xref: /linux/include/linux/sched.h (revision 36ae1c45b2cede43ab2fc679b450060bbf119f1b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscall_user_dispatch_types.h>
39 #include <linux/mm_types_task.h>
40 #include <linux/netdevice_xmit.h>
41 #include <linux/task_io_accounting.h>
42 #include <linux/posix-timers_types.h>
43 #include <linux/restart_block.h>
44 #include <linux/rseq_types.h>
45 #include <linux/seqlock_types.h>
46 #include <linux/kcsan.h>
47 #include <linux/rv.h>
48 #include <linux/uidgid_types.h>
49 #include <linux/tracepoint-defs.h>
50 #include <linux/unwind_deferred_types.h>
51 #include <asm/kmap_size.h>
52 #ifndef COMPILE_OFFSETS
53 #include <generated/rq-offsets.h>
54 #endif
55 
56 /* task_struct member predeclarations (sorted alphabetically): */
57 struct audit_context;
58 struct bio_list;
59 struct blk_plug;
60 struct bpf_local_storage;
61 struct bpf_run_ctx;
62 struct bpf_net_context;
63 struct capture_control;
64 struct cfs_rq;
65 struct fs_struct;
66 struct futex_pi_state;
67 struct io_context;
68 struct io_uring_task;
69 struct mempolicy;
70 struct nameidata;
71 struct nsproxy;
72 struct perf_event_context;
73 struct perf_ctx_data;
74 struct pid_namespace;
75 struct pipe_inode_info;
76 struct rcu_node;
77 struct reclaim_state;
78 struct robust_list_head;
79 struct root_domain;
80 struct rq;
81 struct sched_attr;
82 struct sched_dl_entity;
83 struct seq_file;
84 struct sighand_struct;
85 struct signal_struct;
86 struct task_delay_info;
87 struct task_group;
88 struct task_struct;
89 struct user_event_mm;
90 
91 #include <linux/sched/ext.h>
92 
93 /*
94  * Task state bitmask. NOTE! These bits are also
95  * encoded in fs/proc/array.c: get_task_state().
96  *
97  * We have two separate sets of flags: task->__state
98  * is about runnability, while task->exit_state are
99  * about the task exiting. Confusing, but this way
100  * modifying one set can't modify the other one by
101  * mistake.
102  */
103 
104 /* Used in tsk->__state: */
105 #define TASK_RUNNING			0x00000000
106 #define TASK_INTERRUPTIBLE		0x00000001
107 #define TASK_UNINTERRUPTIBLE		0x00000002
108 #define __TASK_STOPPED			0x00000004
109 #define __TASK_TRACED			0x00000008
110 /* Used in tsk->exit_state: */
111 #define EXIT_DEAD			0x00000010
112 #define EXIT_ZOMBIE			0x00000020
113 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
114 /* Used in tsk->__state again: */
115 #define TASK_PARKED			0x00000040
116 #define TASK_DEAD			0x00000080
117 #define TASK_WAKEKILL			0x00000100
118 #define TASK_WAKING			0x00000200
119 #define TASK_NOLOAD			0x00000400
120 #define TASK_NEW			0x00000800
121 #define TASK_RTLOCK_WAIT		0x00001000
122 #define TASK_FREEZABLE			0x00002000
123 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
124 #define TASK_FROZEN			0x00008000
125 #define TASK_STATE_MAX			0x00010000
126 
127 #define TASK_ANY			(TASK_STATE_MAX-1)
128 
129 /*
130  * DO NOT ADD ANY NEW USERS !
131  */
132 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
133 
134 /* Convenience macros for the sake of set_current_state: */
135 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
136 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
137 #define TASK_TRACED			__TASK_TRACED
138 
139 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
140 
141 /* Convenience macros for the sake of wake_up(): */
142 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
143 
144 /* get_task_state(): */
145 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
146 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
147 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
148 					 TASK_PARKED)
149 
150 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
151 
152 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
153 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
154 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
155 
156 /*
157  * Special states are those that do not use the normal wait-loop pattern. See
158  * the comment with set_special_state().
159  */
160 #define is_special_task_state(state)					\
161 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
162 		    TASK_DEAD | TASK_FROZEN))
163 
164 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
165 # define debug_normal_state_change(state_value)				\
166 	do {								\
167 		WARN_ON_ONCE(is_special_task_state(state_value));	\
168 		current->task_state_change = _THIS_IP_;			\
169 	} while (0)
170 
171 # define debug_special_state_change(state_value)			\
172 	do {								\
173 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
174 		current->task_state_change = _THIS_IP_;			\
175 	} while (0)
176 
177 # define debug_rtlock_wait_set_state()					\
178 	do {								 \
179 		current->saved_state_change = current->task_state_change;\
180 		current->task_state_change = _THIS_IP_;			 \
181 	} while (0)
182 
183 # define debug_rtlock_wait_restore_state()				\
184 	do {								 \
185 		current->task_state_change = current->saved_state_change;\
186 	} while (0)
187 
188 #else
189 # define debug_normal_state_change(cond)	do { } while (0)
190 # define debug_special_state_change(cond)	do { } while (0)
191 # define debug_rtlock_wait_set_state()		do { } while (0)
192 # define debug_rtlock_wait_restore_state()	do { } while (0)
193 #endif
194 
195 #define trace_set_current_state(state_value)                     \
196 	do {                                                     \
197 		if (tracepoint_enabled(sched_set_state_tp))      \
198 			__trace_set_current_state(state_value); \
199 	} while (0)
200 
201 /*
202  * set_current_state() includes a barrier so that the write of current->__state
203  * is correctly serialised wrt the caller's subsequent test of whether to
204  * actually sleep:
205  *
206  *   for (;;) {
207  *	set_current_state(TASK_UNINTERRUPTIBLE);
208  *	if (CONDITION)
209  *	   break;
210  *
211  *	schedule();
212  *   }
213  *   __set_current_state(TASK_RUNNING);
214  *
215  * If the caller does not need such serialisation (because, for instance, the
216  * CONDITION test and condition change and wakeup are under the same lock) then
217  * use __set_current_state().
218  *
219  * The above is typically ordered against the wakeup, which does:
220  *
221  *   CONDITION = 1;
222  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
223  *
224  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
225  * accessing p->__state.
226  *
227  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
228  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
229  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
230  *
231  * However, with slightly different timing the wakeup TASK_RUNNING store can
232  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
233  * a problem either because that will result in one extra go around the loop
234  * and our @cond test will save the day.
235  *
236  * Also see the comments of try_to_wake_up().
237  */
238 #define __set_current_state(state_value)				\
239 	do {								\
240 		debug_normal_state_change((state_value));		\
241 		trace_set_current_state(state_value);			\
242 		WRITE_ONCE(current->__state, (state_value));		\
243 	} while (0)
244 
245 #define set_current_state(state_value)					\
246 	do {								\
247 		debug_normal_state_change((state_value));		\
248 		trace_set_current_state(state_value);			\
249 		smp_store_mb(current->__state, (state_value));		\
250 	} while (0)
251 
252 /*
253  * set_special_state() should be used for those states when the blocking task
254  * can not use the regular condition based wait-loop. In that case we must
255  * serialize against wakeups such that any possible in-flight TASK_RUNNING
256  * stores will not collide with our state change.
257  */
258 #define set_special_state(state_value)					\
259 	do {								\
260 		unsigned long flags; /* may shadow */			\
261 									\
262 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
263 		debug_special_state_change((state_value));		\
264 		trace_set_current_state(state_value);			\
265 		WRITE_ONCE(current->__state, (state_value));		\
266 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
267 	} while (0)
268 
269 /*
270  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
271  *
272  * RT's spin/rwlock substitutions are state preserving. The state of the
273  * task when blocking on the lock is saved in task_struct::saved_state and
274  * restored after the lock has been acquired.  These operations are
275  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
276  * lock related wakeups while the task is blocked on the lock are
277  * redirected to operate on task_struct::saved_state to ensure that these
278  * are not dropped. On restore task_struct::saved_state is set to
279  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
280  *
281  * The lock operation looks like this:
282  *
283  *	current_save_and_set_rtlock_wait_state();
284  *	for (;;) {
285  *		if (try_lock())
286  *			break;
287  *		raw_spin_unlock_irq(&lock->wait_lock);
288  *		schedule_rtlock();
289  *		raw_spin_lock_irq(&lock->wait_lock);
290  *		set_current_state(TASK_RTLOCK_WAIT);
291  *	}
292  *	current_restore_rtlock_saved_state();
293  */
294 #define current_save_and_set_rtlock_wait_state()			\
295 	do {								\
296 		lockdep_assert_irqs_disabled();				\
297 		raw_spin_lock(&current->pi_lock);			\
298 		current->saved_state = current->__state;		\
299 		debug_rtlock_wait_set_state();				\
300 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
301 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
302 		raw_spin_unlock(&current->pi_lock);			\
303 	} while (0);
304 
305 #define current_restore_rtlock_saved_state()				\
306 	do {								\
307 		lockdep_assert_irqs_disabled();				\
308 		raw_spin_lock(&current->pi_lock);			\
309 		debug_rtlock_wait_restore_state();			\
310 		trace_set_current_state(current->saved_state);		\
311 		WRITE_ONCE(current->__state, current->saved_state);	\
312 		current->saved_state = TASK_RUNNING;			\
313 		raw_spin_unlock(&current->pi_lock);			\
314 	} while (0);
315 
316 #define get_current_state()	READ_ONCE(current->__state)
317 
318 /*
319  * Define the task command name length as enum, then it can be visible to
320  * BPF programs.
