1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bitops.h>
4 #include <linux/elf.h>
5 #include <linux/mm.h>
6
7 #include <linux/io.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/random.h>
11 #include <linux/topology.h>
12 #include <asm/processor.h>
13 #include <asm/apic.h>
14 #include <asm/cacheinfo.h>
15 #include <asm/cpu.h>
16 #include <asm/cpu_device_id.h>
17 #include <asm/spec-ctrl.h>
18 #include <asm/smp.h>
19 #include <asm/numa.h>
20 #include <asm/pci-direct.h>
21 #include <asm/delay.h>
22 #include <asm/debugreg.h>
23 #include <asm/resctrl.h>
24 #include <asm/sev.h>
25
26 #ifdef CONFIG_X86_64
27 # include <asm/mmconfig.h>
28 #endif
29
30 #include "cpu.h"
31
rdmsrl_amd_safe(unsigned msr,unsigned long long * p)32 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
33 {
34 u32 gprs[8] = { 0 };
35 int err;
36
37 WARN_ONCE((boot_cpu_data.x86 != 0xf),
38 "%s should only be used on K8!\n", __func__);
39
40 gprs[1] = msr;
41 gprs[7] = 0x9c5a203a;
42
43 err = rdmsr_safe_regs(gprs);
44
45 *p = gprs[0] | ((u64)gprs[2] << 32);
46
47 return err;
48 }
49
wrmsrl_amd_safe(unsigned msr,unsigned long long val)50 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
51 {
52 u32 gprs[8] = { 0 };
53
54 WARN_ONCE((boot_cpu_data.x86 != 0xf),
55 "%s should only be used on K8!\n", __func__);
56
57 gprs[0] = (u32)val;
58 gprs[1] = msr;
59 gprs[2] = val >> 32;
60 gprs[7] = 0x9c5a203a;
61
62 return wrmsr_safe_regs(gprs);
63 }
64
65 /*
66 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause
67 * misexecution of code under Linux. Owners of such processors should
68 * contact AMD for precise details and a CPU swap.
69 *
70 * See http://www.multimania.com/poulot/k6bug.html
71 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
72 * (Publication # 21266 Issue Date: August 1998)
73 *
74 * The following test is erm.. interesting. AMD neglected to up
75 * the chip setting when fixing the bug but they also tweaked some
76 * performance at the same time..
77 */
78
79 #ifdef CONFIG_X86_32
80 extern __visible void vide(void);
81 __asm__(".text\n"
82 ".globl vide\n"
83 ".type vide, @function\n"
84 ".align 4\n"
85 "vide: ret\n");
86 #endif
87
init_amd_k5(struct cpuinfo_x86 * c)88 static void init_amd_k5(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_32
91 /*
92 * General Systems BIOSen alias the cpu frequency registers
93 * of the Elan at 0x000df000. Unfortunately, one of the Linux
94 * drivers subsequently pokes it, and changes the CPU speed.
95 * Workaround : Remove the unneeded alias.
96 */
97 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
98 #define CBAR_ENB (0x80000000)
99 #define CBAR_KEY (0X000000CB)
100 if (c->x86_model == 9 || c->x86_model == 10) {
101 if (inl(CBAR) & CBAR_ENB)
102 outl(0 | CBAR_KEY, CBAR);
103 }
104 #endif
105 }
106
init_amd_k6(struct cpuinfo_x86 * c)107 static void init_amd_k6(struct cpuinfo_x86 *c)
108 {
109 #ifdef CONFIG_X86_32
110 u32 l, h;
111 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
112
113 if (c->x86_model < 6) {
114 /* Based on AMD doc 20734R - June 2000 */
115 if (c->x86_model == 0) {
116 clear_cpu_cap(c, X86_FEATURE_APIC);
117 set_cpu_cap(c, X86_FEATURE_PGE);
118 }
119 return;
120 }
121
122 if (c->x86_model == 6 && c->x86_stepping == 1) {
123 const int K6_BUG_LOOP = 1000000;
124 int n;
125 void (*f_vide)(void);
126 u64 d, d2;
127
128 pr_info("AMD K6 stepping B detected - ");
129
130 /*
131 * It looks like AMD fixed the 2.6.2 bug and improved indirect
132 * calls at the same time.
