1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 #include <linux/sched/clock.h> 21 #include <uapi/linux/sched/types.h> 22 #include "sched.h" 23 #include "pelt.h" 24 25 /* 26 * Default limits for DL period; on the top end we guard against small util 27 * tasks still getting ridiculously long effective runtimes, on the bottom end we 28 * guard against timer DoS. 29 */ 30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 32 #ifdef CONFIG_SYSCTL 33 static const struct ctl_table sched_dl_sysctls[] = { 34 { 35 .procname = "sched_deadline_period_max_us", 36 .data = &sysctl_sched_dl_period_max, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = proc_douintvec_minmax, 40 .extra1 = (void *)&sysctl_sched_dl_period_min, 41 }, 42 { 43 .procname = "sched_deadline_period_min_us", 44 .data = &sysctl_sched_dl_period_min, 45 .maxlen = sizeof(unsigned int), 46 .mode = 0644, 47 .proc_handler = proc_douintvec_minmax, 48 .extra2 = (void *)&sysctl_sched_dl_period_max, 49 }, 50 }; 51 52 static int __init sched_dl_sysctl_init(void) 53 { 54 register_sysctl_init("kernel", sched_dl_sysctls); 55 return 0; 56 } 57 late_initcall(sched_dl_sysctl_init); 58 #endif /* CONFIG_SYSCTL */ 59 60 static bool dl_server(struct sched_dl_entity *dl_se) 61 { 62 return dl_se->dl_server; 63 } 64 65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 66 { 67 BUG_ON(dl_server(dl_se)); 68 return container_of(dl_se, struct task_struct, dl); 69 } 70 71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 72 { 73 return container_of(dl_rq, struct rq, dl); 74 } 75 76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) 77 { 78 struct rq *rq = dl_se->rq; 79 80 if (!dl_server(dl_se)) 81 rq = task_rq(dl_task_of(dl_se)); 82 83 return rq; 84 } 85 86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 87 { 88 return &rq_of_dl_se(dl_se)->dl; 89 } 90 91 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 92 { 93 return !RB_EMPTY_NODE(&dl_se->rb_node); 94 } 95 96 #ifdef CONFIG_RT_MUTEXES 97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 98 { 99 return dl_se->pi_se; 100 } 101 102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 103 { 104 return pi_of(dl_se) != dl_se; 105 } 106 #else /* !CONFIG_RT_MUTEXES: */ 107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 108 { 109 return dl_se; 110 } 111 112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 113 { 114 return false; 115 } 116 #endif /* !CONFIG_RT_MUTEXES */ 117 118 static inline struct dl_bw *dl_bw_of(int i) 119 { 120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 121 "sched RCU must be held"); 122 return &cpu_rq(i)->rd->dl_bw; 123 } 124 125 static inline int dl_bw_cpus(int i) 126 { 127 struct root_domain *rd = cpu_rq(i)->rd; 128 129 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 130 "sched RCU must be held"); 131 132 return cpumask_weight_and(rd->span, cpu_active_mask); 133 } 134 135 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 136 { 137 unsigned long cap = 0; 138 int i; 139 140 for_each_cpu_and(i, mask, cpu_active_mask) 141 cap += arch_scale_cpu_capacity(i); 142 143 return cap; 144 } 145 146 /* 147 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 148 * of the CPU the task is running on rather rd's \Sum CPU capacity. 149 */ 150 static inline unsigned long dl_bw_capacity(int i) 151 { 152 if (!sched_asym_cpucap_active() && 153 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 154 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 155 } else { 156 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 157 "sched RCU must be held"); 158 159 return __dl_bw_capacity(cpu_rq(i)->rd->span); 160 } 161 } 162 163 bool dl_bw_visited(int cpu, u64 cookie) 164 { 165 struct root_domain *rd = cpu_rq(cpu)->rd; 166 167 if (rd->visit_cookie == cookie) 168 return true; 169 170 rd->visit_cookie = cookie; 171 return false; 172 } 173 174 static inline 175 void __dl_update(struct dl_bw *dl_b, s64 bw) 176 { 177 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 178 int i; 179 180 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 181 "sched RCU must be held"); 182 for_each_cpu_and(i, rd->span, cpu_active_mask) { 183 struct rq *rq = cpu_rq(i); 184 185 rq->dl.extra_bw += bw; 186 } 187 } 188 189 static inline 190 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 191 { 192 dl_b->total_bw -= tsk_bw; 193 __dl_update(dl_b, (s32)tsk_bw / cpus); 194 } 195 196 static inline 197 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 198 { 199 dl_b->total_bw += tsk_bw; 200 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 201 } 202 203 static inline bool 204 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 205 { 206 return dl_b->bw != -1 && 207 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 208 } 209 210 static inline 211 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 212 { 213 u64 old = dl_rq->running_bw; 214 215 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 216 dl_rq->running_bw += dl_bw; 217 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */ 218 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 219 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 220 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 221 } 222 223 static inline 224 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 225 { 226 u64 old = dl_rq->running_bw; 227 228 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 229 dl_rq->running_bw -= dl_bw; 230 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */ 231 if (dl_rq->running_bw > old) 232 dl_rq->running_bw = 0; 233 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 234 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 235 } 236 237 static inline 238 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 239 { 240 u64 old = dl_rq->this_bw; 241 242 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 243 dl_rq->this_bw += dl_bw; 244 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */ 245 } 246 247 static inline 248 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 249 { 250 u64 old = dl_rq->this_bw; 251 252 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 253 dl_rq->this_bw -= dl_bw; 254 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */ 255 if (dl_rq->this_bw > old) 256 dl_rq->this_bw = 0; 257 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 258 } 259 260 static inline 261 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 262 { 263 if (!dl_entity_is_special(dl_se)) 264 __add_rq_bw(dl_se->dl_bw, dl_rq); 265 } 266 267 static inline 268 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 269 { 270 if (!dl_entity_is_special(dl_se)) 271 __sub_rq_bw(dl_se->dl_bw, dl_rq); 272 } 273 274 static inline 275 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 276 { 277 if (!dl_entity_is_special(dl_se)) 278 __add_running_bw(dl_se->dl_bw, dl_rq); 279 } 280 281 static inline 282 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 283 { 284 if (!dl_entity_is_special(dl_se)) 285 __sub_running_bw(dl_se->dl_bw, dl_rq); 286 } 287 288 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw) 289 { 290 if (dl_se->dl_non_contending) { 291 sub_running_bw(dl_se, &rq->dl); 292 dl_se->dl_non_contending = 0; 293 294 /* 295 * If the timer handler is currently running and the 296 * timer cannot be canceled, inactive_task_timer() 297 * will see that dl_not_contending is not set, and 298 * will not touch the rq's active utilization, 299 * so we are still safe. 300 */ 301 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) { 302 if (!dl_server(dl_se)) 303 put_task_struct(dl_task_of(dl_se)); 304 } 305 } 306 __sub_rq_bw(dl_se->dl_bw, &rq->dl); 307 __add_rq_bw(new_bw, &rq->dl); 308 } 309 310 static __always_inline 311 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer) 312 { 313 /* 314 * If the timer callback was running (hrtimer_try_to_cancel == -1), 315 * it will eventually call put_task_struct(). 316 */ 317 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se)) 318 put_task_struct(dl_task_of(dl_se)); 319 } 320 321 static __always_inline 322 void cancel_replenish_timer(struct sched_dl_entity *dl_se) 323 { 324 cancel_dl_timer(dl_se, &dl_se->dl_timer); 325 } 326 327 static __always_inline 328 void cancel_inactive_timer(struct sched_dl_entity *dl_se) 329 { 330 cancel_dl_timer(dl_se, &dl_se->inactive_timer); 331 } 332 333 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 334 { 335 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 336 337 if (task_on_rq_queued(p)) 338 return; 339 340 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw); 341 } 342 343 static void __dl_clear_params(struct sched_dl_entity *dl_se); 344 345 /* 346 * The utilization of a task cannot be immediately removed from 347 * the rq active utilization (running_bw) when the task blocks. 348 * Instead, we have to wait for the so called "0-lag time". 349 * 350 * If a task blocks before the "0-lag time", a timer (the inactive 351 * timer) is armed, and running_bw is decreased when the timer 352 * fires. 353 * 354 * If the task wakes up again before the inactive timer fires, 355 * the timer is canceled, whereas if the task wakes up after the 356 * inactive timer fired (and running_bw has been decreased) the 357 * task's utilization has to be added to running_bw again. 358 * A flag in the deadline scheduling entity (dl_non_contending) 359 * is used to avoid race conditions between the inactive timer handler 360 * and task wakeups. 361 * 362 * The following diagram shows how running_bw is updated. A task is 363 * "ACTIVE" when its utilization contributes to running_bw; an 364 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 365 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 366 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 367 * time already passed, which does not contribute to running_bw anymore. 368 * +------------------+ 369 * wakeup | ACTIVE | 370 * +------------------>+ contending | 371 * | add_running_bw | | 372 * | +----+------+------+ 373 * | | ^ 374 * | dequeue | | 375 * +--------+-------+ | | 376 * | | t >= 0-lag | | wakeup 377 * | INACTIVE |<---------------+ | 378 * | | sub_running_bw | | 379 * +--------+-------+ | | 380 * ^ | | 381 * | t < 0-lag | | 382 * | | | 383 * | V | 384 * | +----+------+------+ 385 * | sub_running_bw | ACTIVE | 386 * +-------------------+ | 387 * inactive timer | non contending | 388 * fired +------------------+ 389 * 390 * The task_non_contending() function is invoked when a task 391 * blocks, and checks if the 0-lag time already passed or 392 * not (in the first case, it directly updates running_bw; 393 * in the second case, it arms the inactive timer). 394 * 395 * The task_contending() function is invoked when a task wakes 396 * up, and checks if the task is still in the "ACTIVE non contending" 397 * state or not (in the second case, it updates running_bw). 398 */ 399 static void task_non_contending(struct sched_dl_entity *dl_se, bool dl_task) 400 { 401 struct hrtimer *timer = &dl_se->inactive_timer; 402 struct rq *rq = rq_of_dl_se(dl_se); 403 struct dl_rq *dl_rq = &rq->dl; 404 s64 zerolag_time; 405 406 /* 407 * If this is a non-deadline task that has been boosted, 408 * do nothing 409 */ 410 if (dl_se->dl_runtime == 0) 411 return; 412 413 if (dl_entity_is_special(dl_se)) 414 return; 415 416 WARN_ON(dl_se->dl_non_contending); 417 418 zerolag_time = dl_se->deadline - 419 div64_long((dl_se->runtime * dl_se->dl_period), 420 dl_se->dl_runtime); 421 422 /* 423 * Using relative times instead of the absolute "0-lag time" 424 * allows to simplify the code 425 */ 426 zerolag_time -= rq_clock(rq); 427 428 /* 429 * If the "0-lag time" already passed, decrease the active 430 * utilization now, instead of starting a timer 431 */ 432 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 433 if (dl_server(dl_se)) { 434 sub_running_bw(dl_se, dl_rq); 435 } else { 436 struct task_struct *p = dl_task_of(dl_se); 437 438 if (dl_task) 439 sub_running_bw(dl_se, dl_rq); 440 441 if (!dl_task || READ_ONCE(p->__state) == TASK_DEAD) { 442 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 443 444 if (READ_ONCE(p->__state) == TASK_DEAD) 445 sub_rq_bw(dl_se, &rq->dl); 446 raw_spin_lock(&dl_b->lock); 447 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 448 raw_spin_unlock(&dl_b->lock); 449 __dl_clear_params(dl_se); 450 } 451 } 452 453 return; 454 } 455 456 dl_se->dl_non_contending = 1; 457 if (!dl_server(dl_se)) 458 get_task_struct(dl_task_of(dl_se)); 459 460 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 461 } 462 463 static void task_contending(struct sched_dl_entity *dl_se, int flags) 464 { 465 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 466 467 /* 468 * If this is a non-deadline task that has been boosted, 469 * do nothing 470 */ 471 if (dl_se->dl_runtime == 0) 472 return; 473 474 if (flags & ENQUEUE_MIGRATED) 475 add_rq_bw(dl_se, dl_rq); 476 477 if (dl_se->dl_non_contending) { 478 dl_se->dl_non_contending = 0; 479 /* 480 * If the timer handler is currently running and the 481 * timer cannot be canceled, inactive_task_timer() 482 * will see that dl_not_contending is not set, and 483 * will not touch the rq's active utilization, 484 * so we are still safe. 485 */ 486 cancel_inactive_timer(dl_se); 487 } else { 488 /* 489 * Since "dl_non_contending" is not set, the 490 * task's utilization has already been removed from 491 * active utilization (either when the task blocked, 492 * when the "inactive timer" fired). 493 * So, add it back. 494 */ 495 add_running_bw(dl_se, dl_rq); 496 } 497 } 498 499 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 500 { 501 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 502 } 503 504 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 505 506 void init_dl_bw(struct dl_bw *dl_b) 507 { 508 raw_spin_lock_init(&dl_b->lock); 509 if (global_rt_runtime() == RUNTIME_INF) 510 dl_b->bw = -1; 511 else 512 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 513 dl_b->total_bw = 0; 514 } 515 516 void init_dl_rq(struct dl_rq *dl_rq) 517 { 518 dl_rq->root = RB_ROOT_CACHED; 519 520 /* zero means no -deadline tasks */ 521 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 522 523 dl_rq->overloaded = 0; 524 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 525 526 dl_rq->running_bw = 0; 527 dl_rq->this_bw = 0; 528 init_dl_rq_bw_ratio(dl_rq); 529 } 530 531 static inline int dl_overloaded(struct rq *rq) 532 { 533 return atomic_read(&rq->rd->dlo_count); 534 } 535 536 static inline void dl_set_overload(struct rq *rq) 537 { 538 if (!rq->online) 539 return; 540 541 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 542 /* 543 * Must be visible before the overload count is 544 * set (as in sched_rt.c). 