xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 4003c9e78778e93188a09d6043a74f7154449d43)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20 
21 #define ICE_RX_HDR_SIZE		256
22 
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25 
26 /**
27  * ice_prgm_fdir_fltr - Program a Flow Director filter
28  * @vsi: VSI to send dummy packet
29  * @fdir_desc: flow director descriptor
30  * @raw_packet: allocated buffer for flow director
31  */
32 int
ice_prgm_fdir_fltr(struct ice_vsi * vsi,struct ice_fltr_desc * fdir_desc,u8 * raw_packet)33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 		   u8 *raw_packet)
35 {
36 	struct ice_tx_buf *tx_buf, *first;
37 	struct ice_fltr_desc *f_desc;
38 	struct ice_tx_desc *tx_desc;
39 	struct ice_tx_ring *tx_ring;
40 	struct device *dev;
41 	dma_addr_t dma;
42 	u32 td_cmd;
43 	u16 i;
44 
45 	/* VSI and Tx ring */
46 	if (!vsi)
47 		return -ENOENT;
48 	tx_ring = vsi->tx_rings[0];
49 	if (!tx_ring || !tx_ring->desc)
50 		return -ENOENT;
51 	dev = tx_ring->dev;
52 
53 	/* we are using two descriptors to add/del a filter and we can wait */
54 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 		if (!i)
56 			return -EAGAIN;
57 		msleep_interruptible(1);
58 	}
59 
60 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 			     DMA_TO_DEVICE);
62 
63 	if (dma_mapping_error(dev, dma))
64 		return -EINVAL;
65 
66 	/* grab the next descriptor */
67 	i = tx_ring->next_to_use;
68 	first = &tx_ring->tx_buf[i];
69 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71 
72 	i++;
73 	i = (i < tx_ring->count) ? i : 0;
74 	tx_desc = ICE_TX_DESC(tx_ring, i);
75 	tx_buf = &tx_ring->tx_buf[i];
76 
77 	i++;
78 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79 
80 	memset(tx_buf, 0, sizeof(*tx_buf));
81 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 	dma_unmap_addr_set(tx_buf, dma, dma);
83 
84 	tx_desc->buf_addr = cpu_to_le64(dma);
85 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 		 ICE_TX_DESC_CMD_RE;
87 
88 	tx_buf->type = ICE_TX_BUF_DUMMY;
89 	tx_buf->raw_buf = raw_packet;
90 
91 	tx_desc->cmd_type_offset_bsz =
92 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93 
94 	/* Force memory write to complete before letting h/w know
95 	 * there are new descriptors to fetch.
96 	 */
97 	wmb();
98 
99 	/* mark the data descriptor to be watched */
100 	first->next_to_watch = tx_desc;
101 
102 	writel(tx_ring->next_to_use, tx_ring->tail);
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_unmap_and_free_tx_buf - Release a Tx buffer
109  * @ring: the ring that owns the buffer
110  * @tx_buf: the buffer to free
111  */
112 static void
ice_unmap_and_free_tx_buf(struct ice_tx_ring * ring,struct ice_tx_buf * tx_buf)113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 	if (dma_unmap_len(tx_buf, len))
116 		dma_unmap_page(ring->dev,
117 			       dma_unmap_addr(tx_buf, dma),
118 			       dma_unmap_len(tx_buf, len),
119 			       DMA_TO_DEVICE);
120 
121 	switch (tx_buf->type) {
122 	case ICE_TX_BUF_DUMMY:
123 		devm_kfree(ring->dev, tx_buf->raw_buf);
124 		break;
125 	case ICE_TX_BUF_SKB:
126 		dev_kfree_skb_any(tx_buf->skb);
127 		break;
128 	case ICE_TX_BUF_XDP_TX:
129 		page_frag_free(tx_buf->raw_buf);
130 		break;
131 	case ICE_TX_BUF_XDP_XMIT:
132 		xdp_return_frame(tx_buf->xdpf);
133 		break;
134 	}
135 
136 	tx_buf->next_to_watch = NULL;
137 	tx_buf->type = ICE_TX_BUF_EMPTY;
138 	dma_unmap_len_set(tx_buf, len, 0);
139 	/* tx_buf must be completely set up in the transmit path */
140 }
141 
txring_txq(const struct ice_tx_ring * ring)142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
143 {
144 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
145 }
146 
147 /**
148  * ice_clean_tx_ring - Free any empty Tx buffers
149  * @tx_ring: ring to be cleaned
150  */
ice_clean_tx_ring(struct ice_tx_ring * tx_ring)151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
152 {
153 	u32 size;
154 	u16 i;
155 
156 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
157 		ice_xsk_clean_xdp_ring(tx_ring);
158 		goto tx_skip_free;
159 	}
160 
161 	/* ring already cleared, nothing to do */
162 	if (!tx_ring->tx_buf)
163 		return;
164 
165 	/* Free all the Tx ring sk_buffs */
166 	for (i = 0; i < tx_ring->count; i++)
167 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
168 
169 tx_skip_free:
170 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
171 
172 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
173 		     PAGE_SIZE);
174 	/* Zero out the descriptor ring */
175 	memset(tx_ring->desc, 0, size);
176 
177 	tx_ring->next_to_use = 0;
178 	tx_ring->next_to_clean = 0;
179 
180 	if (!tx_ring->netdev)
181 		return;
182 
183 	/* cleanup Tx queue statistics */
184 	netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186 
187 /**
188  * ice_free_tx_ring - Free Tx resources per queue
189  * @tx_ring: Tx descriptor ring for a specific queue
190  *
191  * Free all transmit software resources
192  */
ice_free_tx_ring(struct ice_tx_ring * tx_ring)193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 	u32 size;
196 
197 	ice_clean_tx_ring(tx_ring);
198 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 	tx_ring->tx_buf = NULL;
200 
201 	if (tx_ring->desc) {
202 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 			     PAGE_SIZE);
204 		dmam_free_coherent(tx_ring->dev, size,
205 				   tx_ring->desc, tx_ring->dma);
206 		tx_ring->desc = NULL;
207 	}
208 }
209 
210 /**
211  * ice_clean_tx_irq - Reclaim resources after transmit completes
212  * @tx_ring: Tx ring to clean
213  * @napi_budget: Used to determine if we are in netpoll
214  *
215  * Returns true if there's any budget left (e.g. the clean is finished)
216  */
ice_clean_tx_irq(struct ice_tx_ring * tx_ring,int napi_budget)217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 	unsigned int total_bytes = 0, total_pkts = 0;
220 	unsigned int budget = ICE_DFLT_IRQ_WORK;
221 	struct ice_vsi *vsi = tx_ring->vsi;
222 	s16 i = tx_ring->next_to_clean;
223 	struct ice_tx_desc *tx_desc;
224 	struct ice_tx_buf *tx_buf;
225 
226 	/* get the bql data ready */
227 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228 
229 	tx_buf = &tx_ring->tx_buf[i];
230 	tx_desc = ICE_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	prefetch(&vsi->state);
234 
235 	do {
236 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237 
238 		/* if next_to_watch is not set then there is no work pending */
239 		if (!eop_desc)
240 			break;
241 
242 		/* follow the guidelines of other drivers */
243 		prefetchw(&tx_buf->skb->users);
244 
245 		smp_rmb();	/* prevent any other reads prior to eop_desc */
246 
247 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 		/* if the descriptor isn't done, no work yet to do */
249 		if (!(eop_desc->cmd_type_offset_bsz &
250 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 			break;
252 
253 		/* clear next_to_watch to prevent false hangs */
254 		tx_buf->next_to_watch = NULL;
255 
256 		/* update the statistics for this packet */
257 		total_bytes += tx_buf->bytecount;
258 		total_pkts += tx_buf->gso_segs;
259 
260 		/* free the skb */
261 		napi_consume_skb(tx_buf->skb, napi_budget);
262 
263 		/* unmap skb header data */
264 		dma_unmap_single(tx_ring->dev,
265 				 dma_unmap_addr(tx_buf, dma),
266 				 dma_unmap_len(tx_buf, len),
267 				 DMA_TO_DEVICE);
268 
269 		/* clear tx_buf data */
270 		tx_buf->type = ICE_TX_BUF_EMPTY;
271 		dma_unmap_len_set(tx_buf, len, 0);
272 
273 		/* unmap remaining buffers */
274 		while (tx_desc != eop_desc) {
275 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 			tx_buf++;
277 			tx_desc++;
278 			i++;
279 			if (unlikely(!i)) {
280 				i -= tx_ring->count;
281 				tx_buf = tx_ring->tx_buf;
282 				tx_desc = ICE_TX_DESC(tx_ring, 0);
283 			}
284 
285 			/* unmap any remaining paged data */
286 			if (dma_unmap_len(tx_buf, len)) {
287 				dma_unmap_page(tx_ring->dev,
288 					       dma_unmap_addr(tx_buf, dma),
289 					       dma_unmap_len(tx_buf, len),
290 					       DMA_TO_DEVICE);
291 				dma_unmap_len_set(tx_buf, len, 0);
292 			}
293 		}
294 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295 
296 		/* move us one more past the eop_desc for start of next pkt */
297 		tx_buf++;
298 		tx_desc++;
299 		i++;
300 		if (unlikely(!i)) {
301 			i -= tx_ring->count;
302 			tx_buf = tx_ring->tx_buf;
303 			tx_desc = ICE_TX_DESC(tx_ring, 0);
304 		}
305 
306 		prefetch(tx_desc);
307 
308 		/* update budget accounting */
309 		budget--;
310 	} while (likely(budget));
311 
312 	i += tx_ring->count;
313 	tx_ring->next_to_clean = i;
314 
315 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317 
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 		/* Make sure that anybody stopping the queue after this
322 		 * sees the new next_to_clean.
