5557 	bool needs_fallback = false;
5558 
5559 fallback:
5560 	addr = vmf->address;
5561 
5562 	/* Did we COW the page? */
5563 	if (is_cow)
5564 		page = vmf->cow_page;
5565 	else
5566 		page = vmf->page;
5567 
5568 	folio = page_folio(page);
5569 	/*
5570 	 * check even for read faults because we might have lost our CoWed
5571 	 * page
5572 	 */
5573 	if (!(vma->vm_flags & VM_SHARED)) {
5574 		ret = check_stable_address_space(vma->vm_mm);
5575 		if (ret)
5576 			return ret;
5577 	}
5578 
5579 	if (!needs_fallback && vma->vm_file) {
5580 		struct address_space *mapping = vma->vm_file->f_mapping;
5581 		pgoff_t file_end;
5582 
5583 		file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
5584 
5585 		/*
5586 		 * Do not allow to map with PTEs beyond i_size and with PMD
5587 		 * across i_size to preserve SIGBUS semantics.
5588 		 *
5589 		 * Make an exception for shmem/tmpfs that for long time
5590 		 * intentionally mapped with PMDs across i_size.
5591 		 */
5592 		needs_fallback = !shmem_mapping(mapping) &&
5593 			file_end < folio_next_index(folio);
5594 	}
5595 
5596 	if (pmd_none(*vmf->pmd)) {
5597 		if (!needs_fallback && folio_test_pmd_mappable(folio)) {
5598 			ret = do_set_pmd(vmf, folio, page);
5599 			if (ret != VM_FAULT_FALLBACK)
5600 				return ret;
5601 		}
5602 
5603 		if (vmf->prealloc_pte)
5604 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5605 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5606 			return VM_FAULT_OOM;
5607 	}
5608 
5609 	nr_pages = folio_nr_pages(folio);
5610 
5611 	/* Using per-page fault to maintain the uffd semantics */
5612 	if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) {
5613 		nr_pages = 1;
5614 	} else if (nr_pages > 1) {
5615 		pgoff_t idx = folio_page_idx(folio, page);
5616 		/* The page offset of vmf->address within the VMA. */
5617 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5618 		/* The index of the entry in the pagetable for fault page. */
5619 		pgoff_t pte_off = pte_index(vmf->address);
5620 
5621 		/*
5622 		 * Fallback to per-page fault in case the folio size in page
5623 		 * cache beyond the VMA limits and PMD pagetable limits.
5624 		 */
5625 		if (unlikely(vma_off < idx ||
5626 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5627 			    pte_off < idx ||
5628 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5629 			nr_pages = 1;
5630 		} else {
5631 			/* Now we can set mappings for the whole large folio. */
5632 			addr = vmf->address - idx * PAGE_SIZE;
5633 			page = &folio->page;
5634 		}
5635 	}
5636 
5637 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5638 				       addr, &vmf->ptl);
5639 	if (!vmf->pte)
5640 		return VM_FAULT_NOPAGE;
5641 
5642 	/* Re-check under ptl */
5643 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5644 		update_mmu_tlb(vma, addr, vmf->pte);
5645 		ret = VM_FAULT_NOPAGE;
5646 		goto unlock;
5647 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5648 		needs_fallback = true;
5649 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5650 		goto fallback;
5651 	}
5652 
5653 	folio_ref_add(folio, nr_pages - 1);
5654 	set_pte_range(vmf, folio, page, nr_pages, addr);
5655 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5656 	add_mm_counter(vma->vm_mm, type, nr_pages);
5657 	ret = 0;
5658 
5659 unlock:
5660 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5661 	return ret;
5662 }
5663 
5664 static unsigned long fault_around_pages __read_mostly =
5665 	65536 >> PAGE_SHIFT;
5666 
5667 #ifdef CONFIG_DEBUG_FS
5668 static int fault_around_bytes_get(void *data, u64 *val)
5669 {
5670 	*val = fault_around_pages << PAGE_SHIFT;
5671 	return 0;
5672 }
5673 
5674 /*
5675  * fault_around_bytes must be rounded down to the nearest page order as it's
5676  * what do_fault_around() expects to see.
5677  */
5678 static int fault_around_bytes_set(void *data, u64 val)
5679 {
5680 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5681 		return -EINVAL;
5682 
5683 	/*
5684 	 * The minimum value is 1 page, however this results in no fault-around
5685 	 * at all. See should_fault_around().
5686 	 */
5687 	val = max(val, PAGE_SIZE);
5688 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5689 
5690 	return 0;
5691 }
5692 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5693 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5694 
5695 static int __init fault_around_debugfs(void)
5696 {
5697 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5698 				   &fault_around_bytes_fops);
5699 	return 0;
5700 }
5701 late_initcall(fault_around_debugfs);
5702 #endif
5703 
5704 /*
5705  * do_fault_around() tries to map few pages around the fault address. The hope
5706  * is that the pages will be needed soon and this will lower the number of
5707  * faults to handle.
5708  *
5709  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5710  * not ready to be mapped: not up-to-date, locked, etc.
5711  *
5712  * This function doesn't cross VMA or page table boundaries, in order to call
5713  * map_pages() and acquire a PTE lock only once.
5714  *
5715  * fault_around_pages defines how many pages we'll try to map.
5716  * do_fault_around() expects it to be set to a power of two less than or equal
5717  * to PTRS_PER_PTE.
5718  *
5719  * The virtual address of the area that we map is naturally aligned to
5720  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5721  * (and therefore to page order).  This way it's easier to guarantee
5722  * that we don't cross page table boundaries.
5723  */
5724 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5725 {
5726 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5727 	pgoff_t pte_off = pte_index(vmf->address);
5728 	/* The page offset of vmf->address within the VMA. */
5729 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5730 	pgoff_t from_pte, to_pte;
5731 	vm_fault_t ret;
5732 
5733 	/* The PTE offset of the start address, clamped to the VMA. */
5734 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5735 		       pte_off - min(pte_off, vma_off));
5736 
5737 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5738 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5739 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5740 
5741 	if (pmd_none(*vmf->pmd)) {
5742 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5743 		if (!vmf->prealloc_pte)
5744 			return VM_FAULT_OOM;
5745 	}
5746 
5747 	rcu_read_lock();
5748 	ret = vmf->vma->vm_ops->map_pages(vmf,
5749 			vmf->pgoff + from_pte - pte_off,
5750 			vmf->pgoff + to_pte - pte_off);
5751 	rcu_read_unlock();
5752 
5753 	return ret;
5754 }
5755 
5756 /* Return true if we should do read fault-around, false otherwise */
5757 static inline bool should_fault_around(struct vm_fault *vmf)
5758 {
5759 	/* No ->map_pages?  No way to fault around... */
5760 	if (!vmf->vma->vm_ops->map_pages)
5761 		return false;
5762 
5763 	if (uffd_disable_fault_around(vmf->vma))
5764 		return false;
5765 
5766 	/* A single page implies no faulting 'around' at all. */
5767 	return fault_around_pages > 1;
5768 }
5769 
5770 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5771 {
5772 	vm_fault_t ret = 0;
5773 	struct folio *folio;
5774 
5775 	/*
5776 	 * Let's call ->map_pages() first and use ->fault() as fallback
5777 	 * if page by the offset is not ready to be mapped (cold cache or
5778 	 * something).
