xref: /linux/arch/x86/kernel/cpu/amd.c (revision 442bc81bd344dc52c37d8f80b854cc6da062b2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bitops.h>
4 #include <linux/elf.h>
5 #include <linux/mm.h>
6 
7 #include <linux/io.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/random.h>
11 #include <linux/topology.h>
12 #include <asm/processor.h>
13 #include <asm/apic.h>
14 #include <asm/cacheinfo.h>
15 #include <asm/cpu.h>
16 #include <asm/cpu_device_id.h>
17 #include <asm/spec-ctrl.h>
18 #include <asm/smp.h>
19 #include <asm/numa.h>
20 #include <asm/pci-direct.h>
21 #include <asm/delay.h>
22 #include <asm/debugreg.h>
23 #include <asm/resctrl.h>
24 #include <asm/sev.h>
25 
26 #ifdef CONFIG_X86_64
27 # include <asm/mmconfig.h>
28 #endif
29 
30 #include "cpu.h"
31 
rdmsrl_amd_safe(unsigned msr,unsigned long long * p)32 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
33 {
34 	u32 gprs[8] = { 0 };
35 	int err;
36 
37 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
38 		  "%s should only be used on K8!\n", __func__);
39 
40 	gprs[1] = msr;
41 	gprs[7] = 0x9c5a203a;
42 
43 	err = rdmsr_safe_regs(gprs);
44 
45 	*p = gprs[0] | ((u64)gprs[2] << 32);
46 
47 	return err;
48 }
49 
wrmsrl_amd_safe(unsigned msr,unsigned long long val)50 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
51 {
52 	u32 gprs[8] = { 0 };
53 
54 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
55 		  "%s should only be used on K8!\n", __func__);
56 
57 	gprs[0] = (u32)val;
58 	gprs[1] = msr;
59 	gprs[2] = val >> 32;
60 	gprs[7] = 0x9c5a203a;
61 
62 	return wrmsr_safe_regs(gprs);
63 }
64 
65 /*
66  *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause
67  *	misexecution of code under Linux. Owners of such processors should
68  *	contact AMD for precise details and a CPU swap.
69  *
70  *	See	http://www.multimania.com/poulot/k6bug.html
71  *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
72  *		(Publication # 21266  Issue Date: August 1998)
73  *
74  *	The following test is erm.. interesting. AMD neglected to up
75  *	the chip setting when fixing the bug but they also tweaked some
76  *	performance at the same time..
77  */
78 
79 #ifdef CONFIG_X86_32
80 extern __visible void vide(void);
81 __asm__(".text\n"
82 	".globl vide\n"
83 	".type vide, @function\n"
84 	".align 4\n"
85 	"vide: ret\n");
86 #endif
87 
init_amd_k5(struct cpuinfo_x86 * c)88 static void init_amd_k5(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_32
91 /*
92  * General Systems BIOSen alias the cpu frequency registers
93  * of the Elan at 0x000df000. Unfortunately, one of the Linux
94  * drivers subsequently pokes it, and changes the CPU speed.
95  * Workaround : Remove the unneeded alias.
96  */
97 #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */
98 #define CBAR_ENB	(0x80000000)
99 #define CBAR_KEY	(0X000000CB)
100 	if (c->x86_model == 9 || c->x86_model == 10) {
101 		if (inl(CBAR) & CBAR_ENB)
102 			outl(0 | CBAR_KEY, CBAR);
103 	}
104 #endif
105 }
106 
init_amd_k6(struct cpuinfo_x86 * c)107 static void init_amd_k6(struct cpuinfo_x86 *c)
108 {
109 #ifdef CONFIG_X86_32
110 	u32 l, h;
111 	int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
112 
113 	if (c->x86_model < 6) {
114 		/* Based on AMD doc 20734R - June 2000 */
115 		if (c->x86_model == 0) {
116 			clear_cpu_cap(c, X86_FEATURE_APIC);
117 			set_cpu_cap(c, X86_FEATURE_PGE);
118 		}
119 		return;
120 	}
121 
122 	if (c->x86_model == 6 && c->x86_stepping == 1) {
123 		const int K6_BUG_LOOP = 1000000;
124 		int n;
125 		void (*f_vide)(void);
126 		u64 d, d2;
127 
128 		pr_info("AMD K6 stepping B detected - ");
129 
130 		/*
131 		 * It looks like AMD fixed the 2.6.2 bug and improved indirect
132 		 * calls at the same time.
