xref: /linux/arch/s390/kvm/kvm-s390.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * hosting IBM Z kernel virtual machines (s390x)
4  *
5  * Copyright IBM Corp. 2008, 2020
6  *
7  *    Author(s): Carsten Otte <cotte@de.ibm.com>
8  *               Christian Borntraeger <borntraeger@de.ibm.com>
9  *               Christian Ehrhardt <ehrhardt@de.ibm.com>
10  *               Jason J. Herne <jjherne@us.ibm.com>
11  */
12 
13 #define pr_fmt(fmt) "kvm-s390: " fmt
14 
15 #include <linux/compiler.h>
16 #include <linux/entry-virt.h>
17 #include <linux/export.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/cpufeature.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/vmalloc.h>
32 #include <linux/bitmap.h>
33 #include <linux/sched/signal.h>
34 #include <linux/string.h>
35 #include <linux/pgtable.h>
36 #include <linux/mmu_notifier.h>
37 
38 #include <asm/access-regs.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/lowcore.h>
41 #include <asm/machine.h>
42 #include <asm/stp.h>
43 #include <asm/gmap.h>
44 #include <asm/gmap_helpers.h>
45 #include <asm/nmi.h>
46 #include <asm/isc.h>
47 #include <asm/sclp.h>
48 #include <asm/cpacf.h>
49 #include <asm/timex.h>
50 #include <asm/asm.h>
51 #include <asm/fpu.h>
52 #include <asm/ap.h>
53 #include <asm/uv.h>
54 #include "kvm-s390.h"
55 #include "gaccess.h"
56 #include "pci.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 #include "trace-s390.h"
61 
62 #define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
63 #define LOCAL_IRQS 32
64 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
65 			   (KVM_MAX_VCPUS + LOCAL_IRQS))
66 
67 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
68 	KVM_GENERIC_VM_STATS(),
69 	STATS_DESC_COUNTER(VM, inject_io),
70 	STATS_DESC_COUNTER(VM, inject_float_mchk),
71 	STATS_DESC_COUNTER(VM, inject_pfault_done),
72 	STATS_DESC_COUNTER(VM, inject_service_signal),
73 	STATS_DESC_COUNTER(VM, inject_virtio),
74 	STATS_DESC_COUNTER(VM, aen_forward),
75 	STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
76 	STATS_DESC_COUNTER(VM, gmap_shadow_create),
77 	STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
78 	STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
79 	STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
80 	STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
81 	STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
82 };
83 
84 const struct kvm_stats_header kvm_vm_stats_header = {
85 	.name_size = KVM_STATS_NAME_SIZE,
86 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
87 	.id_offset = sizeof(struct kvm_stats_header),
88 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
89 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
90 		       sizeof(kvm_vm_stats_desc),
91 };
92 
93 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
94 	KVM_GENERIC_VCPU_STATS(),
95 	STATS_DESC_COUNTER(VCPU, exit_userspace),
96 	STATS_DESC_COUNTER(VCPU, exit_null),
97 	STATS_DESC_COUNTER(VCPU, exit_external_request),
98 	STATS_DESC_COUNTER(VCPU, exit_io_request),
99 	STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
100 	STATS_DESC_COUNTER(VCPU, exit_stop_request),
101 	STATS_DESC_COUNTER(VCPU, exit_validity),
102 	STATS_DESC_COUNTER(VCPU, exit_instruction),
103 	STATS_DESC_COUNTER(VCPU, exit_pei),
104 	STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
105 	STATS_DESC_COUNTER(VCPU, instruction_lctl),
106 	STATS_DESC_COUNTER(VCPU, instruction_lctlg),
107 	STATS_DESC_COUNTER(VCPU, instruction_stctl),
108 	STATS_DESC_COUNTER(VCPU, instruction_stctg),
109 	STATS_DESC_COUNTER(VCPU, exit_program_interruption),
110 	STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
111 	STATS_DESC_COUNTER(VCPU, exit_operation_exception),
112 	STATS_DESC_COUNTER(VCPU, deliver_ckc),
113 	STATS_DESC_COUNTER(VCPU, deliver_cputm),
114 	STATS_DESC_COUNTER(VCPU, deliver_external_call),
115 	STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
116 	STATS_DESC_COUNTER(VCPU, deliver_service_signal),
117 	STATS_DESC_COUNTER(VCPU, deliver_virtio),
118 	STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
119 	STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
120 	STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
121 	STATS_DESC_COUNTER(VCPU, deliver_program),
122 	STATS_DESC_COUNTER(VCPU, deliver_io),
123 	STATS_DESC_COUNTER(VCPU, deliver_machine_check),
124 	STATS_DESC_COUNTER(VCPU, exit_wait_state),
125 	STATS_DESC_COUNTER(VCPU, inject_ckc),
126 	STATS_DESC_COUNTER(VCPU, inject_cputm),
127 	STATS_DESC_COUNTER(VCPU, inject_external_call),
128 	STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
129 	STATS_DESC_COUNTER(VCPU, inject_mchk),
130 	STATS_DESC_COUNTER(VCPU, inject_pfault_init),
131 	STATS_DESC_COUNTER(VCPU, inject_program),
132 	STATS_DESC_COUNTER(VCPU, inject_restart),
133 	STATS_DESC_COUNTER(VCPU, inject_set_prefix),
134 	STATS_DESC_COUNTER(VCPU, inject_stop_signal),
135 	STATS_DESC_COUNTER(VCPU, instruction_epsw),
136 	STATS_DESC_COUNTER(VCPU, instruction_gs),
137 	STATS_DESC_COUNTER(VCPU, instruction_io_other),
138 	STATS_DESC_COUNTER(VCPU, instruction_lpsw),
139 	STATS_DESC_COUNTER(VCPU, instruction_lpswe),
140 	STATS_DESC_COUNTER(VCPU, instruction_lpswey),
141 	STATS_DESC_COUNTER(VCPU, instruction_pfmf),
142 	STATS_DESC_COUNTER(VCPU, instruction_ptff),
143 	STATS_DESC_COUNTER(VCPU, instruction_sck),
144 	STATS_DESC_COUNTER(VCPU, instruction_sckpf),
145 	STATS_DESC_COUNTER(VCPU, instruction_stidp),
146 	STATS_DESC_COUNTER(VCPU, instruction_spx),
147 	STATS_DESC_COUNTER(VCPU, instruction_stpx),
148 	STATS_DESC_COUNTER(VCPU, instruction_stap),
149 	STATS_DESC_COUNTER(VCPU, instruction_iske),
150 	STATS_DESC_COUNTER(VCPU, instruction_ri),
151 	STATS_DESC_COUNTER(VCPU, instruction_rrbe),
152 	STATS_DESC_COUNTER(VCPU, instruction_sske),
153 	STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
154 	STATS_DESC_COUNTER(VCPU, instruction_stsi),
155 	STATS_DESC_COUNTER(VCPU, instruction_stfl),
156 	STATS_DESC_COUNTER(VCPU, instruction_tb),
157 	STATS_DESC_COUNTER(VCPU, instruction_tpi),
158 	STATS_DESC_COUNTER(VCPU, instruction_tprot),
159 	STATS_DESC_COUNTER(VCPU, instruction_tsch),
160 	STATS_DESC_COUNTER(VCPU, instruction_sie),
161 	STATS_DESC_COUNTER(VCPU, instruction_essa),
162 	STATS_DESC_COUNTER(VCPU, instruction_sthyi),
163 	STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
164 	STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
165 	STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
166 	STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
167 	STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
168 	STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
169 	STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
170 	STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
171 	STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
172 	STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
173 	STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
174 	STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
175 	STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
176 	STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
177 	STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
178 	STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
179 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
180 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
181 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
182 	STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
183 	STATS_DESC_COUNTER(VCPU, diag_9c_forward),
184 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
185 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
186 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
187 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
188 	STATS_DESC_COUNTER(VCPU, pfault_sync),
189 	STATS_DESC_COUNTER(VCPU, signal_exits)
190 };
191 
192 const struct kvm_stats_header kvm_vcpu_stats_header = {
193 	.name_size = KVM_STATS_NAME_SIZE,
194 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
195 	.id_offset = sizeof(struct kvm_stats_header),
196 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
197 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
198 		       sizeof(kvm_vcpu_stats_desc),
199 };
200 
201 /* allow nested virtualization in KVM (if enabled by user space) */
202 static int nested;
203 module_param(nested, int, S_IRUGO);
204 MODULE_PARM_DESC(nested, "Nested virtualization support");
205 
206 /* allow 1m huge page guest backing, if !nested */
207 static int hpage;
208 module_param(hpage, int, 0444);
209 MODULE_PARM_DESC(hpage, "1m huge page backing support");
210 
211 /* maximum percentage of steal time for polling.  >100 is treated like 100 */
212 static u8 halt_poll_max_steal = 10;
213 module_param(halt_poll_max_steal, byte, 0644);
214 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
215 
216 /* if set to true, the GISA will be initialized and used if available */
217 static bool use_gisa  = true;
218 module_param(use_gisa, bool, 0644);
219 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
220 
221 /* maximum diag9c forwarding per second */
222 unsigned int diag9c_forwarding_hz;
223 module_param(diag9c_forwarding_hz, uint, 0644);
224 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
225 
226 /*
227  * allow asynchronous deinit for protected guests; enable by default since
228  * the feature is opt-in anyway
229  */
230 static int async_destroy = 1;
231 module_param(async_destroy, int, 0444);
232 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
233 
234 /*
235  * For now we handle at most 16 double words as this is what the s390 base
236  * kernel handles and stores in the prefix page. If we ever need to go beyond
237  * this, this requires changes to code, but the external uapi can stay.
238  */
239 #define SIZE_INTERNAL 16
240 
241 /*
242  * Base feature mask that defines default mask for facilities. Consists of the
243  * defines in FACILITIES_KVM and the non-hypervisor managed bits.
244  */
245 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
246 /*
247  * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
248  * and defines the facilities that can be enabled via a cpu model.
249  */
250 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
251 
kvm_s390_fac_size(void)252 static unsigned long kvm_s390_fac_size(void)
253 {
254 	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
255 	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
256 	BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
257 		sizeof(stfle_fac_list));
258 
259 	return SIZE_INTERNAL;
260 }
261 
262 /* available cpu features supported by kvm */
263 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
264 /* available subfunctions indicated via query / "test bit" */
265 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
266 
267 static struct gmap_notifier gmap_notifier;
268 static struct gmap_notifier vsie_gmap_notifier;
269 debug_info_t *kvm_s390_dbf;
270 debug_info_t *kvm_s390_dbf_uv;
271 
272 /* Section: not file related */
273 /* forward declarations */
274 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
275 			      unsigned long end);
276 
kvm_clock_sync_scb(struct kvm_s390_sie_block * scb,u64 delta)277 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
278 {
279 	u8 delta_idx = 0;
280 
281 	/*
282 	 * The TOD jumps by delta, we have to compensate this by adding
283 	 * -delta to the epoch.
284 	 */
285 	delta = -delta;
286 
287 	/* sign-extension - we're adding to signed values below */
288 	if ((s64)delta < 0)
289 		delta_idx = -1;
290 
291 	scb->epoch += delta;
292 	if (scb->ecd & ECD_MEF) {
293 		scb->epdx += delta_idx;
294 		if (scb->epoch < delta)
295 			scb->epdx += 1;
296 	}
297 }
298 
299 /*
300  * This callback is executed during stop_machine(). All CPUs are therefore
301  * temporarily stopped. In order not to change guest behavior, we have to
302  * disable preemption whenever we touch the epoch of kvm and the VCPUs,
303  * so a CPU won't be stopped while calculating with the epoch.
304  */
kvm_clock_sync(struct notifier_block * notifier,unsigned long val,void * v)305 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
306 			  void *v)
307 {
308 	struct kvm *kvm;
309 	struct kvm_vcpu *vcpu;
310 	unsigned long i;
311 	unsigned long long *delta = v;
312 
313 	list_for_each_entry(kvm, &vm_list, vm_list) {
314 		kvm_for_each_vcpu(i, vcpu, kvm) {
315 			kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
316 			if (i == 0) {
317 				kvm->arch.epoch = vcpu->arch.sie_block->epoch;
318 				kvm->arch.epdx = vcpu->arch.sie_block->epdx;
319 			}
320 			if (vcpu->arch.cputm_enabled)
321 				vcpu->arch.cputm_start += *delta;
322 			if (vcpu->arch.vsie_block)
323 				kvm_clock_sync_scb(vcpu->arch.vsie_block,
324 						   *delta);
325 		}
326 	}
327 	return NOTIFY_OK;
328 }
329 
330 static struct notifier_block kvm_clock_notifier = {
331 	.notifier_call = kvm_clock_sync,
332 };
333 
allow_cpu_feat(unsigned long nr)334 static void allow_cpu_feat(unsigned long nr)
335 {
336 	set_bit_inv(nr, kvm_s390_available_cpu_feat);
337 }
338 
plo_test_bit(unsigned char nr)339 static inline int plo_test_bit(unsigned char nr)
340 {
341 	unsigned long function = (unsigned long)nr | 0x100;
342 	int cc;
343 
344 	asm volatile(
345 		"	lgr	0,%[function]\n"
346 		/* Parameter registers are ignored for "test bit" */
347 		"	plo	0,0,0,0(0)\n"
348 		CC_IPM(cc)
349 		: CC_OUT(cc, cc)
350 		: [function] "d" (function)
351 		: CC_CLOBBER_LIST("0"));
352 	return CC_TRANSFORM(cc) == 0;
353 }
354 
pfcr_query(u8 (* query)[16])355 static __always_inline void pfcr_query(u8 (*query)[16])
356 {
357 	asm volatile(
358 		"	lghi	0,0\n"
359 		"	.insn   rsy,0xeb0000000016,0,0,%[query]"
360 		: [query] "=QS" (*query)
361 		:
362 		: "cc", "0");
363 }
364 
__sortl_query(u8 (* query)[32])365 static __always_inline void __sortl_query(u8 (*query)[32])
366 {
367 	asm volatile(
368 		"	lghi	0,0\n"
369 		"	la	1,%[query]\n"
370 		/* Parameter registers are ignored */
371 		"	.insn	rre,0xb9380000,2,4"
372 		: [query] "=R" (*query)
373 		:
374 		: "cc", "0", "1");
375 }
376 
__dfltcc_query(u8 (* query)[32])377 static __always_inline void __dfltcc_query(u8 (*query)[32])
378 {
379 	asm volatile(
380 		"	lghi	0,0\n"
381 		"	la	1,%[query]\n"
382 		/* Parameter registers are ignored */
383 		"	.insn	rrf,0xb9390000,2,4,6,0"
384 		: [query] "=R" (*query)
385 		:
386 		: "cc", "0", "1");
387 }
388 
kvm_s390_cpu_feat_init(void)389 static void __init kvm_s390_cpu_feat_init(void)
390 {
391 	int i;
392 
393 	for (i = 0; i < 256; ++i) {
394 		if (plo_test_bit(i))
395 			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
396 	}
397 
398 	if (test_facility(28)) /* TOD-clock steering */
399 		ptff(kvm_s390_available_subfunc.ptff,
400 		     sizeof(kvm_s390_available_subfunc.ptff),
401 		     PTFF_QAF);
402 
403 	if (test_facility(17)) { /* MSA */
404 		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
405 			      kvm_s390_available_subfunc.kmac);
406 		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
407 			      kvm_s390_available_subfunc.kmc);
408 		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
409 			      kvm_s390_available_subfunc.km);
410 		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
411 			      kvm_s390_available_subfunc.kimd);
412 		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
413 			      kvm_s390_available_subfunc.klmd);
414 	}
415 	if (test_facility(76)) /* MSA3 */
416 		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
417 			      kvm_s390_available_subfunc.pckmo);
418 	if (test_facility(77)) { /* MSA4 */
419 		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
420 			      kvm_s390_available_subfunc.kmctr);
421 		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
422 			      kvm_s390_available_subfunc.kmf);
423 		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
424 			      kvm_s390_available_subfunc.kmo);
425 		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
426 			      kvm_s390_available_subfunc.pcc);
427 	}
428 	if (test_facility(57)) /* MSA5 */
429 		__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
430 			      kvm_s390_available_subfunc.ppno);
431 
432 	if (test_facility(146)) /* MSA8 */
433 		__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
434 			      kvm_s390_available_subfunc.kma);
435 
436 	if (test_facility(155)) /* MSA9 */
437 		__cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
438 			      kvm_s390_available_subfunc.kdsa);
439 
440 	if (test_facility(150)) /* SORTL */
441 		__sortl_query(&kvm_s390_available_subfunc.sortl);
442 
443 	if (test_facility(151)) /* DFLTCC */
444 		__dfltcc_query(&kvm_s390_available_subfunc.dfltcc);
445 
446 	if (test_facility(201))	/* PFCR */
447 		pfcr_query(&kvm_s390_available_subfunc.pfcr);
448 
449 	if (machine_has_esop())
450 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
451 	/*
452 	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
453 	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
454 	 */
455 	if (!sclp.has_sief2 || !machine_has_esop() || !sclp.has_64bscao ||
456 	    !test_facility(3) || !nested)
457 		return;
458 	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
459 	if (sclp.has_64bscao)
460 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
461 	if (sclp.has_siif)
462 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
463 	if (sclp.has_gpere)
464 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
465 	if (sclp.has_gsls)
466 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
467 	if (sclp.has_ib)
468 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
469 	if (sclp.has_cei)
470 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
471 	if (sclp.has_ibs)
472 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
473 	if (sclp.has_kss)
474 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
475 	/*
476 	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
477 	 * all skey handling functions read/set the skey from the PGSTE
478 	 * instead of the real storage key.
479 	 *
480 	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
481 	 * pages being detected as preserved although they are resident.
482 	 *
483 	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
484 	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
485 	 *
486 	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
487 	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
488 	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
489 	 *
490 	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
491 	 * cannot easily shadow the SCA because of the ipte lock.
492 	 */
493 }
494 
__kvm_s390_init(void)495 static int __init __kvm_s390_init(void)
496 {
497 	int rc = -ENOMEM;
498 
499 	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
500 	if (!kvm_s390_dbf)
501 		return -ENOMEM;
502 
503 	kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
504 	if (!kvm_s390_dbf_uv)
505 		goto err_kvm_uv;
506 
507 	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
508 	    debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
509 		goto err_debug_view;
510 
511 	kvm_s390_cpu_feat_init();
512 
513 	/* Register floating interrupt controller interface. */
514 	rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
515 	if (rc) {
516 		pr_err("A FLIC registration call failed with rc=%d\n", rc);
517 		goto err_flic;
518 	}
519 
520 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
521 		rc = kvm_s390_pci_init();
522 		if (rc) {
523 			pr_err("Unable to allocate AIFT for PCI\n");
524 			goto err_pci;
525 		}
526 	}
527 
528 	rc = kvm_s390_gib_init(GAL_ISC);
529 	if (rc)
530 		goto err_gib;
531 
532 	gmap_notifier.notifier_call = kvm_gmap_notifier;
533 	gmap_register_pte_notifier(&gmap_notifier);
534 	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
535 	gmap_register_pte_notifier(&vsie_gmap_notifier);
536 	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
537 				       &kvm_clock_notifier);
538 
539 	return 0;
540 
541 err_gib:
542 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
543 		kvm_s390_pci_exit();
544 err_pci:
545 err_flic:
546 err_debug_view:
547 	debug_unregister(kvm_s390_dbf_uv);
548 err_kvm_uv:
549 	debug_unregister(kvm_s390_dbf);
550 	return rc;
551 }
552 
__kvm_s390_exit(void)553 static void __kvm_s390_exit(void)
554 {
555 	gmap_unregister_pte_notifier(&gmap_notifier);
556 	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
557 	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
558 					 &kvm_clock_notifier);
559 
560 	kvm_s390_gib_destroy();
561 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
562 		kvm_s390_pci_exit();
563 	debug_unregister(kvm_s390_dbf);
564 	debug_unregister(kvm_s390_dbf_uv);
565 }
566 
567 /* Section: device related */
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)568 long kvm_arch_dev_ioctl(struct file *filp,
569 			unsigned int ioctl, unsigned long arg)
570 {
571 	if (ioctl == KVM_S390_ENABLE_SIE)
572 		return s390_enable_sie();
573 	return -EINVAL;
574 }
575 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
577 {
578 	int r;
579 
580 	switch (ext) {
581 	case KVM_CAP_S390_PSW:
582 	case KVM_CAP_S390_GMAP:
583 	case KVM_CAP_SYNC_MMU:
584 #ifdef CONFIG_KVM_S390_UCONTROL
585 	case KVM_CAP_S390_UCONTROL:
586 #endif
587 	case KVM_CAP_ASYNC_PF:
588 	case KVM_CAP_SYNC_REGS:
589 	case KVM_CAP_ONE_REG:
590 	case KVM_CAP_ENABLE_CAP:
591 	case KVM_CAP_S390_CSS_SUPPORT:
592 	case KVM_CAP_IOEVENTFD:
593 	case KVM_CAP_S390_IRQCHIP:
594 	case KVM_CAP_VM_ATTRIBUTES:
595 	case KVM_CAP_MP_STATE:
596 	case KVM_CAP_IMMEDIATE_EXIT:
597 	case KVM_CAP_S390_INJECT_IRQ:
598 	case KVM_CAP_S390_USER_SIGP:
599 	case KVM_CAP_S390_USER_STSI:
600 	case KVM_CAP_S390_SKEYS:
601 	case KVM_CAP_S390_IRQ_STATE:
602 	case KVM_CAP_S390_USER_INSTR0:
603 	case KVM_CAP_S390_CMMA_MIGRATION:
604 	case KVM_CAP_S390_AIS:
605 	case KVM_CAP_S390_AIS_MIGRATION:
606 	case KVM_CAP_S390_VCPU_RESETS:
607 	case KVM_CAP_SET_GUEST_DEBUG:
608 	case KVM_CAP_S390_DIAG318:
609 	case KVM_CAP_IRQFD_RESAMPLE:
610 	case KVM_CAP_S390_USER_OPEREXEC:
611 		r = 1;
612 		break;
613 	case KVM_CAP_SET_GUEST_DEBUG2:
614 		r = KVM_GUESTDBG_VALID_MASK;
615 		break;
616 	case KVM_CAP_S390_HPAGE_1M:
617 		r = 0;
618 		if (hpage && !(kvm && kvm_is_ucontrol(kvm)))
619 			r = 1;
620 		break;
621 	case KVM_CAP_S390_MEM_OP:
622 		r = MEM_OP_MAX_SIZE;
623 		break;
624 	case KVM_CAP_S390_MEM_OP_EXTENSION:
625 		/*
626 		 * Flag bits indicating which extensions are supported.
627 		 * If r > 0, the base extension must also be supported/indicated,
628 		 * in order to maintain backwards compatibility.
629 		 */
630 		r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
631 		    KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
632 		break;
633 	case KVM_CAP_NR_VCPUS:
634 	case KVM_CAP_MAX_VCPUS:
635 	case KVM_CAP_MAX_VCPU_ID:
636 		/*
637 		 * Return the same value for KVM_CAP_MAX_VCPUS and
638 		 * KVM_CAP_MAX_VCPU_ID to conform with the KVM API.
639 		 */
640 		r = KVM_S390_ESCA_CPU_SLOTS;
641 		if (!kvm_s390_use_sca_entries())
642 			r = KVM_MAX_VCPUS;
643 		if (ext == KVM_CAP_NR_VCPUS)
644 			r = min_t(unsigned int, num_online_cpus(), r);
645 		break;
646 	case KVM_CAP_S390_COW:
647 		r = machine_has_esop();
648 		break;
649 	case KVM_CAP_S390_VECTOR_REGISTERS:
650 		r = test_facility(129);
651 		break;
652 	case KVM_CAP_S390_RI:
653 		r = test_facility(64);
654 		break;
655 	case KVM_CAP_S390_GS:
656 		r = test_facility(133);
657 		break;
658 	case KVM_CAP_S390_BPB:
659 		r = test_facility(82);
660 		break;
661 	case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
662 		r = async_destroy && is_prot_virt_host();
663 		break;
664 	case KVM_CAP_S390_PROTECTED:
665 		r = is_prot_virt_host();
666 		break;
667 	case KVM_CAP_S390_PROTECTED_DUMP: {
668 		u64 pv_cmds_dump[] = {
669 			BIT_UVC_CMD_DUMP_INIT,
670 			BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
671 			BIT_UVC_CMD_DUMP_CPU,
672 			BIT_UVC_CMD_DUMP_COMPLETE,
673 		};
674 		int i;
675 
676 		r = is_prot_virt_host();
677 
678 		for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
679 			if (!test_bit_inv(pv_cmds_dump[i],
680 					  (unsigned long *)&uv_info.inst_calls_list)) {
681 				r = 0;
682 				break;
683 			}
684 		}
685 		break;
686 	}
687 	case KVM_CAP_S390_ZPCI_OP:
688 		r = kvm_s390_pci_interp_allowed();
689 		break;
690 	case KVM_CAP_S390_CPU_TOPOLOGY:
691 		r = test_facility(11);
692 		break;
693 	default:
694 		r = 0;
695 	}
696 	return r;
697 }
698 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)699 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
700 {
701 	int i;
702 	gfn_t cur_gfn, last_gfn;
703 	unsigned long gaddr, vmaddr;
704 	struct gmap *gmap = kvm->arch.gmap;
705 	DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
706 
707 	/* Loop over all guest segments */
708 	cur_gfn = memslot->base_gfn;
709 	last_gfn = memslot->base_gfn + memslot->npages;
710 	for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
711 		gaddr = gfn_to_gpa(cur_gfn);
712 		vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
713 		if (kvm_is_error_hva(vmaddr))
714 			continue;
715 
716 		bitmap_zero(bitmap, _PAGE_ENTRIES);
717 		gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
718 		for (i = 0; i < _PAGE_ENTRIES; i++) {
719 			if (test_bit(i, bitmap))
720 				mark_page_dirty(kvm, cur_gfn + i);
721 		}
722 
723 		if (fatal_signal_pending(current))
724 			return;
725 		cond_resched();
726 	}
727 }
728 
729 /* Section: vm related */
730 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
731 
732 /*
733  * Get (and clear) the dirty memory log for a memory slot.
