1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/prandom.h> 9 #include <linux/sched/affinity.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/cpufreq.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/rseq_api.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/smt.h> 19 #include <linux/sched/stat.h> 20 #include <linux/sched/sysctl.h> 21 #include <linux/sched/task_flags.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/topology.h> 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 369 * returns NULL. 370 * 371 * dl_server_update() -- called from update_curr_common(), propagates runtime 372 * to the server. 373 * 374 * dl_server_start() -- start the server when it has tasks; it will stop 375 * automatically when there are no more tasks, per 376 * dl_se::server_pick() returning NULL. 377 * 378 * dl_server_stop() -- (force) stop the server; use when updating 379 * parameters. 380 * 381 * dl_server_init() -- initializes the server. 382 * 383 * When started the dl_server will (per dl_defer) schedule a timer for its 384 * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a 385 * server will run at the very end of its period. 386 * 387 * This is done such that any runtime from the target class can be accounted 388 * against the server -- through dl_server_update() above -- such that when it 389 * becomes time to run, it might already be out of runtime and get deferred 390 * until the next period. In this case dl_server_timer() will alternate 391 * between defer and replenish but never actually enqueue the server. 392 * 393 * Only when the target class does not manage to exhaust the server's runtime 394 * (there's actualy starvation in the given period), will the dl_server get on 395 * the runqueue. Once queued it will pick tasks from the target class and run 396 * them until either its runtime is exhaused, at which point its back to 397 * dl_server_timer, or until there are no more tasks to run, at which point 398 * the dl_server stops itself. 399 * 400 * By stopping at this point the dl_server retains bandwidth, which, if a new 401 * task wakes up imminently (starting the server again), can be used -- 402 * subject to CBS wakeup rules -- without having to wait for the next period. 403 * 404 * Additionally, because of the dl_defer behaviour the start/stop behaviour is 405 * naturally thottled to once per period, avoiding high context switch 406 * workloads from spamming the hrtimer program/cancel paths. 407 */ 408 extern void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec); 409 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 410 extern void dl_server_start(struct sched_dl_entity *dl_se); 411 extern void dl_server_stop(struct sched_dl_entity *dl_se); 412 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 413 dl_server_pick_f pick_task); 414 extern void sched_init_dl_servers(void); 415 416 extern void fair_server_init(struct rq *rq); 417 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 418 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 419 u64 runtime, u64 period, bool init); 420 421 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 422 { 423 return dl_se->dl_server_active; 424 } 425 426 #ifdef CONFIG_CGROUP_SCHED 427 428 extern struct list_head task_groups; 429 430 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 431 extern const u64 max_bw_quota_period_us; 432 433 /* 434 * default period for group bandwidth. 435 * default: 0.1s, units: microseconds 436 */ 437 static inline u64 default_bw_period_us(void) 438 { 439 return 100000ULL; 440 } 441 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 442 443 struct cfs_bandwidth { 444 #ifdef CONFIG_CFS_BANDWIDTH 445 raw_spinlock_t lock; 446 ktime_t period; 447 u64 quota; 448 u64 runtime; 449 u64 burst; 450 u64 runtime_snap; 451 s64 hierarchical_quota; 452 453 u8 idle; 454 u8 period_active; 455 u8 slack_started; 456 struct hrtimer period_timer; 457 struct hrtimer slack_timer; 458 struct list_head throttled_cfs_rq; 459 460 /* Statistics: */ 461 int nr_periods; 462 int nr_throttled; 463 int nr_burst; 464 u64 throttled_time; 465 u64 burst_time; 466 #endif /* CONFIG_CFS_BANDWIDTH */ 467 }; 468 469 /* Task group related information */ 470 struct task_group { 471 struct cgroup_subsys_state css; 472 473 #ifdef CONFIG_GROUP_SCHED_WEIGHT 474 /* A positive value indicates that this is a SCHED_IDLE group. */ 475 int idle; 476 #endif 477 478 #ifdef CONFIG_FAIR_GROUP_SCHED 479 /* schedulable entities of this group on each CPU */ 480 struct sched_entity **se; 481 /* runqueue "owned" by this group on each CPU */ 482 struct cfs_rq **cfs_rq; 483 unsigned long shares; 484 /* 485 * load_avg can be heavily contended at clock tick time, so put 486 * it in its own cache-line separated from the fields above which 487 * will also be accessed at each tick. 488 */ 489 atomic_long_t load_avg ____cacheline_aligned; 490 #endif /* CONFIG_FAIR_GROUP_SCHED */ 491 492 #ifdef CONFIG_RT_GROUP_SCHED 493 struct sched_rt_entity **rt_se; 494 struct rt_rq **rt_rq; 495 496 struct rt_bandwidth rt_bandwidth; 497 #endif 498 499 struct scx_task_group scx; 500 501 struct rcu_head rcu; 502 struct list_head list; 503 504 struct task_group *parent; 505 struct list_head siblings; 506 struct list_head children; 507 508 #ifdef CONFIG_SCHED_AUTOGROUP 509 struct autogroup *autogroup; 510 #endif 511 512 struct cfs_bandwidth cfs_bandwidth; 513 514 #ifdef CONFIG_UCLAMP_TASK_GROUP 515 /* The two decimal precision [%] value requested from user-space */ 516 unsigned int uclamp_pct[UCLAMP_CNT]; 517 /* Clamp values requested for a task group */ 518 struct uclamp_se uclamp_req[UCLAMP_CNT]; 519 /* Effective clamp values used for a task group */ 520 struct uclamp_se uclamp[UCLAMP_CNT]; 521 #endif 522 523 }; 524 525 #ifdef CONFIG_GROUP_SCHED_WEIGHT 526 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 527 528 /* 529 * A weight of 0 or 1 can cause arithmetics problems. 530 * A weight of a cfs_rq is the sum of weights of which entities 531 * are queued on this cfs_rq, so a weight of a entity should not be 532 * too large, so as the shares value of a task group. 533 * (The default weight is 1024 - so there's no practical 534 * limitation from this.) 535 */ 536 #define MIN_SHARES (1UL << 1) 537 #define MAX_SHARES (1UL << 18) 538 #endif 539 540 typedef int (*tg_visitor)(struct task_group *, void *); 541 542 extern int walk_tg_tree_from(struct task_group *from, 543 tg_visitor down, tg_visitor up, void *data); 544 545 /* 546 * Iterate the full tree, calling @down when first entering a node and @up when 547 * leaving it for the final time. 548 * 549 * Caller must hold rcu_lock or sufficient equivalent. 550 */ 551 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 552 { 553 return walk_tg_tree_from(&root_task_group, down, up, data); 554 } 555 556 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 557 { 558 return css ? container_of(css, struct task_group, css) : NULL; 559 } 560 561 extern int tg_nop(struct task_group *tg, void *data); 562 563 #ifdef CONFIG_FAIR_GROUP_SCHED 564 extern void free_fair_sched_group(struct task_group *tg); 565 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 566 extern void online_fair_sched_group(struct task_group *tg); 567 extern void unregister_fair_sched_group(struct task_group *tg); 568 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 569 static inline void free_fair_sched_group(struct task_group *tg) { } 570 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 571 { 572 return 1; 573 } 574 static inline void online_fair_sched_group(struct task_group *tg) { } 575 static inline void unregister_fair_sched_group(struct task_group *tg) { } 576 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 577 578 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 579 struct sched_entity *se, int cpu, 580 struct sched_entity *parent); 581 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 582 583 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 584 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 585 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 586 extern bool cfs_task_bw_constrained(struct task_struct *p); 587 588 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 589 struct sched_rt_entity *rt_se, int cpu, 590 struct sched_rt_entity *parent); 591 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 592 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 593 extern long sched_group_rt_runtime(struct task_group *tg); 594 extern long sched_group_rt_period(struct task_group *tg); 595 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 596 597 extern struct task_group *sched_create_group(struct task_group *parent); 598 extern void sched_online_group(struct task_group *tg, 599 struct task_group *parent); 600 extern void sched_destroy_group(struct task_group *tg); 601 extern void sched_release_group(struct task_group *tg); 602 603 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 604 605 #ifdef CONFIG_FAIR_GROUP_SCHED 606 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 607 608 extern int sched_group_set_idle(struct task_group *tg, long idle); 609 610 extern void set_task_rq_fair(struct sched_entity *se, 611 struct cfs_rq *prev, struct cfs_rq *next); 612 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 613 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 614 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 615 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 616 617 #else /* !CONFIG_CGROUP_SCHED: */ 618 619 struct cfs_bandwidth { }; 620 621 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 622 623 #endif /* !CONFIG_CGROUP_SCHED */ 624 625 extern void unregister_rt_sched_group(struct task_group *tg); 626 extern void free_rt_sched_group(struct task_group *tg); 627 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 628 629 /* 630 * u64_u32_load/u64_u32_store 631 * 632 * Use a copy of a u64 value to protect against data race. This is only 633 * applicable for 32-bits architectures. 634 */ 635 #ifdef CONFIG_64BIT 636 # define u64_u32_load_copy(var, copy) var 637 # define u64_u32_store_copy(var, copy, val) (var = val) 638 #else 639 # define u64_u32_load_copy(var, copy) \ 640 ({ \ 641 u64 __val, __val_copy; \ 642 do { \ 643 __val_copy = copy; \ 644 /* \ 645 * paired with u64_u32_store_copy(), ordering access \ 646 * to var and copy. \ 647 */ \ 648 smp_rmb(); \ 649 __val = var; \ 650 } while (__val != __val_copy); \ 651 __val; \ 652 }) 653 # define u64_u32_store_copy(var, copy, val) \ 654 do { \ 655 typeof(val) __val = (val); \ 656 var = __val; \ 657 /* \ 658 * paired with u64_u32_load_copy(), ordering access to var and \ 659 * copy. \ 660 */ \ 661 smp_wmb(); \ 662 copy = __val; \ 663 } while (0) 664 #endif 665 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 666 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 667 668 struct balance_callback { 669 struct balance_callback *next; 670 void (*func)(struct rq *rq); 671 }; 672 673 /* CFS-related fields in a runqueue */ 674 struct cfs_rq { 675 struct load_weight load; 676 unsigned int nr_queued; 677 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 678 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 679 unsigned int h_nr_idle; /* SCHED_IDLE */ 680 681 s64 avg_vruntime; 682 u64 avg_load; 683 684 u64 zero_vruntime; 685 #ifdef CONFIG_SCHED_CORE 686 unsigned int forceidle_seq; 687 u64 zero_vruntime_fi; 688 #endif 689 690 struct rb_root_cached tasks_timeline; 691 692 /* 693 * 'curr' points to currently running entity on this cfs_rq. 694 * It is set to NULL otherwise (i.e when none are currently running). 695 */ 696 struct sched_entity *curr; 697 struct sched_entity *next; 698 699 /* 700 * CFS load tracking 701 */ 702 struct sched_avg avg; 703 #ifndef CONFIG_64BIT 704 u64 last_update_time_copy; 705 #endif 706 struct { 707 raw_spinlock_t lock ____cacheline_aligned; 708 int nr; 709 unsigned long load_avg; 710 unsigned long util_avg; 711 unsigned long runnable_avg; 712 } removed; 713 714 #ifdef CONFIG_FAIR_GROUP_SCHED 715 u64 last_update_tg_load_avg; 716 unsigned long tg_load_avg_contrib; 717 long propagate; 718 long prop_runnable_sum; 719 720 /* 721 * h_load = weight * f(tg) 722 * 723 * Where f(tg) is the recursive weight fraction assigned to 724 * this group. 725 */ 726 unsigned long h_load; 727 u64 last_h_load_update; 728 struct sched_entity *h_load_next; 729 #endif /* CONFIG_FAIR_GROUP_SCHED */ 730 731 #ifdef CONFIG_FAIR_GROUP_SCHED 732 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 733 734 /* 735 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 736 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 737 * (like users, containers etc.) 738 * 739 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 740 * This list is used during load balance. 741 */ 742 int on_list; 743 struct list_head leaf_cfs_rq_list; 744 struct task_group *tg; /* group that "owns" this runqueue */ 745 746 /* Locally cached copy of our task_group's idle value */ 747 int idle; 748 749 #ifdef CONFIG_CFS_BANDWIDTH 750 int runtime_enabled; 751 s64 runtime_remaining; 752 753 u64 throttled_pelt_idle; 754 #ifndef CONFIG_64BIT 755 u64 throttled_pelt_idle_copy; 756 #endif 757 u64 throttled_clock; 758 u64 throttled_clock_pelt; 759 u64 throttled_clock_pelt_time; 760 u64 throttled_clock_self; 761 u64 throttled_clock_self_time; 762 bool throttled:1; 763 bool pelt_clock_throttled:1; 764 int throttle_count; 765 struct list_head throttled_list; 766 struct list_head throttled_csd_list; 767 struct list_head throttled_limbo_list; 768 #endif /* CONFIG_CFS_BANDWIDTH */ 769 #endif /* CONFIG_FAIR_GROUP_SCHED */ 770 }; 771 772 #ifdef CONFIG_SCHED_CLASS_EXT 773 /* scx_rq->flags, protected by the rq lock */ 774 enum scx_rq_flags { 775 /* 776 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 777 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 778 * only while the BPF scheduler considers the CPU to be online. 