321  */
322 enum {
323 	TASK_COMM_LEN = 16,
324 };
325 
326 extern void sched_tick(void);
327 
328 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
329 
330 extern long schedule_timeout(long timeout);
331 extern long schedule_timeout_interruptible(long timeout);
332 extern long schedule_timeout_killable(long timeout);
333 extern long schedule_timeout_uninterruptible(long timeout);
334 extern long schedule_timeout_idle(long timeout);
335 asmlinkage void schedule(void);
336 extern void schedule_preempt_disabled(void);
337 asmlinkage void preempt_schedule_irq(void);
338 #ifdef CONFIG_PREEMPT_RT
339  extern void schedule_rtlock(void);
340 #endif
341 
342 extern int __must_check io_schedule_prepare(void);
343 extern void io_schedule_finish(int token);
344 extern long io_schedule_timeout(long timeout);
345 extern void io_schedule(void);
346 
347 /* wrapper functions to trace from this header file */
348 DECLARE_TRACEPOINT(sched_set_state_tp);
349 extern void __trace_set_current_state(int state_value);
350 DECLARE_TRACEPOINT(sched_set_need_resched_tp);
351 extern void __trace_set_need_resched(struct task_struct *curr, int tif);
352 
353 /**
354  * struct prev_cputime - snapshot of system and user cputime
355  * @utime: time spent in user mode
356  * @stime: time spent in system mode
357  * @lock: protects the above two fields
358  *
359  * Stores previous user/system time values such that we can guarantee
360  * monotonicity.
361  */
362 struct prev_cputime {
363 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
364 	u64				utime;
365 	u64				stime;
366 	raw_spinlock_t			lock;
367 #endif
368 };
369 
370 enum vtime_state {
371 	/* Task is sleeping or running in a CPU with VTIME inactive: */
372 	VTIME_INACTIVE = 0,
373 	/* Task is idle */
374 	VTIME_IDLE,
375 	/* Task runs in kernelspace in a CPU with VTIME active: */
376 	VTIME_SYS,
377 	/* Task runs in userspace in a CPU with VTIME active: */
378 	VTIME_USER,
379 	/* Task runs as guests in a CPU with VTIME active: */
380 	VTIME_GUEST,
381 };
382 
383 struct vtime {
384 	seqcount_t		seqcount;
385 	unsigned long long	starttime;
386 	enum vtime_state	state;
387 	unsigned int		cpu;
388 	u64			utime;
389 	u64			stime;
390 	u64			gtime;
391 };
392 
393 /*
394  * Utilization clamp constraints.
395  * @UCLAMP_MIN:	Minimum utilization
396  * @UCLAMP_MAX:	Maximum utilization
397  * @UCLAMP_CNT:	Utilization clamp constraints count
398  */
399 enum uclamp_id {
400 	UCLAMP_MIN = 0,
401 	UCLAMP_MAX,
402 	UCLAMP_CNT
403 };
404 
405 extern struct root_domain def_root_domain;
406 extern struct mutex sched_domains_mutex;
407 extern void sched_domains_mutex_lock(void);
408 extern void sched_domains_mutex_unlock(void);
409 
410 struct sched_param {
411 	int sched_priority;
412 };
413 
414 struct sched_info {
415 #ifdef CONFIG_SCHED_INFO
416 	/* Cumulative counters: */
417 
418 	/* # of times we have run on this CPU: */
419 	unsigned long			pcount;
420 
421 	/* Time spent waiting on a runqueue: */
422 	unsigned long long		run_delay;
423 
424 	/* Max time spent waiting on a runqueue: */
425 	unsigned long long		max_run_delay;
426 
427 	/* Min time spent waiting on a runqueue: */
428 	unsigned long long		min_run_delay;
429 
430 	/* Timestamps: */
431 
432 	/* When did we last run on a CPU? */
433 	unsigned long long		last_arrival;
434 
435 	/* When were we last queued to run? */
436 	unsigned long long		last_queued;
437 
438 #endif /* CONFIG_SCHED_INFO */
439 };
440 
441 /*
442  * Integer metrics need fixed point arithmetic, e.g., sched/fair
443  * has a few: load, load_avg, util_avg, freq, and capacity.
444  *
445  * We define a basic fixed point arithmetic range, and then formalize
446  * all these metrics based on that basic range.
447  */
448 # define SCHED_FIXEDPOINT_SHIFT		10
449 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
450 
451 /* Increase resolution of cpu_capacity calculations */
452 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
453 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
454 
455 struct load_weight {
456 	unsigned long			weight;
457 	u32				inv_weight;
458 };
459 
460 /*
461  * The load/runnable/util_avg accumulates an infinite geometric series
462  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
463  *
464  * [load_avg definition]
465  *
466  *   load_avg = runnable% * scale_load_down(load)
467  *
468  * [runnable_avg definition]
469  *
470  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
471  *
472  * [util_avg definition]
473  *
474  *   util_avg = running% * SCHED_CAPACITY_SCALE
475  *
476  * where runnable% is the time ratio that a sched_entity is runnable and
477  * running% the time ratio that a sched_entity is running.
478  *
479  * For cfs_rq, they are the aggregated values of all runnable and blocked
480  * sched_entities.
481  *
482  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
483  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
484  * for computing those signals (see update_rq_clock_pelt())
485  *
486  * N.B., the above ratios (runnable% and running%) themselves are in the
487  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
488  * to as large a range as necessary. This is for example reflected by
489  * util_avg's SCHED_CAPACITY_SCALE.
490  *
491  * [Overflow issue]
492  *
493  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
494  * with the highest load (=88761), always runnable on a single cfs_rq,
495  * and should not overflow as the number already hits PID_MAX_LIMIT.
496  *
497  * For all other cases (including 32-bit kernels), struct load_weight's
498  * weight will overflow first before we do, because:
499  *
500  *    Max(load_avg) <= Max(load.weight)
501  *
502  * Then it is the load_weight's responsibility to consider overflow
503  * issues.
504  */
505 struct sched_avg {
506 	u64				last_update_time;
507 	u64				load_sum;
508 	u64				runnable_sum;
509 	u32				util_sum;
510 	u32				period_contrib;
511 	unsigned long			load_avg;
512 	unsigned long			runnable_avg;
513 	unsigned long			util_avg;
514 	unsigned int			util_est;
515 } ____cacheline_aligned;
516 
517 /*
518  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
519  * updates. When a task is dequeued, its util_est should not be updated if its
520  * util_avg has not been updated in the meantime.
521  * This information is mapped into the MSB bit of util_est at dequeue time.
522  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
523  * it is safe to use MSB.
524  */
525 #define UTIL_EST_WEIGHT_SHIFT		2
526 #define UTIL_AVG_UNCHANGED		0x80000000
527 
528 struct sched_statistics {
529 #ifdef CONFIG_SCHEDSTATS
530 	u64				wait_start;
531 	u64				wait_max;
532 	u64				wait_count;
533 	u64				wait_sum;
534 	u64				iowait_count;
535 	u64				iowait_sum;
536 
537 	u64				sleep_start;
538 	u64				sleep_max;
539 	s64				sum_sleep_runtime;
540 
541 	u64				block_start;
542 	u64				block_max;
543 	s64				sum_block_runtime;
544 
545 	s64				exec_max;
546 	u64				slice_max;
547 
548 	u64				nr_migrations_cold;
549 	u64				nr_failed_migrations_affine;
550 	u64				nr_failed_migrations_running;
551 	u64				nr_failed_migrations_hot;
552 	u64				nr_forced_migrations;
553 
554 	u64				nr_wakeups;
555 	u64				nr_wakeups_sync;
556 	u64				nr_wakeups_migrate;
557 	u64				nr_wakeups_local;
558 	u64				nr_wakeups_remote;
559 	u64				nr_wakeups_affine;
560 	u64				nr_wakeups_affine_attempts;
561 	u64				nr_wakeups_passive;
562 	u64				nr_wakeups_idle;
563 
564 #ifdef CONFIG_SCHED_CORE
565 	u64				core_forceidle_sum;
566 #endif
567 #endif /* CONFIG_SCHEDSTATS */
568 } ____cacheline_aligned;
569 
570 struct sched_entity {
571 	/* For load-balancing: */
572 	struct load_weight		load;
573 	struct rb_node			run_node;
574 	u64				deadline;
575 	u64				min_vruntime;
576 	u64				min_slice;
577 
578 	struct list_head		group_node;
579 	unsigned char			on_rq;
580 	unsigned char			sched_delayed;
581 	unsigned char			rel_deadline;
582 	unsigned char			custom_slice;
583 					/* hole */
584 
585 	u64				exec_start;
586 	u64				sum_exec_runtime;
587 	u64				prev_sum_exec_runtime;
588 	u64				vruntime;
589 	/* Approximated virtual lag: */
590 	s64				vlag;
591 	/* 'Protected' deadline, to give out minimum quantums: */
592 	u64				vprot;
593 	u64				slice;
594 
595 	u64				nr_migrations;
596 
597 #ifdef CONFIG_FAIR_GROUP_SCHED
598 	int				depth;
599 	struct sched_entity		*parent;
600 	/* rq on which this entity is (to be) queued: */
601 	struct cfs_rq			*cfs_rq;
602 	/* rq "owned" by this entity/group: */
603 	struct cfs_rq			*my_q;
604 	/* cached value of my_q->h_nr_running */
605 	unsigned long			runnable_weight;
606 #endif
607 
608 	/*
609 	 * Per entity load average tracking.
610 	 *
611 	 * Put into separate cache line so it does not
612 	 * collide with read-mostly values above.
613 	 */
614 	struct sched_avg		avg;
615 };
616 
617 struct sched_rt_entity {
618 	struct list_head		run_list;
619 	unsigned long			timeout;
620 	unsigned long			watchdog_stamp;
621 	unsigned int			time_slice;
622 	unsigned short			on_rq;
623 	unsigned short			on_list;
624 
625 	struct sched_rt_entity		*back;
626 #ifdef CONFIG_RT_GROUP_SCHED
627 	struct sched_rt_entity		*parent;
628 	/* rq on which this entity is (to be) queued: */
629 	struct rt_rq			*rt_rq;
630 	/* rq "owned" by this entity/group: */
631 	struct rt_rq			*my_q;
632 #endif
633 } __randomize_layout;
634 
635 struct rq_flags;
636 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *, struct rq_flags *rf);
637 
638 struct sched_dl_entity {
639 	struct rb_node			rb_node;
640 
641 	/*
642 	 * Original scheduling parameters. Copied here from sched_attr
643 	 * during sched_setattr(), they will remain the same until
644 	 * the next sched_setattr().