323 		 */
324 		smp_mb();
325 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 			netif_tx_wake_queue(txring_txq(tx_ring));
328 			++tx_ring->ring_stats->tx_stats.restart_q;
329 		}
330 	}
331 
332 	return !!budget;
333 }
334 
335 /**
336  * ice_setup_tx_ring - Allocate the Tx descriptors
337  * @tx_ring: the Tx ring to set up
338  *
339  * Return 0 on success, negative on error
340  */
ice_setup_tx_ring(struct ice_tx_ring * tx_ring)341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 	struct device *dev = tx_ring->dev;
344 	u32 size;
345 
346 	if (!dev)
347 		return -ENOMEM;
348 
349 	/* warn if we are about to overwrite the pointer */
350 	WARN_ON(tx_ring->tx_buf);
351 	tx_ring->tx_buf =
352 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 			     GFP_KERNEL);
354 	if (!tx_ring->tx_buf)
355 		return -ENOMEM;
356 
357 	/* round up to nearest page */
358 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 		     PAGE_SIZE);
360 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 					    GFP_KERNEL);
362 	if (!tx_ring->desc) {
363 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 			size);
365 		goto err;
366 	}
367 
368 	tx_ring->next_to_use = 0;
369 	tx_ring->next_to_clean = 0;
370 	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
371 	return 0;
372 
373 err:
374 	devm_kfree(dev, tx_ring->tx_buf);
375 	tx_ring->tx_buf = NULL;
376 	return -ENOMEM;
377 }
378 
379 /**
380  * ice_clean_rx_ring - Free Rx buffers
381  * @rx_ring: ring to be cleaned
382  */
ice_clean_rx_ring(struct ice_rx_ring * rx_ring)383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 	struct xdp_buff *xdp = &rx_ring->xdp;
386 	struct device *dev = rx_ring->dev;
387 	u32 size;
388 	u16 i;
389 
390 	/* ring already cleared, nothing to do */
391 	if (!rx_ring->rx_buf)
392 		return;
393 
394 	if (rx_ring->xsk_pool) {
395 		ice_xsk_clean_rx_ring(rx_ring);
396 		goto rx_skip_free;
397 	}
398 
399 	if (xdp->data) {
400 		xdp_return_buff(xdp);
401 		xdp->data = NULL;
402 	}
403 
404 	/* Free all the Rx ring sk_buffs */
405 	for (i = 0; i < rx_ring->count; i++) {
406 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
407 
408 		if (!rx_buf->page)
409 			continue;
410 
411 		/* Invalidate cache lines that may have been written to by
412 		 * device so that we avoid corrupting memory.
413 		 */
414 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
415 					      rx_buf->page_offset,
416 					      rx_ring->rx_buf_len,
417 					      DMA_FROM_DEVICE);
418 
419 		/* free resources associated with mapping */
420 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
421 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
422 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
423 
424 		rx_buf->page = NULL;
425 		rx_buf->page_offset = 0;
426 	}
427 
428 rx_skip_free:
429 	if (rx_ring->xsk_pool)
430 		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
431 	else
432 		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
433 
434 	/* Zero out the descriptor ring */
435 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
436 		     PAGE_SIZE);
437 	memset(rx_ring->desc, 0, size);
438 
439 	rx_ring->next_to_alloc = 0;
440 	rx_ring->next_to_clean = 0;
441 	rx_ring->first_desc = 0;
442 	rx_ring->next_to_use = 0;
443 }
444 
445 /**
446  * ice_free_rx_ring - Free Rx resources
447  * @rx_ring: ring to clean the resources from
448  *
449  * Free all receive software resources
450  */
ice_free_rx_ring(struct ice_rx_ring * rx_ring)451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
452 {
453 	u32 size;
454 
455 	ice_clean_rx_ring(rx_ring);
456 	if (rx_ring->vsi->type == ICE_VSI_PF)
457 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
458 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
459 	WRITE_ONCE(rx_ring->xdp_prog, NULL);
460 	if (rx_ring->xsk_pool) {
461 		kfree(rx_ring->xdp_buf);
462 		rx_ring->xdp_buf = NULL;
463 	} else {
464 		kfree(rx_ring->rx_buf);
465 		rx_ring->rx_buf = NULL;
466 	}
467 
468 	if (rx_ring->desc) {
469 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
470 			     PAGE_SIZE);
471 		dmam_free_coherent(rx_ring->dev, size,
472 				   rx_ring->desc, rx_ring->dma);
473 		rx_ring->desc = NULL;
474 	}
475 }
476 
477 /**
478  * ice_setup_rx_ring - Allocate the Rx descriptors
479  * @rx_ring: the Rx ring to set up
480  *
481  * Return 0 on success, negative on error
482  */
ice_setup_rx_ring(struct ice_rx_ring * rx_ring)483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
484 {
485 	struct device *dev = rx_ring->dev;
486 	u32 size;
487 
488 	if (!dev)
489 		return -ENOMEM;
490 
491 	/* warn if we are about to overwrite the pointer */
492 	WARN_ON(rx_ring->rx_buf);
493 	rx_ring->rx_buf =
494 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
495 	if (!rx_ring->rx_buf)
496 		return -ENOMEM;
497 
498 	/* round up to nearest page */
499 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
500 		     PAGE_SIZE);
501 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
502 					    GFP_KERNEL);
503 	if (!rx_ring->desc) {
504 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
505 			size);
506 		goto err;
507 	}
508 
509 	rx_ring->next_to_use = 0;
510 	rx_ring->next_to_clean = 0;
511 	rx_ring->first_desc = 0;
512 
513 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
514 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
515 
516 	return 0;
517 
518 err:
519 	kfree(rx_ring->rx_buf);
520 	rx_ring->rx_buf = NULL;
521 	return -ENOMEM;
522 }
523 
524 /**
525  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
526  * @rx_ring: Rx ring
527  * @xdp: xdp_buff used as input to the XDP program
528  * @xdp_prog: XDP program to run
529  * @xdp_ring: ring to be used for XDP_TX action
530  * @eop_desc: Last descriptor in packet to read metadata from
531  *
532  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
533  */
534 static u32
ice_run_xdp(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct ice_tx_ring * xdp_ring,union ice_32b_rx_flex_desc * eop_desc)535 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
536 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
537 	    union ice_32b_rx_flex_desc *eop_desc)
538 {
539 	unsigned int ret = ICE_XDP_PASS;
540 	u32 act;
541 
542 	if (!xdp_prog)
543 		goto exit;
544 
545 	ice_xdp_meta_set_desc(xdp, eop_desc);
546 
547 	act = bpf_prog_run_xdp(xdp_prog, xdp);
548 	switch (act) {
549 	case XDP_PASS:
550 		break;
551 	case XDP_TX:
552 		if (static_branch_unlikely(&ice_xdp_locking_key))
553 			spin_lock(&xdp_ring->tx_lock);
554 		ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
555 		if (static_branch_unlikely(&ice_xdp_locking_key))
556 			spin_unlock(&xdp_ring->tx_lock);
557 		if (ret == ICE_XDP_CONSUMED)
558 			goto out_failure;
559 		break;
560 	case XDP_REDIRECT:
561 		if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
562 			goto out_failure;
563 		ret = ICE_XDP_REDIR;
564 		break;
565 	default:
566 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
567 		fallthrough;
568 	case XDP_ABORTED:
569 out_failure:
570 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
571 		fallthrough;
572 	case XDP_DROP:
573 		ret = ICE_XDP_CONSUMED;
574 	}
575 exit:
576 	return ret;
577 }
578 
579 /**
580  * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
581  * @xdpf: XDP frame that will be converted to XDP buff
582  * @xdp_ring: XDP ring for transmission
583  */
ice_xmit_xdp_ring(const struct xdp_frame * xdpf,struct ice_tx_ring * xdp_ring)584 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
585 			     struct ice_tx_ring *xdp_ring)
586 {
587 	struct xdp_buff xdp;
588 
589 	xdp.data_hard_start = (void *)xdpf;
590 	xdp.data = xdpf->data;
591 	xdp.data_end = xdp.data + xdpf->len;
592 	xdp.frame_sz = xdpf->frame_sz;
593 	xdp.flags = xdpf->flags;
594 
595 	return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
596 }
597 
598 /**
599  * ice_xdp_xmit - submit packets to XDP ring for transmission
600  * @dev: netdev
601  * @n: number of XDP frames to be transmitted
602  * @frames: XDP frames to be transmitted
603  * @flags: transmit flags
604  *
605  * Returns number of frames successfully sent. Failed frames
606  * will be free'ed by XDP core.