545 * 546 * Matched by the barrier in pull_dl_task(). 547 */ 548 smp_wmb(); 549 atomic_inc(&rq->rd->dlo_count); 550 } 551 552 static inline void dl_clear_overload(struct rq *rq) 553 { 554 if (!rq->online) 555 return; 556 557 atomic_dec(&rq->rd->dlo_count); 558 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 559 } 560 561 #define __node_2_pdl(node) \ 562 rb_entry((node), struct task_struct, pushable_dl_tasks) 563 564 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 565 { 566 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 567 } 568 569 static inline int has_pushable_dl_tasks(struct rq *rq) 570 { 571 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 572 } 573 574 /* 575 * The list of pushable -deadline task is not a plist, like in 576 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 577 */ 578 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 579 { 580 struct rb_node *leftmost; 581 582 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 583 584 leftmost = rb_add_cached(&p->pushable_dl_tasks, 585 &rq->dl.pushable_dl_tasks_root, 586 __pushable_less); 587 if (leftmost) 588 rq->dl.earliest_dl.next = p->dl.deadline; 589 590 if (!rq->dl.overloaded) { 591 dl_set_overload(rq); 592 rq->dl.overloaded = 1; 593 } 594 } 595 596 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 597 { 598 struct dl_rq *dl_rq = &rq->dl; 599 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 600 struct rb_node *leftmost; 601 602 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 603 return; 604 605 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 606 if (leftmost) 607 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 608 609 RB_CLEAR_NODE(&p->pushable_dl_tasks); 610 611 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 612 dl_clear_overload(rq); 613 rq->dl.overloaded = 0; 614 } 615 } 616 617 static int push_dl_task(struct rq *rq); 618 619 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 620 { 621 return rq->online && dl_task(prev); 622 } 623 624 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 625 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 626 627 static void push_dl_tasks(struct rq *); 628 static void pull_dl_task(struct rq *); 629 630 static inline void deadline_queue_push_tasks(struct rq *rq) 631 { 632 if (!has_pushable_dl_tasks(rq)) 633 return; 634 635 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 636 } 637 638 static inline void deadline_queue_pull_task(struct rq *rq) 639 { 640 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 641 } 642 643 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 644 645 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 646 { 647 struct rq *later_rq = NULL; 648 struct dl_bw *dl_b; 649 650 later_rq = find_lock_later_rq(p, rq); 651 if (!later_rq) { 652 int cpu; 653 654 /* 655 * If we cannot preempt any rq, fall back to pick any 656 * online CPU: 657 */ 658 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 659 if (cpu >= nr_cpu_ids) { 660 /* 661 * Failed to find any suitable CPU. 662 * The task will never come back! 663 */ 664 WARN_ON_ONCE(dl_bandwidth_enabled()); 665 666 /* 667 * If admission control is disabled we 668 * try a little harder to let the task 669 * run. 670 */ 671 cpu = cpumask_any(cpu_active_mask); 672 } 673 later_rq = cpu_rq(cpu); 674 double_lock_balance(rq, later_rq); 675 } 676 677 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 678 /* 679 * Inactive timer is armed (or callback is running, but 680 * waiting for us to release rq locks). In any case, when it 681 * will fire (or continue), it will see running_bw of this 682 * task migrated to later_rq (and correctly handle it). 683 */ 684 sub_running_bw(&p->dl, &rq->dl); 685 sub_rq_bw(&p->dl, &rq->dl); 686 687 add_rq_bw(&p->dl, &later_rq->dl); 688 add_running_bw(&p->dl, &later_rq->dl); 689 } else { 690 sub_rq_bw(&p->dl, &rq->dl); 691 add_rq_bw(&p->dl, &later_rq->dl); 692 } 693 694 /* 695 * And we finally need to fix up root_domain(s) bandwidth accounting, 696 * since p is still hanging out in the old (now moved to default) root 697 * domain. 698 */ 699 dl_b = &rq->rd->dl_bw; 700 raw_spin_lock(&dl_b->lock); 701 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 702 raw_spin_unlock(&dl_b->lock); 703 704 dl_b = &later_rq->rd->dl_bw; 705 raw_spin_lock(&dl_b->lock); 706 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 707 raw_spin_unlock(&dl_b->lock); 708 709 set_task_cpu(p, later_rq->cpu); 710 double_unlock_balance(later_rq, rq); 711 712 return later_rq; 713 } 714 715 static void 716 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); 717 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 718 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); 719 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 720 721 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 722 struct rq *rq) 723 { 724 /* for non-boosted task, pi_of(dl_se) == dl_se */ 725 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 726 dl_se->runtime = pi_of(dl_se)->dl_runtime; 727 728 /* 729 * If it is a deferred reservation, and the server 730 * is not handling an starvation case, defer it. 731 */ 732 if (dl_se->dl_defer && !dl_se->dl_defer_running) { 733 dl_se->dl_throttled = 1; 734 dl_se->dl_defer_armed = 1; 735 } 736 } 737 738 /* 739 * We are being explicitly informed that a new instance is starting, 740 * and this means that: 741 * - the absolute deadline of the entity has to be placed at 742 * current time + relative deadline; 743 * - the runtime of the entity has to be set to the maximum value. 744 * 745 * The capability of specifying such event is useful whenever a -deadline 746 * entity wants to (try to!) synchronize its behaviour with the scheduler's 747 * one, and to (try to!) reconcile itself with its own scheduling 748 * parameters. 749 */ 750 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 751 { 752 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 753 struct rq *rq = rq_of_dl_rq(dl_rq); 754 755 WARN_ON(is_dl_boosted(dl_se)); 756 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 757 758 /* 759 * We are racing with the deadline timer. So, do nothing because 760 * the deadline timer handler will take care of properly recharging 761 * the runtime and postponing the deadline 762 */ 763 if (dl_se->dl_throttled) 764 return; 765 766 /* 767 * We use the regular wall clock time to set deadlines in the 768 * future; in fact, we must consider execution overheads (time 769 * spent on hardirq context, etc.). 770 */ 771 replenish_dl_new_period(dl_se, rq); 772 } 773 774 static int start_dl_timer(struct sched_dl_entity *dl_se); 775 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t); 776 777 /* 778 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 779 * possibility of a entity lasting more than what it declared, and thus 780 * exhausting its runtime. 781 * 782 * Here we are interested in making runtime overrun possible, but we do 783 * not want a entity which is misbehaving to affect the scheduling of all 784 * other entities. 785 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 786 * is used, in order to confine each entity within its own bandwidth. 787 * 788 * This function deals exactly with that, and ensures that when the runtime 789 * of a entity is replenished, its deadline is also postponed. That ensures 790 * the overrunning entity can't interfere with other entity in the system and 791 * can't make them miss their deadlines. Reasons why this kind of overruns 792 * could happen are, typically, a entity voluntarily trying to overcome its 793 * runtime, or it just underestimated it during sched_setattr(). 794 */ 795 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 796 { 797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 798 struct rq *rq = rq_of_dl_rq(dl_rq); 799 800 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 801 802 /* 803 * This could be the case for a !-dl task that is boosted. 804 * Just go with full inherited parameters. 805 * 806 * Or, it could be the case of a deferred reservation that 807 * was not able to consume its runtime in background and 808 * reached this point with current u > U. 809 * 810 * In both cases, set a new period. 811 */ 812 if (dl_se->dl_deadline == 0 || 813 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) { 814 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 815 dl_se->runtime = pi_of(dl_se)->dl_runtime; 816 } 817 818 if (dl_se->dl_yielded && dl_se->runtime > 0) 819 dl_se->runtime = 0; 820 821 /* 822 * We keep moving the deadline away until we get some 823 * available runtime for the entity. This ensures correct 824 * handling of situations where the runtime overrun is 825 * arbitrary large. 826 */ 827 while (dl_se->runtime <= 0) { 828 dl_se->deadline += pi_of(dl_se)->dl_period; 829 dl_se->runtime += pi_of(dl_se)->dl_runtime; 830 } 831 832 /* 833 * At this point, the deadline really should be "in 834 * the future" with respect to rq->clock. If it's 835 * not, we are, for some reason, lagging too much! 836 * Anyway, after having warn userspace abut that, 837 * we still try to keep the things running by 838 * resetting the deadline and the budget of the 839 * entity. 840 */ 841 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 842 printk_deferred_once("sched: DL replenish lagged too much\n"); 843 replenish_dl_new_period(dl_se, rq); 844 } 845 846 if (dl_se->dl_yielded) 847 dl_se->dl_yielded = 0; 848 if (dl_se->dl_throttled) 849 dl_se->dl_throttled = 0; 850 851 /* 852 * If this is the replenishment of a deferred reservation, 853 * clear the flag and return. 854 */ 855 if (dl_se->dl_defer_armed) { 856 dl_se->dl_defer_armed = 0; 857 return; 858 } 859 860 /* 861 * A this point, if the deferred server is not armed, and the deadline 862 * is in the future, if it is not running already, throttle the server 863 * and arm the defer timer. 864 */ 865 if (dl_se->dl_defer && !dl_se->dl_defer_running && 866 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) { 867 if (!is_dl_boosted(dl_se)) { 868 869 /* 870 * Set dl_se->dl_defer_armed and dl_throttled variables to 871 * inform the start_dl_timer() that this is a deferred 872 * activation. 873 */ 874 dl_se->dl_defer_armed = 1; 875 dl_se->dl_throttled = 1; 876 if (!start_dl_timer(dl_se)) { 877 /* 878 * If for whatever reason (delays), a previous timer was 879 * queued but not serviced, cancel it and clean the 880 * deferrable server variables intended for start_dl_timer(). 881 */ 882 hrtimer_try_to_cancel(&dl_se->dl_timer); 883 dl_se->dl_defer_armed = 0; 884 dl_se->dl_throttled = 0; 885 } 886 } 887 } 888 } 889 890 /* 891 * Here we check if --at time t-- an entity (which is probably being 892 * [re]activated or, in general, enqueued) can use its remaining runtime 893 * and its current deadline _without_ exceeding the bandwidth it is 894 * assigned (function returns true if it can't). We are in fact applying 895 * one of the CBS rules: when a task wakes up, if the residual runtime 896 * over residual deadline fits within the allocated bandwidth, then we 897 * can keep the current (absolute) deadline and residual budget without 898 * disrupting the schedulability of the system. Otherwise, we should 899 * refill the runtime and set the deadline a period in the future, 900 * because keeping the current (absolute) deadline of the task would 901 * result in breaking guarantees promised to other tasks (refer to 902 * Documentation/scheduler/sched-deadline.rst for more information). 903 * 904 * This function returns true if: 905 * 906 * runtime / (deadline - t) > dl_runtime / dl_deadline , 907 * 908 * IOW we can't recycle current parameters. 909 * 910 * Notice that the bandwidth check is done against the deadline. For 911 * task with deadline equal to period this is the same of using 912 * dl_period instead of dl_deadline in the equation above. 913 */ 914 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 915 { 916 u64 left, right; 917 918 /* 919 * left and right are the two sides of the equation above, 920 * after a bit of shuffling to use multiplications instead 921 * of divisions. 922 * 923 * Note that none of the time values involved in the two 924 * multiplications are absolute: dl_deadline and dl_runtime 925 * are the relative deadline and the maximum runtime of each 926 * instance, runtime is the runtime left for the last instance 927 * and (deadline - t), since t is rq->clock, is the time left 928 * to the (absolute) deadline. Even if overflowing the u64 type 929 * is very unlikely to occur in both cases, here we scale down 930 * as we want to avoid that risk at all. Scaling down by 10 931 * means that we reduce granularity to 1us. We are fine with it, 932 * since this is only a true/false check and, anyway, thinking 933 * of anything below microseconds resolution is actually fiction 934 * (but still we want to give the user that illusion >;). 935 */ 936 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 937 right = ((dl_se->deadline - t) >> DL_SCALE) * 938 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 939 940 return dl_time_before(right, left); 941 } 942 943 /* 944 * Revised wakeup rule [1]: For self-suspending tasks, rather then 945 * re-initializing task's runtime and deadline, the revised wakeup 946 * rule adjusts the task's runtime to avoid the task to overrun its 947 * density. 