133 		 */
134 
135 		n = K6_BUG_LOOP;
136 		f_vide = vide;
137 		OPTIMIZER_HIDE_VAR(f_vide);
138 		d = rdtsc();
139 		while (n--)
140 			f_vide();
141 		d2 = rdtsc();
142 		d = d2-d;
143 
144 		if (d > 20*K6_BUG_LOOP)
145 			pr_cont("system stability may be impaired when more than 32 MB are used.\n");
146 		else
147 			pr_cont("probably OK (after B9730xxxx).\n");
148 	}
149 
150 	/* K6 with old style WHCR */
151 	if (c->x86_model < 8 ||
152 	   (c->x86_model == 8 && c->x86_stepping < 8)) {
153 		/* We can only write allocate on the low 508Mb */
154 		if (mbytes > 508)
155 			mbytes = 508;
156 
157 		rdmsr(MSR_K6_WHCR, l, h);
158 		if ((l&0x0000FFFF) == 0) {
159 			unsigned long flags;
160 			l = (1<<0)|((mbytes/4)<<1);
161 			local_irq_save(flags);
162 			wbinvd();
163 			wrmsr(MSR_K6_WHCR, l, h);
164 			local_irq_restore(flags);
165 			pr_info("Enabling old style K6 write allocation for %d Mb\n",
166 				mbytes);
167 		}
168 		return;
169 	}
170 
171 	if ((c->x86_model == 8 && c->x86_stepping > 7) ||
172 	     c->x86_model == 9 || c->x86_model == 13) {
173 		/* The more serious chips .. */
174 
175 		if (mbytes > 4092)
176 			mbytes = 4092;
177 
178 		rdmsr(MSR_K6_WHCR, l, h);
179 		if ((l&0xFFFF0000) == 0) {
180 			unsigned long flags;
181 			l = ((mbytes>>2)<<22)|(1<<16);
182 			local_irq_save(flags);
183 			wbinvd();
184 			wrmsr(MSR_K6_WHCR, l, h);
185 			local_irq_restore(flags);
186 			pr_info("Enabling new style K6 write allocation for %d Mb\n",
187 				mbytes);
188 		}
189 
190 		return;
191 	}
192 
193 	if (c->x86_model == 10) {
194 		/* AMD Geode LX is model 10 */
195 		/* placeholder for any needed mods */
196 		return;
197 	}
198 #endif
199 }
200 
init_amd_k7(struct cpuinfo_x86 * c)201 static void init_amd_k7(struct cpuinfo_x86 *c)
202 {
203 #ifdef CONFIG_X86_32
204 	u32 l, h;
205 
206 	/*
207 	 * Bit 15 of Athlon specific MSR 15, needs to be 0
208 	 * to enable SSE on Palomino/Morgan/Barton CPU's.
209 	 * If the BIOS didn't enable it already, enable it here.
210 	 */
211 	if (c->x86_model >= 6 && c->x86_model <= 10) {
212 		if (!cpu_has(c, X86_FEATURE_XMM)) {
213 			pr_info("Enabling disabled K7/SSE Support.\n");
214 			msr_clear_bit(MSR_K7_HWCR, 15);
215 			set_cpu_cap(c, X86_FEATURE_XMM);
216 		}
217 	}
218 
219 	/*
220 	 * It's been determined by AMD that Athlons since model 8 stepping 1
221 	 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
222 	 * As per AMD technical note 27212 0.2
223 	 */
224 	if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
225 		rdmsr(MSR_K7_CLK_CTL, l, h);
226 		if ((l & 0xfff00000) != 0x20000000) {
227 			pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
228 				l, ((l & 0x000fffff)|0x20000000));
229 			wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
230 		}
231 	}
232 
233 	/* calling is from identify_secondary_cpu() ? */
234 	if (!c->cpu_index)
235 		return;
236 
237 	/*
238 	 * Certain Athlons might work (for various values of 'work') in SMP
239 	 * but they are not certified as MP capable.
240 	 */
241 	/* Athlon 660/661 is valid. */
242 	if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
243 	    (c->x86_stepping == 1)))
244 		return;
245 
246 	/* Duron 670 is valid */
247 	if ((c->x86_model == 7) && (c->x86_stepping == 0))
248 		return;
249 
250 	/*
251 	 * Athlon 662, Duron 671, and Athlon >model 7 have capability
252 	 * bit. It's worth noting that the A5 stepping (662) of some
253 	 * Athlon XP's have the MP bit set.
254 	 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
255 	 * more.
256 	 */
257 	if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
258 	    ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
259 	     (c->x86_model > 7))
260 		if (cpu_has(c, X86_FEATURE_MP))
261 			return;
262 
263 	/* If we get here, not a certified SMP capable AMD system. */
264 
265 	/*
266 	 * Don't taint if we are running SMP kernel on a single non-MP
267 	 * approved Athlon
268 	 */
269 	WARN_ONCE(1, "WARNING: This combination of AMD"
270 		" processors is not suitable for SMP.\n");
271 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
272 #endif
273 }
274 
275 #ifdef CONFIG_NUMA
276 /*
277  * To workaround broken NUMA config.  Read the comment in
278  * srat_detect_node().
279  */
nearby_node(int apicid)280 static int nearby_node(int apicid)
281 {
282 	int i, node;
283 
284 	for (i = apicid - 1; i >= 0; i--) {
285 		node = __apicid_to_node[i];
286 		if (node != NUMA_NO_NODE && node_online(node))
287 			return node;
288 	}
289 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
290 		node = __apicid_to_node[i];
291 		if (node != NUMA_NO_NODE && node_online(node))
292 			return node;
293 	}
294 	return first_node(node_online_map); /* Shouldn't happen */
295 }
296 #endif
297 
srat_detect_node(struct cpuinfo_x86 * c)298 static void srat_detect_node(struct cpuinfo_x86 *c)
299 {
300 #ifdef CONFIG_NUMA
301 	int cpu = smp_processor_id();
302 	int node;
303 	unsigned apicid = c->topo.apicid;
304 
305 	node = numa_cpu_node(cpu);
306 	if (node == NUMA_NO_NODE)
307 		node = per_cpu_llc_id(cpu);
308 
309 	/*
310 	 * On multi-fabric platform (e.g. Numascale NumaChip) a
311 	 * platform-specific handler needs to be called to fixup some
312 	 * IDs of the CPU.