607  * For error cases, a negative errno code is returned and no-frames
608  * are transmitted (caller must handle freeing frames).
609  */
610 int
ice_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)611 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
612 	     u32 flags)
613 {
614 	struct ice_netdev_priv *np = netdev_priv(dev);
615 	unsigned int queue_index = smp_processor_id();
616 	struct ice_vsi *vsi = np->vsi;
617 	struct ice_tx_ring *xdp_ring;
618 	struct ice_tx_buf *tx_buf;
619 	int nxmit = 0, i;
620 
621 	if (test_bit(ICE_VSI_DOWN, vsi->state))
622 		return -ENETDOWN;
623 
624 	if (!ice_is_xdp_ena_vsi(vsi))
625 		return -ENXIO;
626 
627 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
628 		return -EINVAL;
629 
630 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
631 		queue_index %= vsi->num_xdp_txq;
632 		xdp_ring = vsi->xdp_rings[queue_index];
633 		spin_lock(&xdp_ring->tx_lock);
634 	} else {
635 		/* Generally, should not happen */
636 		if (unlikely(queue_index >= vsi->num_xdp_txq))
637 			return -ENXIO;
638 		xdp_ring = vsi->xdp_rings[queue_index];
639 	}
640 
641 	tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
642 	for (i = 0; i < n; i++) {
643 		const struct xdp_frame *xdpf = frames[i];
644 		int err;
645 
646 		err = ice_xmit_xdp_ring(xdpf, xdp_ring);
647 		if (err != ICE_XDP_TX)
648 			break;
649 		nxmit++;
650 	}
651 
652 	tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
653 	if (unlikely(flags & XDP_XMIT_FLUSH))
654 		ice_xdp_ring_update_tail(xdp_ring);
655 
656 	if (static_branch_unlikely(&ice_xdp_locking_key))
657 		spin_unlock(&xdp_ring->tx_lock);
658 
659 	return nxmit;
660 }
661 
662 /**
663  * ice_alloc_mapped_page - recycle or make a new page
664  * @rx_ring: ring to use
665  * @bi: rx_buf struct to modify
666  *
667  * Returns true if the page was successfully allocated or
668  * reused.
669  */
670 static bool
ice_alloc_mapped_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * bi)671 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
672 {
673 	struct page *page = bi->page;
674 	dma_addr_t dma;
675 
676 	/* since we are recycling buffers we should seldom need to alloc */
677 	if (likely(page))
678 		return true;
679 
680 	/* alloc new page for storage */
681 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
682 	if (unlikely(!page)) {
683 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
684 		return false;
685 	}
686 
687 	/* map page for use */
688 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
689 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
690 
691 	/* if mapping failed free memory back to system since
692 	 * there isn't much point in holding memory we can't use
693 	 */
694 	if (dma_mapping_error(rx_ring->dev, dma)) {
695 		__free_pages(page, ice_rx_pg_order(rx_ring));
696 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
697 		return false;
698 	}
699 
700 	bi->dma = dma;
701 	bi->page = page;
702 	bi->page_offset = rx_ring->rx_offset;
703 	page_ref_add(page, USHRT_MAX - 1);
704 	bi->pagecnt_bias = USHRT_MAX;
705 
706 	return true;
707 }
708 
709 /**
710  * ice_alloc_rx_bufs - Replace used receive buffers
711  * @rx_ring: ring to place buffers on
712  * @cleaned_count: number of buffers to replace
713  *
714  * Returns false if all allocations were successful, true if any fail. Returning
715  * true signals to the caller that we didn't replace cleaned_count buffers and
716  * there is more work to do.
717  *
718  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
719  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
720  * multiple tail writes per call.
721  */
ice_alloc_rx_bufs(struct ice_rx_ring * rx_ring,unsigned int cleaned_count)722 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
723 {
724 	union ice_32b_rx_flex_desc *rx_desc;
725 	u16 ntu = rx_ring->next_to_use;
726 	struct ice_rx_buf *bi;
727 
728 	/* do nothing if no valid netdev defined */
729 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
730 	    !cleaned_count)
731 		return false;
732 
733 	/* get the Rx descriptor and buffer based on next_to_use */
734 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
735 	bi = &rx_ring->rx_buf[ntu];
736 
737 	do {
738 		/* if we fail here, we have work remaining */
739 		if (!ice_alloc_mapped_page(rx_ring, bi))
740 			break;
741 
742 		/* sync the buffer for use by the device */
743 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
744 						 bi->page_offset,
745 						 rx_ring->rx_buf_len,
746 						 DMA_FROM_DEVICE);
747 
748 		/* Refresh the desc even if buffer_addrs didn't change
749 		 * because each write-back erases this info.
750 		 */
751 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
752 
753 		rx_desc++;
754 		bi++;
755 		ntu++;
756 		if (unlikely(ntu == rx_ring->count)) {
757 			rx_desc = ICE_RX_DESC(rx_ring, 0);
758 			bi = rx_ring->rx_buf;
759 			ntu = 0;
760 		}
761 
762 		/* clear the status bits for the next_to_use descriptor */
763 		rx_desc->wb.status_error0 = 0;
764 
765 		cleaned_count--;
766 	} while (cleaned_count);
767 
768 	if (rx_ring->next_to_use != ntu)
769 		ice_release_rx_desc(rx_ring, ntu);
770 
771 	return !!cleaned_count;
772 }
773 
774 /**
775  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
776  * @rx_buf: Rx buffer to adjust
777  * @size: Size of adjustment
778  *
779  * Update the offset within page so that Rx buf will be ready to be reused.
780  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
781  * so the second half of page assigned to Rx buffer will be used, otherwise
782  * the offset is moved by "size" bytes
783  */
784 static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf * rx_buf,unsigned int size)785 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
786 {
787 #if (PAGE_SIZE < 8192)
788 	/* flip page offset to other buffer */
789 	rx_buf->page_offset ^= size;
790 #else
791 	/* move offset up to the next cache line */
792 	rx_buf->page_offset += size;
793 #endif
794 }
795 
796 /**
797  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
798  * @rx_buf: buffer containing the page
799  *
800  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
801  * which will assign the current buffer to the buffer that next_to_alloc is
802  * pointing to; otherwise, the DMA mapping needs to be destroyed and
803  * page freed
804  */
805 static bool
ice_can_reuse_rx_page(struct ice_rx_buf * rx_buf)806 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
807 {
808 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
809 	struct page *page = rx_buf->page;
810 
811 	/* avoid re-using remote and pfmemalloc pages */
812 	if (!dev_page_is_reusable(page))
813 		return false;
814 
815 	/* if we are only owner of page we can reuse it */
816 	if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
817 		return false;
818 #if (PAGE_SIZE >= 8192)
819 #define ICE_LAST_OFFSET \
820 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072)
821 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
822 		return false;
823 #endif /* PAGE_SIZE >= 8192) */
824 
825 	/* If we have drained the page fragment pool we need to update
826 	 * the pagecnt_bias and page count so that we fully restock the
827 	 * number of references the driver holds.
828 	 */
829 	if (unlikely(pagecnt_bias == 1)) {
830 		page_ref_add(page, USHRT_MAX - 1);
831 		rx_buf->pagecnt_bias = USHRT_MAX;
832 	}
833 
834 	return true;
835 }
836 
837 /**
838  * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
839  * @rx_ring: Rx descriptor ring to transact packets on
840  * @xdp: xdp buff to place the data into
841  * @rx_buf: buffer containing page to add
842  * @size: packet length from rx_desc
843  *
844  * This function will add the data contained in rx_buf->page to the xdp buf.