948 * 949 * Reasoning: a task may overrun the density if: 950 * runtime / (deadline - t) > dl_runtime / dl_deadline 951 * 952 * Therefore, runtime can be adjusted to: 953 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 954 * 955 * In such way that runtime will be equal to the maximum density 956 * the task can use without breaking any rule. 957 * 958 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 959 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 960 */ 961 static void 962 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 963 { 964 u64 laxity = dl_se->deadline - rq_clock(rq); 965 966 /* 967 * If the task has deadline < period, and the deadline is in the past, 968 * it should already be throttled before this check. 969 * 970 * See update_dl_entity() comments for further details. 971 */ 972 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 973 974 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 975 } 976 977 /* 978 * Regarding the deadline, a task with implicit deadline has a relative 979 * deadline == relative period. A task with constrained deadline has a 980 * relative deadline <= relative period. 981 * 982 * We support constrained deadline tasks. However, there are some restrictions 983 * applied only for tasks which do not have an implicit deadline. See 984 * update_dl_entity() to know more about such restrictions. 985 * 986 * The dl_is_implicit() returns true if the task has an implicit deadline. 987 */ 988 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 989 { 990 return dl_se->dl_deadline == dl_se->dl_period; 991 } 992 993 /* 994 * When a deadline entity is placed in the runqueue, its runtime and deadline 995 * might need to be updated. This is done by a CBS wake up rule. There are two 996 * different rules: 1) the original CBS; and 2) the Revisited CBS. 997 * 998 * When the task is starting a new period, the Original CBS is used. In this 999 * case, the runtime is replenished and a new absolute deadline is set. 1000 * 1001 * When a task is queued before the begin of the next period, using the 1002 * remaining runtime and deadline could make the entity to overflow, see 1003 * dl_entity_overflow() to find more about runtime overflow. When such case 1004 * is detected, the runtime and deadline need to be updated. 1005 * 1006 * If the task has an implicit deadline, i.e., deadline == period, the Original 1007 * CBS is applied. The runtime is replenished and a new absolute deadline is 1008 * set, as in the previous cases. 1009 * 1010 * However, the Original CBS does not work properly for tasks with 1011 * deadline < period, which are said to have a constrained deadline. By 1012 * applying the Original CBS, a constrained deadline task would be able to run 1013 * runtime/deadline in a period. With deadline < period, the task would 1014 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1015 * 1016 * In order to prevent this misbehave, the Revisited CBS is used for 1017 * constrained deadline tasks when a runtime overflow is detected. In the 1018 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1019 * the remaining runtime of the task is reduced to avoid runtime overflow. 1020 * Please refer to the comments update_dl_revised_wakeup() function to find 1021 * more about the Revised CBS rule. 1022 */ 1023 static void update_dl_entity(struct sched_dl_entity *dl_se) 1024 { 1025 struct rq *rq = rq_of_dl_se(dl_se); 1026 1027 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1028 dl_entity_overflow(dl_se, rq_clock(rq))) { 1029 1030 if (unlikely(!dl_is_implicit(dl_se) && 1031 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1032 !is_dl_boosted(dl_se))) { 1033 update_dl_revised_wakeup(dl_se, rq); 1034 return; 1035 } 1036 1037 /* 1038 * When [4] D->A is followed by [1] A->B, dl_defer_running 1039 * needs to be cleared, otherwise it will fail to properly 1040 * start the zero-laxity timer. 1041 */ 1042 dl_se->dl_defer_running = 0; 1043 replenish_dl_new_period(dl_se, rq); 1044 } else if (dl_server(dl_se) && dl_se->dl_defer) { 1045 /* 1046 * The server can still use its previous deadline, so check if 1047 * it left the dl_defer_running state. 1048 */ 1049 if (!dl_se->dl_defer_running) { 1050 dl_se->dl_defer_armed = 1; 1051 dl_se->dl_throttled = 1; 1052 } 1053 } 1054 } 1055 1056 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1057 { 1058 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1059 } 1060 1061 /* 1062 * If the entity depleted all its runtime, and if we want it to sleep 1063 * while waiting for some new execution time to become available, we 1064 * set the bandwidth replenishment timer to the replenishment instant 1065 * and try to activate it. 1066 * 1067 * Notice that it is important for the caller to know if the timer 1068 * actually started or not (i.e., the replenishment instant is in 1069 * the future or in the past). 1070 */ 1071 static int start_dl_timer(struct sched_dl_entity *dl_se) 1072 { 1073 struct hrtimer *timer = &dl_se->dl_timer; 1074 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1075 struct rq *rq = rq_of_dl_rq(dl_rq); 1076 ktime_t now, act; 1077 s64 delta; 1078 1079 lockdep_assert_rq_held(rq); 1080 1081 /* 1082 * We want the timer to fire at the deadline, but considering 1083 * that it is actually coming from rq->clock and not from 1084 * hrtimer's time base reading. 1085 * 1086 * The deferred reservation will have its timer set to 1087 * (deadline - runtime). At that point, the CBS rule will decide 1088 * if the current deadline can be used, or if a replenishment is 1089 * required to avoid add too much pressure on the system 1090 * (current u > U). 1091 */ 1092 if (dl_se->dl_defer_armed) { 1093 WARN_ON_ONCE(!dl_se->dl_throttled); 1094 act = ns_to_ktime(dl_se->deadline - dl_se->runtime); 1095 } else { 1096 /* act = deadline - rel-deadline + period */ 1097 act = ns_to_ktime(dl_next_period(dl_se)); 1098 } 1099 1100 now = hrtimer_cb_get_time(timer); 1101 delta = ktime_to_ns(now) - rq_clock(rq); 1102 act = ktime_add_ns(act, delta); 1103 1104 /* 1105 * If the expiry time already passed, e.g., because the value 1106 * chosen as the deadline is too small, don't even try to 1107 * start the timer in the past! 1108 */ 1109 if (ktime_us_delta(act, now) < 0) 1110 return 0; 1111 1112 /* 1113 * !enqueued will guarantee another callback; even if one is already in 1114 * progress. This ensures a balanced {get,put}_task_struct(). 1115 * 1116 * The race against __run_timer() clearing the enqueued state is 1117 * harmless because we're holding task_rq()->lock, therefore the timer 1118 * expiring after we've done the check will wait on its task_rq_lock() 1119 * and observe our state. 1120 */ 1121 if (!hrtimer_is_queued(timer)) { 1122 if (!dl_server(dl_se)) 1123 get_task_struct(dl_task_of(dl_se)); 1124 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1125 } 1126 1127 return 1; 1128 } 1129 1130 static void __push_dl_task(struct rq *rq, struct rq_flags *rf) 1131 { 1132 /* 1133 * Queueing this task back might have overloaded rq, check if we need 1134 * to kick someone away. 1135 */ 1136 if (has_pushable_dl_tasks(rq)) { 1137 /* 1138 * Nothing relies on rq->lock after this, so its safe to drop 1139 * rq->lock. 1140 */ 1141 rq_unpin_lock(rq, rf); 1142 push_dl_task(rq); 1143 rq_repin_lock(rq, rf); 1144 } 1145 } 1146 1147 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */ 1148 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC; 1149 1150 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se) 1151 { 1152 struct rq *rq = rq_of_dl_se(dl_se); 1153 u64 fw; 1154 1155 scoped_guard (rq_lock, rq) { 1156 struct rq_flags *rf = &scope.rf; 1157 1158 if (!dl_se->dl_throttled || !dl_se->dl_runtime) 1159 return HRTIMER_NORESTART; 1160 1161 sched_clock_tick(); 1162 update_rq_clock(rq); 1163 1164 /* 1165 * Make sure current has propagated its pending runtime into 1166 * any relevant server through calling dl_server_update() and 1167 * friends. 1168 */ 1169 rq->donor->sched_class->update_curr(rq); 1170 1171 if (dl_se->dl_defer_idle) { 1172 dl_server_stop(dl_se); 1173 return HRTIMER_NORESTART; 1174 } 1175 1176 if (dl_se->dl_defer_armed) { 1177 /* 1178 * First check if the server could consume runtime in background. 1179 * If so, it is possible to push the defer timer for this amount 1180 * of time. The dl_server_min_res serves as a limit to avoid 1181 * forwarding the timer for a too small amount of time. 1182 */ 1183 if (dl_time_before(rq_clock(dl_se->rq), 1184 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) { 1185 1186 /* reset the defer timer */ 1187 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime; 1188 1189 hrtimer_forward_now(timer, ns_to_ktime(fw)); 1190 return HRTIMER_RESTART; 1191 } 1192 1193 dl_se->dl_defer_running = 1; 1194 } 1195 1196 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1197 1198 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl)) 1199 resched_curr(rq); 1200 1201 __push_dl_task(rq, rf); 1202 } 1203 1204 return HRTIMER_NORESTART; 1205 } 1206 1207 /* 1208 * This is the bandwidth enforcement timer callback. If here, we know 1209 * a task is not on its dl_rq, since the fact that the timer was running 1210 * means the task is throttled and needs a runtime replenishment. 1211 * 1212 * However, what we actually do depends on the fact the task is active, 1213 * (it is on its rq) or has been removed from there by a call to 1214 * dequeue_task_dl(). In the former case we must issue the runtime 1215 * replenishment and add the task back to the dl_rq; in the latter, we just 1216 * do nothing but clearing dl_throttled, so that runtime and deadline 1217 * updating (and the queueing back to dl_rq) will be done by the 1218 * next call to enqueue_task_dl(). 1219 */ 1220 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1221 { 1222 struct sched_dl_entity *dl_se = container_of(timer, 1223 struct sched_dl_entity, 1224 dl_timer); 1225 struct task_struct *p; 1226 struct rq_flags rf; 1227 struct rq *rq; 1228 1229 if (dl_server(dl_se)) 1230 return dl_server_timer(timer, dl_se); 1231 1232 p = dl_task_of(dl_se); 1233 rq = task_rq_lock(p, &rf); 1234 1235 /* 1236 * The task might have changed its scheduling policy to something 1237 * different than SCHED_DEADLINE (through switched_from_dl()). 1238 */ 1239 if (!dl_task(p)) 1240 goto unlock; 1241 1242 /* 1243 * The task might have been boosted by someone else and might be in the 1244 * boosting/deboosting path, its not throttled. 1245 */ 1246 if (is_dl_boosted(dl_se)) 1247 goto unlock; 1248 1249 /* 1250 * Spurious timer due to start_dl_timer() race; or we already received 1251 * a replenishment from rt_mutex_setprio(). 1252 */ 1253 if (!dl_se->dl_throttled) 1254 goto unlock; 1255 1256 sched_clock_tick(); 1257 update_rq_clock(rq); 1258 1259 /* 1260 * If the throttle happened during sched-out; like: 1261 * 1262 * schedule() 1263 * deactivate_task() 1264 * dequeue_task_dl() 1265 * update_curr_dl() 1266 * start_dl_timer() 1267 * __dequeue_task_dl() 1268 * prev->on_rq = 0; 1269 * 1270 * We can be both throttled and !queued. Replenish the counter 1271 * but do not enqueue -- wait for our wakeup to do that. 1272 */ 1273 if (!task_on_rq_queued(p)) { 1274 replenish_dl_entity(dl_se); 1275 goto unlock; 1276 } 1277 1278 if (unlikely(!rq->online)) { 1279 /* 1280 * If the runqueue is no longer available, migrate the 1281 * task elsewhere. This necessarily changes rq. 1282 */ 1283 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1284 rq = dl_task_offline_migration(rq, p); 1285 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1286 update_rq_clock(rq); 1287 1288 /* 1289 * Now that the task has been migrated to the new RQ and we 1290 * have that locked, proceed as normal and enqueue the task 1291 * there. 1292 */ 1293 } 1294 1295 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1296 if (dl_task(rq->donor)) 1297 wakeup_preempt_dl(rq, p, 0); 1298 else 1299 resched_curr(rq); 1300 1301 __push_dl_task(rq, &rf); 1302 1303 unlock: 1304 task_rq_unlock(rq, p, &rf); 1305 1306 /* 1307 * This can free the task_struct, including this hrtimer, do not touch 1308 * anything related to that after this. 1309 */ 1310 put_task_struct(p); 1311 1312 return HRTIMER_NORESTART; 1313 } 1314 1315 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1316 { 1317 struct hrtimer *timer = &dl_se->dl_timer; 1318 1319 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1320 } 1321 1322 /* 1323 * During the activation, CBS checks if it can reuse the current task's 1324 * runtime and period. If the deadline of the task is in the past, CBS 1325 * cannot use the runtime, and so it replenishes the task. This rule 1326 * works fine for implicit deadline tasks (deadline == period), and the 1327 * CBS was designed for implicit deadline tasks. However, a task with 1328 * constrained deadline (deadline < period) might be awakened after the 1329 * deadline, but before the next period. In this case, replenishing the 1330 * task would allow it to run for runtime / deadline. As in this case 1331 * deadline < period, CBS enables a task to run for more than the 1332 * runtime / period. In a very loaded system, this can cause a domino 1333 * effect, making other tasks miss their deadlines. 1334 * 1335 * To avoid this problem, in the activation of a constrained deadline 1336 * task after the deadline but before the next period, throttle the 1337 * task and set the replenishing timer to the begin of the next period, 1338 * unless it is boosted. 1339 */ 1340 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1341 { 1342 struct rq *rq = rq_of_dl_se(dl_se); 1343 1344 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1345 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1346 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) 1347 return; 1348 dl_se->dl_throttled = 1; 1349 if (dl_se->runtime > 0) 1350 dl_se->runtime = 0; 1351 } 1352 } 1353 1354 static 1355 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1356 { 1357 return (dl_se->runtime <= 0); 1358 } 1359 1360 /* 1361 * This function implements the GRUB accounting rule. According to the 1362 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1363 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1364 * where u is the utilization of the task, Umax is the maximum reclaimable 1365 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1366 * as the difference between the "total runqueue utilization" and the 1367 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1368 * reclaimable utilization. 