645 	 */
646 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
647 	u64				dl_deadline;	/* Relative deadline of each instance	*/
648 	u64				dl_period;	/* Separation of two instances (period) */
649 	u64				dl_bw;		/* dl_runtime / dl_period		*/
650 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
651 
652 	/*
653 	 * Actual scheduling parameters. Initialized with the values above,
654 	 * they are continuously updated during task execution. Note that
655 	 * the remaining runtime could be < 0 in case we are in overrun.
656 	 */
657 	s64				runtime;	/* Remaining runtime for this instance	*/
658 	u64				deadline;	/* Absolute deadline for this instance	*/
659 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
660 
661 	/*
662 	 * Some bool flags:
663 	 *
664 	 * @dl_throttled tells if we exhausted the runtime. If so, the
665 	 * task has to wait for a replenishment to be performed at the
666 	 * next firing of dl_timer.
667 	 *
668 	 * @dl_yielded tells if task gave up the CPU before consuming
669 	 * all its available runtime during the last job.
670 	 *
671 	 * @dl_non_contending tells if the task is inactive while still
672 	 * contributing to the active utilization. In other words, it
673 	 * indicates if the inactive timer has been armed and its handler
674 	 * has not been executed yet. This flag is useful to avoid race
675 	 * conditions between the inactive timer handler and the wakeup
676 	 * code.
677 	 *
678 	 * @dl_overrun tells if the task asked to be informed about runtime
679 	 * overruns.
680 	 *
681 	 * @dl_server tells if this is a server entity.
682 	 *
683 	 * @dl_server_active tells if the dlserver is active(started).
684 	 * dlserver is started on first cfs enqueue on an idle runqueue
685 	 * and is stopped when a dequeue results in 0 cfs tasks on the
686 	 * runqueue. In other words, dlserver is active only when cpu's
687 	 * runqueue has atleast one cfs task.
688 	 *
689 	 * @dl_defer tells if this is a deferred or regular server. For
690 	 * now only defer server exists.
691 	 *
692 	 * @dl_defer_armed tells if the deferrable server is waiting
693 	 * for the replenishment timer to activate it.
694 	 *
695 	 * @dl_defer_running tells if the deferrable server is actually
696 	 * running, skipping the defer phase.
697 	 *
698 	 * @dl_defer_idle tracks idle state
699 	 */
700 	unsigned int			dl_throttled      : 1;
701 	unsigned int			dl_yielded        : 1;
702 	unsigned int			dl_non_contending : 1;
703 	unsigned int			dl_overrun	  : 1;
704 	unsigned int			dl_server         : 1;
705 	unsigned int			dl_server_active  : 1;
706 	unsigned int			dl_defer	  : 1;
707 	unsigned int			dl_defer_armed	  : 1;
708 	unsigned int			dl_defer_running  : 1;
709 	unsigned int			dl_defer_idle     : 1;
710 
711 	/*
712 	 * Bandwidth enforcement timer. Each -deadline task has its
713 	 * own bandwidth to be enforced, thus we need one timer per task.
714 	 */
715 	struct hrtimer			dl_timer;
716 
717 	/*
718 	 * Inactive timer, responsible for decreasing the active utilization
719 	 * at the "0-lag time". When a -deadline task blocks, it contributes
720 	 * to GRUB's active utilization until the "0-lag time", hence a
721 	 * timer is needed to decrease the active utilization at the correct
722 	 * time.
723 	 */
724 	struct hrtimer			inactive_timer;
725 
726 	/*
727 	 * Bits for DL-server functionality. Also see the comment near
728 	 * dl_server_update().
729 	 *
730 	 * @rq the runqueue this server is for
731 	 */
732 	struct rq			*rq;
733 	dl_server_pick_f		server_pick_task;
734 
735 #ifdef CONFIG_RT_MUTEXES
736 	/*
737 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
738 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
739 	 * to (the original one/itself).
740 	 */
741 	struct sched_dl_entity *pi_se;
742 #endif
743 };
744 
745 #ifdef CONFIG_UCLAMP_TASK
746 /* Number of utilization clamp buckets (shorter alias) */
747 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
748 
749 /*
750  * Utilization clamp for a scheduling entity
751  * @value:		clamp value "assigned" to a se
752  * @bucket_id:		bucket index corresponding to the "assigned" value
753  * @active:		the se is currently refcounted in a rq's bucket
754  * @user_defined:	the requested clamp value comes from user-space
755  *
756  * The bucket_id is the index of the clamp bucket matching the clamp value
757  * which is pre-computed and stored to avoid expensive integer divisions from
758  * the fast path.
759  *
760  * The active bit is set whenever a task has got an "effective" value assigned,
761  * which can be different from the clamp value "requested" from user-space.
762  * This allows to know a task is refcounted in the rq's bucket corresponding
763  * to the "effective" bucket_id.
764  *
765  * The user_defined bit is set whenever a task has got a task-specific clamp
766  * value requested from userspace, i.e. the system defaults apply to this task
767  * just as a restriction. This allows to relax default clamps when a less
768  * restrictive task-specific value has been requested, thus allowing to
769  * implement a "nice" semantic. For example, a task running with a 20%
770  * default boost can still drop its own boosting to 0%.
771  */
772 struct uclamp_se {
773 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
774 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
775 	unsigned int active		: 1;
776 	unsigned int user_defined	: 1;
777 };
778 #endif /* CONFIG_UCLAMP_TASK */
779 
780 union rcu_special {
781 	struct {
782 		u8			blocked;
783 		u8			need_qs;
784 		u8			exp_hint; /* Hint for performance. */
785 		u8			need_mb; /* Readers need smp_mb(). */
786 	} b; /* Bits. */
787 	u32 s; /* Set of bits. */
788 };
789 
790 enum perf_event_task_context {
791 	perf_invalid_context = -1,
792 	perf_hw_context = 0,
793 	perf_sw_context,
794 	perf_nr_task_contexts,
795 };
796 
797 /*
798  * Number of contexts where an event can trigger:
799  *      task, softirq, hardirq, nmi.
800  */
801 #define PERF_NR_CONTEXTS	4
802 
803 struct wake_q_node {
804 	struct wake_q_node *next;
805 };
806 
807 struct kmap_ctrl {
808 #ifdef CONFIG_KMAP_LOCAL
809 	int				idx;
810 	pte_t				pteval[KM_MAX_IDX];
811 #endif
812 };
813 
814 struct task_struct {
815 #ifdef CONFIG_THREAD_INFO_IN_TASK
816 	/*
817 	 * For reasons of header soup (see current_thread_info()), this
818 	 * must be the first element of task_struct.
819 	 */
820 	struct thread_info		thread_info;
821 #endif
822 	unsigned int			__state;
823 
824 	/* saved state for "spinlock sleepers" */
825 	unsigned int			saved_state;
826 
827 	/*
828 	 * This begins the randomizable portion of task_struct. Only
829 	 * scheduling-critical items should be added above here.
830 	 */
831 	randomized_struct_fields_start
832 
833 	void				*stack;
834 	refcount_t			usage;
835 	/* Per task flags (PF_*), defined further below: */
836 	unsigned int			flags;
837 	unsigned int			ptrace;
838 
839 #ifdef CONFIG_MEM_ALLOC_PROFILING
840 	struct alloc_tag		*alloc_tag;
841 #endif
842 
843 	int				on_cpu;
844 	struct __call_single_node	wake_entry;
845 	unsigned int			wakee_flips;
846 	unsigned long			wakee_flip_decay_ts;
847 	struct task_struct		*last_wakee;
848 
849 	/*
850 	 * recent_used_cpu is initially set as the last CPU used by a task
851 	 * that wakes affine another task. Waker/wakee relationships can
852 	 * push tasks around a CPU where each wakeup moves to the next one.
853 	 * Tracking a recently used CPU allows a quick search for a recently
854 	 * used CPU that may be idle.
855 	 */
856 	int				recent_used_cpu;
857 	int				wake_cpu;
858 	int				on_rq;
859 
860 	int				prio;
861 	int				static_prio;
862 	int				normal_prio;
863 	unsigned int			rt_priority;
864 
865 	struct sched_entity		se;
866 	struct sched_rt_entity		rt;
867 	struct sched_dl_entity		dl;
868 	struct sched_dl_entity		*dl_server;
869 #ifdef CONFIG_SCHED_CLASS_EXT
870 	struct sched_ext_entity		scx;
871 #endif
872 	const struct sched_class	*sched_class;
873 
874 #ifdef CONFIG_SCHED_CORE
875 	struct rb_node			core_node;
876 	unsigned long			core_cookie;
877 	unsigned int			core_occupation;
878 #endif
879 
880 #ifdef CONFIG_CGROUP_SCHED
881 	struct task_group		*sched_task_group;
882 #ifdef CONFIG_CFS_BANDWIDTH
883 	struct callback_head		sched_throttle_work;
884 	struct list_head		throttle_node;
885 	bool				throttled;
886 #endif
887 #endif
888 
889 
890 #ifdef CONFIG_UCLAMP_TASK
891 	/*
892 	 * Clamp values requested for a scheduling entity.
893 	 * Must be updated with task_rq_lock() held.
894 	 */
895 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
896 	/*
897 	 * Effective clamp values used for a scheduling entity.
898 	 * Must be updated with task_rq_lock() held.