845  * It will just attach the page as a frag.
846  */
847 static int
ice_add_xdp_frag(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct ice_rx_buf * rx_buf,const unsigned int size)848 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
849 		 struct ice_rx_buf *rx_buf, const unsigned int size)
850 {
851 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
852 
853 	if (!size)
854 		return 0;
855 
856 	if (!xdp_buff_has_frags(xdp)) {
857 		sinfo->nr_frags = 0;
858 		sinfo->xdp_frags_size = 0;
859 		xdp_buff_set_frags_flag(xdp);
860 	}
861 
862 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS))
863 		return -ENOMEM;
864 
865 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
866 				   rx_buf->page_offset, size);
867 	sinfo->xdp_frags_size += size;
868 	/* remember frag count before XDP prog execution; bpf_xdp_adjust_tail()
869 	 * can pop off frags but driver has to handle it on its own
870 	 */
871 	rx_ring->nr_frags = sinfo->nr_frags;
872 
873 	if (page_is_pfmemalloc(rx_buf->page))
874 		xdp_buff_set_frag_pfmemalloc(xdp);
875 
876 	return 0;
877 }
878 
879 /**
880  * ice_reuse_rx_page - page flip buffer and store it back on the ring
881  * @rx_ring: Rx descriptor ring to store buffers on
882  * @old_buf: donor buffer to have page reused
883  *
884  * Synchronizes page for reuse by the adapter
885  */
886 static void
ice_reuse_rx_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * old_buf)887 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
888 {
889 	u16 nta = rx_ring->next_to_alloc;
890 	struct ice_rx_buf *new_buf;
891 
892 	new_buf = &rx_ring->rx_buf[nta];
893 
894 	/* update, and store next to alloc */
895 	nta++;
896 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
897 
898 	/* Transfer page from old buffer to new buffer.
899 	 * Move each member individually to avoid possible store
900 	 * forwarding stalls and unnecessary copy of skb.
901 	 */
902 	new_buf->dma = old_buf->dma;
903 	new_buf->page = old_buf->page;
904 	new_buf->page_offset = old_buf->page_offset;
905 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
906 }
907 
908 /**
909  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
910  * @rx_ring: Rx descriptor ring to transact packets on
911  * @size: size of buffer to add to skb
912  * @ntc: index of next to clean element
913  *
914  * This function will pull an Rx buffer from the ring and synchronize it
915  * for use by the CPU.
916  */
917 static struct ice_rx_buf *
ice_get_rx_buf(struct ice_rx_ring * rx_ring,const unsigned int size,const unsigned int ntc)918 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
919 	       const unsigned int ntc)
920 {
921 	struct ice_rx_buf *rx_buf;
922 
923 	rx_buf = &rx_ring->rx_buf[ntc];
924 	prefetchw(rx_buf->page);
925 
926 	if (!size)
927 		return rx_buf;
928 	/* we are reusing so sync this buffer for CPU use */
929 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
930 				      rx_buf->page_offset, size,
931 				      DMA_FROM_DEVICE);
932 
933 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
934 	rx_buf->pagecnt_bias--;
935 
936 	return rx_buf;
937 }
938 
939 /**
940  * ice_get_pgcnts - grab page_count() for gathered fragments
941  * @rx_ring: Rx descriptor ring to store the page counts on
942  *
943  * This function is intended to be called right before running XDP
944  * program so that the page recycling mechanism will be able to take
945  * a correct decision regarding underlying pages; this is done in such
946  * way as XDP program can change the refcount of page
947  */
ice_get_pgcnts(struct ice_rx_ring * rx_ring)948 static void ice_get_pgcnts(struct ice_rx_ring *rx_ring)
949 {
950 	u32 nr_frags = rx_ring->nr_frags + 1;
951 	u32 idx = rx_ring->first_desc;
952 	struct ice_rx_buf *rx_buf;
953 	u32 cnt = rx_ring->count;
954 
955 	for (int i = 0; i < nr_frags; i++) {
956 		rx_buf = &rx_ring->rx_buf[idx];
957 		rx_buf->pgcnt = page_count(rx_buf->page);
958 
959 		if (++idx == cnt)
960 			idx = 0;
961 	}
962 }
963 
964 /**
965  * ice_build_skb - Build skb around an existing buffer
966  * @rx_ring: Rx descriptor ring to transact packets on
967  * @xdp: xdp_buff pointing to the data
968  *
969  * This function builds an skb around an existing XDP buffer, taking care
970  * to set up the skb correctly and avoid any memcpy overhead. Driver has
971  * already combined frags (if any) to skb_shared_info.
972  */
973 static struct sk_buff *
ice_build_skb(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp)974 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
975 {
976 	u8 metasize = xdp->data - xdp->data_meta;
977 	struct skb_shared_info *sinfo = NULL;
978 	unsigned int nr_frags;
979 	struct sk_buff *skb;
980 
981 	if (unlikely(xdp_buff_has_frags(xdp))) {
982 		sinfo = xdp_get_shared_info_from_buff(xdp);
983 		nr_frags = sinfo->nr_frags;
984 	}
985 
986 	/* Prefetch first cache line of first page. If xdp->data_meta
987 	 * is unused, this points exactly as xdp->data, otherwise we
988 	 * likely have a consumer accessing first few bytes of meta
989 	 * data, and then actual data.
990 	 */
991 	net_prefetch(xdp->data_meta);
992 	/* build an skb around the page buffer */
993 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
994 	if (unlikely(!skb))
995 		return NULL;
996 
997 	/* must to record Rx queue, otherwise OS features such as
998 	 * symmetric queue won't work
999 	 */
1000 	skb_record_rx_queue(skb, rx_ring->q_index);
1001 
1002 	/* update pointers within the skb to store the data */
1003 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1004 	__skb_put(skb, xdp->data_end - xdp->data);
1005 	if (metasize)
1006 		skb_metadata_set(skb, metasize);
1007 
1008 	if (unlikely(xdp_buff_has_frags(xdp)))
1009 		xdp_update_skb_shared_info(skb, nr_frags,
1010 					   sinfo->xdp_frags_size,
1011 					   nr_frags * xdp->frame_sz,
1012 					   xdp_buff_is_frag_pfmemalloc(xdp));
1013 
1014 	return skb;
1015 }
1016 
1017 /**
1018  * ice_construct_skb - Allocate skb and populate it
1019  * @rx_ring: Rx descriptor ring to transact packets on
1020  * @xdp: xdp_buff pointing to the data
1021  *
1022  * This function allocates an skb. It then populates it with the page
1023  * data from the current receive descriptor, taking care to set up the
1024  * skb correctly.
1025  */
1026 static struct sk_buff *
ice_construct_skb(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp)1027 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
1028 {
1029 	unsigned int size = xdp->data_end - xdp->data;
1030 	struct skb_shared_info *sinfo = NULL;
1031 	struct ice_rx_buf *rx_buf;
1032 	unsigned int nr_frags = 0;
1033 	unsigned int headlen;
1034 	struct sk_buff *skb;
1035 
1036 	/* prefetch first cache line of first page */
1037 	net_prefetch(xdp->data);
1038 
1039 	if (unlikely(xdp_buff_has_frags(xdp))) {
1040 		sinfo = xdp_get_shared_info_from_buff(xdp);
1041 		nr_frags = sinfo->nr_frags;
1042 	}
1043 
1044 	/* allocate a skb to store the frags */
1045 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE);
1046 	if (unlikely(!skb))
1047 		return NULL;
1048 
1049 	rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
1050 	skb_record_rx_queue(skb, rx_ring->q_index);
1051 	/* Determine available headroom for copy */
1052 	headlen = size;
1053 	if (headlen > ICE_RX_HDR_SIZE)
1054 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1055 
1056 	/* align pull length to size of long to optimize memcpy performance */
1057 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1058 							 sizeof(long)));
1059 
1060 	/* if we exhaust the linear part then add what is left as a frag */
1061 	size -= headlen;
1062 	if (size) {
1063 		/* besides adding here a partial frag, we are going to add
1064 		 * frags from xdp_buff, make sure there is enough space for
1065 		 * them
1066 		 */
1067 		if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
1068 			dev_kfree_skb(skb);
1069 			return NULL;
1070 		}
1071 		skb_add_rx_frag(skb, 0, rx_buf->page,
1072 				rx_buf->page_offset + headlen, size,
1073 				xdp->frame_sz);
1074 	} else {
1075 		/* buffer is unused, restore biased page count in Rx buffer;
1076 		 * data was copied onto skb's linear part so there's no
1077 		 * need for adjusting page offset and we can reuse this buffer
1078 		 * as-is
1079 		 */
1080 		rx_buf->pagecnt_bias++;
1081 	}
1082 
1083 	if (unlikely(xdp_buff_has_frags(xdp))) {
1084 		struct skb_shared_info *skinfo = skb_shinfo(skb);
1085 
1086 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
1087 		       sizeof(skb_frag_t) * nr_frags);
1088 
1089 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
1090 					   sinfo->xdp_frags_size,
1091 					   nr_frags * xdp->frame_sz,
1092 					   xdp_buff_is_frag_pfmemalloc(xdp));
1093 	}
1094 
1095 	return skb;
1096 }
1097 
1098 /**
1099  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1100  * @rx_ring: Rx descriptor ring to transact packets on
1101  * @rx_buf: Rx buffer to pull data from
1102  *
1103  * This function will clean up the contents of the rx_buf. It will either
1104  * recycle the buffer or unmap it and free the associated resources.