133 */
134
135 n = K6_BUG_LOOP;
136 f_vide = vide;
137 OPTIMIZER_HIDE_VAR(f_vide);
138 d = rdtsc();
139 while (n--)
140 f_vide();
141 d2 = rdtsc();
142 d = d2-d;
143
144 if (d > 20*K6_BUG_LOOP)
145 pr_cont("system stability may be impaired when more than 32 MB are used.\n");
146 else
147 pr_cont("probably OK (after B9730xxxx).\n");
148 }
149
150 /* K6 with old style WHCR */
151 if (c->x86_model < 8 ||
152 (c->x86_model == 8 && c->x86_stepping < 8)) {
153 /* We can only write allocate on the low 508Mb */
154 if (mbytes > 508)
155 mbytes = 508;
156
157 rdmsr(MSR_K6_WHCR, l, h);
158 if ((l&0x0000FFFF) == 0) {
159 unsigned long flags;
160 l = (1<<0)|((mbytes/4)<<1);
161 local_irq_save(flags);
162 wbinvd();
163 wrmsr(MSR_K6_WHCR, l, h);
164 local_irq_restore(flags);
165 pr_info("Enabling old style K6 write allocation for %d Mb\n",
166 mbytes);
167 }
168 return;
169 }
170
171 if ((c->x86_model == 8 && c->x86_stepping > 7) ||
172 c->x86_model == 9 || c->x86_model == 13) {
173 /* The more serious chips .. */
174
175 if (mbytes > 4092)
176 mbytes = 4092;
177
178 rdmsr(MSR_K6_WHCR, l, h);
179 if ((l&0xFFFF0000) == 0) {
180 unsigned long flags;
181 l = ((mbytes>>2)<<22)|(1<<16);
182 local_irq_save(flags);
183 wbinvd();
184 wrmsr(MSR_K6_WHCR, l, h);
185 local_irq_restore(flags);
186 pr_info("Enabling new style K6 write allocation for %d Mb\n",
187 mbytes);
188 }
189
190 return;
191 }
192
193 if (c->x86_model == 10) {
194 /* AMD Geode LX is model 10 */
195 /* placeholder for any needed mods */
196 return;
197 }
198 #endif
199 }
200
init_amd_k7(struct cpuinfo_x86 * c)201 static void init_amd_k7(struct cpuinfo_x86 *c)
202 {
203 #ifdef CONFIG_X86_32
204 u32 l, h;
205
206 /*
207 * Bit 15 of Athlon specific MSR 15, needs to be 0
208 * to enable SSE on Palomino/Morgan/Barton CPU's.
209 * If the BIOS didn't enable it already, enable it here.
210 */
211 if (c->x86_model >= 6 && c->x86_model <= 10) {
212 if (!cpu_has(c, X86_FEATURE_XMM)) {
213 pr_info("Enabling disabled K7/SSE Support.\n");
214 msr_clear_bit(MSR_K7_HWCR, 15);
215 set_cpu_cap(c, X86_FEATURE_XMM);
216 }
217 }
218
219 /*
220 * It's been determined by AMD that Athlons since model 8 stepping 1
221 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
222 * As per AMD technical note 27212 0.2
223 */
224 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
225 rdmsr(MSR_K7_CLK_CTL, l, h);
226 if ((l & 0xfff00000) != 0x20000000) {
227 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
228 l, ((l & 0x000fffff)|0x20000000));
229 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
230 }
231 }
232
233 /* calling is from identify_secondary_cpu() ? */
234 if (!c->cpu_index)
235 return;
236
237 /*
238 * Certain Athlons might work (for various values of 'work') in SMP
239 * but they are not certified as MP capable.
240 */
241 /* Athlon 660/661 is valid. */
242 if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
243 (c->x86_stepping == 1)))
244 return;
245
246 /* Duron 670 is valid */
247 if ((c->x86_model == 7) && (c->x86_stepping == 0))
248 return;
249
250 /*
251 * Athlon 662, Duron 671, and Athlon >model 7 have capability
252 * bit. It's worth noting that the A5 stepping (662) of some
253 * Athlon XP's have the MP bit set.
254 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
255 * more.
256 */
257 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
258 ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
259 (c->x86_model > 7))
260 if (cpu_has(c, X86_FEATURE_MP))
261 return;
262
263 /* If we get here, not a certified SMP capable AMD system. */
264
265 /*
266 * Don't taint if we are running SMP kernel on a single non-MP
267 * approved Athlon
268 */
269 WARN_ONCE(1, "WARNING: This combination of AMD"
270 " processors is not suitable for SMP.\n");
271 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
272 #endif
273 }
274
275 #ifdef CONFIG_NUMA
276 /*
277 * To workaround broken NUMA config. Read the comment in
278 * srat_detect_node().
279 */
nearby_node(int apicid)280 static int nearby_node(int apicid)
281 {
282 int i, node;
283
284 for (i = apicid - 1; i >= 0; i--) {
285 node = __apicid_to_node[i];
286 if (node != NUMA_NO_NODE && node_online(node))
287 return node;
288 }
289 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
290 node = __apicid_to_node[i];
291 if (node != NUMA_NO_NODE && node_online(node))
292 return node;
293 }
294 return first_node(node_online_map); /* Shouldn't happen */
295 }
296 #endif
297
srat_detect_node(struct cpuinfo_x86 * c)298 static void srat_detect_node(struct cpuinfo_x86 *c)
299 {
300 #ifdef CONFIG_NUMA
301 int cpu = smp_processor_id();
302 int node;
303 unsigned apicid = c->topo.apicid;
304
305 node = numa_cpu_node(cpu);
306 if (node == NUMA_NO_NODE)
307 node = per_cpu_llc_id(cpu);
308
309 /*
310 * On multi-fabric platform (e.g. Numascale NumaChip) a
311 * platform-specific handler needs to be called to fixup some
312 * IDs of the CPU.