734  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)735 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
736 			       struct kvm_dirty_log *log)
737 {
738 	int r;
739 	unsigned long n;
740 	struct kvm_memory_slot *memslot;
741 	int is_dirty;
742 
743 	if (kvm_is_ucontrol(kvm))
744 		return -EINVAL;
745 
746 	mutex_lock(&kvm->slots_lock);
747 
748 	r = -EINVAL;
749 	if (log->slot >= KVM_USER_MEM_SLOTS)
750 		goto out;
751 
752 	r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
753 	if (r)
754 		goto out;
755 
756 	/* Clear the dirty log */
757 	if (is_dirty) {
758 		n = kvm_dirty_bitmap_bytes(memslot);
759 		memset(memslot->dirty_bitmap, 0, n);
760 	}
761 	r = 0;
762 out:
763 	mutex_unlock(&kvm->slots_lock);
764 	return r;
765 }
766 
icpt_operexc_on_all_vcpus(struct kvm * kvm)767 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
768 {
769 	unsigned long i;
770 	struct kvm_vcpu *vcpu;
771 
772 	kvm_for_each_vcpu(i, vcpu, kvm) {
773 		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
774 	}
775 }
776 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)777 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
778 {
779 	int r;
780 
781 	if (cap->flags)
782 		return -EINVAL;
783 
784 	switch (cap->cap) {
785 	case KVM_CAP_S390_IRQCHIP:
786 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
787 		kvm->arch.use_irqchip = 1;
788 		r = 0;
789 		break;
790 	case KVM_CAP_S390_USER_SIGP:
791 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
792 		kvm->arch.user_sigp = 1;
793 		r = 0;
794 		break;
795 	case KVM_CAP_S390_VECTOR_REGISTERS:
796 		mutex_lock(&kvm->lock);
797 		if (kvm->created_vcpus) {
798 			r = -EBUSY;
799 		} else if (cpu_has_vx()) {
800 			set_kvm_facility(kvm->arch.model.fac_mask, 129);
801 			set_kvm_facility(kvm->arch.model.fac_list, 129);
802 			if (test_facility(134)) {
803 				set_kvm_facility(kvm->arch.model.fac_mask, 134);
804 				set_kvm_facility(kvm->arch.model.fac_list, 134);
805 			}
806 			if (test_facility(135)) {
807 				set_kvm_facility(kvm->arch.model.fac_mask, 135);
808 				set_kvm_facility(kvm->arch.model.fac_list, 135);
809 			}
810 			if (test_facility(148)) {
811 				set_kvm_facility(kvm->arch.model.fac_mask, 148);
812 				set_kvm_facility(kvm->arch.model.fac_list, 148);
813 			}
814 			if (test_facility(152)) {
815 				set_kvm_facility(kvm->arch.model.fac_mask, 152);
816 				set_kvm_facility(kvm->arch.model.fac_list, 152);
817 			}
818 			if (test_facility(192)) {
819 				set_kvm_facility(kvm->arch.model.fac_mask, 192);
820 				set_kvm_facility(kvm->arch.model.fac_list, 192);
821 			}
822 			if (test_facility(198)) {
823 				set_kvm_facility(kvm->arch.model.fac_mask, 198);
824 				set_kvm_facility(kvm->arch.model.fac_list, 198);
825 			}
826 			if (test_facility(199)) {
827 				set_kvm_facility(kvm->arch.model.fac_mask, 199);
828 				set_kvm_facility(kvm->arch.model.fac_list, 199);
829 			}
830 			r = 0;
831 		} else
832 			r = -EINVAL;
833 		mutex_unlock(&kvm->lock);
834 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
835 			 r ? "(not available)" : "(success)");
836 		break;
837 	case KVM_CAP_S390_RI:
838 		r = -EINVAL;
839 		mutex_lock(&kvm->lock);
840 		if (kvm->created_vcpus) {
841 			r = -EBUSY;
842 		} else if (test_facility(64)) {
843 			set_kvm_facility(kvm->arch.model.fac_mask, 64);
844 			set_kvm_facility(kvm->arch.model.fac_list, 64);
845 			r = 0;
846 		}
847 		mutex_unlock(&kvm->lock);
848 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
849 			 r ? "(not available)" : "(success)");
850 		break;
851 	case KVM_CAP_S390_AIS:
852 		mutex_lock(&kvm->lock);
853 		if (kvm->created_vcpus) {
854 			r = -EBUSY;
855 		} else {
856 			set_kvm_facility(kvm->arch.model.fac_mask, 72);
857 			set_kvm_facility(kvm->arch.model.fac_list, 72);
858 			r = 0;
859 		}
860 		mutex_unlock(&kvm->lock);
861 		VM_EVENT(kvm, 3, "ENABLE: AIS %s",
862 			 r ? "(not available)" : "(success)");
863 		break;
864 	case KVM_CAP_S390_GS:
865 		r = -EINVAL;
866 		mutex_lock(&kvm->lock);
867 		if (kvm->created_vcpus) {
868 			r = -EBUSY;
869 		} else if (test_facility(133)) {
870 			set_kvm_facility(kvm->arch.model.fac_mask, 133);
871 			set_kvm_facility(kvm->arch.model.fac_list, 133);
872 			r = 0;
873 		}
874 		mutex_unlock(&kvm->lock);
875 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
876 			 r ? "(not available)" : "(success)");
877 		break;
878 	case KVM_CAP_S390_HPAGE_1M:
879 		mutex_lock(&kvm->lock);
880 		if (kvm->created_vcpus)
881 			r = -EBUSY;
882 		else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
883 			r = -EINVAL;
884 		else {
885 			r = 0;
886 			mmap_write_lock(kvm->mm);
887 			kvm->mm->context.allow_gmap_hpage_1m = 1;
888 			mmap_write_unlock(kvm->mm);
889 			/*
890 			 * We might have to create fake 4k page
891 			 * tables. To avoid that the hardware works on
892 			 * stale PGSTEs, we emulate these instructions.
893 			 */
894 			kvm->arch.use_skf = 0;
895 			kvm->arch.use_pfmfi = 0;
896 		}
897 		mutex_unlock(&kvm->lock);
898 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
899 			 r ? "(not available)" : "(success)");
900 		break;
901 	case KVM_CAP_S390_USER_STSI:
902 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
903 		kvm->arch.user_stsi = 1;
904 		r = 0;
905 		break;
906 	case KVM_CAP_S390_USER_INSTR0:
907 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
908 		kvm->arch.user_instr0 = 1;
909 		icpt_operexc_on_all_vcpus(kvm);
910 		r = 0;
911 		break;
912 	case KVM_CAP_S390_CPU_TOPOLOGY:
913 		r = -EINVAL;
914 		mutex_lock(&kvm->lock);
915 		if (kvm->created_vcpus) {
916 			r = -EBUSY;
917 		} else if (test_facility(11)) {
918 			set_kvm_facility(kvm->arch.model.fac_mask, 11);
919 			set_kvm_facility(kvm->arch.model.fac_list, 11);
920 			r = 0;
921 		}
922 		mutex_unlock(&kvm->lock);
923 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
924 			 r ? "(not available)" : "(success)");
925 		break;
926 	case KVM_CAP_S390_USER_OPEREXEC:
927 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_OPEREXEC");
928 		kvm->arch.user_operexec = 1;
929 		icpt_operexc_on_all_vcpus(kvm);
930 		r = 0;
931 		break;
932 	default:
933 		r = -EINVAL;
934 		break;
935 	}
936 	return r;
937 }
938 
kvm_s390_get_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)939 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
940 {
941 	int ret;
942 
943 	switch (attr->attr) {
944 	case KVM_S390_VM_MEM_LIMIT_SIZE:
945 		ret = 0;
946 		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
947 			 kvm->arch.mem_limit);
948 		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
949 			ret = -EFAULT;
950 		break;
951 	default:
952 		ret = -ENXIO;
953 		break;
954 	}
955 	return ret;
956 }
957 
kvm_s390_set_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)958 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
959 {
960 	int ret;
961 	unsigned int idx;
962 	switch (attr->attr) {
963 	case KVM_S390_VM_MEM_ENABLE_CMMA:
964 		ret = -ENXIO;
965 		if (!sclp.has_cmma)
966 			break;
967 
968 		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
969 		mutex_lock(&kvm->lock);
970 		if (kvm->created_vcpus)
971 			ret = -EBUSY;
972 		else if (kvm->mm->context.allow_gmap_hpage_1m)
973 			ret = -EINVAL;
974 		else {
975 			kvm->arch.use_cmma = 1;
976 			/* Not compatible with cmma. */
977 			kvm->arch.use_pfmfi = 0;
978 			ret = 0;
979 		}
980 		mutex_unlock(&kvm->lock);
981 		break;
982 	case KVM_S390_VM_MEM_CLR_CMMA:
983 		ret = -ENXIO;
984 		if (!sclp.has_cmma)
985 			break;
986 		ret = -EINVAL;
987 		if (!kvm->arch.use_cmma)
988 			break;
989 
990 		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
991 		mutex_lock(&kvm->lock);
992 		idx = srcu_read_lock(&kvm->srcu);
993 		s390_reset_cmma(kvm->arch.gmap->mm);
994 		srcu_read_unlock(&kvm->srcu, idx);
995 		mutex_unlock(&kvm->lock);
996 		ret = 0;
997 		break;
998 	case KVM_S390_VM_MEM_LIMIT_SIZE: {
999 		unsigned long new_limit;
1000 
1001 		if (kvm_is_ucontrol(kvm))
1002 			return -EINVAL;
1003 
1004 		if (get_user(new_limit, (u64 __user *)attr->addr))
1005 			return -EFAULT;
1006 
1007 		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
1008 		    new_limit > kvm->arch.mem_limit)
1009 			return -E2BIG;
1010 
1011 		if (!new_limit)
1012 			return -EINVAL;
1013 
1014 		/* gmap_create takes last usable address */
1015 		if (new_limit != KVM_S390_NO_MEM_LIMIT)
1016 			new_limit -= 1;
1017 
1018 		ret = -EBUSY;
1019 		mutex_lock(&kvm->lock);
1020 		if (!kvm->created_vcpus) {
1021 			/* gmap_create will round the limit up */
1022 			struct gmap *new = gmap_create(current->mm, new_limit);
1023 
1024 			if (!new) {
1025 				ret = -ENOMEM;
1026 			} else {
1027 				gmap_remove(kvm->arch.gmap);
1028 				new->private = kvm;
1029 				kvm->arch.gmap = new;
1030 				ret = 0;
1031 			}
1032 		}
1033 		mutex_unlock(&kvm->lock);
1034 		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
1035 		VM_EVENT(kvm, 3, "New guest asce: 0x%p",
1036 			 (void *) kvm->arch.gmap->asce);
1037 		break;
1038 	}
1039 	default:
1040 		ret = -ENXIO;
1041 		break;
1042 	}
1043 	return ret;
1044 }
1045 
1046 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
1047 
kvm_s390_vcpu_crypto_reset_all(struct kvm * kvm)1048 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
1049 {
1050 	struct kvm_vcpu *vcpu;
1051 	unsigned long i;
1052 
1053 	kvm_s390_vcpu_block_all(kvm);
1054 
1055 	kvm_for_each_vcpu(i, vcpu, kvm) {
1056 		kvm_s390_vcpu_crypto_setup(vcpu);
1057 		/* recreate the shadow crycb by leaving the VSIE handler */
1058 		kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1059 	}
1060 
1061 	kvm_s390_vcpu_unblock_all(kvm);
1062 }
1063 
kvm_s390_vm_set_crypto(struct kvm * kvm,struct kvm_device_attr * attr)1064 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1065 {
1066 	mutex_lock(&kvm->lock);
1067 	switch (attr->attr) {
1068 	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1069 		if (!test_kvm_facility(kvm, 76)) {
1070 			mutex_unlock(&kvm->lock);
1071 			return -EINVAL;
1072 		}
1073 		get_random_bytes(
1074 			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1075 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1076 		kvm->arch.crypto.aes_kw = 1;
1077 		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1078 		break;
1079 	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1080 		if (!test_kvm_facility(kvm, 76)) {
1081 			mutex_unlock(&kvm->lock);
1082 			return -EINVAL;
1083 		}
1084 		get_random_bytes(
1085 			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1086 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1087 		kvm->arch.crypto.dea_kw = 1;
1088 		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1089 		break;
1090 	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1091 		if (!test_kvm_facility(kvm, 76)) {
1092 			mutex_unlock(&kvm->lock);
1093 			return -EINVAL;
1094 		}
1095 		kvm->arch.crypto.aes_kw = 0;
1096 		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1097 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1098 		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1099 		break;
1100 	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1101 		if (!test_kvm_facility(kvm, 76)) {
1102 			mutex_unlock(&kvm->lock);
1103 			return -EINVAL;
1104 		}
1105 		kvm->arch.crypto.dea_kw = 0;
1106 		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1107 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1108 		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1109 		break;
1110 	case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1111 		if (!ap_instructions_available()) {
1112 			mutex_unlock(&kvm->lock);
1113 			return -EOPNOTSUPP;
1114 		}
1115 		kvm->arch.crypto.apie = 1;
1116 		break;
1117 	case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1118 		if (!ap_instructions_available()) {
1119 			mutex_unlock(&kvm->lock);
1120 			return -EOPNOTSUPP;
1121 		}
1122 		kvm->arch.crypto.apie = 0;
1123 		break;
1124 	default:
1125 		mutex_unlock(&kvm->lock);
1126 		return -ENXIO;
1127 	}
1128 
1129 	kvm_s390_vcpu_crypto_reset_all(kvm);
1130 	mutex_unlock(&kvm->lock);
1131 	return 0;
1132 }
1133 
kvm_s390_vcpu_pci_setup(struct kvm_vcpu * vcpu)1134 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1135 {
1136 	/* Only set the ECB bits after guest requests zPCI interpretation */
1137 	if (!vcpu->kvm->arch.use_zpci_interp)
1138 		return;
1139 
1140 	vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1141 	vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1142 }
1143 
kvm_s390_vcpu_pci_enable_interp(struct kvm * kvm)1144 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1145 {
1146 	struct kvm_vcpu *vcpu;
1147 	unsigned long i;
1148 
1149 	lockdep_assert_held(&kvm->lock);
1150 
1151 	if (!kvm_s390_pci_interp_allowed())
1152 		return;
1153 
1154 	/*
1155 	 * If host is configured for PCI and the necessary facilities are
1156 	 * available, turn on interpretation for the life of this guest
1157 	 */
1158 	kvm->arch.use_zpci_interp = 1;
1159 
1160 	kvm_s390_vcpu_block_all(kvm);
1161 
1162 	kvm_for_each_vcpu(i, vcpu, kvm) {
1163 		kvm_s390_vcpu_pci_setup(vcpu);
1164 		kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1165 	}
1166 
1167 	kvm_s390_vcpu_unblock_all(kvm);
1168 }
1169 
kvm_s390_sync_request_broadcast(struct kvm * kvm,int req)1170 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1171 {
1172 	unsigned long cx;
1173 	struct kvm_vcpu *vcpu;
1174 
1175 	kvm_for_each_vcpu(cx, vcpu, kvm)
1176 		kvm_s390_sync_request(req, vcpu);
1177 }
1178 
1179 /*
1180  * Must be called with kvm->srcu held to avoid races on memslots, and with
1181  * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1182  */
kvm_s390_vm_start_migration(struct kvm * kvm)1183 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1184 {
1185 	struct kvm_memory_slot *ms;
1186 	struct kvm_memslots *slots;
1187 	unsigned long ram_pages = 0;
1188 	int bkt;
1189 
1190 	/* migration mode already enabled */
1191 	if (kvm->arch.migration_mode)
1192 		return 0;
1193 	slots = kvm_memslots(kvm);
1194 	if (!slots || kvm_memslots_empty(slots))
1195 		return -EINVAL;
1196 
1197 	if (!kvm->arch.use_cmma) {
1198 		kvm->arch.migration_mode = 1;
1199 		return 0;
1200 	}
1201 	/* mark all the pages in active slots as dirty */
1202 	kvm_for_each_memslot(ms, bkt, slots) {
1203 		if (!ms->dirty_bitmap)
1204 			return -EINVAL;
1205 		/*
1206 		 * The second half of the bitmap is only used on x86,
1207 		 * and would be wasted otherwise, so we put it to good
1208 		 * use here to keep track of the state of the storage
1209 		 * attributes.
1210 		 */
1211 		memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1212 		ram_pages += ms->npages;
1213 	}
1214 	atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1215 	kvm->arch.migration_mode = 1;
1216 	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Must be called with kvm->slots_lock to avoid races with ourselves and
1222  * kvm_s390_vm_start_migration.
1223  */
kvm_s390_vm_stop_migration(struct kvm * kvm)1224 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1225 {
1226 	/* migration mode already disabled */
1227 	if (!kvm->arch.migration_mode)
1228 		return 0;
1229 	kvm->arch.migration_mode = 0;
1230 	if (kvm->arch.use_cmma)
1231 		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1232 	return 0;
1233 }
1234 
kvm_s390_vm_set_migration(struct kvm * kvm,struct kvm_device_attr * attr)1235 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1236 				     struct kvm_device_attr *attr)
1237 {
1238 	int res = -ENXIO;
1239 
1240 	mutex_lock(&kvm->slots_lock);
1241 	switch (attr->attr) {
1242 	case KVM_S390_VM_MIGRATION_START:
1243 		res = kvm_s390_vm_start_migration(kvm);
1244 		break;
1245 	case KVM_S390_VM_MIGRATION_STOP:
1246 		res = kvm_s390_vm_stop_migration(kvm);
1247 		break;
1248 	default:
1249 		break;
1250 	}
1251 	mutex_unlock(&kvm->slots_lock);
1252 
1253 	return res;
1254 }
1255 
kvm_s390_vm_get_migration(struct kvm * kvm,struct kvm_device_attr * attr)1256 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1257 				     struct kvm_device_attr *attr)
1258 {
1259 	u64 mig = kvm->arch.migration_mode;
1260 
1261 	if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1262 		return -ENXIO;
1263 
1264 	if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1265 		return -EFAULT;
1266 	return 0;
1267 }
1268 
1269 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1270 
kvm_s390_set_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1271 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1272 {
1273 	struct kvm_s390_vm_tod_clock gtod;
1274 
1275 	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
1276 		return -EFAULT;
1277 
1278 	if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1279 		return -EINVAL;
1280 	__kvm_s390_set_tod_clock(kvm, &gtod);
1281 
1282 	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1283 		gtod.epoch_idx, gtod.tod);
1284 
1285 	return 0;
1286 }
1287 
kvm_s390_set_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1288 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1289 {
1290 	u8 gtod_high;
1291 
1292 	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
1293 					   sizeof(gtod_high)))
1294 		return -EFAULT;
1295 
1296 	if (gtod_high != 0)
1297 		return -EINVAL;
1298 	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1299 
1300 	return 0;
1301 }
1302 
kvm_s390_set_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1303 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1304 {
1305 	struct kvm_s390_vm_tod_clock gtod = { 0 };
1306 
1307 	if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
1308 			   sizeof(gtod.tod)))
1309 		return -EFAULT;
1310 
1311 	__kvm_s390_set_tod_clock(kvm, &gtod);
1312 	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1313 	return 0;
1314 }
1315 
kvm_s390_set_tod(struct kvm * kvm,struct kvm_device_attr * attr)1316 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1317 {
1318 	int ret;
1319 
1320 	if (attr->flags)
1321 		return -EINVAL;
1322 
1323 	mutex_lock(&kvm->lock);
1324 	/*
1325 	 * For protected guests, the TOD is managed by the ultravisor, so trying
1326 	 * to change it will never bring the expected results.