5779 	 */
5780 	if (should_fault_around(vmf)) {
5781 		ret = do_fault_around(vmf);
5782 		if (ret)
5783 			return ret;
5784 	}
5785 
5786 	ret = vmf_can_call_fault(vmf);
5787 	if (ret)
5788 		return ret;
5789 
5790 	ret = __do_fault(vmf);
5791 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5792 		return ret;
5793 
5794 	ret |= finish_fault(vmf);
5795 	folio = page_folio(vmf->page);
5796 	folio_unlock(folio);
5797 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5798 		folio_put(folio);
5799 	return ret;
5800 }
5801 
5802 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5803 {
5804 	struct vm_area_struct *vma = vmf->vma;
5805 	struct folio *folio;
5806 	vm_fault_t ret;
5807 
5808 	ret = vmf_can_call_fault(vmf);
5809 	if (!ret)
5810 		ret = vmf_anon_prepare(vmf);
5811 	if (ret)
5812 		return ret;
5813 
5814 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5815 	if (!folio)
5816 		return VM_FAULT_OOM;
5817 
5818 	vmf->cow_page = &folio->page;
5819 
5820 	ret = __do_fault(vmf);
5821 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5822 		goto uncharge_out;
5823 	if (ret & VM_FAULT_DONE_COW)
5824 		return ret;
5825 
5826 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5827 		ret = VM_FAULT_HWPOISON;
5828 		goto unlock;
5829 	}
5830 	__folio_mark_uptodate(folio);
5831 
5832 	ret |= finish_fault(vmf);
5833 unlock:
5834 	unlock_page(vmf->page);
5835 	put_page(vmf->page);
5836 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5837 		goto uncharge_out;
5838 	return ret;
5839 uncharge_out:
5840 	folio_put(folio);
5841 	return ret;
5842 }
5843 
5844 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5845 {
5846 	struct vm_area_struct *vma = vmf->vma;
5847 	vm_fault_t ret, tmp;
5848 	struct folio *folio;
5849 
5850 	ret = vmf_can_call_fault(vmf);
5851 	if (ret)
5852 		return ret;
5853 
5854 	ret = __do_fault(vmf);
5855 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5856 		return ret;
5857 
5858 	folio = page_folio(vmf->page);
5859 
5860 	/*
5861 	 * Check if the backing address space wants to know that the page is
5862 	 * about to become writable
5863 	 */
5864 	if (vma->vm_ops->page_mkwrite) {
5865 		folio_unlock(folio);
5866 		tmp = do_page_mkwrite(vmf, folio);
5867 		if (unlikely(!tmp ||
5868 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5869 			folio_put(folio);
5870 			return tmp;
5871 		}
5872 	}
5873 
5874 	ret |= finish_fault(vmf);
5875 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5876 					VM_FAULT_RETRY))) {
5877 		folio_unlock(folio);
5878 		folio_put(folio);
5879 		return ret;
5880 	}
5881 
5882 	ret |= fault_dirty_shared_page(vmf);
5883 	return ret;
5884 }
5885 
5886 /*
5887  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5888  * but allow concurrent faults).
5889  * The mmap_lock may have been released depending on flags and our
5890  * return value.  See filemap_fault() and __folio_lock_or_retry().
5891  * If mmap_lock is released, vma may become invalid (for example
5892  * by other thread calling munmap()).
5893  */
5894 static vm_fault_t do_fault(struct vm_fault *vmf)
5895 {
5896 	struct vm_area_struct *vma = vmf->vma;
5897 	struct mm_struct *vm_mm = vma->vm_mm;
5898 	vm_fault_t ret;
5899 
5900 	/*
5901 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5902 	 */
5903 	if (!vma->vm_ops->fault) {
5904 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5905 					       vmf->address, &vmf->ptl);
5906 		if (unlikely(!vmf->pte))
5907 			ret = VM_FAULT_SIGBUS;
5908 		else {
5909 			/*
5910 			 * Make sure this is not a temporary clearing of pte
5911 			 * by holding ptl and checking again. A R/M/W update
5912 			 * of pte involves: take ptl, clearing the pte so that
5913 			 * we don't have concurrent modification by hardware
5914 			 * followed by an update.
5915 			 */
5916 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5917 				ret = VM_FAULT_SIGBUS;
5918 			else
5919 				ret = VM_FAULT_NOPAGE;
5920 
5921 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5922 		}
5923 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5924 		ret = do_read_fault(vmf);
5925 	else if (!(vma->vm_flags & VM_SHARED))
5926 		ret = do_cow_fault(vmf);
5927 	else
5928 		ret = do_shared_fault(vmf);
5929 
5930 	/* preallocated pagetable is unused: free it */
5931 	if (vmf->prealloc_pte) {
5932 		pte_free(vm_mm, vmf->prealloc_pte);
5933 		vmf->prealloc_pte = NULL;
5934 	}
5935 	return ret;
5936 }
5937 
5938 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5939 		      unsigned long addr, int *flags,
5940 		      bool writable, int *last_cpupid)
5941 {
5942 	struct vm_area_struct *vma = vmf->vma;
5943 
5944 	/*
5945 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5946 	 * much anyway since they can be in shared cache state. This misses
5947 	 * the case where a mapping is writable but the process never writes
5948 	 * to it but pte_write gets cleared during protection updates and
5949 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5950 	 * background writeback, dirty balancing and application behaviour.
5951 	 */
5952 	if (!writable)
5953 		*flags |= TNF_NO_GROUP;
5954 
5955 	/*
5956 	 * Flag if the folio is shared between multiple address spaces. This
5957 	 * is later used when determining whether to group tasks together
5958 	 */
5959 	if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5960 		*flags |= TNF_SHARED;
5961 	/*
5962 	 * For memory tiering mode, cpupid of slow memory page is used
5963 	 * to record page access time.  So use default value.
5964 	 */
5965 	if (folio_use_access_time(folio))
5966 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5967 	else
5968 		*last_cpupid = folio_last_cpupid(folio);
5969 
5970 	/* Record the current PID accessing VMA */
5971 	vma_set_access_pid_bit(vma);
5972 
5973 	count_vm_numa_event(NUMA_HINT_FAULTS);
5974 #ifdef CONFIG_NUMA_BALANCING
5975 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5976 #endif
5977 	if (folio_nid(folio) == numa_node_id()) {
5978 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5979 		*flags |= TNF_FAULT_LOCAL;
5980 	}
5981 
5982 	return mpol_misplaced(folio, vmf, addr);
5983 }
5984 
5985 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5986 					unsigned long fault_addr, pte_t *fault_pte,
5987 					bool writable)
5988 {
5989 	pte_t pte, old_pte;
5990 
5991 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5992 	pte = pte_modify(old_pte, vma->vm_page_prot);
5993 	pte = pte_mkyoung(pte);
5994 	if (writable)
5995 		pte = pte_mkwrite(pte, vma);
5996 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5997 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5998 }
5999 
6000 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
6001 				       struct folio *folio, pte_t fault_pte,
6002 				       bool ignore_writable, bool pte_write_upgrade)
6003 {
6004 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
6005 	unsigned long start, end, addr = vmf->address;
6006 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
6007 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
6008 	pte_t *start_ptep;
6009 
6010 	/* Stay within the VMA and within the page table. */
6011 	start = max3(addr_start, pt_start, vma->vm_start);
6012 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
6013 		   vma->vm_end);
6014 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
6015 
6016 	/* Restore all PTEs' mapping of the large folio */
6017 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
6018 		pte_t ptent = ptep_get(start_ptep);
6019 		bool writable = false;
6020 
6021 		if (!pte_present(ptent) || !pte_protnone(ptent))
6022 			continue;
6023 
6024 		if (pfn_folio(pte_pfn(ptent)) != folio)
6025 			continue;
6026 
6027 		if (!ignore_writable) {
6028 			ptent = pte_modify(ptent, vma->vm_page_prot);
6029 			writable = pte_write(ptent);
6030 			if (!writable && pte_write_upgrade &&
6031 			    can_change_pte_writable(vma, addr, ptent))
6032 				writable = true;
6033 		}
6034 
6035 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
6036 	}
6037 }
6038 
6039 static vm_fault_t do_numa_page(struct vm_fault *vmf)
6040 {
6041 	struct vm_area_struct *vma = vmf->vma;
6042 	struct folio *folio = NULL;
6043 	int nid = NUMA_NO_NODE;
6044 	bool writable = false, ignore_writable = false;
6045 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
6046 	int last_cpupid;
6047 	int target_nid;
6048 	pte_t pte, old_pte;
6049 	int flags = 0, nr_pages;
6050 
6051 	/*
6052 	 * The pte cannot be used safely until we verify, while holding the page
6053 	 * table lock, that its contents have not changed during fault handling.