779 */ 780 SCX_RQ_ONLINE = 1 << 0, 781 SCX_RQ_CAN_STOP_TICK = 1 << 1, 782 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 783 SCX_RQ_BYPASSING = 1 << 4, 784 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 785 SCX_RQ_BAL_CB_PENDING = 1 << 6, /* must queue a cb after dispatching */ 786 787 SCX_RQ_IN_WAKEUP = 1 << 16, 788 SCX_RQ_IN_BALANCE = 1 << 17, 789 }; 790 791 struct scx_rq { 792 struct scx_dispatch_q local_dsq; 793 struct list_head runnable_list; /* runnable tasks on this rq */ 794 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 795 unsigned long ops_qseq; 796 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 797 u32 nr_running; 798 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 799 bool cpu_released; 800 u32 flags; 801 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 802 cpumask_var_t cpus_to_kick; 803 cpumask_var_t cpus_to_kick_if_idle; 804 cpumask_var_t cpus_to_preempt; 805 cpumask_var_t cpus_to_wait; 806 unsigned long kick_sync; 807 local_t reenq_local_deferred; 808 struct balance_callback deferred_bal_cb; 809 struct irq_work deferred_irq_work; 810 struct irq_work kick_cpus_irq_work; 811 struct scx_dispatch_q bypass_dsq; 812 }; 813 #endif /* CONFIG_SCHED_CLASS_EXT */ 814 815 static inline int rt_bandwidth_enabled(void) 816 { 817 return sysctl_sched_rt_runtime >= 0; 818 } 819 820 /* RT IPI pull logic requires IRQ_WORK */ 821 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 822 # define HAVE_RT_PUSH_IPI 823 #endif 824 825 /* Real-Time classes' related field in a runqueue: */ 826 struct rt_rq { 827 struct rt_prio_array active; 828 unsigned int rt_nr_running; 829 unsigned int rr_nr_running; 830 struct { 831 int curr; /* highest queued rt task prio */ 832 int next; /* next highest */ 833 } highest_prio; 834 bool overloaded; 835 struct plist_head pushable_tasks; 836 837 int rt_queued; 838 839 #ifdef CONFIG_RT_GROUP_SCHED 840 int rt_throttled; 841 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 842 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 843 /* Nests inside the rq lock: */ 844 raw_spinlock_t rt_runtime_lock; 845 846 unsigned int rt_nr_boosted; 847 848 struct rq *rq; /* this is always top-level rq, cache? */ 849 #endif 850 #ifdef CONFIG_CGROUP_SCHED 851 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 852 #endif 853 }; 854 855 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 856 { 857 return rt_rq->rt_queued && rt_rq->rt_nr_running; 858 } 859 860 /* Deadline class' related fields in a runqueue */ 861 struct dl_rq { 862 /* runqueue is an rbtree, ordered by deadline */ 863 struct rb_root_cached root; 864 865 unsigned int dl_nr_running; 866 867 /* 868 * Deadline values of the currently executing and the 869 * earliest ready task on this rq. Caching these facilitates 870 * the decision whether or not a ready but not running task 871 * should migrate somewhere else. 872 */ 873 struct { 874 u64 curr; 875 u64 next; 876 } earliest_dl; 877 878 bool overloaded; 879 880 /* 881 * Tasks on this rq that can be pushed away. They are kept in 882 * an rb-tree, ordered by tasks' deadlines, with caching 883 * of the leftmost (earliest deadline) element. 884 */ 885 struct rb_root_cached pushable_dl_tasks_root; 886 887 /* 888 * "Active utilization" for this runqueue: increased when a 889 * task wakes up (becomes TASK_RUNNING) and decreased when a 890 * task blocks 891 */ 892 u64 running_bw; 893 894 /* 895 * Utilization of the tasks "assigned" to this runqueue (including 896 * the tasks that are in runqueue and the tasks that executed on this 897 * CPU and blocked). Increased when a task moves to this runqueue, and 898 * decreased when the task moves away (migrates, changes scheduling 899 * policy, or terminates). 900 * This is needed to compute the "inactive utilization" for the 901 * runqueue (inactive utilization = this_bw - running_bw). 902 */ 903 u64 this_bw; 904 u64 extra_bw; 905 906 /* 907 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 908 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 909 */ 910 u64 max_bw; 911 912 /* 913 * Inverse of the fraction of CPU utilization that can be reclaimed 914 * by the GRUB algorithm. 915 */ 916 u64 bw_ratio; 917 }; 918 919 #ifdef CONFIG_FAIR_GROUP_SCHED 920 921 /* An entity is a task if it doesn't "own" a runqueue */ 922 #define entity_is_task(se) (!se->my_q) 923 924 static inline void se_update_runnable(struct sched_entity *se) 925 { 926 if (!entity_is_task(se)) 927 se->runnable_weight = se->my_q->h_nr_runnable; 928 } 929 930 static inline long se_runnable(struct sched_entity *se) 931 { 932 if (se->sched_delayed) 933 return false; 934 935 if (entity_is_task(se)) 936 return !!se->on_rq; 937 else 938 return se->runnable_weight; 939 } 940 941 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 942 943 #define entity_is_task(se) 1 944 945 static inline void se_update_runnable(struct sched_entity *se) { } 946 947 static inline long se_runnable(struct sched_entity *se) 948 { 949 if (se->sched_delayed) 950 return false; 951 952 return !!se->on_rq; 953 } 954 955 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 956 957 /* 958 * XXX we want to get rid of these helpers and use the full load resolution. 959 */ 960 static inline long se_weight(struct sched_entity *se) 961 { 962 return scale_load_down(se->load.weight); 963 } 964 965 966 static inline bool sched_asym_prefer(int a, int b) 967 { 968 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 969 } 970 971 struct perf_domain { 972 struct em_perf_domain *em_pd; 973 struct perf_domain *next; 974 struct rcu_head rcu; 975 }; 976 977 /* 978 * We add the notion of a root-domain which will be used to define per-domain 979 * variables. Each exclusive cpuset essentially defines an island domain by 980 * fully partitioning the member CPUs from any other cpuset. Whenever a new 981 * exclusive cpuset is created, we also create and attach a new root-domain 982 * object. 983 * 984 */ 985 struct root_domain { 986 atomic_t refcount; 987 atomic_t rto_count; 988 struct rcu_head rcu; 989 cpumask_var_t span; 990 cpumask_var_t online; 991 992 /* 993 * Indicate pullable load on at least one CPU, e.g: 994 * - More than one runnable task 995 * - Running task is misfit 996 */ 997 bool overloaded; 998 999 /* Indicate one or more CPUs over-utilized (tipping point) */ 1000 bool overutilized; 1001 1002 /* 1003 * The bit corresponding to a CPU gets set here if such CPU has more 1004 * than one runnable -deadline task (as it is below for RT tasks). 1005 */ 1006 cpumask_var_t dlo_mask; 1007 atomic_t dlo_count; 1008 struct dl_bw dl_bw; 1009 struct cpudl cpudl; 1010 1011 /* 1012 * Indicate whether a root_domain's dl_bw has been checked or 1013 * updated. It's monotonously increasing value. 1014 * 1015 * Also, some corner cases, like 'wrap around' is dangerous, but given 1016 * that u64 is 'big enough'. So that shouldn't be a concern. 1017 */ 1018 u64 visit_cookie; 1019 1020 #ifdef HAVE_RT_PUSH_IPI 1021 /* 1022 * For IPI pull requests, loop across the rto_mask. 1023 */ 1024 struct irq_work rto_push_work; 1025 raw_spinlock_t rto_lock; 1026 /* These are only updated and read within rto_lock */ 1027 int rto_loop; 1028 int rto_cpu; 1029 /* These atomics are updated outside of a lock */ 1030 atomic_t rto_loop_next; 1031 atomic_t rto_loop_start; 1032 #endif /* HAVE_RT_PUSH_IPI */ 1033 /* 1034 * The "RT overload" flag: it gets set if a CPU has more than 1035 * one runnable RT task. 1036 */ 1037 cpumask_var_t rto_mask; 1038 struct cpupri cpupri; 1039 1040 /* 1041 * NULL-terminated list of performance domains intersecting with the 1042 * CPUs of the rd. Protected by RCU. 1043 */ 1044 struct perf_domain __rcu *pd; 1045 }; 1046 1047 extern void init_defrootdomain(void); 1048 extern int sched_init_domains(const struct cpumask *cpu_map); 1049 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1050 extern void sched_get_rd(struct root_domain *rd); 1051 extern void sched_put_rd(struct root_domain *rd); 1052 1053 static inline int get_rd_overloaded(struct root_domain *rd) 1054 { 1055 return READ_ONCE(rd->overloaded); 1056 } 1057 1058 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1059 { 1060 if (get_rd_overloaded(rd) != status) 1061 WRITE_ONCE(rd->overloaded, status); 1062 } 1063 1064 #ifdef HAVE_RT_PUSH_IPI 1065 extern void rto_push_irq_work_func(struct irq_work *work); 1066 #endif 1067 1068 #ifdef CONFIG_UCLAMP_TASK 1069 /* 1070 * struct uclamp_bucket - Utilization clamp bucket 1071 * @value: utilization clamp value for tasks on this clamp bucket 1072 * @tasks: number of RUNNABLE tasks on this clamp bucket 1073 * 1074 * Keep track of how many tasks are RUNNABLE for a given utilization 1075 * clamp value. 1076 */ 1077 struct uclamp_bucket { 1078 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1079 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1080 }; 1081 1082 /* 1083 * struct uclamp_rq - rq's utilization clamp 1084 * @value: currently active clamp values for a rq 1085 * @bucket: utilization clamp buckets affecting a rq 1086 * 1087 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1088 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1089 * (or actually running) with that value. 1090 * 1091 * There are up to UCLAMP_CNT possible different clamp values, currently there 1092 * are only two: minimum utilization and maximum utilization. 1093 * 1094 * All utilization clamping values are MAX aggregated, since: 1095 * - for util_min: we want to run the CPU at least at the max of the minimum 1096 * utilization required by its currently RUNNABLE tasks. 1097 * - for util_max: we want to allow the CPU to run up to the max of the 1098 * maximum utilization allowed by its currently RUNNABLE tasks. 1099 * 1100 * Since on each system we expect only a limited number of different 1101 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1102 * the metrics required to compute all the per-rq utilization clamp values. 1103 */ 1104 struct uclamp_rq { 1105 unsigned int value; 1106 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1107 }; 1108 1109 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1110 #endif /* CONFIG_UCLAMP_TASK */ 1111 1112 /* 1113 * This is the main, per-CPU runqueue data structure. 1114 * 1115 * Locking rule: those places that want to lock multiple runqueues 1116 * (such as the load balancing or the thread migration code), lock 1117 * acquire operations must be ordered by ascending &runqueue. 1118 */ 1119 struct rq { 1120 /* runqueue lock: */ 1121 raw_spinlock_t __lock; 1122 1123 /* Per class runqueue modification mask; bits in class order. */ 1124 unsigned int queue_mask; 1125 unsigned int nr_running; 1126 #ifdef CONFIG_NUMA_BALANCING 1127 unsigned int nr_numa_running; 1128 unsigned int nr_preferred_running; 1129 unsigned int numa_migrate_on; 1130 #endif 1131 #ifdef CONFIG_NO_HZ_COMMON 1132 unsigned long last_blocked_load_update_tick; 1133 unsigned int has_blocked_load; 1134 call_single_data_t nohz_csd; 1135 unsigned int nohz_tick_stopped; 1136 atomic_t nohz_flags; 1137 #endif /* CONFIG_NO_HZ_COMMON */ 1138 1139 unsigned int ttwu_pending; 1140 u64 nr_switches; 1141 1142 #ifdef CONFIG_UCLAMP_TASK 1143 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1144 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1145 unsigned int uclamp_flags; 1146 #define UCLAMP_FLAG_IDLE 0x01 1147 #endif 1148 1149 struct cfs_rq cfs; 1150 struct rt_rq rt; 1151 struct dl_rq dl; 1152 #ifdef CONFIG_SCHED_CLASS_EXT 1153 struct scx_rq scx; 1154 #endif 1155 1156 struct sched_dl_entity fair_server; 1157 1158 #ifdef CONFIG_FAIR_GROUP_SCHED 1159 /* list of leaf cfs_rq on this CPU: */ 1160 struct list_head leaf_cfs_rq_list; 1161 struct list_head *tmp_alone_branch; 1162 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1163 1164 /* 1165 * This is part of a global counter where only the total sum 1166 * over all CPUs matters. A task can increase this counter on 1167 * one CPU and if it got migrated afterwards it may decrease 1168 * it on another CPU. Always updated under the runqueue lock: 1169 */ 1170 unsigned long nr_uninterruptible; 1171 1172 #ifdef CONFIG_SCHED_PROXY_EXEC 1173 struct task_struct __rcu *donor; /* Scheduling context */ 1174 struct task_struct __rcu *curr; /* Execution context */ 1175 #else 1176 union { 1177 struct task_struct __rcu *donor; /* Scheduler context */ 1178 struct task_struct __rcu *curr; /* Execution context */ 1179 }; 1180 #endif 1181 struct sched_dl_entity *dl_server; 1182 struct task_struct *idle; 1183 struct task_struct *stop; 1184 unsigned long next_balance; 1185 struct mm_struct *prev_mm; 1186 1187 unsigned int clock_update_flags; 1188 u64 clock; 1189 /* Ensure that all clocks are in the same cache line */ 1190 u64 clock_task ____cacheline_aligned; 1191 u64 clock_pelt; 1192 unsigned long lost_idle_time; 1193 u64 clock_pelt_idle; 1194 u64 clock_idle; 1195 #ifndef CONFIG_64BIT 1196 u64 clock_pelt_idle_copy; 1197 u64 clock_idle_copy; 1198 #endif 1199 1200 atomic_t nr_iowait; 1201 1202 u64 last_seen_need_resched_ns; 1203 int ticks_without_resched; 1204 1205 #ifdef CONFIG_MEMBARRIER 1206 int membarrier_state; 1207 #endif 1208 1209 