313 	 */
314 	if (x86_cpuinit.fixup_cpu_id)
315 		x86_cpuinit.fixup_cpu_id(c, node);
316 
317 	if (!node_online(node)) {
318 		/*
319 		 * Two possibilities here:
320 		 *
321 		 * - The CPU is missing memory and no node was created.  In
322 		 *   that case try picking one from a nearby CPU.
323 		 *
324 		 * - The APIC IDs differ from the HyperTransport node IDs
325 		 *   which the K8 northbridge parsing fills in.  Assume
326 		 *   they are all increased by a constant offset, but in
327 		 *   the same order as the HT nodeids.  If that doesn't
328 		 *   result in a usable node fall back to the path for the
329 		 *   previous case.
330 		 *
331 		 * This workaround operates directly on the mapping between
332 		 * APIC ID and NUMA node, assuming certain relationship
333 		 * between APIC ID, HT node ID and NUMA topology.  As going
334 		 * through CPU mapping may alter the outcome, directly
335 		 * access __apicid_to_node[].
336 		 */
337 		int ht_nodeid = c->topo.initial_apicid;
338 
339 		if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
340 			node = __apicid_to_node[ht_nodeid];
341 		/* Pick a nearby node */
342 		if (!node_online(node))
343 			node = nearby_node(apicid);
344 	}
345 	numa_set_node(cpu, node);
346 #endif
347 }
348 
bsp_determine_snp(struct cpuinfo_x86 * c)349 static void bsp_determine_snp(struct cpuinfo_x86 *c)
350 {
351 #ifdef CONFIG_ARCH_HAS_CC_PLATFORM
352 	cc_vendor = CC_VENDOR_AMD;
353 
354 	if (cpu_has(c, X86_FEATURE_SEV_SNP)) {
355 		/*
356 		 * RMP table entry format is not architectural and is defined by the
357 		 * per-processor PPR. Restrict SNP support on the known CPU models
358 		 * for which the RMP table entry format is currently defined or for
359 		 * processors which support the architecturally defined RMPREAD
360 		 * instruction.
361 		 */
362 		if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
363 		    (cpu_feature_enabled(X86_FEATURE_ZEN3) ||
364 		     cpu_feature_enabled(X86_FEATURE_ZEN4) ||
365 		     cpu_feature_enabled(X86_FEATURE_RMPREAD)) &&
366 		    snp_probe_rmptable_info()) {
367 			cc_platform_set(CC_ATTR_HOST_SEV_SNP);
368 		} else {
369 			setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
370 			cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
371 		}
372 	}
373 #endif
374 }
375 
bsp_init_amd(struct cpuinfo_x86 * c)376 static void bsp_init_amd(struct cpuinfo_x86 *c)
377 {
378 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
379 
380 		if (c->x86 > 0x10 ||
381 		    (c->x86 == 0x10 && c->x86_model >= 0x2)) {
382 			u64 val;
383 
384 			rdmsrl(MSR_K7_HWCR, val);
385 			if (!(val & BIT(24)))
386 				pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
387 		}
388 	}
389 
390 	if (c->x86 == 0x15) {
391 		unsigned long upperbit;
392 		u32 cpuid, assoc;
393 
394 		cpuid	 = cpuid_edx(0x80000005);
395 		assoc	 = cpuid >> 16 & 0xff;
396 		upperbit = ((cpuid >> 24) << 10) / assoc;
397 
398 		va_align.mask	  = (upperbit - 1) & PAGE_MASK;
399 		va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64;
400 
401 		/* A random value per boot for bit slice [12:upper_bit) */
402 		va_align.bits = get_random_u32() & va_align.mask;
403 	}
404 
405 	if (cpu_has(c, X86_FEATURE_MWAITX))
406 		use_mwaitx_delay();
407 
408 	if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
409 	    !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
410 	    c->x86 >= 0x15 && c->x86 <= 0x17) {
411 		unsigned int bit;
412 
413 		switch (c->x86) {
414 		case 0x15: bit = 54; break;
415 		case 0x16: bit = 33; break;
416 		case 0x17: bit = 10; break;
417 		default: return;
418 		}
419 		/*
420 		 * Try to cache the base value so further operations can
421 		 * avoid RMW. If that faults, do not enable SSBD.