1369 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1370 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1371 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1372 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1373 * Since delta is a 64 bit variable, to have an overflow its value should be 1374 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1375 * not an issue here. 1376 */ 1377 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1378 { 1379 u64 u_act; 1380 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1381 1382 /* 1383 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1384 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1385 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1386 * negative leading to wrong results. 1387 */ 1388 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1389 u_act = dl_se->dl_bw; 1390 else 1391 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1392 1393 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1394 return (delta * u_act) >> BW_SHIFT; 1395 } 1396 1397 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1398 { 1399 s64 scaled_delta_exec; 1400 1401 /* 1402 * For tasks that participate in GRUB, we implement GRUB-PA: the 1403 * spare reclaimed bandwidth is used to clock down frequency. 1404 * 1405 * For the others, we still need to scale reservation parameters 1406 * according to current frequency and CPU maximum capacity. 1407 */ 1408 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1409 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se); 1410 } else { 1411 int cpu = cpu_of(rq); 1412 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1413 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1414 1415 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1416 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1417 } 1418 1419 return scaled_delta_exec; 1420 } 1421 1422 static inline void 1423 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, int flags); 1424 1425 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1426 { 1427 bool idle = idle_rq(rq); 1428 s64 scaled_delta_exec; 1429 1430 if (unlikely(delta_exec <= 0)) { 1431 if (unlikely(dl_se->dl_yielded)) 1432 goto throttle; 1433 return; 1434 } 1435 1436 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer) 1437 return; 1438 1439 if (dl_entity_is_special(dl_se)) 1440 return; 1441 1442 scaled_delta_exec = delta_exec; 1443 if (!dl_server(dl_se)) 1444 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec); 1445 1446 dl_se->runtime -= scaled_delta_exec; 1447 1448 if (dl_se->dl_defer_idle && !idle) 1449 dl_se->dl_defer_idle = 0; 1450 1451 /* 1452 * The fair server can consume its runtime while throttled (not queued/ 1453 * running as regular CFS). 1454 * 1455 * If the server consumes its entire runtime in this state. The server 1456 * is not required for the current period. Thus, reset the server by 1457 * starting a new period, pushing the activation. 1458 */ 1459 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) { 1460 /* 1461 * Non-servers would never get time accounted while throttled. 1462 */ 1463 WARN_ON_ONCE(!dl_server(dl_se)); 1464 1465 /* 1466 * While the server is marked idle, do not push out the 1467 * activation further, instead wait for the period timer 1468 * to lapse and stop the server. 1469 */ 1470 if (dl_se->dl_defer_idle && idle) { 1471 /* 1472 * The timer is at the zero-laxity point, this means 1473 * dl_server_stop() / dl_server_start() can happen 1474 * while now < deadline. This means update_dl_entity() 1475 * will not replenish. Additionally start_dl_timer() 1476 * will be set for 'deadline - runtime'. Negative 1477 * runtime will not do. 1478 */ 1479 dl_se->runtime = 0; 1480 return; 1481 } 1482 1483 /* 1484 * If the server was previously activated - the starving condition 1485 * took place, it this point it went away because the fair scheduler 1486 * was able to get runtime in background. So return to the initial 1487 * state. 1488 */ 1489 dl_se->dl_defer_running = 0; 1490 1491 hrtimer_try_to_cancel(&dl_se->dl_timer); 1492 1493 replenish_dl_new_period(dl_se, dl_se->rq); 1494 1495 if (idle) 1496 dl_se->dl_defer_idle = 1; 1497 1498 /* 1499 * Not being able to start the timer seems problematic. If it could not 1500 * be started for whatever reason, we need to "unthrottle" the DL server 1501 * and queue right away. Otherwise nothing might queue it. That's similar 1502 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn. 1503 */ 1504 WARN_ON_ONCE(!start_dl_timer(dl_se)); 1505 1506 return; 1507 } 1508 1509 throttle: 1510 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1511 dl_se->dl_throttled = 1; 1512 1513 /* If requested, inform the user about runtime overruns. */ 1514 if (dl_runtime_exceeded(dl_se) && 1515 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1516 dl_se->dl_overrun = 1; 1517 1518 dequeue_dl_entity(dl_se, 0); 1519 if (!dl_server(dl_se)) { 1520 update_stats_dequeue_dl(&rq->dl, dl_se, 0); 1521 dequeue_pushable_dl_task(rq, dl_task_of(dl_se)); 1522 } 1523 1524 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { 1525 if (dl_server(dl_se)) { 1526 replenish_dl_new_period(dl_se, rq); 1527 start_dl_timer(dl_se); 1528 } else { 1529 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH); 1530 } 1531 } 1532 1533 if (!is_leftmost(dl_se, &rq->dl)) 1534 resched_curr(rq); 1535 } 1536 1537 /* 1538 * The fair server (sole dl_server) does not account for real-time 1539 * workload because it is running fair work. 1540 */ 1541 if (dl_se == &rq->fair_server) 1542 return; 1543 1544 #ifdef CONFIG_RT_GROUP_SCHED 1545 /* 1546 * Because -- for now -- we share the rt bandwidth, we need to 1547 * account our runtime there too, otherwise actual rt tasks 1548 * would be able to exceed the shared quota. 1549 * 1550 * Account to the root rt group for now. 1551 * 1552 * The solution we're working towards is having the RT groups scheduled 1553 * using deadline servers -- however there's a few nasties to figure 1554 * out before that can happen. 1555 */ 1556 if (rt_bandwidth_enabled()) { 1557 struct rt_rq *rt_rq = &rq->rt; 1558 1559 raw_spin_lock(&rt_rq->rt_runtime_lock); 1560 /* 1561 * We'll let actual RT tasks worry about the overflow here, we 1562 * have our own CBS to keep us inline; only account when RT 1563 * bandwidth is relevant. 1564 */ 1565 if (sched_rt_bandwidth_account(rt_rq)) 1566 rt_rq->rt_time += delta_exec; 1567 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1568 } 1569 #endif /* CONFIG_RT_GROUP_SCHED */ 1570 } 1571 1572 /* 1573 * In the non-defer mode, the idle time is not accounted, as the 1574 * server provides a guarantee. 1575 * 1576 * If the dl_server is in defer mode, the idle time is also considered 1577 * as time available for the fair server, avoiding a penalty for the 1578 * rt scheduler that did not consumed that time. 1579 */ 1580 void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec) 1581 { 1582 if (dl_se->dl_server_active && dl_se->dl_runtime && dl_se->dl_defer) 1583 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1584 } 1585 1586 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) 1587 { 1588 /* 0 runtime = fair server disabled */ 1589 if (dl_se->dl_server_active && dl_se->dl_runtime) 1590 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1591 } 1592 1593 /* 1594 * dl_server && dl_defer: 1595 * 1596 * 6 1597 * +--------------------+ 1598 * v | 1599 * +-------------+ 4 +-----------+ 5 +------------------+ 1600 * +-> | A:init | <--- | D:running | -----> | E:replenish-wait | 1601 * | +-------------+ +-----------+ +------------------+ 1602 * | | | 1 ^ ^ | 1603 * | | 1 +----------+ | 3 | 1604 * | v | | 1605 * | +--------------------------------+ 2 | 1606 * | | | ----+ | 1607 * | 8 | B:zero_laxity-wait | | | 1608 * | | | <---+ | 1609 * | +--------------------------------+ | 1610 * | | ^ ^ 2 | 1611 * | | 7 | 2, 1 +----------------+ 1612 * | v | 1613 * | +-------------+ | 1614 * +-- | C:idle-wait | -+ 1615 * +-------------+ 1616 * ^ 7 | 1617 * +---------+ 1618 * 1619 * 1620 * [A] - init 1621 * dl_server_active = 0 1622 * dl_throttled = 0 1623 * dl_defer_armed = 0 1624 * dl_defer_running = 0/1 1625 * dl_defer_idle = 0 1626 * 1627 * [B] - zero_laxity-wait 1628 * dl_server_active = 1 1629 * dl_throttled = 1 1630 * dl_defer_armed = 1 1631 * dl_defer_running = 0 1632 * dl_defer_idle = 0 1633 * 1634 * [C] - idle-wait 1635 * dl_server_active = 1 1636 * dl_throttled = 1 1637 * dl_defer_armed = 1 1638 * dl_defer_running = 0 1639 * dl_defer_idle = 1 1640 * 1641 * [D] - running 1642 * dl_server_active = 1 1643 * dl_throttled = 0 1644 * dl_defer_armed = 0 1645 * dl_defer_running = 1 1646 * dl_defer_idle = 0 1647 * 1648 * [E] - replenish-wait 1649 * dl_server_active = 1 1650 * dl_throttled = 1 1651 * dl_defer_armed = 0 1652 * dl_defer_running = 1 1653 * dl_defer_idle = 0 1654 * 1655 * 1656 * [1] A->B, A->D, C->B 1657 * dl_server_start() 1658 * dl_defer_idle = 0; 1659 * if (dl_server_active) 1660 * return; // [B] 1661 * dl_server_active = 1; 1662 * enqueue_dl_entity() 1663 * update_dl_entity(WAKEUP) 1664 * if (dl_time_before() || dl_entity_overflow()) 1665 * dl_defer_running = 0; 1666 * replenish_dl_new_period(); 1667 * // fwd period 1668 * dl_throttled = 1; 1669 * dl_defer_armed = 1; 1670 * if (!dl_defer_running) 1671 * dl_defer_armed = 1; 1672 * dl_throttled = 1; 1673 * if (dl_throttled && start_dl_timer()) 1674 * return; // [B] 1675 * __enqueue_dl_entity(); 1676 * // [D] 1677 * 1678 * // deplete server runtime from client-class 1679 * [2] B->B, C->B, E->B 1680 * dl_server_update() 1681 * update_curr_dl_se() // idle = false 1682 * if (dl_defer_idle) 1683 * dl_defer_idle = 0; 1684 * if (dl_defer && dl_throttled && dl_runtime_exceeded()) 1685 * dl_defer_running = 0; 1686 * hrtimer_try_to_cancel(); // stop timer 1687 * replenish_dl_new_period() 1688 * // fwd period 1689 * dl_throttled = 1; 1690 * dl_defer_armed = 1; 1691 * start_dl_timer(); // restart timer 1692 * // [B] 1693 * 1694 * // timer actually fires means we have runtime 1695 * [3] B->D 1696 * dl_server_timer() 1697 * if (dl_defer_armed) 1698 * dl_defer_running = 1; 1699 * enqueue_dl_entity(REPLENISH) 1700 * replenish_dl_entity() 1701 * // fwd period 1702 * if (dl_throttled) 1703 * dl_throttled = 0; 1704 * if (dl_defer_armed) 1705 * dl_defer_armed = 0; 1706 * __enqueue_dl_entity(); 1707 * // [D] 1708 * 1709 * // schedule server 1710 * [4] D->A 1711 * pick_task_dl() 1712 * p = server_pick_task(); 1713 * if (!p) 1714 * dl_server_stop() 1715 * dequeue_dl_entity(); 1716 * hrtimer_try_to_cancel(); 1717 * dl_defer_armed = 0; 1718 * dl_throttled = 0; 1719 * dl_server_active = 0; 1720 * // [A] 1721 * return p; 1722 * 1723 * // server running 1724 * [5] D->E 1725 * update_curr_dl_se() 1726 * if (dl_runtime_exceeded()) 1727 * dl_throttled = 1; 1728 * dequeue_dl_entity(); 1729 * start_dl_timer(); 1730 * // [E] 1731 * 1732 * // server replenished 1733 * [6] E->D 1734 * dl_server_timer() 1735 * enqueue_dl_entity(REPLENISH) 1736 * replenish_dl_entity() 1737 * fwd-period 1738 * if (dl_throttled) 1739 * dl_throttled = 0; 1740 * __enqueue_dl_entity(); 1741 * // [D] 1742 * 1743 * // deplete server runtime from idle 1744 * [7] B->C, C->C 1745 * dl_server_update_idle() 1746 * update_curr_dl_se() // idle = true 1747 * if (dl_defer && dl_throttled && dl_runtime_exceeded()) 1748 * if (dl_defer_idle) 1749 * return; 1750 * dl_defer_running = 0; 1751 * hrtimer_try_to_cancel(); 1752 * replenish_dl_new_period() 1753 * // fwd period 1754 * dl_throttled = 1; 1755 * dl_defer_armed = 1; 1756 * dl_defer_idle = 1; 1757 * start_dl_timer(); // restart timer 1758 * // [C] 1759 * 1760 * // stop idle server 1761 * [8] C->A 1762 * dl_server_timer() 1763 * if (dl_defer_idle) 1764 * dl_server_stop(); 1765 * // [A] 1766 * 1767 * 1768 * digraph dl_server { 1769 * "A:init" -> "B:zero_laxity-wait" [label="1:dl_server_start"] 1770 * "A:init" -> "D:running" [label="1:dl_server_start"] 1771 * "B:zero_laxity-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1772 * "B:zero_laxity-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"] 1773 * "B:zero_laxity-wait" -> "D:running" [label="3:dl_server_timer"] 1774 * "C:idle-wait" -> "A:init" [label="8:dl_server_timer"] 1775 * "C:idle-wait" -> "B:zero_laxity-wait" [label="1:dl_server_start"] 1776 * "C:idle-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1777 * "C:idle-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"] 1778 * "D:running" -> "A:init" [label="4:pick_task_dl"] 1779 * "D:running" -> "E:replenish-wait" [label="5:update_curr_dl_se"] 1780 * "E:replenish-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1781 * "E:replenish-wait" -> "D:running" [label="6:dl_server_timer"] 1782 * } 1783 * 1784 * 1785 * Notes: 1786 * 1787 * - When there are fair tasks running the most likely loop is [2]->[2]. 1788 * the dl_server never actually runs, the timer never fires. 1789 * 1790 * - When there is actual fair starvation; the timer fires and starts the 1791 * dl_server. This will then throttle and replenish like a normal DL 1792 * task. Notably it will not 'defer' again. 1793 * 1794 * - When idle it will push the actication forward once, and then wait 1795 * for the timer to hit or a non-idle update to restart things. 1796 */ 1797 void dl_server_start(struct sched_dl_entity *dl_se) 1798 { 1799 struct rq *rq = dl_se->rq; 1800 1801 dl_se->dl_defer_idle = 0; 1802 if (!dl_server(dl_se) || dl_se->dl_server_active) 1803 return; 1804 1805 /* 1806 * Update the current task to 'now'. 