struct root_domain *rd; 1210 struct sched_domain __rcu *sd; 1211 1212 unsigned long cpu_capacity; 1213 1214 struct balance_callback *balance_callback; 1215 1216 unsigned char nohz_idle_balance; 1217 unsigned char idle_balance; 1218 1219 unsigned long misfit_task_load; 1220 1221 /* For active balancing */ 1222 int active_balance; 1223 int push_cpu; 1224 struct cpu_stop_work active_balance_work; 1225 1226 /* CPU of this runqueue: */ 1227 int cpu; 1228 int online; 1229 1230 struct list_head cfs_tasks; 1231 1232 struct sched_avg avg_rt; 1233 struct sched_avg avg_dl; 1234 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1235 struct sched_avg avg_irq; 1236 #endif 1237 #ifdef CONFIG_SCHED_HW_PRESSURE 1238 struct sched_avg avg_hw; 1239 #endif 1240 u64 idle_stamp; 1241 u64 avg_idle; 1242 1243 /* This is used to determine avg_idle's max value */ 1244 u64 max_idle_balance_cost; 1245 1246 #ifdef CONFIG_HOTPLUG_CPU 1247 struct rcuwait hotplug_wait; 1248 #endif 1249 1250 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1251 u64 prev_irq_time; 1252 u64 psi_irq_time; 1253 #endif 1254 #ifdef CONFIG_PARAVIRT 1255 u64 prev_steal_time; 1256 #endif 1257 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1258 u64 prev_steal_time_rq; 1259 #endif 1260 1261 /* calc_load related fields */ 1262 unsigned long calc_load_update; 1263 long calc_load_active; 1264 1265 #ifdef CONFIG_SCHED_HRTICK 1266 call_single_data_t hrtick_csd; 1267 struct hrtimer hrtick_timer; 1268 ktime_t hrtick_time; 1269 #endif 1270 1271 #ifdef CONFIG_SCHEDSTATS 1272 /* latency stats */ 1273 struct sched_info rq_sched_info; 1274 unsigned long long rq_cpu_time; 1275 1276 /* sys_sched_yield() stats */ 1277 unsigned int yld_count; 1278 1279 /* schedule() stats */ 1280 unsigned int sched_count; 1281 unsigned int sched_goidle; 1282 1283 /* try_to_wake_up() stats */ 1284 unsigned int ttwu_count; 1285 unsigned int ttwu_local; 1286 #endif 1287 1288 #ifdef CONFIG_CPU_IDLE 1289 /* Must be inspected within a RCU lock section */ 1290 struct cpuidle_state *idle_state; 1291 #endif 1292 1293 unsigned int nr_pinned; 1294 unsigned int push_busy; 1295 struct cpu_stop_work push_work; 1296 1297 #ifdef CONFIG_SCHED_CORE 1298 /* per rq */ 1299 struct rq *core; 1300 struct task_struct *core_pick; 1301 struct sched_dl_entity *core_dl_server; 1302 unsigned int core_enabled; 1303 unsigned int core_sched_seq; 1304 struct rb_root core_tree; 1305 1306 /* shared state -- careful with sched_core_cpu_deactivate() */ 1307 unsigned int core_task_seq; 1308 unsigned int core_pick_seq; 1309 unsigned long core_cookie; 1310 unsigned int core_forceidle_count; 1311 unsigned int core_forceidle_seq; 1312 unsigned int core_forceidle_occupation; 1313 u64 core_forceidle_start; 1314 #endif /* CONFIG_SCHED_CORE */ 1315 1316 /* Scratch cpumask to be temporarily used under rq_lock */ 1317 cpumask_var_t scratch_mask; 1318 1319 #ifdef CONFIG_CFS_BANDWIDTH 1320 call_single_data_t cfsb_csd; 1321 struct list_head cfsb_csd_list; 1322 #endif 1323 }; 1324 1325 #ifdef CONFIG_FAIR_GROUP_SCHED 1326 1327 /* CPU runqueue to which this cfs_rq is attached */ 1328 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1329 { 1330 return cfs_rq->rq; 1331 } 1332 1333 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1334 1335 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1336 { 1337 return container_of(cfs_rq, struct rq, cfs); 1338 } 1339 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1340 1341 static inline int cpu_of(struct rq *rq) 1342 { 1343 return rq->cpu; 1344 } 1345 1346 #define MDF_PUSH 0x01 1347 1348 static inline bool is_migration_disabled(struct task_struct *p) 1349 { 1350 return p->migration_disabled; 1351 } 1352 1353 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1354 DECLARE_PER_CPU(struct rnd_state, sched_rnd_state); 1355 1356 static inline u32 sched_rng(void) 1357 { 1358 return prandom_u32_state(this_cpu_ptr(&sched_rnd_state)); 1359 } 1360 1361 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1362 #define this_rq() this_cpu_ptr(&runqueues) 1363 #define task_rq(p) cpu_rq(task_cpu(p)) 1364 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1365 #define raw_rq() raw_cpu_ptr(&runqueues) 1366 1367 static inline bool idle_rq(struct rq *rq) 1368 { 1369 return rq->curr == rq->idle && !rq->nr_running && !rq->ttwu_pending; 1370 } 1371 1372 /** 1373 * available_idle_cpu - is a given CPU idle for enqueuing work. 1374 * @cpu: the CPU in question. 1375 * 1376 * Return: 1 if the CPU is currently idle. 0 otherwise. 1377 */ 1378 static inline bool available_idle_cpu(int cpu) 1379 { 1380 if (!idle_rq(cpu_rq(cpu))) 1381 return 0; 1382 1383 if (vcpu_is_preempted(cpu)) 1384 return 0; 1385 1386 return 1; 1387 } 1388 1389 #ifdef CONFIG_SCHED_PROXY_EXEC 1390 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1391 { 1392 rcu_assign_pointer(rq->donor, t); 1393 } 1394 #else 1395 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1396 { 1397 /* Do nothing */ 1398 } 1399 #endif 1400 1401 #ifdef CONFIG_SCHED_CORE 1402 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1403 1404 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1405 1406 static inline bool sched_core_enabled(struct rq *rq) 1407 { 1408 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1409 } 1410 1411 static inline bool sched_core_disabled(void) 1412 { 1413 return !static_branch_unlikely(&__sched_core_enabled); 1414 } 1415 1416 /* 1417 * Be careful with this function; not for general use. The return value isn't 1418 * stable unless you actually hold a relevant rq->__lock. 1419 */ 1420 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1421 { 1422 if (sched_core_enabled(rq)) 1423 return &rq->core->__lock; 1424 1425 return &rq->__lock; 1426 } 1427 1428 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1429 { 1430 if (rq->core_enabled) 1431 return &rq->core->__lock; 1432 1433 return &rq->__lock; 1434 } 1435 1436 extern bool 1437 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1438 1439 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1440 1441 /* 1442 * Helpers to check if the CPU's core cookie matches with the task's cookie 1443 * when core scheduling is enabled. 1444 * A special case is that the task's cookie always matches with CPU's core 1445 * cookie if the CPU is in an idle core. 1446 */ 1447 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1448 { 1449 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1450 if (!sched_core_enabled(rq)) 1451 return true; 1452 1453 return rq->core->core_cookie == p->core_cookie; 1454 } 1455 1456 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1457 { 1458 bool idle_core = true; 1459 int cpu; 1460 1461 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1462 if (!sched_core_enabled(rq)) 1463 return true; 1464 1465 if (rq->core->core_cookie == p->core_cookie) 1466 return true; 1467 1468 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1469 if (!available_idle_cpu(cpu)) { 1470 idle_core = false; 1471 break; 1472 } 1473 } 1474 1475 /* 1476 * A CPU in an idle core is always the best choice for tasks with 1477 * cookies. 1478 */ 1479 return idle_core; 1480 } 1481 1482 static inline bool sched_group_cookie_match(struct rq *rq, 1483 struct task_struct *p, 1484 struct sched_group *group) 1485 { 1486 int cpu; 1487 1488 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1489 if (!sched_core_enabled(rq)) 1490 return true; 1491 1492 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1493 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1494 return true; 1495 } 1496 return false; 1497 } 1498 1499 static inline bool sched_core_enqueued(struct task_struct *p) 1500 { 1501 return !RB_EMPTY_NODE(&p->core_node); 1502 } 1503 1504 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1505 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1506 1507 extern void sched_core_get(void); 1508 extern void sched_core_put(void); 1509 1510 #else /* !CONFIG_SCHED_CORE: */ 1511 1512 static inline bool sched_core_enabled(struct rq *rq) 1513 { 1514 return false; 1515 } 1516 1517 static inline bool sched_core_disabled(void) 1518 { 1519 return true; 1520 } 1521 1522 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1523 { 1524 return &rq->__lock; 1525 } 1526 1527 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1528 { 1529 return &rq->__lock; 1530 } 1531 1532 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1533 { 1534 return true; 1535 } 1536 1537 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1538 { 1539 return true; 1540 } 1541 1542 static inline bool sched_group_cookie_match(struct rq *rq, 1543 struct task_struct *p, 1544 struct sched_group *group) 1545 { 1546 return true; 1547 } 1548 1549 #endif /* !CONFIG_SCHED_CORE */ 1550 1551 #ifdef CONFIG_RT_GROUP_SCHED 1552 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1553 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1554 static inline bool rt_group_sched_enabled(void) 1555 { 1556 return static_branch_unlikely(&rt_group_sched); 1557 } 1558 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1559 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1560 static inline bool rt_group_sched_enabled(void) 1561 { 1562 return static_branch_likely(&rt_group_sched); 1563 } 1564 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1565 #else /* !CONFIG_RT_GROUP_SCHED: */ 1566 # define rt_group_sched_enabled() false 1567 #endif /* !CONFIG_RT_GROUP_SCHED */ 1568 1569 static inline void lockdep_assert_rq_held(struct rq *rq) 1570 { 1571 lockdep_assert_held(__rq_lockp(rq)); 1572 } 1573 1574 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1575 extern bool raw_spin_rq_trylock(struct rq *rq); 1576 extern void raw_spin_rq_unlock(struct rq *rq); 1577 1578 static inline void raw_spin_rq_lock(struct rq *rq) 1579 { 1580 raw_spin_rq_lock_nested(rq, 0); 1581 } 1582 1583 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1584 { 1585 local_irq_disable(); 1586 raw_spin_rq_lock(rq); 1587 } 1588 1589 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1590 { 1591 raw_spin_rq_unlock(rq); 1592 local_irq_enable(); 1593 } 1594 1595 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1596 { 1597 unsigned long flags; 1598 1599 local_irq_save(flags); 1600 raw_spin_rq_lock(rq); 1601 1602 return flags; 1603 } 1604 1605 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1606 { 1607 raw_spin_rq_unlock(rq); 1608 local_irq_restore(flags); 1609 } 1610 1611 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1612 do { \ 1613 flags = _raw_spin_rq_lock_irqsave(rq); \ 1614 } while (0) 1615 1616 #ifdef CONFIG_SCHED_SMT 1617 extern void __update_idle_core(struct rq *rq); 1618 1619 static inline void update_idle_core(struct rq *rq) 1620 { 1621 if (static_branch_unlikely(&sched_smt_present)) 1622 __update_idle_core(rq); 1623 } 1624 1625 #else /* !CONFIG_SCHED_SMT: */ 1626 static inline void update_idle_core(struct rq *rq) { } 1627 #endif /* !CONFIG_SCHED_SMT */ 1628 1629 #ifdef CONFIG_FAIR_GROUP_SCHED 1630 1631 static inline struct task_struct *task_of(struct sched_entity *se) 1632 { 1633 WARN_ON_ONCE(!entity_is_task(se)); 1634 return container_of(se, struct task_struct, se); 1635 } 1636 1637 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1638 { 1639 return p->se.cfs_rq; 1640 } 1641 1642 /* runqueue on which this entity is (to be) queued */ 1643 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1644 { 1645 return se->cfs_rq; 1646 } 1647 1648 /* runqueue "owned" by this group */ 1649 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1650 { 1651 return grp->my_q; 1652 } 1653 1654 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1655 1656 #define task_of(_se) container_of(_se, struct task_struct, se) 1657 1658 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1659 { 1660 return &task_rq(p)->cfs; 1661 } 1662 1663 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1664 { 1665 const struct task_struct *p = task_of(se); 1666 struct rq *rq = task_rq(p); 1667 1668 return &rq->cfs; 1669 } 1670 1671 /* runqueue "owned" by this group */ 1672 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1673 { 1674 return NULL; 1675 } 1676 1677 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1678 1679 extern void update_rq_clock(struct rq *rq); 1680 1681 /* 1682 * rq::clock_update_flags bits 1683 * 1684 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1685 * call to __schedule(). This is an optimisation to avoid 1686 * neighbouring rq clock updates. 1687 * 1688 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1689 * in effect and calls to update_rq_clock() are being ignored. 1690 * 1691 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1692 * made to update_rq_clock() since the last time rq::lock was pinned. 1693 * 1694 * If inside of __schedule(), clock_update_flags will have been 1695 * shifted left (a left shift is a cheap operation for the fast path 1696 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1697 * 1698 * if (rq-clock_update_flags >= RQCF_UPDATED) 1699 * 1700 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1701 * one position though, because the next rq_unpin_lock() will shift it 1702 * back. 1703 */ 1704 #define RQCF_REQ_SKIP 0x01 1705 #define RQCF_ACT_SKIP 0x02 1706 #define RQCF_UPDATED 0x04 1707 1708 static inline void assert_clock_updated(struct rq *rq) 1709 { 1710 /* 1711 * The only reason for not seeing a clock update since the 1712 * last rq_pin_lock() is if we're currently skipping updates. 