422 		 */
423 		if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
424 			setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
425 			setup_force_cpu_cap(X86_FEATURE_SSBD);
426 			x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
427 		}
428 	}
429 
430 	resctrl_cpu_detect(c);
431 
432 	/* Figure out Zen generations: */
433 	switch (c->x86) {
434 	case 0x17:
435 		switch (c->x86_model) {
436 		case 0x00 ... 0x2f:
437 		case 0x50 ... 0x5f:
438 			setup_force_cpu_cap(X86_FEATURE_ZEN1);
439 			break;
440 		case 0x30 ... 0x4f:
441 		case 0x60 ... 0x7f:
442 		case 0x90 ... 0x91:
443 		case 0xa0 ... 0xaf:
444 			setup_force_cpu_cap(X86_FEATURE_ZEN2);
445 			break;
446 		default:
447 			goto warn;
448 		}
449 		break;
450 
451 	case 0x19:
452 		switch (c->x86_model) {
453 		case 0x00 ... 0x0f:
454 		case 0x20 ... 0x5f:
455 			setup_force_cpu_cap(X86_FEATURE_ZEN3);
456 			break;
457 		case 0x10 ... 0x1f:
458 		case 0x60 ... 0xaf:
459 			setup_force_cpu_cap(X86_FEATURE_ZEN4);
460 			break;
461 		default:
462 			goto warn;
463 		}
464 		break;
465 
466 	case 0x1a:
467 		switch (c->x86_model) {
468 		case 0x00 ... 0x2f:
469 		case 0x40 ... 0x4f:
470 		case 0x60 ... 0x7f:
471 			setup_force_cpu_cap(X86_FEATURE_ZEN5);
472 			break;
473 		default:
474 			goto warn;
475 		}
476 		break;
477 
478 	default:
479 		break;
480 	}
481 
482 	bsp_determine_snp(c);
483 	return;
484 
485 warn:
486 	WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model);
487 }
488 
early_detect_mem_encrypt(struct cpuinfo_x86 * c)489 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
490 {
491 	u64 msr;
492 
493 	/*
494 	 * BIOS support is required for SME and SEV.
495 	 *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by
496 	 *	      the SME physical address space reduction value.
497 	 *	      If BIOS has not enabled SME then don't advertise the
498 	 *	      SME feature (set in scattered.c).
499 	 *	      If the kernel has not enabled SME via any means then
500 	 *	      don't advertise the SME feature.
501 	 *   For SEV: If BIOS has not enabled SEV then don't advertise SEV and
502 	 *	      any additional functionality based on it.
503 	 *
504 	 *   In all cases, since support for SME and SEV requires long mode,
505 	 *   don't advertise the feature under CONFIG_X86_32.
506 	 */
507 	if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
508 		/* Check if memory encryption is enabled */
509 		rdmsrl(MSR_AMD64_SYSCFG, msr);
510 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
511 			goto clear_all;
512 
513 		/*
514 		 * Always adjust physical address bits. Even though this
515 		 * will be a value above 32-bits this is still done for
516 		 * CONFIG_X86_32 so that accurate values are reported.
517 		 */
518 		c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
519 
520 		if (IS_ENABLED(CONFIG_X86_32))
521 			goto clear_all;
522 
523 		if (!sme_me_mask)
524 			setup_clear_cpu_cap(X86_FEATURE_SME);
525 
526 		rdmsrl(MSR_K7_HWCR, msr);
527 		if (!(msr & MSR_K7_HWCR_SMMLOCK))
528 			goto clear_sev;
529 
530 		return;
531 
532 clear_all:
533 		setup_clear_cpu_cap(X86_FEATURE_SME);
534 clear_sev:
535 		setup_clear_cpu_cap(X86_FEATURE_SEV);
536 		setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
537 		setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
538 	}
539 }
540 
early_init_amd(struct cpuinfo_x86 * c)541 static void early_init_amd(struct cpuinfo_x86 *c)
542 {
543 	u32 dummy;
544 
545 	if (c->x86 >= 0xf)
546 		set_cpu_cap(c, X86_FEATURE_K8);
547 
548 	rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
549 
550 	/*
551 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
552 	 * with P/T states and does not stop in deep C-states
553 	 */
554 	if (c->x86_power & (1 << 8)) {
555 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
556 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
557 	}
558 
559 	/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
560 	if (c->x86_power & BIT(12))
561 		set_cpu_cap(c, X86_FEATURE_ACC_POWER);
562 
563 	/* Bit 14 indicates the Runtime Average Power Limit interface. */
564 	if (c->x86_power & BIT(14))
565 		set_cpu_cap(c, X86_FEATURE_RAPL);
566 
567 #ifdef CONFIG_X86_64
568 	set_cpu_cap(c, X86_FEATURE_SYSCALL32);
569 #else
570 	/*  Set MTRR capability flag if appropriate */
571 	if (c->x86 == 5)
572 		if (c->x86_model == 13 || c->x86_model == 9 ||
573 		    (c->x86_model == 8 && c->x86_stepping >= 8))
574 			set_cpu_cap(c, X86_FEATURE_K6_MTRR);
575 #endif
576 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
577 	/*
578 	 * ApicID can always be treated as an 8-bit value for AMD APIC versions
579 	 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
580 	 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
581 	 * after 16h.
582 	 */
583 	if (boot_cpu_has(X86_FEATURE_APIC)) {
584 		if (c->x86 > 0x16)
585 			set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
586 		else if (c->x86 >= 0xf) {
587 			/* check CPU config space for extended APIC ID */
588 			unsigned int val;
589 
590 			val = read_pci_config(0, 24, 0, 0x68);
591 			if ((val >> 17 & 0x3) == 0x3)
592 				set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
593 		}
594 	}
595 #endif
596 
597 	/*
598 	 * This is only needed to tell the kernel whether to use VMCALL
599 	 * and VMMCALL.  VMMCALL is never executed except under virt, so
600 	 * we can set it unconditionally.