1105  */
1106 static void
ice_put_rx_buf(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf)1107 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
1108 {
1109 	if (!rx_buf)
1110 		return;
1111 
1112 	if (ice_can_reuse_rx_page(rx_buf)) {
1113 		/* hand second half of page back to the ring */
1114 		ice_reuse_rx_page(rx_ring, rx_buf);
1115 	} else {
1116 		/* we are not reusing the buffer so unmap it */
1117 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1118 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1119 				     ICE_RX_DMA_ATTR);
1120 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1121 	}
1122 
1123 	/* clear contents of buffer_info */
1124 	rx_buf->page = NULL;
1125 }
1126 
1127 /**
1128  * ice_put_rx_mbuf - ice_put_rx_buf() caller, for all frame frags
1129  * @rx_ring: Rx ring with all the auxiliary data
1130  * @xdp: XDP buffer carrying linear + frags part
1131  * @xdp_xmit: XDP_TX/XDP_REDIRECT verdict storage
1132  * @ntc: a current next_to_clean value to be stored at rx_ring
1133  * @verdict: return code from XDP program execution
1134  *
1135  * Walk through gathered fragments and satisfy internal page
1136  * recycle mechanism; we take here an action related to verdict
1137  * returned by XDP program;
1138  */
ice_put_rx_mbuf(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,u32 * xdp_xmit,u32 ntc,u32 verdict)1139 static void ice_put_rx_mbuf(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
1140 			    u32 *xdp_xmit, u32 ntc, u32 verdict)
1141 {
1142 	u32 nr_frags = rx_ring->nr_frags + 1;
1143 	u32 idx = rx_ring->first_desc;
1144 	u32 cnt = rx_ring->count;
1145 	u32 post_xdp_frags = 1;
1146 	struct ice_rx_buf *buf;
1147 	int i;
1148 
1149 	if (unlikely(xdp_buff_has_frags(xdp)))
1150 		post_xdp_frags += xdp_get_shared_info_from_buff(xdp)->nr_frags;
1151 
1152 	for (i = 0; i < post_xdp_frags; i++) {
1153 		buf = &rx_ring->rx_buf[idx];
1154 
1155 		if (verdict & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1156 			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1157 			*xdp_xmit |= verdict;
1158 		} else if (verdict & ICE_XDP_CONSUMED) {
1159 			buf->pagecnt_bias++;
1160 		} else if (verdict == ICE_XDP_PASS) {
1161 			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1162 		}
1163 
1164 		ice_put_rx_buf(rx_ring, buf);
1165 
1166 		if (++idx == cnt)
1167 			idx = 0;
1168 	}
1169 	/* handle buffers that represented frags released by XDP prog;
1170 	 * for these we keep pagecnt_bias as-is; refcount from struct page
1171 	 * has been decremented within XDP prog and we do not have to increase
1172 	 * the biased refcnt
1173 	 */
1174 	for (; i < nr_frags; i++) {
1175 		buf = &rx_ring->rx_buf[idx];
1176 		ice_put_rx_buf(rx_ring, buf);
1177 		if (++idx == cnt)
1178 			idx = 0;
1179 	}
1180 
1181 	xdp->data = NULL;
1182 	rx_ring->first_desc = ntc;
1183 	rx_ring->nr_frags = 0;
1184 }
1185 
1186 /**
1187  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1188  * @rx_ring: Rx descriptor ring to transact packets on
1189  * @budget: Total limit on number of packets to process
1190  *
1191  * This function provides a "bounce buffer" approach to Rx interrupt
1192  * processing. The advantage to this is that on systems that have
1193  * expensive overhead for IOMMU access this provides a means of avoiding
1194  * it by maintaining the mapping of the page to the system.
1195  *
1196  * Returns amount of work completed
1197  */
ice_clean_rx_irq(struct ice_rx_ring * rx_ring,int budget)1198 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1199 {
1200 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1201 	unsigned int offset = rx_ring->rx_offset;
1202 	struct xdp_buff *xdp = &rx_ring->xdp;
1203 	struct ice_tx_ring *xdp_ring = NULL;
1204 	struct bpf_prog *xdp_prog = NULL;
1205 	u32 ntc = rx_ring->next_to_clean;
1206 	u32 cached_ntu, xdp_verdict;
1207 	u32 cnt = rx_ring->count;
1208 	u32 xdp_xmit = 0;
1209 	bool failure;
1210 
1211 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1212 	if (xdp_prog) {
1213 		xdp_ring = rx_ring->xdp_ring;
1214 		cached_ntu = xdp_ring->next_to_use;
1215 	}
1216 
1217 	/* start the loop to process Rx packets bounded by 'budget' */
1218 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1219 		union ice_32b_rx_flex_desc *rx_desc;
1220 		struct ice_rx_buf *rx_buf;
1221 		struct sk_buff *skb;
1222 		unsigned int size;
1223 		u16 stat_err_bits;
1224 		u16 vlan_tci;
1225 
1226 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1227 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
1228 
1229 		/* status_error_len will always be zero for unused descriptors
1230 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1231 		 * which is always zero because packet split isn't used, if the
1232 		 * hardware wrote DD then it will be non-zero
1233 		 */
1234 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1235 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1236 			break;
1237 
1238 		/* This memory barrier is needed to keep us from reading
1239 		 * any other fields out of the rx_desc until we know the
1240 		 * DD bit is set.