1327 	 */
1328 	if (kvm_s390_pv_is_protected(kvm)) {
1329 		ret = -EOPNOTSUPP;
1330 		goto out_unlock;
1331 	}
1332 
1333 	switch (attr->attr) {
1334 	case KVM_S390_VM_TOD_EXT:
1335 		ret = kvm_s390_set_tod_ext(kvm, attr);
1336 		break;
1337 	case KVM_S390_VM_TOD_HIGH:
1338 		ret = kvm_s390_set_tod_high(kvm, attr);
1339 		break;
1340 	case KVM_S390_VM_TOD_LOW:
1341 		ret = kvm_s390_set_tod_low(kvm, attr);
1342 		break;
1343 	default:
1344 		ret = -ENXIO;
1345 		break;
1346 	}
1347 
1348 out_unlock:
1349 	mutex_unlock(&kvm->lock);
1350 	return ret;
1351 }
1352 
kvm_s390_get_tod_clock(struct kvm * kvm,struct kvm_s390_vm_tod_clock * gtod)1353 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1354 				   struct kvm_s390_vm_tod_clock *gtod)
1355 {
1356 	union tod_clock clk;
1357 
1358 	preempt_disable();
1359 
1360 	store_tod_clock_ext(&clk);
1361 
1362 	gtod->tod = clk.tod + kvm->arch.epoch;
1363 	gtod->epoch_idx = 0;
1364 	if (test_kvm_facility(kvm, 139)) {
1365 		gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1366 		if (gtod->tod < clk.tod)
1367 			gtod->epoch_idx += 1;
1368 	}
1369 
1370 	preempt_enable();
1371 }
1372 
kvm_s390_get_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1373 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1374 {
1375 	struct kvm_s390_vm_tod_clock gtod;
1376 
1377 	memset(&gtod, 0, sizeof(gtod));
1378 	kvm_s390_get_tod_clock(kvm, &gtod);
1379 	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1380 		return -EFAULT;
1381 
1382 	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1383 		gtod.epoch_idx, gtod.tod);
1384 	return 0;
1385 }
1386 
kvm_s390_get_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1387 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1388 {
1389 	u8 gtod_high = 0;
1390 
1391 	if (copy_to_user((void __user *)attr->addr, &gtod_high,
1392 					 sizeof(gtod_high)))
1393 		return -EFAULT;
1394 	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1395 
1396 	return 0;
1397 }
1398 
kvm_s390_get_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1399 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1400 {
1401 	u64 gtod;
1402 
1403 	gtod = kvm_s390_get_tod_clock_fast(kvm);
1404 	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1405 		return -EFAULT;
1406 	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1407 
1408 	return 0;
1409 }
1410 
kvm_s390_get_tod(struct kvm * kvm,struct kvm_device_attr * attr)1411 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1412 {
1413 	int ret;
1414 
1415 	if (attr->flags)
1416 		return -EINVAL;
1417 
1418 	switch (attr->attr) {
1419 	case KVM_S390_VM_TOD_EXT:
1420 		ret = kvm_s390_get_tod_ext(kvm, attr);
1421 		break;
1422 	case KVM_S390_VM_TOD_HIGH:
1423 		ret = kvm_s390_get_tod_high(kvm, attr);
1424 		break;
1425 	case KVM_S390_VM_TOD_LOW:
1426 		ret = kvm_s390_get_tod_low(kvm, attr);
1427 		break;
1428 	default:
1429 		ret = -ENXIO;
1430 		break;
1431 	}
1432 	return ret;
1433 }
1434 
kvm_s390_set_processor(struct kvm * kvm,struct kvm_device_attr * attr)1435 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1436 {
1437 	struct kvm_s390_vm_cpu_processor *proc;
1438 	u16 lowest_ibc, unblocked_ibc;
1439 	int ret = 0;
1440 
1441 	mutex_lock(&kvm->lock);
1442 	if (kvm->created_vcpus) {
1443 		ret = -EBUSY;
1444 		goto out;
1445 	}
1446 	proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1447 	if (!proc) {
1448 		ret = -ENOMEM;
1449 		goto out;
1450 	}
1451 	if (!copy_from_user(proc, (void __user *)attr->addr,
1452 			    sizeof(*proc))) {
1453 		kvm->arch.model.cpuid = proc->cpuid;
1454 		lowest_ibc = sclp.ibc >> 16 & 0xfff;
1455 		unblocked_ibc = sclp.ibc & 0xfff;
1456 		if (lowest_ibc && proc->ibc) {
1457 			if (proc->ibc > unblocked_ibc)
1458 				kvm->arch.model.ibc = unblocked_ibc;
1459 			else if (proc->ibc < lowest_ibc)
1460 				kvm->arch.model.ibc = lowest_ibc;
1461 			else
1462 				kvm->arch.model.ibc = proc->ibc;
1463 		}
1464 		memcpy(kvm->arch.model.fac_list, proc->fac_list,
1465 		       S390_ARCH_FAC_LIST_SIZE_BYTE);
1466 		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1467 			 kvm->arch.model.ibc,
1468 			 kvm->arch.model.cpuid);
1469 		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1470 			 kvm->arch.model.fac_list[0],
1471 			 kvm->arch.model.fac_list[1],
1472 			 kvm->arch.model.fac_list[2]);
1473 	} else
1474 		ret = -EFAULT;
1475 	kfree(proc);
1476 out:
1477 	mutex_unlock(&kvm->lock);
1478 	return ret;
1479 }
1480 
kvm_s390_set_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1481 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1482 				       struct kvm_device_attr *attr)
1483 {
1484 	struct kvm_s390_vm_cpu_feat data;
1485 
1486 	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1487 		return -EFAULT;
1488 	if (!bitmap_subset((unsigned long *) data.feat,
1489 			   kvm_s390_available_cpu_feat,
1490 			   KVM_S390_VM_CPU_FEAT_NR_BITS))
1491 		return -EINVAL;
1492 
1493 	mutex_lock(&kvm->lock);
1494 	if (kvm->created_vcpus) {
1495 		mutex_unlock(&kvm->lock);
1496 		return -EBUSY;
1497 	}
1498 	bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1499 	mutex_unlock(&kvm->lock);
1500 	VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1501 			 data.feat[0],
1502 			 data.feat[1],
1503 			 data.feat[2]);
1504 	return 0;
1505 }
1506 
kvm_s390_set_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1507 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1508 					  struct kvm_device_attr *attr)
1509 {
1510 	mutex_lock(&kvm->lock);
1511 	if (kvm->created_vcpus) {
1512 		mutex_unlock(&kvm->lock);
1513 		return -EBUSY;
1514 	}
1515 
1516 	if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1517 			   sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1518 		mutex_unlock(&kvm->lock);
1519 		return -EFAULT;
1520 	}
1521 	mutex_unlock(&kvm->lock);
1522 
1523 	VM_EVENT(kvm, 3, "SET: guest PLO    subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1524 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1525 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1526 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1527 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1528 	VM_EVENT(kvm, 3, "SET: guest PTFF   subfunc 0x%16.16lx.%16.16lx",
1529 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1530 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1531 	VM_EVENT(kvm, 3, "SET: guest KMAC   subfunc 0x%16.16lx.%16.16lx",
1532 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1533 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1534 	VM_EVENT(kvm, 3, "SET: guest KMC    subfunc 0x%16.16lx.%16.16lx",
1535 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1536 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1537 	VM_EVENT(kvm, 3, "SET: guest KM     subfunc 0x%16.16lx.%16.16lx",
1538 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1539 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1540 	VM_EVENT(kvm, 3, "SET: guest KIMD   subfunc 0x%16.16lx.%16.16lx",
1541 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1542 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1543 	VM_EVENT(kvm, 3, "SET: guest KLMD   subfunc 0x%16.16lx.%16.16lx",
1544 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1545 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1546 	VM_EVENT(kvm, 3, "SET: guest PCKMO  subfunc 0x%16.16lx.%16.16lx",
1547 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1548 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1549 	VM_EVENT(kvm, 3, "SET: guest KMCTR  subfunc 0x%16.16lx.%16.16lx",
1550 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1551 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1552 	VM_EVENT(kvm, 3, "SET: guest KMF    subfunc 0x%16.16lx.%16.16lx",
1553 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1554 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1555 	VM_EVENT(kvm, 3, "SET: guest KMO    subfunc 0x%16.16lx.%16.16lx",
1556 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1557 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1558 	VM_EVENT(kvm, 3, "SET: guest PCC    subfunc 0x%16.16lx.%16.16lx",
1559 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1560 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1561 	VM_EVENT(kvm, 3, "SET: guest PPNO   subfunc 0x%16.16lx.%16.16lx",
1562 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1563 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1564 	VM_EVENT(kvm, 3, "SET: guest KMA    subfunc 0x%16.16lx.%16.16lx",
1565 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1566 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1567 	VM_EVENT(kvm, 3, "SET: guest KDSA   subfunc 0x%16.16lx.%16.16lx",
1568 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1569 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1570 	VM_EVENT(kvm, 3, "SET: guest SORTL  subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1571 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1572 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1573 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1574 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1575 	VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1576 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1577 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1578 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1579 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1580 	VM_EVENT(kvm, 3, "GET: guest PFCR   subfunc 0x%16.16lx.%16.16lx",
1581 		 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1582 		 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1583 
1584 	return 0;
1585 }
1586 
1587 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK	\
1588 (						\
1589 	((struct kvm_s390_vm_cpu_uv_feat){	\
1590 		.ap = 1,			\
1591 		.ap_intr = 1,			\
1592 	})					\
1593 	.feat					\
1594 )
1595 
kvm_s390_set_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1596 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1597 {
1598 	struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1599 	unsigned long data, filter;
1600 
1601 	filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1602 	if (get_user(data, &ptr->feat))
1603 		return -EFAULT;
1604 	if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1605 		return -EINVAL;
1606 
1607 	mutex_lock(&kvm->lock);
1608 	if (kvm->created_vcpus) {
1609 		mutex_unlock(&kvm->lock);
1610 		return -EBUSY;
1611 	}
1612 	kvm->arch.model.uv_feat_guest.feat = data;
1613 	mutex_unlock(&kvm->lock);
1614 
1615 	VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1616 
1617 	return 0;
1618 }
1619 
kvm_s390_set_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1620 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1621 {
1622 	int ret = -ENXIO;
1623 
1624 	switch (attr->attr) {
1625 	case KVM_S390_VM_CPU_PROCESSOR:
1626 		ret = kvm_s390_set_processor(kvm, attr);
1627 		break;
1628 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1629 		ret = kvm_s390_set_processor_feat(kvm, attr);
1630 		break;
1631 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1632 		ret = kvm_s390_set_processor_subfunc(kvm, attr);
1633 		break;
1634 	case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1635 		ret = kvm_s390_set_uv_feat(kvm, attr);
1636 		break;
1637 	}
1638 	return ret;
1639 }
1640 
kvm_s390_get_processor(struct kvm * kvm,struct kvm_device_attr * attr)1641 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1642 {
1643 	struct kvm_s390_vm_cpu_processor *proc;
1644 	int ret = 0;
1645 
1646 	proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1647 	if (!proc) {
1648 		ret = -ENOMEM;
1649 		goto out;
1650 	}
1651 	proc->cpuid = kvm->arch.model.cpuid;
1652 	proc->ibc = kvm->arch.model.ibc;
1653 	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1654 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1655 	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1656 		 kvm->arch.model.ibc,
1657 		 kvm->arch.model.cpuid);
1658 	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1659 		 kvm->arch.model.fac_list[0],
1660 		 kvm->arch.model.fac_list[1],
1661 		 kvm->arch.model.fac_list[2]);
1662 	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1663 		ret = -EFAULT;
1664 	kfree(proc);
1665 out:
1666 	return ret;
1667 }
1668 
kvm_s390_get_machine(struct kvm * kvm,struct kvm_device_attr * attr)1669 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1670 {
1671 	struct kvm_s390_vm_cpu_machine *mach;
1672 	int ret = 0;
1673 
1674 	mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1675 	if (!mach) {
1676 		ret = -ENOMEM;
1677 		goto out;
1678 	}
1679 	get_cpu_id((struct cpuid *) &mach->cpuid);
1680 	mach->ibc = sclp.ibc;
1681 	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1682 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1683 	memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1684 	       sizeof(stfle_fac_list));
1685 	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
1686 		 kvm->arch.model.ibc,
1687 		 kvm->arch.model.cpuid);
1688 	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
1689 		 mach->fac_mask[0],
1690 		 mach->fac_mask[1],
1691 		 mach->fac_mask[2]);
1692 	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
1693 		 mach->fac_list[0],
1694 		 mach->fac_list[1],
1695 		 mach->fac_list[2]);
1696 	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1697 		ret = -EFAULT;
1698 	kfree(mach);
1699 out:
1700 	return ret;
1701 }
1702 
kvm_s390_get_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1703 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1704 				       struct kvm_device_attr *attr)
1705 {
1706 	struct kvm_s390_vm_cpu_feat data;
1707 
1708 	bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1709 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1710 		return -EFAULT;
1711 	VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1712 			 data.feat[0],
1713 			 data.feat[1],
1714 			 data.feat[2]);
1715 	return 0;
1716 }
1717 
kvm_s390_get_machine_feat(struct kvm * kvm,struct kvm_device_attr * attr)1718 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1719 				     struct kvm_device_attr *attr)
1720 {
1721 	struct kvm_s390_vm_cpu_feat data;
1722 
1723 	bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1724 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1725 		return -EFAULT;
1726 	VM_EVENT(kvm, 3, "GET: host feat:  0x%16.16llx.0x%16.16llx.0x%16.16llx",
1727 			 data.feat[0],
1728 			 data.feat[1],
1729 			 data.feat[2]);
1730 	return 0;
1731 }
1732 
kvm_s390_get_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1733 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1734 					  struct kvm_device_attr *attr)
1735 {
1736 	if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1737 	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
1738 		return -EFAULT;
1739 
1740 	VM_EVENT(kvm, 3, "GET: guest PLO    subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1741 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1742 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1743 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1744 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1745 	VM_EVENT(kvm, 3, "GET: guest PTFF   subfunc 0x%16.16lx.%16.16lx",
1746 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1747 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1748 	VM_EVENT(kvm, 3, "GET: guest KMAC   subfunc 0x%16.16lx.%16.16lx",
1749 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1750 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1751 	VM_EVENT(kvm, 3, "GET: guest KMC    subfunc 0x%16.16lx.%16.16lx",
1752 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1753 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1754 	VM_EVENT(kvm, 3, "GET: guest KM     subfunc 0x%16.16lx.%16.16lx",
1755 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1756 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1757 	VM_EVENT(kvm, 3, "GET: guest KIMD   subfunc 0x%16.16lx.%16.16lx",
1758 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1759 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1760 	VM_EVENT(kvm, 3, "GET: guest KLMD   subfunc 0x%16.16lx.%16.16lx",
1761 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1762 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1763 	VM_EVENT(kvm, 3, "GET: guest PCKMO  subfunc 0x%16.16lx.%16.16lx",
1764 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1765 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1766 	VM_EVENT(kvm, 3, "GET: guest KMCTR  subfunc 0x%16.16lx.%16.16lx",
1767 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1768 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1769 	VM_EVENT(kvm, 3, "GET: guest KMF    subfunc 0x%16.16lx.%16.16lx",
1770 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1771 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1772 	VM_EVENT(kvm, 3, "GET: guest KMO    subfunc 0x%16.16lx.%16.16lx",
1773 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1774 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1775 	VM_EVENT(kvm, 3, "GET: guest PCC    subfunc 0x%16.16lx.%16.16lx",
1776 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1777 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1778 	VM_EVENT(kvm, 3, "GET: guest PPNO   subfunc 0x%16.16lx.%16.16lx",
1779 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1780 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1781 	VM_EVENT(kvm, 3, "GET: guest KMA    subfunc 0x%16.16lx.%16.16lx",
1782 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1783 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1784 	VM_EVENT(kvm, 3, "GET: guest KDSA   subfunc 0x%16.16lx.%16.16lx",
1785 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1786 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1787 	VM_EVENT(kvm, 3, "GET: guest SORTL  subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1788 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1789 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1790 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1791 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1792 	VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1793 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1794 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1795 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1796 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1797 	VM_EVENT(kvm, 3, "GET: guest PFCR   subfunc 0x%16.16lx.%16.16lx",
1798 		 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1799 		 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1800 
1801 	return 0;
1802 }
1803 
kvm_s390_get_machine_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1804 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1805 					struct kvm_device_attr *attr)
1806 {
1807 	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1808 	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
1809 		return -EFAULT;
1810 
1811 	VM_EVENT(kvm, 3, "GET: host  PLO    subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1812 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1813 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1814 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1815 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1816 	VM_EVENT(kvm, 3, "GET: host  PTFF   subfunc 0x%16.16lx.%16.16lx",
1817 		 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1818 		 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1819 	VM_EVENT(kvm, 3, "GET: host  KMAC   subfunc 0x%16.16lx.%16.16lx",
1820 		 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1821 		 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1822 	VM_EVENT(kvm, 3, "GET: host  KMC    subfunc 0x%16.16lx.%16.16lx",
1823 		 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1824 		 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1825 	VM_EVENT(kvm, 3, "GET: host  KM     subfunc 0x%16.16lx.%16.16lx",
1826 		 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1827 		 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1828 	VM_EVENT(kvm, 3, "GET: host  KIMD   subfunc 0x%16.16lx.%16.16lx",
1829 		 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1830 		 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1831 	VM_EVENT(kvm, 3, "GET: host  KLMD   subfunc 0x%16.16lx.%16.16lx",
1832 		 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1833 		 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1834 	VM_EVENT(kvm, 3, "GET: host  PCKMO  subfunc 0x%16.16lx.%16.16lx",
1835 		 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1836 		 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1837 	VM_EVENT(kvm, 3, "GET: host  KMCTR  subfunc 0x%16.16lx.%16.16lx",
1838 		 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1839 		 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1840 	VM_EVENT(kvm, 3, "GET: host  KMF    subfunc 0x%16.16lx.%16.16lx",
1841 		 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1842 		 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1843 	VM_EVENT(kvm, 3, "GET: host  KMO    subfunc 0x%16.16lx.%16.16lx",
1844 		 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1845 		 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1846 	VM_EVENT(kvm, 3, "GET: host  PCC    subfunc 0x%16.16lx.%16.16lx",
1847 		 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1848 		 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1849 	VM_EVENT(kvm, 3, "GET: host  PPNO   subfunc 0x%16.16lx.%16.16lx",
1850 		 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1851 		 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1852 	VM_EVENT(kvm, 3, "GET: host  KMA    subfunc 0x%16.16lx.%16.16lx",
1853 		 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1854 		 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1855 	VM_EVENT(kvm, 3, "GET: host  KDSA   subfunc 0x%16.16lx.%16.16lx",
1856 		 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1857 		 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1858 	VM_EVENT(kvm, 3, "GET: host  SORTL  subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1859 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1860 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1861 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1862 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1863 	VM_EVENT(kvm, 3, "GET: host  DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1864 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1865 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1866 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1867 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1868 	VM_EVENT(kvm, 3, "GET: host  PFCR   subfunc 0x%16.16lx.%16.16lx",
1869 		 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1870 		 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1871 
1872 	return 0;
1873 }
1874 
kvm_s390_get_processor_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1875 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1876 {
1877 	struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1878 	unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1879 
1880 	if (put_user(feat, &dst->feat))
1881 		return -EFAULT;
1882 	VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1883 
1884 	return 0;
1885 }
1886 
kvm_s390_get_machine_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1887 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1888 {
1889 	struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1890 	unsigned long feat;
1891 
1892 	BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1893 
1894 	feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1895 	if (put_user(feat, &dst->feat))
1896 		return -EFAULT;
1897 	VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1898 
1899 	return 0;
1900 }
1901 
kvm_s390_get_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1902 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1903 {
1904 	int ret = -ENXIO;
1905 
1906 	switch (attr->attr) {
1907 	case KVM_S390_VM_CPU_PROCESSOR:
1908 		ret = kvm_s390_get_processor(kvm, attr);
1909 		break;
1910 	case KVM_S390_VM_CPU_MACHINE:
1911 		ret = kvm_s390_get_machine(kvm, attr);
1912 		break;
1913 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1914 		ret = kvm_s390_get_processor_feat(kvm, attr);
1915 		break;
1916 	case KVM_S390_VM_CPU_MACHINE_FEAT:
1917 		ret = kvm_s390_get_machine_feat(kvm, attr);
1918 		break;
1919 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1920 		ret = kvm_s390_get_processor_subfunc(kvm, attr);
1921 		break;
1922 	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1923 		ret = kvm_s390_get_machine_subfunc(kvm, attr);
1924 		break;
1925 	case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1926 		ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1927 		break;
1928 	case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1929 		ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1930 		break;
1931 	}
1932 	return ret;
1933 }
1934 
1935 /**
1936  * kvm_s390_update_topology_change_report - update CPU topology change report
1937  * @kvm: guest KVM description
1938  * @val: set or clear the MTCR bit
1939  *
1940  * Updates the Multiprocessor Topology-Change-Report bit to signal
1941  * the guest with a topology change.
1942  * This is only relevant if the topology facility is present.
1943  */
kvm_s390_update_topology_change_report(struct kvm * kvm,bool val)1944 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1945 {
1946 	union sca_utility new, old;
1947 	struct esca_block *sca;
1948 
1949 	sca = kvm->arch.sca;
1950 	old = READ_ONCE(sca->utility);
1951 	do {
1952 		new = old;
1953 		new.mtcr = val;
1954 	} while (!try_cmpxchg(&sca->utility.val, &old.val, new.val));
1955 }
1956 
kvm_s390_set_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1957 static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1958 					       struct kvm_device_attr *attr)
1959 {
1960 	if (!test_kvm_facility(kvm, 11))
1961 		return -ENXIO;
1962 
1963 	kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1964 	return 0;
1965 }
1966 
kvm_s390_get_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1967 static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1968 					       struct kvm_device_attr *attr)
1969 {
1970 	u8 topo;
1971 
1972 	if (!test_kvm_facility(kvm, 11))
1973 		return -ENXIO;
1974 
1975 	topo = kvm->arch.sca->utility.mtcr;
1976 
1977 	return put_user(topo, (u8 __user *)attr->addr);
1978 }
1979 
kvm_s390_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1980 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1981 {
1982 	int ret;
1983 
1984 	switch (attr->group) {
1985 	case KVM_S390_VM_MEM_CTRL:
1986 		ret = kvm_s390_set_mem_control(kvm, attr);
1987 		break;
1988 	case KVM_S390_VM_TOD:
1989 		ret = kvm_s390_set_tod(kvm, attr);
1990 		break;
1991 	case KVM_S390_VM_CPU_MODEL:
1992 		ret = kvm_s390_set_cpu_model(kvm, attr);
1993 		break;
1994 	case KVM_S390_VM_CRYPTO:
1995 		ret = kvm_s390_vm_set_crypto(kvm, attr);
1996 		break;
1997 	case KVM_S390_VM_MIGRATION:
1998 		ret = kvm_s390_vm_set_migration(kvm, attr);
1999 		break;
2000 	case KVM_S390_VM_CPU_TOPOLOGY:
2001 		ret = kvm_s390_set_topo_change_indication(kvm, attr);
2002 		break;
2003 	default:
2004 		ret = -ENXIO;
2005 		break;
2006 	}
2007 
2008 	return ret;
2009 }
2010 
kvm_s390_vm_get_attr(struct kvm * kvm,struct kvm_device_attr * attr)2011 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
2012 {
2013 	int ret;
2014 
2015 	switch (attr->group) {
2016 	case KVM_S390_VM_MEM_CTRL:
2017 		ret = kvm_s390_get_mem_control(kvm, attr);
2018 		break;
2019 	case KVM_S390_VM_TOD:
2020 		ret = kvm_s390_get_tod(kvm, attr);
2021 		break;
2022 	case KVM_S390_VM_CPU_MODEL:
2023 		ret = kvm_s390_get_cpu_model(kvm, attr);
2024 		break;
2025 	case KVM_S390_VM_MIGRATION:
2026 		ret = kvm_s390_vm_get_migration(kvm, attr);
2027 		break;
2028 	case KVM_S390_VM_CPU_TOPOLOGY:
2029 		ret = kvm_s390_get_topo_change_indication(kvm, attr);
2030 		break;
2031 	default:
2032 		ret = -ENXIO;
2033 		break;
2034 	}
2035 
2036 	return ret;
2037 }
2038 
kvm_s390_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)2039 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
2040 {
2041 	int ret;
2042 
2043 	switch (attr->group) {
2044 	case KVM_S390_VM_MEM_CTRL:
2045 		switch (attr->attr) {
2046 		case KVM_S390_VM_MEM_ENABLE_CMMA:
2047 		case KVM_S390_VM_MEM_CLR_CMMA:
2048 			ret = sclp.has_cmma ? 0 : -ENXIO;
2049 			break;
2050 		case KVM_S390_VM_MEM_LIMIT_SIZE:
2051 			ret = 0;
2052 			break;
2053 		default:
2054 			ret = -ENXIO;
2055 			break;
2056 		}
2057 		break;
2058 	case KVM_S390_VM_TOD:
2059 		switch (attr->attr) {
2060 		case KVM_S390_VM_TOD_LOW:
2061 		case KVM_S390_VM_TOD_HIGH:
2062 			ret = 0;
2063 			break;
2064 		default:
2065 			ret = -ENXIO;
2066 			break;
2067 		}
2068 		break;
2069 	case KVM_S390_VM_CPU_MODEL:
2070 		switch (attr->attr) {
2071 		case KVM_S390_VM_CPU_PROCESSOR:
2072 		case KVM_S390_VM_CPU_MACHINE:
2073 		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2074 		case KVM_S390_VM_CPU_MACHINE_FEAT:
2075 		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2076 		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2077 		case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2078 		case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2079 			ret = 0;
2080 			break;
2081 		default:
2082 			ret = -ENXIO;
2083 			break;
2084 		}
2085 		break;
2086 	case KVM_S390_VM_CRYPTO:
2087 		switch (attr->attr) {
2088 		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2089 		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2090 		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2091 		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2092 			ret = 0;
2093 			break;
2094 		case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2095 		case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2096 			ret = ap_instructions_available() ? 0 : -ENXIO;
2097 			break;
2098 		default:
2099 			ret = -ENXIO;
2100 			break;
2101 		}
2102 		break;
2103 	case KVM_S390_VM_MIGRATION:
2104 		ret = 0;
2105 		break;
2106 	case KVM_S390_VM_CPU_TOPOLOGY:
2107 		ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2108 		break;
2109 	default:
2110 		ret = -ENXIO;
2111 		break;
2112 	}
2113 
2114 	return ret;
2115 }
2116 
kvm_s390_get_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2117 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2118 {
2119 	uint8_t *keys;
2120 	uint64_t hva;
2121 	int srcu_idx, i, r = 0;
2122 
2123 	if (args->flags != 0)
2124 		return -EINVAL;
2125 
2126 	/* Is this guest using storage keys? */
2127 	if (!mm_uses_skeys(current->mm))
2128 		return KVM_S390_GET_SKEYS_NONE;
2129 
2130 	/* Enforce sane limit on memory allocation */
2131 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2132 		return -EINVAL;
2133 
2134 	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2135 	if (!keys)
2136 		return -ENOMEM;
2137 
2138 	mmap_read_lock(current->mm);
2139 	srcu_idx = srcu_read_lock(&kvm->srcu);
2140 	for (i = 0; i < args->count; i++) {
2141 		hva = gfn_to_hva(kvm, args->start_gfn + i);
2142 		if (kvm_is_error_hva(hva)) {
2143 			r = -EFAULT;
2144 			break;
2145 		}
2146 
2147 		r = get_guest_storage_key(current->mm, hva, &keys[i]);
2148 		if (r)
2149 			break;
2150 	}
2151 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2152 	mmap_read_unlock(current->mm);
2153 
2154 	if (!r) {
2155 		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2156 				 sizeof(uint8_t) * args->count);
2157 		if (r)
2158 			r = -EFAULT;
2159 	}
2160 
2161 	kvfree(keys);
2162 	return r;
2163 }
2164 
kvm_s390_set_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2165 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2166 {
2167 	uint8_t *keys;
2168 	uint64_t hva;
2169 	int srcu_idx, i, r = 0;
2170 	bool unlocked;
2171 
2172 	if (args->flags != 0)
2173 		return -EINVAL;
2174 
2175 	/* Enforce sane limit on memory allocation */
2176 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2177 		return -EINVAL;
2178 
2179 	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2180 	if (!keys)
2181 		return -ENOMEM;
2182 
2183 	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2184 			   sizeof(uint8_t) * args->count);
2185 	if (r) {
2186 		r = -EFAULT;
2187 		goto out;
2188 	}
2189 
2190 	/* Enable storage key handling for the guest */
2191 	r = s390_enable_skey();
2192 	if (r)
2193 		goto out;
2194 
2195 	i = 0;
2196 	mmap_read_lock(current->mm);
2197 	srcu_idx = srcu_read_lock(&kvm->srcu);
2198         while (i < args->count) {
2199 		unlocked = false;
2200 		hva = gfn_to_hva(kvm, args->start_gfn + i);
2201 		if (kvm_is_error_hva(hva)) {
2202 			r = -EFAULT;
2203 			break;
2204 		}
2205 
2206 		/* Lowest order bit is reserved */
2207 		if (keys[i] & 0x01) {
2208 			r = -EINVAL;
2209 			break;
2210 		}
2211 
2212 		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
2213 		if (r) {
2214 			r = fixup_user_fault(current->mm, hva,
2215 					     FAULT_FLAG_WRITE, &unlocked);
2216 			if (r)
2217 				break;
2218 		}
2219 		if (!r)
2220 			i++;
2221 	}
2222 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2223 	mmap_read_unlock(current->mm);
2224 out:
2225 	kvfree(keys);
2226 	return r;
2227 }
2228 
2229 /*
2230  * Base address and length must be sent at the start of each block, therefore
2231  * it's cheaper to send some clean data, as long as it's less than the size of
2232  * two longs.
2233  */
2234 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
2235 /* for consistency */
2236 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
2237 
kvm_s390_peek_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2238 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2239 			      u8 *res, unsigned long bufsize)
2240 {
2241 	unsigned long pgstev, hva, cur_gfn = args->start_gfn;
2242 
2243 	args->count = 0;
2244 	while (args->count < bufsize) {
2245 		hva = gfn_to_hva(kvm, cur_gfn);
2246 		/*
2247 		 * We return an error if the first value was invalid, but we
2248 		 * return successfully if at least one value was copied.