1713 */ 1714 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1715 } 1716 1717 static inline u64 rq_clock(struct rq *rq) 1718 { 1719 lockdep_assert_rq_held(rq); 1720 assert_clock_updated(rq); 1721 1722 return rq->clock; 1723 } 1724 1725 static inline u64 rq_clock_task(struct rq *rq) 1726 { 1727 lockdep_assert_rq_held(rq); 1728 assert_clock_updated(rq); 1729 1730 return rq->clock_task; 1731 } 1732 1733 static inline void rq_clock_skip_update(struct rq *rq) 1734 { 1735 lockdep_assert_rq_held(rq); 1736 rq->clock_update_flags |= RQCF_REQ_SKIP; 1737 } 1738 1739 /* 1740 * See rt task throttling, which is the only time a skip 1741 * request is canceled. 1742 */ 1743 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1744 { 1745 lockdep_assert_rq_held(rq); 1746 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1747 } 1748 1749 /* 1750 * During cpu offlining and rq wide unthrottling, we can trigger 1751 * an update_rq_clock() for several cfs and rt runqueues (Typically 1752 * when using list_for_each_entry_*) 1753 * rq_clock_start_loop_update() can be called after updating the clock 1754 * once and before iterating over the list to prevent multiple update. 1755 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1756 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1757 */ 1758 static inline void rq_clock_start_loop_update(struct rq *rq) 1759 { 1760 lockdep_assert_rq_held(rq); 1761 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1762 rq->clock_update_flags |= RQCF_ACT_SKIP; 1763 } 1764 1765 static inline void rq_clock_stop_loop_update(struct rq *rq) 1766 { 1767 lockdep_assert_rq_held(rq); 1768 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1769 } 1770 1771 struct rq_flags { 1772 unsigned long flags; 1773 struct pin_cookie cookie; 1774 /* 1775 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1776 * current pin context is stashed here in case it needs to be 1777 * restored in rq_repin_lock(). 1778 */ 1779 unsigned int clock_update_flags; 1780 }; 1781 1782 extern struct balance_callback balance_push_callback; 1783 1784 #ifdef CONFIG_SCHED_CLASS_EXT 1785 extern const struct sched_class ext_sched_class; 1786 1787 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1788 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1789 1790 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1791 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1792 1793 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1794 { 1795 if (!scx_enabled()) 1796 return; 1797 WRITE_ONCE(rq->scx.clock, clock); 1798 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1799 } 1800 1801 static inline void scx_rq_clock_invalidate(struct rq *rq) 1802 { 1803 if (!scx_enabled()) 1804 return; 1805 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1806 } 1807 1808 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1809 #define scx_enabled() false 1810 #define scx_switched_all() false 1811 1812 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1813 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1814 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1815 1816 /* 1817 * Lockdep annotation that avoids accidental unlocks; it's like a 1818 * sticky/continuous lockdep_assert_held(). 1819 * 1820 * This avoids code that has access to 'struct rq *rq' (basically everything in 1821 * the scheduler) from accidentally unlocking the rq if they do not also have a 1822 * copy of the (on-stack) 'struct rq_flags rf'. 1823 * 1824 * Also see Documentation/locking/lockdep-design.rst. 1825 */ 1826 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1827 { 1828 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1829 1830 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1831 rf->clock_update_flags = 0; 1832 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1833 } 1834 1835 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1836 { 1837 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1838 rf->clock_update_flags = RQCF_UPDATED; 1839 1840 scx_rq_clock_invalidate(rq); 1841 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1842 } 1843 1844 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1845 { 1846 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1847 1848 /* 1849 * Restore the value we stashed in @rf for this pin context. 1850 */ 1851 rq->clock_update_flags |= rf->clock_update_flags; 1852 } 1853 1854 extern 1855 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1856 __acquires(rq->lock); 1857 1858 extern 1859 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1860 __acquires(p->pi_lock) 1861 __acquires(rq->lock); 1862 1863 static inline void 1864 __task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1865 __releases(rq->lock) 1866 { 1867 rq_unpin_lock(rq, rf); 1868 raw_spin_rq_unlock(rq); 1869 } 1870 1871 static inline void 1872 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1873 __releases(rq->lock) 1874 __releases(p->pi_lock) 1875 { 1876 __task_rq_unlock(rq, p, rf); 1877 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1878 } 1879 1880 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1881 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1882 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1883 struct rq *rq; struct rq_flags rf) 1884 1885 DEFINE_LOCK_GUARD_1(__task_rq_lock, struct task_struct, 1886 _T->rq = __task_rq_lock(_T->lock, &_T->rf), 1887 __task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1888 struct rq *rq; struct rq_flags rf) 1889 1890 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1891 __acquires(rq->lock) 1892 { 1893 raw_spin_rq_lock_irqsave(rq, rf->flags); 1894 rq_pin_lock(rq, rf); 1895 } 1896 1897 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1898 __acquires(rq->lock) 1899 { 1900 raw_spin_rq_lock_irq(rq); 1901 rq_pin_lock(rq, rf); 1902 } 1903 1904 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1905 __acquires(rq->lock) 1906 { 1907 raw_spin_rq_lock(rq); 1908 rq_pin_lock(rq, rf); 1909 } 1910 1911 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1912 __releases(rq->lock) 1913 { 1914 rq_unpin_lock(rq, rf); 1915 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1916 } 1917 1918 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1919 __releases(rq->lock) 1920 { 1921 rq_unpin_lock(rq, rf); 1922 raw_spin_rq_unlock_irq(rq); 1923 } 1924 1925 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1926 __releases(rq->lock) 1927 { 1928 rq_unpin_lock(rq, rf); 1929 raw_spin_rq_unlock(rq); 1930 } 1931 1932 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1933 rq_lock(_T->lock, &_T->rf), 1934 rq_unlock(_T->lock, &_T->rf), 1935 struct rq_flags rf) 1936 1937 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1938 rq_lock_irq(_T->lock, &_T->rf), 1939 rq_unlock_irq(_T->lock, &_T->rf), 1940 struct rq_flags rf) 1941 1942 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1943 rq_lock_irqsave(_T->lock, &_T->rf), 1944 rq_unlock_irqrestore(_T->lock, &_T->rf), 1945 struct rq_flags rf) 1946 1947 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1948 __acquires(rq->lock) 1949 { 1950 struct rq *rq; 1951 1952 local_irq_disable(); 1953 rq = this_rq(); 1954 rq_lock(rq, rf); 1955 1956 return rq; 1957 } 1958 1959 #ifdef CONFIG_NUMA 1960 1961 enum numa_topology_type { 1962 NUMA_DIRECT, 1963 NUMA_GLUELESS_MESH, 1964 NUMA_BACKPLANE, 1965 }; 1966 1967 extern enum numa_topology_type sched_numa_topology_type; 1968 extern int sched_max_numa_distance; 1969 extern bool find_numa_distance(int distance); 1970 extern void sched_init_numa(int offline_node); 1971 extern void sched_update_numa(int cpu, bool online); 1972 extern void sched_domains_numa_masks_set(unsigned int cpu); 1973 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1974 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1975 1976 #else /* !CONFIG_NUMA: */ 1977 1978 static inline void sched_init_numa(int offline_node) { } 1979 static inline void sched_update_numa(int cpu, bool online) { } 1980 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1981 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1982 1983 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1984 { 1985 return nr_cpu_ids; 1986 } 1987 1988 #endif /* !CONFIG_NUMA */ 1989 1990 #ifdef CONFIG_NUMA_BALANCING 1991 1992 /* The regions in numa_faults array from task_struct */ 1993 enum numa_faults_stats { 1994 NUMA_MEM = 0, 1995 NUMA_CPU, 1996 NUMA_MEMBUF, 1997 NUMA_CPUBUF 1998 }; 1999 2000 extern void sched_setnuma(struct task_struct *p, int node); 2001 extern int migrate_task_to(struct task_struct *p, int cpu); 2002 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 2003 int cpu, int scpu); 2004 extern void init_numa_balancing(u64 clone_flags, struct task_struct *p); 2005 2006 #else /* !CONFIG_NUMA_BALANCING: */ 2007 2008 static inline void 2009 init_numa_balancing(u64 clone_flags, struct task_struct *p) 2010 { 2011 } 2012 2013 #endif /* !CONFIG_NUMA_BALANCING */ 2014 2015 static inline void 2016 queue_balance_callback(struct rq *rq, 2017 struct balance_callback *head, 2018 void (*func)(struct rq *rq)) 2019 { 2020 lockdep_assert_rq_held(rq); 2021 2022 /* 2023 * Don't (re)queue an already queued item; nor queue anything when 2024 * balance_push() is active, see the comment with 2025 * balance_push_callback. 2026 */ 2027 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 2028 return; 2029 2030 head->func = func; 2031 head->next = rq->balance_callback; 2032 rq->balance_callback = head; 2033 } 2034 2035 #define rcu_dereference_check_sched_domain(p) \ 2036 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 2037 2038 /* 2039 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 2040 * See destroy_sched_domains: call_rcu for details. 2041 * 2042 * The domain tree of any CPU may only be accessed from within 2043 * preempt-disabled sections. 2044 */ 2045 #define for_each_domain(cpu, __sd) \ 2046 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 2047 __sd; __sd = __sd->parent) 2048 2049 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 2050 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 2051 static const unsigned int SD_SHARED_CHILD_MASK = 2052 #include <linux/sched/sd_flags.h> 2053 0; 2054 #undef SD_FLAG 2055 2056 /** 2057 * highest_flag_domain - Return highest sched_domain containing flag. 2058 * @cpu: The CPU whose highest level of sched domain is to 2059 * be returned. 2060 * @flag: The flag to check for the highest sched_domain 2061 * for the given CPU. 2062 * 2063 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 2064 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 2065 */ 2066 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 2067 { 2068 struct sched_domain *sd, *hsd = NULL; 2069 2070 for_each_domain(cpu, sd) { 2071 if (sd->flags & flag) { 2072 hsd = sd; 2073 continue; 2074 } 2075 2076 /* 2077 * Stop the search if @flag is known to be shared at lower 2078 * levels. It will not be found further up. 2079 */ 2080 if (flag & SD_SHARED_CHILD_MASK) 2081 break; 2082 } 2083 2084 return hsd; 2085 } 2086 2087 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2088 { 2089 struct sched_domain *sd; 2090 2091 for_each_domain(cpu, sd) { 2092 if (sd->flags & flag) 2093 break; 2094 } 2095 2096 return sd; 2097 } 2098 2099 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2100 DECLARE_PER_CPU(int, sd_llc_size); 2101 DECLARE_PER_CPU(int, sd_llc_id); 2102 DECLARE_PER_CPU(int, sd_share_id); 2103 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2104 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2105 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2106 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2107 2108 extern struct static_key_false sched_asym_cpucapacity; 2109 extern struct static_key_false sched_cluster_active; 2110 2111 static __always_inline bool sched_asym_cpucap_active(void) 2112 { 2113 return static_branch_unlikely(&sched_asym_cpucapacity); 2114 } 2115 2116 struct sched_group_capacity { 2117 atomic_t ref; 2118 /* 2119 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2120 * for a single CPU. 2121 */ 2122 unsigned long capacity; 2123 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2124 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2125 unsigned long next_update; 2126 int imbalance; /* XXX unrelated to capacity but shared group state */ 2127 2128 int id; 2129 2130 unsigned long cpumask[]; /* Balance mask */ 2131 }; 2132 2133 struct sched_group { 2134 struct sched_group *next; /* Must be a circular list */ 2135 atomic_t ref; 2136 2137 unsigned int group_weight; 2138 unsigned int cores; 2139 struct sched_group_capacity *sgc; 2140 int asym_prefer_cpu; /* CPU of highest priority in group */ 2141 int flags; 2142 2143 /* 2144 * The CPUs this group covers. 2145 * 2146 * NOTE: this field is variable length. (Allocated dynamically 2147 * by attaching extra space to the end of the structure, 2148 * depending on how many CPUs the kernel has booted up with) 2149 */ 2150 unsigned long cpumask[]; 2151 }; 2152 2153 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2154 { 2155 return to_cpumask(sg->cpumask); 2156 } 2157 2158 /* 2159 * See build_balance_mask(). 2160 */ 2161 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2162 { 2163 return to_cpumask(sg->sgc->cpumask); 2164 } 2165 2166 extern int group_balance_cpu(struct sched_group *sg); 2167 2168 extern void update_sched_domain_debugfs(void); 2169 extern void dirty_sched_domain_sysctl(int cpu); 2170 2171 extern int sched_update_scaling(void); 2172 2173 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2174 { 2175 if (!p->user_cpus_ptr) 2176 return cpu_possible_mask; /* &init_task.cpus_mask */ 2177 return p->user_cpus_ptr; 2178 } 2179 2180 #ifdef CONFIG_CGROUP_SCHED 2181 2182 /* 2183 * Return the group to which this tasks belongs. 