601 	 */
602 	set_cpu_cap(c, X86_FEATURE_VMMCALL);
603 
604 	/* F16h erratum 793, CVE-2013-6885 */
605 	if (c->x86 == 0x16 && c->x86_model <= 0xf)
606 		msr_set_bit(MSR_AMD64_LS_CFG, 15);
607 
608 	early_detect_mem_encrypt(c);
609 
610 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) {
611 		if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB))
612 			setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
613 		else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
614 			setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
615 			setup_force_cpu_cap(X86_FEATURE_SBPB);
616 		}
617 	}
618 }
619 
init_amd_k8(struct cpuinfo_x86 * c)620 static void init_amd_k8(struct cpuinfo_x86 *c)
621 {
622 	u32 level;
623 	u64 value;
624 
625 	/* On C+ stepping K8 rep microcode works well for copy/memset */
626 	level = cpuid_eax(1);
627 	if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
628 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
629 
630 	/*
631 	 * Some BIOSes incorrectly force this feature, but only K8 revision D
632 	 * (model = 0x14) and later actually support it.
633 	 * (AMD Erratum #110, docId: 25759).
634 	 */
635 	if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
636 		clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
637 		if (!rdmsrl_amd_safe(0xc001100d, &value)) {
638 			value &= ~BIT_64(32);
639 			wrmsrl_amd_safe(0xc001100d, value);
640 		}
641 	}
642 
643 	if (!c->x86_model_id[0])
644 		strcpy(c->x86_model_id, "Hammer");
645 
646 #ifdef CONFIG_SMP
647 	/*
648 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
649 	 * bit 6 of msr C001_0015
650 	 *
651 	 * Errata 63 for SH-B3 steppings
652 	 * Errata 122 for all steppings (F+ have it disabled by default)
653 	 */
654 	msr_set_bit(MSR_K7_HWCR, 6);
655 #endif
656 	set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
657 
658 	/*
659 	 * Check models and steppings affected by erratum 400. This is
660 	 * used to select the proper idle routine and to enable the
661 	 * check whether the machine is affected in arch_post_acpi_subsys_init()
662 	 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
663 	 */
664 	if (c->x86_model > 0x41 ||
665 	    (c->x86_model == 0x41 && c->x86_stepping >= 0x2))
666 		setup_force_cpu_bug(X86_BUG_AMD_E400);
667 }
668 
init_amd_gh(struct cpuinfo_x86 * c)669 static void init_amd_gh(struct cpuinfo_x86 *c)
670 {
671 #ifdef CONFIG_MMCONF_FAM10H
672 	/* do this for boot cpu */
673 	if (c == &boot_cpu_data)
674 		check_enable_amd_mmconf_dmi();
675 
676 	fam10h_check_enable_mmcfg();
677 #endif
678 
679 	/*
680 	 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
681 	 * is always needed when GART is enabled, even in a kernel which has no
682 	 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
683 	 * If it doesn't, we do it here as suggested by the BKDG.
684 	 *
685 	 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
686 	 */
687 	msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
688 
689 	/*
690 	 * On family 10h BIOS may not have properly enabled WC+ support, causing
691 	 * it to be converted to CD memtype. This may result in performance
692 	 * degradation for certain nested-paging guests. Prevent this conversion
693 	 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
694 	 *
695 	 * NOTE: we want to use the _safe accessors so as not to #GP kvm
696 	 * guests on older kvm hosts.
697 	 */
698 	msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
699 
700 	set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
701 
702 	/*
703 	 * Check models and steppings affected by erratum 400. This is
704 	 * used to select the proper idle routine and to enable the
705 	 * check whether the machine is affected in arch_post_acpi_subsys_init()
706 	 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
707 	 */
708 	if (c->x86_model > 0x2 ||
709 	    (c->x86_model == 0x2 && c->x86_stepping >= 0x1))
710 		setup_force_cpu_bug(X86_BUG_AMD_E400);
711 }
712 
init_amd_ln(struct cpuinfo_x86 * c)713 static void init_amd_ln(struct cpuinfo_x86 *c)
714 {
715 	/*
716 	 * Apply erratum 665 fix unconditionally so machines without a BIOS
717 	 * fix work.
718 	 */
719 	msr_set_bit(MSR_AMD64_DE_CFG, 31);
720 }
721 
722 static bool rdrand_force;
723 
rdrand_cmdline(char * str)724 static int __init rdrand_cmdline(char *str)
725 {
726 	if (!str)
727 		return -EINVAL;
728 
729 	if (!strcmp(str, "force"))
730 		rdrand_force = true;
731 	else
732 		return -EINVAL;
733 
734 	return 0;
735 }
736 early_param("rdrand", rdrand_cmdline);
737 
clear_rdrand_cpuid_bit(struct cpuinfo_x86 * c)738 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
739 {
740 	/*
741 	 * Saving of the MSR used to hide the RDRAND support during
742 	 * suspend/resume is done by arch/x86/power/cpu.c, which is
743 	 * dependent on CONFIG_PM_SLEEP.
744 	 */
745 	if (!IS_ENABLED(CONFIG_PM_SLEEP))
746 		return;
747 
748 	/*
749 	 * The self-test can clear X86_FEATURE_RDRAND, so check for
750 	 * RDRAND support using the CPUID function directly.
751 	 */
752 	if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
753 		return;
754 
755 	msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
756 
757 	/*
758 	 * Verify that the CPUID change has occurred in case the kernel is
759 	 * running virtualized and the hypervisor doesn't support the MSR.