2249 		 */
2250 		if (kvm_is_error_hva(hva))
2251 			return args->count ? 0 : -EFAULT;
2252 		if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2253 			pgstev = 0;
2254 		res[args->count++] = (pgstev >> 24) & 0x43;
2255 		cur_gfn++;
2256 	}
2257 
2258 	return 0;
2259 }
2260 
gfn_to_memslot_approx(struct kvm_memslots * slots,gfn_t gfn)2261 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
2262 						     gfn_t gfn)
2263 {
2264 	return ____gfn_to_memslot(slots, gfn, true);
2265 }
2266 
kvm_s390_next_dirty_cmma(struct kvm_memslots * slots,unsigned long cur_gfn)2267 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
2268 					      unsigned long cur_gfn)
2269 {
2270 	struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
2271 	unsigned long ofs = cur_gfn - ms->base_gfn;
2272 	struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
2273 
2274 	if (ms->base_gfn + ms->npages <= cur_gfn) {
2275 		mnode = rb_next(mnode);
2276 		/* If we are above the highest slot, wrap around */
2277 		if (!mnode)
2278 			mnode = rb_first(&slots->gfn_tree);
2279 
2280 		ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2281 		ofs = 0;
2282 	}
2283 
2284 	if (cur_gfn < ms->base_gfn)
2285 		ofs = 0;
2286 
2287 	ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
2288 	while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
2289 		ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2290 		ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
2291 	}
2292 	return ms->base_gfn + ofs;
2293 }
2294 
kvm_s390_get_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2295 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2296 			     u8 *res, unsigned long bufsize)
2297 {
2298 	unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2299 	struct kvm_memslots *slots = kvm_memslots(kvm);
2300 	struct kvm_memory_slot *ms;
2301 
2302 	if (unlikely(kvm_memslots_empty(slots)))
2303 		return 0;
2304 
2305 	cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2306 	ms = gfn_to_memslot(kvm, cur_gfn);
2307 	args->count = 0;
2308 	args->start_gfn = cur_gfn;
2309 	if (!ms)
2310 		return 0;
2311 	next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2312 	mem_end = kvm_s390_get_gfn_end(slots);
2313 
2314 	while (args->count < bufsize) {
2315 		hva = gfn_to_hva(kvm, cur_gfn);
2316 		if (kvm_is_error_hva(hva))
2317 			return 0;
2318 		/* Decrement only if we actually flipped the bit to 0 */
2319 		if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2320 			atomic64_dec(&kvm->arch.cmma_dirty_pages);
2321 		if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2322 			pgstev = 0;
2323 		/* Save the value */
2324 		res[args->count++] = (pgstev >> 24) & 0x43;
2325 		/* If the next bit is too far away, stop. */
2326 		if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2327 			return 0;
2328 		/* If we reached the previous "next", find the next one */
2329 		if (cur_gfn == next_gfn)
2330 			next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2331 		/* Reached the end of memory or of the buffer, stop */
2332 		if ((next_gfn >= mem_end) ||
2333 		    (next_gfn - args->start_gfn >= bufsize))
2334 			return 0;
2335 		cur_gfn++;
2336 		/* Reached the end of the current memslot, take the next one. */
2337 		if (cur_gfn - ms->base_gfn >= ms->npages) {
2338 			ms = gfn_to_memslot(kvm, cur_gfn);
2339 			if (!ms)
2340 				return 0;
2341 		}
2342 	}
2343 	return 0;
2344 }
2345 
2346 /*
2347  * This function searches for the next page with dirty CMMA attributes, and
2348  * saves the attributes in the buffer up to either the end of the buffer or
2349  * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2350  * no trailing clean bytes are saved.
2351  * In case no dirty bits were found, or if CMMA was not enabled or used, the
2352  * output buffer will indicate 0 as length.
2353  */
kvm_s390_get_cmma_bits(struct kvm * kvm,struct kvm_s390_cmma_log * args)2354 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2355 				  struct kvm_s390_cmma_log *args)
2356 {
2357 	unsigned long bufsize;
2358 	int srcu_idx, peek, ret;
2359 	u8 *values;
2360 
2361 	if (!kvm->arch.use_cmma)
2362 		return -ENXIO;
2363 	/* Invalid/unsupported flags were specified */
2364 	if (args->flags & ~KVM_S390_CMMA_PEEK)
2365 		return -EINVAL;
2366 	/* Migration mode query, and we are not doing a migration */
2367 	peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2368 	if (!peek && !kvm->arch.migration_mode)
2369 		return -EINVAL;
2370 	/* CMMA is disabled or was not used, or the buffer has length zero */
2371 	bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2372 	if (!bufsize || !kvm->mm->context.uses_cmm) {
2373 		memset(args, 0, sizeof(*args));
2374 		return 0;
2375 	}
2376 	/* We are not peeking, and there are no dirty pages */
2377 	if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2378 		memset(args, 0, sizeof(*args));
2379 		return 0;
2380 	}
2381 
2382 	values = vmalloc(bufsize);
2383 	if (!values)
2384 		return -ENOMEM;
2385 
2386 	mmap_read_lock(kvm->mm);
2387 	srcu_idx = srcu_read_lock(&kvm->srcu);
2388 	if (peek)
2389 		ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2390 	else
2391 		ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2392 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2393 	mmap_read_unlock(kvm->mm);
2394 
2395 	if (kvm->arch.migration_mode)
2396 		args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2397 	else
2398 		args->remaining = 0;
2399 
2400 	if (copy_to_user((void __user *)args->values, values, args->count))
2401 		ret = -EFAULT;
2402 
2403 	vfree(values);
2404 	return ret;
2405 }
2406 
2407 /*
2408  * This function sets the CMMA attributes for the given pages. If the input
2409  * buffer has zero length, no action is taken, otherwise the attributes are
2410  * set and the mm->context.uses_cmm flag is set.
2411  */
kvm_s390_set_cmma_bits(struct kvm * kvm,const struct kvm_s390_cmma_log * args)2412 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2413 				  const struct kvm_s390_cmma_log *args)
2414 {
2415 	unsigned long hva, mask, pgstev, i;
2416 	uint8_t *bits;
2417 	int srcu_idx, r = 0;
2418 
2419 	mask = args->mask;
2420 
2421 	if (!kvm->arch.use_cmma)
2422 		return -ENXIO;
2423 	/* invalid/unsupported flags */
2424 	if (args->flags != 0)
2425 		return -EINVAL;
2426 	/* Enforce sane limit on memory allocation */
2427 	if (args->count > KVM_S390_CMMA_SIZE_MAX)
2428 		return -EINVAL;
2429 	/* Nothing to do */
2430 	if (args->count == 0)
2431 		return 0;
2432 
2433 	bits = vmalloc(array_size(sizeof(*bits), args->count));
2434 	if (!bits)
2435 		return -ENOMEM;
2436 
2437 	r = copy_from_user(bits, (void __user *)args->values, args->count);
2438 	if (r) {
2439 		r = -EFAULT;
2440 		goto out;
2441 	}
2442 
2443 	mmap_read_lock(kvm->mm);
2444 	srcu_idx = srcu_read_lock(&kvm->srcu);
2445 	for (i = 0; i < args->count; i++) {
2446 		hva = gfn_to_hva(kvm, args->start_gfn + i);
2447 		if (kvm_is_error_hva(hva)) {
2448 			r = -EFAULT;
2449 			break;
2450 		}
2451 
2452 		pgstev = bits[i];
2453 		pgstev = pgstev << 24;
2454 		mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2455 		set_pgste_bits(kvm->mm, hva, mask, pgstev);
2456 	}
2457 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2458 	mmap_read_unlock(kvm->mm);
2459 
2460 	if (!kvm->mm->context.uses_cmm) {
2461 		mmap_write_lock(kvm->mm);
2462 		kvm->mm->context.uses_cmm = 1;
2463 		mmap_write_unlock(kvm->mm);
2464 	}
2465 out:
2466 	vfree(bits);
2467 	return r;
2468 }
2469 
2470 /**
2471  * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2472  * non protected.
2473  * @kvm: the VM whose protected vCPUs are to be converted
2474  * @rc: return value for the RC field of the UVC (in case of error)
2475  * @rrc: return value for the RRC field of the UVC (in case of error)
2476  *
2477  * Does not stop in case of error, tries to convert as many
2478  * CPUs as possible. In case of error, the RC and RRC of the last error are
2479  * returned.
2480  *
2481  * Return: 0 in case of success, otherwise -EIO
2482  */
kvm_s390_cpus_from_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2483 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2484 {
2485 	struct kvm_vcpu *vcpu;
2486 	unsigned long i;
2487 	u16 _rc, _rrc;
2488 	int ret = 0;
2489 
2490 	/*
2491 	 * We ignore failures and try to destroy as many CPUs as possible.
2492 	 * At the same time we must not free the assigned resources when
2493 	 * this fails, as the ultravisor has still access to that memory.
2494 	 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2495 	 * behind.
2496 	 * We want to return the first failure rc and rrc, though.
2497 	 */
2498 	kvm_for_each_vcpu(i, vcpu, kvm) {
2499 		mutex_lock(&vcpu->mutex);
2500 		if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2501 			*rc = _rc;
2502 			*rrc = _rrc;
2503 			ret = -EIO;
2504 		}
2505 		mutex_unlock(&vcpu->mutex);
2506 	}
2507 	/* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2508 	if (use_gisa)
2509 		kvm_s390_gisa_enable(kvm);
2510 	return ret;
2511 }
2512 
2513 /**
2514  * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2515  * to protected.
2516  * @kvm: the VM whose protected vCPUs are to be converted
2517  * @rc: return value for the RC field of the UVC (in case of error)
2518  * @rrc: return value for the RRC field of the UVC (in case of error)
2519  *
2520  * Tries to undo the conversion in case of error.
2521  *
2522  * Return: 0 in case of success, otherwise -EIO
2523  */
kvm_s390_cpus_to_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2524 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2525 {
2526 	unsigned long i;
2527 	int r = 0;
2528 	u16 dummy;
2529 
2530 	struct kvm_vcpu *vcpu;
2531 
2532 	/* Disable the GISA if the ultravisor does not support AIV. */
2533 	if (!uv_has_feature(BIT_UV_FEAT_AIV))
2534 		kvm_s390_gisa_disable(kvm);
2535 
2536 	kvm_for_each_vcpu(i, vcpu, kvm) {
2537 		mutex_lock(&vcpu->mutex);
2538 		r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2539 		mutex_unlock(&vcpu->mutex);
2540 		if (r)
2541 			break;
2542 	}
2543 	if (r)
2544 		kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2545 	return r;
2546 }
2547 
2548 /*
2549  * Here we provide user space with a direct interface to query UV
2550  * related data like UV maxima and available features as well as
2551  * feature specific data.
2552  *
2553  * To facilitate future extension of the data structures we'll try to
2554  * write data up to the maximum requested length.
2555  */
kvm_s390_handle_pv_info(struct kvm_s390_pv_info * info)2556 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2557 {
2558 	ssize_t len_min;
2559 
2560 	switch (info->header.id) {
2561 	case KVM_PV_INFO_VM: {
2562 		len_min =  sizeof(info->header) + sizeof(info->vm);
2563 
2564 		if (info->header.len_max < len_min)
2565 			return -EINVAL;
2566 
2567 		memcpy(info->vm.inst_calls_list,
2568 		       uv_info.inst_calls_list,
2569 		       sizeof(uv_info.inst_calls_list));
2570 
2571 		/* It's max cpuid not max cpus, so it's off by one */
2572 		info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2573 		info->vm.max_guests = uv_info.max_num_sec_conf;
2574 		info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2575 		info->vm.feature_indication = uv_info.uv_feature_indications;
2576 
2577 		return len_min;
2578 	}
2579 	case KVM_PV_INFO_DUMP: {
2580 		len_min =  sizeof(info->header) + sizeof(info->dump);
2581 
2582 		if (info->header.len_max < len_min)
2583 			return -EINVAL;
2584 
2585 		info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2586 		info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2587 		info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2588 		return len_min;
2589 	}
2590 	default:
2591 		return -EINVAL;
2592 	}
2593 }
2594 
kvm_s390_pv_dmp(struct kvm * kvm,struct kvm_pv_cmd * cmd,struct kvm_s390_pv_dmp dmp)2595 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2596 			   struct kvm_s390_pv_dmp dmp)
2597 {
2598 	int r = -EINVAL;
2599 	void __user *result_buff = (void __user *)dmp.buff_addr;
2600 
2601 	switch (dmp.subcmd) {
2602 	case KVM_PV_DUMP_INIT: {
2603 		if (kvm->arch.pv.dumping)
2604 			break;
2605 
2606 		/*
2607 		 * Block SIE entry as concurrent dump UVCs could lead
2608 		 * to validities.
2609 		 */
2610 		kvm_s390_vcpu_block_all(kvm);
2611 
2612 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2613 				  UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2614 		KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2615 			     cmd->rc, cmd->rrc);
2616 		if (!r) {
2617 			kvm->arch.pv.dumping = true;
2618 		} else {
2619 			kvm_s390_vcpu_unblock_all(kvm);
2620 			r = -EINVAL;
2621 		}
2622 		break;
2623 	}
2624 	case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2625 		if (!kvm->arch.pv.dumping)
2626 			break;
2627 
2628 		/*
2629 		 * gaddr is an output parameter since we might stop
2630 		 * early. As dmp will be copied back in our caller, we
2631 		 * don't need to do it ourselves.
2632 		 */
2633 		r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2634 						&cmd->rc, &cmd->rrc);
2635 		break;
2636 	}
2637 	case KVM_PV_DUMP_COMPLETE: {
2638 		if (!kvm->arch.pv.dumping)
2639 			break;
2640 
2641 		r = -EINVAL;
2642 		if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2643 			break;
2644 
2645 		r = kvm_s390_pv_dump_complete(kvm, result_buff,
2646 					      &cmd->rc, &cmd->rrc);
2647 		break;
2648 	}
2649 	default:
2650 		r = -ENOTTY;
2651 		break;
2652 	}
2653 
2654 	return r;
2655 }
2656 
kvm_s390_handle_pv(struct kvm * kvm,struct kvm_pv_cmd * cmd)2657 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2658 {
2659 	const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2660 	void __user *argp = (void __user *)cmd->data;
2661 	int r = 0;
2662 	u16 dummy;
2663 
2664 	if (need_lock)
2665 		mutex_lock(&kvm->lock);
2666 
2667 	switch (cmd->cmd) {
2668 	case KVM_PV_ENABLE: {
2669 		r = -EINVAL;
2670 		if (kvm_s390_pv_is_protected(kvm))
2671 			break;
2672 
2673 		mmap_write_lock(kvm->mm);
2674 		r = gmap_helper_disable_cow_sharing();
2675 		mmap_write_unlock(kvm->mm);
2676 		if (r)
2677 			break;
2678 
2679 		r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2680 		if (r)
2681 			break;
2682 
2683 		r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2684 		if (r)
2685 			kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2686 
2687 		/* we need to block service interrupts from now on */
2688 		set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2689 		break;
2690 	}
2691 	case KVM_PV_ASYNC_CLEANUP_PREPARE:
2692 		r = -EINVAL;
2693 		if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2694 			break;
2695 
2696 		r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2697 		/*
2698 		 * If a CPU could not be destroyed, destroy VM will also fail.
2699 		 * There is no point in trying to destroy it. Instead return
2700 		 * the rc and rrc from the first CPU that failed destroying.
2701 		 */
2702 		if (r)
2703 			break;
2704 		r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2705 
2706 		/* no need to block service interrupts any more */
2707 		clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2708 		break;
2709 	case KVM_PV_ASYNC_CLEANUP_PERFORM:
2710 		r = -EINVAL;
2711 		if (!async_destroy)
2712 			break;
2713 		/* kvm->lock must not be held; this is asserted inside the function. */
2714 		r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2715 		break;
2716 	case KVM_PV_DISABLE: {
2717 		r = -EINVAL;
2718 		if (!kvm_s390_pv_is_protected(kvm))
2719 			break;
2720 
2721 		r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2722 		/*
2723 		 * If a CPU could not be destroyed, destroy VM will also fail.
2724 		 * There is no point in trying to destroy it. Instead return
2725 		 * the rc and rrc from the first CPU that failed destroying.
2726 		 */
2727 		if (r)
2728 			break;
2729 		r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2730 
2731 		/* no need to block service interrupts any more */
2732 		clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2733 		break;
2734 	}
2735 	case KVM_PV_SET_SEC_PARMS: {
2736 		struct kvm_s390_pv_sec_parm parms = {};
2737 		void *hdr;
2738 
2739 		r = -EINVAL;
2740 		if (!kvm_s390_pv_is_protected(kvm))
2741 			break;
2742 
2743 		r = -EFAULT;
2744 		if (copy_from_user(&parms, argp, sizeof(parms)))
2745 			break;
2746 
2747 		/* Currently restricted to 8KB */
2748 		r = -EINVAL;
2749 		if (parms.length > PAGE_SIZE * 2)
2750 			break;
2751 
2752 		r = -ENOMEM;
2753 		hdr = vmalloc(parms.length);
2754 		if (!hdr)
2755 			break;
2756 
2757 		r = -EFAULT;
2758 		if (!copy_from_user(hdr, (void __user *)parms.origin,
2759 				    parms.length))
2760 			r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2761 						      &cmd->rc, &cmd->rrc);
2762 
2763 		vfree(hdr);
2764 		break;
2765 	}
2766 	case KVM_PV_UNPACK: {
2767 		struct kvm_s390_pv_unp unp = {};
2768 
2769 		r = -EINVAL;
2770 		if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2771 			break;
2772 
2773 		r = -EFAULT;
2774 		if (copy_from_user(&unp, argp, sizeof(unp)))
2775 			break;
2776 
2777 		r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2778 				       &cmd->rc, &cmd->rrc);
2779 		break;
2780 	}
2781 	case KVM_PV_VERIFY: {
2782 		r = -EINVAL;
2783 		if (!kvm_s390_pv_is_protected(kvm))
2784 			break;
2785 
2786 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2787 				  UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2788 		KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2789 			     cmd->rrc);
2790 		break;
2791 	}
2792 	case KVM_PV_PREP_RESET: {
2793 		r = -EINVAL;
2794 		if (!kvm_s390_pv_is_protected(kvm))
2795 			break;
2796 
2797 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2798 				  UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2799 		KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2800 			     cmd->rc, cmd->rrc);
2801 		break;
2802 	}
2803 	case KVM_PV_UNSHARE_ALL: {
2804 		r = -EINVAL;
2805 		if (!kvm_s390_pv_is_protected(kvm))
2806 			break;
2807 
2808 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2809 				  UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2810 		KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2811 			     cmd->rc, cmd->rrc);
2812 		break;
2813 	}
2814 	case KVM_PV_INFO: {
2815 		struct kvm_s390_pv_info info = {};
2816 		ssize_t data_len;
2817 
2818 		/*
2819 		 * No need to check the VM protection here.
2820 		 *
2821 		 * Maybe user space wants to query some of the data
2822 		 * when the VM is still unprotected. If we see the
2823 		 * need to fence a new data command we can still
2824 		 * return an error in the info handler.
2825 		 */
2826 
2827 		r = -EFAULT;
2828 		if (copy_from_user(&info, argp, sizeof(info.header)))
2829 			break;
2830 
2831 		r = -EINVAL;
2832 		if (info.header.len_max < sizeof(info.header))
2833 			break;
2834 
2835 		data_len = kvm_s390_handle_pv_info(&info);
2836 		if (data_len < 0) {
2837 			r = data_len;
2838 			break;
2839 		}
2840 		/*
2841 		 * If a data command struct is extended (multiple
2842 		 * times) this can be used to determine how much of it
2843 		 * is valid.
2844 		 */
2845 		info.header.len_written = data_len;
2846 
2847 		r = -EFAULT;
2848 		if (copy_to_user(argp, &info, data_len))
2849 			break;
2850 
2851 		r = 0;
2852 		break;
2853 	}
2854 	case KVM_PV_DUMP: {
2855 		struct kvm_s390_pv_dmp dmp;
2856 
2857 		r = -EINVAL;
2858 		if (!kvm_s390_pv_is_protected(kvm))
2859 			break;
2860 
2861 		r = -EFAULT;
2862 		if (copy_from_user(&dmp, argp, sizeof(dmp)))
2863 			break;
2864 
2865 		r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2866 		if (r)
2867 			break;
2868 
2869 		if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2870 			r = -EFAULT;
2871 			break;
2872 		}
2873 
2874 		break;
2875 	}
2876 	default:
2877 		r = -ENOTTY;
2878 	}
2879 	if (need_lock)
2880 		mutex_unlock(&kvm->lock);
2881 
2882 	return r;
2883 }
2884 
mem_op_validate_common(struct kvm_s390_mem_op * mop,u64 supported_flags)2885 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2886 {
2887 	if (mop->flags & ~supported_flags || !mop->size)
2888 		return -EINVAL;
2889 	if (mop->size > MEM_OP_MAX_SIZE)
2890 		return -E2BIG;
2891 	if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2892 		if (mop->key > 0xf)
2893 			return -EINVAL;
2894 	} else {
2895 		mop->key = 0;
2896 	}
2897 	return 0;
2898 }
2899 
kvm_s390_vm_mem_op_abs(struct kvm * kvm,struct kvm_s390_mem_op * mop)2900 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2901 {
2902 	void __user *uaddr = (void __user *)mop->buf;
2903 	enum gacc_mode acc_mode;
2904 	void *tmpbuf = NULL;
2905 	int r, srcu_idx;
2906 
2907 	r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2908 					KVM_S390_MEMOP_F_CHECK_ONLY);
2909 	if (r)
2910 		return r;
2911 
2912 	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2913 		tmpbuf = vmalloc(mop->size);
2914 		if (!tmpbuf)
2915 			return -ENOMEM;
2916 	}
2917 
2918 	srcu_idx = srcu_read_lock(&kvm->srcu);
2919 
2920 	if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2921 		r = PGM_ADDRESSING;
2922 		goto out_unlock;
2923 	}
2924 
2925 	acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2926 	if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2927 		r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2928 		goto out_unlock;
2929 	}
2930 	if (acc_mode == GACC_FETCH) {
2931 		r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2932 					      mop->size, GACC_FETCH, mop->key);
2933 		if (r)
2934 			goto out_unlock;
2935 		if (copy_to_user(uaddr, tmpbuf, mop->size))
2936 			r = -EFAULT;
2937 	} else {
2938 		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2939 			r = -EFAULT;
2940 			goto out_unlock;
2941 		}
2942 		r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2943 					      mop->size, GACC_STORE, mop->key);
2944 	}
2945 
2946 out_unlock:
2947 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2948 
2949 	vfree(tmpbuf);
2950 	return r;
2951 }
2952 
kvm_s390_vm_mem_op_cmpxchg(struct kvm * kvm,struct kvm_s390_mem_op * mop)2953 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2954 {
2955 	void __user *uaddr = (void __user *)mop->buf;
2956 	void __user *old_addr = (void __user *)mop->old_addr;
2957 	union {
2958 		__uint128_t quad;
2959 		char raw[sizeof(__uint128_t)];
2960 	} old = { .quad = 0}, new = { .quad = 0 };
2961 	unsigned int off_in_quad = sizeof(new) - mop->size;
2962 	int r, srcu_idx;
2963 	bool success;
2964 
2965 	r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2966 	if (r)
2967 		return r;
2968 	/*
2969 	 * This validates off_in_quad. Checking that size is a power
2970 	 * of two is not necessary, as cmpxchg_guest_abs_with_key
2971 	 * takes care of that
2972 	 */
2973 	if (mop->size > sizeof(new))
2974 		return -EINVAL;
2975 	if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
2976 		return -EFAULT;
2977 	if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
2978 		return -EFAULT;
2979 
2980 	srcu_idx = srcu_read_lock(&kvm->srcu);
2981 
2982 	if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2983 		r = PGM_ADDRESSING;
2984 		goto out_unlock;
2985 	}
2986 
2987 	r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
2988 				       new.quad, mop->key, &success);
2989 	if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
2990 		r = -EFAULT;
2991 
2992 out_unlock:
2993 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2994 	return r;
2995 }
2996 
kvm_s390_vm_mem_op(struct kvm * kvm,struct kvm_s390_mem_op * mop)2997 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2998 {
2999 	/*
3000 	 * This is technically a heuristic only, if the kvm->lock is not
3001 	 * taken, it is not guaranteed that the vm is/remains non-protected.
3002 	 * This is ok from a kernel perspective, wrongdoing is detected
3003 	 * on the access, -EFAULT is returned and the vm may crash the
3004 	 * next time it accesses the memory in question.
3005 	 * There is no sane usecase to do switching and a memop on two
3006 	 * different CPUs at the same time.