1807 */ 1808 rq->donor->sched_class->update_curr(rq); 1809 1810 if (WARN_ON_ONCE(!cpu_online(cpu_of(rq)))) 1811 return; 1812 1813 dl_se->dl_server_active = 1; 1814 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); 1815 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl)) 1816 resched_curr(dl_se->rq); 1817 } 1818 1819 void dl_server_stop(struct sched_dl_entity *dl_se) 1820 { 1821 if (!dl_server(dl_se) || !dl_server_active(dl_se)) 1822 return; 1823 1824 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); 1825 hrtimer_try_to_cancel(&dl_se->dl_timer); 1826 dl_se->dl_defer_armed = 0; 1827 dl_se->dl_throttled = 0; 1828 dl_se->dl_defer_idle = 0; 1829 dl_se->dl_server_active = 0; 1830 } 1831 1832 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 1833 dl_server_pick_f pick_task) 1834 { 1835 dl_se->rq = rq; 1836 dl_se->server_pick_task = pick_task; 1837 } 1838 1839 void sched_init_dl_servers(void) 1840 { 1841 int cpu; 1842 struct rq *rq; 1843 struct sched_dl_entity *dl_se; 1844 1845 for_each_online_cpu(cpu) { 1846 u64 runtime = 50 * NSEC_PER_MSEC; 1847 u64 period = 1000 * NSEC_PER_MSEC; 1848 1849 rq = cpu_rq(cpu); 1850 1851 guard(rq_lock_irq)(rq); 1852 update_rq_clock(rq); 1853 1854 dl_se = &rq->fair_server; 1855 1856 WARN_ON(dl_server(dl_se)); 1857 1858 dl_server_apply_params(dl_se, runtime, period, 1); 1859 1860 dl_se->dl_server = 1; 1861 dl_se->dl_defer = 1; 1862 setup_new_dl_entity(dl_se); 1863 } 1864 } 1865 1866 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq) 1867 { 1868 u64 new_bw = dl_se->dl_bw; 1869 int cpu = cpu_of(rq); 1870 struct dl_bw *dl_b; 1871 1872 dl_b = dl_bw_of(cpu_of(rq)); 1873 guard(raw_spinlock)(&dl_b->lock); 1874 1875 if (!dl_bw_cpus(cpu)) 1876 return; 1877 1878 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu)); 1879 } 1880 1881 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init) 1882 { 1883 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1884 u64 new_bw = to_ratio(period, runtime); 1885 struct rq *rq = dl_se->rq; 1886 int cpu = cpu_of(rq); 1887 struct dl_bw *dl_b; 1888 unsigned long cap; 1889 int retval = 0; 1890 int cpus; 1891 1892 dl_b = dl_bw_of(cpu); 1893 guard(raw_spinlock)(&dl_b->lock); 1894 1895 cpus = dl_bw_cpus(cpu); 1896 cap = dl_bw_capacity(cpu); 1897 1898 if (__dl_overflow(dl_b, cap, old_bw, new_bw)) 1899 return -EBUSY; 1900 1901 if (init) { 1902 __add_rq_bw(new_bw, &rq->dl); 1903 __dl_add(dl_b, new_bw, cpus); 1904 } else { 1905 __dl_sub(dl_b, dl_se->dl_bw, cpus); 1906 __dl_add(dl_b, new_bw, cpus); 1907 1908 dl_rq_change_utilization(rq, dl_se, new_bw); 1909 } 1910 1911 dl_se->dl_runtime = runtime; 1912 dl_se->dl_deadline = period; 1913 dl_se->dl_period = period; 1914 1915 dl_se->runtime = 0; 1916 dl_se->deadline = 0; 1917 1918 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1919 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 1920 1921 return retval; 1922 } 1923 1924 /* 1925 * Update the current task's runtime statistics (provided it is still 1926 * a -deadline task and has not been removed from the dl_rq). 1927 */ 1928 static void update_curr_dl(struct rq *rq) 1929 { 1930 struct task_struct *donor = rq->donor; 1931 struct sched_dl_entity *dl_se = &donor->dl; 1932 s64 delta_exec; 1933 1934 if (!dl_task(donor) || !on_dl_rq(dl_se)) 1935 return; 1936 1937 /* 1938 * Consumed budget is computed considering the time as 1939 * observed by schedulable tasks (excluding time spent 1940 * in hardirq context, etc.). Deadlines are instead 1941 * computed using hard walltime. This seems to be the more 1942 * natural solution, but the full ramifications of this 1943 * approach need further study. 1944 */ 1945 delta_exec = update_curr_common(rq); 1946 update_curr_dl_se(rq, dl_se, delta_exec); 1947 } 1948 1949 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1950 { 1951 struct sched_dl_entity *dl_se = container_of(timer, 1952 struct sched_dl_entity, 1953 inactive_timer); 1954 struct task_struct *p = NULL; 1955 struct rq_flags rf; 1956 struct rq *rq; 1957 1958 if (!dl_server(dl_se)) { 1959 p = dl_task_of(dl_se); 1960 rq = task_rq_lock(p, &rf); 1961 } else { 1962 rq = dl_se->rq; 1963 rq_lock(rq, &rf); 1964 } 1965 1966 sched_clock_tick(); 1967 update_rq_clock(rq); 1968 1969 if (dl_server(dl_se)) 1970 goto no_task; 1971 1972 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1973 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1974 1975 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1976 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1977 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1978 dl_se->dl_non_contending = 0; 1979 } 1980 1981 raw_spin_lock(&dl_b->lock); 1982 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1983 raw_spin_unlock(&dl_b->lock); 1984 __dl_clear_params(dl_se); 1985 1986 goto unlock; 1987 } 1988 1989 no_task: 1990 if (dl_se->dl_non_contending == 0) 1991 goto unlock; 1992 1993 sub_running_bw(dl_se, &rq->dl); 1994 dl_se->dl_non_contending = 0; 1995 unlock: 1996 1997 if (!dl_server(dl_se)) { 1998 task_rq_unlock(rq, p, &rf); 1999 put_task_struct(p); 2000 } else { 2001 rq_unlock(rq, &rf); 2002 } 2003 2004 return HRTIMER_NORESTART; 2005 } 2006 2007 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 2008 { 2009 struct hrtimer *timer = &dl_se->inactive_timer; 2010 2011 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 2012 } 2013 2014 #define __node_2_dle(node) \ 2015 rb_entry((node), struct sched_dl_entity, rb_node) 2016 2017 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 2018 { 2019 struct rq *rq = rq_of_dl_rq(dl_rq); 2020 2021 if (dl_rq->earliest_dl.curr == 0 || 2022 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 2023 if (dl_rq->earliest_dl.curr == 0) 2024 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 2025 dl_rq->earliest_dl.curr = deadline; 2026 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 2027 } 2028 } 2029 2030 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 2031 { 2032 struct rq *rq = rq_of_dl_rq(dl_rq); 2033 2034 /* 2035 * Since we may have removed our earliest (and/or next earliest) 2036 * task we must recompute them. 2037 */ 2038 if (!dl_rq->dl_nr_running) { 2039 dl_rq->earliest_dl.curr = 0; 2040 dl_rq->earliest_dl.next = 0; 2041 cpudl_clear(&rq->rd->cpudl, rq->cpu, rq->online); 2042 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2043 } else { 2044 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 2045 struct sched_dl_entity *entry = __node_2_dle(leftmost); 2046 2047 dl_rq->earliest_dl.curr = entry->deadline; 2048 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 2049 } 2050 } 2051 2052 static inline 2053 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 2054 { 2055 u64 deadline = dl_se->deadline; 2056 2057 dl_rq->dl_nr_running++; 2058 2059 if (!dl_server(dl_se)) 2060 add_nr_running(rq_of_dl_rq(dl_rq), 1); 2061 2062 inc_dl_deadline(dl_rq, deadline); 2063 } 2064 2065 static inline 2066 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 2067 { 2068 WARN_ON(!dl_rq->dl_nr_running); 2069 dl_rq->dl_nr_running--; 2070 2071 if (!dl_server(dl_se)) 2072 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 2073 2074 dec_dl_deadline(dl_rq, dl_se->deadline); 2075 } 2076 2077 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 2078 { 2079 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 2080 } 2081 2082 static __always_inline struct sched_statistics * 2083 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 2084 { 2085 if (!schedstat_enabled()) 2086 return NULL; 2087 2088 if (dl_server(dl_se)) 2089 return NULL; 2090 2091 return &dl_task_of(dl_se)->stats; 2092 } 2093 2094 static inline void 2095 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2096 { 2097 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2098 if (stats) 2099 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2100 } 2101 2102 static inline void 2103 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2104 { 2105 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2106 if (stats) 2107 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2108 } 2109 2110 static inline void 2111 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2112 { 2113 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2114 if (stats) 2115 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2116 } 2117 2118 static inline void 2119 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 2120 int flags) 2121 { 2122 if (!schedstat_enabled()) 2123 return; 2124 2125 if (flags & ENQUEUE_WAKEUP) 2126 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 2127 } 2128 2129 static inline void 2130 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 2131 int flags) 2132 { 2133 struct task_struct *p = dl_task_of(dl_se); 2134 2135 if (!schedstat_enabled()) 2136 return; 2137 2138 if ((flags & DEQUEUE_SLEEP)) { 2139 unsigned int state; 2140 2141 state = READ_ONCE(p->__state); 2142 if (state & TASK_INTERRUPTIBLE) 2143 __schedstat_set(p->stats.sleep_start, 2144 rq_clock(rq_of_dl_rq(dl_rq))); 2145 2146 if (state & TASK_UNINTERRUPTIBLE) 2147 __schedstat_set(p->stats.block_start, 2148 rq_clock(rq_of_dl_rq(dl_rq))); 2149 } 2150 } 2151 2152 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 2153 { 2154 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2155 2156 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 2157 2158 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 2159 2160 inc_dl_tasks(dl_se, dl_rq); 2161 } 2162 2163 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 2164 { 2165 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2166 2167 if (RB_EMPTY_NODE(&dl_se->rb_node)) 2168 return; 2169 2170 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 2171 2172 RB_CLEAR_NODE(&dl_se->rb_node); 2173 2174 dec_dl_tasks(dl_se, dl_rq); 2175 } 2176 2177 static void 2178 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2179 { 2180 WARN_ON_ONCE(on_dl_rq(dl_se)); 2181 2182 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 2183 2184 /* 2185 * Check if a constrained deadline task was activated 2186 * after the deadline but before the next period. 2187 * If that is the case, the task will be throttled and 2188 * the replenishment timer will be set to the next period. 2189 */ 2190 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 2191 dl_check_constrained_dl(dl_se); 2192 2193 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 2194 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2195 2196 add_rq_bw(dl_se, dl_rq); 2197 add_running_bw(dl_se, dl_rq); 2198 } 2199 2200 /* 2201 * If p is throttled, we do not enqueue it. In fact, if it exhausted 2202 * its budget it needs a replenishment and, since it now is on 2203 * its rq, the bandwidth timer callback (which clearly has not 2204 * run yet) will take care of this. 2205 * However, the active utilization does not depend on the fact 2206 * that the task is on the runqueue or not (but depends on the 2207 * task's state - in GRUB parlance, "inactive" vs "active contending"). 2208 * In other words, even if a task is throttled its utilization must 2209 * be counted in the active utilization; hence, we need to call 2210 * add_running_bw(). 2211 */ 2212 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 2213 if (flags & ENQUEUE_WAKEUP) 2214 task_contending(dl_se, flags); 2215 2216 return; 2217 } 2218 2219 /* 2220 * If this is a wakeup or a new instance, the scheduling 2221 * parameters of the task might need updating. Otherwise, 2222 * we want a replenishment of its runtime. 2223 */ 2224 if (flags & ENQUEUE_WAKEUP) { 2225 task_contending(dl_se, flags); 2226 update_dl_entity(dl_se); 2227 } else if (flags & ENQUEUE_REPLENISH) { 2228 replenish_dl_entity(dl_se); 2229 } else if ((flags & ENQUEUE_MOVE) && 2230 !is_dl_boosted(dl_se) && 2231 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) { 2232 setup_new_dl_entity(dl_se); 2233 } 2234 2235 /* 2236 * If the reservation is still throttled, e.g., it got replenished but is a 2237 * deferred task and still got to wait, don't enqueue. 2238 */ 2239 if (dl_se->dl_throttled && start_dl_timer(dl_se)) 2240 return; 2241 2242 /* 2243 * We're about to enqueue, make sure we're not ->dl_throttled! 2244 * In case the timer was not started, say because the defer time 2245 * has passed, mark as not throttled and mark unarmed. 2246 * Also cancel earlier timers, since letting those run is pointless. 2247 */ 2248 if (dl_se->dl_throttled) { 2249 hrtimer_try_to_cancel(&dl_se->dl_timer); 2250 dl_se->dl_defer_armed = 0; 2251 dl_se->dl_throttled = 0; 2252 } 2253 2254 __enqueue_dl_entity(dl_se); 2255 } 2256 2257 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2258 { 2259 __dequeue_dl_entity(dl_se); 2260 2261 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 2262 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2263 2264 sub_running_bw(dl_se, dl_rq); 2265 sub_rq_bw(dl_se, dl_rq); 2266 } 2267 2268 /* 2269 * This check allows to start the inactive timer (or to immediately 2270 * decrease the active utilization, if needed) in two cases: 2271 * when the task blocks and when it is terminating 2272 * (p->state == TASK_DEAD). We can handle the two cases in the same 2273 * way, because from GRUB's point of view the same thing is happening 2274 * (the task moves from "active contending" to "active non contending" 2275 * or "inactive") 2276 */ 2277 if (flags & DEQUEUE_SLEEP) 2278 task_non_contending(dl_se, true); 2279 } 2280 2281 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2282 { 2283 if (is_dl_boosted(&p->dl)) { 2284 /* 2285 * Because of delays in the detection of the overrun of a 2286 * thread's runtime, it might be the case that a thread 2287 * goes to sleep in a rt mutex with negative runtime. As 2288 * a consequence, the thread will be throttled. 2289 * 2290 * While waiting for the mutex, this thread can also be 2291 * boosted via PI, resulting in a thread that is throttled 2292 * and boosted at the same time. 2293 * 2294 * In this case, the boost overrides the throttle. 2295 */ 2296 if (p->dl.dl_throttled) { 2297 /* 2298 * The replenish timer needs to be canceled. No 2299 * problem if it fires concurrently: boosted threads 2300 * are ignored in dl_task_timer(). 2301 */ 2302 cancel_replenish_timer(&p->dl); 2303 p->dl.dl_throttled = 0; 2304 } 2305 } else if (!dl_prio(p->normal_prio)) { 2306 /* 2307 * Special case in which we have a !SCHED_DEADLINE task that is going 2308 * to be deboosted, but exceeds its runtime while doing so. No point in 2309 * replenishing it, as it's going to return back to its original 2310 * scheduling class after this. If it has been throttled, we need to 2311 * clear the flag, otherwise the task may wake up as throttled after 2312 * being boosted again with no means to replenish the runtime and clear 2313 * the throttle. 