2184 * 2185 * We cannot use task_css() and friends because the cgroup subsystem 2186 * changes that value before the cgroup_subsys::attach() method is called, 2187 * therefore we cannot pin it and might observe the wrong value. 2188 * 2189 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2190 * core changes this before calling sched_move_task(). 2191 * 2192 * Instead we use a 'copy' which is updated from sched_move_task() while 2193 * holding both task_struct::pi_lock and rq::lock. 2194 */ 2195 static inline struct task_group *task_group(struct task_struct *p) 2196 { 2197 return p->sched_task_group; 2198 } 2199 2200 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2201 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2202 { 2203 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2204 struct task_group *tg = task_group(p); 2205 #endif 2206 2207 #ifdef CONFIG_FAIR_GROUP_SCHED 2208 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2209 p->se.cfs_rq = tg->cfs_rq[cpu]; 2210 p->se.parent = tg->se[cpu]; 2211 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2212 #endif 2213 2214 #ifdef CONFIG_RT_GROUP_SCHED 2215 /* 2216 * p->rt.rt_rq is NULL initially and it is easier to assign 2217 * root_task_group's rt_rq than switching in rt_rq_of_se() 2218 * Clobbers tg(!) 2219 */ 2220 if (!rt_group_sched_enabled()) 2221 tg = &root_task_group; 2222 p->rt.rt_rq = tg->rt_rq[cpu]; 2223 p->rt.parent = tg->rt_se[cpu]; 2224 #endif /* CONFIG_RT_GROUP_SCHED */ 2225 } 2226 2227 #else /* !CONFIG_CGROUP_SCHED: */ 2228 2229 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2230 2231 static inline struct task_group *task_group(struct task_struct *p) 2232 { 2233 return NULL; 2234 } 2235 2236 #endif /* !CONFIG_CGROUP_SCHED */ 2237 2238 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2239 { 2240 set_task_rq(p, cpu); 2241 #ifdef CONFIG_SMP 2242 /* 2243 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2244 * successfully executed on another CPU. We must ensure that updates of 2245 * per-task data have been completed by this moment. 2246 */ 2247 smp_wmb(); 2248 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2249 p->wake_cpu = cpu; 2250 rseq_sched_set_ids_changed(p); 2251 #endif /* CONFIG_SMP */ 2252 } 2253 2254 /* 2255 * Tunables: 2256 */ 2257 2258 #define SCHED_FEAT(name, enabled) \ 2259 __SCHED_FEAT_##name , 2260 2261 enum { 2262 #include "features.h" 2263 __SCHED_FEAT_NR, 2264 }; 2265 2266 #undef SCHED_FEAT 2267 2268 /* 2269 * To support run-time toggling of sched features, all the translation units 2270 * (but core.c) reference the sysctl_sched_features defined in core.c. 2271 */ 2272 extern __read_mostly unsigned int sysctl_sched_features; 2273 2274 #ifdef CONFIG_JUMP_LABEL 2275 2276 #define SCHED_FEAT(name, enabled) \ 2277 static __always_inline bool static_branch_##name(struct static_key *key) \ 2278 { \ 2279 return static_key_##enabled(key); \ 2280 } 2281 2282 #include "features.h" 2283 #undef SCHED_FEAT 2284 2285 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2286 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2287 2288 #else /* !CONFIG_JUMP_LABEL: */ 2289 2290 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2291 2292 #endif /* !CONFIG_JUMP_LABEL */ 2293 2294 extern struct static_key_false sched_numa_balancing; 2295 extern struct static_key_false sched_schedstats; 2296 2297 static inline u64 global_rt_period(void) 2298 { 2299 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2300 } 2301 2302 static inline u64 global_rt_runtime(void) 2303 { 2304 if (sysctl_sched_rt_runtime < 0) 2305 return RUNTIME_INF; 2306 2307 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2308 } 2309 2310 /* 2311 * Is p the current execution context? 2312 */ 2313 static inline int task_current(struct rq *rq, struct task_struct *p) 2314 { 2315 return rq->curr == p; 2316 } 2317 2318 /* 2319 * Is p the current scheduling context? 2320 * 2321 * Note that it might be the current execution context at the same time if 2322 * rq->curr == rq->donor == p. 2323 */ 2324 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2325 { 2326 return rq->donor == p; 2327 } 2328 2329 static inline bool task_is_blocked(struct task_struct *p) 2330 { 2331 if (!sched_proxy_exec()) 2332 return false; 2333 2334 return !!p->blocked_on; 2335 } 2336 2337 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2338 { 2339 return p->on_cpu; 2340 } 2341 2342 static inline int task_on_rq_queued(struct task_struct *p) 2343 { 2344 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2345 } 2346 2347 static inline int task_on_rq_migrating(struct task_struct *p) 2348 { 2349 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2350 } 2351 2352 /* Wake flags. The first three directly map to some SD flag value */ 2353 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2354 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2355 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2356 2357 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2358 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2359 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2360 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2361 2362 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2363 static_assert(WF_FORK == SD_BALANCE_FORK); 2364 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2365 2366 /* 2367 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2368 * of tasks with abnormal "nice" values across CPUs the contribution that 2369 * each task makes to its run queue's load is weighted according to its 2370 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2371 * scaled version of the new time slice allocation that they receive on time 2372 * slice expiry etc. 2373 */ 2374 2375 #define WEIGHT_IDLEPRIO 3 2376 #define WMULT_IDLEPRIO 1431655765 2377 2378 extern const int sched_prio_to_weight[40]; 2379 extern const u32 sched_prio_to_wmult[40]; 2380 2381 /* 2382 * {de,en}queue flags: 2383 * 2384 * SLEEP/WAKEUP - task is no-longer/just-became runnable 2385 * 2386 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2387 * are in a known state which allows modification. Such pairs 2388 * should preserve as much state as possible. 2389 * 2390 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2391 * in the runqueue. IOW the priority is allowed to change. Callers 2392 * must expect to deal with balance callbacks. 2393 * 2394 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2395 * 2396 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2397 * 2398 * DELAYED - de/re-queue a sched_delayed task 2399 * 2400 * CLASS - going to update p->sched_class; makes sched_change call the 2401 * various switch methods. 2402 * 2403 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2404 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2405 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2406 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2407 * 2408 * XXX SAVE/RESTORE in combination with CLASS doesn't really make sense, but 2409 * SCHED_DEADLINE seems to rely on this for now. 2410 */ 2411 2412 #define DEQUEUE_SLEEP 0x0001 /* Matches ENQUEUE_WAKEUP */ 2413 #define DEQUEUE_SAVE 0x0002 /* Matches ENQUEUE_RESTORE */ 2414 #define DEQUEUE_MOVE 0x0004 /* Matches ENQUEUE_MOVE */ 2415 #define DEQUEUE_NOCLOCK 0x0008 /* Matches ENQUEUE_NOCLOCK */ 2416 2417 #define DEQUEUE_MIGRATING 0x0010 /* Matches ENQUEUE_MIGRATING */ 2418 #define DEQUEUE_DELAYED 0x0020 /* Matches ENQUEUE_DELAYED */ 2419 #define DEQUEUE_CLASS 0x0040 /* Matches ENQUEUE_CLASS */ 2420 2421 #define DEQUEUE_SPECIAL 0x00010000 2422 #define DEQUEUE_THROTTLE 0x00020000 2423 2424 #define ENQUEUE_WAKEUP 0x0001 2425 #define ENQUEUE_RESTORE 0x0002 2426 #define ENQUEUE_MOVE 0x0004 2427 #define ENQUEUE_NOCLOCK 0x0008 2428 2429 #define ENQUEUE_MIGRATING 0x0010 2430 #define ENQUEUE_DELAYED 0x0020 2431 #define ENQUEUE_CLASS 0x0040 2432 2433 #define ENQUEUE_HEAD 0x00010000 2434 #define ENQUEUE_REPLENISH 0x00020000 2435 #define ENQUEUE_MIGRATED 0x00040000 2436 #define ENQUEUE_INITIAL 0x00080000 2437 #define ENQUEUE_RQ_SELECTED 0x00100000 2438 2439 #define RETRY_TASK ((void *)-1UL) 2440 2441 struct affinity_context { 2442 const struct cpumask *new_mask; 2443 struct cpumask *user_mask; 2444 unsigned int flags; 2445 }; 2446 2447 extern s64 update_curr_common(struct rq *rq); 2448 2449 struct sched_class { 2450 2451 #ifdef CONFIG_UCLAMP_TASK 2452 int uclamp_enabled; 2453 #endif 2454 /* 2455 * idle: 0 2456 * ext: 1 2457 * fair: 2 2458 * rt: 4 2459 * dl: 8 2460 * stop: 16 2461 */ 2462 unsigned int queue_mask; 2463 2464 /* 2465 * move_queued_task/activate_task/enqueue_task: rq->lock 2466 * ttwu_do_activate/activate_task/enqueue_task: rq->lock 2467 * wake_up_new_task/activate_task/enqueue_task: task_rq_lock 2468 * ttwu_runnable/enqueue_task: task_rq_lock 2469 * proxy_task_current: rq->lock 2470 * sched_change_end 2471 */ 2472 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2473 /* 2474 * move_queued_task/deactivate_task/dequeue_task: rq->lock 2475 * __schedule/block_task/dequeue_task: rq->lock 2476 * proxy_task_current: rq->lock 2477 * wait_task_inactive: task_rq_lock 2478 * sched_change_begin 2479 */ 2480 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2481 2482 /* 2483 * do_sched_yield: rq->lock 2484 */ 2485 void (*yield_task) (struct rq *rq); 2486 /* 2487 * yield_to: rq->lock (double) 2488 */ 2489 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2490 2491 /* 2492 * move_queued_task: rq->lock 2493 * __migrate_swap_task: rq->lock 2494 * ttwu_do_activate: rq->lock 2495 * ttwu_runnable: task_rq_lock 2496 * wake_up_new_task: task_rq_lock 2497 */ 2498 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2499 2500 /* 2501 * schedule/pick_next_task/prev_balance: rq->lock 2502 */ 2503 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2504 2505 /* 2506 * schedule/pick_next_task: rq->lock 2507 */ 2508 struct task_struct *(*pick_task)(struct rq *rq, struct rq_flags *rf); 2509 /* 2510 * Optional! When implemented pick_next_task() should be equivalent to: 2511 * 2512 * next = pick_task(); 2513 * if (next) { 2514 * put_prev_task(prev); 2515 * set_next_task_first(next); 2516 * } 2517 */ 2518 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev, 2519 struct rq_flags *rf); 2520 2521 /* 2522 * sched_change: 2523 * __schedule: rq->lock 2524 */ 2525 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2526 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2527 2528 /* 2529 * select_task_rq: p->pi_lock 2530 * sched_exec: p->pi_lock 2531 */ 2532 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2533 2534 /* 2535 * set_task_cpu: p->pi_lock || rq->lock (ttwu like) 2536 */ 2537 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2538 2539 /* 2540 * ttwu_do_activate: rq->lock 2541 * wake_up_new_task: task_rq_lock 2542 */ 2543 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2544 2545 /* 2546 * do_set_cpus_allowed: task_rq_lock + sched_change 2547 */ 2548 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2549 2550 /* 2551 * sched_set_rq_{on,off}line: rq->lock 2552 */ 2553 void (*rq_online)(struct rq *rq); 2554 void (*rq_offline)(struct rq *rq); 2555 2556 /* 2557 * push_cpu_stop: p->pi_lock && rq->lock 2558 */ 2559 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2560 2561 /* 2562 * hrtick: rq->lock 2563 * sched_tick: rq->lock 2564 * sched_tick_remote: rq->lock 2565 */ 2566 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2567 /* 2568 * sched_cgroup_fork: p->pi_lock 2569 */ 2570 void (*task_fork)(struct task_struct *p); 2571 /* 2572 * finish_task_switch: no locks 2573 */ 2574 void (*task_dead)(struct task_struct *p); 2575 2576 /* 2577 * sched_change 2578 */ 2579 void (*switching_from)(struct rq *this_rq, struct task_struct *task); 2580 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 2581 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2582 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2583 u64 (*get_prio) (struct rq *this_rq, struct task_struct *task); 2584 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2585 u64 oldprio); 2586 2587 /* 2588 * set_load_weight: task_rq_lock + sched_change 2589 * __setscheduler_parms: task_rq_lock + sched_change 2590 */ 2591 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2592 const struct load_weight *lw); 2593 2594 /* 2595 * sched_rr_get_interval: task_rq_lock 2596 */ 2597 unsigned int (*get_rr_interval)(struct rq *rq, 2598 struct task_struct *task); 2599 2600 /* 2601 * task_sched_runtime: task_rq_lock 2602 */ 2603 void (*update_curr)(struct rq *rq); 2604 2605 #ifdef CONFIG_FAIR_GROUP_SCHED 2606 /* 2607 * sched_change_group: task_rq_lock + sched_change 2608 */ 2609 void (*task_change_group)(struct task_struct *p); 2610 #endif 2611 2612 #ifdef CONFIG_SCHED_CORE 2613 /* 2614 * pick_next_task: rq->lock 2615 * try_steal_cookie: rq->lock (double) 2616 */ 2617 int (*task_is_throttled)(struct task_struct *p, int cpu); 2618 #endif 2619 }; 2620 2621 /* 2622 * Does not nest; only used around sched_class::pick_task() rq-lock-breaks. 