1241 		 */
1242 		dma_rmb();
1243 
1244 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1245 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1246 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1247 
1248 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1249 			    ctrl_vsi->vf)
1250 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1251 			if (++ntc == cnt)
1252 				ntc = 0;
1253 			rx_ring->first_desc = ntc;
1254 			continue;
1255 		}
1256 
1257 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1258 			ICE_RX_FLX_DESC_PKT_LEN_M;
1259 
1260 		/* retrieve a buffer from the ring */
1261 		rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1262 
1263 		if (!xdp->data) {
1264 			void *hard_start;
1265 
1266 			hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1267 				     offset;
1268 			xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1269 			xdp_buff_clear_frags_flag(xdp);
1270 		} else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
1271 			ice_put_rx_mbuf(rx_ring, xdp, NULL, ntc, ICE_XDP_CONSUMED);
1272 			break;
1273 		}
1274 		if (++ntc == cnt)
1275 			ntc = 0;
1276 
1277 		/* skip if it is NOP desc */
1278 		if (ice_is_non_eop(rx_ring, rx_desc))
1279 			continue;
1280 
1281 		ice_get_pgcnts(rx_ring);
1282 		xdp_verdict = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_desc);
1283 		if (xdp_verdict == ICE_XDP_PASS)
1284 			goto construct_skb;
1285 		total_rx_bytes += xdp_get_buff_len(xdp);
1286 		total_rx_pkts++;
1287 
1288 		ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict);
1289 
1290 		continue;
1291 construct_skb:
1292 		if (likely(ice_ring_uses_build_skb(rx_ring)))
1293 			skb = ice_build_skb(rx_ring, xdp);
1294 		else
1295 			skb = ice_construct_skb(rx_ring, xdp);
1296 		/* exit if we failed to retrieve a buffer */
1297 		if (!skb) {
1298 			rx_ring->ring_stats->rx_stats.alloc_page_failed++;
1299 			xdp_verdict = ICE_XDP_CONSUMED;
1300 		}
1301 		ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict);
1302 
1303 		if (!skb)
1304 			break;
1305 
1306 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1307 		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1308 					      stat_err_bits))) {
1309 			dev_kfree_skb_any(skb);
1310 			continue;
1311 		}
1312 
1313 		vlan_tci = ice_get_vlan_tci(rx_desc);
1314 
1315 		/* pad the skb if needed, to make a valid ethernet frame */
1316 		if (eth_skb_pad(skb))
1317 			continue;
1318 
1319 		/* probably a little skewed due to removing CRC */
1320 		total_rx_bytes += skb->len;
1321 
1322 		/* populate checksum, VLAN, and protocol */
1323 		ice_process_skb_fields(rx_ring, rx_desc, skb);
1324 
1325 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1326 		/* send completed skb up the stack */
1327 		ice_receive_skb(rx_ring, skb, vlan_tci);
1328 
1329 		/* update budget accounting */
1330 		total_rx_pkts++;
1331 	}
1332 
1333 	rx_ring->next_to_clean = ntc;
1334 	/* return up to cleaned_count buffers to hardware */
1335 	failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
1336 
1337 	if (xdp_xmit)
1338 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
1339 
1340 	if (rx_ring->ring_stats)
1341 		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1342 					 total_rx_bytes);
1343 
1344 	/* guarantee a trip back through this routine if there was a failure */
1345 	return failure ? budget : (int)total_rx_pkts;
1346 }
1347 
__ice_update_sample(struct ice_q_vector * q_vector,struct ice_ring_container * rc,struct dim_sample * sample,bool is_tx)1348 static void __ice_update_sample(struct ice_q_vector *q_vector,
1349 				struct ice_ring_container *rc,
1350 				struct dim_sample *sample,
1351 				bool is_tx)
1352 {
1353 	u64 packets = 0, bytes = 0;
1354 
1355 	if (is_tx) {
1356 		struct ice_tx_ring *tx_ring;
1357 
1358 		ice_for_each_tx_ring(tx_ring, *rc) {
1359 			struct ice_ring_stats *ring_stats;
1360 
1361 			ring_stats = tx_ring->ring_stats;
1362 			if (!ring_stats)
1363 				continue;
1364 			packets += ring_stats->stats.pkts;
1365 			bytes += ring_stats->stats.bytes;
1366 		}
1367 	} else {
1368 		struct ice_rx_ring *rx_ring;
1369 
1370 		ice_for_each_rx_ring(rx_ring, *rc) {
1371 			struct ice_ring_stats *ring_stats;
1372 
1373 			ring_stats = rx_ring->ring_stats;
1374 			if (!ring_stats)
1375 				continue;
1376 			packets += ring_stats->stats.pkts;
1377 			bytes += ring_stats->stats.bytes;
1378 		}
1379 	}
1380 
1381 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1382 	sample->comp_ctr = 0;
1383 
1384 	/* if dim settings get stale, like when not updated for 1
1385 	 * second or longer, force it to start again. This addresses the
1386 	 * frequent case of an idle queue being switched to by the
1387 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1388 	 */
1389 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1390 		rc->dim.state = DIM_START_MEASURE;
1391 }
1392 
1393 /**
1394  * ice_net_dim - Update net DIM algorithm
1395  * @q_vector: the vector associated with the interrupt
1396  *
1397  * Create a DIM sample and notify net_dim() so that it can possibly decide
1398  * a new ITR value based on incoming packets, bytes, and interrupts.
1399  *
1400  * This function is a no-op if the ring is not configured to dynamic ITR.
1401  */
ice_net_dim(struct ice_q_vector * q_vector)1402 static void ice_net_dim(struct ice_q_vector *q_vector)
1403 {
1404 	struct ice_ring_container *tx = &q_vector->tx;
1405 	struct ice_ring_container *rx = &q_vector->rx;
1406 
1407 	if (ITR_IS_DYNAMIC(tx)) {
1408 		struct dim_sample dim_sample;
1409 
1410 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1411 		net_dim(&tx->dim, &dim_sample);
1412 	}
1413 
1414 	if (ITR_IS_DYNAMIC(rx)) {
1415 		struct dim_sample dim_sample;
1416 
1417 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1418 		net_dim(&rx->dim, &dim_sample);
1419 	}
1420 }
1421 
1422 /**
1423  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1424  * @itr_idx: interrupt throttling index
1425  * @itr: interrupt throttling value in usecs
1426  */
ice_buildreg_itr(u16 itr_idx,u16 itr)1427 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1428 {
1429 	/* The ITR value is reported in microseconds, and the register value is
1430 	 * recorded in 2 microsecond units. For this reason we only need to
1431 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1432 	 * granularity as a shift instead of division. The mask makes sure the
1433 	 * ITR value is never odd so we don't accidentally write into the field
1434 	 * prior to the ITR field.
1435 	 */
1436 	itr &= ICE_ITR_MASK;
1437 
1438 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1439 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1440 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1441 }
1442 
1443 /**
1444  * ice_enable_interrupt - re-enable MSI-X interrupt
1445  * @q_vector: the vector associated with the interrupt to enable
1446  *
1447  * If the VSI is down, the interrupt will not be re-enabled. Also,
1448  * when enabling the interrupt always reset the wb_on_itr to false
1449  * and trigger a software interrupt to clean out internal state.
1450  */
ice_enable_interrupt(struct ice_q_vector * q_vector)1451 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1452 {
1453 	struct ice_vsi *vsi = q_vector->vsi;
1454 	bool wb_en = q_vector->wb_on_itr;
1455 	u32 itr_val;
1456 
1457 	if (test_bit(ICE_DOWN, vsi->state))
1458 		return;
1459 
1460 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1461 	 * make sure to catch any pending cleanups that might have been missed
1462 	 * due to interrupt state transition. If busy poll or poll isn't
1463 	 * enabled, then don't update ITR, and just enable the interrupt.
1464 	 */
1465 	if (!wb_en) {
1466 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1467 	} else {
1468 		q_vector->wb_on_itr = false;
1469 
1470 		/* do two things here with a single write. Set up the third ITR
1471 		 * index to be used for software interrupt moderation, and then
1472 		 * trigger a software interrupt with a rate limit of 20K on
1473 		 * software interrupts, this will help avoid high interrupt
1474 		 * loads due to frequently polling and exiting polling.
1475 		 */
1476 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1477 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1478 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1479 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1480 	}
1481 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1482 }
1483 
1484 /**
1485  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1486  * @q_vector: q_vector to set WB_ON_ITR on
1487  *
1488  * We need to tell hardware to write-back completed descriptors even when
1489  * interrupts are disabled. Descriptors will be written back on cache line
1490  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1491  * descriptors may not be written back if they don't fill a cache line until
1492  * the next interrupt.
1493  *
1494  * This sets the write-back frequency to whatever was set previously for the
1495  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1496  * aren't meddling with the INTENA_M bit.
1497  */
ice_set_wb_on_itr(struct ice_q_vector * q_vector)1498 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1499 {
1500 	struct ice_vsi *vsi = q_vector->vsi;
1501 
1502 	/* already in wb_on_itr mode no need to change it */
1503 	if (q_vector->wb_on_itr)
1504 		return;
1505 
1506 	/* use previously set ITR values for all of the ITR indices by
1507 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1508 	 * be static in non-adaptive mode (user configured)
1509 	 */
1510 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1511 	     FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) |
1512 	     FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) |
1513 	     FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1));
1514 
1515 	q_vector->wb_on_itr = true;
1516 }
1517 
1518 /**
1519  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1520  * @napi: napi struct with our devices info in it
1521  * @budget: amount of work driver is allowed to do this pass, in packets
1522  *
1523  * This function will clean all queues associated with a q_vector.
1524  *
1525  * Returns the amount of work done
1526  */
ice_napi_poll(struct napi_struct * napi,int budget)1527 int ice_napi_poll(struct napi_struct *napi, int budget)
1528 {
1529 	struct ice_q_vector *q_vector =
1530 				container_of(napi, struct ice_q_vector, napi);
1531 	struct ice_tx_ring *tx_ring;
1532 	struct ice_rx_ring *rx_ring;
1533 	bool clean_complete = true;
1534 	int budget_per_ring;
1535 	int work_done = 0;
1536 
1537 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1538 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1539 	 */
1540 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1541 		struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool);
1542 		bool wd;
1543 
1544 		if (xsk_pool)
1545 			wd = ice_xmit_zc(tx_ring, xsk_pool);
1546 		else if (ice_ring_is_xdp(tx_ring))
1547 			wd = true;
1548 		else
1549 			wd = ice_clean_tx_irq(tx_ring, budget);
1550 
1551 		if (!wd)
1552 			clean_complete = false;
1553 	}
1554 
1555 	/* Handle case where we are called by netpoll with a budget of 0 */
1556 	if (unlikely(budget <= 0))
1557 		return budget;
1558 
1559 	/* normally we have 1 Rx ring per q_vector */
1560 	if (unlikely(q_vector->num_ring_rx > 1))
1561 		/* We attempt to distribute budget to each Rx queue fairly, but
1562 		 * don't allow the budget to go below 1 because that would exit
1563 		 * polling early.