3007 	 */
3008 	if (kvm_s390_pv_get_handle(kvm))
3009 		return -EINVAL;
3010 
3011 	switch (mop->op) {
3012 	case KVM_S390_MEMOP_ABSOLUTE_READ:
3013 	case KVM_S390_MEMOP_ABSOLUTE_WRITE:
3014 		return kvm_s390_vm_mem_op_abs(kvm, mop);
3015 	case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
3016 		return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
3017 	default:
3018 		return -EINVAL;
3019 	}
3020 }
3021 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3022 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
3023 {
3024 	struct kvm *kvm = filp->private_data;
3025 	void __user *argp = (void __user *)arg;
3026 	struct kvm_device_attr attr;
3027 	int r;
3028 
3029 	switch (ioctl) {
3030 	case KVM_S390_INTERRUPT: {
3031 		struct kvm_s390_interrupt s390int;
3032 
3033 		r = -EFAULT;
3034 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3035 			break;
3036 		r = kvm_s390_inject_vm(kvm, &s390int);
3037 		break;
3038 	}
3039 	case KVM_CREATE_IRQCHIP: {
3040 		r = -EINVAL;
3041 		if (kvm->arch.use_irqchip)
3042 			r = 0;
3043 		break;
3044 	}
3045 	case KVM_SET_DEVICE_ATTR: {
3046 		r = -EFAULT;
3047 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3048 			break;
3049 		r = kvm_s390_vm_set_attr(kvm, &attr);
3050 		break;
3051 	}
3052 	case KVM_GET_DEVICE_ATTR: {
3053 		r = -EFAULT;
3054 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3055 			break;
3056 		r = kvm_s390_vm_get_attr(kvm, &attr);
3057 		break;
3058 	}
3059 	case KVM_HAS_DEVICE_ATTR: {
3060 		r = -EFAULT;
3061 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3062 			break;
3063 		r = kvm_s390_vm_has_attr(kvm, &attr);
3064 		break;
3065 	}
3066 	case KVM_S390_GET_SKEYS: {
3067 		struct kvm_s390_skeys args;
3068 
3069 		r = -EFAULT;
3070 		if (copy_from_user(&args, argp,
3071 				   sizeof(struct kvm_s390_skeys)))
3072 			break;
3073 		r = kvm_s390_get_skeys(kvm, &args);
3074 		break;
3075 	}
3076 	case KVM_S390_SET_SKEYS: {
3077 		struct kvm_s390_skeys args;
3078 
3079 		r = -EFAULT;
3080 		if (copy_from_user(&args, argp,
3081 				   sizeof(struct kvm_s390_skeys)))
3082 			break;
3083 		r = kvm_s390_set_skeys(kvm, &args);
3084 		break;
3085 	}
3086 	case KVM_S390_GET_CMMA_BITS: {
3087 		struct kvm_s390_cmma_log args;
3088 
3089 		r = -EFAULT;
3090 		if (copy_from_user(&args, argp, sizeof(args)))
3091 			break;
3092 		mutex_lock(&kvm->slots_lock);
3093 		r = kvm_s390_get_cmma_bits(kvm, &args);
3094 		mutex_unlock(&kvm->slots_lock);
3095 		if (!r) {
3096 			r = copy_to_user(argp, &args, sizeof(args));
3097 			if (r)
3098 				r = -EFAULT;
3099 		}
3100 		break;
3101 	}
3102 	case KVM_S390_SET_CMMA_BITS: {
3103 		struct kvm_s390_cmma_log args;
3104 
3105 		r = -EFAULT;
3106 		if (copy_from_user(&args, argp, sizeof(args)))
3107 			break;
3108 		mutex_lock(&kvm->slots_lock);
3109 		r = kvm_s390_set_cmma_bits(kvm, &args);
3110 		mutex_unlock(&kvm->slots_lock);
3111 		break;
3112 	}
3113 	case KVM_S390_PV_COMMAND: {
3114 		struct kvm_pv_cmd args;
3115 
3116 		/* protvirt means user cpu state */
3117 		kvm_s390_set_user_cpu_state_ctrl(kvm);
3118 		r = 0;
3119 		if (!is_prot_virt_host()) {
3120 			r = -EINVAL;
3121 			break;
3122 		}
3123 		if (copy_from_user(&args, argp, sizeof(args))) {
3124 			r = -EFAULT;
3125 			break;
3126 		}
3127 		if (args.flags) {
3128 			r = -EINVAL;
3129 			break;
3130 		}
3131 		/* must be called without kvm->lock */
3132 		r = kvm_s390_handle_pv(kvm, &args);
3133 		if (copy_to_user(argp, &args, sizeof(args))) {
3134 			r = -EFAULT;
3135 			break;
3136 		}
3137 		break;
3138 	}
3139 	case KVM_S390_MEM_OP: {
3140 		struct kvm_s390_mem_op mem_op;
3141 
3142 		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3143 			r = kvm_s390_vm_mem_op(kvm, &mem_op);
3144 		else
3145 			r = -EFAULT;
3146 		break;
3147 	}
3148 	case KVM_S390_ZPCI_OP: {
3149 		struct kvm_s390_zpci_op args;
3150 
3151 		r = -EINVAL;
3152 		if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3153 			break;
3154 		if (copy_from_user(&args, argp, sizeof(args))) {
3155 			r = -EFAULT;
3156 			break;
3157 		}
3158 		r = kvm_s390_pci_zpci_op(kvm, &args);
3159 		break;
3160 	}
3161 	default:
3162 		r = -ENOTTY;
3163 	}
3164 
3165 	return r;
3166 }
3167 
kvm_s390_apxa_installed(void)3168 static int kvm_s390_apxa_installed(void)
3169 {
3170 	struct ap_config_info info;
3171 
3172 	if (ap_instructions_available()) {
3173 		if (ap_qci(&info) == 0)
3174 			return info.apxa;
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 /*
3181  * The format of the crypto control block (CRYCB) is specified in the 3 low
3182  * order bits of the CRYCB designation (CRYCBD) field as follows:
3183  * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3184  *	     AP extended addressing (APXA) facility are installed.
3185  * Format 1: The APXA facility is not installed but the MSAX3 facility is.
3186  * Format 2: Both the APXA and MSAX3 facilities are installed
3187  */
kvm_s390_set_crycb_format(struct kvm * kvm)3188 static void kvm_s390_set_crycb_format(struct kvm *kvm)
3189 {
3190 	kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb);
3191 
3192 	/* Clear the CRYCB format bits - i.e., set format 0 by default */
3193 	kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3194 
3195 	/* Check whether MSAX3 is installed */
3196 	if (!test_kvm_facility(kvm, 76))
3197 		return;
3198 
3199 	if (kvm_s390_apxa_installed())
3200 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3201 	else
3202 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3203 }
3204 
3205 /*
3206  * kvm_arch_crypto_set_masks
3207  *
3208  * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3209  *	 to be set.
3210  * @apm: the mask identifying the accessible AP adapters
3211  * @aqm: the mask identifying the accessible AP domains
3212  * @adm: the mask identifying the accessible AP control domains
3213  *
3214  * Set the masks that identify the adapters, domains and control domains to
3215  * which the KVM guest is granted access.
3216  *
3217  * Note: The kvm->lock mutex must be locked by the caller before invoking this
3218  *	 function.
3219  */
kvm_arch_crypto_set_masks(struct kvm * kvm,unsigned long * apm,unsigned long * aqm,unsigned long * adm)3220 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3221 			       unsigned long *aqm, unsigned long *adm)
3222 {
3223 	struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3224 
3225 	kvm_s390_vcpu_block_all(kvm);
3226 
3227 	switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3228 	case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3229 		memcpy(crycb->apcb1.apm, apm, 32);
3230 		VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3231 			 apm[0], apm[1], apm[2], apm[3]);
3232 		memcpy(crycb->apcb1.aqm, aqm, 32);
3233 		VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3234 			 aqm[0], aqm[1], aqm[2], aqm[3]);
3235 		memcpy(crycb->apcb1.adm, adm, 32);
3236 		VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3237 			 adm[0], adm[1], adm[2], adm[3]);
3238 		break;
3239 	case CRYCB_FORMAT1:
3240 	case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3241 		memcpy(crycb->apcb0.apm, apm, 8);
3242 		memcpy(crycb->apcb0.aqm, aqm, 2);
3243 		memcpy(crycb->apcb0.adm, adm, 2);
3244 		VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3245 			 apm[0], *((unsigned short *)aqm),
3246 			 *((unsigned short *)adm));
3247 		break;
3248 	default:	/* Can not happen */
3249 		break;
3250 	}
3251 
3252 	/* recreate the shadow crycb for each vcpu */
3253 	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3254 	kvm_s390_vcpu_unblock_all(kvm);
3255 }
3256 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3257 
3258 /*
3259  * kvm_arch_crypto_clear_masks
3260  *
3261  * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3262  *	 to be cleared.
3263  *
3264  * Clear the masks that identify the adapters, domains and control domains to
3265  * which the KVM guest is granted access.
3266  *
3267  * Note: The kvm->lock mutex must be locked by the caller before invoking this
3268  *	 function.
3269  */
kvm_arch_crypto_clear_masks(struct kvm * kvm)3270 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3271 {
3272 	kvm_s390_vcpu_block_all(kvm);
3273 
3274 	memset(&kvm->arch.crypto.crycb->apcb0, 0,
3275 	       sizeof(kvm->arch.crypto.crycb->apcb0));
3276 	memset(&kvm->arch.crypto.crycb->apcb1, 0,
3277 	       sizeof(kvm->arch.crypto.crycb->apcb1));
3278 
3279 	VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3280 	/* recreate the shadow crycb for each vcpu */
3281 	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3282 	kvm_s390_vcpu_unblock_all(kvm);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3285 
kvm_s390_get_initial_cpuid(void)3286 static u64 kvm_s390_get_initial_cpuid(void)
3287 {
3288 	struct cpuid cpuid;
3289 
3290 	get_cpu_id(&cpuid);
3291 	cpuid.version = 0xff;
3292 	return *((u64 *) &cpuid);
3293 }
3294 
kvm_s390_crypto_init(struct kvm * kvm)3295 static void kvm_s390_crypto_init(struct kvm *kvm)
3296 {
3297 	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3298 	kvm_s390_set_crycb_format(kvm);
3299 	init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3300 
3301 	if (!test_kvm_facility(kvm, 76))
3302 		return;
3303 
3304 	/* Enable AES/DEA protected key functions by default */
3305 	kvm->arch.crypto.aes_kw = 1;
3306 	kvm->arch.crypto.dea_kw = 1;
3307 	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3308 			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3309 	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3310 			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3311 }
3312 
sca_dispose(struct kvm * kvm)3313 static void sca_dispose(struct kvm *kvm)
3314 {
3315 	free_pages_exact(kvm->arch.sca, sizeof(*kvm->arch.sca));
3316 	kvm->arch.sca = NULL;
3317 }
3318 
kvm_arch_free_vm(struct kvm * kvm)3319 void kvm_arch_free_vm(struct kvm *kvm)
3320 {
3321 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3322 		kvm_s390_pci_clear_list(kvm);
3323 
3324 	__kvm_arch_free_vm(kvm);
3325 }
3326 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)3327 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3328 {
3329 	gfp_t alloc_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
3330 	char debug_name[16];
3331 	int i, rc;
3332 
3333 	rc = -EINVAL;
3334 #ifdef CONFIG_KVM_S390_UCONTROL
3335 	if (type & ~KVM_VM_S390_UCONTROL)
3336 		goto out_err;
3337 	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3338 		goto out_err;
3339 #else
3340 	if (type)
3341 		goto out_err;
3342 #endif
3343 
3344 	rc = s390_enable_sie();
3345 	if (rc)
3346 		goto out_err;
3347 
3348 	rc = -ENOMEM;
3349 
3350 	if (!sclp.has_64bscao)
3351 		alloc_flags |= GFP_DMA;
3352 	mutex_lock(&kvm_lock);
3353 
3354 	kvm->arch.sca = alloc_pages_exact(sizeof(*kvm->arch.sca), alloc_flags);
3355 	mutex_unlock(&kvm_lock);
3356 	if (!kvm->arch.sca)
3357 		goto out_err;
3358 
3359 	snprintf(debug_name, sizeof(debug_name), "kvm-%u", current->pid);
3360 
3361 	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3362 	if (!kvm->arch.dbf)
3363 		goto out_err;
3364 
3365 	BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3366 	kvm->arch.sie_page2 =
3367 	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3368 	if (!kvm->arch.sie_page2)
3369 		goto out_err;
3370 
3371 	kvm->arch.sie_page2->kvm = kvm;
3372 	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3373 
3374 	for (i = 0; i < kvm_s390_fac_size(); i++) {
3375 		kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3376 					      (kvm_s390_fac_base[i] |
3377 					       kvm_s390_fac_ext[i]);
3378 		kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3379 					      kvm_s390_fac_base[i];
3380 	}
3381 	kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3382 
3383 	/* we are always in czam mode - even on pre z14 machines */
3384 	set_kvm_facility(kvm->arch.model.fac_mask, 138);
3385 	set_kvm_facility(kvm->arch.model.fac_list, 138);
3386 	/* we emulate STHYI in kvm */
3387 	set_kvm_facility(kvm->arch.model.fac_mask, 74);
3388 	set_kvm_facility(kvm->arch.model.fac_list, 74);
3389 	if (machine_has_tlb_guest()) {
3390 		set_kvm_facility(kvm->arch.model.fac_mask, 147);
3391 		set_kvm_facility(kvm->arch.model.fac_list, 147);
3392 	}
3393 
3394 	if (css_general_characteristics.aiv && test_facility(65))
3395 		set_kvm_facility(kvm->arch.model.fac_mask, 65);
3396 
3397 	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3398 	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3399 
3400 	kvm->arch.model.uv_feat_guest.feat = 0;
3401 
3402 	kvm_s390_crypto_init(kvm);
3403 
3404 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3405 		mutex_lock(&kvm->lock);
3406 		kvm_s390_pci_init_list(kvm);
3407 		kvm_s390_vcpu_pci_enable_interp(kvm);
3408 		mutex_unlock(&kvm->lock);
3409 	}
3410 
3411 	mutex_init(&kvm->arch.float_int.ais_lock);
3412 	spin_lock_init(&kvm->arch.float_int.lock);
3413 	for (i = 0; i < FIRQ_LIST_COUNT; i++)
3414 		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3415 	init_waitqueue_head(&kvm->arch.ipte_wq);
3416 	mutex_init(&kvm->arch.ipte_mutex);
3417 
3418 	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3419 	VM_EVENT(kvm, 3, "vm created with type %lu", type);
3420 
3421 	if (type & KVM_VM_S390_UCONTROL) {
3422 		struct kvm_userspace_memory_region2 fake_memslot = {
3423 			.slot = KVM_S390_UCONTROL_MEMSLOT,
3424 			.guest_phys_addr = 0,
3425 			.userspace_addr = 0,
3426 			.memory_size = ALIGN_DOWN(TASK_SIZE, _SEGMENT_SIZE),
3427 			.flags = 0,
3428 		};
3429 
3430 		kvm->arch.gmap = NULL;
3431 		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
3432 		/* one flat fake memslot covering the whole address-space */
3433 		mutex_lock(&kvm->slots_lock);
3434 		KVM_BUG_ON(kvm_set_internal_memslot(kvm, &fake_memslot), kvm);
3435 		mutex_unlock(&kvm->slots_lock);
3436 	} else {
3437 		if (sclp.hamax == U64_MAX)
3438 			kvm->arch.mem_limit = TASK_SIZE_MAX;
3439 		else
3440 			kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
3441 						    sclp.hamax + 1);
3442 		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
3443 		if (!kvm->arch.gmap)
3444 			goto out_err;
3445 		kvm->arch.gmap->private = kvm;
3446 		kvm->arch.gmap->pfault_enabled = 0;
3447 	}
3448 
3449 	kvm->arch.use_pfmfi = sclp.has_pfmfi;
3450 	kvm->arch.use_skf = sclp.has_skey;
3451 	spin_lock_init(&kvm->arch.start_stop_lock);
3452 	kvm_s390_vsie_init(kvm);
3453 	if (use_gisa)
3454 		kvm_s390_gisa_init(kvm);
3455 	INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3456 	kvm->arch.pv.set_aside = NULL;
3457 	KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
3458 
3459 	return 0;
3460 out_err:
3461 	free_page((unsigned long)kvm->arch.sie_page2);
3462 	debug_unregister(kvm->arch.dbf);
3463 	sca_dispose(kvm);
3464 	KVM_EVENT(3, "creation of vm failed: %d", rc);
3465 	return rc;
3466 }
3467 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)3468 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3469 {
3470 	u16 rc, rrc;
3471 
3472 	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3473 	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3474 	kvm_s390_clear_local_irqs(vcpu);
3475 	kvm_clear_async_pf_completion_queue(vcpu);
3476 	if (!kvm_is_ucontrol(vcpu->kvm))
3477 		sca_del_vcpu(vcpu);
3478 	kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3479 
3480 	if (kvm_is_ucontrol(vcpu->kvm))
3481 		gmap_remove(vcpu->arch.gmap);
3482 
3483 	if (vcpu->kvm->arch.use_cmma)
3484 		kvm_s390_vcpu_unsetup_cmma(vcpu);
3485 	/* We can not hold the vcpu mutex here, we are already dying */
3486 	if (kvm_s390_pv_cpu_get_handle(vcpu))
3487 		kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3488 	free_page((unsigned long)(vcpu->arch.sie_block));
3489 }
3490 
kvm_arch_destroy_vm(struct kvm * kvm)3491 void kvm_arch_destroy_vm(struct kvm *kvm)
3492 {
3493 	u16 rc, rrc;
3494 
3495 	kvm_destroy_vcpus(kvm);
3496 	sca_dispose(kvm);
3497 	kvm_s390_gisa_destroy(kvm);
3498 	/*
3499 	 * We are already at the end of life and kvm->lock is not taken.
3500 	 * This is ok as the file descriptor is closed by now and nobody
3501 	 * can mess with the pv state.
3502 	 */
3503 	kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3504 	/*
3505 	 * Remove the mmu notifier only when the whole KVM VM is torn down,
3506 	 * and only if one was registered to begin with. If the VM is
3507 	 * currently not protected, but has been previously been protected,
3508 	 * then it's possible that the notifier is still registered.
3509 	 */
3510 	if (kvm->arch.pv.mmu_notifier.ops)
3511 		mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3512 
3513 	debug_unregister(kvm->arch.dbf);
3514 	free_page((unsigned long)kvm->arch.sie_page2);
3515 	if (!kvm_is_ucontrol(kvm))
3516 		gmap_remove(kvm->arch.gmap);
3517 	kvm_s390_destroy_adapters(kvm);
3518 	kvm_s390_clear_float_irqs(kvm);
3519 	kvm_s390_vsie_destroy(kvm);
3520 	KVM_EVENT(3, "vm 0x%p destroyed", kvm);
3521 }
3522 
3523 /* Section: vcpu related */
__kvm_ucontrol_vcpu_init(struct kvm_vcpu * vcpu)3524 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
3525 {
3526 	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
3527 	if (!vcpu->arch.gmap)
3528 		return -ENOMEM;
3529 	vcpu->arch.gmap->private = vcpu->kvm;
3530 
3531 	return 0;
3532 }
3533 
sca_del_vcpu(struct kvm_vcpu * vcpu)3534 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3535 {
3536 	struct esca_block *sca = vcpu->kvm->arch.sca;
3537 
3538 	if (!kvm_s390_use_sca_entries())
3539 		return;
3540 
3541 	clear_bit_inv(vcpu->vcpu_id, (unsigned long *)sca->mcn);
3542 	sca->cpu[vcpu->vcpu_id].sda = 0;
3543 }
3544 
sca_add_vcpu(struct kvm_vcpu * vcpu)3545 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3546 {
3547 	struct esca_block *sca = vcpu->kvm->arch.sca;
3548 	phys_addr_t sca_phys = virt_to_phys(sca);
3549 
3550 	/* we still need the sca header for the ipte control */
3551 	vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3552 	vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3553 	vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3554 
3555 	if (!kvm_s390_use_sca_entries())
3556 		return;
3557 
3558 	set_bit_inv(vcpu->vcpu_id, (unsigned long *)sca->mcn);
3559 	sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3560 }
3561 
sca_can_add_vcpu(struct kvm * kvm,unsigned int id)3562 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3563 {
3564 	if (!kvm_s390_use_sca_entries())
3565 		return id < KVM_MAX_VCPUS;
3566 
3567 	return id < KVM_S390_ESCA_CPU_SLOTS;
3568 }
3569 
3570 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__start_cpu_timer_accounting(struct kvm_vcpu * vcpu)3571 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3572 {
3573 	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3574 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3575 	vcpu->arch.cputm_start = get_tod_clock_fast();
3576 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3577 }
3578 
3579 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__stop_cpu_timer_accounting(struct kvm_vcpu * vcpu)3580 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3581 {
3582 	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3583 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3584 	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3585 	vcpu->arch.cputm_start = 0;
3586 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3587 }
3588 
3589 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3590 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3591 {
3592 	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3593 	vcpu->arch.cputm_enabled = true;
3594 	__start_cpu_timer_accounting(vcpu);
3595 }
3596 
3597 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3598 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3599 {
3600 	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3601 	__stop_cpu_timer_accounting(vcpu);
3602 	vcpu->arch.cputm_enabled = false;
3603 }
3604 
enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3605 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3606 {
3607 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3608 	__enable_cpu_timer_accounting(vcpu);
3609 	preempt_enable();
3610 }
3611 
disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3612 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3613 {
3614 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3615 	__disable_cpu_timer_accounting(vcpu);
3616 	preempt_enable();
3617 }
3618 
3619 /* set the cpu timer - may only be called from the VCPU thread itself */
kvm_s390_set_cpu_timer(struct kvm_vcpu * vcpu,__u64 cputm)3620 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3621 {
3622 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3623 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3624 	if (vcpu->arch.cputm_enabled)
3625 		vcpu->arch.cputm_start = get_tod_clock_fast();
3626 	vcpu->arch.sie_block->cputm = cputm;
3627 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3628 	preempt_enable();
3629 }
3630 
3631 /* update and get the cpu timer - can also be called from other VCPU threads */
kvm_s390_get_cpu_timer(struct kvm_vcpu * vcpu)3632 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3633 {
3634 	unsigned int seq;
3635 	__u64 value;
3636 
3637 	if (unlikely(!vcpu->arch.cputm_enabled))
3638 		return vcpu->arch.sie_block->cputm;
3639 
3640 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3641 	do {
3642 		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3643 		/*
3644 		 * If the writer would ever execute a read in the critical
3645 		 * section, e.g. in irq context, we have a deadlock.
3646 		 */
3647 		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3648 		value = vcpu->arch.sie_block->cputm;
3649 		/* if cputm_start is 0, accounting is being started/stopped */
3650 		if (likely(vcpu->arch.cputm_start))
3651 			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3652 	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3653 	preempt_enable();
3654 	return value;
3655 }
3656 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3657 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3658 {
3659 
3660 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3661 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3662 		__start_cpu_timer_accounting(vcpu);
3663 	vcpu->cpu = cpu;
3664 }
3665 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3666 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3667 {
3668 	vcpu->cpu = -1;
3669 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3670 		__stop_cpu_timer_accounting(vcpu);
3671 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3672 
3673 }
3674 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)3675 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3676 {
3677 	mutex_lock(&vcpu->kvm->lock);
3678 	preempt_disable();
3679 	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3680 	vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3681 	preempt_enable();
3682 	mutex_unlock(&vcpu->kvm->lock);
3683 	if (!kvm_is_ucontrol(vcpu->kvm)) {
3684 		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3685 		sca_add_vcpu(vcpu);
3686 	}
3687 	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3688 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3689 }
3690 
kvm_has_pckmo_subfunc(struct kvm * kvm,unsigned long nr)3691 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3692 {
3693 	if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3694 	    test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3695 		return true;
3696 	return false;
3697 }
3698 
kvm_has_pckmo_ecc(struct kvm * kvm)3699 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3700 {
3701 	/* At least one ECC subfunction must be present */
3702 	return kvm_has_pckmo_subfunc(kvm, 32) ||
3703 	       kvm_has_pckmo_subfunc(kvm, 33) ||
3704 	       kvm_has_pckmo_subfunc(kvm, 34) ||
3705 	       kvm_has_pckmo_subfunc(kvm, 40) ||
3706 	       kvm_has_pckmo_subfunc(kvm, 41);
3707 
3708 }
3709 
kvm_has_pckmo_hmac(struct kvm * kvm)3710 static bool kvm_has_pckmo_hmac(struct kvm *kvm)
3711 {
3712 	/* At least one HMAC subfunction must be present */
3713 	return kvm_has_pckmo_subfunc(kvm, 118) ||
3714 	       kvm_has_pckmo_subfunc(kvm, 122);
3715 }
3716 
kvm_s390_vcpu_crypto_setup(struct kvm_vcpu * vcpu)3717 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3718 {
3719 	/*
3720 	 * If the AP instructions are not being interpreted and the MSAX3
3721 	 * facility is not configured for the guest, there is nothing to set up.