899 	 */
900 	struct uclamp_se		uclamp[UCLAMP_CNT];
901 #endif
902 
903 	struct sched_statistics         stats;
904 
905 #ifdef CONFIG_PREEMPT_NOTIFIERS
906 	/* List of struct preempt_notifier: */
907 	struct hlist_head		preempt_notifiers;
908 #endif
909 
910 #ifdef CONFIG_BLK_DEV_IO_TRACE
911 	unsigned int			btrace_seq;
912 #endif
913 
914 	unsigned int			policy;
915 	unsigned long			max_allowed_capacity;
916 	int				nr_cpus_allowed;
917 	const cpumask_t			*cpus_ptr;
918 	cpumask_t			*user_cpus_ptr;
919 	cpumask_t			cpus_mask;
920 	void				*migration_pending;
921 	unsigned short			migration_disabled;
922 	unsigned short			migration_flags;
923 
924 #ifdef CONFIG_PREEMPT_RCU
925 	int				rcu_read_lock_nesting;
926 	union rcu_special		rcu_read_unlock_special;
927 	struct list_head		rcu_node_entry;
928 	struct rcu_node			*rcu_blocked_node;
929 #endif /* #ifdef CONFIG_PREEMPT_RCU */
930 
931 #ifdef CONFIG_TASKS_RCU
932 	unsigned long			rcu_tasks_nvcsw;
933 	u8				rcu_tasks_holdout;
934 	u8				rcu_tasks_idx;
935 	int				rcu_tasks_idle_cpu;
936 	struct list_head		rcu_tasks_holdout_list;
937 	int				rcu_tasks_exit_cpu;
938 	struct list_head		rcu_tasks_exit_list;
939 #endif /* #ifdef CONFIG_TASKS_RCU */
940 
941 #ifdef CONFIG_TASKS_TRACE_RCU
942 	int				trc_reader_nesting;
943 	struct srcu_ctr __percpu	*trc_reader_scp;
944 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
945 
946 	struct sched_info		sched_info;
947 
948 	struct list_head		tasks;
949 	struct plist_node		pushable_tasks;
950 	struct rb_node			pushable_dl_tasks;
951 
952 	struct mm_struct		*mm;
953 	struct mm_struct		*active_mm;
954 
955 	int				exit_state;
956 	int				exit_code;
957 	int				exit_signal;
958 	/* The signal sent when the parent dies: */
959 	int				pdeath_signal;
960 	/* JOBCTL_*, siglock protected: */
961 	unsigned long			jobctl;
962 
963 	/* Used for emulating ABI behavior of previous Linux versions: */
964 	unsigned int			personality;
965 
966 	/* Scheduler bits, serialized by scheduler locks: */
967 	unsigned			sched_reset_on_fork:1;
968 	unsigned			sched_contributes_to_load:1;
969 	unsigned			sched_migrated:1;
970 	unsigned			sched_task_hot:1;
971 
972 	/* Force alignment to the next boundary: */
973 	unsigned			:0;
974 
975 	/* Unserialized, strictly 'current' */
976 
977 	/*
978 	 * This field must not be in the scheduler word above due to wakelist
979 	 * queueing no longer being serialized by p->on_cpu. However:
980 	 *
981 	 * p->XXX = X;			ttwu()
982 	 * schedule()			  if (p->on_rq && ..) // false
983 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
984 	 *   deactivate_task()		      ttwu_queue_wakelist())
985 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
986 	 *
987 	 * guarantees all stores of 'current' are visible before
988 	 * ->sched_remote_wakeup gets used, so it can be in this word.
989 	 */
990 	unsigned			sched_remote_wakeup:1;
991 #ifdef CONFIG_RT_MUTEXES
992 	unsigned			sched_rt_mutex:1;
993 #endif
994 
995 	/* Bit to tell TOMOYO we're in execve(): */
996 	unsigned			in_execve:1;
997 	unsigned			in_iowait:1;
998 #ifndef TIF_RESTORE_SIGMASK
999 	unsigned			restore_sigmask:1;
1000 #endif
1001 #ifdef CONFIG_MEMCG_V1
1002 	unsigned			in_user_fault:1;
1003 #endif
1004 #ifdef CONFIG_LRU_GEN
1005 	/* whether the LRU algorithm may apply to this access */
1006 	unsigned			in_lru_fault:1;
1007 #endif
1008 #ifdef CONFIG_COMPAT_BRK
1009 	unsigned			brk_randomized:1;
1010 #endif
1011 #ifdef CONFIG_CGROUPS
1012 	/* disallow userland-initiated cgroup migration */
1013 	unsigned			no_cgroup_migration:1;
1014 	/* task is frozen/stopped (used by the cgroup freezer) */
1015 	unsigned			frozen:1;
1016 #endif
1017 #ifdef CONFIG_BLK_CGROUP
1018 	unsigned			use_memdelay:1;
1019 #endif
1020 #ifdef CONFIG_PSI
1021 	/* Stalled due to lack of memory */
1022 	unsigned			in_memstall:1;
1023 #endif
1024 #ifdef CONFIG_PAGE_OWNER
1025 	/* Used by page_owner=on to detect recursion in page tracking. */
1026 	unsigned			in_page_owner:1;
1027 #endif
1028 #ifdef CONFIG_EVENTFD
1029 	/* Recursion prevention for eventfd_signal() */
1030 	unsigned			in_eventfd:1;
1031 #endif
1032 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1033 	unsigned			pasid_activated:1;
1034 #endif
1035 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1036 	unsigned			reported_split_lock:1;
1037 #endif
1038 #ifdef CONFIG_TASK_DELAY_ACCT
1039 	/* delay due to memory thrashing */
1040 	unsigned                        in_thrashing:1;
1041 #endif
1042 	unsigned			in_nf_duplicate:1;
1043 #ifdef CONFIG_PREEMPT_RT
1044 	struct netdev_xmit		net_xmit;
1045 #endif
1046 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1047 
1048 	struct restart_block		restart_block;
1049 
1050 	pid_t				pid;
1051 	pid_t				tgid;
1052 
1053 #ifdef CONFIG_STACKPROTECTOR
1054 	/* Canary value for the -fstack-protector GCC feature: */
1055 	unsigned long			stack_canary;
1056 #endif
1057 	/*
1058 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1059 	 * older sibling, respectively.  (p->father can be replaced with
1060 	 * p->real_parent->pid)
1061 	 */
1062 
1063 	/* Real parent process: */
1064 	struct task_struct __rcu	*real_parent;
1065 
1066 	/* Recipient of SIGCHLD, wait4() reports: */
1067 	struct task_struct __rcu	*parent;
1068 
1069 	/*
1070 	 * Children/sibling form the list of natural children:
1071 	 */
1072 	struct list_head		children;
1073 	struct list_head		sibling;
1074 	struct task_struct		*group_leader;
1075 
1076 	/*
1077 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1078 	 *
1079 	 * This includes both natural children and PTRACE_ATTACH targets.
1080 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1081 	 */
1082 	struct list_head		ptraced;
1083 	struct list_head		ptrace_entry;
1084 
1085 	/* PID/PID hash table linkage. */
1086 	struct pid			*thread_pid;
1087 	struct hlist_node		pid_links[PIDTYPE_MAX];
1088 	struct list_head		thread_node;
1089 
1090 	struct completion		*vfork_done;
1091 
1092 	/* CLONE_CHILD_SETTID: */
1093 	int __user			*set_child_tid;
1094 
1095 	/* CLONE_CHILD_CLEARTID: */
1096 	int __user			*clear_child_tid;
1097 
1098 	/* PF_KTHREAD | PF_IO_WORKER */
1099 	void				*worker_private;
1100 
1101 	u64				utime;
1102 	u64				stime;
1103 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1104 	u64				utimescaled;
1105 	u64				stimescaled;
1106 #endif
1107 	u64				gtime;
1108 	struct prev_cputime		prev_cputime;
1109 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1110 	struct vtime			vtime;
1111 #endif
1112 
1113 #ifdef CONFIG_NO_HZ_FULL
1114 	atomic_t			tick_dep_mask;
1115 #endif
1116 	/* Context switch counts: */
1117 	unsigned long			nvcsw;
1118 	unsigned long			nivcsw;
1119 
1120 	/* Monotonic time in nsecs: */
1121 	u64				start_time;
1122 
1123 	/* Boot based time in nsecs: */
1124 	u64				start_boottime;
1125 
1126 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1127 	unsigned long			min_flt;
1128 	unsigned long			maj_flt;
1129 
1130 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1131 	struct posix_cputimers		posix_cputimers;
1132 
1133 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1134 	struct posix_cputimers_work	posix_cputimers_work;
1135 #endif
1136 
1137 	/* Process credentials: */
1138 
1139 	/* Tracer's credentials at attach: */
1140 	const struct cred __rcu		*ptracer_cred;
1141 
1142 	/* Objective and real subjective task credentials (COW): */
1143 	const struct cred __rcu		*real_cred;
1144 
1145 	/* Effective (overridable) subjective task credentials (COW): */
1146 	const struct cred __rcu		*cred;
1147 
1148 #ifdef CONFIG_KEYS
1149 	/* Cached requested key. */
1150 	struct key			*cached_requested_key;
1151 #endif
1152 
1153 	/*
1154 	 * executable name, excluding path.
1155 	 *
1156 	 * - normally initialized begin_new_exec()
1157 	 * - set it with set_task_comm()
1158 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1159 	 *     zero-padded
1160 	 *   - task_lock() to ensure the operation is atomic and the name is
1161 	 *     fully updated.