6054 	 */
6055 	spin_lock(vmf->ptl);
6056 	/* Read the live PTE from the page tables: */
6057 	old_pte = ptep_get(vmf->pte);
6058 
6059 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
6060 		pte_unmap_unlock(vmf->pte, vmf->ptl);
6061 		return 0;
6062 	}
6063 
6064 	pte = pte_modify(old_pte, vma->vm_page_prot);
6065 
6066 	/*
6067 	 * Detect now whether the PTE could be writable; this information
6068 	 * is only valid while holding the PT lock.
6069 	 */
6070 	writable = pte_write(pte);
6071 	if (!writable && pte_write_upgrade &&
6072 	    can_change_pte_writable(vma, vmf->address, pte))
6073 		writable = true;
6074 
6075 	folio = vm_normal_folio(vma, vmf->address, pte);
6076 	if (!folio || folio_is_zone_device(folio))
6077 		goto out_map;
6078 
6079 	nid = folio_nid(folio);
6080 	nr_pages = folio_nr_pages(folio);
6081 
6082 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
6083 					writable, &last_cpupid);
6084 	if (target_nid == NUMA_NO_NODE)
6085 		goto out_map;
6086 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
6087 		flags |= TNF_MIGRATE_FAIL;
6088 		goto out_map;
6089 	}
6090 	/* The folio is isolated and isolation code holds a folio reference. */
6091 	pte_unmap_unlock(vmf->pte, vmf->ptl);
6092 	writable = false;
6093 	ignore_writable = true;
6094 
6095 	/* Migrate to the requested node */
6096 	if (!migrate_misplaced_folio(folio, target_nid)) {
6097 		nid = target_nid;
6098 		flags |= TNF_MIGRATED;
6099 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
6100 		return 0;
6101 	}
6102 
6103 	flags |= TNF_MIGRATE_FAIL;
6104 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
6105 				       vmf->address, &vmf->ptl);
6106 	if (unlikely(!vmf->pte))
6107 		return 0;
6108 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
6109 		pte_unmap_unlock(vmf->pte, vmf->ptl);
6110 		return 0;
6111 	}
6112 out_map:
6113 	/*
6114 	 * Make it present again, depending on how arch implements
6115 	 * non-accessible ptes, some can allow access by kernel mode.
6116 	 */
6117 	if (folio && folio_test_large(folio))
6118 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
6119 					   pte_write_upgrade);
6120 	else
6121 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
6122 					    writable);
6123 	pte_unmap_unlock(vmf->pte, vmf->ptl);
6124 
6125 	if (nid != NUMA_NO_NODE)
6126 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
6127 	return 0;
6128 }
6129 
6130 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
6131 {
6132 	struct vm_area_struct *vma = vmf->vma;
6133 	if (vma_is_anonymous(vma))
6134 		return do_huge_pmd_anonymous_page(vmf);
6135 	if (vma->vm_ops->huge_fault)
6136 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6137 	return VM_FAULT_FALLBACK;
6138 }
6139 
6140 /* `inline' is required to avoid gcc 4.1.2 build error */
6141 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
6142 {
6143 	struct vm_area_struct *vma = vmf->vma;
6144 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6145 	vm_fault_t ret;
6146 
6147 	if (vma_is_anonymous(vma)) {
6148 		if (likely(!unshare) &&
6149 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
6150 			if (userfaultfd_wp_async(vmf->vma))
6151 				goto split;
6152 			return handle_userfault(vmf, VM_UFFD_WP);
6153 		}
6154 		return do_huge_pmd_wp_page(vmf);
6155 	}
6156 
6157 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6158 		if (vma->vm_ops->huge_fault) {
6159 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6160 			if (!(ret & VM_FAULT_FALLBACK))
6161 				return ret;
6162 		}
6163 	}
6164 
6165 split:
6166 	/* COW or write-notify handled on pte level: split pmd. */
6167 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false);
6168 
6169 	return VM_FAULT_FALLBACK;
6170 }
6171 
6172 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
6173 {
6174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
6175 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6176 	struct vm_area_struct *vma = vmf->vma;
6177 	/* No support for anonymous transparent PUD pages yet */
6178 	if (vma_is_anonymous(vma))
6179 		return VM_FAULT_FALLBACK;
6180 	if (vma->vm_ops->huge_fault)
6181 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6182 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
6183 	return VM_FAULT_FALLBACK;
6184 }
6185 
6186 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
6187 {
6188 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
6189 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6190 	struct vm_area_struct *vma = vmf->vma;
6191 	vm_fault_t ret;
6192 
6193 	/* No support for anonymous transparent PUD pages yet */
6194 	if (vma_is_anonymous(vma))
6195 		goto split;
6196 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6197 		if (vma->vm_ops->huge_fault) {
6198 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6199 			if (!(ret & VM_FAULT_FALLBACK))
6200 				return ret;
6201 		}
6202 	}
6203 split:
6204 	/* COW or write-notify not handled on PUD level: split pud.*/
6205 	__split_huge_pud(vma, vmf->pud, vmf->address);
6206 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6207 	return VM_FAULT_FALLBACK;
6208 }
6209 
6210 /*
6211  * The page faults may be spurious because of the racy access to the
6212  * page table.  For example, a non-populated virtual page is accessed
6213  * on 2 CPUs simultaneously, thus the page faults are triggered on
6214  * both CPUs.  However, it's possible that one CPU (say CPU A) cannot
6215  * find the reason for the page fault if the other CPU (say CPU B) has
6216  * changed the page table before the PTE is checked on CPU A.  Most of
6217  * the time, the spurious page faults can be ignored safely.  However,
6218  * if the page fault is for the write access, it's possible that a
6219  * stale read-only TLB entry exists in the local CPU and needs to be
6220  * flushed on some architectures.  This is called the spurious page
6221  * fault fixing.
6222  *
6223  * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page()
6224  * by default and used as such on most architectures, while
6225  * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and
6226  * used as such on most architectures.
6227  */
6228 static void fix_spurious_fault(struct vm_fault *vmf,
6229 			       enum pgtable_level ptlevel)
6230 {
6231 	/* Skip spurious TLB flush for retried page fault */
6232 	if (vmf->flags & FAULT_FLAG_TRIED)
6233 		return;
6234 	/*
6235 	 * This is needed only for protection faults but the arch code
6236 	 * is not yet telling us if this is a protection fault or not.
6237 	 * This still avoids useless tlb flushes for .text page faults
6238 	 * with threads.
6239 	 */
6240 	if (vmf->flags & FAULT_FLAG_WRITE) {
6241 		if (ptlevel == PGTABLE_LEVEL_PTE)
6242 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6243 						     vmf->pte);
6244 		else
6245 			flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address,
6246 							 vmf->pmd);
6247 	}
6248 }
6249 /*
6250  * These routines also need to handle stuff like marking pages dirty
6251  * and/or accessed for architectures that don't do it in hardware (most
6252  * RISC architectures).  The early dirtying is also good on the i386.
6253  *
6254  * There is also a hook called "update_mmu_cache()" that architectures
6255  * with external mmu caches can use to update those (ie the Sparc or
6256  * PowerPC hashed page tables that act as extended TLBs).
6257  *
6258  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6259  * concurrent faults).
6260  *
6261  * The mmap_lock may have been released depending on flags and our return value.
6262  * See filemap_fault() and __folio_lock_or_retry().
6263  */
6264 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6265 {
6266 	pte_t entry;
6267 
6268 	if (unlikely(pmd_none(*vmf->pmd))) {
6269 		/*
6270 		 * Leave __pte_alloc() until later: because vm_ops->fault may
6271 		 * want to allocate huge page, and if we expose page table
6272 		 * for an instant, it will be difficult to retract from
6273 		 * concurrent faults and from rmap lookups.