3722 	 */
3723 	if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3724 		return;
3725 
3726 	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3727 	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3728 	vcpu->arch.sie_block->eca &= ~ECA_APIE;
3729 	vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC);
3730 
3731 	if (vcpu->kvm->arch.crypto.apie)
3732 		vcpu->arch.sie_block->eca |= ECA_APIE;
3733 
3734 	/* Set up protected key support */
3735 	if (vcpu->kvm->arch.crypto.aes_kw) {
3736 		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3737 		/* ecc/hmac is also wrapped with AES key */
3738 		if (kvm_has_pckmo_ecc(vcpu->kvm))
3739 			vcpu->arch.sie_block->ecd |= ECD_ECC;
3740 		if (kvm_has_pckmo_hmac(vcpu->kvm))
3741 			vcpu->arch.sie_block->ecd |= ECD_HMAC;
3742 	}
3743 
3744 	if (vcpu->kvm->arch.crypto.dea_kw)
3745 		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3746 }
3747 
kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu * vcpu)3748 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3749 {
3750 	free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3751 	vcpu->arch.sie_block->cbrlo = 0;
3752 }
3753 
kvm_s390_vcpu_setup_cmma(struct kvm_vcpu * vcpu)3754 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3755 {
3756 	void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3757 
3758 	if (!cbrlo_page)
3759 		return -ENOMEM;
3760 
3761 	vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3762 	return 0;
3763 }
3764 
kvm_s390_vcpu_setup_model(struct kvm_vcpu * vcpu)3765 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3766 {
3767 	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3768 
3769 	vcpu->arch.sie_block->ibc = model->ibc;
3770 	if (test_kvm_facility(vcpu->kvm, 7))
3771 		vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3772 }
3773 
kvm_s390_vcpu_setup(struct kvm_vcpu * vcpu)3774 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3775 {
3776 	int rc = 0;
3777 	u16 uvrc, uvrrc;
3778 
3779 	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3780 						    CPUSTAT_SM |
3781 						    CPUSTAT_STOPPED);
3782 
3783 	if (test_kvm_facility(vcpu->kvm, 78))
3784 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3785 	else if (test_kvm_facility(vcpu->kvm, 8))
3786 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3787 
3788 	kvm_s390_vcpu_setup_model(vcpu);
3789 
3790 	/* pgste_set_pte has special handling for !machine_has_esop() */
3791 	if (machine_has_esop())
3792 		vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3793 	if (test_kvm_facility(vcpu->kvm, 9))
3794 		vcpu->arch.sie_block->ecb |= ECB_SRSI;
3795 	if (test_kvm_facility(vcpu->kvm, 11))
3796 		vcpu->arch.sie_block->ecb |= ECB_PTF;
3797 	if (test_kvm_facility(vcpu->kvm, 73))
3798 		vcpu->arch.sie_block->ecb |= ECB_TE;
3799 	if (!kvm_is_ucontrol(vcpu->kvm))
3800 		vcpu->arch.sie_block->ecb |= ECB_SPECI;
3801 
3802 	if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3803 		vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3804 	if (test_kvm_facility(vcpu->kvm, 130))
3805 		vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3806 	vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3807 	if (sclp.has_cei)
3808 		vcpu->arch.sie_block->eca |= ECA_CEI;
3809 	if (sclp.has_ib)
3810 		vcpu->arch.sie_block->eca |= ECA_IB;
3811 	if (sclp.has_siif)
3812 		vcpu->arch.sie_block->eca |= ECA_SII;
3813 	if (kvm_s390_use_sca_entries())
3814 		vcpu->arch.sie_block->eca |= ECA_SIGPI;
3815 	if (test_kvm_facility(vcpu->kvm, 129)) {
3816 		vcpu->arch.sie_block->eca |= ECA_VX;
3817 		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3818 	}
3819 	if (test_kvm_facility(vcpu->kvm, 139))
3820 		vcpu->arch.sie_block->ecd |= ECD_MEF;
3821 	if (test_kvm_facility(vcpu->kvm, 156))
3822 		vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3823 	if (vcpu->arch.sie_block->gd) {
3824 		vcpu->arch.sie_block->eca |= ECA_AIV;
3825 		VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3826 			   vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3827 	}
3828 	vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3829 	vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3830 
3831 	if (sclp.has_kss)
3832 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3833 	else
3834 		vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3835 
3836 	if (vcpu->kvm->arch.use_cmma) {
3837 		rc = kvm_s390_vcpu_setup_cmma(vcpu);
3838 		if (rc)
3839 			return rc;
3840 	}
3841 	hrtimer_setup(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup, CLOCK_MONOTONIC,
3842 		      HRTIMER_MODE_REL);
3843 
3844 	vcpu->arch.sie_block->hpid = HPID_KVM;
3845 
3846 	kvm_s390_vcpu_crypto_setup(vcpu);
3847 
3848 	kvm_s390_vcpu_pci_setup(vcpu);
3849 
3850 	mutex_lock(&vcpu->kvm->lock);
3851 	if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3852 		rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3853 		if (rc)
3854 			kvm_s390_vcpu_unsetup_cmma(vcpu);
3855 	}
3856 	mutex_unlock(&vcpu->kvm->lock);
3857 
3858 	return rc;
3859 }
3860 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)3861 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3862 {
3863 	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3864 		return -EINVAL;
3865 	return 0;
3866 }
3867 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)3868 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3869 {
3870 	struct sie_page *sie_page;
3871 	int rc;
3872 
3873 	BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3874 	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3875 	if (!sie_page)
3876 		return -ENOMEM;
3877 
3878 	vcpu->arch.sie_block = &sie_page->sie_block;
3879 	vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3880 
3881 	/* the real guest size will always be smaller than msl */
3882 	vcpu->arch.sie_block->mso = 0;
3883 	vcpu->arch.sie_block->msl = sclp.hamax;
3884 
3885 	vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3886 	spin_lock_init(&vcpu->arch.local_int.lock);
3887 	vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3888 	seqcount_init(&vcpu->arch.cputm_seqcount);
3889 
3890 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3891 	kvm_clear_async_pf_completion_queue(vcpu);
3892 	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
3893 				    KVM_SYNC_GPRS |
3894 				    KVM_SYNC_ACRS |
3895 				    KVM_SYNC_CRS |
3896 				    KVM_SYNC_ARCH0 |
3897 				    KVM_SYNC_PFAULT |
3898 				    KVM_SYNC_DIAG318;
3899 	vcpu->arch.acrs_loaded = false;
3900 	kvm_s390_set_prefix(vcpu, 0);
3901 	if (test_kvm_facility(vcpu->kvm, 64))
3902 		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
3903 	if (test_kvm_facility(vcpu->kvm, 82))
3904 		vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
3905 	if (test_kvm_facility(vcpu->kvm, 133))
3906 		vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
3907 	if (test_kvm_facility(vcpu->kvm, 156))
3908 		vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
3909 	/* fprs can be synchronized via vrs, even if the guest has no vx. With
3910 	 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format.
3911 	 */
3912 	if (cpu_has_vx())
3913 		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
3914 	else
3915 		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
3916 
3917 	if (kvm_is_ucontrol(vcpu->kvm)) {
3918 		rc = __kvm_ucontrol_vcpu_init(vcpu);
3919 		if (rc)
3920 			goto out_free_sie_block;
3921 	}
3922 
3923 	VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%p, sie block at 0x%p",
3924 		 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3925 	trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3926 
3927 	rc = kvm_s390_vcpu_setup(vcpu);
3928 	if (rc)
3929 		goto out_ucontrol_uninit;
3930 
3931 	kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3932 	return 0;
3933 
3934 out_ucontrol_uninit:
3935 	if (kvm_is_ucontrol(vcpu->kvm))
3936 		gmap_remove(vcpu->arch.gmap);
3937 out_free_sie_block:
3938 	free_page((unsigned long)(vcpu->arch.sie_block));
3939 	return rc;
3940 }
3941 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)3942 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3943 {
3944 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
3945 	return kvm_s390_vcpu_has_irq(vcpu, 0);
3946 }
3947 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)3948 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
3949 {
3950 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
3951 }
3952 
kvm_s390_vcpu_block(struct kvm_vcpu * vcpu)3953 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
3954 {
3955 	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
3956 	exit_sie(vcpu);
3957 }
3958 
kvm_s390_vcpu_unblock(struct kvm_vcpu * vcpu)3959 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
3960 {
3961 	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
3962 }
3963 
kvm_s390_vcpu_request(struct kvm_vcpu * vcpu)3964 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
3965 {
3966 	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
3967 	exit_sie(vcpu);
3968 }
3969 
kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu * vcpu)3970 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
3971 {
3972 	return atomic_read(&vcpu->arch.sie_block->prog20) &
3973 	       (PROG_BLOCK_SIE | PROG_REQUEST);
3974 }
3975 
kvm_s390_vcpu_request_handled(struct kvm_vcpu * vcpu)3976 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
3977 {
3978 	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
3979 }
3980 
3981 /*
3982  * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
3983  * If the CPU is not running (e.g. waiting as idle) the function will
3984  * return immediately. */
exit_sie(struct kvm_vcpu * vcpu)3985 void exit_sie(struct kvm_vcpu *vcpu)
3986 {
3987 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
3988 	kvm_s390_vsie_kick(vcpu);
3989 	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
3990 		cpu_relax();
3991 }
3992 
3993 /* Kick a guest cpu out of SIE to process a request synchronously */
kvm_s390_sync_request(int req,struct kvm_vcpu * vcpu)3994 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
3995 {
3996 	__kvm_make_request(req, vcpu);
3997 	kvm_s390_vcpu_request(vcpu);
3998 }
3999 
kvm_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)4000 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
4001 			      unsigned long end)
4002 {
4003 	struct kvm *kvm = gmap->private;
4004 	struct kvm_vcpu *vcpu;
4005 	unsigned long prefix;
4006 	unsigned long i;
4007 
4008 	trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap));
4009 
4010 	if (gmap_is_shadow(gmap))
4011 		return;
4012 	if (start >= 1UL << 31)
4013 		/* We are only interested in prefix pages */
4014 		return;
4015 	kvm_for_each_vcpu(i, vcpu, kvm) {
4016 		/* match against both prefix pages */
4017 		prefix = kvm_s390_get_prefix(vcpu);
4018 		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
4019 			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
4020 				   start, end);
4021 			kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4022 		}
4023 	}
4024 }
4025 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)4026 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
4027 {
4028 	/* do not poll with more than halt_poll_max_steal percent of steal time */
4029 	if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >=
4030 	    READ_ONCE(halt_poll_max_steal)) {
4031 		vcpu->stat.halt_no_poll_steal++;
4032 		return true;
4033 	}
4034 	return false;
4035 }
4036 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)4037 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
4038 {
4039 	/* kvm common code refers to this, but never calls it */
4040 	BUG();
4041 	return 0;
4042 }
4043 
kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4044 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
4045 					   struct kvm_one_reg *reg)
4046 {
4047 	int r = -EINVAL;
4048 
4049 	switch (reg->id) {
4050 	case KVM_REG_S390_TODPR:
4051 		r = put_user(vcpu->arch.sie_block->todpr,
4052 			     (u32 __user *)reg->addr);
4053 		break;
4054 	case KVM_REG_S390_EPOCHDIFF:
4055 		r = put_user(vcpu->arch.sie_block->epoch,
4056 			     (u64 __user *)reg->addr);
4057 		break;
4058 	case KVM_REG_S390_CPU_TIMER:
4059 		r = put_user(kvm_s390_get_cpu_timer(vcpu),
4060 			     (u64 __user *)reg->addr);
4061 		break;
4062 	case KVM_REG_S390_CLOCK_COMP:
4063 		r = put_user(vcpu->arch.sie_block->ckc,
4064 			     (u64 __user *)reg->addr);
4065 		break;
4066 	case KVM_REG_S390_PFTOKEN:
4067 		r = put_user(vcpu->arch.pfault_token,
4068 			     (u64 __user *)reg->addr);
4069 		break;
4070 	case KVM_REG_S390_PFCOMPARE:
4071 		r = put_user(vcpu->arch.pfault_compare,
4072 			     (u64 __user *)reg->addr);
4073 		break;
4074 	case KVM_REG_S390_PFSELECT:
4075 		r = put_user(vcpu->arch.pfault_select,
4076 			     (u64 __user *)reg->addr);
4077 		break;
4078 	case KVM_REG_S390_PP:
4079 		r = put_user(vcpu->arch.sie_block->pp,
4080 			     (u64 __user *)reg->addr);
4081 		break;
4082 	case KVM_REG_S390_GBEA:
4083 		r = put_user(vcpu->arch.sie_block->gbea,
4084 			     (u64 __user *)reg->addr);
4085 		break;
4086 	default:
4087 		break;
4088 	}
4089 
4090 	return r;
4091 }
4092 
kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4093 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
4094 					   struct kvm_one_reg *reg)
4095 {
4096 	int r = -EINVAL;
4097 	__u64 val;
4098 
4099 	switch (reg->id) {
4100 	case KVM_REG_S390_TODPR:
4101 		r = get_user(vcpu->arch.sie_block->todpr,
4102 			     (u32 __user *)reg->addr);
4103 		break;
4104 	case KVM_REG_S390_EPOCHDIFF:
4105 		r = get_user(vcpu->arch.sie_block->epoch,
4106 			     (u64 __user *)reg->addr);
4107 		break;
4108 	case KVM_REG_S390_CPU_TIMER:
4109 		r = get_user(val, (u64 __user *)reg->addr);
4110 		if (!r)
4111 			kvm_s390_set_cpu_timer(vcpu, val);
4112 		break;
4113 	case KVM_REG_S390_CLOCK_COMP:
4114 		r = get_user(vcpu->arch.sie_block->ckc,
4115 			     (u64 __user *)reg->addr);
4116 		break;
4117 	case KVM_REG_S390_PFTOKEN:
4118 		r = get_user(vcpu->arch.pfault_token,
4119 			     (u64 __user *)reg->addr);
4120 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4121 			kvm_clear_async_pf_completion_queue(vcpu);
4122 		break;
4123 	case KVM_REG_S390_PFCOMPARE:
4124 		r = get_user(vcpu->arch.pfault_compare,
4125 			     (u64 __user *)reg->addr);
4126 		break;
4127 	case KVM_REG_S390_PFSELECT:
4128 		r = get_user(vcpu->arch.pfault_select,
4129 			     (u64 __user *)reg->addr);
4130 		break;
4131 	case KVM_REG_S390_PP:
4132 		r = get_user(vcpu->arch.sie_block->pp,
4133 			     (u64 __user *)reg->addr);
4134 		break;
4135 	case KVM_REG_S390_GBEA:
4136 		r = get_user(vcpu->arch.sie_block->gbea,
4137 			     (u64 __user *)reg->addr);
4138 		break;
4139 	default:
4140 		break;
4141 	}
4142 
4143 	return r;
4144 }
4145 
kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu * vcpu)4146 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
4147 {
4148 	vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
4149 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4150 	memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
4151 
4152 	kvm_clear_async_pf_completion_queue(vcpu);
4153 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
4154 		kvm_s390_vcpu_stop(vcpu);
4155 	kvm_s390_clear_local_irqs(vcpu);
4156 }
4157 
kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu * vcpu)4158 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
4159 {
4160 	/* Initial reset is a superset of the normal reset */
4161 	kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4162 
4163 	/*
4164 	 * This equals initial cpu reset in pop, but we don't switch to ESA.
4165 	 * We do not only reset the internal data, but also ...
4166 	 */
4167 	vcpu->arch.sie_block->gpsw.mask = 0;
4168 	vcpu->arch.sie_block->gpsw.addr = 0;
4169 	kvm_s390_set_prefix(vcpu, 0);
4170 	kvm_s390_set_cpu_timer(vcpu, 0);
4171 	vcpu->arch.sie_block->ckc = 0;
4172 	memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
4173 	vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
4174 	vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
4175 
4176 	/* ... the data in sync regs */
4177 	memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
4178 	vcpu->run->s.regs.ckc = 0;
4179 	vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
4180 	vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
4181 	vcpu->run->psw_addr = 0;
4182 	vcpu->run->psw_mask = 0;
4183 	vcpu->run->s.regs.todpr = 0;
4184 	vcpu->run->s.regs.cputm = 0;
4185 	vcpu->run->s.regs.ckc = 0;
4186 	vcpu->run->s.regs.pp = 0;
4187 	vcpu->run->s.regs.gbea = 1;
4188 	vcpu->run->s.regs.fpc = 0;
4189 	/*
4190 	 * Do not reset these registers in the protected case, as some of
4191 	 * them are overlaid and they are not accessible in this case
4192 	 * anyway.
4193 	 */
4194 	if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4195 		vcpu->arch.sie_block->gbea = 1;
4196 		vcpu->arch.sie_block->pp = 0;
4197 		vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4198 		vcpu->arch.sie_block->todpr = 0;
4199 	}
4200 }
4201 
kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu * vcpu)4202 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4203 {
4204 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4205 
4206 	/* Clear reset is a superset of the initial reset */
4207 	kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4208 
4209 	memset(&regs->gprs, 0, sizeof(regs->gprs));
4210 	memset(&regs->vrs, 0, sizeof(regs->vrs));
4211 	memset(&regs->acrs, 0, sizeof(regs->acrs));
4212 	memset(&regs->gscb, 0, sizeof(regs->gscb));
4213 
4214 	regs->etoken = 0;
4215 	regs->etoken_extension = 0;
4216 }
4217 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4218 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4219 {
4220 	vcpu_load(vcpu);
4221 	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
4222 	vcpu_put(vcpu);
4223 	return 0;
4224 }
4225 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4226 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4227 {
4228 	vcpu_load(vcpu);
4229 	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4230 	vcpu_put(vcpu);
4231 	return 0;
4232 }
4233 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4234 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4235 				  struct kvm_sregs *sregs)
4236 {
4237 	vcpu_load(vcpu);
4238 
4239 	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4240 	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4241 
4242 	vcpu_put(vcpu);
4243 	return 0;
4244 }
4245 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4246 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4247 				  struct kvm_sregs *sregs)
4248 {
4249 	vcpu_load(vcpu);
4250 
4251 	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4252 	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4253 
4254 	vcpu_put(vcpu);
4255 	return 0;
4256 }
4257 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4258 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4259 {
4260 	vcpu_load(vcpu);
4261 
4262 	vcpu->run->s.regs.fpc = fpu->fpc;
4263 	if (cpu_has_vx())
4264 		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4265 				 (freg_t *) fpu->fprs);
4266 	else
4267 		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4268 
4269 	vcpu_put(vcpu);
4270 	return 0;
4271 }
4272 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4273 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4274 {
4275 	vcpu_load(vcpu);
4276 
4277 	if (cpu_has_vx())
4278 		convert_vx_to_fp((freg_t *) fpu->fprs,
4279 				 (__vector128 *) vcpu->run->s.regs.vrs);
4280 	else
4281 		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4282 	fpu->fpc = vcpu->run->s.regs.fpc;
4283 
4284 	vcpu_put(vcpu);
4285 	return 0;
4286 }
4287 
kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu * vcpu,psw_t psw)4288 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4289 {
4290 	int rc = 0;
4291 
4292 	if (!is_vcpu_stopped(vcpu))
4293 		rc = -EBUSY;
4294 	else {
4295 		vcpu->run->psw_mask = psw.mask;
4296 		vcpu->run->psw_addr = psw.addr;
4297 	}
4298 	return rc;
4299 }
4300 
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)4301 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4302 				  struct kvm_translation *tr)
4303 {
4304 	return -EINVAL; /* not implemented yet */
4305 }
4306 
4307 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4308 			      KVM_GUESTDBG_USE_HW_BP | \
4309 			      KVM_GUESTDBG_ENABLE)
4310 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)4311 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4312 					struct kvm_guest_debug *dbg)
4313 {
4314 	int rc = 0;
4315 
4316 	vcpu_load(vcpu);
4317 
4318 	vcpu->guest_debug = 0;
4319 	kvm_s390_clear_bp_data(vcpu);
4320 
4321 	if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4322 		rc = -EINVAL;
4323 		goto out;
4324 	}
4325 	if (!sclp.has_gpere) {
4326 		rc = -EINVAL;
4327 		goto out;
4328 	}
4329 
4330 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
4331 		vcpu->guest_debug = dbg->control;
4332 		/* enforce guest PER */
4333 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4334 
4335 		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4336 			rc = kvm_s390_import_bp_data(vcpu, dbg);
4337 	} else {
4338 		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4339 		vcpu->arch.guestdbg.last_bp = 0;
4340 	}
4341 
4342 	if (rc) {
4343 		vcpu->guest_debug = 0;
4344 		kvm_s390_clear_bp_data(vcpu);
4345 		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4346 	}
4347 
4348 out:
4349 	vcpu_put(vcpu);
4350 	return rc;
4351 }
4352 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4353 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4354 				    struct kvm_mp_state *mp_state)
4355 {
4356 	int ret;
4357 
4358 	vcpu_load(vcpu);
4359 
4360 	/* CHECK_STOP and LOAD are not supported yet */
4361 	ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4362 				      KVM_MP_STATE_OPERATING;
4363 
4364 	vcpu_put(vcpu);
4365 	return ret;
4366 }
4367 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4368 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4369 				    struct kvm_mp_state *mp_state)
4370 {
4371 	int rc = 0;
4372 
4373 	vcpu_load(vcpu);
4374 
4375 	/* user space knows about this interface - let it control the state */
4376 	kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4377 
4378 	switch (mp_state->mp_state) {
4379 	case KVM_MP_STATE_STOPPED:
4380 		rc = kvm_s390_vcpu_stop(vcpu);
4381 		break;
4382 	case KVM_MP_STATE_OPERATING:
4383 		rc = kvm_s390_vcpu_start(vcpu);
4384 		break;
4385 	case KVM_MP_STATE_LOAD:
4386 		if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4387 			rc = -ENXIO;
4388 			break;
4389 		}
4390 		rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4391 		break;
4392 	case KVM_MP_STATE_CHECK_STOP:
4393 		fallthrough;	/* CHECK_STOP and LOAD are not supported yet */
4394 	default:
4395 		rc = -ENXIO;
4396 	}
4397 
4398 	vcpu_put(vcpu);
4399 	return rc;
4400 }
4401 
ibs_enabled(struct kvm_vcpu * vcpu)4402 static bool ibs_enabled(struct kvm_vcpu *vcpu)
4403 {
4404 	return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4405 }
4406 
__kvm_s390_fixup_fault_sync(struct gmap * gmap,gpa_t gaddr,unsigned int flags)4407 static int __kvm_s390_fixup_fault_sync(struct gmap *gmap, gpa_t gaddr, unsigned int flags)
4408 {
4409 	struct kvm *kvm = gmap->private;
4410 	gfn_t gfn = gpa_to_gfn(gaddr);
4411 	bool unlocked;
4412 	hva_t vmaddr;
4413 	gpa_t tmp;
4414 	int rc;
4415 
4416 	if (kvm_is_ucontrol(kvm)) {
4417 		tmp = __gmap_translate(gmap, gaddr);
4418 		gfn = gpa_to_gfn(tmp);
4419 	}
4420 
4421 	vmaddr = gfn_to_hva(kvm, gfn);
4422 	rc = fixup_user_fault(gmap->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked);
4423 	if (!rc)
4424 		rc = __gmap_link(gmap, gaddr, vmaddr);
4425 	return rc;
4426 }
4427 
4428 /**
4429  * __kvm_s390_mprotect_many() - Apply specified protection to guest pages
4430  * @gmap: the gmap of the guest
4431  * @gpa: the starting guest address
4432  * @npages: how many pages to protect
4433  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
4434  * @bits: pgste notification bits to set
4435  *
4436  * Returns: 0 in case of success, < 0 in case of error - see gmap_protect_one()
4437  *
4438  * Context: kvm->srcu and gmap->mm need to be held in read mode
4439  */
__kvm_s390_mprotect_many(struct gmap * gmap,gpa_t gpa,u8 npages,unsigned int prot,unsigned long bits)4440 int __kvm_s390_mprotect_many(struct gmap *gmap, gpa_t gpa, u8 npages, unsigned int prot,
4441 			     unsigned long bits)
4442 {
4443 	unsigned int fault_flag = (prot & PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
4444 	gpa_t end = gpa + npages * PAGE_SIZE;
4445 	int rc;
4446 
4447 	for (; gpa < end; gpa = ALIGN(gpa + 1, rc)) {
4448 		rc = gmap_protect_one(gmap, gpa, prot, bits);
4449 		if (rc == -EAGAIN) {
4450 			__kvm_s390_fixup_fault_sync(gmap, gpa, fault_flag);
4451 			rc = gmap_protect_one(gmap, gpa, prot, bits);
4452 		}
4453 		if (rc < 0)
4454 			return rc;
4455 	}
4456 
4457 	return 0;
4458 }
4459 
kvm_s390_mprotect_notify_prefix(struct kvm_vcpu * vcpu)4460 static int kvm_s390_mprotect_notify_prefix(struct kvm_vcpu *vcpu)
4461 {
4462 	gpa_t gaddr = kvm_s390_get_prefix(vcpu);
4463 	int idx, rc;
4464 
4465 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4466 	mmap_read_lock(vcpu->arch.gmap->mm);
4467 
4468 	rc = __kvm_s390_mprotect_many(vcpu->arch.gmap, gaddr, 2, PROT_WRITE, GMAP_NOTIFY_MPROT);
4469 
4470 	mmap_read_unlock(vcpu->arch.gmap->mm);
4471 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4472 
4473 	return rc;
4474 }
4475 
kvm_s390_handle_requests(struct kvm_vcpu * vcpu)4476 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4477 {
4478 retry:
4479 	kvm_s390_vcpu_request_handled(vcpu);
4480 	if (!kvm_request_pending(vcpu))
4481 		return 0;
4482 	/*
4483 	 * If the guest prefix changed, re-arm the ipte notifier for the
4484 	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4485 	 * This ensures that the ipte instruction for this request has
4486 	 * already finished. We might race against a second unmapper that
4487 	 * wants to set the blocking bit. Lets just retry the request loop.
4488 	 */
4489 	if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4490 		int rc;
4491 
4492 		rc = kvm_s390_mprotect_notify_prefix(vcpu);
4493 		if (rc) {
4494 			kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4495 			return rc;
4496 		}
4497 		goto retry;
4498 	}
4499 
4500 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4501 		vcpu->arch.sie_block->ihcpu = 0xffff;
4502 		goto retry;
4503 	}
4504 
4505 	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4506 		if (!ibs_enabled(vcpu)) {
4507 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4508 			kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4509 		}
4510 		goto retry;
4511 	}
4512 
4513 	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4514 		if (ibs_enabled(vcpu)) {
4515 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4516 			kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4517 		}
4518 		goto retry;
4519 	}
4520 
4521 	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4522 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4523 		goto retry;
4524 	}
4525 
4526 	if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4527 		/*
4528 		 * Disable CMM virtualization; we will emulate the ESSA
4529 		 * instruction manually, in order to provide additional
4530 		 * functionalities needed for live migration.
4531 		 */
4532 		vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4533 		goto retry;
4534 	}
4535 
4536 	if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4537 		/*
4538 		 * Re-enable CMM virtualization if CMMA is available and
4539 		 * CMM has been used.