2623 */ 2624 static inline void rq_modified_clear(struct rq *rq) 2625 { 2626 rq->queue_mask = 0; 2627 } 2628 2629 static inline bool rq_modified_above(struct rq *rq, const struct sched_class * class) 2630 { 2631 unsigned int mask = class->queue_mask; 2632 return rq->queue_mask & ~((mask << 1) - 1); 2633 } 2634 2635 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2636 { 2637 WARN_ON_ONCE(rq->donor != prev); 2638 prev->sched_class->put_prev_task(rq, prev, NULL); 2639 } 2640 2641 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2642 { 2643 next->sched_class->set_next_task(rq, next, false); 2644 } 2645 2646 static inline void 2647 __put_prev_set_next_dl_server(struct rq *rq, 2648 struct task_struct *prev, 2649 struct task_struct *next) 2650 { 2651 prev->dl_server = NULL; 2652 next->dl_server = rq->dl_server; 2653 rq->dl_server = NULL; 2654 } 2655 2656 static inline void put_prev_set_next_task(struct rq *rq, 2657 struct task_struct *prev, 2658 struct task_struct *next) 2659 { 2660 WARN_ON_ONCE(rq->donor != prev); 2661 2662 __put_prev_set_next_dl_server(rq, prev, next); 2663 2664 if (next == prev) 2665 return; 2666 2667 prev->sched_class->put_prev_task(rq, prev, next); 2668 next->sched_class->set_next_task(rq, next, true); 2669 } 2670 2671 /* 2672 * Helper to define a sched_class instance; each one is placed in a separate 2673 * section which is ordered by the linker script: 2674 * 2675 * include/asm-generic/vmlinux.lds.h 2676 * 2677 * *CAREFUL* they are laid out in *REVERSE* order!!! 2678 * 2679 * Also enforce alignment on the instance, not the type, to guarantee layout. 2680 */ 2681 #define DEFINE_SCHED_CLASS(name) \ 2682 const struct sched_class name##_sched_class \ 2683 __aligned(__alignof__(struct sched_class)) \ 2684 __section("__" #name "_sched_class") 2685 2686 /* Defined in include/asm-generic/vmlinux.lds.h */ 2687 extern struct sched_class __sched_class_highest[]; 2688 extern struct sched_class __sched_class_lowest[]; 2689 2690 extern const struct sched_class stop_sched_class; 2691 extern const struct sched_class dl_sched_class; 2692 extern const struct sched_class rt_sched_class; 2693 extern const struct sched_class fair_sched_class; 2694 extern const struct sched_class idle_sched_class; 2695 2696 /* 2697 * Iterate only active classes. SCX can take over all fair tasks or be 2698 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2699 */ 2700 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2701 { 2702 class++; 2703 #ifdef CONFIG_SCHED_CLASS_EXT 2704 if (scx_switched_all() && class == &fair_sched_class) 2705 class++; 2706 if (!scx_enabled() && class == &ext_sched_class) 2707 class++; 2708 #endif 2709 return class; 2710 } 2711 2712 #define for_class_range(class, _from, _to) \ 2713 for (class = (_from); class < (_to); class++) 2714 2715 #define for_each_class(class) \ 2716 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2717 2718 #define for_active_class_range(class, _from, _to) \ 2719 for (class = (_from); class != (_to); class = next_active_class(class)) 2720 2721 #define for_each_active_class(class) \ 2722 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2723 2724 #define sched_class_above(_a, _b) ((_a) < (_b)) 2725 2726 static inline bool sched_stop_runnable(struct rq *rq) 2727 { 2728 return rq->stop && task_on_rq_queued(rq->stop); 2729 } 2730 2731 static inline bool sched_dl_runnable(struct rq *rq) 2732 { 2733 return rq->dl.dl_nr_running > 0; 2734 } 2735 2736 static inline bool sched_rt_runnable(struct rq *rq) 2737 { 2738 return rq->rt.rt_queued > 0; 2739 } 2740 2741 static inline bool sched_fair_runnable(struct rq *rq) 2742 { 2743 return rq->cfs.nr_queued > 0; 2744 } 2745 2746 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, 2747 struct rq_flags *rf); 2748 extern struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf); 2749 2750 #define SCA_CHECK 0x01 2751 #define SCA_MIGRATE_DISABLE 0x02 2752 #define SCA_MIGRATE_ENABLE 0x04 2753 #define SCA_USER 0x08 2754 2755 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2756 2757 extern void sched_balance_trigger(struct rq *rq); 2758 2759 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2760 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2761 2762 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2763 { 2764 /* When not in the task's cpumask, no point in looking further. */ 2765 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2766 return false; 2767 2768 /* Can @cpu run a user thread? */ 2769 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2770 return false; 2771 2772 return true; 2773 } 2774 2775 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2776 { 2777 /* 2778 * See set_cpus_allowed_force() above for the rcu_head usage. 2779 */ 2780 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2781 2782 return kmalloc_node(size, GFP_KERNEL, node); 2783 } 2784 2785 static inline struct task_struct *get_push_task(struct rq *rq) 2786 { 2787 struct task_struct *p = rq->donor; 2788 2789 lockdep_assert_rq_held(rq); 2790 2791 if (rq->push_busy) 2792 return NULL; 2793 2794 if (p->nr_cpus_allowed == 1) 2795 return NULL; 2796 2797 if (p->migration_disabled) 2798 return NULL; 2799 2800 rq->push_busy = true; 2801 return get_task_struct(p); 2802 } 2803 2804 extern int push_cpu_stop(void *arg); 2805 2806 #ifdef CONFIG_CPU_IDLE 2807 2808 static inline void idle_set_state(struct rq *rq, 2809 struct cpuidle_state *idle_state) 2810 { 2811 rq->idle_state = idle_state; 2812 } 2813 2814 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2815 { 2816 WARN_ON_ONCE(!rcu_read_lock_held()); 2817 2818 return rq->idle_state; 2819 } 2820 2821 #else /* !CONFIG_CPU_IDLE: */ 2822 2823 static inline void idle_set_state(struct rq *rq, 2824 struct cpuidle_state *idle_state) 2825 { 2826 } 2827 2828 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2829 { 2830 return NULL; 2831 } 2832 2833 #endif /* !CONFIG_CPU_IDLE */ 2834 2835 extern void schedule_idle(void); 2836 asmlinkage void schedule_user(void); 2837 2838 extern void sysrq_sched_debug_show(void); 2839 extern void sched_init_granularity(void); 2840 extern void update_max_interval(void); 2841 2842 extern void init_sched_dl_class(void); 2843 extern void init_sched_rt_class(void); 2844 extern void init_sched_fair_class(void); 2845 2846 extern void resched_curr(struct rq *rq); 2847 extern void resched_curr_lazy(struct rq *rq); 2848 extern void resched_cpu(int cpu); 2849 2850 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2851 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2852 2853 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2854 2855 extern void init_cfs_throttle_work(struct task_struct *p); 2856 2857 #define BW_SHIFT 20 2858 #define BW_UNIT (1 << BW_SHIFT) 2859 #define RATIO_SHIFT 8 2860 #define MAX_BW_BITS (64 - BW_SHIFT) 2861 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2862 2863 extern unsigned long to_ratio(u64 period, u64 runtime); 2864 2865 extern void init_entity_runnable_average(struct sched_entity *se); 2866 extern void post_init_entity_util_avg(struct task_struct *p); 2867 2868 #ifdef CONFIG_NO_HZ_FULL 2869 extern bool sched_can_stop_tick(struct rq *rq); 2870 extern int __init sched_tick_offload_init(void); 2871 2872 /* 2873 * Tick may be needed by tasks in the runqueue depending on their policy and 2874 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2875 * nohz mode if necessary. 2876 */ 2877 static inline void sched_update_tick_dependency(struct rq *rq) 2878 { 2879 int cpu = cpu_of(rq); 2880 2881 if (!tick_nohz_full_cpu(cpu)) 2882 return; 2883 2884 if (sched_can_stop_tick(rq)) 2885 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2886 else 2887 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2888 } 2889 #else /* !CONFIG_NO_HZ_FULL: */ 2890 static inline int sched_tick_offload_init(void) { return 0; } 2891 static inline void sched_update_tick_dependency(struct rq *rq) { } 2892 #endif /* !CONFIG_NO_HZ_FULL */ 2893 2894 static inline void add_nr_running(struct rq *rq, unsigned count) 2895 { 2896 unsigned prev_nr = rq->nr_running; 2897 2898 rq->nr_running = prev_nr + count; 2899 if (trace_sched_update_nr_running_tp_enabled()) { 2900 call_trace_sched_update_nr_running(rq, count); 2901 } 2902 2903 if (prev_nr < 2 && rq->nr_running >= 2) 2904 set_rd_overloaded(rq->rd, 1); 2905 2906 sched_update_tick_dependency(rq); 2907 } 2908 2909 static inline void sub_nr_running(struct rq *rq, unsigned count) 2910 { 2911 rq->nr_running -= count; 2912 if (trace_sched_update_nr_running_tp_enabled()) { 2913 call_trace_sched_update_nr_running(rq, -count); 2914 } 2915 2916 /* Check if we still need preemption */ 2917 sched_update_tick_dependency(rq); 2918 } 2919 2920 static inline void __block_task(struct rq *rq, struct task_struct *p) 2921 { 2922 if (p->sched_contributes_to_load) 2923 rq->nr_uninterruptible++; 2924 2925 if (p->in_iowait) { 2926 atomic_inc(&rq->nr_iowait); 2927 delayacct_blkio_start(); 2928 } 2929 2930 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2931 2932 /* 2933 * The moment this write goes through, ttwu() can swoop in and migrate 2934 * this task, rendering our rq->__lock ineffective. 2935 * 2936 * __schedule() try_to_wake_up() 2937 * LOCK rq->__lock LOCK p->pi_lock 2938 * pick_next_task() 2939 * pick_next_task_fair() 2940 * pick_next_entity() 2941 * dequeue_entities() 2942 * __block_task() 2943 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2944 * break; 2945 * 2946 * ACQUIRE (after ctrl-dep) 2947 * 2948 * cpu = select_task_rq(); 2949 * set_task_cpu(p, cpu); 2950 * ttwu_queue() 2951 * ttwu_do_activate() 2952 * LOCK rq->__lock 2953 * activate_task() 2954 * STORE p->on_rq = 1 2955 * UNLOCK rq->__lock 2956 * 2957 * Callers must ensure to not reference @p after this -- we no longer 2958 * own it. 2959 */ 2960 smp_store_release(&p->on_rq, 0); 2961 } 2962 2963 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2964 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2965 2966 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2967 2968 #ifdef CONFIG_PREEMPT_RT 2969 # define SCHED_NR_MIGRATE_BREAK 8 2970 #else 2971 # define SCHED_NR_MIGRATE_BREAK 32 2972 #endif 2973 2974 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2975 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2976 2977 extern unsigned int sysctl_sched_base_slice; 2978 2979 extern int sysctl_resched_latency_warn_ms; 2980 extern int sysctl_resched_latency_warn_once; 2981 2982 extern unsigned int sysctl_sched_tunable_scaling; 2983 2984 extern unsigned int sysctl_numa_balancing_scan_delay; 2985 extern unsigned int sysctl_numa_balancing_scan_period_min; 2986 extern unsigned int sysctl_numa_balancing_scan_period_max; 2987 extern unsigned int sysctl_numa_balancing_scan_size; 2988 extern unsigned int sysctl_numa_balancing_hot_threshold; 2989 2990 #ifdef CONFIG_SCHED_HRTICK 2991 2992 /* 2993 * Use hrtick when: 2994 * - enabled by features 2995 * - hrtimer is actually high res 2996 */ 2997 static inline int hrtick_enabled(struct rq *rq) 2998 { 2999 if (!cpu_active(cpu_of(rq))) 3000 return 0; 3001 return hrtimer_is_hres_active(&rq->hrtick_timer); 3002 } 3003 3004 static inline int hrtick_enabled_fair(struct rq *rq) 3005 { 3006 if (!sched_feat(HRTICK)) 3007 return 0; 3008 return hrtick_enabled(rq); 3009 } 3010 3011 static inline int hrtick_enabled_dl(struct rq *rq) 3012 { 3013 if (!sched_feat(HRTICK_DL)) 3014 return 0; 3015 return hrtick_enabled(rq); 3016 } 3017 3018 extern void hrtick_start(struct rq *rq, u64 delay); 3019 3020 #else /* !CONFIG_SCHED_HRTICK: */ 3021 3022 static inline int hrtick_enabled_fair(struct rq *rq) 3023 { 3024 return 0; 3025 } 3026 3027 static inline int hrtick_enabled_dl(struct rq *rq) 3028 { 3029 return 0; 3030 } 3031 3032 static inline int hrtick_enabled(struct rq *rq) 3033 { 3034 return 0; 3035 } 3036 3037 #endif /* !CONFIG_SCHED_HRTICK */ 3038 3039 #ifndef arch_scale_freq_tick 3040 static __always_inline void arch_scale_freq_tick(void) { } 3041 #endif 3042 3043 #ifndef arch_scale_freq_capacity 3044 /** 3045 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 3046 * @cpu: the CPU in question. 3047 * 3048 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 3049 * 3050 * f_curr 3051 * ------ * SCHED_CAPACITY_SCALE 3052 * f_max 3053 */ 3054 static __always_inline 3055 unsigned long arch_scale_freq_capacity(int cpu) 3056 { 3057 return SCHED_CAPACITY_SCALE; 3058 } 3059 #endif 3060 3061 /* 3062 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 3063 * acquire rq lock instead of rq_lock(). So at the end of these two functions 3064 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 3065 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 3066 */ 3067 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 3068 { 3069 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 3070 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 3071 } 3072 3073 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 3074 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 3075 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 3076 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 3077 _lock; return _t; } 3078 3079 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 3080 { 3081 #ifdef CONFIG_SCHED_CORE 3082 /* 3083 * In order to not have {0,2},{1,3} turn into into an AB-BA, 3084 * order by core-id first and cpu-id second. 3085 * 3086 * Notably: 3087 * 3088 * double_rq_lock(0,3); will take core-0, core-1 lock 3089 * double_rq_lock(1,2); will take core-1, core-0 lock 3090 * 3091 * when only cpu-id is considered. 3092 */ 3093 if (rq1->core->cpu < rq2->core->cpu) 3094 return true; 3095 if (rq1->core->cpu > rq2->core->cpu) 3096 return false; 3097 3098 /* 3099 * __sched_core_flip() relies on SMT having cpu-id lock order. 