1162 	 */
1163 	char				comm[TASK_COMM_LEN];
1164 
1165 	struct nameidata		*nameidata;
1166 
1167 #ifdef CONFIG_SYSVIPC
1168 	struct sysv_sem			sysvsem;
1169 	struct sysv_shm			sysvshm;
1170 #endif
1171 #ifdef CONFIG_DETECT_HUNG_TASK
1172 	unsigned long			last_switch_count;
1173 	unsigned long			last_switch_time;
1174 #endif
1175 	/* Filesystem information: */
1176 	struct fs_struct		*fs;
1177 
1178 	/* Open file information: */
1179 	struct files_struct		*files;
1180 
1181 #ifdef CONFIG_IO_URING
1182 	struct io_uring_task		*io_uring;
1183 	struct io_restriction		*io_uring_restrict;
1184 #endif
1185 
1186 	/* Namespaces: */
1187 	struct nsproxy			*nsproxy;
1188 
1189 	/* Signal handlers: */
1190 	struct signal_struct		*signal;
1191 	struct sighand_struct __rcu		*sighand;
1192 	sigset_t			blocked;
1193 	sigset_t			real_blocked;
1194 	/* Restored if set_restore_sigmask() was used: */
1195 	sigset_t			saved_sigmask;
1196 	struct sigpending		pending;
1197 	unsigned long			sas_ss_sp;
1198 	size_t				sas_ss_size;
1199 	unsigned int			sas_ss_flags;
1200 
1201 	struct callback_head		*task_works;
1202 
1203 #ifdef CONFIG_AUDIT
1204 #ifdef CONFIG_AUDITSYSCALL
1205 	struct audit_context		*audit_context;
1206 #endif
1207 	kuid_t				loginuid;
1208 	unsigned int			sessionid;
1209 #endif
1210 	struct seccomp			seccomp;
1211 	struct syscall_user_dispatch	syscall_dispatch;
1212 
1213 	/* Thread group tracking: */
1214 	u64				parent_exec_id;
1215 	u64				self_exec_id;
1216 
1217 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1218 	spinlock_t			alloc_lock;
1219 
1220 	/* Protection of the PI data structures: */
1221 	raw_spinlock_t			pi_lock;
1222 
1223 	struct wake_q_node		wake_q;
1224 
1225 #ifdef CONFIG_RT_MUTEXES
1226 	/* PI waiters blocked on a rt_mutex held by this task: */
1227 	struct rb_root_cached		pi_waiters;
1228 	/* Updated under owner's pi_lock and rq lock */
1229 	struct task_struct		*pi_top_task;
1230 	/* Deadlock detection and priority inheritance handling: */
1231 	struct rt_mutex_waiter		*pi_blocked_on;
1232 #endif
1233 
1234 	struct mutex			*blocked_on;	/* lock we're blocked on */
1235 
1236 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1237 	/*
1238 	 * Encoded lock address causing task block (lower 2 bits = type from
1239 	 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1240 	 */
1241 	unsigned long			blocker;
1242 #endif
1243 
1244 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1245 	int				non_block_count;
1246 #endif
1247 
1248 #ifdef CONFIG_TRACE_IRQFLAGS
1249 	struct irqtrace_events		irqtrace;
1250 	unsigned int			hardirq_threaded;
1251 	u64				hardirq_chain_key;
1252 	int				softirqs_enabled;
1253 	int				softirq_context;
1254 	int				irq_config;
1255 #endif
1256 #ifdef CONFIG_PREEMPT_RT
1257 	int				softirq_disable_cnt;
1258 #endif
1259 
1260 #ifdef CONFIG_LOCKDEP
1261 # define MAX_LOCK_DEPTH			48UL
1262 	u64				curr_chain_key;
1263 	int				lockdep_depth;
1264 	unsigned int			lockdep_recursion;
1265 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1266 #endif
1267 
1268 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1269 	unsigned int			in_ubsan;
1270 #endif
1271 
1272 	/* Journalling filesystem info: */
1273 	void				*journal_info;
1274 
1275 	/* Stacked block device info: */
1276 	struct bio_list			*bio_list;
1277 
1278 	/* Stack plugging: */
1279 	struct blk_plug			*plug;
1280 
1281 	/* VM state: */
1282 	struct reclaim_state		*reclaim_state;
1283 
1284 	struct io_context		*io_context;
1285 
1286 #ifdef CONFIG_COMPACTION
1287 	struct capture_control		*capture_control;
1288 #endif
1289 	/* Ptrace state: */
1290 	unsigned long			ptrace_message;
1291 	kernel_siginfo_t		*last_siginfo;
1292 
1293 	struct task_io_accounting	ioac;
1294 #ifdef CONFIG_PSI
1295 	/* Pressure stall state */
1296 	unsigned int			psi_flags;
1297 #endif
1298 #ifdef CONFIG_TASK_XACCT
1299 	/* Accumulated RSS usage: */
1300 	u64				acct_rss_mem1;
1301 	/* Accumulated virtual memory usage: */
1302 	u64				acct_vm_mem1;
1303 	/* stime + utime since last update: */
1304 	u64				acct_timexpd;
1305 #endif
1306 #ifdef CONFIG_CPUSETS
1307 	/* Protected by ->alloc_lock: */
1308 	nodemask_t			mems_allowed;
1309 	/* Sequence number to catch updates: */
1310 	seqcount_spinlock_t		mems_allowed_seq;
1311 	int				cpuset_mem_spread_rotor;
1312 #endif
1313 #ifdef CONFIG_CGROUPS
1314 	/* Control Group info protected by css_set_lock: */
1315 	struct css_set __rcu		*cgroups;
1316 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1317 	struct list_head		cg_list;
1318 #ifdef CONFIG_PREEMPT_RT
1319 	struct llist_node		cg_dead_lnode;
1320 #endif	/* CONFIG_PREEMPT_RT */
1321 #endif	/* CONFIG_CGROUPS */
1322 #ifdef CONFIG_X86_CPU_RESCTRL
1323 	u32				closid;
1324 	u32				rmid;
1325 #endif
1326 #ifdef CONFIG_FUTEX
1327 	struct robust_list_head __user	*robust_list;
1328 #ifdef CONFIG_COMPAT
1329 	struct compat_robust_list_head __user *compat_robust_list;
1330 #endif
1331 	struct list_head		pi_state_list;
1332 	struct futex_pi_state		*pi_state_cache;
1333 	struct mutex			futex_exit_mutex;
1334 	unsigned int			futex_state;
1335 #endif
1336 #ifdef CONFIG_PERF_EVENTS
1337 	u8				perf_recursion[PERF_NR_CONTEXTS];
1338 	struct perf_event_context	*perf_event_ctxp;
1339 	struct mutex			perf_event_mutex;
1340 	struct list_head		perf_event_list;
1341 	struct perf_ctx_data __rcu	*perf_ctx_data;
1342 #endif
1343 #ifdef CONFIG_DEBUG_PREEMPT
1344 	unsigned long			preempt_disable_ip;
1345 #endif
1346 #ifdef CONFIG_NUMA
1347 	/* Protected by alloc_lock: */
1348 	struct mempolicy		*mempolicy;
1349 	short				il_prev;
1350 	u8				il_weight;
1351 	short				pref_node_fork;
1352 #endif
1353 #ifdef CONFIG_NUMA_BALANCING
1354 	int				numa_scan_seq;
1355 	unsigned int			numa_scan_period;
1356 	unsigned int			numa_scan_period_max;
1357 	int				numa_preferred_nid;
1358 	unsigned long			numa_migrate_retry;
1359 	/* Migration stamp: */
1360 	u64				node_stamp;
1361 	u64				last_task_numa_placement;
1362 	u64				last_sum_exec_runtime;
1363 	struct callback_head		numa_work;
1364 
1365 	/*
1366 	 * This pointer is only modified for current in syscall and
1367 	 * pagefault context (and for tasks being destroyed), so it can be read
1368 	 * from any of the following contexts:
1369 	 *  - RCU read-side critical section
1370 	 *  - current->numa_group from everywhere
1371 	 *  - task's runqueue locked, task not running
1372 	 */
1373 	struct numa_group __rcu		*numa_group;
1374 
1375 	/*
1376 	 * numa_faults is an array split into four regions:
1377 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1378 	 * in this precise order.
1379 	 *
1380 	 * faults_memory: Exponential decaying average of faults on a per-node
1381 	 * basis. Scheduling placement decisions are made based on these
1382 	 * counts. The values remain static for the duration of a PTE scan.
1383 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1384 	 * hinting fault was incurred.
1385 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1386 	 * during the current scan window. When the scan completes, the counts
1387 	 * in faults_memory and faults_cpu decay and these values are copied.
1388 	 */
1389 	unsigned long			*numa_faults;
1390 	unsigned long			total_numa_faults;
1391 
1392 	/*
1393 	 * numa_faults_locality tracks if faults recorded during the last
1394 	 * scan window were remote/local or failed to migrate. The task scan
1395 	 * period is adapted based on the locality of the faults with different
1396 	 * weights depending on whether they were shared or private faults
1397 	 */
1398 	unsigned long			numa_faults_locality[3];
1399 
1400 	unsigned long			numa_pages_migrated;
1401 #endif /* CONFIG_NUMA_BALANCING */
1402 
1403 	struct rseq_data		rseq;
1404 	struct sched_mm_cid		mm_cid;
1405 
1406 	struct tlbflush_unmap_batch	tlb_ubc;
1407 
1408 	/* Cache last used pipe for splice(): */
1409 	struct pipe_inode_info		*splice_pipe;
1410 
1411 	struct page_frag		task_frag;
1412 
1413 #ifdef CONFIG_TASK_DELAY_ACCT
1414 	struct task_delay_info		*delays;
1415 #endif
1416 
1417 #ifdef CONFIG_FAULT_INJECTION
1418 	int				make_it_fail;
1419 	unsigned int			fail_nth;
1420 #endif
1421 	/*
1422 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1423 	 * balance_dirty_pages() for a dirty throttling pause:
1424 	 */
1425 	int				nr_dirtied;
1426 	int				nr_dirtied_pause;
1427 	/* Start of a write-and-pause period: */
1428 	unsigned long			dirty_paused_when;
1429 
1430 #ifdef CONFIG_LATENCYTOP
1431 	int				latency_record_count;
1432 	struct latency_record		latency_record[LT_SAVECOUNT];
1433 #endif
1434 	/*
1435 	 * Time slack values; these are used to round up poll() and
1436 	 * select() etc timeout values. These are in nanoseconds.