6274 		 */
6275 		vmf->pte = NULL;
6276 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6277 	} else {
6278 		pmd_t dummy_pmdval;
6279 
6280 		/*
6281 		 * A regular pmd is established and it can't morph into a huge
6282 		 * pmd by anon khugepaged, since that takes mmap_lock in write
6283 		 * mode; but shmem or file collapse to THP could still morph
6284 		 * it into a huge pmd: just retry later if so.
6285 		 *
6286 		 * Use the maywrite version to indicate that vmf->pte may be
6287 		 * modified, but since we will use pte_same() to detect the
6288 		 * change of the !pte_none() entry, there is no need to recheck
6289 		 * the pmdval. Here we choose to pass a dummy variable instead
6290 		 * of NULL, which helps new user think about why this place is
6291 		 * special.
6292 		 */
6293 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6294 						    vmf->address, &dummy_pmdval,
6295 						    &vmf->ptl);
6296 		if (unlikely(!vmf->pte))
6297 			return 0;
6298 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
6299 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6300 
6301 		if (pte_none(vmf->orig_pte)) {
6302 			pte_unmap(vmf->pte);
6303 			vmf->pte = NULL;
6304 		}
6305 	}
6306 
6307 	if (!vmf->pte)
6308 		return do_pte_missing(vmf);
6309 
6310 	if (!pte_present(vmf->orig_pte))
6311 		return do_swap_page(vmf);
6312 
6313 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6314 		return do_numa_page(vmf);
6315 
6316 	spin_lock(vmf->ptl);
6317 	entry = vmf->orig_pte;
6318 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6319 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6320 		goto unlock;
6321 	}
6322 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6323 		if (!pte_write(entry))
6324 			return do_wp_page(vmf);
6325 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6326 			entry = pte_mkdirty(entry);
6327 	}
6328 	entry = pte_mkyoung(entry);
6329 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6330 				vmf->flags & FAULT_FLAG_WRITE))
6331 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6332 				vmf->pte, 1);
6333 	else
6334 		fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE);
6335 unlock:
6336 	pte_unmap_unlock(vmf->pte, vmf->ptl);
6337 	return 0;
6338 }
6339 
6340 /*
6341  * On entry, we hold either the VMA lock or the mmap_lock
6342  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
6343  * the result, the mmap_lock is not held on exit.  See filemap_fault()
6344  * and __folio_lock_or_retry().
6345  */
6346 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6347 		unsigned long address, unsigned int flags)
6348 {
6349 	struct vm_fault vmf = {
6350 		.vma = vma,
6351 		.address = address & PAGE_MASK,
6352 		.real_address = address,
6353 		.flags = flags,
6354 		.pgoff = linear_page_index(vma, address),
6355 		.gfp_mask = __get_fault_gfp_mask(vma),
6356 	};
6357 	struct mm_struct *mm = vma->vm_mm;
6358 	vm_flags_t vm_flags = vma->vm_flags;
6359 	pgd_t *pgd;
6360 	p4d_t *p4d;
6361 	vm_fault_t ret;
6362 
6363 	pgd = pgd_offset(mm, address);
6364 	p4d = p4d_alloc(mm, pgd, address);
6365 	if (!p4d)
6366 		return VM_FAULT_OOM;
6367 
6368 	vmf.pud = pud_alloc(mm, p4d, address);
6369 	if (!vmf.pud)
6370 		return VM_FAULT_OOM;
6371 retry_pud:
6372 	if (pud_none(*vmf.pud) &&
6373 	    thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) {
6374 		ret = create_huge_pud(&vmf);
6375 		if (!(ret & VM_FAULT_FALLBACK))
6376 			return ret;
6377 	} else {
6378 		pud_t orig_pud = *vmf.pud;
6379 
6380 		barrier();
6381 		if (pud_trans_huge(orig_pud)) {
6382 
6383 			/*
6384 			 * TODO once we support anonymous PUDs: NUMA case and
6385 			 * FAULT_FLAG_UNSHARE handling.
6386 			 */
6387 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6388 				ret = wp_huge_pud(&vmf, orig_pud);
6389 				if (!(ret & VM_FAULT_FALLBACK))
6390 					return ret;
6391 			} else {
6392 				huge_pud_set_accessed(&vmf, orig_pud);
6393 				return 0;
6394 			}
6395 		}
6396 	}
6397 
6398 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6399 	if (!vmf.pmd)
6400 		return VM_FAULT_OOM;
6401 
6402 	/* Huge pud page fault raced with pmd_alloc? */
6403 	if (pud_trans_unstable(vmf.pud))
6404 		goto retry_pud;
6405 
6406 	if (pmd_none(*vmf.pmd) &&
6407 	    thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) {
6408 		ret = create_huge_pmd(&vmf);
6409 		if (ret & VM_FAULT_FALLBACK)
6410 			goto fallback;
6411 		else
6412 			return ret;
6413 	}
6414 
6415 	vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6416 	if (pmd_none(vmf.orig_pmd))
6417 		goto fallback;
6418 
6419 	if (unlikely(!pmd_present(vmf.orig_pmd))) {
6420 		if (pmd_is_device_private_entry(vmf.orig_pmd))
6421 			return do_huge_pmd_device_private(&vmf);
6422 
6423 		if (pmd_is_migration_entry(vmf.orig_pmd))
6424 			pmd_migration_entry_wait(mm, vmf.pmd);
6425 		return 0;
6426 	}
6427 	if (pmd_trans_huge(vmf.orig_pmd)) {
6428 		if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6429 			return do_huge_pmd_numa_page(&vmf);
6430 
6431 		if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6432 		    !pmd_write(vmf.orig_pmd)) {
6433 			ret = wp_huge_pmd(&vmf);
6434 			if (!(ret & VM_FAULT_FALLBACK))
6435 				return ret;
6436 		} else {
6437 			vmf.ptl = pmd_lock(mm, vmf.pmd);
6438 			if (!huge_pmd_set_accessed(&vmf))
6439 				fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD);
6440 			spin_unlock(vmf.ptl);
6441 			return 0;
6442 		}
6443 	}
6444 
6445 fallback:
6446 	return handle_pte_fault(&vmf);
6447 }
6448 
6449 /**
6450  * mm_account_fault - Do page fault accounting
6451  * @mm: mm from which memcg should be extracted. It can be NULL.
6452  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
6453  *        of perf event counters, but we'll still do the per-task accounting to
6454  *        the task who triggered this page fault.
6455  * @address: the faulted address.
6456  * @flags: the fault flags.
6457  * @ret: the fault retcode.
6458  *
6459  * This will take care of most of the page fault accounting.  Meanwhile, it
6460  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6461  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6462  * still be in per-arch page fault handlers at the entry of page fault.
6463  */
6464 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6465 				    unsigned long address, unsigned int flags,
6466 				    vm_fault_t ret)
6467 {
6468 	bool major;
6469 
6470 	/* Incomplete faults will be accounted upon completion. */
6471 	if (ret & VM_FAULT_RETRY)
6472 		return;
6473 
6474 	/*
6475 	 * To preserve the behavior of older kernels, PGFAULT counters record
6476 	 * both successful and failed faults, as opposed to perf counters,
6477 	 * which ignore failed cases.
6478 	 */
6479 	count_vm_event(PGFAULT);
6480 	count_memcg_event_mm(mm, PGFAULT);
6481 
6482 	/*
6483 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
6484 	 * valid).  That includes arch_vma_access_permitted() failing before
6485 	 * reaching here. So this is not a "this many hardware page faults"
6486 	 * counter.  We should use the hw profiling for that.
6487 	 */
6488 	if (ret & VM_FAULT_ERROR)
6489 		return;
6490 
6491 	/*
6492 	 * We define the fault as a major fault when the final successful fault
6493 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6494 	 * handle it immediately previously).