313 */
314 if (x86_cpuinit.fixup_cpu_id)
315 x86_cpuinit.fixup_cpu_id(c, node);
316
317 if (!node_online(node)) {
318 /*
319 * Two possibilities here:
320 *
321 * - The CPU is missing memory and no node was created. In
322 * that case try picking one from a nearby CPU.
323 *
324 * - The APIC IDs differ from the HyperTransport node IDs
325 * which the K8 northbridge parsing fills in. Assume
326 * they are all increased by a constant offset, but in
327 * the same order as the HT nodeids. If that doesn't
328 * result in a usable node fall back to the path for the
329 * previous case.
330 *
331 * This workaround operates directly on the mapping between
332 * APIC ID and NUMA node, assuming certain relationship
333 * between APIC ID, HT node ID and NUMA topology. As going
334 * through CPU mapping may alter the outcome, directly
335 * access __apicid_to_node[].
336 */
337 int ht_nodeid = c->topo.initial_apicid;
338
339 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
340 node = __apicid_to_node[ht_nodeid];
341 /* Pick a nearby node */
342 if (!node_online(node))
343 node = nearby_node(apicid);
344 }
345 numa_set_node(cpu, node);
346 #endif
347 }
348
bsp_determine_snp(struct cpuinfo_x86 * c)349 static void bsp_determine_snp(struct cpuinfo_x86 *c)
350 {
351 #ifdef CONFIG_ARCH_HAS_CC_PLATFORM
352 cc_vendor = CC_VENDOR_AMD;
353
354 if (cpu_has(c, X86_FEATURE_SEV_SNP)) {
355 /*
356 * RMP table entry format is not architectural and is defined by the
357 * per-processor PPR. Restrict SNP support on the known CPU models
358 * for which the RMP table entry format is currently defined or for
359 * processors which support the architecturally defined RMPREAD
360 * instruction.
361 */
362 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
363 (cpu_feature_enabled(X86_FEATURE_ZEN3) ||
364 cpu_feature_enabled(X86_FEATURE_ZEN4) ||
365 cpu_feature_enabled(X86_FEATURE_RMPREAD)) &&
366 snp_probe_rmptable_info()) {
367 cc_platform_set(CC_ATTR_HOST_SEV_SNP);
368 } else {
369 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
370 cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
371 }
372 }
373 #endif
374 }
375
bsp_init_amd(struct cpuinfo_x86 * c)376 static void bsp_init_amd(struct cpuinfo_x86 *c)
377 {
378 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
379
380 if (c->x86 > 0x10 ||
381 (c->x86 == 0x10 && c->x86_model >= 0x2)) {
382 u64 val;
383
384 rdmsrl(MSR_K7_HWCR, val);
385 if (!(val & BIT(24)))
386 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
387 }
388 }
389
390 if (c->x86 == 0x15) {
391 unsigned long upperbit;
392 u32 cpuid, assoc;
393
394 cpuid = cpuid_edx(0x80000005);
395 assoc = cpuid >> 16 & 0xff;
396 upperbit = ((cpuid >> 24) << 10) / assoc;
397
398 va_align.mask = (upperbit - 1) & PAGE_MASK;
399 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
400
401 /* A random value per boot for bit slice [12:upper_bit) */
402 va_align.bits = get_random_u32() & va_align.mask;
403 }
404
405 if (cpu_has(c, X86_FEATURE_MWAITX))
406 use_mwaitx_delay();
407
408 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
409 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
410 c->x86 >= 0x15 && c->x86 <= 0x17) {
411 unsigned int bit;
412
413 switch (c->x86) {
414 case 0x15: bit = 54; break;
415 case 0x16: bit = 33; break;
416 case 0x17: bit = 10; break;
417 default: return;
418 }
419 /*
420 * Try to cache the base value so further operations can
421 * avoid RMW. If that faults, do not enable SSBD.