1564 		 */
1565 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1566 	else
1567 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1568 		budget_per_ring = budget;
1569 
1570 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1571 		struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool);
1572 		int cleaned;
1573 
1574 		/* A dedicated path for zero-copy allows making a single
1575 		 * comparison in the irq context instead of many inside the
1576 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1577 		 */
1578 		cleaned = rx_ring->xsk_pool ?
1579 			  ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) :
1580 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1581 		work_done += cleaned;
1582 		/* if we clean as many as budgeted, we must not be done */
1583 		if (cleaned >= budget_per_ring)
1584 			clean_complete = false;
1585 	}
1586 
1587 	/* If work not completed, return budget and polling will return */
1588 	if (!clean_complete) {
1589 		/* Set the writeback on ITR so partial completions of
1590 		 * cache-lines will still continue even if we're polling.
1591 		 */
1592 		ice_set_wb_on_itr(q_vector);
1593 		return budget;
1594 	}
1595 
1596 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1597 	 * poll us due to busy-polling
1598 	 */
1599 	if (napi_complete_done(napi, work_done)) {
1600 		ice_net_dim(q_vector);
1601 		ice_enable_interrupt(q_vector);
1602 	} else {
1603 		ice_set_wb_on_itr(q_vector);
1604 	}
1605 
1606 	return min_t(int, work_done, budget - 1);
1607 }
1608 
1609 /**
1610  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1611  * @tx_ring: the ring to be checked
1612  * @size: the size buffer we want to assure is available
1613  *
1614  * Returns -EBUSY if a stop is needed, else 0
1615  */
__ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1616 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1617 {
1618 	netif_tx_stop_queue(txring_txq(tx_ring));
1619 	/* Memory barrier before checking head and tail */
1620 	smp_mb();
1621 
1622 	/* Check again in a case another CPU has just made room available. */
1623 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1624 		return -EBUSY;
1625 
1626 	/* A reprieve! - use start_queue because it doesn't call schedule */
1627 	netif_tx_start_queue(txring_txq(tx_ring));
1628 	++tx_ring->ring_stats->tx_stats.restart_q;
1629 	return 0;
1630 }
1631 
1632 /**
1633  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1634  * @tx_ring: the ring to be checked
1635  * @size:    the size buffer we want to assure is available
1636  *
1637  * Returns 0 if stop is not needed
1638  */
ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1639 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1640 {
1641 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1642 		return 0;
1643 
1644 	return __ice_maybe_stop_tx(tx_ring, size);
1645 }
1646 
1647 /**
1648  * ice_tx_map - Build the Tx descriptor
1649  * @tx_ring: ring to send buffer on
1650  * @first: first buffer info buffer to use
1651  * @off: pointer to struct that holds offload parameters
1652  *
1653  * This function loops over the skb data pointed to by *first
1654  * and gets a physical address for each memory location and programs
1655  * it and the length into the transmit descriptor.
1656  */
1657 static void
ice_tx_map(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first,struct ice_tx_offload_params * off)1658 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1659 	   struct ice_tx_offload_params *off)
1660 {
1661 	u64 td_offset, td_tag, td_cmd;
1662 	u16 i = tx_ring->next_to_use;
1663 	unsigned int data_len, size;
1664 	struct ice_tx_desc *tx_desc;
1665 	struct ice_tx_buf *tx_buf;
1666 	struct sk_buff *skb;
1667 	skb_frag_t *frag;
1668 	dma_addr_t dma;
1669 	bool kick;
1670 
1671 	td_tag = off->td_l2tag1;
1672 	td_cmd = off->td_cmd;
1673 	td_offset = off->td_offset;
1674 	skb = first->skb;
1675 
1676 	data_len = skb->data_len;
1677 	size = skb_headlen(skb);
1678 
1679 	tx_desc = ICE_TX_DESC(tx_ring, i);
1680 
1681 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1682 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1683 		td_tag = first->vid;
1684 	}
1685 
1686 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1687 
1688 	tx_buf = first;
1689 
1690 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1691 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1692 
1693 		if (dma_mapping_error(tx_ring->dev, dma))
1694 			goto dma_error;
1695 
1696 		/* record length, and DMA address */
1697 		dma_unmap_len_set(tx_buf, len, size);
1698 		dma_unmap_addr_set(tx_buf, dma, dma);
1699 
1700 		/* align size to end of page */
1701 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1702 		tx_desc->buf_addr = cpu_to_le64(dma);
1703 
1704 		/* account for data chunks larger than the hardware
1705 		 * can handle
1706 		 */
1707 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1708 			tx_desc->cmd_type_offset_bsz =
1709 				ice_build_ctob(td_cmd, td_offset, max_data,
1710 					       td_tag);
1711 
1712 			tx_desc++;
1713 			i++;
1714 
1715 			if (i == tx_ring->count) {
1716 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1717 				i = 0;
1718 			}
1719 
1720 			dma += max_data;
1721 			size -= max_data;
1722 
1723 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1724 			tx_desc->buf_addr = cpu_to_le64(dma);
1725 		}
1726 
1727 		if (likely(!data_len))
1728 			break;
1729 
1730 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1731 							      size, td_tag);
1732 
1733 		tx_desc++;
1734 		i++;
1735 
1736 		if (i == tx_ring->count) {
1737 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1738 			i = 0;
1739 		}
1740 
1741 		size = skb_frag_size(frag);
1742 		data_len -= size;
1743 
1744 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1745 				       DMA_TO_DEVICE);
1746 
1747 		tx_buf = &tx_ring->tx_buf[i];
1748 		tx_buf->type = ICE_TX_BUF_FRAG;
1749 	}
1750 
1751 	/* record SW timestamp if HW timestamp is not available */
1752 	skb_tx_timestamp(first->skb);
1753 
1754 	i++;
1755 	if (i == tx_ring->count)
1756 		i = 0;
1757 
1758 	/* write last descriptor with RS and EOP bits */
1759 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1760 	tx_desc->cmd_type_offset_bsz =
1761 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1762 
1763 	/* Force memory writes to complete before letting h/w know there
1764 	 * are new descriptors to fetch.
1765 	 *
1766 	 * We also use this memory barrier to make certain all of the
1767 	 * status bits have been updated before next_to_watch is written.
1768 	 */
1769 	wmb();
1770 
1771 	/* set next_to_watch value indicating a packet is present */
1772 	first->next_to_watch = tx_desc;
1773 
1774 	tx_ring->next_to_use = i;
1775 
1776 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1777 
1778 	/* notify HW of packet */
1779 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1780 				      netdev_xmit_more());
1781 	if (kick)
1782 		/* notify HW of packet */
1783 		writel(i, tx_ring->tail);
1784 
1785 	return;
1786 
1787 dma_error:
1788 	/* clear DMA mappings for failed tx_buf map */
1789 	for (;;) {
1790 		tx_buf = &tx_ring->tx_buf[i];
1791 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1792 		if (tx_buf == first)
1793 			break;
1794 		if (i == 0)
1795 			i = tx_ring->count;
1796 		i--;
1797 	}
1798 
1799 	tx_ring->next_to_use = i;
1800 }
1801 
1802 /**
1803  * ice_tx_csum - Enable Tx checksum offloads
1804  * @first: pointer to the first descriptor
1805  * @off: pointer to struct that holds offload parameters
1806  *
1807  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1808  */
1809 static
ice_tx_csum(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1810 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1811 {
1812 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1813 	struct sk_buff *skb = first->skb;
1814 	union {
1815 		struct iphdr *v4;
1816 		struct ipv6hdr *v6;
1817 		unsigned char *hdr;
1818 	} ip;
1819 	union {
1820 		struct tcphdr *tcp;
1821 		unsigned char *hdr;
1822 	} l4;
1823 	__be16 frag_off, protocol;
1824 	unsigned char *exthdr;
1825 	u32 offset, cmd = 0;
1826 	u8 l4_proto = 0;
1827 
1828 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1829 		return 0;
1830 
1831 	protocol = vlan_get_protocol(skb);
1832 
1833 	if (eth_p_mpls(protocol)) {
1834 		ip.hdr = skb_inner_network_header(skb);
1835 		l4.hdr = skb_checksum_start(skb);
1836 	} else {
1837 		ip.hdr = skb_network_header(skb);
1838 		l4.hdr = skb_transport_header(skb);
1839 	}
1840 
1841 	/* compute outer L2 header size */
1842 	l2_len = ip.hdr - skb->data;
1843 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1844 
1845 	/* set the tx_flags to indicate the IP protocol type. this is
1846 	 * required so that checksum header computation below is accurate.