1437 	 */
1438 	u64				timer_slack_ns;
1439 	u64				default_timer_slack_ns;
1440 
1441 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1442 	unsigned int			kasan_depth;
1443 #endif
1444 
1445 #ifdef CONFIG_KCSAN
1446 	struct kcsan_ctx		kcsan_ctx;
1447 #ifdef CONFIG_TRACE_IRQFLAGS
1448 	struct irqtrace_events		kcsan_save_irqtrace;
1449 #endif
1450 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1451 	int				kcsan_stack_depth;
1452 #endif
1453 #endif
1454 
1455 #ifdef CONFIG_KMSAN
1456 	struct kmsan_ctx		kmsan_ctx;
1457 #endif
1458 
1459 #if IS_ENABLED(CONFIG_KUNIT)
1460 	struct kunit			*kunit_test;
1461 #endif
1462 
1463 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1464 	/* Index of current stored address in ret_stack: */
1465 	int				curr_ret_stack;
1466 	int				curr_ret_depth;
1467 
1468 	/* Stack of return addresses for return function tracing: */
1469 	unsigned long			*ret_stack;
1470 
1471 	/* Timestamp for last schedule: */
1472 	unsigned long long		ftrace_timestamp;
1473 	unsigned long long		ftrace_sleeptime;
1474 
1475 	/*
1476 	 * Number of functions that haven't been traced
1477 	 * because of depth overrun:
1478 	 */
1479 	atomic_t			trace_overrun;
1480 
1481 	/* Pause tracing: */
1482 	atomic_t			tracing_graph_pause;
1483 #endif
1484 
1485 #ifdef CONFIG_TRACING
1486 	/* Bitmask and counter of trace recursion: */
1487 	unsigned long			trace_recursion;
1488 #endif /* CONFIG_TRACING */
1489 
1490 #ifdef CONFIG_KCOV
1491 	/* See kernel/kcov.c for more details. */
1492 
1493 	/* Coverage collection mode enabled for this task (0 if disabled): */
1494 	unsigned int			kcov_mode;
1495 
1496 	/* Size of the kcov_area: */
1497 	unsigned int			kcov_size;
1498 
1499 	/* Buffer for coverage collection: */
1500 	void				*kcov_area;
1501 
1502 	/* KCOV descriptor wired with this task or NULL: */
1503 	struct kcov			*kcov;
1504 
1505 	/* KCOV common handle for remote coverage collection: */
1506 	u64				kcov_handle;
1507 
1508 	/* KCOV sequence number: */
1509 	int				kcov_sequence;
1510 
1511 	/* Collect coverage from softirq context: */
1512 	unsigned int			kcov_softirq;
1513 #endif
1514 
1515 #ifdef CONFIG_MEMCG_V1
1516 	struct mem_cgroup		*memcg_in_oom;
1517 #endif
1518 
1519 #ifdef CONFIG_MEMCG
1520 	/* Number of pages to reclaim on returning to userland: */
1521 	unsigned int			memcg_nr_pages_over_high;
1522 
1523 	/* Used by memcontrol for targeted memcg charge: */
1524 	struct mem_cgroup		*active_memcg;
1525 
1526 	/* Cache for current->cgroups->memcg->objcg lookups: */
1527 	struct obj_cgroup		*objcg;
1528 #endif
1529 
1530 #ifdef CONFIG_BLK_CGROUP
1531 	struct gendisk			*throttle_disk;
1532 #endif
1533 
1534 #ifdef CONFIG_UPROBES
1535 	struct uprobe_task		*utask;
1536 #endif
1537 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1538 	unsigned int			sequential_io;
1539 	unsigned int			sequential_io_avg;
1540 #endif
1541 	struct kmap_ctrl		kmap_ctrl;
1542 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1543 	unsigned long			task_state_change;
1544 # ifdef CONFIG_PREEMPT_RT
1545 	unsigned long			saved_state_change;
1546 # endif
1547 #endif
1548 	struct rcu_head			rcu;
1549 	refcount_t			rcu_users;
1550 	int				pagefault_disabled;
1551 #ifdef CONFIG_MMU
1552 	struct task_struct		*oom_reaper_list;
1553 	struct timer_list		oom_reaper_timer;
1554 #endif
1555 #ifdef CONFIG_VMAP_STACK
1556 	struct vm_struct		*stack_vm_area;
1557 #endif
1558 #ifdef CONFIG_THREAD_INFO_IN_TASK
1559 	/* A live task holds one reference: */
1560 	refcount_t			stack_refcount;
1561 #endif
1562 #ifdef CONFIG_LIVEPATCH
1563 	int patch_state;
1564 #endif
1565 #ifdef CONFIG_SECURITY
1566 	/* Used by LSM modules for access restriction: */
1567 	void				*security;
1568 #endif
1569 #ifdef CONFIG_BPF_SYSCALL
1570 	/* Used by BPF task local storage */
1571 	struct bpf_local_storage __rcu	*bpf_storage;
1572 	/* Used for BPF run context */
1573 	struct bpf_run_ctx		*bpf_ctx;
1574 #endif
1575 	/* Used by BPF for per-TASK xdp storage */
1576 	struct bpf_net_context		*bpf_net_context;
1577 
1578 #ifdef CONFIG_KSTACK_ERASE
1579 	unsigned long			lowest_stack;
1580 #endif
1581 #ifdef CONFIG_KSTACK_ERASE_METRICS
1582 	unsigned long			prev_lowest_stack;
1583 #endif
1584 
1585 #ifdef CONFIG_X86_MCE
1586 	void __user			*mce_vaddr;
1587 	__u64				mce_kflags;
1588 	u64				mce_addr;
1589 	__u64				mce_ripv : 1,
1590 					mce_whole_page : 1,
1591 					__mce_reserved : 62;
1592 	struct callback_head		mce_kill_me;
1593 	int				mce_count;
1594 #endif
1595 
1596 #ifdef CONFIG_KRETPROBES
1597 	struct llist_head               kretprobe_instances;
1598 #endif
1599 #ifdef CONFIG_RETHOOK
1600 	struct llist_head               rethooks;
1601 #endif
1602 
1603 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1604 	/*
1605 	 * If L1D flush is supported on mm context switch
1606 	 * then we use this callback head to queue kill work
1607 	 * to kill tasks that are not running on SMT disabled
1608 	 * cores
1609 	 */
1610 	struct callback_head		l1d_flush_kill;
1611 #endif
1612 
1613 #ifdef CONFIG_RV
1614 	/*
1615 	 * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS.
1616 	 * If memory becomes a concern, we can think about a dynamic method.
1617 	 */
1618 	union rv_task_monitor		rv[CONFIG_RV_PER_TASK_MONITORS];
1619 #endif
1620 
1621 #ifdef CONFIG_USER_EVENTS
1622 	struct user_event_mm		*user_event_mm;
1623 #endif
1624 
1625 #ifdef CONFIG_UNWIND_USER
1626 	struct unwind_task_info		unwind_info;
1627 #endif
1628 
1629 	/* CPU-specific state of this task: */
1630 	struct thread_struct		thread;
1631 
1632 	/*
1633 	 * New fields for task_struct should be added above here, so that
1634 	 * they are included in the randomized portion of task_struct.
1635 	 */
1636 	randomized_struct_fields_end
1637 } __attribute__ ((aligned (64)));
1638 
1639 #ifdef CONFIG_SCHED_PROXY_EXEC
1640 DECLARE_STATIC_KEY_TRUE(__sched_proxy_exec);
1641 static inline bool sched_proxy_exec(void)
1642 {
1643 	return static_branch_likely(&__sched_proxy_exec);
1644 }
1645 #else
1646 static inline bool sched_proxy_exec(void)
1647 {
1648 	return false;
1649 }
1650 #endif
1651 
1652 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1653 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1654 
1655 static inline unsigned int __task_state_index(unsigned int tsk_state,
1656 					      unsigned int tsk_exit_state)
1657 {
1658 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1659 
1660 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1661 
1662 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1663 		state = TASK_REPORT_IDLE;
1664 
1665 	/*
1666 	 * We're lying here, but rather than expose a completely new task state
1667 	 * to userspace, we can make this appear as if the task has gone through
1668 	 * a regular rt_mutex_lock() call.
1669 	 * Report frozen tasks as uninterruptible.
1670 	 */
1671 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1672 		state = TASK_UNINTERRUPTIBLE;
1673 
1674 	return fls(state);
1675 }
1676 
1677 static inline unsigned int task_state_index(struct task_struct *tsk)
1678 {
1679 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1680 }
1681 
1682 static inline char task_index_to_char(unsigned int state)
1683 {
1684 	static const char state_char[] = "RSDTtXZPI";
1685 
1686 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1687 
1688 	return state_char[state];
1689 }
1690 
1691 static inline char task_state_to_char(struct task_struct *tsk)
1692 {
1693 	return task_index_to_char(task_state_index(tsk));
1694 }
1695 
1696 extern struct pid *cad_pid;
1697 
1698 /*
1699  * Per process flags
1700  */
1701 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1702 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1703 #define PF_EXITING		0x00000004	/* Getting shut down */
1704 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1705 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1706 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1707 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1708 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1709 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1710 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1711 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1712 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1713 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1714 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1715 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1716 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1717 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1718 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1719 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1720 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1721 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1722 						 * I am cleaning dirty pages from some other bdi. */
1723 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1724 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1725 #define PF__HOLE__00800000	0x00800000
1726 #define PF__HOLE__01000000	0x01000000
1727 #define PF__HOLE__02000000	0x02000000
1728 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1729 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1730 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1731 						 * See memalloc_pin_save() */
1732 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1733 #define PF__HOLE__40000000	0x40000000
1734 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1735 
1736 /*
1737  * Only the _current_ task can read/write to tsk->flags, but other
1738  * tasks can access tsk->flags in readonly mode for example
1739  * with tsk_used_math (like during threaded core dumping).
1740  * There is however an exception to this rule during ptrace
1741  * or during fork: the ptracer task is allowed to write to the
1742  * child->flags of its traced child (same goes for fork, the parent
1743  * can write to the child->flags), because we're guaranteed the
1744  * child is not running and in turn not changing child->flags
1745  * at the same time the parent does it.