422 */
423 if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
424 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
425 setup_force_cpu_cap(X86_FEATURE_SSBD);
426 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
427 }
428 }
429
430 resctrl_cpu_detect(c);
431
432 /* Figure out Zen generations: */
433 switch (c->x86) {
434 case 0x17:
435 switch (c->x86_model) {
436 case 0x00 ... 0x2f:
437 case 0x50 ... 0x5f:
438 setup_force_cpu_cap(X86_FEATURE_ZEN1);
439 break;
440 case 0x30 ... 0x4f:
441 case 0x60 ... 0x7f:
442 case 0x90 ... 0x91:
443 case 0xa0 ... 0xaf:
444 setup_force_cpu_cap(X86_FEATURE_ZEN2);
445 break;
446 default:
447 goto warn;
448 }
449 break;
450
451 case 0x19:
452 switch (c->x86_model) {
453 case 0x00 ... 0x0f:
454 case 0x20 ... 0x5f:
455 setup_force_cpu_cap(X86_FEATURE_ZEN3);
456 break;
457 case 0x10 ... 0x1f:
458 case 0x60 ... 0xaf:
459 setup_force_cpu_cap(X86_FEATURE_ZEN4);
460 break;
461 default:
462 goto warn;
463 }
464 break;
465
466 case 0x1a:
467 switch (c->x86_model) {
468 case 0x00 ... 0x2f:
469 case 0x40 ... 0x4f:
470 case 0x60 ... 0x7f:
471 setup_force_cpu_cap(X86_FEATURE_ZEN5);
472 break;
473 default:
474 goto warn;
475 }
476 break;
477
478 default:
479 break;
480 }
481
482 bsp_determine_snp(c);
483 return;
484
485 warn:
486 WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model);
487 }
488
early_detect_mem_encrypt(struct cpuinfo_x86 * c)489 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
490 {
491 u64 msr;
492
493 /*
494 * BIOS support is required for SME and SEV.
495 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by
496 * the SME physical address space reduction value.
497 * If BIOS has not enabled SME then don't advertise the
498 * SME feature (set in scattered.c).
499 * If the kernel has not enabled SME via any means then
500 * don't advertise the SME feature.
501 * For SEV: If BIOS has not enabled SEV then don't advertise SEV and
502 * any additional functionality based on it.
503 *
504 * In all cases, since support for SME and SEV requires long mode,
505 * don't advertise the feature under CONFIG_X86_32.
506 */
507 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
508 /* Check if memory encryption is enabled */
509 rdmsrl(MSR_AMD64_SYSCFG, msr);
510 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
511 goto clear_all;
512
513 /*
514 * Always adjust physical address bits. Even though this
515 * will be a value above 32-bits this is still done for
516 * CONFIG_X86_32 so that accurate values are reported.
517 */
518 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
519
520 if (IS_ENABLED(CONFIG_X86_32))
521 goto clear_all;
522
523 if (!sme_me_mask)
524 setup_clear_cpu_cap(X86_FEATURE_SME);
525
526 rdmsrl(MSR_K7_HWCR, msr);
527 if (!(msr & MSR_K7_HWCR_SMMLOCK))
528 goto clear_sev;
529
530 return;
531
532 clear_all:
533 setup_clear_cpu_cap(X86_FEATURE_SME);
534 clear_sev:
535 setup_clear_cpu_cap(X86_FEATURE_SEV);
536 setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
537 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
538 }
539 }
540
early_init_amd(struct cpuinfo_x86 * c)541 static void early_init_amd(struct cpuinfo_x86 *c)
542 {
543 u32 dummy;
544
545 if (c->x86 >= 0xf)
546 set_cpu_cap(c, X86_FEATURE_K8);
547
548 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
549
550 /*
551 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
552 * with P/T states and does not stop in deep C-states
553 */
554 if (c->x86_power & (1 << 8)) {
555 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
556 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
557 }
558
559 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
560 if (c->x86_power & BIT(12))
561 set_cpu_cap(c, X86_FEATURE_ACC_POWER);
562
563 /* Bit 14 indicates the Runtime Average Power Limit interface. */
564 if (c->x86_power & BIT(14))
565 set_cpu_cap(c, X86_FEATURE_RAPL);
566
567 #ifdef CONFIG_X86_64
568 set_cpu_cap(c, X86_FEATURE_SYSCALL32);
569 #else
570 /* Set MTRR capability flag if appropriate */
571 if (c->x86 == 5)
572 if (c->x86_model == 13 || c->x86_model == 9 ||
573 (c->x86_model == 8 && c->x86_stepping >= 8))
574 set_cpu_cap(c, X86_FEATURE_K6_MTRR);
575 #endif
576 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
577 /*
578 * ApicID can always be treated as an 8-bit value for AMD APIC versions
579 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
580 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
581 * after 16h.
582 */
583 if (boot_cpu_has(X86_FEATURE_APIC)) {
584 if (c->x86 > 0x16)
585 set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
586 else if (c->x86 >= 0xf) {
587 /* check CPU config space for extended APIC ID */
588 unsigned int val;
589
590 val = read_pci_config(0, 24, 0, 0x68);
591 if ((val >> 17 & 0x3) == 0x3)
592 set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
593 }
594 }
595 #endif
596
597 /*
598 * This is only needed to tell the kernel whether to use VMCALL
599 * and VMMCALL. VMMCALL is never executed except under virt, so
600 * we can set it unconditionally.