2314 */ 2315 p->dl.dl_throttled = 0; 2316 if (!(flags & ENQUEUE_REPLENISH)) 2317 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 2318 task_pid_nr(p)); 2319 2320 return; 2321 } 2322 2323 check_schedstat_required(); 2324 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 2325 2326 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2327 flags |= ENQUEUE_MIGRATING; 2328 2329 enqueue_dl_entity(&p->dl, flags); 2330 2331 if (dl_server(&p->dl)) 2332 return; 2333 2334 if (task_is_blocked(p)) 2335 return; 2336 2337 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 2338 enqueue_pushable_dl_task(rq, p); 2339 } 2340 2341 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2342 { 2343 update_curr_dl(rq); 2344 2345 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2346 flags |= DEQUEUE_MIGRATING; 2347 2348 dequeue_dl_entity(&p->dl, flags); 2349 if (!p->dl.dl_throttled && !dl_server(&p->dl)) 2350 dequeue_pushable_dl_task(rq, p); 2351 2352 return true; 2353 } 2354 2355 /* 2356 * Yield task semantic for -deadline tasks is: 2357 * 2358 * get off from the CPU until our next instance, with 2359 * a new runtime. This is of little use now, since we 2360 * don't have a bandwidth reclaiming mechanism. Anyway, 2361 * bandwidth reclaiming is planned for the future, and 2362 * yield_task_dl will indicate that some spare budget 2363 * is available for other task instances to use it. 2364 */ 2365 static void yield_task_dl(struct rq *rq) 2366 { 2367 /* 2368 * We make the task go to sleep until its current deadline by 2369 * forcing its runtime to zero. This way, update_curr_dl() stops 2370 * it and the bandwidth timer will wake it up and will give it 2371 * new scheduling parameters (thanks to dl_yielded=1). 2372 */ 2373 rq->donor->dl.dl_yielded = 1; 2374 2375 update_rq_clock(rq); 2376 update_curr_dl(rq); 2377 /* 2378 * Tell update_rq_clock() that we've just updated, 2379 * so we don't do microscopic update in schedule() 2380 * and double the fastpath cost. 2381 */ 2382 rq_clock_skip_update(rq); 2383 } 2384 2385 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 2386 struct rq *rq) 2387 { 2388 return (!rq->dl.dl_nr_running || 2389 dl_time_before(p->dl.deadline, 2390 rq->dl.earliest_dl.curr)); 2391 } 2392 2393 static int find_later_rq(struct task_struct *task); 2394 2395 static int 2396 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 2397 { 2398 struct task_struct *curr, *donor; 2399 bool select_rq; 2400 struct rq *rq; 2401 2402 if (!(flags & WF_TTWU)) 2403 return cpu; 2404 2405 rq = cpu_rq(cpu); 2406 2407 rcu_read_lock(); 2408 curr = READ_ONCE(rq->curr); /* unlocked access */ 2409 donor = READ_ONCE(rq->donor); 2410 2411 /* 2412 * If we are dealing with a -deadline task, we must 2413 * decide where to wake it up. 2414 * If it has a later deadline and the current task 2415 * on this rq can't move (provided the waking task 2416 * can!) we prefer to send it somewhere else. On the 2417 * other hand, if it has a shorter deadline, we 2418 * try to make it stay here, it might be important. 2419 */ 2420 select_rq = unlikely(dl_task(donor)) && 2421 (curr->nr_cpus_allowed < 2 || 2422 !dl_entity_preempt(&p->dl, &donor->dl)) && 2423 p->nr_cpus_allowed > 1; 2424 2425 /* 2426 * Take the capacity of the CPU into account to 2427 * ensure it fits the requirement of the task. 2428 */ 2429 if (sched_asym_cpucap_active()) 2430 select_rq |= !dl_task_fits_capacity(p, cpu); 2431 2432 if (select_rq) { 2433 int target = find_later_rq(p); 2434 2435 if (target != -1 && 2436 dl_task_is_earliest_deadline(p, cpu_rq(target))) 2437 cpu = target; 2438 } 2439 rcu_read_unlock(); 2440 2441 return cpu; 2442 } 2443 2444 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2445 { 2446 struct rq_flags rf; 2447 struct rq *rq; 2448 2449 if (READ_ONCE(p->__state) != TASK_WAKING) 2450 return; 2451 2452 rq = task_rq(p); 2453 /* 2454 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2455 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2456 * rq->lock is not... So, lock it 2457 */ 2458 rq_lock(rq, &rf); 2459 if (p->dl.dl_non_contending) { 2460 update_rq_clock(rq); 2461 sub_running_bw(&p->dl, &rq->dl); 2462 p->dl.dl_non_contending = 0; 2463 /* 2464 * If the timer handler is currently running and the 2465 * timer cannot be canceled, inactive_task_timer() 2466 * will see that dl_not_contending is not set, and 2467 * will not touch the rq's active utilization, 2468 * so we are still safe. 2469 */ 2470 cancel_inactive_timer(&p->dl); 2471 } 2472 sub_rq_bw(&p->dl, &rq->dl); 2473 rq_unlock(rq, &rf); 2474 } 2475 2476 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2477 { 2478 /* 2479 * Current can't be migrated, useless to reschedule, 2480 * let's hope p can move out. 2481 */ 2482 if (rq->curr->nr_cpus_allowed == 1 || 2483 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL)) 2484 return; 2485 2486 /* 2487 * p is migratable, so let's not schedule it and 2488 * see if it is pushed or pulled somewhere else. 2489 */ 2490 if (p->nr_cpus_allowed != 1 && 2491 cpudl_find(&rq->rd->cpudl, p, NULL)) 2492 return; 2493 2494 resched_curr(rq); 2495 } 2496 2497 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2498 { 2499 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2500 /* 2501 * This is OK, because current is on_cpu, which avoids it being 2502 * picked for load-balance and preemption/IRQs are still 2503 * disabled avoiding further scheduler activity on it and we've 2504 * not yet started the picking loop. 2505 */ 2506 rq_unpin_lock(rq, rf); 2507 pull_dl_task(rq); 2508 rq_repin_lock(rq, rf); 2509 } 2510 2511 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2512 } 2513 2514 /* 2515 * Only called when both the current and waking task are -deadline 2516 * tasks. 2517 */ 2518 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 2519 int flags) 2520 { 2521 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) { 2522 resched_curr(rq); 2523 return; 2524 } 2525 2526 /* 2527 * In the unlikely case current and p have the same deadline 2528 * let us try to decide what's the best thing to do... 2529 */ 2530 if ((p->dl.deadline == rq->donor->dl.deadline) && 2531 !test_tsk_need_resched(rq->curr)) 2532 check_preempt_equal_dl(rq, p); 2533 } 2534 2535 #ifdef CONFIG_SCHED_HRTICK 2536 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2537 { 2538 hrtick_start(rq, dl_se->runtime); 2539 } 2540 #else /* !CONFIG_SCHED_HRTICK: */ 2541 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2542 { 2543 } 2544 #endif /* !CONFIG_SCHED_HRTICK */ 2545 2546 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2547 { 2548 struct sched_dl_entity *dl_se = &p->dl; 2549 struct dl_rq *dl_rq = &rq->dl; 2550 2551 p->se.exec_start = rq_clock_task(rq); 2552 if (on_dl_rq(&p->dl)) 2553 update_stats_wait_end_dl(dl_rq, dl_se); 2554 2555 /* You can't push away the running task */ 2556 dequeue_pushable_dl_task(rq, p); 2557 2558 if (!first) 2559 return; 2560 2561 if (rq->donor->sched_class != &dl_sched_class) 2562 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2563 2564 deadline_queue_push_tasks(rq); 2565 2566 if (hrtick_enabled_dl(rq)) 2567 start_hrtick_dl(rq, &p->dl); 2568 } 2569 2570 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2571 { 2572 struct rb_node *left = rb_first_cached(&dl_rq->root); 2573 2574 if (!left) 2575 return NULL; 2576 2577 return __node_2_dle(left); 2578 } 2579 2580 /* 2581 * __pick_next_task_dl - Helper to pick the next -deadline task to run. 2582 * @rq: The runqueue to pick the next task from. 2583 */ 2584 static struct task_struct *__pick_task_dl(struct rq *rq, struct rq_flags *rf) 2585 { 2586 struct sched_dl_entity *dl_se; 2587 struct dl_rq *dl_rq = &rq->dl; 2588 struct task_struct *p; 2589 2590 again: 2591 if (!sched_dl_runnable(rq)) 2592 return NULL; 2593 2594 dl_se = pick_next_dl_entity(dl_rq); 2595 WARN_ON_ONCE(!dl_se); 2596 2597 if (dl_server(dl_se)) { 2598 p = dl_se->server_pick_task(dl_se, rf); 2599 if (!p) { 2600 dl_server_stop(dl_se); 2601 goto again; 2602 } 2603 rq->dl_server = dl_se; 2604 } else { 2605 p = dl_task_of(dl_se); 2606 } 2607 2608 return p; 2609 } 2610 2611 static struct task_struct *pick_task_dl(struct rq *rq, struct rq_flags *rf) 2612 { 2613 return __pick_task_dl(rq, rf); 2614 } 2615 2616 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next) 2617 { 2618 struct sched_dl_entity *dl_se = &p->dl; 2619 struct dl_rq *dl_rq = &rq->dl; 2620 2621 if (on_dl_rq(&p->dl)) 2622 update_stats_wait_start_dl(dl_rq, dl_se); 2623 2624 update_curr_dl(rq); 2625 2626 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2627 2628 if (task_is_blocked(p)) 2629 return; 2630 2631 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2632 enqueue_pushable_dl_task(rq, p); 2633 } 2634 2635 /* 2636 * scheduler tick hitting a task of our scheduling class. 2637 * 2638 * NOTE: This function can be called remotely by the tick offload that 2639 * goes along full dynticks. Therefore no local assumption can be made 2640 * and everything must be accessed through the @rq and @curr passed in 2641 * parameters. 2642 */ 2643 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2644 { 2645 update_curr_dl(rq); 2646 2647 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2648 /* 2649 * Even when we have runtime, update_curr_dl() might have resulted in us 2650 * not being the leftmost task anymore. In that case NEED_RESCHED will 2651 * be set and schedule() will start a new hrtick for the next task. 2652 */ 2653 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2654 is_leftmost(&p->dl, &rq->dl)) 2655 start_hrtick_dl(rq, &p->dl); 2656 } 2657 2658 static void task_fork_dl(struct task_struct *p) 2659 { 2660 /* 2661 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2662 * sched_fork() 2663 */ 2664 } 2665 2666 /* Only try algorithms three times */ 2667 #define DL_MAX_TRIES 3 2668 2669 /* 2670 * Return the earliest pushable rq's task, which is suitable to be executed 2671 * on the CPU, NULL otherwise: 2672 */ 2673 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2674 { 2675 struct task_struct *p = NULL; 2676 struct rb_node *next_node; 2677 2678 if (!has_pushable_dl_tasks(rq)) 2679 return NULL; 2680 2681 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2682 while (next_node) { 2683 p = __node_2_pdl(next_node); 2684 2685 if (task_is_pushable(rq, p, cpu)) 2686 return p; 2687 2688 next_node = rb_next(next_node); 2689 } 2690 2691 return NULL; 2692 } 2693 2694 /* Access rule: must be called on local CPU with preemption disabled */ 2695 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2696 2697 static int find_later_rq(struct task_struct *task) 2698 { 2699 struct sched_domain *sd; 2700 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2701 int this_cpu = smp_processor_id(); 2702 int cpu = task_cpu(task); 2703 2704 /* Make sure the mask is initialized first */ 2705 if (unlikely(!later_mask)) 2706 return -1; 2707 2708 if (task->nr_cpus_allowed == 1) 2709 return -1; 2710 2711 /* 2712 * We have to consider system topology and task affinity 2713 * first, then we can look for a suitable CPU. 2714 */ 2715 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2716 return -1; 2717 2718 /* 2719 * If we are here, some targets have been found, including 2720 * the most suitable which is, among the runqueues where the 2721 * current tasks have later deadlines than the task's one, the 2722 * rq with the latest possible one. 2723 * 2724 * Now we check how well this matches with task's 2725 * affinity and system topology. 2726 * 2727 * The last CPU where the task run is our first 2728 * guess, since it is most likely cache-hot there. 2729 */ 2730 if (cpumask_test_cpu(cpu, later_mask)) 2731 return cpu; 2732 /* 2733 * Check if this_cpu is to be skipped (i.e., it is 2734 * not in the mask) or not. 2735 */ 2736 if (!cpumask_test_cpu(this_cpu, later_mask)) 2737 this_cpu = -1; 2738 2739 rcu_read_lock(); 2740 for_each_domain(cpu, sd) { 2741 if (sd->flags & SD_WAKE_AFFINE) { 2742 int best_cpu; 2743 2744 /* 2745 * If possible, preempting this_cpu is 2746 * cheaper than migrating. 2747 */ 2748 if (this_cpu != -1 && 2749 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2750 rcu_read_unlock(); 2751 return this_cpu; 2752 } 2753 2754 best_cpu = cpumask_any_and_distribute(later_mask, 2755 sched_domain_span(sd)); 2756 /* 2757 * Last chance: if a CPU being in both later_mask 2758 * and current sd span is valid, that becomes our 2759 * choice. Of course, the latest possible CPU is 2760 * already under consideration through later_mask. 2761 */ 2762 if (best_cpu < nr_cpu_ids) { 2763 rcu_read_unlock(); 2764 return best_cpu; 2765 } 2766 } 2767 } 2768 rcu_read_unlock(); 2769 2770 /* 2771 * At this point, all our guesses failed, we just return 2772 * 'something', and let the caller sort the things out. 2773 */ 2774 if (this_cpu != -1) 2775 return this_cpu; 2776 2777 cpu = cpumask_any_distribute(later_mask); 2778 if (cpu < nr_cpu_ids) 2779 return cpu; 2780 2781 return -1; 2782 } 2783 2784 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2785 { 2786 struct task_struct *p; 2787 2788 if (!has_pushable_dl_tasks(rq)) 2789 return NULL; 2790 2791 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2792 2793 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2794 WARN_ON_ONCE(task_current(rq, p)); 2795 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2796 2797 WARN_ON_ONCE(!task_on_rq_queued(p)); 2798 WARN_ON_ONCE(!dl_task(p)); 2799 2800 return p; 2801 } 2802 2803 /* Locks the rq it finds */ 2804 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2805 { 2806 struct rq *later_rq = NULL; 2807 int tries; 2808 int cpu; 2809 2810 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2811 cpu = find_later_rq(task); 2812 2813 if ((cpu == -1) || (cpu == rq->cpu)) 2814 break; 2815 2816 later_rq = cpu_rq(cpu); 2817 2818 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2819 /* 2820 * Target rq has tasks of equal or earlier deadline, 2821 * retrying does not release any lock and is unlikely 2822 * to yield a different result. 