6495 	 */
6496 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6497 
6498 	if (major)
6499 		current->maj_flt++;
6500 	else
6501 		current->min_flt++;
6502 
6503 	/*
6504 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6505 	 * accounting for the per thread fault counters who triggered the
6506 	 * fault, and we skip the perf event updates.
6507 	 */
6508 	if (!regs)
6509 		return;
6510 
6511 	if (major)
6512 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6513 	else
6514 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6515 }
6516 
6517 #ifdef CONFIG_LRU_GEN
6518 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6519 {
6520 	/* the LRU algorithm only applies to accesses with recency */
6521 	current->in_lru_fault = vma_has_recency(vma);
6522 }
6523 
6524 static void lru_gen_exit_fault(void)
6525 {
6526 	current->in_lru_fault = false;
6527 }
6528 #else
6529 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6530 {
6531 }
6532 
6533 static void lru_gen_exit_fault(void)
6534 {
6535 }
6536 #endif /* CONFIG_LRU_GEN */
6537 
6538 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6539 				       unsigned int *flags)
6540 {
6541 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6542 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6543 			return VM_FAULT_SIGSEGV;
6544 		/*
6545 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6546 		 * just treat it like an ordinary read-fault otherwise.
6547 		 */
6548 		if (!is_cow_mapping(vma->vm_flags))
6549 			*flags &= ~FAULT_FLAG_UNSHARE;
6550 	} else if (*flags & FAULT_FLAG_WRITE) {
6551 		/* Write faults on read-only mappings are impossible ... */
6552 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6553 			return VM_FAULT_SIGSEGV;
6554 		/* ... and FOLL_FORCE only applies to COW mappings. */
6555 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6556 				 !is_cow_mapping(vma->vm_flags)))
6557 			return VM_FAULT_SIGSEGV;
6558 	}
6559 #ifdef CONFIG_PER_VMA_LOCK
6560 	/*
6561 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6562 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6563 	 */
6564 	if (WARN_ON_ONCE((*flags &
6565 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6566 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6567 		return VM_FAULT_SIGSEGV;
6568 #endif
6569 
6570 	return 0;
6571 }
6572 
6573 /*
6574  * By the time we get here, we already hold either the VMA lock or the
6575  * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6576  *
6577  * The mmap_lock may have been released depending on flags and our
6578  * return value.  See filemap_fault() and __folio_lock_or_retry().
6579  */
6580 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6581 			   unsigned int flags, struct pt_regs *regs)
6582 {
6583 	/* If the fault handler drops the mmap_lock, vma may be freed */
6584 	struct mm_struct *mm = vma->vm_mm;
6585 	vm_fault_t ret;
6586 	bool is_droppable;
6587 
6588 	__set_current_state(TASK_RUNNING);
6589 
6590 	ret = sanitize_fault_flags(vma, &flags);
6591 	if (ret)
6592 		goto out;
6593 
6594 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6595 					    flags & FAULT_FLAG_INSTRUCTION,
6596 					    flags & FAULT_FLAG_REMOTE)) {
6597 		ret = VM_FAULT_SIGSEGV;
6598 		goto out;
6599 	}
6600 
6601 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6602 
6603 	/*
6604 	 * Enable the memcg OOM handling for faults triggered in user
6605 	 * space.  Kernel faults are handled more gracefully.
6606 	 */
6607 	if (flags & FAULT_FLAG_USER)
6608 		mem_cgroup_enter_user_fault();
6609 
6610 	lru_gen_enter_fault(vma);
6611 
6612 	if (unlikely(is_vm_hugetlb_page(vma)))
6613 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6614 	else
6615 		ret = __handle_mm_fault(vma, address, flags);
6616 
6617 	/*
6618 	 * Warning: It is no longer safe to dereference vma-> after this point,
6619 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6620 	 * vma might be destroyed from underneath us.
6621 	 */
6622 
6623 	lru_gen_exit_fault();
6624 
6625 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6626 	if (is_droppable)
6627 		ret &= ~VM_FAULT_OOM;
6628 
6629 	if (flags & FAULT_FLAG_USER) {
6630 		mem_cgroup_exit_user_fault();
6631 		/*
6632 		 * The task may have entered a memcg OOM situation but
6633 		 * if the allocation error was handled gracefully (no
6634 		 * VM_FAULT_OOM), there is no need to kill anything.
6635 		 * Just clean up the OOM state peacefully.
6636 		 */
6637 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6638 			mem_cgroup_oom_synchronize(false);
6639 	}
6640 out:
6641 	mm_account_fault(mm, regs, address, flags, ret);
6642 
6643 	return ret;
6644 }
6645 EXPORT_SYMBOL_GPL(handle_mm_fault);
6646 
6647 #ifndef __PAGETABLE_P4D_FOLDED
6648 /*
6649  * Allocate p4d page table.
6650  * We've already handled the fast-path in-line.
6651  */
6652 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6653 {
6654 	p4d_t *new = p4d_alloc_one(mm, address);
6655 	if (!new)
6656 		return -ENOMEM;
6657 
6658 	spin_lock(&mm->page_table_lock);
6659 	if (pgd_present(*pgd)) {	/* Another has populated it */
6660 		p4d_free(mm, new);
6661 	} else {
6662 		smp_wmb(); /* See comment in pmd_install() */
6663 		pgd_populate(mm, pgd, new);
6664 	}
6665 	spin_unlock(&mm->page_table_lock);
6666 	return 0;
6667 }
6668 #endif /* __PAGETABLE_P4D_FOLDED */
6669 
6670 #ifndef __PAGETABLE_PUD_FOLDED
6671 /*
6672  * Allocate page upper directory.
6673  * We've already handled the fast-path in-line.
6674  */
6675 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6676 {
6677 	pud_t *new = pud_alloc_one(mm, address);
6678 	if (!new)
6679 		return -ENOMEM;
6680 
6681 	spin_lock(&mm->page_table_lock);
6682 	if (!p4d_present(*p4d)) {
6683 		mm_inc_nr_puds(mm);
6684 		smp_wmb(); /* See comment in pmd_install() */
6685 		p4d_populate(mm, p4d, new);
6686 	} else	/* Another has populated it */
6687 		pud_free(mm, new);
6688 	spin_unlock(&mm->page_table_lock);
6689 	return 0;
6690 }
6691 #endif /* __PAGETABLE_PUD_FOLDED */
6692 
6693 #ifndef __PAGETABLE_PMD_FOLDED
6694 /*
6695  * Allocate page middle directory.
6696  * We've already handled the fast-path in-line.
6697  */
6698 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6699 {
6700 	spinlock_t *ptl;
6701 	pmd_t *new = pmd_alloc_one(mm, address);
6702 	if (!new)
6703 		return -ENOMEM;
6704 
6705 	ptl = pud_lock(mm, pud);
6706 	if (!pud_present(*pud)) {
6707 		mm_inc_nr_pmds(mm);
6708 		smp_wmb(); /* See comment in pmd_install() */
6709 		pud_populate(mm, pud, new);
6710 	} else {	/* Another has populated it */
6711 		pmd_free(mm, new);
6712 	}
6713 	spin_unlock(ptl);
6714 	return 0;
6715 }
6716 #endif /* __PAGETABLE_PMD_FOLDED */
6717 
6718 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6719 				     spinlock_t *lock, pte_t *ptep,
6720 				     pgprot_t pgprot, unsigned long pfn_base,
6721 				     unsigned long addr_mask, bool writable,
6722 				     bool special)
6723 {
6724 	args->lock = lock;
6725 	args->ptep = ptep;
6726 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6727 	args->addr_mask = addr_mask;
6728 	args->pgprot = pgprot;
6729 	args->writable = writable;
6730 	args->special = special;
6731 }
6732 
6733 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6734 {
6735 #ifdef CONFIG_LOCKDEP
6736 	struct file *file = vma->vm_file;
6737 	struct address_space *mapping = file ? file->f_mapping : NULL;
6738 
6739 	if (mapping)
6740 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6741 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6742 	else
6743 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6744 #endif
6745 }
6746 
6747 /**
6748  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6749  * @args: Pointer to struct @follow_pfnmap_args
6750  *
6751  * The caller needs to setup args->vma and args->address to point to the
6752  * virtual address as the target of such lookup.  On a successful return,
6753  * the results will be put into other output fields.