601 */
602 set_cpu_cap(c, X86_FEATURE_VMMCALL);
603
604 /* F16h erratum 793, CVE-2013-6885 */
605 if (c->x86 == 0x16 && c->x86_model <= 0xf)
606 msr_set_bit(MSR_AMD64_LS_CFG, 15);
607
608 early_detect_mem_encrypt(c);
609
610 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) {
611 if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB))
612 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
613 else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
614 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
615 setup_force_cpu_cap(X86_FEATURE_SBPB);
616 }
617 }
618 }
619
init_amd_k8(struct cpuinfo_x86 * c)620 static void init_amd_k8(struct cpuinfo_x86 *c)
621 {
622 u32 level;
623 u64 value;
624
625 /* On C+ stepping K8 rep microcode works well for copy/memset */
626 level = cpuid_eax(1);
627 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
628 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
629
630 /*
631 * Some BIOSes incorrectly force this feature, but only K8 revision D
632 * (model = 0x14) and later actually support it.
633 * (AMD Erratum #110, docId: 25759).
634 */
635 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
636 clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
637 if (!rdmsrl_amd_safe(0xc001100d, &value)) {
638 value &= ~BIT_64(32);
639 wrmsrl_amd_safe(0xc001100d, value);
640 }
641 }
642
643 if (!c->x86_model_id[0])
644 strcpy(c->x86_model_id, "Hammer");
645
646 #ifdef CONFIG_SMP
647 /*
648 * Disable TLB flush filter by setting HWCR.FFDIS on K8
649 * bit 6 of msr C001_0015
650 *
651 * Errata 63 for SH-B3 steppings
652 * Errata 122 for all steppings (F+ have it disabled by default)
653 */
654 msr_set_bit(MSR_K7_HWCR, 6);
655 #endif
656 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
657
658 /*
659 * Check models and steppings affected by erratum 400. This is
660 * used to select the proper idle routine and to enable the
661 * check whether the machine is affected in arch_post_acpi_subsys_init()
662 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
663 */
664 if (c->x86_model > 0x41 ||
665 (c->x86_model == 0x41 && c->x86_stepping >= 0x2))
666 setup_force_cpu_bug(X86_BUG_AMD_E400);
667 }
668
init_amd_gh(struct cpuinfo_x86 * c)669 static void init_amd_gh(struct cpuinfo_x86 *c)
670 {
671 #ifdef CONFIG_MMCONF_FAM10H
672 /* do this for boot cpu */
673 if (c == &boot_cpu_data)
674 check_enable_amd_mmconf_dmi();
675
676 fam10h_check_enable_mmcfg();
677 #endif
678
679 /*
680 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
681 * is always needed when GART is enabled, even in a kernel which has no
682 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
683 * If it doesn't, we do it here as suggested by the BKDG.
684 *
685 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
686 */
687 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
688
689 /*
690 * On family 10h BIOS may not have properly enabled WC+ support, causing
691 * it to be converted to CD memtype. This may result in performance
692 * degradation for certain nested-paging guests. Prevent this conversion
693 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
694 *
695 * NOTE: we want to use the _safe accessors so as not to #GP kvm
696 * guests on older kvm hosts.
697 */
698 msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
699
700 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
701
702 /*
703 * Check models and steppings affected by erratum 400. This is
704 * used to select the proper idle routine and to enable the
705 * check whether the machine is affected in arch_post_acpi_subsys_init()
706 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
707 */
708 if (c->x86_model > 0x2 ||
709 (c->x86_model == 0x2 && c->x86_stepping >= 0x1))
710 setup_force_cpu_bug(X86_BUG_AMD_E400);
711 }
712
init_amd_ln(struct cpuinfo_x86 * c)713 static void init_amd_ln(struct cpuinfo_x86 *c)
714 {
715 /*
716 * Apply erratum 665 fix unconditionally so machines without a BIOS
717 * fix work.
718 */
719 msr_set_bit(MSR_AMD64_DE_CFG, 31);
720 }
721
722 static bool rdrand_force;
723
rdrand_cmdline(char * str)724 static int __init rdrand_cmdline(char *str)
725 {
726 if (!str)
727 return -EINVAL;
728
729 if (!strcmp(str, "force"))
730 rdrand_force = true;
731 else
732 return -EINVAL;
733
734 return 0;
735 }
736 early_param("rdrand", rdrand_cmdline);
737
clear_rdrand_cpuid_bit(struct cpuinfo_x86 * c)738 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
739 {
740 /*
741 * Saving of the MSR used to hide the RDRAND support during
742 * suspend/resume is done by arch/x86/power/cpu.c, which is
743 * dependent on CONFIG_PM_SLEEP.
744 */
745 if (!IS_ENABLED(CONFIG_PM_SLEEP))
746 return;
747
748 /*
749 * The self-test can clear X86_FEATURE_RDRAND, so check for
750 * RDRAND support using the CPUID function directly.
751 */
752 if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
753 return;
754
755 msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
756
757 /*
758 * Verify that the CPUID change has occurred in case the kernel is
759 * running virtualized and the hypervisor doesn't support the MSR.
760 */
761 if (cpuid_ecx(1) & BIT(30)) {
762 pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
763 return;
764 }
765
766 clear_cpu_cap(c, X86_FEATURE_RDRAND);
767 pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
768 }
769
init_amd_jg(struct cpuinfo_x86 * c)770 static void init_amd_jg(struct cpuinfo_x86 *c)
771 {
772 /*
773 * Some BIOS implementations do not restore proper RDRAND support
774 * across suspend and resume. Check on whether to hide the RDRAND
775 * instruction support via CPUID.