2823 */ 2824 later_rq = NULL; 2825 break; 2826 } 2827 2828 /* Retry if something changed. */ 2829 if (double_lock_balance(rq, later_rq)) { 2830 /* 2831 * double_lock_balance had to release rq->lock, in the 2832 * meantime, task may no longer be fit to be migrated. 2833 * Check the following to ensure that the task is 2834 * still suitable for migration: 2835 * 1. It is possible the task was scheduled, 2836 * migrate_disabled was set and then got preempted, 2837 * so we must check the task migration disable 2838 * flag. 2839 * 2. The CPU picked is in the task's affinity. 2840 * 3. For throttled task (dl_task_offline_migration), 2841 * check the following: 2842 * - the task is not on the rq anymore (it was 2843 * migrated) 2844 * - the task is not on CPU anymore 2845 * - the task is still a dl task 2846 * - the task is not queued on the rq anymore 2847 * 4. For the non-throttled task (push_dl_task), the 2848 * check to ensure that this task is still at the 2849 * head of the pushable tasks list is enough. 2850 */ 2851 if (unlikely(is_migration_disabled(task) || 2852 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2853 (task->dl.dl_throttled && 2854 (task_rq(task) != rq || 2855 task_on_cpu(rq, task) || 2856 !dl_task(task) || 2857 !task_on_rq_queued(task))) || 2858 (!task->dl.dl_throttled && 2859 task != pick_next_pushable_dl_task(rq)))) { 2860 2861 double_unlock_balance(rq, later_rq); 2862 later_rq = NULL; 2863 break; 2864 } 2865 } 2866 2867 /* 2868 * If the rq we found has no -deadline task, or 2869 * its earliest one has a later deadline than our 2870 * task, the rq is a good one. 2871 */ 2872 if (dl_task_is_earliest_deadline(task, later_rq)) 2873 break; 2874 2875 /* Otherwise we try again. */ 2876 double_unlock_balance(rq, later_rq); 2877 later_rq = NULL; 2878 } 2879 2880 return later_rq; 2881 } 2882 2883 /* 2884 * See if the non running -deadline tasks on this rq 2885 * can be sent to some other CPU where they can preempt 2886 * and start executing. 2887 */ 2888 static int push_dl_task(struct rq *rq) 2889 { 2890 struct task_struct *next_task; 2891 struct rq *later_rq; 2892 int ret = 0; 2893 2894 next_task = pick_next_pushable_dl_task(rq); 2895 if (!next_task) 2896 return 0; 2897 2898 retry: 2899 /* 2900 * If next_task preempts rq->curr, and rq->curr 2901 * can move away, it makes sense to just reschedule 2902 * without going further in pushing next_task. 2903 */ 2904 if (dl_task(rq->donor) && 2905 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) && 2906 rq->curr->nr_cpus_allowed > 1) { 2907 resched_curr(rq); 2908 return 0; 2909 } 2910 2911 if (is_migration_disabled(next_task)) 2912 return 0; 2913 2914 if (WARN_ON(next_task == rq->curr)) 2915 return 0; 2916 2917 /* We might release rq lock */ 2918 get_task_struct(next_task); 2919 2920 /* Will lock the rq it'll find */ 2921 later_rq = find_lock_later_rq(next_task, rq); 2922 if (!later_rq) { 2923 struct task_struct *task; 2924 2925 /* 2926 * We must check all this again, since 2927 * find_lock_later_rq releases rq->lock and it is 2928 * then possible that next_task has migrated. 2929 */ 2930 task = pick_next_pushable_dl_task(rq); 2931 if (task == next_task) { 2932 /* 2933 * The task is still there. We don't try 2934 * again, some other CPU will pull it when ready. 2935 */ 2936 goto out; 2937 } 2938 2939 if (!task) 2940 /* No more tasks */ 2941 goto out; 2942 2943 put_task_struct(next_task); 2944 next_task = task; 2945 goto retry; 2946 } 2947 2948 move_queued_task_locked(rq, later_rq, next_task); 2949 ret = 1; 2950 2951 resched_curr(later_rq); 2952 2953 double_unlock_balance(rq, later_rq); 2954 2955 out: 2956 put_task_struct(next_task); 2957 2958 return ret; 2959 } 2960 2961 static void push_dl_tasks(struct rq *rq) 2962 { 2963 /* push_dl_task() will return true if it moved a -deadline task */ 2964 while (push_dl_task(rq)) 2965 ; 2966 } 2967 2968 static void pull_dl_task(struct rq *this_rq) 2969 { 2970 int this_cpu = this_rq->cpu, cpu; 2971 struct task_struct *p, *push_task; 2972 bool resched = false; 2973 struct rq *src_rq; 2974 u64 dmin = LONG_MAX; 2975 2976 if (likely(!dl_overloaded(this_rq))) 2977 return; 2978 2979 /* 2980 * Match the barrier from dl_set_overloaded; this guarantees that if we 2981 * see overloaded we must also see the dlo_mask bit. 2982 */ 2983 smp_rmb(); 2984 2985 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2986 if (this_cpu == cpu) 2987 continue; 2988 2989 src_rq = cpu_rq(cpu); 2990 2991 /* 2992 * It looks racy, and it is! However, as in sched_rt.c, 2993 * we are fine with this. 2994 */ 2995 if (this_rq->dl.dl_nr_running && 2996 dl_time_before(this_rq->dl.earliest_dl.curr, 2997 src_rq->dl.earliest_dl.next)) 2998 continue; 2999 3000 /* Might drop this_rq->lock */ 3001 push_task = NULL; 3002 double_lock_balance(this_rq, src_rq); 3003 3004 /* 3005 * If there are no more pullable tasks on the 3006 * rq, we're done with it. 3007 */ 3008 if (src_rq->dl.dl_nr_running <= 1) 3009 goto skip; 3010 3011 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 3012 3013 /* 3014 * We found a task to be pulled if: 3015 * - it preempts our current (if there's one), 3016 * - it will preempt the last one we pulled (if any). 3017 */ 3018 if (p && dl_time_before(p->dl.deadline, dmin) && 3019 dl_task_is_earliest_deadline(p, this_rq)) { 3020 WARN_ON(p == src_rq->curr); 3021 WARN_ON(!task_on_rq_queued(p)); 3022 3023 /* 3024 * Then we pull iff p has actually an earlier 3025 * deadline than the current task of its runqueue. 3026 */ 3027 if (dl_time_before(p->dl.deadline, 3028 src_rq->donor->dl.deadline)) 3029 goto skip; 3030 3031 if (is_migration_disabled(p)) { 3032 push_task = get_push_task(src_rq); 3033 } else { 3034 move_queued_task_locked(src_rq, this_rq, p); 3035 dmin = p->dl.deadline; 3036 resched = true; 3037 } 3038 3039 /* Is there any other task even earlier? */ 3040 } 3041 skip: 3042 double_unlock_balance(this_rq, src_rq); 3043 3044 if (push_task) { 3045 preempt_disable(); 3046 raw_spin_rq_unlock(this_rq); 3047 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 3048 push_task, &src_rq->push_work); 3049 preempt_enable(); 3050 raw_spin_rq_lock(this_rq); 3051 } 3052 } 3053 3054 if (resched) 3055 resched_curr(this_rq); 3056 } 3057 3058 /* 3059 * Since the task is not running and a reschedule is not going to happen 3060 * anytime soon on its runqueue, we try pushing it away now. 3061 */ 3062 static void task_woken_dl(struct rq *rq, struct task_struct *p) 3063 { 3064 if (!task_on_cpu(rq, p) && 3065 !test_tsk_need_resched(rq->curr) && 3066 p->nr_cpus_allowed > 1 && 3067 dl_task(rq->donor) && 3068 (rq->curr->nr_cpus_allowed < 2 || 3069 !dl_entity_preempt(&p->dl, &rq->donor->dl))) { 3070 push_dl_tasks(rq); 3071 } 3072 } 3073 3074 static void set_cpus_allowed_dl(struct task_struct *p, 3075 struct affinity_context *ctx) 3076 { 3077 struct root_domain *src_rd; 3078 struct rq *rq; 3079 3080 WARN_ON_ONCE(!dl_task(p)); 3081 3082 rq = task_rq(p); 3083 src_rd = rq->rd; 3084 /* 3085 * Migrating a SCHED_DEADLINE task between exclusive 3086 * cpusets (different root_domains) entails a bandwidth 3087 * update. We already made space for us in the destination 3088 * domain (see cpuset_can_attach()). 3089 */ 3090 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 3091 struct dl_bw *src_dl_b; 3092 3093 src_dl_b = dl_bw_of(cpu_of(rq)); 3094 /* 3095 * We now free resources of the root_domain we are migrating 3096 * off. In the worst case, sched_setattr() may temporary fail 3097 * until we complete the update. 3098 */ 3099 raw_spin_lock(&src_dl_b->lock); 3100 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 3101 raw_spin_unlock(&src_dl_b->lock); 3102 } 3103 3104 set_cpus_allowed_common(p, ctx); 3105 } 3106 3107 /* Assumes rq->lock is held */ 3108 static void rq_online_dl(struct rq *rq) 3109 { 3110 if (rq->dl.overloaded) 3111 dl_set_overload(rq); 3112 3113 if (rq->dl.dl_nr_running > 0) 3114 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 3115 else 3116 cpudl_clear(&rq->rd->cpudl, rq->cpu, true); 3117 } 3118 3119 /* Assumes rq->lock is held */ 3120 static void rq_offline_dl(struct rq *rq) 3121 { 3122 if (rq->dl.overloaded) 3123 dl_clear_overload(rq); 3124 3125 cpudl_clear(&rq->rd->cpudl, rq->cpu, false); 3126 } 3127 3128 void __init init_sched_dl_class(void) 3129 { 3130 unsigned int i; 3131 3132 for_each_possible_cpu(i) 3133 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 3134 GFP_KERNEL, cpu_to_node(i)); 3135 } 3136 3137 /* 3138 * This function always returns a non-empty bitmap in @cpus. This is because 3139 * if a root domain has reserved bandwidth for DL tasks, the DL bandwidth 3140 * check will prevent CPU hotplug from deactivating all CPUs in that domain. 3141 */ 3142 static void dl_get_task_effective_cpus(struct task_struct *p, struct cpumask *cpus) 3143 { 3144 const struct cpumask *hk_msk; 3145 3146 hk_msk = housekeeping_cpumask(HK_TYPE_DOMAIN); 3147 if (housekeeping_enabled(HK_TYPE_DOMAIN)) { 3148 if (!cpumask_intersects(p->cpus_ptr, hk_msk)) { 3149 /* 3150 * CPUs isolated by isolcpu="domain" always belong to 3151 * def_root_domain. 3152 */ 3153 cpumask_andnot(cpus, cpu_active_mask, hk_msk); 3154 return; 3155 } 3156 } 3157 3158 /* 3159 * If a root domain holds a DL task, it must have active CPUs. So 3160 * active CPUs can always be found by walking up the task's cpuset 3161 * hierarchy up to the partition root. 3162 */ 3163 cpuset_cpus_allowed_locked(p, cpus); 3164 } 3165 3166 /* The caller should hold cpuset_mutex */ 3167 void dl_add_task_root_domain(struct task_struct *p) 3168 { 3169 struct rq_flags rf; 3170 struct rq *rq; 3171 struct dl_bw *dl_b; 3172 unsigned int cpu; 3173 struct cpumask *msk; 3174 3175 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3176 if (!dl_task(p) || dl_entity_is_special(&p->dl)) { 3177 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3178 return; 3179 } 3180 3181 msk = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 3182 dl_get_task_effective_cpus(p, msk); 3183 cpu = cpumask_first_and(cpu_active_mask, msk); 3184 BUG_ON(cpu >= nr_cpu_ids); 3185 rq = cpu_rq(cpu); 3186 dl_b = &rq->rd->dl_bw; 3187 3188 raw_spin_lock(&dl_b->lock); 3189 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 3190 raw_spin_unlock(&dl_b->lock); 3191 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3192 } 3193 3194 void dl_clear_root_domain(struct root_domain *rd) 3195 { 3196 int i; 3197 3198 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock); 3199 3200 /* 3201 * Reset total_bw to zero and extra_bw to max_bw so that next 3202 * loop will add dl-servers contributions back properly, 3203 */ 3204 rd->dl_bw.total_bw = 0; 3205 for_each_cpu(i, rd->span) 3206 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw; 3207 3208 /* 3209 * dl_servers are not tasks. Since dl_add_task_root_domain ignores 3210 * them, we need to account for them here explicitly. 3211 */ 3212 for_each_cpu(i, rd->span) { 3213 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server; 3214 3215 if (dl_server(dl_se) && cpu_active(i)) 3216 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i)); 3217 } 3218 } 3219 3220 void dl_clear_root_domain_cpu(int cpu) 3221 { 3222 dl_clear_root_domain(cpu_rq(cpu)->rd); 3223 } 3224 3225 static void switched_from_dl(struct rq *rq, struct task_struct *p) 3226 { 3227 /* 3228 * task_non_contending() can start the "inactive timer" (if the 0-lag 3229 * time is in the future). If the task switches back to dl before 3230 * the "inactive timer" fires, it can continue to consume its current 3231 * runtime using its current deadline. If it stays outside of 3232 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 3233 * will reset the task parameters. 3234 */ 3235 if (task_on_rq_queued(p) && p->dl.dl_runtime) 3236 task_non_contending(&p->dl, false); 3237 3238 /* 3239 * In case a task is setscheduled out from SCHED_DEADLINE we need to 3240 * keep track of that on its cpuset (for correct bandwidth tracking). 3241 */ 3242 dec_dl_tasks_cs(p); 3243 3244 if (!task_on_rq_queued(p)) { 3245 /* 3246 * Inactive timer is armed. However, p is leaving DEADLINE and 3247 * might migrate away from this rq while continuing to run on 3248 * some other class. We need to remove its contribution from 3249 * this rq running_bw now, or sub_rq_bw (below) will complain. 3250 */ 3251 if (p->dl.dl_non_contending) 3252 sub_running_bw(&p->dl, &rq->dl); 3253 sub_rq_bw(&p->dl, &rq->dl); 3254 } 3255 3256 /* 3257 * We cannot use inactive_task_timer() to invoke sub_running_bw() 3258 * at the 0-lag time, because the task could have been migrated 3259 * while SCHED_OTHER in the meanwhile. 3260 */ 3261 if (p->dl.dl_non_contending) 3262 p->dl.dl_non_contending = 0; 3263 3264 /* 3265 * Since this might be the only -deadline task on the rq, 3266 * this is the right place to try to pull some other one 3267 * from an overloaded CPU, if any. 3268 */ 3269 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 3270 return; 3271 3272 deadline_queue_pull_task(rq); 3273 } 3274 3275 /* 3276 * When switching to -deadline, we may overload the rq, then 3277 * we try to push someone off, if possible. 3278 */ 3279 static void switched_to_dl(struct rq *rq, struct task_struct *p) 3280 { 3281 cancel_inactive_timer(&p->dl); 3282 3283 /* 3284 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 3285 * track of that on its cpuset (for correct bandwidth tracking). 3286 */ 3287 inc_dl_tasks_cs(p); 3288 3289 /* If p is not queued we will update its parameters at next wakeup. */ 3290 if (!task_on_rq_queued(p)) { 3291 add_rq_bw(&p->dl, &rq->dl); 3292 3293 return; 3294 } 3295 3296 if (rq->donor != p) { 3297 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 3298 deadline_queue_push_tasks(rq); 3299 if (dl_task(rq->donor)) 3300 wakeup_preempt_dl(rq, p, 0); 3301 else 3302 resched_curr(rq); 3303 } else { 3304 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 3305 } 3306 } 3307 3308 static u64 get_prio_dl(struct rq *rq, struct task_struct *p) 3309 { 3310 /* 3311 * Make sure to update current so we don't return a stale value. 3312 */ 3313 if (task_current_donor(rq, p)) 3314 update_curr_dl(rq); 3315 3316 return p->dl.deadline; 3317 } 3318 3319 /* 3320 * If the scheduling parameters of a -deadline task changed, 3321 * a push or pull operation might be needed. 