1746  */
1747 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1748 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1749 #define clear_used_math()			clear_stopped_child_used_math(current)
1750 #define set_used_math()				set_stopped_child_used_math(current)
1751 
1752 #define conditional_stopped_child_used_math(condition, child) \
1753 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1754 
1755 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1756 
1757 #define copy_to_stopped_child_used_math(child) \
1758 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1759 
1760 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1761 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1762 #define used_math()				tsk_used_math(current)
1763 
1764 static __always_inline bool is_percpu_thread(void)
1765 {
1766 	return (current->flags & PF_NO_SETAFFINITY) &&
1767 		(current->nr_cpus_allowed  == 1);
1768 }
1769 
1770 static __always_inline bool is_user_task(struct task_struct *task)
1771 {
1772 	return task->mm && !(task->flags & (PF_KTHREAD | PF_USER_WORKER));
1773 }
1774 
1775 /* Per-process atomic flags. */
1776 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1777 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1778 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1779 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1780 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1781 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1782 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1783 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1784 
1785 #define TASK_PFA_TEST(name, func)					\
1786 	static inline bool task_##func(struct task_struct *p)		\
1787 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1788 
1789 #define TASK_PFA_SET(name, func)					\
1790 	static inline void task_set_##func(struct task_struct *p)	\
1791 	{ set_bit(PFA_##name, &p->atomic_flags); }
1792 
1793 #define TASK_PFA_CLEAR(name, func)					\
1794 	static inline void task_clear_##func(struct task_struct *p)	\
1795 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1796 
1797 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1798 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1799 
1800 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1801 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1802 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1803 
1804 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1805 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1806 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1807 
1808 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1809 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1810 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1811 
1812 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1813 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1814 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1815 
1816 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1817 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1818 
1819 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1820 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1821 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1822 
1823 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1824 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1825 
1826 static inline void
1827 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1828 {
1829 	current->flags &= ~flags;
1830 	current->flags |= orig_flags & flags;
1831 }
1832 
1833 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1834 extern int task_can_attach(struct task_struct *p);
1835 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1836 extern void dl_bw_free(int cpu, u64 dl_bw);
1837 
1838 /* set_cpus_allowed_force() - consider using set_cpus_allowed_ptr() instead */
1839 extern void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask);
1840 
1841 /**
1842  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1843  * @p: the task
1844  * @new_mask: CPU affinity mask
1845  *
1846  * Return: zero if successful, or a negative error code
1847  */
1848 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1849 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1850 extern void release_user_cpus_ptr(struct task_struct *p);
1851 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1852 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1853 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1854 
1855 extern int yield_to(struct task_struct *p, bool preempt);
1856 extern void set_user_nice(struct task_struct *p, long nice);
1857 extern int task_prio(const struct task_struct *p);
1858 
1859 /**
1860  * task_nice - return the nice value of a given task.
1861  * @p: the task in question.
1862  *
1863  * Return: The nice value [ -20 ... 0 ... 19 ].
1864  */
1865 static inline int task_nice(const struct task_struct *p)
1866 {
1867 	return PRIO_TO_NICE((p)->static_prio);
1868 }
1869 
1870 extern int can_nice(const struct task_struct *p, const int nice);
1871 extern int task_curr(const struct task_struct *p);
1872 extern int idle_cpu(int cpu);
1873 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1874 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1875 extern void sched_set_fifo(struct task_struct *p);
1876 extern void sched_set_fifo_low(struct task_struct *p);
1877 extern void sched_set_fifo_secondary(struct task_struct *p);
1878 extern void sched_set_normal(struct task_struct *p, int nice);
1879 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1880 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1881 extern struct task_struct *idle_task(int cpu);
1882 
1883 /**
1884  * is_idle_task - is the specified task an idle task?
1885  * @p: the task in question.
1886  *
1887  * Return: 1 if @p is an idle task. 0 otherwise.
1888  */
1889 static __always_inline bool is_idle_task(const struct task_struct *p)
1890 {
1891 	return !!(p->flags & PF_IDLE);
1892 }
1893 
1894 extern struct task_struct *curr_task(int cpu);
1895 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1896 
1897 void yield(void);
1898 
1899 union thread_union {
1900 	struct task_struct task;
1901 #ifndef CONFIG_THREAD_INFO_IN_TASK
1902 	struct thread_info thread_info;
1903 #endif
1904 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1905 };
1906 
1907 #ifndef CONFIG_THREAD_INFO_IN_TASK
1908 extern struct thread_info init_thread_info;
1909 #endif
1910 
1911 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1912 
1913 #ifdef CONFIG_THREAD_INFO_IN_TASK
1914 # define task_thread_info(task)	(&(task)->thread_info)
1915 #else
1916 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1917 #endif
1918 
1919 /*
1920  * find a task by one of its numerical ids
1921  *
1922  * find_task_by_pid_ns():
1923  *      finds a task by its pid in the specified namespace
1924  * find_task_by_vpid():
1925  *      finds a task by its virtual pid
1926  *
1927  * see also find_vpid() etc in include/linux/pid.h
1928  */
1929 
1930 extern struct task_struct *find_task_by_vpid(pid_t nr);
1931 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1932 
1933 /*
1934  * find a task by its virtual pid and get the task struct
1935  */
1936 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1937 
1938 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1939 extern int wake_up_process(struct task_struct *tsk);
1940 extern void wake_up_new_task(struct task_struct *tsk);
1941 
1942 extern void kick_process(struct task_struct *tsk);
1943 
1944 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1945 #define set_task_comm(tsk, from) ({			\
1946 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1947 	__set_task_comm(tsk, from, false);		\
1948 })
1949 
1950 /*
1951  * - Why not use task_lock()?
1952  *   User space can randomly change their names anyway, so locking for readers
1953  *   doesn't make sense. For writers, locking is probably necessary, as a race
1954  *   condition could lead to long-term mixed results.
1955  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1956  *   always NUL-terminated and zero-padded. Therefore the race condition between
1957  *   reader and writer is not an issue.
1958  *
1959  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1960  *   Since the callers don't perform any return value checks, this safeguard is
1961  *   necessary.
1962  */
1963 #define get_task_comm(buf, tsk) ({			\
1964 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1965 	strscpy_pad(buf, (tsk)->comm);			\
1966 	buf;						\
1967 })
1968 
1969 static __always_inline void scheduler_ipi(void)
1970 {
1971 	/*
1972 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1973 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1974 	 * this IPI.
1975 	 */
1976 	preempt_fold_need_resched();
1977 }
1978 
1979 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1980 
1981 /*
1982  * Set thread flags in other task's structures.
1983  * See asm/thread_info.h for TIF_xxxx flags available:
1984  */
1985 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1986 {
1987 	set_ti_thread_flag(task_thread_info(tsk), flag);
1988 }
1989 
1990 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1991 {
1992 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1993 }
1994 
1995 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1996 					  bool value)
1997 {
1998 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1999 }
2000 
2001 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2002 {
2003 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2004 }
2005 
2006 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2007 {
2008 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2009 }
2010 
2011 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2012 {
2013 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2014 }
2015 
2016 static inline void set_tsk_need_resched(struct task_struct *tsk)
2017 {
2018 	if (tracepoint_enabled(sched_set_need_resched_tp) &&
2019 	    !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED))
2020 		__trace_set_need_resched(tsk, TIF_NEED_RESCHED);
2021 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2022 }
2023 
2024 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2025 {
2026 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2027 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2028 }
2029 
2030 static inline int test_tsk_need_resched(struct task_struct *tsk)
2031 {
2032 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2033 }
2034 
2035 static inline void set_need_resched_current(void)
2036 {
2037 	lockdep_assert_irqs_disabled();
2038 	set_tsk_need_resched(current);
2039 	set_preempt_need_resched();
2040 }
2041 
2042 /*
2043  * cond_resched() and cond_resched_lock(): latency reduction via
2044  * explicit rescheduling in places that are safe. The return
2045  * value indicates whether a reschedule was done in fact.
2046  * cond_resched_lock() will drop the spinlock before scheduling,
2047  */
2048 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2049 extern int __cond_resched(void);
2050 
2051 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2052 
2053 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2054 
2055 static __always_inline int _cond_resched(void)
2056 {
2057 	return static_call_mod(cond_resched)();
2058 }
2059 
2060 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2061 
2062 extern int dynamic_cond_resched(void);
2063 
2064 static __always_inline int _cond_resched(void)
2065 {
2066 	return dynamic_cond_resched();
2067 }
2068 
2069 #else /* !CONFIG_PREEMPTION */
2070 
2071 static inline int _cond_resched(void)
2072 {
2073 	return __cond_resched();
2074 }
2075 
2076 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2077 
2078 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2079 
2080 static inline int _cond_resched(void)
2081 {
2082 	return 0;
2083 }
2084 
2085 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2086 
2087 #define cond_resched() ({			\
2088 	__might_resched(__FILE__, __LINE__, 0);	\
2089 	_cond_resched();			\
2090 })
2091 
2092 extern int __cond_resched_lock(spinlock_t *lock) __must_hold(lock);
2093 extern int __cond_resched_rwlock_read(rwlock_t *lock) __must_hold_shared(lock);
2094 extern int __cond_resched_rwlock_write(rwlock_t *lock) __must_hold(lock);
2095 
2096 #define MIGHT_RESCHED_RCU_SHIFT		8
2097 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2098 
2099 #ifndef CONFIG_PREEMPT_RT
2100 /*
2101  * Non RT kernels have an elevated preempt count due to the held lock,
2102  * but are not allowed to be inside a RCU read side critical section
2103  */
2104 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2105 #else
2106 /*
2107  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2108  * cond_resched*lock() has to take that into account because it checks for
2109  * preempt_count() and rcu_preempt_depth().
2110  */
2111 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2112 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2113 #endif
2114 
2115 #define cond_resched_lock(lock) ({						\
2116 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2117 	__cond_resched_lock(lock);						\
2118 })
2119 
2120 #define cond_resched_rwlock_read(lock) ({					\
2121 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2122 	__cond_resched_rwlock_read(lock);					\
2123 })
2124 
2125 #define cond_resched_rwlock_write(lock) ({					\
2126 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2127 	__cond_resched_rwlock_write(lock);					\
2128 })
2129 
2130 #ifndef CONFIG_PREEMPT_RT
2131 static inline struct mutex *__get_task_blocked_on(struct task_struct *p)
2132 {
2133 	struct mutex *m = p->blocked_on;
2134 
2135 	if (m)
2136 		lockdep_assert_held_once(&m->wait_lock);
2137 	return m;
2138 }
2139 
2140 static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m)
2141 {
2142 	struct mutex *blocked_on = READ_ONCE(p->blocked_on);
2143 
2144 	WARN_ON_ONCE(!m);
2145 	/* The task should only be setting itself as blocked */
2146 	WARN_ON_ONCE(p != current);
2147 	/* Currently we serialize blocked_on under the mutex::wait_lock */
2148 	lockdep_assert_held_once(&m->wait_lock);
2149 	/*
2150 	 * Check ensure we don't overwrite existing mutex value
2151 	 * with a different mutex. Note, setting it to the same
2152 	 * lock repeatedly is ok.