776 */
777 clear_rdrand_cpuid_bit(c);
778 }
779
init_amd_bd(struct cpuinfo_x86 * c)780 static void init_amd_bd(struct cpuinfo_x86 *c)
781 {
782 u64 value;
783
784 /*
785 * The way access filter has a performance penalty on some workloads.
786 * Disable it on the affected CPUs.
787 */
788 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
789 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
790 value |= 0x1E;
791 wrmsrl_safe(MSR_F15H_IC_CFG, value);
792 }
793 }
794
795 /*
796 * Some BIOS implementations do not restore proper RDRAND support
797 * across suspend and resume. Check on whether to hide the RDRAND
798 * instruction support via CPUID.
799 */
800 clear_rdrand_cpuid_bit(c);
801 }
802
803 static const struct x86_cpu_id erratum_1386_microcode[] = {
804 X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x01), 0x2, 0x2, 0x0800126e),
805 X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x31), 0x0, 0x0, 0x08301052),
806 };
807
fix_erratum_1386(struct cpuinfo_x86 * c)808 static void fix_erratum_1386(struct cpuinfo_x86 *c)
809 {
810 /*
811 * Work around Erratum 1386. The XSAVES instruction malfunctions in
812 * certain circumstances on Zen1/2 uarch, and not all parts have had
813 * updated microcode at the time of writing (March 2023).
814 *
815 * Affected parts all have no supervisor XSAVE states, meaning that
816 * the XSAVEC instruction (which works fine) is equivalent.
817 *
818 * Clear the feature flag only on microcode revisions which
819 * don't have the fix.
820 */
821 if (x86_match_min_microcode_rev(erratum_1386_microcode))
822 return;
823
824 clear_cpu_cap(c, X86_FEATURE_XSAVES);
825 }
826
init_spectral_chicken(struct cpuinfo_x86 * c)827 void init_spectral_chicken(struct cpuinfo_x86 *c)
828 {
829 #ifdef CONFIG_MITIGATION_UNRET_ENTRY
830 u64 value;
831
832 /*
833 * On Zen2 we offer this chicken (bit) on the altar of Speculation.
834 *
835 * This suppresses speculation from the middle of a basic block, i.e. it
836 * suppresses non-branch predictions.
837 */
838 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
839 if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
840 value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
841 wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
842 }
843 }
844 #endif
845 }
846
init_amd_zen_common(void)847 static void init_amd_zen_common(void)
848 {
849 setup_force_cpu_cap(X86_FEATURE_ZEN);
850 #ifdef CONFIG_NUMA
851 node_reclaim_distance = 32;
852 #endif
853 }
854
init_amd_zen1(struct cpuinfo_x86 * c)855 static void init_amd_zen1(struct cpuinfo_x86 *c)
856 {
857 fix_erratum_1386(c);
858
859 /* Fix up CPUID bits, but only if not virtualised. */
860 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
861
862 /* Erratum 1076: CPB feature bit not being set in CPUID. */
863 if (!cpu_has(c, X86_FEATURE_CPB))
864 set_cpu_cap(c, X86_FEATURE_CPB);
865 }
866
867 pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
868 setup_force_cpu_bug(X86_BUG_DIV0);
869 }
870
cpu_has_zenbleed_microcode(void)871 static bool cpu_has_zenbleed_microcode(void)
872 {
873 u32 good_rev = 0;
874
875 switch (boot_cpu_data.x86_model) {
876 case 0x30 ... 0x3f: good_rev = 0x0830107b; break;
877 case 0x60 ... 0x67: good_rev = 0x0860010c; break;
878 case 0x68 ... 0x6f: good_rev = 0x08608107; break;
879 case 0x70 ... 0x7f: good_rev = 0x08701033; break;
880 case 0xa0 ... 0xaf: good_rev = 0x08a00009; break;
881
882 default:
883 return false;
884 }
885
886 if (boot_cpu_data.microcode < good_rev)
887 return false;
888
889 return true;
890 }
891
zen2_zenbleed_check(struct cpuinfo_x86 * c)892 static void zen2_zenbleed_check(struct cpuinfo_x86 *c)
893 {
894 if (cpu_has(c, X86_FEATURE_HYPERVISOR))
895 return;
896
897 if (!cpu_has(c, X86_FEATURE_AVX))
898 return;
899
900 if (!cpu_has_zenbleed_microcode()) {
901 pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
902 msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
903 } else {
904 msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
905 }
906 }
907
init_amd_zen2(struct cpuinfo_x86 * c)908 static void init_amd_zen2(struct cpuinfo_x86 *c)
909 {
910 init_spectral_chicken(c);
911 fix_erratum_1386(c);
912 zen2_zenbleed_check(c);
913 }
914
init_amd_zen3(struct cpuinfo_x86 * c)915 static void init_amd_zen3(struct cpuinfo_x86 *c)
916 {
917 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
918 /*
919 * Zen3 (Fam19 model < 0x10) parts are not susceptible to
920 * Branch Type Confusion, but predate the allocation of the
921 * BTC_NO bit.