6754  *
6755  * After the caller finished using the fields, the caller must invoke
6756  * another follow_pfnmap_end() to proper releases the locks and resources
6757  * of such look up request.
6758  *
6759  * During the start() and end() calls, the results in @args will be valid
6760  * as proper locks will be held.  After the end() is called, all the fields
6761  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6762  * use of such information after end() may require proper synchronizations
6763  * by the caller with page table updates, otherwise it can create a
6764  * security bug.
6765  *
6766  * If the PTE maps a refcounted page, callers are responsible to protect
6767  * against invalidation with MMU notifiers; otherwise access to the PFN at
6768  * a later point in time can trigger use-after-free.
6769  *
6770  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6771  * should be taken for read, and the mmap semaphore cannot be released
6772  * before the end() is invoked.
6773  *
6774  * This function must not be used to modify PTE content.
6775  *
6776  * Return: zero on success, negative otherwise.
6777  */
6778 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6779 {
6780 	struct vm_area_struct *vma = args->vma;
6781 	unsigned long address = args->address;
6782 	struct mm_struct *mm = vma->vm_mm;
6783 	spinlock_t *lock;
6784 	pgd_t *pgdp;
6785 	p4d_t *p4dp, p4d;
6786 	pud_t *pudp, pud;
6787 	pmd_t *pmdp, pmd;
6788 	pte_t *ptep, pte;
6789 
6790 	pfnmap_lockdep_assert(vma);
6791 
6792 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6793 		goto out;
6794 
6795 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6796 		goto out;
6797 retry:
6798 	pgdp = pgd_offset(mm, address);
6799 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6800 		goto out;
6801 
6802 	p4dp = p4d_offset(pgdp, address);
6803 	p4d = p4dp_get(p4dp);
6804 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6805 		goto out;
6806 
6807 	pudp = pud_offset(p4dp, address);
6808 	pud = pudp_get(pudp);
6809 	if (pud_none(pud))
6810 		goto out;
6811 	if (pud_leaf(pud)) {
6812 		lock = pud_lock(mm, pudp);
6813 		if (!unlikely(pud_leaf(pud))) {
6814 			spin_unlock(lock);
6815 			goto retry;
6816 		}
6817 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6818 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6819 				  pud_special(pud));
6820 		return 0;
6821 	}
6822 
6823 	pmdp = pmd_offset(pudp, address);
6824 	pmd = pmdp_get_lockless(pmdp);
6825 	if (pmd_leaf(pmd)) {
6826 		lock = pmd_lock(mm, pmdp);
6827 		if (!unlikely(pmd_leaf(pmd))) {
6828 			spin_unlock(lock);
6829 			goto retry;
6830 		}
6831 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6832 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6833 				  pmd_special(pmd));
6834 		return 0;
6835 	}
6836 
6837 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6838 	if (!ptep)
6839 		goto out;
6840 	pte = ptep_get(ptep);
6841 	if (!pte_present(pte))
6842 		goto unlock;
6843 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6844 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6845 			  pte_special(pte));
6846 	return 0;
6847 unlock:
6848 	pte_unmap_unlock(ptep, lock);
6849 out:
6850 	return -EINVAL;
6851 }
6852 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6853 
6854 /**
6855  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6856  * @args: Pointer to struct @follow_pfnmap_args
6857  *
6858  * Must be used in pair of follow_pfnmap_start().  See the start() function
6859  * above for more information.
6860  */
6861 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6862 {
6863 	if (args->lock)
6864 		spin_unlock(args->lock);
6865 	if (args->ptep)
6866 		pte_unmap(args->ptep);
6867 }
6868 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6869 
6870 #ifdef CONFIG_HAVE_IOREMAP_PROT
6871 /**
6872  * generic_access_phys - generic implementation for iomem mmap access
6873  * @vma: the vma to access
6874  * @addr: userspace address, not relative offset within @vma
6875  * @buf: buffer to read/write
6876  * @len: length of transfer
6877  * @write: set to FOLL_WRITE when writing, otherwise reading
6878  *
6879  * This is a generic implementation for &vm_operations_struct.access for an
6880  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6881  * not page based.
6882  */
6883 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6884 			void *buf, int len, int write)
6885 {
6886 	resource_size_t phys_addr;
6887 	pgprot_t prot = __pgprot(0);
6888 	void __iomem *maddr;
6889 	int offset = offset_in_page(addr);
6890 	int ret = -EINVAL;
6891 	bool writable;
6892 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6893 
6894 retry:
6895 	if (follow_pfnmap_start(&args))
6896 		return -EINVAL;
6897 	prot = args.pgprot;
6898 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6899 	writable = args.writable;
6900 	follow_pfnmap_end(&args);
6901 
6902 	if ((write & FOLL_WRITE) && !writable)
6903 		return -EINVAL;
6904 
6905 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6906 	if (!maddr)
6907 		return -ENOMEM;
6908 
6909 	if (follow_pfnmap_start(&args))
6910 		goto out_unmap;
6911 
6912 	if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6913 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6914 	    (writable != args.writable)) {
6915 		follow_pfnmap_end(&args);
6916 		iounmap(maddr);
6917 		goto retry;
6918 	}
6919 
6920 	if (write)
6921 		memcpy_toio(maddr + offset, buf, len);
6922 	else
6923 		memcpy_fromio(buf, maddr + offset, len);
6924 	ret = len;
6925 	follow_pfnmap_end(&args);
6926 out_unmap:
6927 	iounmap(maddr);
6928 
6929 	return ret;
6930 }
6931 EXPORT_SYMBOL_GPL(generic_access_phys);
6932 #endif
6933 
6934 /*
6935  * Access another process' address space as given in mm.
6936  */
6937 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6938 			      void *buf, int len, unsigned int gup_flags)
6939 {
6940 	void *old_buf = buf;
6941 	int write = gup_flags & FOLL_WRITE;
6942 
6943 	if (mmap_read_lock_killable(mm))
6944 		return 0;
6945 
6946 	/* Untag the address before looking up the VMA */
6947 	addr = untagged_addr_remote(mm, addr);
6948 
6949 	/* Avoid triggering the temporary warning in __get_user_pages */
6950 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6951 		return 0;
6952 
6953 	/* ignore errors, just check how much was successfully transferred */
6954 	while (len) {
6955 		int bytes, offset;
6956 		void *maddr;
6957 		struct folio *folio;
6958 		struct vm_area_struct *vma = NULL;
6959 		struct page *page = get_user_page_vma_remote(mm, addr,
6960 							     gup_flags, &vma);
6961 
6962 		if (IS_ERR(page)) {
6963 			/* We might need to expand the stack to access it */
6964 			vma = vma_lookup(mm, addr);
6965 			if (!vma) {
6966 				vma = expand_stack(mm, addr);
6967 
6968 				/* mmap_lock was dropped on failure */
6969 				if (!vma)
6970 					return buf - old_buf;
6971 
6972 				/* Try again if stack expansion worked */
6973 				continue;
6974 			}
6975 
6976 			/*
6977 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6978 			 * we can access using slightly different code.