3100 */ 3101 #endif /* CONFIG_SCHED_CORE */ 3102 return rq1->cpu < rq2->cpu; 3103 } 3104 3105 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 3106 3107 #ifdef CONFIG_PREEMPTION 3108 3109 /* 3110 * fair double_lock_balance: Safely acquires both rq->locks in a fair 3111 * way at the expense of forcing extra atomic operations in all 3112 * invocations. This assures that the double_lock is acquired using the 3113 * same underlying policy as the spinlock_t on this architecture, which 3114 * reduces latency compared to the unfair variant below. However, it 3115 * also adds more overhead and therefore may reduce throughput. 3116 */ 3117 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 3118 __releases(this_rq->lock) 3119 __acquires(busiest->lock) 3120 __acquires(this_rq->lock) 3121 { 3122 raw_spin_rq_unlock(this_rq); 3123 double_rq_lock(this_rq, busiest); 3124 3125 return 1; 3126 } 3127 3128 #else /* !CONFIG_PREEMPTION: */ 3129 /* 3130 * Unfair double_lock_balance: Optimizes throughput at the expense of 3131 * latency by eliminating extra atomic operations when the locks are 3132 * already in proper order on entry. This favors lower CPU-ids and will 3133 * grant the double lock to lower CPUs over higher ids under contention, 3134 * regardless of entry order into the function. 3135 */ 3136 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 3137 __releases(this_rq->lock) 3138 __acquires(busiest->lock) 3139 __acquires(this_rq->lock) 3140 { 3141 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 3142 likely(raw_spin_rq_trylock(busiest))) { 3143 double_rq_clock_clear_update(this_rq, busiest); 3144 return 0; 3145 } 3146 3147 if (rq_order_less(this_rq, busiest)) { 3148 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 3149 double_rq_clock_clear_update(this_rq, busiest); 3150 return 0; 3151 } 3152 3153 raw_spin_rq_unlock(this_rq); 3154 double_rq_lock(this_rq, busiest); 3155 3156 return 1; 3157 } 3158 3159 #endif /* !CONFIG_PREEMPTION */ 3160 3161 /* 3162 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 3163 */ 3164 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 3165 { 3166 lockdep_assert_irqs_disabled(); 3167 3168 return _double_lock_balance(this_rq, busiest); 3169 } 3170 3171 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3172 __releases(busiest->lock) 3173 { 3174 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3175 raw_spin_rq_unlock(busiest); 3176 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3177 } 3178 3179 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3180 { 3181 if (l1 > l2) 3182 swap(l1, l2); 3183 3184 spin_lock(l1); 3185 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3186 } 3187 3188 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3189 { 3190 if (l1 > l2) 3191 swap(l1, l2); 3192 3193 spin_lock_irq(l1); 3194 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3195 } 3196 3197 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3198 { 3199 if (l1 > l2) 3200 swap(l1, l2); 3201 3202 raw_spin_lock(l1); 3203 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3204 } 3205 3206 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3207 { 3208 raw_spin_unlock(l1); 3209 raw_spin_unlock(l2); 3210 } 3211 3212 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3213 double_raw_lock(_T->lock, _T->lock2), 3214 double_raw_unlock(_T->lock, _T->lock2)) 3215 3216 /* 3217 * double_rq_unlock - safely unlock two runqueues 3218 * 3219 * Note this does not restore interrupts like task_rq_unlock, 3220 * you need to do so manually after calling. 3221 */ 3222 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3223 __releases(rq1->lock) 3224 __releases(rq2->lock) 3225 { 3226 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3227 raw_spin_rq_unlock(rq2); 3228 else 3229 __release(rq2->lock); 3230 raw_spin_rq_unlock(rq1); 3231 } 3232 3233 extern void set_rq_online (struct rq *rq); 3234 extern void set_rq_offline(struct rq *rq); 3235 3236 extern bool sched_smp_initialized; 3237 3238 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3239 double_rq_lock(_T->lock, _T->lock2), 3240 double_rq_unlock(_T->lock, _T->lock2)) 3241 3242 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3243 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3244 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3245 3246 extern bool sched_debug_verbose; 3247 3248 extern void print_cfs_stats(struct seq_file *m, int cpu); 3249 extern void print_rt_stats(struct seq_file *m, int cpu); 3250 extern void print_dl_stats(struct seq_file *m, int cpu); 3251 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3252 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3253 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3254 3255 extern void resched_latency_warn(int cpu, u64 latency); 3256 3257 #ifdef CONFIG_NUMA_BALANCING 3258 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3259 extern void 3260 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3261 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3262 #endif /* CONFIG_NUMA_BALANCING */ 3263 3264 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3265 extern void init_rt_rq(struct rt_rq *rt_rq); 3266 extern void init_dl_rq(struct dl_rq *dl_rq); 3267 3268 extern void cfs_bandwidth_usage_inc(void); 3269 extern void cfs_bandwidth_usage_dec(void); 3270 3271 #ifdef CONFIG_NO_HZ_COMMON 3272 3273 #define NOHZ_BALANCE_KICK_BIT 0 3274 #define NOHZ_STATS_KICK_BIT 1 3275 #define NOHZ_NEWILB_KICK_BIT 2 3276 #define NOHZ_NEXT_KICK_BIT 3 3277 3278 /* Run sched_balance_domains() */ 3279 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3280 /* Update blocked load */ 3281 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3282 /* Update blocked load when entering idle */ 3283 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3284 /* Update nohz.next_balance */ 3285 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3286 3287 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3288 3289 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3290 3291 extern void nohz_balance_exit_idle(struct rq *rq); 3292 #else /* !CONFIG_NO_HZ_COMMON: */ 3293 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3294 #endif /* !CONFIG_NO_HZ_COMMON */ 3295 3296 #ifdef CONFIG_NO_HZ_COMMON 3297 extern void nohz_run_idle_balance(int cpu); 3298 #else 3299 static inline void nohz_run_idle_balance(int cpu) { } 3300 #endif 3301 3302 #include "stats.h" 3303 3304 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3305 3306 extern void __sched_core_account_forceidle(struct rq *rq); 3307 3308 static inline void sched_core_account_forceidle(struct rq *rq) 3309 { 3310 if (schedstat_enabled()) 3311 __sched_core_account_forceidle(rq); 3312 } 3313 3314 extern void __sched_core_tick(struct rq *rq); 3315 3316 static inline void sched_core_tick(struct rq *rq) 3317 { 3318 if (sched_core_enabled(rq) && schedstat_enabled()) 3319 __sched_core_tick(rq); 3320 } 3321 3322 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3323 3324 static inline void sched_core_account_forceidle(struct rq *rq) { } 3325 3326 static inline void sched_core_tick(struct rq *rq) { } 3327 3328 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3329 3330 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3331 3332 struct irqtime { 3333 u64 total; 3334 u64 tick_delta; 3335 u64 irq_start_time; 3336 struct u64_stats_sync sync; 3337 }; 3338 3339 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3340 extern int sched_clock_irqtime; 3341 3342 static inline int irqtime_enabled(void) 3343 { 3344 return sched_clock_irqtime; 3345 } 3346 3347 /* 3348 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3349 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3350 * and never move forward. 3351 */ 3352 static inline u64 irq_time_read(int cpu) 3353 { 3354 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3355 unsigned int seq; 3356 u64 total; 3357 3358 do { 3359 seq = __u64_stats_fetch_begin(&irqtime->sync); 3360 total = irqtime->total; 3361 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3362 3363 return total; 3364 } 3365 3366 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3367 3368 static inline int irqtime_enabled(void) 3369 { 3370 return 0; 3371 } 3372 3373 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3374 3375 #ifdef CONFIG_CPU_FREQ 3376 3377 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3378 3379 /** 3380 * cpufreq_update_util - Take a note about CPU utilization changes. 3381 * @rq: Runqueue to carry out the update for. 3382 * @flags: Update reason flags. 3383 * 3384 * This function is called by the scheduler on the CPU whose utilization is 3385 * being updated. 3386 * 3387 * It can only be called from RCU-sched read-side critical sections. 3388 * 3389 * The way cpufreq is currently arranged requires it to evaluate the CPU 3390 * performance state (frequency/voltage) on a regular basis to prevent it from 3391 * being stuck in a completely inadequate performance level for too long. 3392 * That is not guaranteed to happen if the updates are only triggered from CFS 3393 * and DL, though, because they may not be coming in if only RT tasks are 3394 * active all the time (or there are RT tasks only). 3395 * 3396 * As a workaround for that issue, this function is called periodically by the 3397 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3398 * but that really is a band-aid. Going forward it should be replaced with 3399 * solutions targeted more specifically at RT tasks. 3400 */ 3401 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3402 { 3403 struct update_util_data *data; 3404 3405 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3406 cpu_of(rq))); 3407 if (data) 3408 data->func(data, rq_clock(rq), flags); 3409 } 3410 #else /* !CONFIG_CPU_FREQ: */ 3411 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3412 #endif /* !CONFIG_CPU_FREQ */ 3413 3414 #ifdef arch_scale_freq_capacity 3415 # ifndef arch_scale_freq_invariant 3416 # define arch_scale_freq_invariant() true 3417 # endif 3418 #else 3419 # define arch_scale_freq_invariant() false 3420 #endif 3421 3422 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3423 unsigned long *min, 3424 unsigned long *max); 3425 3426 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3427 unsigned long min, 3428 unsigned long max); 3429 3430 3431 /* 3432 * Verify the fitness of task @p to run on @cpu taking into account the 3433 * CPU original capacity and the runtime/deadline ratio of the task. 3434 * 3435 * The function will return true if the original capacity of @cpu is 3436 * greater than or equal to task's deadline density right shifted by 3437 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3438 */ 3439 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3440 { 3441 unsigned long cap = arch_scale_cpu_capacity(cpu); 3442 3443 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3444 } 3445 3446 static inline unsigned long cpu_bw_dl(struct rq *rq) 3447 { 3448 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3449 } 3450 3451 static inline unsigned long cpu_util_dl(struct rq *rq) 3452 { 3453 return READ_ONCE(rq->avg_dl.util_avg); 3454 } 3455 3456 3457 extern unsigned long cpu_util_cfs(int cpu); 3458 extern unsigned long cpu_util_cfs_boost(int cpu); 3459 3460 static inline unsigned long cpu_util_rt(struct rq *rq) 3461 { 3462 return READ_ONCE(rq->avg_rt.util_avg); 3463 } 3464 3465 #ifdef CONFIG_UCLAMP_TASK 3466 3467 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3468 3469 /* 3470 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3471 * by default in the fast path and only gets turned on once userspace performs 3472 * an operation that requires it. 3473 * 3474 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3475 * hence is active. 