922 */
923 if (!cpu_has(c, X86_FEATURE_BTC_NO))
924 set_cpu_cap(c, X86_FEATURE_BTC_NO);
925 }
926 }
927
init_amd_zen4(struct cpuinfo_x86 * c)928 static void init_amd_zen4(struct cpuinfo_x86 *c)
929 {
930 if (!cpu_has(c, X86_FEATURE_HYPERVISOR))
931 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
932
933 /*
934 * These Zen4 SoCs advertise support for virtualized VMLOAD/VMSAVE
935 * in some BIOS versions but they can lead to random host reboots.
936 */
937 switch (c->x86_model) {
938 case 0x18 ... 0x1f:
939 case 0x60 ... 0x7f:
940 clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD);
941 break;
942 }
943 }
944
init_amd_zen5(struct cpuinfo_x86 * c)945 static void init_amd_zen5(struct cpuinfo_x86 *c)
946 {
947 }
948
init_amd(struct cpuinfo_x86 * c)949 static void init_amd(struct cpuinfo_x86 *c)
950 {
951 u64 vm_cr;
952
953 early_init_amd(c);
954
955 /*
956 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
957 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
958 */
959 clear_cpu_cap(c, 0*32+31);
960
961 if (c->x86 >= 0x10)
962 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
963
964 /* AMD FSRM also implies FSRS */
965 if (cpu_has(c, X86_FEATURE_FSRM))
966 set_cpu_cap(c, X86_FEATURE_FSRS);
967
968 /* K6s reports MCEs but don't actually have all the MSRs */
969 if (c->x86 < 6)
970 clear_cpu_cap(c, X86_FEATURE_MCE);
971
972 switch (c->x86) {
973 case 4: init_amd_k5(c); break;
974 case 5: init_amd_k6(c); break;
975 case 6: init_amd_k7(c); break;
976 case 0xf: init_amd_k8(c); break;
977 case 0x10: init_amd_gh(c); break;
978 case 0x12: init_amd_ln(c); break;
979 case 0x15: init_amd_bd(c); break;
980 case 0x16: init_amd_jg(c); break;
981 }
982
983 /*
984 * Save up on some future enablement work and do common Zen
985 * settings.
986 */
987 if (c->x86 >= 0x17)
988 init_amd_zen_common();
989
990 if (boot_cpu_has(X86_FEATURE_ZEN1))
991 init_amd_zen1(c);
992 else if (boot_cpu_has(X86_FEATURE_ZEN2))
993 init_amd_zen2(c);
994 else if (boot_cpu_has(X86_FEATURE_ZEN3))
995 init_amd_zen3(c);
996 else if (boot_cpu_has(X86_FEATURE_ZEN4))
997 init_amd_zen4(c);
998 else if (boot_cpu_has(X86_FEATURE_ZEN5))
999 init_amd_zen5(c);
1000
1001 /*
1002 * Enable workaround for FXSAVE leak on CPUs
1003 * without a XSaveErPtr feature
1004 */
1005 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1006 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1007
1008 cpu_detect_cache_sizes(c);
1009
1010 srat_detect_node(c);
1011
1012 init_amd_cacheinfo(c);
1013
1014 if (cpu_has(c, X86_FEATURE_SVM)) {
1015 rdmsrl(MSR_VM_CR, vm_cr);
1016 if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) {
1017 pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n");
1018 clear_cpu_cap(c, X86_FEATURE_SVM);
1019 }
1020 }
1021
1022 if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
1023 /*
1024 * Use LFENCE for execution serialization. On families which
1025 * don't have that MSR, LFENCE is already serializing.
1026 * msr_set_bit() uses the safe accessors, too, even if the MSR
1027 * is not present.
1028 */
1029 msr_set_bit(MSR_AMD64_DE_CFG,
1030 MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1031
1032 /* A serializing LFENCE stops RDTSC speculation */
1033 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1034 }
1035
1036 /*
1037 * Family 0x12 and above processors have APIC timer
1038 * running in deep C states.
1039 */
1040 if (c->x86 > 0x11)
1041 set_cpu_cap(c, X86_FEATURE_ARAT);
1042
1043 /* 3DNow or LM implies PREFETCHW */
1044 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1045 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1046 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1047
1048 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1049 if (!cpu_feature_enabled(X86_FEATURE_XENPV))
1050 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1051
1052 /*
1053 * Turn on the Instructions Retired free counter on machines not
1054 * susceptible to erratum #1054 "Instructions Retired Performance
1055 * Counter May Be Inaccurate".