6979 			 */
6980 			bytes = 0;
6981 #ifdef CONFIG_HAVE_IOREMAP_PROT
6982 			if (vma->vm_ops && vma->vm_ops->access)
6983 				bytes = vma->vm_ops->access(vma, addr, buf,
6984 							    len, write);
6985 #endif
6986 			if (bytes <= 0)
6987 				break;
6988 		} else {
6989 			folio = page_folio(page);
6990 			bytes = len;
6991 			offset = addr & (PAGE_SIZE-1);
6992 			if (bytes > PAGE_SIZE-offset)
6993 				bytes = PAGE_SIZE-offset;
6994 
6995 			maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
6996 			if (write) {
6997 				copy_to_user_page(vma, page, addr,
6998 						  maddr + offset, buf, bytes);
6999 				folio_mark_dirty_lock(folio);
7000 			} else {
7001 				copy_from_user_page(vma, page, addr,
7002 						    buf, maddr + offset, bytes);
7003 			}
7004 			folio_release_kmap(folio, maddr);
7005 		}
7006 		len -= bytes;
7007 		buf += bytes;
7008 		addr += bytes;
7009 	}
7010 	mmap_read_unlock(mm);
7011 
7012 	return buf - old_buf;
7013 }
7014 
7015 /**
7016  * access_remote_vm - access another process' address space
7017  * @mm:		the mm_struct of the target address space
7018  * @addr:	start address to access
7019  * @buf:	source or destination buffer
7020  * @len:	number of bytes to transfer
7021  * @gup_flags:	flags modifying lookup behaviour
7022  *
7023  * The caller must hold a reference on @mm.
7024  *
7025  * Return: number of bytes copied from source to destination.
7026  */
7027 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
7028 		void *buf, int len, unsigned int gup_flags)
7029 {
7030 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
7031 }
7032 
7033 /*
7034  * Access another process' address space.
7035  * Source/target buffer must be kernel space,
7036  * Do not walk the page table directly, use get_user_pages
7037  */
7038 int access_process_vm(struct task_struct *tsk, unsigned long addr,
7039 		void *buf, int len, unsigned int gup_flags)
7040 {
7041 	struct mm_struct *mm;
7042 	int ret;
7043 
7044 	mm = get_task_mm(tsk);
7045 	if (!mm)
7046 		return 0;
7047 
7048 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
7049 
7050 	mmput(mm);
7051 
7052 	return ret;
7053 }
7054 EXPORT_SYMBOL_GPL(access_process_vm);
7055 
7056 #ifdef CONFIG_BPF_SYSCALL
7057 /*
7058  * Copy a string from another process's address space as given in mm.
7059  * If there is any error return -EFAULT.
7060  */
7061 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
7062 				void *buf, int len, unsigned int gup_flags)
7063 {
7064 	void *old_buf = buf;
7065 	int err = 0;
7066 
7067 	*(char *)buf = '\0';
7068 
7069 	if (mmap_read_lock_killable(mm))
7070 		return -EFAULT;
7071 
7072 	addr = untagged_addr_remote(mm, addr);
7073 
7074 	/* Avoid triggering the temporary warning in __get_user_pages */
7075 	if (!vma_lookup(mm, addr)) {
7076 		err = -EFAULT;
7077 		goto out;
7078 	}
7079 
7080 	while (len) {
7081 		int bytes, offset, retval;
7082 		void *maddr;
7083 		struct folio *folio;
7084 		struct page *page;
7085 		struct vm_area_struct *vma = NULL;
7086 
7087 		page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
7088 		if (IS_ERR(page)) {
7089 			/*
7090 			 * Treat as a total failure for now until we decide how
7091 			 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
7092 			 * stack expansion.
7093 			 */
7094 			*(char *)buf = '\0';
7095 			err = -EFAULT;
7096 			goto out;
7097 		}
7098 
7099 		folio = page_folio(page);
7100 		bytes = len;
7101 		offset = addr & (PAGE_SIZE - 1);
7102 		if (bytes > PAGE_SIZE - offset)
7103 			bytes = PAGE_SIZE - offset;
7104 
7105 		maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
7106 		retval = strscpy(buf, maddr + offset, bytes);
7107 		if (retval >= 0) {
7108 			/* Found the end of the string */
7109 			buf += retval;
7110 			folio_release_kmap(folio, maddr);
7111 			break;
7112 		}
7113 
7114 		buf += bytes - 1;
7115 		/*
7116 		 * Because strscpy always NUL terminates we need to
7117 		 * copy the last byte in the page if we are going to
7118 		 * load more pages
7119 		 */
7120 		if (bytes != len) {
7121 			addr += bytes - 1;
7122 			copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
7123 			buf += 1;
7124 			addr += 1;
7125 		}
7126 		len -= bytes;
7127 
7128 		folio_release_kmap(folio, maddr);
7129 	}
7130 
7131 out:
7132 	mmap_read_unlock(mm);
7133 	if (err)
7134 		return err;
7135 	return buf - old_buf;
7136 }
7137 
7138 /**
7139  * copy_remote_vm_str - copy a string from another process's address space.
7140  * @tsk:	the task of the target address space
7141  * @addr:	start address to read from
7142  * @buf:	destination buffer
7143  * @len:	number of bytes to copy
7144  * @gup_flags:	flags modifying lookup behaviour
7145  *
7146  * The caller must hold a reference on @mm.
7147  *
7148  * Return: number of bytes copied from @addr (source) to @buf (destination);
7149  * not including the trailing NUL. Always guaranteed to leave NUL-terminated
7150  * buffer. On any error, return -EFAULT.
7151  */
7152 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
7153 		       void *buf, int len, unsigned int gup_flags)
7154 {
7155 	struct mm_struct *mm;
7156 	int ret;
7157 
7158 	if (unlikely(len == 0))
7159 		return 0;
7160 
7161 	mm = get_task_mm(tsk);
7162 	if (!mm) {
7163 		*(char *)buf = '\0';
7164 		return -EFAULT;
7165 	}
7166 
7167 	ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
7168 
7169 	mmput(mm);
7170 
7171 	return ret;
7172 }
7173 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
7174 #endif /* CONFIG_BPF_SYSCALL */
7175 
7176 /*
7177  * Print the name of a VMA.
7178  */
7179 void print_vma_addr(char *prefix, unsigned long ip)
7180 {
7181 	struct mm_struct *mm = current->mm;
7182 	struct vm_area_struct *vma;
7183 
7184 	/*
7185 	 * we might be running from an atomic context so we cannot sleep
7186 	 */
7187 	if (!mmap_read_trylock(mm))
7188 		return;
7189 
7190 	vma = vma_lookup(mm, ip);
7191 	if (vma && vma->vm_file) {
7192 		struct file *f = vma->vm_file;
7193 		ip -= vma->vm_start;
7194 		ip += vma->vm_pgoff << PAGE_SHIFT;
7195 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
7196 				vma->vm_start,
7197 				vma->vm_end - vma->vm_start);
7198 	}
7199 	mmap_read_unlock(mm);
7200 }
7201 
7202 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
7203 void __might_fault(const char *file, int line)
7204 {
7205 	if (pagefault_disabled())
7206 		return;
7207 	__might_sleep(file, line);
7208 	if (current->mm)
7209 		might_lock_read(&current->mm->mmap_lock);
7210 }
7211 EXPORT_SYMBOL(__might_fault);
7212 #endif
7213 
7214 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
7215 /*
7216  * Process all subpages of the specified huge page with the specified
7217  * operation.  The target subpage will be processed last to keep its
7218  * cache lines hot.