760 	 */
761 	if (cpuid_ecx(1) & BIT(30)) {
762 		pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
763 		return;
764 	}
765 
766 	clear_cpu_cap(c, X86_FEATURE_RDRAND);
767 	pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
768 }
769 
init_amd_jg(struct cpuinfo_x86 * c)770 static void init_amd_jg(struct cpuinfo_x86 *c)
771 {
772 	/*
773 	 * Some BIOS implementations do not restore proper RDRAND support
774 	 * across suspend and resume. Check on whether to hide the RDRAND
775 	 * instruction support via CPUID.
776 	 */
777 	clear_rdrand_cpuid_bit(c);
778 }
779 
init_amd_bd(struct cpuinfo_x86 * c)780 static void init_amd_bd(struct cpuinfo_x86 *c)
781 {
782 	u64 value;
783 
784 	/*
785 	 * The way access filter has a performance penalty on some workloads.
786 	 * Disable it on the affected CPUs.
787 	 */
788 	if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
789 		if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
790 			value |= 0x1E;
791 			wrmsrl_safe(MSR_F15H_IC_CFG, value);
792 		}
793 	}
794 
795 	/*
796 	 * Some BIOS implementations do not restore proper RDRAND support
797 	 * across suspend and resume. Check on whether to hide the RDRAND
798 	 * instruction support via CPUID.
799 	 */
800 	clear_rdrand_cpuid_bit(c);
801 }
802 
803 static const struct x86_cpu_id erratum_1386_microcode[] = {
804 	X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x01), 0x2, 0x2, 0x0800126e),
805 	X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x31), 0x0, 0x0, 0x08301052),
806 };
807 
fix_erratum_1386(struct cpuinfo_x86 * c)808 static void fix_erratum_1386(struct cpuinfo_x86 *c)
809 {
810 	/*
811 	 * Work around Erratum 1386.  The XSAVES instruction malfunctions in
812 	 * certain circumstances on Zen1/2 uarch, and not all parts have had
813 	 * updated microcode at the time of writing (March 2023).
814 	 *
815 	 * Affected parts all have no supervisor XSAVE states, meaning that
816 	 * the XSAVEC instruction (which works fine) is equivalent.
817 	 *
818 	 * Clear the feature flag only on microcode revisions which
819 	 * don't have the fix.
820 	 */
821 	if (x86_match_min_microcode_rev(erratum_1386_microcode))
822 		return;
823 
824 	clear_cpu_cap(c, X86_FEATURE_XSAVES);
825 }
826 
init_spectral_chicken(struct cpuinfo_x86 * c)827 void init_spectral_chicken(struct cpuinfo_x86 *c)
828 {
829 #ifdef CONFIG_MITIGATION_UNRET_ENTRY
830 	u64 value;
831 
832 	/*
833 	 * On Zen2 we offer this chicken (bit) on the altar of Speculation.
834 	 *
835 	 * This suppresses speculation from the middle of a basic block, i.e. it
836 	 * suppresses non-branch predictions.
837 	 */
838 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
839 		if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
840 			value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
841 			wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
842 		}
843 	}
844 #endif
845 }
846 
init_amd_zen_common(void)847 static void init_amd_zen_common(void)
848 {
849 	setup_force_cpu_cap(X86_FEATURE_ZEN);
850 #ifdef CONFIG_NUMA
851 	node_reclaim_distance = 32;
852 #endif
853 }
854 
init_amd_zen1(struct cpuinfo_x86 * c)855 static void init_amd_zen1(struct cpuinfo_x86 *c)
856 {
857 	fix_erratum_1386(c);
858 
859 	/* Fix up CPUID bits, but only if not virtualised. */
860 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
861 
862 		/* Erratum 1076: CPB feature bit not being set in CPUID. */
863 		if (!cpu_has(c, X86_FEATURE_CPB))
864 			set_cpu_cap(c, X86_FEATURE_CPB);
865 	}
866 
867 	pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
868 	setup_force_cpu_bug(X86_BUG_DIV0);
869 }
870 
cpu_has_zenbleed_microcode(void)871 static bool cpu_has_zenbleed_microcode(void)
872 {
873 	u32 good_rev = 0;
874 
875 	switch (boot_cpu_data.x86_model) {
876 	case 0x30 ... 0x3f: good_rev = 0x0830107b; break;
877 	case 0x60 ... 0x67: good_rev = 0x0860010c; break;
878 	case 0x68 ... 0x6f: good_rev = 0x08608107; break;
879 	case 0x70 ... 0x7f: good_rev = 0x08701033; break;
880 	case 0xa0 ... 0xaf: good_rev = 0x08a00009; break;
881 
882 	default:
883 		return false;
884 	}
885 
886 	if (boot_cpu_data.microcode < good_rev)
887 		return false;
888 
889 	return true;
890 }
891 
zen2_zenbleed_check(struct cpuinfo_x86 * c)892 static void zen2_zenbleed_check(struct cpuinfo_x86 *c)
893 {
894 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
895 		return;
896 
897 	if (!cpu_has(c, X86_FEATURE_AVX))
898 		return;
899 
900 	if (!cpu_has_zenbleed_microcode()) {
901 		pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
902 		msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
903 	} else {
904 		msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
905 	}
906 }
907 
init_amd_zen2(struct cpuinfo_x86 * c)908 static void init_amd_zen2(struct cpuinfo_x86 *c)
909 {
910 	init_spectral_chicken(c);
911 	fix_erratum_1386(c);
912 	zen2_zenbleed_check(c);
913 }
914 
init_amd_zen3(struct cpuinfo_x86 * c)915 static void init_amd_zen3(struct cpuinfo_x86 *c)
916 {
917 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
918 		/*
919 		 * Zen3 (Fam19 model < 0x10) parts are not susceptible to
920 		 * Branch Type Confusion, but predate the allocation of the
921 		 * BTC_NO bit.