2153 	 */
2154 	WARN_ON_ONCE(blocked_on && blocked_on != m);
2155 	WRITE_ONCE(p->blocked_on, m);
2156 }
2157 
2158 static inline void set_task_blocked_on(struct task_struct *p, struct mutex *m)
2159 {
2160 	guard(raw_spinlock_irqsave)(&m->wait_lock);
2161 	__set_task_blocked_on(p, m);
2162 }
2163 
2164 static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2165 {
2166 	if (m) {
2167 		struct mutex *blocked_on = READ_ONCE(p->blocked_on);
2168 
2169 		/* Currently we serialize blocked_on under the mutex::wait_lock */
2170 		lockdep_assert_held_once(&m->wait_lock);
2171 		/*
2172 		 * There may be cases where we re-clear already cleared
2173 		 * blocked_on relationships, but make sure we are not
2174 		 * clearing the relationship with a different lock.
2175 		 */
2176 		WARN_ON_ONCE(blocked_on && blocked_on != m);
2177 	}
2178 	WRITE_ONCE(p->blocked_on, NULL);
2179 }
2180 
2181 static inline void clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2182 {
2183 	guard(raw_spinlock_irqsave)(&m->wait_lock);
2184 	__clear_task_blocked_on(p, m);
2185 }
2186 #else
2187 static inline void __clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2188 {
2189 }
2190 
2191 static inline void clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2192 {
2193 }
2194 #endif /* !CONFIG_PREEMPT_RT */
2195 
2196 static __always_inline bool need_resched(void)
2197 {
2198 	return unlikely(tif_need_resched());
2199 }
2200 
2201 /*
2202  * Wrappers for p->thread_info->cpu access. No-op on UP.
2203  */
2204 #ifdef CONFIG_SMP
2205 
2206 static inline unsigned int task_cpu(const struct task_struct *p)
2207 {
2208 	return READ_ONCE(task_thread_info(p)->cpu);
2209 }
2210 
2211 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2212 
2213 #else
2214 
2215 static inline unsigned int task_cpu(const struct task_struct *p)
2216 {
2217 	return 0;
2218 }
2219 
2220 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2221 {
2222 }
2223 
2224 #endif /* CONFIG_SMP */
2225 
2226 static inline bool task_is_runnable(struct task_struct *p)
2227 {
2228 	return p->on_rq && !p->se.sched_delayed;
2229 }
2230 
2231 extern bool sched_task_on_rq(struct task_struct *p);
2232 extern unsigned long get_wchan(struct task_struct *p);
2233 extern struct task_struct *cpu_curr_snapshot(int cpu);
2234 
2235 /*
2236  * In order to reduce various lock holder preemption latencies provide an
2237  * interface to see if a vCPU is currently running or not.
2238  *
2239  * This allows us to terminate optimistic spin loops and block, analogous to
2240  * the native optimistic spin heuristic of testing if the lock owner task is
2241  * running or not.
2242  */
2243 #ifndef vcpu_is_preempted
2244 static inline bool vcpu_is_preempted(int cpu)
2245 {
2246 	return false;
2247 }
2248 #endif
2249 
2250 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2251 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2252 
2253 #ifndef TASK_SIZE_OF
2254 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2255 #endif
2256 
2257 static inline bool owner_on_cpu(struct task_struct *owner)
2258 {
2259 	/*
2260 	 * As lock holder preemption issue, we both skip spinning if
2261 	 * task is not on cpu or its cpu is preempted
2262 	 */
2263 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2264 }
2265 
2266 /* Returns effective CPU energy utilization, as seen by the scheduler */
2267 unsigned long sched_cpu_util(int cpu);
2268 
2269 #ifdef CONFIG_SCHED_CORE
2270 extern void sched_core_free(struct task_struct *tsk);
2271 extern void sched_core_fork(struct task_struct *p);
2272 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2273 				unsigned long uaddr);
2274 extern int sched_core_idle_cpu(int cpu);
2275 #else
2276 static inline void sched_core_free(struct task_struct *tsk) { }
2277 static inline void sched_core_fork(struct task_struct *p) { }
2278 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2279 #endif
2280 
2281 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2282 
2283 #ifdef CONFIG_MEM_ALLOC_PROFILING
2284 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2285 {
2286 	swap(current->alloc_tag, tag);
2287 	return tag;
2288 }
2289 
2290 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2291 {
2292 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2293 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2294 #endif
2295 	current->alloc_tag = old;
2296 }
2297 #else
2298 #define alloc_tag_save(_tag)			NULL
2299 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2300 #endif
2301 
2302 /* Avoids recursive inclusion hell */
2303 #ifdef CONFIG_SCHED_MM_CID
2304 void sched_mm_cid_before_execve(struct task_struct *t);
2305 void sched_mm_cid_after_execve(struct task_struct *t);
2306 void sched_mm_cid_fork(struct task_struct *t);
2307 void sched_mm_cid_exit(struct task_struct *t);
2308 static __always_inline int task_mm_cid(struct task_struct *t)
2309 {
2310 	return t->mm_cid.cid & ~(MM_CID_ONCPU | MM_CID_TRANSIT);
2311 }
2312 #else
2313 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2314 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2315 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2316 static inline void sched_mm_cid_exit(struct task_struct *t) { }
2317 static __always_inline int task_mm_cid(struct task_struct *t)
2318 {
2319 	/*
2320 	 * Use the processor id as a fall-back when the mm cid feature is
2321 	 * disabled. This provides functional per-cpu data structure accesses
2322 	 * in user-space, althrough it won't provide the memory usage benefits.
2323 	 */
2324 	return task_cpu(t);
2325 }
2326 #endif
2327 
2328 #ifndef MODULE
2329 #ifndef COMPILE_OFFSETS
2330 
2331 extern void ___migrate_enable(void);
2332 
2333 struct rq;
2334 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
2335 
2336 /*
2337  * The "struct rq" is not available here, so we can't access the
2338  * "runqueues" with this_cpu_ptr(), as the compilation will fail in
2339  * this_cpu_ptr() -> raw_cpu_ptr() -> __verify_pcpu_ptr():
2340  *   typeof((ptr) + 0)
2341  *
2342  * So use arch_raw_cpu_ptr()/PERCPU_PTR() directly here.
2343  */
2344 #ifdef CONFIG_SMP
2345 #define this_rq_raw() arch_raw_cpu_ptr(&runqueues)
2346 #else
2347 #define this_rq_raw() PERCPU_PTR(&runqueues)
2348 #endif
2349 #define this_rq_pinned() (*(unsigned int *)((void *)this_rq_raw() + RQ_nr_pinned))
2350 
2351 static inline void __migrate_enable(void)
2352 {
2353 	struct task_struct *p = current;
2354 
2355 #ifdef CONFIG_DEBUG_PREEMPT
2356 	/*
2357 	 * Check both overflow from migrate_disable() and superfluous
2358 	 * migrate_enable().
2359 	 */
2360 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2361 		return;
2362 #endif
2363 
2364 	if (p->migration_disabled > 1) {
2365 		p->migration_disabled--;
2366 		return;
2367 	}
2368 
2369 	/*
2370 	 * Ensure stop_task runs either before or after this, and that
2371 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2372 	 */
2373 	guard(preempt)();
2374 	if (unlikely(p->cpus_ptr != &p->cpus_mask))
2375 		___migrate_enable();
2376 	/*
2377 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2378 	 * regular cpus_mask, otherwise things that race (eg.
2379 	 * select_fallback_rq) get confused.
2380 	 */
2381 	barrier();
2382 	p->migration_disabled = 0;
2383 	this_rq_pinned()--;
2384 }
2385 
2386 static inline void __migrate_disable(void)
2387 {
2388 	struct task_struct *p = current;
2389 
2390 	if (p->migration_disabled) {
2391 #ifdef CONFIG_DEBUG_PREEMPT
2392 		/*
2393 		 *Warn about overflow half-way through the range.
2394 		 */
2395 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2396 #endif
2397 		p->migration_disabled++;
2398 		return;
2399 	}
2400 
2401 	guard(preempt)();
2402 	this_rq_pinned()++;
2403 	p->migration_disabled = 1;
2404 }
2405 #else /* !COMPILE_OFFSETS */
2406 static inline void __migrate_disable(void) { }
2407 static inline void __migrate_enable(void) { }
2408 #endif /* !COMPILE_OFFSETS */
2409 
2410 /*
2411  * So that it is possible to not export the runqueues variable, define and
2412  * export migrate_enable/migrate_disable in kernel/sched/core.c too, and use
2413  * them for the modules. The macro "INSTANTIATE_EXPORTED_MIGRATE_DISABLE" will
2414  * be defined in kernel/sched/core.c.
2415  */
2416 #ifndef INSTANTIATE_EXPORTED_MIGRATE_DISABLE
2417 static __always_inline void migrate_disable(void)
2418 {
2419 	__migrate_disable();
2420 }
2421 
2422 static __always_inline void migrate_enable(void)
2423 {
2424 	__migrate_enable();
2425 }
2426 #else /* INSTANTIATE_EXPORTED_MIGRATE_DISABLE */
2427 extern void migrate_disable(void);
2428 extern void migrate_enable(void);
2429 #endif /* INSTANTIATE_EXPORTED_MIGRATE_DISABLE */
2430 
2431 #else /* MODULE */
2432 extern void migrate_disable(void);
2433 extern void migrate_enable(void);
2434 #endif /* MODULE */
2435 
2436 DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable())
2437 
2438 #endif
2439