3322 */ 3323 static void prio_changed_dl(struct rq *rq, struct task_struct *p, u64 old_deadline) 3324 { 3325 if (!task_on_rq_queued(p)) 3326 return; 3327 3328 if (p->dl.deadline == old_deadline) 3329 return; 3330 3331 if (dl_time_before(old_deadline, p->dl.deadline)) 3332 deadline_queue_pull_task(rq); 3333 3334 if (task_current_donor(rq, p)) { 3335 /* 3336 * If we now have a earlier deadline task than p, 3337 * then reschedule, provided p is still on this 3338 * runqueue. 3339 */ 3340 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3341 resched_curr(rq); 3342 } else { 3343 /* 3344 * Current may not be deadline in case p was throttled but we 3345 * have just replenished it (e.g. rt_mutex_setprio()). 3346 * 3347 * Otherwise, if p was given an earlier deadline, reschedule. 3348 */ 3349 if (!dl_task(rq->curr) || 3350 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 3351 resched_curr(rq); 3352 } 3353 } 3354 3355 #ifdef CONFIG_SCHED_CORE 3356 static int task_is_throttled_dl(struct task_struct *p, int cpu) 3357 { 3358 return p->dl.dl_throttled; 3359 } 3360 #endif 3361 3362 DEFINE_SCHED_CLASS(dl) = { 3363 3364 .queue_mask = 8, 3365 3366 .enqueue_task = enqueue_task_dl, 3367 .dequeue_task = dequeue_task_dl, 3368 .yield_task = yield_task_dl, 3369 3370 .wakeup_preempt = wakeup_preempt_dl, 3371 3372 .pick_task = pick_task_dl, 3373 .put_prev_task = put_prev_task_dl, 3374 .set_next_task = set_next_task_dl, 3375 3376 .balance = balance_dl, 3377 .select_task_rq = select_task_rq_dl, 3378 .migrate_task_rq = migrate_task_rq_dl, 3379 .set_cpus_allowed = set_cpus_allowed_dl, 3380 .rq_online = rq_online_dl, 3381 .rq_offline = rq_offline_dl, 3382 .task_woken = task_woken_dl, 3383 .find_lock_rq = find_lock_later_rq, 3384 3385 .task_tick = task_tick_dl, 3386 .task_fork = task_fork_dl, 3387 3388 .get_prio = get_prio_dl, 3389 .prio_changed = prio_changed_dl, 3390 .switched_from = switched_from_dl, 3391 .switched_to = switched_to_dl, 3392 3393 .update_curr = update_curr_dl, 3394 #ifdef CONFIG_SCHED_CORE 3395 .task_is_throttled = task_is_throttled_dl, 3396 #endif 3397 }; 3398 3399 /* 3400 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and 3401 * sched_domains_mutex. 3402 */ 3403 u64 dl_cookie; 3404 3405 int sched_dl_global_validate(void) 3406 { 3407 u64 runtime = global_rt_runtime(); 3408 u64 period = global_rt_period(); 3409 u64 new_bw = to_ratio(period, runtime); 3410 u64 cookie = ++dl_cookie; 3411 struct dl_bw *dl_b; 3412 int cpu, cpus, ret = 0; 3413 unsigned long flags; 3414 3415 /* 3416 * Here we want to check the bandwidth not being set to some 3417 * value smaller than the currently allocated bandwidth in 3418 * any of the root_domains. 3419 */ 3420 for_each_online_cpu(cpu) { 3421 rcu_read_lock_sched(); 3422 3423 if (dl_bw_visited(cpu, cookie)) 3424 goto next; 3425 3426 dl_b = dl_bw_of(cpu); 3427 cpus = dl_bw_cpus(cpu); 3428 3429 raw_spin_lock_irqsave(&dl_b->lock, flags); 3430 if (new_bw * cpus < dl_b->total_bw) 3431 ret = -EBUSY; 3432 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3433 3434 next: 3435 rcu_read_unlock_sched(); 3436 3437 if (ret) 3438 break; 3439 } 3440 3441 return ret; 3442 } 3443 3444 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3445 { 3446 if (global_rt_runtime() == RUNTIME_INF) { 3447 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3448 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 3449 } else { 3450 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3451 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3452 dl_rq->max_bw = dl_rq->extra_bw = 3453 to_ratio(global_rt_period(), global_rt_runtime()); 3454 } 3455 } 3456 3457 void sched_dl_do_global(void) 3458 { 3459 u64 new_bw = -1; 3460 u64 cookie = ++dl_cookie; 3461 struct dl_bw *dl_b; 3462 int cpu; 3463 unsigned long flags; 3464 3465 if (global_rt_runtime() != RUNTIME_INF) 3466 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3467 3468 for_each_possible_cpu(cpu) 3469 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3470 3471 for_each_possible_cpu(cpu) { 3472 rcu_read_lock_sched(); 3473 3474 if (dl_bw_visited(cpu, cookie)) { 3475 rcu_read_unlock_sched(); 3476 continue; 3477 } 3478 3479 dl_b = dl_bw_of(cpu); 3480 3481 raw_spin_lock_irqsave(&dl_b->lock, flags); 3482 dl_b->bw = new_bw; 3483 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3484 3485 rcu_read_unlock_sched(); 3486 } 3487 } 3488 3489 /* 3490 * We must be sure that accepting a new task (or allowing changing the 3491 * parameters of an existing one) is consistent with the bandwidth 3492 * constraints. If yes, this function also accordingly updates the currently 3493 * allocated bandwidth to reflect the new situation. 3494 * 3495 * This function is called while holding p's rq->lock. 3496 */ 3497 int sched_dl_overflow(struct task_struct *p, int policy, 3498 const struct sched_attr *attr) 3499 { 3500 u64 period = attr->sched_period ?: attr->sched_deadline; 3501 u64 runtime = attr->sched_runtime; 3502 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3503 int cpus, err = -1, cpu = task_cpu(p); 3504 struct dl_bw *dl_b = dl_bw_of(cpu); 3505 unsigned long cap; 3506 3507 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3508 return 0; 3509 3510 /* !deadline task may carry old deadline bandwidth */ 3511 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3512 return 0; 3513 3514 /* 3515 * Either if a task, enters, leave, or stays -deadline but changes 3516 * its parameters, we may need to update accordingly the total 3517 * allocated bandwidth of the container. 3518 */ 3519 raw_spin_lock(&dl_b->lock); 3520 cpus = dl_bw_cpus(cpu); 3521 cap = dl_bw_capacity(cpu); 3522 3523 if (dl_policy(policy) && !task_has_dl_policy(p) && 3524 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3525 if (hrtimer_active(&p->dl.inactive_timer)) 3526 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3527 __dl_add(dl_b, new_bw, cpus); 3528 err = 0; 3529 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3530 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3531 /* 3532 * XXX this is slightly incorrect: when the task 3533 * utilization decreases, we should delay the total 3534 * utilization change until the task's 0-lag point. 3535 * But this would require to set the task's "inactive 3536 * timer" when the task is not inactive. 3537 */ 3538 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3539 __dl_add(dl_b, new_bw, cpus); 3540 dl_change_utilization(p, new_bw); 3541 err = 0; 3542 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3543 /* 3544 * Do not decrease the total deadline utilization here, 3545 * switched_from_dl() will take care to do it at the correct 3546 * (0-lag) time. 3547 */ 3548 err = 0; 3549 } 3550 raw_spin_unlock(&dl_b->lock); 3551 3552 return err; 3553 } 3554 3555 /* 3556 * This function initializes the sched_dl_entity of a newly becoming 3557 * SCHED_DEADLINE task. 3558 * 3559 * Only the static values are considered here, the actual runtime and the 3560 * absolute deadline will be properly calculated when the task is enqueued 3561 * for the first time with its new policy. 3562 */ 3563 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3564 { 3565 struct sched_dl_entity *dl_se = &p->dl; 3566 3567 dl_se->dl_runtime = attr->sched_runtime; 3568 dl_se->dl_deadline = attr->sched_deadline; 3569 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3570 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3571 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3572 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3573 } 3574 3575 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3576 { 3577 struct sched_dl_entity *dl_se = &p->dl; 3578 3579 attr->sched_priority = p->rt_priority; 3580 attr->sched_runtime = dl_se->dl_runtime; 3581 attr->sched_deadline = dl_se->dl_deadline; 3582 attr->sched_period = dl_se->dl_period; 3583 attr->sched_flags &= ~SCHED_DL_FLAGS; 3584 attr->sched_flags |= dl_se->flags; 3585 } 3586 3587 /* 3588 * This function validates the new parameters of a -deadline task. 3589 * We ask for the deadline not being zero, and greater or equal 3590 * than the runtime, as well as the period of being zero or 3591 * greater than deadline. Furthermore, we have to be sure that 3592 * user parameters are above the internal resolution of 1us (we 3593 * check sched_runtime only since it is always the smaller one) and 3594 * below 2^63 ns (we have to check both sched_deadline and 3595 * sched_period, as the latter can be zero). 3596 */ 3597 bool __checkparam_dl(const struct sched_attr *attr) 3598 { 3599 u64 period, max, min; 3600 3601 /* special dl tasks don't actually use any parameter */ 3602 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3603 return true; 3604 3605 /* deadline != 0 */ 3606 if (attr->sched_deadline == 0) 3607 return false; 3608 3609 /* 3610 * Since we truncate DL_SCALE bits, make sure we're at least 3611 * that big. 3612 */ 3613 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3614 return false; 3615 3616 /* 3617 * Since we use the MSB for wrap-around and sign issues, make 3618 * sure it's not set (mind that period can be equal to zero). 3619 */ 3620 if (attr->sched_deadline & (1ULL << 63) || 3621 attr->sched_period & (1ULL << 63)) 3622 return false; 3623 3624 period = attr->sched_period; 3625 if (!period) 3626 period = attr->sched_deadline; 3627 3628 /* runtime <= deadline <= period (if period != 0) */ 3629 if (period < attr->sched_deadline || 3630 attr->sched_deadline < attr->sched_runtime) 3631 return false; 3632 3633 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3634 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3635 3636 if (period < min || period > max) 3637 return false; 3638 3639 return true; 3640 } 3641 3642 /* 3643 * This function clears the sched_dl_entity static params. 3644 */ 3645 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3646 { 3647 dl_se->dl_runtime = 0; 3648 dl_se->dl_deadline = 0; 3649 dl_se->dl_period = 0; 3650 dl_se->flags = 0; 3651 dl_se->dl_bw = 0; 3652 dl_se->dl_density = 0; 3653 3654 dl_se->dl_throttled = 0; 3655 dl_se->dl_yielded = 0; 3656 dl_se->dl_non_contending = 0; 3657 dl_se->dl_overrun = 0; 3658 dl_se->dl_server = 0; 3659 3660 #ifdef CONFIG_RT_MUTEXES 3661 dl_se->pi_se = dl_se; 3662 #endif 3663 } 3664 3665 void init_dl_entity(struct sched_dl_entity *dl_se) 3666 { 3667 RB_CLEAR_NODE(&dl_se->rb_node); 3668 init_dl_task_timer(dl_se); 3669 init_dl_inactive_task_timer(dl_se); 3670 __dl_clear_params(dl_se); 3671 } 3672 3673 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3674 { 3675 struct sched_dl_entity *dl_se = &p->dl; 3676 3677 if (dl_se->dl_runtime != attr->sched_runtime || 3678 dl_se->dl_deadline != attr->sched_deadline || 3679 dl_se->dl_period != attr->sched_period || 3680 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3681 return true; 3682 3683 return false; 3684 } 3685 3686 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3687 const struct cpumask *trial) 3688 { 3689 unsigned long flags, cap; 3690 struct dl_bw *cur_dl_b; 3691 int ret = 1; 3692 3693 rcu_read_lock_sched(); 3694 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3695 cap = __dl_bw_capacity(trial); 3696 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3697 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3698 ret = 0; 3699 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3700 rcu_read_unlock_sched(); 3701 3702 return ret; 3703 } 3704 3705 enum dl_bw_request { 3706 dl_bw_req_deactivate = 0, 3707 dl_bw_req_alloc, 3708 dl_bw_req_free 3709 }; 3710 3711 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3712 { 3713 unsigned long flags, cap; 3714 struct dl_bw *dl_b; 3715 bool overflow = 0; 3716 u64 fair_server_bw = 0; 3717 3718 rcu_read_lock_sched(); 3719 dl_b = dl_bw_of(cpu); 3720 raw_spin_lock_irqsave(&dl_b->lock, flags); 3721 3722 cap = dl_bw_capacity(cpu); 3723 switch (req) { 3724 case dl_bw_req_free: 3725 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3726 break; 3727 case dl_bw_req_alloc: 3728 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3729 3730 if (!overflow) { 3731 /* 3732 * We reserve space in the destination 3733 * root_domain, as we can't fail after this point. 3734 * We will free resources in the source root_domain 3735 * later on (see set_cpus_allowed_dl()). 3736 */ 3737 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3738 } 3739 break; 3740 case dl_bw_req_deactivate: 3741 /* 3742 * cpu is not off yet, but we need to do the math by 3743 * considering it off already (i.e., what would happen if we 3744 * turn cpu off?). 3745 */ 3746 cap -= arch_scale_cpu_capacity(cpu); 3747 3748 /* 3749 * cpu is going offline and NORMAL tasks will be moved away 3750 * from it. We can thus discount dl_server bandwidth 3751 * contribution as it won't need to be servicing tasks after 3752 * the cpu is off. 3753 */ 3754 if (cpu_rq(cpu)->fair_server.dl_server) 3755 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw; 3756 3757 /* 3758 * Not much to check if no DEADLINE bandwidth is present. 3759 * dl_servers we can discount, as tasks will be moved out the 3760 * offlined CPUs anyway. 3761 */ 3762 if (dl_b->total_bw - fair_server_bw > 0) { 3763 /* 3764 * Leaving at least one CPU for DEADLINE tasks seems a 3765 * wise thing to do. As said above, cpu is not offline 3766 * yet, so account for that. 3767 */ 3768 if (dl_bw_cpus(cpu) - 1) 3769 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0); 3770 else 3771 overflow = 1; 3772 } 3773 3774 break; 3775 } 3776 3777 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3778 rcu_read_unlock_sched(); 3779 3780 return overflow ? -EBUSY : 0; 3781 } 3782 3783 int dl_bw_deactivate(int cpu) 3784 { 3785 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0); 3786 } 3787 3788 int dl_bw_alloc(int cpu, u64 dl_bw) 3789 { 3790 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3791 } 3792 3793 void dl_bw_free(int cpu, u64 dl_bw) 3794 { 3795 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3796 } 3797 3798 void print_dl_stats(struct seq_file *m, int cpu) 3799 { 3800 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3801 } 3802