922 		 */
923 		if (!cpu_has(c, X86_FEATURE_BTC_NO))
924 			set_cpu_cap(c, X86_FEATURE_BTC_NO);
925 	}
926 }
927 
init_amd_zen4(struct cpuinfo_x86 * c)928 static void init_amd_zen4(struct cpuinfo_x86 *c)
929 {
930 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR))
931 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
932 
933 	/*
934 	 * These Zen4 SoCs advertise support for virtualized VMLOAD/VMSAVE
935 	 * in some BIOS versions but they can lead to random host reboots.
936 	 */
937 	switch (c->x86_model) {
938 	case 0x18 ... 0x1f:
939 	case 0x60 ... 0x7f:
940 		clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD);
941 		break;
942 	}
943 }
944 
init_amd_zen5(struct cpuinfo_x86 * c)945 static void init_amd_zen5(struct cpuinfo_x86 *c)
946 {
947 }
948 
init_amd(struct cpuinfo_x86 * c)949 static void init_amd(struct cpuinfo_x86 *c)
950 {
951 	u64 vm_cr;
952 
953 	early_init_amd(c);
954 
955 	/*
956 	 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
957 	 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
958 	 */
959 	clear_cpu_cap(c, 0*32+31);
960 
961 	if (c->x86 >= 0x10)
962 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
963 
964 	/* AMD FSRM also implies FSRS */
965 	if (cpu_has(c, X86_FEATURE_FSRM))
966 		set_cpu_cap(c, X86_FEATURE_FSRS);
967 
968 	/* K6s reports MCEs but don't actually have all the MSRs */
969 	if (c->x86 < 6)
970 		clear_cpu_cap(c, X86_FEATURE_MCE);
971 
972 	switch (c->x86) {
973 	case 4:    init_amd_k5(c); break;
974 	case 5:    init_amd_k6(c); break;
975 	case 6:	   init_amd_k7(c); break;
976 	case 0xf:  init_amd_k8(c); break;
977 	case 0x10: init_amd_gh(c); break;
978 	case 0x12: init_amd_ln(c); break;
979 	case 0x15: init_amd_bd(c); break;
980 	case 0x16: init_amd_jg(c); break;
981 	}
982 
983 	/*
984 	 * Save up on some future enablement work and do common Zen
985 	 * settings.
986 	 */
987 	if (c->x86 >= 0x17)
988 		init_amd_zen_common();
989 
990 	if (boot_cpu_has(X86_FEATURE_ZEN1))
991 		init_amd_zen1(c);
992 	else if (boot_cpu_has(X86_FEATURE_ZEN2))
993 		init_amd_zen2(c);
994 	else if (boot_cpu_has(X86_FEATURE_ZEN3))
995 		init_amd_zen3(c);
996 	else if (boot_cpu_has(X86_FEATURE_ZEN4))
997 		init_amd_zen4(c);
998 	else if (boot_cpu_has(X86_FEATURE_ZEN5))
999 		init_amd_zen5(c);
1000 
1001 	/*
1002 	 * Enable workaround for FXSAVE leak on CPUs
1003 	 * without a XSaveErPtr feature
1004 	 */
1005 	if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1006 		set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1007 
1008 	cpu_detect_cache_sizes(c);
1009 
1010 	srat_detect_node(c);
1011 
1012 	init_amd_cacheinfo(c);
1013 
1014 	if (cpu_has(c, X86_FEATURE_SVM)) {
1015 		rdmsrl(MSR_VM_CR, vm_cr);
1016 		if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) {
1017 			pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n");
1018 			clear_cpu_cap(c, X86_FEATURE_SVM);
1019 		}
1020 	}
1021 
1022 	if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
1023 		/*
1024 		 * Use LFENCE for execution serialization.  On families which
1025 		 * don't have that MSR, LFENCE is already serializing.
1026 		 * msr_set_bit() uses the safe accessors, too, even if the MSR
1027 		 * is not present.
1028 		 */
1029 		msr_set_bit(MSR_AMD64_DE_CFG,
1030 			    MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1031 
1032 		/* A serializing LFENCE stops RDTSC speculation */
1033 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1034 	}
1035 
1036 	/*
1037 	 * Family 0x12 and above processors have APIC timer
1038 	 * running in deep C states.
1039 	 */
1040 	if (c->x86 > 0x11)
1041 		set_cpu_cap(c, X86_FEATURE_ARAT);
1042 
1043 	/* 3DNow or LM implies PREFETCHW */
1044 	if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1045 		if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1046 			set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1047 
1048 	/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1049 	if (!cpu_feature_enabled(X86_FEATURE_XENPV))
1050 		set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1051 
1052 	/*
1053 	 * Turn on the Instructions Retired free counter on machines not
1054 	 * susceptible to erratum #1054 "Instructions Retired Performance
1055 	 * Counter May Be Inaccurate".