3476 */ 3477 static inline bool uclamp_is_used(void) 3478 { 3479 return static_branch_likely(&sched_uclamp_used); 3480 } 3481 3482 /* 3483 * Enabling static branches would get the cpus_read_lock(), 3484 * check whether uclamp_is_used before enable it to avoid always 3485 * calling cpus_read_lock(). Because we never disable this 3486 * static key once enable it. 3487 */ 3488 static inline void sched_uclamp_enable(void) 3489 { 3490 if (!uclamp_is_used()) 3491 static_branch_enable(&sched_uclamp_used); 3492 } 3493 3494 static inline unsigned long uclamp_rq_get(struct rq *rq, 3495 enum uclamp_id clamp_id) 3496 { 3497 return READ_ONCE(rq->uclamp[clamp_id].value); 3498 } 3499 3500 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3501 unsigned int value) 3502 { 3503 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3504 } 3505 3506 static inline bool uclamp_rq_is_idle(struct rq *rq) 3507 { 3508 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3509 } 3510 3511 /* Is the rq being capped/throttled by uclamp_max? */ 3512 static inline bool uclamp_rq_is_capped(struct rq *rq) 3513 { 3514 unsigned long rq_util; 3515 unsigned long max_util; 3516 3517 if (!uclamp_is_used()) 3518 return false; 3519 3520 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3521 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3522 3523 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3524 } 3525 3526 #define for_each_clamp_id(clamp_id) \ 3527 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3528 3529 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3530 3531 3532 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3533 { 3534 if (clamp_id == UCLAMP_MIN) 3535 return 0; 3536 return SCHED_CAPACITY_SCALE; 3537 } 3538 3539 /* Integer rounded range for each bucket */ 3540 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3541 3542 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3543 { 3544 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3545 } 3546 3547 static inline void 3548 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3549 { 3550 uc_se->value = value; 3551 uc_se->bucket_id = uclamp_bucket_id(value); 3552 uc_se->user_defined = user_defined; 3553 } 3554 3555 #else /* !CONFIG_UCLAMP_TASK: */ 3556 3557 static inline unsigned long 3558 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3559 { 3560 if (clamp_id == UCLAMP_MIN) 3561 return 0; 3562 3563 return SCHED_CAPACITY_SCALE; 3564 } 3565 3566 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3567 3568 static inline bool uclamp_is_used(void) 3569 { 3570 return false; 3571 } 3572 3573 static inline void sched_uclamp_enable(void) {} 3574 3575 static inline unsigned long 3576 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3577 { 3578 if (clamp_id == UCLAMP_MIN) 3579 return 0; 3580 3581 return SCHED_CAPACITY_SCALE; 3582 } 3583 3584 static inline void 3585 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3586 { 3587 } 3588 3589 static inline bool uclamp_rq_is_idle(struct rq *rq) 3590 { 3591 return false; 3592 } 3593 3594 #endif /* !CONFIG_UCLAMP_TASK */ 3595 3596 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3597 3598 static inline unsigned long cpu_util_irq(struct rq *rq) 3599 { 3600 return READ_ONCE(rq->avg_irq.util_avg); 3601 } 3602 3603 static inline 3604 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3605 { 3606 util *= (max - irq); 3607 util /= max; 3608 3609 return util; 3610 3611 } 3612 3613 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3614 3615 static inline unsigned long cpu_util_irq(struct rq *rq) 3616 { 3617 return 0; 3618 } 3619 3620 static inline 3621 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3622 { 3623 return util; 3624 } 3625 3626 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3627 3628 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3629 3630 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3631 3632 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3633 3634 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3635 3636 static inline bool sched_energy_enabled(void) 3637 { 3638 return static_branch_unlikely(&sched_energy_present); 3639 } 3640 3641 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3642 3643 #define perf_domain_span(pd) NULL 3644 3645 static inline bool sched_energy_enabled(void) { return false; } 3646 3647 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3648 3649 #ifdef CONFIG_MEMBARRIER 3650 3651 /* 3652 * The scheduler provides memory barriers required by membarrier between: 3653 * - prior user-space memory accesses and store to rq->membarrier_state, 3654 * - store to rq->membarrier_state and following user-space memory accesses. 3655 * In the same way it provides those guarantees around store to rq->curr. 3656 */ 3657 static inline void membarrier_switch_mm(struct rq *rq, 3658 struct mm_struct *prev_mm, 3659 struct mm_struct *next_mm) 3660 { 3661 int membarrier_state; 3662 3663 if (prev_mm == next_mm) 3664 return; 3665 3666 membarrier_state = atomic_read(&next_mm->membarrier_state); 3667 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3668 return; 3669 3670 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3671 } 3672 3673 #else /* !CONFIG_MEMBARRIER: */ 3674 3675 static inline void membarrier_switch_mm(struct rq *rq, 3676 struct mm_struct *prev_mm, 3677 struct mm_struct *next_mm) 3678 { 3679 } 3680 3681 #endif /* !CONFIG_MEMBARRIER */ 3682 3683 static inline bool is_per_cpu_kthread(struct task_struct *p) 3684 { 3685 if (!(p->flags & PF_KTHREAD)) 3686 return false; 3687 3688 if (p->nr_cpus_allowed != 1) 3689 return false; 3690 3691 return true; 3692 } 3693 3694 extern void swake_up_all_locked(struct swait_queue_head *q); 3695 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3696 3697 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3698 3699 #ifdef CONFIG_PREEMPT_DYNAMIC 3700 extern int preempt_dynamic_mode; 3701 extern int sched_dynamic_mode(const char *str); 3702 extern void sched_dynamic_update(int mode); 3703 #endif 3704 extern const char *preempt_modes[]; 3705 3706 #ifdef CONFIG_SCHED_MM_CID 3707 3708 static __always_inline bool cid_on_cpu(unsigned int cid) 3709 { 3710 return cid & MM_CID_ONCPU; 3711 } 3712 3713 static __always_inline bool cid_in_transit(unsigned int cid) 3714 { 3715 return cid & MM_CID_TRANSIT; 3716 } 3717 3718 static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid) 3719 { 3720 return cid & ~MM_CID_ONCPU; 3721 } 3722 3723 static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid) 3724 { 3725 return cid | MM_CID_ONCPU; 3726 } 3727 3728 static __always_inline unsigned int cid_to_transit_cid(unsigned int cid) 3729 { 3730 return cid | MM_CID_TRANSIT; 3731 } 3732 3733 static __always_inline unsigned int cid_from_transit_cid(unsigned int cid) 3734 { 3735 return cid & ~MM_CID_TRANSIT; 3736 } 3737 3738 static __always_inline bool cid_on_task(unsigned int cid) 3739 { 3740 /* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */ 3741 return cid < MM_CID_TRANSIT; 3742 } 3743 3744 static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid) 3745 { 3746 clear_bit(cid, mm_cidmask(mm)); 3747 } 3748 3749 static __always_inline void mm_unset_cid_on_task(struct task_struct *t) 3750 { 3751 unsigned int cid = t->mm_cid.cid; 3752 3753 t->mm_cid.cid = MM_CID_UNSET; 3754 if (cid_on_task(cid)) 3755 mm_drop_cid(t->mm, cid); 3756 } 3757 3758 static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp) 3759 { 3760 /* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */ 3761 pcp->cid = cpu_cid_to_cid(pcp->cid); 3762 mm_drop_cid(mm, pcp->cid); 3763 } 3764 3765 static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids) 3766 { 3767 unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids); 3768 3769 if (cid >= max_cids) 3770 return MM_CID_UNSET; 3771 if (test_and_set_bit(cid, mm_cidmask(mm))) 3772 return MM_CID_UNSET; 3773 return cid; 3774 } 3775 3776 static inline unsigned int mm_get_cid(struct mm_struct *mm) 3777 { 3778 unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids)); 3779 3780 while (cid == MM_CID_UNSET) { 3781 cpu_relax(); 3782 cid = __mm_get_cid(mm, num_possible_cpus()); 3783 } 3784 return cid; 3785 } 3786 3787 static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid, 3788 unsigned int max_cids) 3789 { 3790 unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid); 3791 3792 /* Is it in the optimal CID space? */ 3793 if (likely(cid < max_cids)) 3794 return orig_cid; 3795 3796 /* Try to find one in the optimal space. Otherwise keep the provided. */ 3797 new_cid = __mm_get_cid(mm, max_cids); 3798 if (new_cid != MM_CID_UNSET) { 3799 mm_drop_cid(mm, cid); 3800 /* Preserve the ONCPU mode of the original CID */ 3801 return new_cid | (orig_cid & MM_CID_ONCPU); 3802 } 3803 return orig_cid; 3804 } 3805 3806 static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid) 3807 { 3808 if (t->mm_cid.cid != cid) { 3809 t->mm_cid.cid = cid; 3810 rseq_sched_set_ids_changed(t); 3811 } 3812 } 3813 3814 static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid) 3815 { 3816 __this_cpu_write(mm->mm_cid.pcpu->cid, cid); 3817 } 3818 3819 static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid) 3820 { 3821 unsigned int max_cids, tcid = t->mm_cid.cid; 3822 struct mm_struct *mm = t->mm; 3823 3824 max_cids = READ_ONCE(mm->mm_cid.max_cids); 3825 /* Optimize for the common case where both have the ONCPU bit set */ 3826 if (likely(cid_on_cpu(cpu_cid & tcid))) { 3827 if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) { 3828 mm_cid_update_task_cid(t, cpu_cid); 3829 return; 3830 } 3831 /* Try to converge into the optimal CID space */ 3832 cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids); 3833 } else { 3834 /* Hand over or drop the task owned CID */ 3835 if (cid_on_task(tcid)) { 3836 if (cid_on_cpu(cpu_cid)) 3837 mm_unset_cid_on_task(t); 3838 else 3839 cpu_cid = cid_to_cpu_cid(tcid); 3840 } 3841 /* Still nothing, allocate a new one */ 3842 if (!cid_on_cpu(cpu_cid)) 3843 cpu_cid = cid_to_cpu_cid(mm_get_cid(mm)); 3844 } 3845 mm_cid_update_pcpu_cid(mm, cpu_cid); 3846 mm_cid_update_task_cid(t, cpu_cid); 3847 } 3848 3849 static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid) 3850 { 3851 unsigned int max_cids, tcid = t->mm_cid.cid; 3852 struct mm_struct *mm = t->mm; 3853 3854 max_cids = READ_ONCE(mm->mm_cid.max_cids); 3855 /* Optimize for the common case, where both have the ONCPU bit clear */ 3856 if (likely(cid_on_task(tcid | cpu_cid))) { 3857 if (likely(tcid < max_cids)) { 3858 mm_cid_update_pcpu_cid(mm, tcid); 3859 return; 3860 } 3861 /* Try to converge into the optimal CID space */ 3862 tcid = mm_cid_converge(mm, tcid, max_cids); 3863 } else { 3864 /* Hand over or drop the CPU owned CID */ 3865 if (cid_on_cpu(cpu_cid)) { 3866 if (cid_on_task(tcid)) 3867 mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu)); 3868 else 3869 tcid = cpu_cid_to_cid(cpu_cid); 3870 } 3871 /* Still nothing, allocate a new one */ 3872 if (!cid_on_task(tcid)) 3873 tcid = mm_get_cid(mm); 3874 /* Set the transition mode flag if required */ 3875 tcid |= READ_ONCE(mm->mm_cid.transit); 3876 } 3877 mm_cid_update_pcpu_cid(mm, tcid); 3878 mm_cid_update_task_cid(t, tcid); 3879 } 3880 3881 static __always_inline void mm_cid_schedin(struct task_struct *next) 3882 { 3883 struct mm_struct *mm = next->mm; 3884 unsigned int cpu_cid; 3885 3886 if (!next->mm_cid.active) 3887 return; 3888 3889 cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid); 3890 if (likely(!READ_ONCE(mm->mm_cid.percpu))) 3891 mm_cid_from_task(next, cpu_cid); 3892 else 3893 mm_cid_from_cpu(next, cpu_cid); 3894 } 3895 3896 static __always_inline void mm_cid_schedout(struct task_struct *prev) 3897 { 3898 /* During mode transitions CIDs are temporary and need to be dropped */ 3899 if (likely(!cid_in_transit(prev->mm_cid.cid))) 3900 return; 3901 3902 mm_drop_cid(prev->mm, cid_from_transit_cid(prev->mm_cid.cid)); 3903 prev->mm_cid.cid = MM_CID_UNSET; 3904 } 3905 3906 static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) 3907 { 3908 mm_cid_schedout(prev); 3909 mm_cid_schedin(next); 3910 } 3911 3912 #else /* !CONFIG_SCHED_MM_CID: */ 3913 static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { } 3914 #endif /* !CONFIG_SCHED_MM_CID */ 3915 3916 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3917 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3918 static inline 3919 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3920 { 3921 lockdep_assert_rq_held(src_rq); 3922 lockdep_assert_rq_held(dst_rq); 3923 3924 deactivate_task(src_rq, task, 0); 3925 set_task_cpu(task, dst_rq->cpu); 3926 activate_task(dst_rq, task, 0); 3927 } 3928 3929 static inline 3930 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3931 { 3932 if (!task_on_cpu(rq, p) && 3933 cpumask_test_cpu(cpu, &p->cpus_mask)) 3934 return true; 3935 3936 return false; 3937 } 3938 3939 #ifdef CONFIG_RT_MUTEXES 3940 3941 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3942 { 3943 if (pi_task) 3944 prio = min(prio, pi_task->prio); 3945 3946 return prio; 3947 } 3948 3949 static inline int rt_effective_prio(struct task_struct *p, int prio) 3950 { 3951 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3952 3953 return __rt_effective_prio(pi_task, prio); 3954 } 3955 3956 #else /* !CONFIG_RT_MUTEXES: */ 3957 3958 static inline int rt_effective_prio(struct task_struct *p, int prio) 3959 { 3960 return prio; 3961 } 3962 3963 #endif /* !CONFIG_RT_MUTEXES */ 3964 3965 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3966 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3967 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3968 extern void set_load_weight(struct task_struct *p, bool update_load); 3969 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3970 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3971 3972 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3973 3974 extern void __balance_callbacks(struct rq *rq, struct rq_flags *rf); 3975 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3976 3977 /* 3978 * The 'sched_change' pattern is the safe, easy and slow way of changing a 3979 * task's scheduling properties. It dequeues a task, such that the scheduler 3980 * is fully unaware of it; at which point its properties can be modified; 3981 * after which it is enqueued again. 3982 * 3983 * Typically this must be called while holding task_rq_lock, since most/all 3984 * properties are serialized under those locks. There is currently one 3985 * exception to this rule in sched/ext which only holds rq->lock. 3986 */ 3987 3988 /* 3989 * This structure is a temporary, used to preserve/convey the queueing state 3990 * of the task between sched_change_begin() and sched_change_end(). Ensuring 3991 * the task's queueing state is idempotent across the operation. 3992 */ 3993 struct sched_change_ctx { 3994 u64 prio; 3995 struct task_struct *p; 3996 int flags; 3997 bool queued; 3998 bool running; 3999 }; 4000 4001 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags); 4002 void sched_change_end(struct sched_change_ctx *ctx); 4003 4004 DEFINE_CLASS(sched_change, struct sched_change_ctx *, 4005 sched_change_end(_T), 4006 sched_change_begin(p, flags), 4007 struct task_struct *p, unsigned int flags) 4008 4009 DEFINE_CLASS_IS_UNCONDITIONAL(sched_change) 4010 4011 #include "ext.h" 4012 4013 #endif /* _KERNEL_SCHED_SCHED_H */ 4014