1056 */
1057 if (cpu_has(c, X86_FEATURE_IRPERF) &&
1058 (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f))
1059 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1060
1061 check_null_seg_clears_base(c);
1062
1063 /*
1064 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up
1065 * using the trampoline code and as part of it, MSR_EFER gets prepared there in
1066 * order to be replicated onto them. Regardless, set it here again, if not set,
1067 * to protect against any future refactoring/code reorganization which might
1068 * miss setting this important bit.
1069 */
1070 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1071 cpu_has(c, X86_FEATURE_AUTOIBRS))
1072 WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS) < 0);
1073
1074 /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */
1075 clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1076 }
1077
1078 #ifdef CONFIG_X86_32
amd_size_cache(struct cpuinfo_x86 * c,unsigned int size)1079 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1080 {
1081 /* AMD errata T13 (order #21922) */
1082 if (c->x86 == 6) {
1083 /* Duron Rev A0 */
1084 if (c->x86_model == 3 && c->x86_stepping == 0)
1085 size = 64;
1086 /* Tbird rev A1/A2 */
1087 if (c->x86_model == 4 &&
1088 (c->x86_stepping == 0 || c->x86_stepping == 1))
1089 size = 256;
1090 }
1091 return size;
1092 }
1093 #endif
1094
cpu_detect_tlb_amd(struct cpuinfo_x86 * c)1095 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1096 {
1097 u32 ebx, eax, ecx, edx;
1098 u16 mask = 0xfff;
1099
1100 if (c->x86 < 0xf)
1101 return;
1102
1103 if (c->extended_cpuid_level < 0x80000006)
1104 return;
1105
1106 cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1107
1108 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
1109 tlb_lli_4k[ENTRIES] = ebx & mask;
1110
1111 /*
1112 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1113 * characteristics from the CPUID function 0x80000005 instead.
1114 */
1115 if (c->x86 == 0xf) {
1116 cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1117 mask = 0xff;
1118 }
1119
1120 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1121 if (!((eax >> 16) & mask))
1122 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
1123 else
1124 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
1125
1126 /* a 4M entry uses two 2M entries */
1127 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
1128
1129 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1130 if (!(eax & mask)) {
1131 /* Erratum 658 */
1132 if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1133 tlb_lli_2m[ENTRIES] = 1024;
1134 } else {
1135 cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1136 tlb_lli_2m[ENTRIES] = eax & 0xff;
1137 }
1138 } else
1139 tlb_lli_2m[ENTRIES] = eax & mask;
1140
1141 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
1142 }
1143
1144 static const struct cpu_dev amd_cpu_dev = {
1145 .c_vendor = "AMD",
1146 .c_ident = { "AuthenticAMD" },
1147 #ifdef CONFIG_X86_32
1148 .legacy_models = {
1149 { .family = 4, .model_names =
1150 {
1151 [3] = "486 DX/2",
1152 [7] = "486 DX/2-WB",
1153 [8] = "486 DX/4",
1154 [9] = "486 DX/4-WB",
1155 [14] = "Am5x86-WT",
1156 [15] = "Am5x86-WB"
1157 }
1158 },
1159 },
1160 .legacy_cache_size = amd_size_cache,
1161 #endif
1162 .c_early_init = early_init_amd,
1163 .c_detect_tlb = cpu_detect_tlb_amd,
1164 .c_bsp_init = bsp_init_amd,
1165 .c_init = init_amd,
1166 .c_x86_vendor = X86_VENDOR_AMD,
1167 };
1168
1169 cpu_dev_register(amd_cpu_dev);
1170
1171 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
1172
1173 static unsigned int amd_msr_dr_addr_masks[] = {
1174 MSR_F16H_DR0_ADDR_MASK,
1175 MSR_F16H_DR1_ADDR_MASK,
1176 MSR_F16H_DR1_ADDR_MASK + 1,
1177 MSR_F16H_DR1_ADDR_MASK + 2
1178 };
1179
amd_set_dr_addr_mask(unsigned long mask,unsigned int dr)1180 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
1181 {
1182 int cpu = smp_processor_id();
1183
1184 if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1185 return;
1186
1187 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1188 return;
1189
1190 if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
1191 return;
1192
1193 wrmsr(amd_msr_dr_addr_masks[dr], mask, 0);
1194 per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
1195 }
1196
amd_get_dr_addr_mask(unsigned int dr)1197 unsigned long amd_get_dr_addr_mask(unsigned int dr)
1198 {
1199 if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1200 return 0;
1201
1202 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1203 return 0;
1204
1205 return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
1206 }
1207 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
1208
zenbleed_check_cpu(void * unused)1209 static void zenbleed_check_cpu(void *unused)
1210 {
1211 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1212
1213 zen2_zenbleed_check(c);
1214 }
1215
amd_check_microcode(void)1216 void amd_check_microcode(void)
1217 {
1218 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1219 return;
1220
1221 if (cpu_feature_enabled(X86_FEATURE_ZEN2))
1222 on_each_cpu(zenbleed_check_cpu, NULL, 1);
1223 }
1224