1056 	 */
1057 	if (cpu_has(c, X86_FEATURE_IRPERF) &&
1058 	    (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f))
1059 		msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1060 
1061 	check_null_seg_clears_base(c);
1062 
1063 	/*
1064 	 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up
1065 	 * using the trampoline code and as part of it, MSR_EFER gets prepared there in
1066 	 * order to be replicated onto them. Regardless, set it here again, if not set,
1067 	 * to protect against any future refactoring/code reorganization which might
1068 	 * miss setting this important bit.
1069 	 */
1070 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1071 	    cpu_has(c, X86_FEATURE_AUTOIBRS))
1072 		WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS) < 0);
1073 
1074 	/* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */
1075 	clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1076 }
1077 
1078 #ifdef CONFIG_X86_32
amd_size_cache(struct cpuinfo_x86 * c,unsigned int size)1079 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1080 {
1081 	/* AMD errata T13 (order #21922) */
1082 	if (c->x86 == 6) {
1083 		/* Duron Rev A0 */
1084 		if (c->x86_model == 3 && c->x86_stepping == 0)
1085 			size = 64;
1086 		/* Tbird rev A1/A2 */
1087 		if (c->x86_model == 4 &&
1088 			(c->x86_stepping == 0 || c->x86_stepping == 1))
1089 			size = 256;
1090 	}
1091 	return size;
1092 }
1093 #endif
1094 
cpu_detect_tlb_amd(struct cpuinfo_x86 * c)1095 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1096 {
1097 	u32 ebx, eax, ecx, edx;
1098 	u16 mask = 0xfff;
1099 
1100 	if (c->x86 < 0xf)
1101 		return;
1102 
1103 	if (c->extended_cpuid_level < 0x80000006)
1104 		return;
1105 
1106 	cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1107 
1108 	tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
1109 	tlb_lli_4k[ENTRIES] = ebx & mask;
1110 
1111 	/*
1112 	 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1113 	 * characteristics from the CPUID function 0x80000005 instead.
1114 	 */
1115 	if (c->x86 == 0xf) {
1116 		cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1117 		mask = 0xff;
1118 	}
1119 
1120 	/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1121 	if (!((eax >> 16) & mask))
1122 		tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
1123 	else
1124 		tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
1125 
1126 	/* a 4M entry uses two 2M entries */
1127 	tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
1128 
1129 	/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1130 	if (!(eax & mask)) {
1131 		/* Erratum 658 */
1132 		if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1133 			tlb_lli_2m[ENTRIES] = 1024;
1134 		} else {
1135 			cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1136 			tlb_lli_2m[ENTRIES] = eax & 0xff;
1137 		}
1138 	} else
1139 		tlb_lli_2m[ENTRIES] = eax & mask;
1140 
1141 	tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
1142 }
1143 
1144 static const struct cpu_dev amd_cpu_dev = {
1145 	.c_vendor	= "AMD",
1146 	.c_ident	= { "AuthenticAMD" },
1147 #ifdef CONFIG_X86_32
1148 	.legacy_models = {
1149 		{ .family = 4, .model_names =
1150 		  {
1151 			  [3] = "486 DX/2",
1152 			  [7] = "486 DX/2-WB",
1153 			  [8] = "486 DX/4",
1154 			  [9] = "486 DX/4-WB",
1155 			  [14] = "Am5x86-WT",
1156 			  [15] = "Am5x86-WB"
1157 		  }
1158 		},
1159 	},
1160 	.legacy_cache_size = amd_size_cache,
1161 #endif
1162 	.c_early_init   = early_init_amd,
1163 	.c_detect_tlb	= cpu_detect_tlb_amd,
1164 	.c_bsp_init	= bsp_init_amd,
1165 	.c_init		= init_amd,
1166 	.c_x86_vendor	= X86_VENDOR_AMD,
1167 };
1168 
1169 cpu_dev_register(amd_cpu_dev);
1170 
1171 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
1172 
1173 static unsigned int amd_msr_dr_addr_masks[] = {
1174 	MSR_F16H_DR0_ADDR_MASK,
1175 	MSR_F16H_DR1_ADDR_MASK,
1176 	MSR_F16H_DR1_ADDR_MASK + 1,
1177 	MSR_F16H_DR1_ADDR_MASK + 2
1178 };
1179 
amd_set_dr_addr_mask(unsigned long mask,unsigned int dr)1180 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
1181 {
1182 	int cpu = smp_processor_id();
1183 
1184 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1185 		return;
1186 
1187 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1188 		return;
1189 
1190 	if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
1191 		return;
1192 
1193 	wrmsr(amd_msr_dr_addr_masks[dr], mask, 0);
1194 	per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
1195 }
1196 
amd_get_dr_addr_mask(unsigned int dr)1197 unsigned long amd_get_dr_addr_mask(unsigned int dr)
1198 {
1199 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1200 		return 0;
1201 
1202 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1203 		return 0;
1204 
1205 	return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
1206 }
1207 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
1208 
zenbleed_check_cpu(void * unused)1209 static void zenbleed_check_cpu(void *unused)
1210 {
1211 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1212 
1213 	zen2_zenbleed_check(c);
1214 }
1215 
amd_check_microcode(void)1216 void amd_check_microcode(void)
1217 {
1218 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1219 		return;
1220 
1221 	if (cpu_feature_enabled(X86_FEATURE_ZEN2))
1222 		on_each_cpu(zenbleed_check_cpu, NULL, 1);
1223 }
1224