7219  */
7220 static inline int process_huge_page(
7221 	unsigned long addr_hint, unsigned int nr_pages,
7222 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
7223 	void *arg)
7224 {
7225 	int i, n, base, l, ret;
7226 	unsigned long addr = addr_hint &
7227 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
7228 
7229 	/* Process target subpage last to keep its cache lines hot */
7230 	might_sleep();
7231 	n = (addr_hint - addr) / PAGE_SIZE;
7232 	if (2 * n <= nr_pages) {
7233 		/* If target subpage in first half of huge page */
7234 		base = 0;
7235 		l = n;
7236 		/* Process subpages at the end of huge page */
7237 		for (i = nr_pages - 1; i >= 2 * n; i--) {
7238 			cond_resched();
7239 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7240 			if (ret)
7241 				return ret;
7242 		}
7243 	} else {
7244 		/* If target subpage in second half of huge page */
7245 		base = nr_pages - 2 * (nr_pages - n);
7246 		l = nr_pages - n;
7247 		/* Process subpages at the begin of huge page */
7248 		for (i = 0; i < base; i++) {
7249 			cond_resched();
7250 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7251 			if (ret)
7252 				return ret;
7253 		}
7254 	}
7255 	/*
7256 	 * Process remaining subpages in left-right-left-right pattern
7257 	 * towards the target subpage
7258 	 */
7259 	for (i = 0; i < l; i++) {
7260 		int left_idx = base + i;
7261 		int right_idx = base + 2 * l - 1 - i;
7262 
7263 		cond_resched();
7264 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7265 		if (ret)
7266 			return ret;
7267 		cond_resched();
7268 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7269 		if (ret)
7270 			return ret;
7271 	}
7272 	return 0;
7273 }
7274 
7275 static void clear_contig_highpages(struct page *page, unsigned long addr,
7276 				   unsigned int nr_pages)
7277 {
7278 	unsigned int i, count;
7279 	/*
7280 	 * When clearing we want to operate on the largest extent possible to
7281 	 * allow for architecture specific extent based optimizations.
7282 	 *
7283 	 * However, since clear_user_highpages() (and primitives clear_user_pages(),
7284 	 * clear_pages()), do not call cond_resched(), limit the unit size when
7285 	 * running under non-preemptible scheduling models.
7286 	 */
7287 	const unsigned int unit = preempt_model_preemptible() ?
7288 				   nr_pages : PROCESS_PAGES_NON_PREEMPT_BATCH;
7289 
7290 	might_sleep();
7291 
7292 	for (i = 0; i < nr_pages; i += count) {
7293 		cond_resched();
7294 
7295 		count = min(unit, nr_pages - i);
7296 		clear_user_highpages(page + i, addr + i * PAGE_SIZE, count);
7297 	}
7298 }
7299 
7300 /*
7301  * When zeroing a folio, we want to differentiate between pages in the
7302  * vicinity of the faulting address where we have spatial and temporal
7303  * locality, and those far away where we don't.
7304  *
7305  * Use a radius of 2 for determining the local neighbourhood.
7306  */
7307 #define FOLIO_ZERO_LOCALITY_RADIUS	2
7308 
7309 /**
7310  * folio_zero_user - Zero a folio which will be mapped to userspace.
7311  * @folio: The folio to zero.
7312  * @addr_hint: The address accessed by the user or the base address.
7313  */
7314 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7315 {
7316 	const unsigned long base_addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7317 	const long fault_idx = (addr_hint - base_addr) / PAGE_SIZE;
7318 	const struct range pg = DEFINE_RANGE(0, folio_nr_pages(folio) - 1);
7319 	const int radius = FOLIO_ZERO_LOCALITY_RADIUS;
7320 	struct range r[3];
7321 	int i;
7322 
7323 	/*
7324 	 * Faulting page and its immediate neighbourhood. Will be cleared at the
7325 	 * end to keep its cachelines hot.
7326 	 */
7327 	r[2] = DEFINE_RANGE(clamp_t(s64, fault_idx - radius, pg.start, pg.end),
7328 			    clamp_t(s64, fault_idx + radius, pg.start, pg.end));
7329 
7330 	/* Region to the left of the fault */
7331 	r[1] = DEFINE_RANGE(pg.start,
7332 			    clamp_t(s64, r[2].start - 1, pg.start - 1, r[2].start));
7333 
7334 	/* Region to the right of the fault: always valid for the common fault_idx=0 case. */
7335 	r[0] = DEFINE_RANGE(clamp_t(s64, r[2].end + 1, r[2].end, pg.end + 1),
7336 			    pg.end);
7337 
7338 	for (i = 0; i < ARRAY_SIZE(r); i++) {
7339 		const unsigned long addr = base_addr + r[i].start * PAGE_SIZE;
7340 		const unsigned int nr_pages = range_len(&r[i]);
7341 		struct page *page = folio_page(folio, r[i].start);
7342 
7343 		if (nr_pages > 0)
7344 			clear_contig_highpages(page, addr, nr_pages);
7345 	}
7346 }
7347 
7348 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7349 				   unsigned long addr_hint,
7350 				   struct vm_area_struct *vma,
7351 				   unsigned int nr_pages)
7352 {
7353 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7354 	struct page *dst_page;
7355 	struct page *src_page;
7356 	int i;
7357 
7358 	for (i = 0; i < nr_pages; i++) {
7359 		dst_page = folio_page(dst, i);
7360 		src_page = folio_page(src, i);
7361 
7362 		cond_resched();
7363 		if (copy_mc_user_highpage(dst_page, src_page,
7364 					  addr + i*PAGE_SIZE, vma))
7365 			return -EHWPOISON;
7366 	}
7367 	return 0;
7368 }
7369 
7370 struct copy_subpage_arg {
7371 	struct folio *dst;
7372 	struct folio *src;
7373 	struct vm_area_struct *vma;
7374 };
7375 
7376 static int copy_subpage(unsigned long addr, int idx, void *arg)
7377 {
7378 	struct copy_subpage_arg *copy_arg = arg;
7379 	struct page *dst = folio_page(copy_arg->dst, idx);
7380 	struct page *src = folio_page(copy_arg->src, idx);
7381 
7382 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7383 		return -EHWPOISON;
7384 	return 0;
7385 }
7386 
7387 int copy_user_large_folio(struct folio *dst, struct folio *src,
7388 			  unsigned long addr_hint, struct vm_area_struct *vma)
7389 {
7390 	unsigned int nr_pages = folio_nr_pages(dst);
7391 	struct copy_subpage_arg arg = {
7392 		.dst = dst,
7393 		.src = src,
7394 		.vma = vma,
7395 	};
7396 
7397 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7398 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7399 
7400 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7401 }
7402 
7403 long copy_folio_from_user(struct folio *dst_folio,
7404 			   const void __user *usr_src,
7405 			   bool allow_pagefault)
7406 {
7407 	void *kaddr;
7408 	unsigned long i, rc = 0;
7409 	unsigned int nr_pages = folio_nr_pages(dst_folio);
7410 	unsigned long ret_val = nr_pages * PAGE_SIZE;
7411 	struct page *subpage;
7412 
7413 	for (i = 0; i < nr_pages; i++) {
7414 		subpage = folio_page(dst_folio, i);
7415 		kaddr = kmap_local_page(subpage);
7416 		if (!allow_pagefault)
7417 			pagefault_disable();
7418 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7419 		if (!allow_pagefault)
7420 			pagefault_enable();
7421 		kunmap_local(kaddr);
7422 
7423 		ret_val -= (PAGE_SIZE - rc);
7424 		if (rc)
7425 			break;
7426 
7427 		flush_dcache_page(subpage);
7428 
7429 		cond_resched();
7430 	}
7431 	return ret_val;
7432 }
7433 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7434 
7435 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7436 
7437 static struct kmem_cache *page_ptl_cachep;
7438 
7439 void __init ptlock_cache_init(void)
7440 {
7441 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7442 			SLAB_PANIC, NULL);
7443 }
7444 
7445 bool ptlock_alloc(struct ptdesc *ptdesc)
7446 {
7447 	spinlock_t *ptl;
7448 
7449 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7450 	if (!ptl)
7451 		return false;
7452 	ptdesc->ptl = ptl;
7453 	return true;
7454 }
7455 
7456 void ptlock_free(struct ptdesc *ptdesc)
7457 {
7458 	if (ptdesc->ptl)
7459 		kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7460 }
7461 #endif
7462 
7463 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7464 {
7465 	if (is_vm_hugetlb_page(vma))
7466 		hugetlb_vma_lock_read(vma);
7467 }
7468 
7469 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7470 {
7471 	if (is_vm_hugetlb_page(vma))
7472 		hugetlb_vma_unlock_read(vma);
7473 }
7474