4540 		 */
4541 		if ((vcpu->kvm->arch.use_cmma) &&
4542 		    (vcpu->kvm->mm->context.uses_cmm))
4543 			vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4544 		goto retry;
4545 	}
4546 
4547 	/* we left the vsie handler, nothing to do, just clear the request */
4548 	kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4549 
4550 	return 0;
4551 }
4552 
__kvm_s390_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4553 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4554 {
4555 	struct kvm_vcpu *vcpu;
4556 	union tod_clock clk;
4557 	unsigned long i;
4558 
4559 	preempt_disable();
4560 
4561 	store_tod_clock_ext(&clk);
4562 
4563 	kvm->arch.epoch = gtod->tod - clk.tod;
4564 	kvm->arch.epdx = 0;
4565 	if (test_kvm_facility(kvm, 139)) {
4566 		kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4567 		if (kvm->arch.epoch > gtod->tod)
4568 			kvm->arch.epdx -= 1;
4569 	}
4570 
4571 	kvm_s390_vcpu_block_all(kvm);
4572 	kvm_for_each_vcpu(i, vcpu, kvm) {
4573 		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4574 		vcpu->arch.sie_block->epdx  = kvm->arch.epdx;
4575 	}
4576 
4577 	kvm_s390_vcpu_unblock_all(kvm);
4578 	preempt_enable();
4579 }
4580 
kvm_s390_try_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4581 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4582 {
4583 	if (!mutex_trylock(&kvm->lock))
4584 		return 0;
4585 	__kvm_s390_set_tod_clock(kvm, gtod);
4586 	mutex_unlock(&kvm->lock);
4587 	return 1;
4588 }
4589 
__kvm_inject_pfault_token(struct kvm_vcpu * vcpu,bool start_token,unsigned long token)4590 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4591 				      unsigned long token)
4592 {
4593 	struct kvm_s390_interrupt inti;
4594 	struct kvm_s390_irq irq;
4595 
4596 	if (start_token) {
4597 		irq.u.ext.ext_params2 = token;
4598 		irq.type = KVM_S390_INT_PFAULT_INIT;
4599 		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4600 	} else {
4601 		inti.type = KVM_S390_INT_PFAULT_DONE;
4602 		inti.parm64 = token;
4603 		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4604 	}
4605 }
4606 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4607 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4608 				     struct kvm_async_pf *work)
4609 {
4610 	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4611 	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4612 
4613 	return true;
4614 }
4615 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4616 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4617 				 struct kvm_async_pf *work)
4618 {
4619 	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4620 	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4621 }
4622 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4623 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4624 			       struct kvm_async_pf *work)
4625 {
4626 	/* s390 will always inject the page directly */
4627 }
4628 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)4629 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4630 {
4631 	/*
4632 	 * s390 will always inject the page directly,
4633 	 * but we still want check_async_completion to cleanup
4634 	 */
4635 	return true;
4636 }
4637 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu)4638 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4639 {
4640 	hva_t hva;
4641 	struct kvm_arch_async_pf arch;
4642 
4643 	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4644 		return false;
4645 	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4646 	    vcpu->arch.pfault_compare)
4647 		return false;
4648 	if (psw_extint_disabled(vcpu))
4649 		return false;
4650 	if (kvm_s390_vcpu_has_irq(vcpu, 0))
4651 		return false;
4652 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4653 		return false;
4654 	if (!vcpu->arch.gmap->pfault_enabled)
4655 		return false;
4656 
4657 	hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr);
4658 	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4659 		return false;
4660 
4661 	return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch);
4662 }
4663 
vcpu_pre_run(struct kvm_vcpu * vcpu)4664 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4665 {
4666 	int rc, cpuflags;
4667 
4668 	/*
4669 	 * On s390 notifications for arriving pages will be delivered directly
4670 	 * to the guest but the house keeping for completed pfaults is
4671 	 * handled outside the worker.
4672 	 */
4673 	kvm_check_async_pf_completion(vcpu);
4674 
4675 	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4676 	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4677 
4678 	if (!kvm_is_ucontrol(vcpu->kvm)) {
4679 		rc = kvm_s390_deliver_pending_interrupts(vcpu);
4680 		if (rc || guestdbg_exit_pending(vcpu))
4681 			return rc;
4682 	}
4683 
4684 	rc = kvm_s390_handle_requests(vcpu);
4685 	if (rc)
4686 		return rc;
4687 
4688 	if (guestdbg_enabled(vcpu)) {
4689 		kvm_s390_backup_guest_per_regs(vcpu);
4690 		kvm_s390_patch_guest_per_regs(vcpu);
4691 	}
4692 
4693 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4694 
4695 	vcpu->arch.sie_block->icptcode = 0;
4696 	current->thread.gmap_int_code = 0;
4697 	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4698 	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4699 	trace_kvm_s390_sie_enter(vcpu, cpuflags);
4700 
4701 	return 0;
4702 }
4703 
vcpu_post_run_addressing_exception(struct kvm_vcpu * vcpu)4704 static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu)
4705 {
4706 	struct kvm_s390_pgm_info pgm_info = {
4707 		.code = PGM_ADDRESSING,
4708 	};
4709 	u8 opcode, ilen;
4710 	int rc;
4711 
4712 	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4713 	trace_kvm_s390_sie_fault(vcpu);
4714 
4715 	/*
4716 	 * We want to inject an addressing exception, which is defined as a
4717 	 * suppressing or terminating exception. However, since we came here
4718 	 * by a DAT access exception, the PSW still points to the faulting
4719 	 * instruction since DAT exceptions are nullifying. So we've got
4720 	 * to look up the current opcode to get the length of the instruction
4721 	 * to be able to forward the PSW.
4722 	 */
4723 	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4724 	ilen = insn_length(opcode);
4725 	if (rc < 0) {
4726 		return rc;
4727 	} else if (rc) {
4728 		/* Instruction-Fetching Exceptions - we can't detect the ilen.
4729 		 * Forward by arbitrary ilc, injection will take care of
4730 		 * nullification if necessary.
4731 		 */
4732 		pgm_info = vcpu->arch.pgm;
4733 		ilen = 4;
4734 	}
4735 	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4736 	kvm_s390_forward_psw(vcpu, ilen);
4737 	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4738 }
4739 
kvm_s390_assert_primary_as(struct kvm_vcpu * vcpu)4740 static void kvm_s390_assert_primary_as(struct kvm_vcpu *vcpu)
4741 {
4742 	KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm,
4743 		"Unexpected program interrupt 0x%x, TEID 0x%016lx",
4744 		current->thread.gmap_int_code, current->thread.gmap_teid.val);
4745 }
4746 
4747 /*
4748  * __kvm_s390_handle_dat_fault() - handle a dat fault for the gmap of a vcpu
4749  * @vcpu: the vCPU whose gmap is to be fixed up
4750  * @gfn: the guest frame number used for memslots (including fake memslots)
4751  * @gaddr: the gmap address, does not have to match @gfn for ucontrol gmaps
4752  * @foll: FOLL_* flags
4753  *
4754  * Return: 0 on success, < 0 in case of error.
4755  * Context: The mm lock must not be held before calling. May sleep.
4756  */
__kvm_s390_handle_dat_fault(struct kvm_vcpu * vcpu,gfn_t gfn,gpa_t gaddr,unsigned int foll)4757 int __kvm_s390_handle_dat_fault(struct kvm_vcpu *vcpu, gfn_t gfn, gpa_t gaddr, unsigned int foll)
4758 {
4759 	struct kvm_memory_slot *slot;
4760 	unsigned int fault_flags;
4761 	bool writable, unlocked;
4762 	unsigned long vmaddr;
4763 	struct page *page;
4764 	kvm_pfn_t pfn;
4765 	int rc;
4766 
4767 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4768 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
4769 		return vcpu_post_run_addressing_exception(vcpu);
4770 
4771 	fault_flags = foll & FOLL_WRITE ? FAULT_FLAG_WRITE : 0;
4772 	if (vcpu->arch.gmap->pfault_enabled)
4773 		foll |= FOLL_NOWAIT;
4774 	vmaddr = __gfn_to_hva_memslot(slot, gfn);
4775 
4776 try_again:
4777 	pfn = __kvm_faultin_pfn(slot, gfn, foll, &writable, &page);
4778 
4779 	/* Access outside memory, inject addressing exception */
4780 	if (is_noslot_pfn(pfn))
4781 		return vcpu_post_run_addressing_exception(vcpu);
4782 	/* Signal pending: try again */
4783 	if (pfn == KVM_PFN_ERR_SIGPENDING)
4784 		return -EAGAIN;
4785 
4786 	/* Needs I/O, try to setup async pfault (only possible with FOLL_NOWAIT) */
4787 	if (pfn == KVM_PFN_ERR_NEEDS_IO) {
4788 		trace_kvm_s390_major_guest_pfault(vcpu);
4789 		if (kvm_arch_setup_async_pf(vcpu))
4790 			return 0;
4791 		vcpu->stat.pfault_sync++;
4792 		/* Could not setup async pfault, try again synchronously */
4793 		foll &= ~FOLL_NOWAIT;
4794 		goto try_again;
4795 	}
4796 	/* Any other error */
4797 	if (is_error_pfn(pfn))
4798 		return -EFAULT;
4799 
4800 	/* Success */
4801 	mmap_read_lock(vcpu->arch.gmap->mm);
4802 	/* Mark the userspace PTEs as young and/or dirty, to avoid page fault loops */
4803 	rc = fixup_user_fault(vcpu->arch.gmap->mm, vmaddr, fault_flags, &unlocked);
4804 	if (!rc)
4805 		rc = __gmap_link(vcpu->arch.gmap, gaddr, vmaddr);
4806 	scoped_guard(spinlock, &vcpu->kvm->mmu_lock) {
4807 		kvm_release_faultin_page(vcpu->kvm, page, false, writable);
4808 	}
4809 	mmap_read_unlock(vcpu->arch.gmap->mm);
4810 	return rc;
4811 }
4812 
vcpu_dat_fault_handler(struct kvm_vcpu * vcpu,unsigned long gaddr,unsigned int foll)4813 static int vcpu_dat_fault_handler(struct kvm_vcpu *vcpu, unsigned long gaddr, unsigned int foll)
4814 {
4815 	unsigned long gaddr_tmp;
4816 	gfn_t gfn;
4817 
4818 	gfn = gpa_to_gfn(gaddr);
4819 	if (kvm_is_ucontrol(vcpu->kvm)) {
4820 		/*
4821 		 * This translates the per-vCPU guest address into a
4822 		 * fake guest address, which can then be used with the
4823 		 * fake memslots that are identity mapping userspace.
4824 		 * This allows ucontrol VMs to use the normal fault
4825 		 * resolution path, like normal VMs.
4826 		 */
4827 		mmap_read_lock(vcpu->arch.gmap->mm);
4828 		gaddr_tmp = __gmap_translate(vcpu->arch.gmap, gaddr);
4829 		mmap_read_unlock(vcpu->arch.gmap->mm);
4830 		if (gaddr_tmp == -EFAULT) {
4831 			vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4832 			vcpu->run->s390_ucontrol.trans_exc_code = gaddr;
4833 			vcpu->run->s390_ucontrol.pgm_code = PGM_SEGMENT_TRANSLATION;
4834 			return -EREMOTE;
4835 		}
4836 		gfn = gpa_to_gfn(gaddr_tmp);
4837 	}
4838 	return __kvm_s390_handle_dat_fault(vcpu, gfn, gaddr, foll);
4839 }
4840 
vcpu_post_run_handle_fault(struct kvm_vcpu * vcpu)4841 static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu)
4842 {
4843 	unsigned int foll = 0;
4844 	unsigned long gaddr;
4845 	int rc;
4846 
4847 	gaddr = current->thread.gmap_teid.addr * PAGE_SIZE;
4848 	if (kvm_s390_cur_gmap_fault_is_write())
4849 		foll = FOLL_WRITE;
4850 
4851 	switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) {
4852 	case 0:
4853 		vcpu->stat.exit_null++;
4854 		break;
4855 	case PGM_SECURE_STORAGE_ACCESS:
4856 	case PGM_SECURE_STORAGE_VIOLATION:
4857 		kvm_s390_assert_primary_as(vcpu);
4858 		/*
4859 		 * This can happen after a reboot with asynchronous teardown;
4860 		 * the new guest (normal or protected) will run on top of the
4861 		 * previous protected guest. The old pages need to be destroyed
4862 		 * so the new guest can use them.
4863 		 */
4864 		if (kvm_s390_pv_destroy_page(vcpu->kvm, gaddr)) {
4865 			/*
4866 			 * Either KVM messed up the secure guest mapping or the
4867 			 * same page is mapped into multiple secure guests.
4868 			 *
4869 			 * This exception is only triggered when a guest 2 is
4870 			 * running and can therefore never occur in kernel
4871 			 * context.
4872 			 */
4873 			pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n",
4874 					    current->thread.gmap_int_code, current->comm,
4875 					    current->pid);
4876 			send_sig(SIGSEGV, current, 0);
4877 		}
4878 		break;
4879 	case PGM_NON_SECURE_STORAGE_ACCESS:
4880 		kvm_s390_assert_primary_as(vcpu);
4881 		/*
4882 		 * This is normal operation; a page belonging to a protected
4883 		 * guest has not been imported yet. Try to import the page into
4884 		 * the protected guest.
4885 		 */
4886 		rc = kvm_s390_pv_convert_to_secure(vcpu->kvm, gaddr);
4887 		if (rc == -EINVAL)
4888 			send_sig(SIGSEGV, current, 0);
4889 		if (rc != -ENXIO)
4890 			break;
4891 		foll = FOLL_WRITE;
4892 		fallthrough;
4893 	case PGM_PROTECTION:
4894 	case PGM_SEGMENT_TRANSLATION:
4895 	case PGM_PAGE_TRANSLATION:
4896 	case PGM_ASCE_TYPE:
4897 	case PGM_REGION_FIRST_TRANS:
4898 	case PGM_REGION_SECOND_TRANS:
4899 	case PGM_REGION_THIRD_TRANS:
4900 		kvm_s390_assert_primary_as(vcpu);
4901 		return vcpu_dat_fault_handler(vcpu, gaddr, foll);
4902 	default:
4903 		KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx",
4904 			current->thread.gmap_int_code, current->thread.gmap_teid.val);
4905 		send_sig(SIGSEGV, current, 0);
4906 		break;
4907 	}
4908 	return 0;
4909 }
4910 
vcpu_post_run(struct kvm_vcpu * vcpu,int exit_reason)4911 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
4912 {
4913 	struct mcck_volatile_info *mcck_info;
4914 	struct sie_page *sie_page;
4915 	int rc;
4916 
4917 	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
4918 		   vcpu->arch.sie_block->icptcode);
4919 	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
4920 
4921 	if (guestdbg_enabled(vcpu))
4922 		kvm_s390_restore_guest_per_regs(vcpu);
4923 
4924 	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
4925 	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
4926 
4927 	if (exit_reason == -EINTR) {
4928 		VCPU_EVENT(vcpu, 3, "%s", "machine check");
4929 		sie_page = container_of(vcpu->arch.sie_block,
4930 					struct sie_page, sie_block);
4931 		mcck_info = &sie_page->mcck_info;
4932 		kvm_s390_reinject_machine_check(vcpu, mcck_info);
4933 		return 0;
4934 	}
4935 
4936 	if (vcpu->arch.sie_block->icptcode > 0) {
4937 		rc = kvm_handle_sie_intercept(vcpu);
4938 
4939 		if (rc != -EOPNOTSUPP)
4940 			return rc;
4941 		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
4942 		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
4943 		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
4944 		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
4945 		return -EREMOTE;
4946 	}
4947 
4948 	return vcpu_post_run_handle_fault(vcpu);
4949 }
4950 
kvm_s390_enter_exit_sie(struct kvm_s390_sie_block * scb,u64 * gprs,unsigned long gasce)4951 int noinstr kvm_s390_enter_exit_sie(struct kvm_s390_sie_block *scb,
4952 				    u64 *gprs, unsigned long gasce)
4953 {
4954 	int ret;
4955 
4956 	guest_state_enter_irqoff();
4957 
4958 	/*
4959 	 * The guest_state_{enter,exit}_irqoff() functions inform lockdep and
4960 	 * tracing that entry to the guest will enable host IRQs, and exit from
4961 	 * the guest will disable host IRQs.
4962 	 */
4963 	ret = sie64a(scb, gprs, gasce);
4964 
4965 	guest_state_exit_irqoff();
4966 
4967 	return ret;
4968 }
4969 
4970 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
__vcpu_run(struct kvm_vcpu * vcpu)4971 static int __vcpu_run(struct kvm_vcpu *vcpu)
4972 {
4973 	int rc, exit_reason;
4974 	struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
4975 
4976 	/*
4977 	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
4978 	 * ning the guest), so that memslots (and other stuff) are protected
4979 	 */
4980 	kvm_vcpu_srcu_read_lock(vcpu);
4981 
4982 	while (true) {
4983 		rc = vcpu_pre_run(vcpu);
4984 		kvm_vcpu_srcu_read_unlock(vcpu);
4985 		if (rc || guestdbg_exit_pending(vcpu))
4986 			break;
4987 
4988 		/*
4989 		 * As PF_VCPU will be used in fault handler, between
4990 		 * guest_timing_enter_irqoff and guest_timing_exit_irqoff
4991 		 * should be no uaccess.
4992 		 */
4993 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4994 			memcpy(sie_page->pv_grregs,
4995 			       vcpu->run->s.regs.gprs,
4996 			       sizeof(sie_page->pv_grregs));
4997 		}
4998 
4999 xfer_to_guest_mode_check:
5000 		local_irq_disable();
5001 		xfer_to_guest_mode_prepare();
5002 		if (xfer_to_guest_mode_work_pending()) {
5003 			local_irq_enable();
5004 			rc = kvm_xfer_to_guest_mode_handle_work(vcpu);
5005 			if (rc)
5006 				break;
5007 			goto xfer_to_guest_mode_check;
5008 		}
5009 
5010 		guest_timing_enter_irqoff();
5011 		__disable_cpu_timer_accounting(vcpu);
5012 
5013 		exit_reason = kvm_s390_enter_exit_sie(vcpu->arch.sie_block,
5014 						      vcpu->run->s.regs.gprs,
5015 						      vcpu->arch.gmap->asce);
5016 
5017 		__enable_cpu_timer_accounting(vcpu);
5018 		guest_timing_exit_irqoff();
5019 		local_irq_enable();
5020 
5021 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5022 			memcpy(vcpu->run->s.regs.gprs,
5023 			       sie_page->pv_grregs,
5024 			       sizeof(sie_page->pv_grregs));
5025 			/*
5026 			 * We're not allowed to inject interrupts on intercepts
5027 			 * that leave the guest state in an "in-between" state
5028 			 * where the next SIE entry will do a continuation.
5029 			 * Fence interrupts in our "internal" PSW.
5030 			 */
5031 			if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
5032 			    vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
5033 				vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5034 			}
5035 		}
5036 		kvm_vcpu_srcu_read_lock(vcpu);
5037 
5038 		rc = vcpu_post_run(vcpu, exit_reason);
5039 		if (rc || guestdbg_exit_pending(vcpu)) {
5040 			kvm_vcpu_srcu_read_unlock(vcpu);
5041 			break;
5042 		}
5043 	}
5044 
5045 	return rc;
5046 }
5047 
sync_regs_fmt2(struct kvm_vcpu * vcpu)5048 static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
5049 {
5050 	struct kvm_run *kvm_run = vcpu->run;
5051 	struct runtime_instr_cb *riccb;
5052 	struct gs_cb *gscb;
5053 
5054 	riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
5055 	gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
5056 	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
5057 	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
5058 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
5059 		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
5060 		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
5061 		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
5062 	}
5063 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
5064 		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
5065 		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
5066 		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
5067 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
5068 			kvm_clear_async_pf_completion_queue(vcpu);
5069 	}
5070 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
5071 		vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
5072 		vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
5073 		VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
5074 	}
5075 	/*
5076 	 * If userspace sets the riccb (e.g. after migration) to a valid state,
5077 	 * we should enable RI here instead of doing the lazy enablement.
5078 	 */
5079 	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
5080 	    test_kvm_facility(vcpu->kvm, 64) &&
5081 	    riccb->v &&
5082 	    !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
5083 		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
5084 		vcpu->arch.sie_block->ecb3 |= ECB3_RI;
5085 	}
5086 	/*
5087 	 * If userspace sets the gscb (e.g. after migration) to non-zero,
5088 	 * we should enable GS here instead of doing the lazy enablement.
5089 	 */
5090 	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
5091 	    test_kvm_facility(vcpu->kvm, 133) &&
5092 	    gscb->gssm &&
5093 	    !vcpu->arch.gs_enabled) {
5094 		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
5095 		vcpu->arch.sie_block->ecb |= ECB_GS;
5096 		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
5097 		vcpu->arch.gs_enabled = 1;
5098 	}
5099 	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
5100 	    test_kvm_facility(vcpu->kvm, 82)) {
5101 		vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
5102 		vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
5103 	}
5104 	if (cpu_has_gs()) {
5105 		preempt_disable();
5106 		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
5107 		if (current->thread.gs_cb) {
5108 			vcpu->arch.host_gscb = current->thread.gs_cb;
5109 			save_gs_cb(vcpu->arch.host_gscb);
5110 		}
5111 		if (vcpu->arch.gs_enabled) {
5112 			current->thread.gs_cb = (struct gs_cb *)
5113 						&vcpu->run->s.regs.gscb;
5114 			restore_gs_cb(current->thread.gs_cb);
5115 		}
5116 		preempt_enable();
5117 	}
5118 	/* SIE will load etoken directly from SDNX and therefore kvm_run */
5119 }
5120 
sync_regs(struct kvm_vcpu * vcpu)5121 static void sync_regs(struct kvm_vcpu *vcpu)
5122 {
5123 	struct kvm_run *kvm_run = vcpu->run;
5124 
5125 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
5126 		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
5127 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
5128 		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
5129 		/* some control register changes require a tlb flush */
5130 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5131 	}
5132 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
5133 		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
5134 		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
5135 	}
5136 	save_access_regs(vcpu->arch.host_acrs);
5137 	restore_access_regs(vcpu->run->s.regs.acrs);
5138 	vcpu->arch.acrs_loaded = true;
5139 	kvm_s390_fpu_load(vcpu->run);
5140 	/* Sync fmt2 only data */
5141 	if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
5142 		sync_regs_fmt2(vcpu);
5143 	} else {
5144 		/*
5145 		 * In several places we have to modify our internal view to
5146 		 * not do things that are disallowed by the ultravisor. For
5147 		 * example we must not inject interrupts after specific exits
5148 		 * (e.g. 112 prefix page not secure). We do this by turning
5149 		 * off the machine check, external and I/O interrupt bits
5150 		 * of our PSW copy. To avoid getting validity intercepts, we
5151 		 * do only accept the condition code from userspace.
5152 		 */
5153 		vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
5154 		vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
5155 						   PSW_MASK_CC;
5156 	}
5157 
5158 	kvm_run->kvm_dirty_regs = 0;
5159 }
5160 
store_regs_fmt2(struct kvm_vcpu * vcpu)5161 static void store_regs_fmt2(struct kvm_vcpu *vcpu)
5162 {
5163 	struct kvm_run *kvm_run = vcpu->run;
5164 
5165 	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
5166 	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
5167 	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
5168 	kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
5169 	kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
5170 	if (cpu_has_gs()) {
5171 		preempt_disable();
5172 		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
5173 		if (vcpu->arch.gs_enabled)
5174 			save_gs_cb(current->thread.gs_cb);
5175 		current->thread.gs_cb = vcpu->arch.host_gscb;
5176 		restore_gs_cb(vcpu->arch.host_gscb);
5177 		if (!vcpu->arch.host_gscb)
5178 			local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT);
5179 		vcpu->arch.host_gscb = NULL;
5180 		preempt_enable();
5181 	}
5182 	/* SIE will save etoken directly into SDNX and therefore kvm_run */
5183 }
5184 
store_regs(struct kvm_vcpu * vcpu)5185 static void store_regs(struct kvm_vcpu *vcpu)
5186 {
5187 	struct kvm_run *kvm_run = vcpu->run;
5188 
5189 	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
5190 	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
5191 	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
5192 	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
5193 	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
5194 	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
5195 	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
5196 	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
5197 	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
5198 	save_access_regs(vcpu->run->s.regs.acrs);
5199 	restore_access_regs(vcpu->arch.host_acrs);
5200 	vcpu->arch.acrs_loaded = false;
5201 	kvm_s390_fpu_store(vcpu->run);
5202 	if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
5203 		store_regs_fmt2(vcpu);
5204 }
5205 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)5206 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
5207 {
5208 	struct kvm_run *kvm_run = vcpu->run;
5209 	DECLARE_KERNEL_FPU_ONSTACK32(fpu);
5210 	int rc;
5211 
5212 	/*
5213 	 * Running a VM while dumping always has the potential to
5214 	 * produce inconsistent dump data. But for PV vcpus a SIE
5215 	 * entry while dumping could also lead to a fatal validity
5216 	 * intercept which we absolutely want to avoid.
5217 	 */
5218 	if (vcpu->kvm->arch.pv.dumping)
5219 		return -EINVAL;
5220 
5221 	if (!vcpu->wants_to_run)
5222 		return -EINTR;
5223 
5224 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
5225 	    kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
5226 		return -EINVAL;
5227 
5228 	vcpu_load(vcpu);
5229 
5230 	if (guestdbg_exit_pending(vcpu)) {
5231 		kvm_s390_prepare_debug_exit(vcpu);
5232 		rc = 0;
5233 		goto out;
5234 	}
5235 
5236 	kvm_sigset_activate(vcpu);
5237 
5238 	/*
5239 	 * no need to check the return value of vcpu_start as it can only have
5240 	 * an error for protvirt, but protvirt means user cpu state
5241 	 */
5242 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
5243 		kvm_s390_vcpu_start(vcpu);
5244 	} else if (is_vcpu_stopped(vcpu)) {
5245 		pr_err_ratelimited("can't run stopped vcpu %d\n",
5246 				   vcpu->vcpu_id);
5247 		rc = -EINVAL;
5248 		goto out;
5249 	}
5250 
5251 	kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR);
5252 	sync_regs(vcpu);
5253 	enable_cpu_timer_accounting(vcpu);
5254 
5255 	might_fault();
5256 	rc = __vcpu_run(vcpu);
5257 
5258 	if (signal_pending(current) && !rc) {
5259 		kvm_run->exit_reason = KVM_EXIT_INTR;
5260 		vcpu->stat.signal_exits++;
5261 		rc = -EINTR;
5262 	}
5263 
5264 	if (guestdbg_exit_pending(vcpu) && !rc)  {
5265 		kvm_s390_prepare_debug_exit(vcpu);
5266 		rc = 0;
5267 	}
5268 
5269 	if (rc == -EREMOTE) {
5270 		/* userspace support is needed, kvm_run has been prepared */
5271 		rc = 0;
5272 	}
5273 
5274 	disable_cpu_timer_accounting(vcpu);
5275 	store_regs(vcpu);
5276 	kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR);
5277 
5278 	kvm_sigset_deactivate(vcpu);
5279 
5280 	vcpu->stat.exit_userspace++;
5281 out:
5282 	vcpu_put(vcpu);
5283 	return rc;
5284 }
5285 
5286 /*
5287  * store status at address
5288  * we use have two special cases:
5289  * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5290  * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5291  */
kvm_s390_store_status_unloaded(struct kvm_vcpu * vcpu,unsigned long gpa)5292 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5293 {
5294 	unsigned char archmode = 1;
5295 	freg_t fprs[NUM_FPRS];
5296 	unsigned int px;
5297 	u64 clkcomp, cputm;
5298 	int rc;
5299 
5300 	px = kvm_s390_get_prefix(vcpu);
5301 	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5302 		if (write_guest_abs(vcpu, 163, &archmode, 1))
5303 			return -EFAULT;
5304 		gpa = 0;
5305 	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5306 		if (write_guest_real(vcpu, 163, &archmode, 1))
5307 			return -EFAULT;
5308 		gpa = px;
5309 	} else
5310 		gpa -= __LC_FPREGS_SAVE_AREA;
5311 
5312 	/* manually convert vector registers if necessary */
5313 	if (cpu_has_vx()) {
5314 		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5315 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5316 				     fprs, 128);
5317 	} else {
5318 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5319 				     vcpu->run->s.regs.fprs, 128);
5320 	}
5321 	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5322 			      vcpu->run->s.regs.gprs, 128);
5323 	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5324 			      &vcpu->arch.sie_block->gpsw, 16);
5325 	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5326 			      &px, 4);
5327 	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5328 			      &vcpu->run->s.regs.fpc, 4);
5329 	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5330 			      &vcpu->arch.sie_block->todpr, 4);
5331 	cputm = kvm_s390_get_cpu_timer(vcpu);
5332 	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5333 			      &cputm, 8);
5334 	clkcomp = vcpu->arch.sie_block->ckc >> 8;
5335 	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5336 			      &clkcomp, 8);
5337 	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5338 			      &vcpu->run->s.regs.acrs, 64);
5339 	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5340 			      &vcpu->arch.sie_block->gcr, 128);
5341 	return rc ? -EFAULT : 0;
5342 }
5343 
kvm_s390_vcpu_store_status(struct kvm_vcpu * vcpu,unsigned long addr)5344 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5345 {
5346 	/*
5347 	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5348 	 * switch in the run ioctl. Let's update our copies before we save
5349 	 * it into the save area
5350 	 */
5351 	kvm_s390_fpu_store(vcpu->run);
5352 	save_access_regs(vcpu->run->s.regs.acrs);
5353 
5354 	return kvm_s390_store_status_unloaded(vcpu, addr);
5355 }
5356 
__disable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5357 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5358 {
5359 	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5360 	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5361 }
5362 
__disable_ibs_on_all_vcpus(struct kvm * kvm)5363 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5364 {
5365 	unsigned long i;
5366 	struct kvm_vcpu *vcpu;
5367 
5368 	kvm_for_each_vcpu(i, vcpu, kvm) {
5369 		__disable_ibs_on_vcpu(vcpu);
5370 	}
5371 }
5372 
__enable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5373 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5374 {
5375 	if (!sclp.has_ibs)
5376 		return;
5377 	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5378 	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5379 }
5380 
kvm_s390_vcpu_start(struct kvm_vcpu * vcpu)5381 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5382 {
5383 	int i, online_vcpus, r = 0, started_vcpus = 0;
5384 
5385 	if (!is_vcpu_stopped(vcpu))
5386 		return 0;
5387 
5388 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5389 	/* Only one cpu at a time may enter/leave the STOPPED state. */
5390 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
5391 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5392 
5393 	/* Let's tell the UV that we want to change into the operating state */
5394 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5395 		r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5396 		if (r) {
5397 			spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5398 			return r;
5399 		}
5400 	}
5401 
5402 	for (i = 0; i < online_vcpus; i++) {
5403 		if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5404 			started_vcpus++;
5405 	}
5406 
5407 	if (started_vcpus == 0) {
5408 		/* we're the only active VCPU -> speed it up */
5409 		__enable_ibs_on_vcpu(vcpu);
5410 	} else if (started_vcpus == 1) {
5411 		/*
5412 		 * As we are starting a second VCPU, we have to disable
5413 		 * the IBS facility on all VCPUs to remove potentially
5414 		 * outstanding ENABLE requests.
5415 		 */
5416 		__disable_ibs_on_all_vcpus(vcpu->kvm);
5417 	}
5418 
5419 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5420 	/*
5421 	 * The real PSW might have changed due to a RESTART interpreted by the
5422 	 * ultravisor. We block all interrupts and let the next sie exit
5423 	 * refresh our view.
5424 	 */
5425 	if (kvm_s390_pv_cpu_is_protected(vcpu))
5426 		vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5427 	/*
5428 	 * Another VCPU might have used IBS while we were offline.
5429 	 * Let's play safe and flush the VCPU at startup.
5430 	 */
5431 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5432 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5433 	return 0;
5434 }
5435 
kvm_s390_vcpu_stop(struct kvm_vcpu * vcpu)5436 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5437 {
5438 	int i, online_vcpus, r = 0, started_vcpus = 0;
5439 	struct kvm_vcpu *started_vcpu = NULL;
5440 
5441 	if (is_vcpu_stopped(vcpu))
5442 		return 0;
5443 
5444 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5445 	/* Only one cpu at a time may enter/leave the STOPPED state. */
5446 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
5447 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5448 
5449 	/* Let's tell the UV that we want to change into the stopped state */
5450 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5451 		r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5452 		if (r) {
5453 			spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5454 			return r;
5455 		}
5456 	}
5457 
5458 	/*
5459 	 * Set the VCPU to STOPPED and THEN clear the interrupt flag,
5460 	 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5461 	 * have been fully processed. This will ensure that the VCPU
5462 	 * is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5463 	 */
5464 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5465 	kvm_s390_clear_stop_irq(vcpu);
5466 
5467 	__disable_ibs_on_vcpu(vcpu);
5468 
5469 	for (i = 0; i < online_vcpus; i++) {
5470 		struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5471 
5472 		if (!is_vcpu_stopped(tmp)) {
5473 			started_vcpus++;
5474 			started_vcpu = tmp;
5475 		}
5476 	}
5477 
5478 	if (started_vcpus == 1) {
5479 		/*
5480 		 * As we only have one VCPU left, we want to enable the
5481 		 * IBS facility for that VCPU to speed it up.
5482 		 */
5483 		__enable_ibs_on_vcpu(started_vcpu);
5484 	}
5485 
5486 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5487 	return 0;
5488 }
5489 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5490 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5491 				     struct kvm_enable_cap *cap)
5492 {
5493 	int r;
5494 
5495 	if (cap->flags)
5496 		return -EINVAL;
5497 
5498 	switch (cap->cap) {
5499 	case KVM_CAP_S390_CSS_SUPPORT:
5500 		if (!vcpu->kvm->arch.css_support) {
5501 			vcpu->kvm->arch.css_support = 1;
5502 			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5503 			trace_kvm_s390_enable_css(vcpu->kvm);
5504 		}
5505 		r = 0;
5506 		break;
5507 	default:
5508 		r = -EINVAL;
5509 		break;
5510 	}
5511 	return r;
5512 }
5513 
kvm_s390_vcpu_sida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5514 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5515 				  struct kvm_s390_mem_op *mop)
5516 {
5517 	void __user *uaddr = (void __user *)mop->buf;
5518 	void *sida_addr;
5519 	int r = 0;
5520 
5521 	if (mop->flags || !mop->size)
5522 		return -EINVAL;
5523 	if (mop->size + mop->sida_offset < mop->size)
5524 		return -EINVAL;
5525 	if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5526 		return -E2BIG;
5527 	if (!kvm_s390_pv_cpu_is_protected(vcpu))
5528 		return -EINVAL;
5529 
5530 	sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5531 
5532 	switch (mop->op) {
5533 	case KVM_S390_MEMOP_SIDA_READ:
5534 		if (copy_to_user(uaddr, sida_addr, mop->size))
5535 			r = -EFAULT;
5536 
5537 		break;
5538 	case KVM_S390_MEMOP_SIDA_WRITE:
5539 		if (copy_from_user(sida_addr, uaddr, mop->size))
5540 			r = -EFAULT;
5541 		break;
5542 	}
5543 	return r;
5544 }
5545 
kvm_s390_vcpu_mem_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5546 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5547 				 struct kvm_s390_mem_op *mop)
5548 {
5549 	void __user *uaddr = (void __user *)mop->buf;
5550 	enum gacc_mode acc_mode;
5551 	void *tmpbuf = NULL;
5552 	int r;
5553 
5554 	r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5555 					KVM_S390_MEMOP_F_CHECK_ONLY |
5556 					KVM_S390_MEMOP_F_SKEY_PROTECTION);
5557 	if (r)
5558 		return r;
5559 	if (mop->ar >= NUM_ACRS)
5560 		return -EINVAL;
5561 	if (kvm_s390_pv_cpu_is_protected(vcpu))
5562 		return -EINVAL;
5563 	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5564 		tmpbuf = vmalloc(mop->size);
5565 		if (!tmpbuf)
5566 			return -ENOMEM;
5567 	}
5568 
5569 	acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5570 	if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5571 		r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5572 				    acc_mode, mop->key);
5573 		goto out_inject;
5574 	}
5575 	if (acc_mode == GACC_FETCH) {
5576 		r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5577 					mop->size, mop->key);
5578 		if (r)
5579 			goto out_inject;
5580 		if (copy_to_user(uaddr, tmpbuf, mop->size)) {
5581 			r = -EFAULT;
5582 			goto out_free;
5583 		}
5584 	} else {
5585 		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
5586 			r = -EFAULT;
5587 			goto out_free;
5588 		}
5589 		r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5590 					 mop->size, mop->key);
5591 	}
5592 
5593 out_inject:
5594 	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5595 		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5596 
5597 out_free:
5598 	vfree(tmpbuf);
5599 	return r;
5600 }
5601 
kvm_s390_vcpu_memsida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5602 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5603 				     struct kvm_s390_mem_op *mop)
5604 {
5605 	int r, srcu_idx;
5606 
5607 	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5608 
5609 	switch (mop->op) {
5610 	case KVM_S390_MEMOP_LOGICAL_READ:
5611 	case KVM_S390_MEMOP_LOGICAL_WRITE:
5612 		r = kvm_s390_vcpu_mem_op(vcpu, mop);
5613 		break;
5614 	case KVM_S390_MEMOP_SIDA_READ:
5615 	case KVM_S390_MEMOP_SIDA_WRITE:
5616 		/* we are locked against sida going away by the vcpu->mutex */
5617 		r = kvm_s390_vcpu_sida_op(vcpu, mop);
5618 		break;
5619 	default:
5620 		r = -EINVAL;
5621 	}
5622 
5623 	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5624 	return r;
5625 }
5626 
kvm_arch_vcpu_unlocked_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5627 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
5628 				  unsigned long arg)
5629 {
5630 	struct kvm_vcpu *vcpu = filp->private_data;
5631 	void __user *argp = (void __user *)arg;
5632 	int rc;
5633 
5634 	switch (ioctl) {
5635 	case KVM_S390_IRQ: {
5636 		struct kvm_s390_irq s390irq;
5637 
5638 		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5639 			return -EFAULT;
5640 		rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5641 		break;
5642 	}
5643 	case KVM_S390_INTERRUPT: {
5644 		struct kvm_s390_interrupt s390int;
5645 		struct kvm_s390_irq s390irq = {};
5646 
5647 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
5648 			return -EFAULT;
5649 		if (s390int_to_s390irq(&s390int, &s390irq))
5650 			return -EINVAL;
5651 		rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5652 		break;
5653 	}
5654 	default:
5655 		rc = -ENOIOCTLCMD;
5656 		break;
5657 	}
5658 
5659 	/*
5660 	 * To simplify single stepping of userspace-emulated instructions,
5661 	 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5662 	 * should_handle_per_ifetch()). However, if userspace emulation injects
5663 	 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5664 	 * after (and not before) the interrupt delivery.
5665 	 */
5666 	if (!rc)
5667 		vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5668 
5669 	return rc;
5670 }
5671 
kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu * vcpu,struct kvm_pv_cmd * cmd)5672 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5673 					struct kvm_pv_cmd *cmd)
5674 {
5675 	struct kvm_s390_pv_dmp dmp;
5676 	void *data;
5677 	int ret;
5678 
5679 	/* Dump initialization is a prerequisite */
5680 	if (!vcpu->kvm->arch.pv.dumping)
5681 		return -EINVAL;
5682 
5683 	if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5684 		return -EFAULT;
5685 
5686 	/* We only handle this subcmd right now */
5687 	if (dmp.subcmd != KVM_PV_DUMP_CPU)
5688 		return -EINVAL;
5689 
5690 	/* CPU dump length is the same as create cpu storage donation. */
5691 	if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5692 		return -EINVAL;
5693 
5694 	data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5695 	if (!data)
5696 		return -ENOMEM;
5697 
5698 	ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5699 
5700 	VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5701 		   vcpu->vcpu_id, cmd->rc, cmd->rrc);
5702 
5703 	if (ret)
5704 		ret = -EINVAL;
5705 
5706 	/* On success copy over the dump data */
5707 	if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5708 		ret = -EFAULT;
5709 
5710 	kvfree(data);
5711 	return ret;
5712 }
5713 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5714 long kvm_arch_vcpu_ioctl(struct file *filp,
5715 			 unsigned int ioctl, unsigned long arg)
5716 {
5717 	struct kvm_vcpu *vcpu = filp->private_data;
5718 	void __user *argp = (void __user *)arg;
5719 	int idx;
5720 	long r;
5721 	u16 rc, rrc;
5722 
5723 	vcpu_load(vcpu);
5724 
5725 	switch (ioctl) {
5726 	case KVM_S390_STORE_STATUS:
5727 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5728 		r = kvm_s390_store_status_unloaded(vcpu, arg);
5729 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5730 		break;
5731 	case KVM_S390_SET_INITIAL_PSW: {
5732 		psw_t psw;
5733 
5734 		r = -EFAULT;
5735 		if (copy_from_user(&psw, argp, sizeof(psw)))
5736 			break;
5737 		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5738 		break;
5739 	}
5740 	case KVM_S390_CLEAR_RESET:
5741 		r = 0;
5742 		kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5743 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5744 			r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5745 					  UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5746 			VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5747 				   rc, rrc);
5748 		}
5749 		break;
5750 	case KVM_S390_INITIAL_RESET:
5751 		r = 0;
5752 		kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5753 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5754 			r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5755 					  UVC_CMD_CPU_RESET_INITIAL,
5756 					  &rc, &rrc);
5757 			VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5758 				   rc, rrc);
5759 		}
5760 		break;
5761 	case KVM_S390_NORMAL_RESET:
5762 		r = 0;
5763 		kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5764 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5765 			r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5766 					  UVC_CMD_CPU_RESET, &rc, &rrc);
5767 			VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5768 				   rc, rrc);
5769 		}
5770 		break;
5771 	case KVM_SET_ONE_REG:
5772 	case KVM_GET_ONE_REG: {
5773 		struct kvm_one_reg reg;
5774 		r = -EINVAL;
5775 		if (kvm_s390_pv_cpu_is_protected(vcpu))
5776 			break;
5777 		r = -EFAULT;
5778 		if (copy_from_user(&reg, argp, sizeof(reg)))
5779 			break;
5780 		if (ioctl == KVM_SET_ONE_REG)
5781 			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
5782 		else
5783 			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
5784 		break;
5785 	}
5786 #ifdef CONFIG_KVM_S390_UCONTROL
5787 	case KVM_S390_UCAS_MAP: {
5788 		struct kvm_s390_ucas_mapping ucasmap;
5789 
5790 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5791 			r = -EFAULT;
5792 			break;
5793 		}
5794 
5795 		if (!kvm_is_ucontrol(vcpu->kvm)) {
5796 			r = -EINVAL;
5797 			break;
5798 		}
5799 
5800 		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
5801 				     ucasmap.vcpu_addr, ucasmap.length);
5802 		break;
5803 	}
5804 	case KVM_S390_UCAS_UNMAP: {
5805 		struct kvm_s390_ucas_mapping ucasmap;
5806 
5807 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5808 			r = -EFAULT;
5809 			break;
5810 		}
5811 
5812 		if (!kvm_is_ucontrol(vcpu->kvm)) {
5813 			r = -EINVAL;
5814 			break;
5815 		}
5816 
5817 		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
5818 			ucasmap.length);
5819 		break;
5820 	}
5821 #endif
5822 	case KVM_S390_VCPU_FAULT: {
5823 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5824 		r = vcpu_dat_fault_handler(vcpu, arg, 0);
5825 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5826 		break;
5827 	}
5828 	case KVM_ENABLE_CAP:
5829 	{
5830 		struct kvm_enable_cap cap;
5831 		r = -EFAULT;
5832 		if (copy_from_user(&cap, argp, sizeof(cap)))
5833 			break;
5834 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5835 		break;
5836 	}
5837 	case KVM_S390_MEM_OP: {
5838 		struct kvm_s390_mem_op mem_op;
5839 
5840 		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5841 			r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5842 		else
5843 			r = -EFAULT;
5844 		break;
5845 	}
5846 	case KVM_S390_SET_IRQ_STATE: {
5847 		struct kvm_s390_irq_state irq_state;
5848 
5849 		r = -EFAULT;
5850 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5851 			break;
5852 		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5853 		    irq_state.len == 0 ||
5854 		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5855 			r = -EINVAL;
5856 			break;
5857 		}
5858 		/* do not use irq_state.flags, it will break old QEMUs */
5859 		r = kvm_s390_set_irq_state(vcpu,
5860 					   (void __user *) irq_state.buf,
5861 					   irq_state.len);
5862 		break;
5863 	}
5864 	case KVM_S390_GET_IRQ_STATE: {
5865 		struct kvm_s390_irq_state irq_state;
5866 
5867 		r = -EFAULT;
5868 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5869 			break;
5870 		if (irq_state.len == 0) {
5871 			r = -EINVAL;
5872 			break;
5873 		}
5874 		/* do not use irq_state.flags, it will break old QEMUs */
5875 		r = kvm_s390_get_irq_state(vcpu,
5876 					   (__u8 __user *)  irq_state.buf,
5877 					   irq_state.len);
5878 		break;
5879 	}
5880 	case KVM_S390_PV_CPU_COMMAND: {
5881 		struct kvm_pv_cmd cmd;
5882 
5883 		r = -EINVAL;
5884 		if (!is_prot_virt_host())
5885 			break;
5886 
5887 		r = -EFAULT;
5888 		if (copy_from_user(&cmd, argp, sizeof(cmd)))
5889 			break;
5890 
5891 		r = -EINVAL;
5892 		if (cmd.flags)
5893 			break;
5894 
5895 		/* We only handle this cmd right now */
5896 		if (cmd.cmd != KVM_PV_DUMP)
5897 			break;
5898 
5899 		r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
5900 
5901 		/* Always copy over UV rc / rrc data */
5902 		if (copy_to_user((__u8 __user *)argp, &cmd.rc,
5903 				 sizeof(cmd.rc) + sizeof(cmd.rrc)))
5904 			r = -EFAULT;
5905 		break;
5906 	}
5907 	default:
5908 		r = -ENOTTY;
5909 	}
5910 
5911 	vcpu_put(vcpu);
5912 	return r;
5913 }
5914 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5915 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5916 {
5917 #ifdef CONFIG_KVM_S390_UCONTROL
5918 	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
5919 		 && (kvm_is_ucontrol(vcpu->kvm))) {
5920 		vmf->page = virt_to_page(vcpu->arch.sie_block);
5921 		get_page(vmf->page);
5922 		return 0;
5923 	}
5924 #endif
5925 	return VM_FAULT_SIGBUS;
5926 }
5927 
kvm_arch_irqchip_in_kernel(struct kvm * kvm)5928 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
5929 {
5930 	return true;
5931 }
5932 
5933 /* Section: memory related */
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)5934 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5935 				   const struct kvm_memory_slot *old,
5936 				   struct kvm_memory_slot *new,
5937 				   enum kvm_mr_change change)
5938 {
5939 	gpa_t size;
5940 
5941 	if (kvm_is_ucontrol(kvm) && new->id < KVM_USER_MEM_SLOTS)
5942 		return -EINVAL;
5943 
5944 	/* When we are protected, we should not change the memory slots */
5945 	if (kvm_s390_pv_get_handle(kvm))
5946 		return -EINVAL;
5947 
5948 	if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
5949 		/*
5950 		 * A few sanity checks. We can have memory slots which have to be
5951 		 * located/ended at a segment boundary (1MB). The memory in userland is
5952 		 * ok to be fragmented into various different vmas. It is okay to mmap()
5953 		 * and munmap() stuff in this slot after doing this call at any time
5954 		 */
5955 
5956 		if (new->userspace_addr & 0xffffful)
5957 			return -EINVAL;
5958 
5959 		size = new->npages * PAGE_SIZE;
5960 		if (size & 0xffffful)
5961 			return -EINVAL;
5962 
5963 		if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
5964 			return -EINVAL;
5965 	}
5966 
5967 	if (!kvm->arch.migration_mode)
5968 		return 0;
5969 
5970 	/*
5971 	 * Turn off migration mode when:
5972 	 * - userspace creates a new memslot with dirty logging off,
5973 	 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
5974 	 *   dirty logging is turned off.
5975 	 * Migration mode expects dirty page logging being enabled to store
5976 	 * its dirty bitmap.
5977 	 */
5978 	if (change != KVM_MR_DELETE &&
5979 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
5980 		WARN(kvm_s390_vm_stop_migration(kvm),
5981 		     "Failed to stop migration mode");
5982 
5983 	return 0;
5984 }
5985 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)5986 void kvm_arch_commit_memory_region(struct kvm *kvm,
5987 				struct kvm_memory_slot *old,
5988 				const struct kvm_memory_slot *new,
5989 				enum kvm_mr_change change)
5990 {
5991 	int rc = 0;
5992 
5993 	if (kvm_is_ucontrol(kvm))
5994 		return;
5995 
5996 	switch (change) {
5997 	case KVM_MR_DELETE:
5998 		rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5999 					old->npages * PAGE_SIZE);
6000 		break;
6001 	case KVM_MR_MOVE:
6002 		rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
6003 					old->npages * PAGE_SIZE);
6004 		if (rc)
6005 			break;
6006 		fallthrough;
6007 	case KVM_MR_CREATE:
6008 		rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
6009 				      new->base_gfn * PAGE_SIZE,
6010 				      new->npages * PAGE_SIZE);
6011 		break;
6012 	case KVM_MR_FLAGS_ONLY:
6013 		break;
6014 	default:
6015 		WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
6016 	}
6017 	if (rc)
6018 		pr_warn("failed to commit memory region\n");
6019 	return;
6020 }
6021 
nonhyp_mask(int i)6022 static inline unsigned long nonhyp_mask(int i)
6023 {
6024 	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
6025 
6026 	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
6027 }
6028 
kvm_s390_init(void)6029 static int __init kvm_s390_init(void)
6030 {
6031 	int i, r;
6032 
6033 	if (!sclp.has_sief2) {
6034 		pr_info("SIE is not available\n");
6035 		return -ENODEV;
6036 	}
6037 
6038 	if (nested && hpage) {
6039 		pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
6040 		return -EINVAL;
6041 	}
6042 
6043 	for (i = 0; i < 16; i++)
6044 		kvm_s390_fac_base[i] |=
6045 			stfle_fac_list[i] & nonhyp_mask(i);
6046 
6047 	r = __kvm_s390_init();
6048 	if (r)
6049 		return r;
6050 
6051 	r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
6052 	if (r) {
6053 		__kvm_s390_exit();
6054 		return r;
6055 	}
6056 	return 0;
6057 }
6058 
kvm_s390_exit(void)6059 static void __exit kvm_s390_exit(void)
6060 {
6061 	kvm_exit();
6062 
6063 	__kvm_s390_exit();
6064 }
6065 
6066 module_init(kvm_s390_init);
6067 module_exit(kvm_s390_exit);
6068 
6069 /*
6070  * Enable autoloading of the kvm module.
6071  * Note that we add the module alias here instead of virt/kvm/kvm_main.c
6072  * since x86 takes a different approach.
6073  */
6074 #include <linux/miscdevice.h>
6075 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6076 MODULE_ALIAS("devname:kvm");
6077