1847 	 */
1848 	if (ip.v4->version == 4)
1849 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1850 	else if (ip.v6->version == 6)
1851 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1852 
1853 	if (skb->encapsulation) {
1854 		bool gso_ena = false;
1855 		u32 tunnel = 0;
1856 
1857 		/* define outer network header type */
1858 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1859 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1860 				  ICE_TX_CTX_EIPT_IPV4 :
1861 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1862 			l4_proto = ip.v4->protocol;
1863 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1864 			int ret;
1865 
1866 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1867 			exthdr = ip.hdr + sizeof(*ip.v6);
1868 			l4_proto = ip.v6->nexthdr;
1869 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1870 					       &l4_proto, &frag_off);
1871 			if (ret < 0)
1872 				return -1;
1873 		}
1874 
1875 		/* define outer transport */
1876 		switch (l4_proto) {
1877 		case IPPROTO_UDP:
1878 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1879 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1880 			break;
1881 		case IPPROTO_GRE:
1882 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1883 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1884 			break;
1885 		case IPPROTO_IPIP:
1886 		case IPPROTO_IPV6:
1887 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1888 			l4.hdr = skb_inner_network_header(skb);
1889 			break;
1890 		default:
1891 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1892 				return -1;
1893 
1894 			skb_checksum_help(skb);
1895 			return 0;
1896 		}
1897 
1898 		/* compute outer L3 header size */
1899 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1900 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1901 
1902 		/* switch IP header pointer from outer to inner header */
1903 		ip.hdr = skb_inner_network_header(skb);
1904 
1905 		/* compute tunnel header size */
1906 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1907 			   ICE_TXD_CTX_QW0_NATLEN_S;
1908 
1909 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1910 		/* indicate if we need to offload outer UDP header */
1911 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1912 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1913 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1914 
1915 		/* record tunnel offload values */
1916 		off->cd_tunnel_params |= tunnel;
1917 
1918 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1919 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1920 		 */
1921 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1922 
1923 		/* switch L4 header pointer from outer to inner */
1924 		l4.hdr = skb_inner_transport_header(skb);
1925 		l4_proto = 0;
1926 
1927 		/* reset type as we transition from outer to inner headers */
1928 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1929 		if (ip.v4->version == 4)
1930 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1931 		if (ip.v6->version == 6)
1932 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1933 	}
1934 
1935 	/* Enable IP checksum offloads */
1936 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1937 		l4_proto = ip.v4->protocol;
1938 		/* the stack computes the IP header already, the only time we
1939 		 * need the hardware to recompute it is in the case of TSO.
1940 		 */
1941 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1942 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1943 		else
1944 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1945 
1946 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1947 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1948 		exthdr = ip.hdr + sizeof(*ip.v6);
1949 		l4_proto = ip.v6->nexthdr;
1950 		if (l4.hdr != exthdr)
1951 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1952 					 &frag_off);
1953 	} else {
1954 		return -1;
1955 	}
1956 
1957 	/* compute inner L3 header size */
1958 	l3_len = l4.hdr - ip.hdr;
1959 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1960 
1961 	/* Enable L4 checksum offloads */
1962 	switch (l4_proto) {
1963 	case IPPROTO_TCP:
1964 		/* enable checksum offloads */
1965 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1966 		l4_len = l4.tcp->doff;
1967 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1968 		break;
1969 	case IPPROTO_UDP:
1970 		/* enable UDP checksum offload */
1971 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1972 		l4_len = (sizeof(struct udphdr) >> 2);
1973 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1974 		break;
1975 	case IPPROTO_SCTP:
1976 		/* enable SCTP checksum offload */
1977 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1978 		l4_len = sizeof(struct sctphdr) >> 2;
1979 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1980 		break;
1981 
1982 	default:
1983 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1984 			return -1;
1985 		skb_checksum_help(skb);
1986 		return 0;
1987 	}
1988 
1989 	off->td_cmd |= cmd;
1990 	off->td_offset |= offset;
1991 	return 1;
1992 }
1993 
1994 /**
1995  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1996  * @tx_ring: ring to send buffer on
1997  * @first: pointer to struct ice_tx_buf
1998  *
1999  * Checks the skb and set up correspondingly several generic transmit flags
2000  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2001  */
2002 static void
ice_tx_prepare_vlan_flags(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first)2003 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
2004 {
2005 	struct sk_buff *skb = first->skb;
2006 
2007 	/* nothing left to do, software offloaded VLAN */
2008 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2009 		return;
2010 
2011 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
2012 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
2013 	 * VLAN offloads exclusively so we only care about the VLAN ID here
2014 	 */
2015 	if (skb_vlan_tag_present(skb)) {
2016 		first->vid = skb_vlan_tag_get(skb);
2017 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
2018 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
2019 		else
2020 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2021 	}
2022 
2023 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2024 }
2025 
2026 /**
2027  * ice_tso - computes mss and TSO length to prepare for TSO
2028  * @first: pointer to struct ice_tx_buf
2029  * @off: pointer to struct that holds offload parameters
2030  *
2031  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2032  */
2033 static
ice_tso(struct ice_tx_buf * first,struct ice_tx_offload_params * off)2034 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2035 {
2036 	struct sk_buff *skb = first->skb;
2037 	union {
2038 		struct iphdr *v4;
2039 		struct ipv6hdr *v6;
2040 		unsigned char *hdr;
2041 	} ip;
2042 	union {
2043 		struct tcphdr *tcp;
2044 		struct udphdr *udp;
2045 		unsigned char *hdr;
2046 	} l4;
2047 	u64 cd_mss, cd_tso_len;
2048 	__be16 protocol;
2049 	u32 paylen;
2050 	u8 l4_start;
2051 	int err;
2052 
2053 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2054 		return 0;
2055 
2056 	if (!skb_is_gso(skb))
2057 		return 0;
2058 
2059 	err = skb_cow_head(skb, 0);
2060 	if (err < 0)
2061 		return err;
2062 
2063 	protocol = vlan_get_protocol(skb);
2064 
2065 	if (eth_p_mpls(protocol))
2066 		ip.hdr = skb_inner_network_header(skb);
2067 	else
2068 		ip.hdr = skb_network_header(skb);
2069 	l4.hdr = skb_checksum_start(skb);
2070 
2071 	/* initialize outer IP header fields */
2072 	if (ip.v4->version == 4) {
2073 		ip.v4->tot_len = 0;
2074 		ip.v4->check = 0;
2075 	} else {
2076 		ip.v6->payload_len = 0;
2077 	}
2078 
2079 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2080 					 SKB_GSO_GRE_CSUM |
2081 					 SKB_GSO_IPXIP4 |
2082 					 SKB_GSO_IPXIP6 |
2083 					 SKB_GSO_UDP_TUNNEL |
2084 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2085 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2086 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2087 			l4.udp->len = 0;
2088 
2089 			/* determine offset of outer transport header */
2090 			l4_start = (u8)(l4.hdr - skb->data);
2091 
2092 			/* remove payload length from outer checksum */
2093 			paylen = skb->len - l4_start;
2094 			csum_replace_by_diff(&l4.udp->check,
2095 					     (__force __wsum)htonl(paylen));
2096 		}
2097 
2098 		/* reset pointers to inner headers */
2099 		ip.hdr = skb_inner_network_header(skb);
2100 		l4.hdr = skb_inner_transport_header(skb);
2101 
2102 		/* initialize inner IP header fields */
2103 		if (ip.v4->version == 4) {
2104 			ip.v4->tot_len = 0;
2105 			ip.v4->check = 0;
2106 		} else {
2107 			ip.v6->payload_len = 0;
2108 		}
2109 	}
2110 
2111 	/* determine offset of transport header */
2112 	l4_start = (u8)(l4.hdr - skb->data);
2113 
2114 	/* remove payload length from checksum */
2115 	paylen = skb->len - l4_start;
2116 
2117 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2118 		csum_replace_by_diff(&l4.udp->check,
2119 				     (__force __wsum)htonl(paylen));
2120 		/* compute length of UDP segmentation header */
2121 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2122 	} else {
2123 		csum_replace_by_diff(&l4.tcp->check,
2124 				     (__force __wsum)htonl(paylen));
2125 		/* compute length of TCP segmentation header */
2126 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2127 	}
2128 
2129 	/* update gso_segs and bytecount */
2130 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2131 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2132 
2133 	cd_tso_len = skb->len - off->header_len;
2134 	cd_mss = skb_shinfo(skb)->gso_size;
2135 
2136 	/* record cdesc_qw1 with TSO parameters */
2137 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2138 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2139 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2140 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2141 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2142 	return 1;
2143 }
2144 
2145 /**
2146  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2147  * @size: transmit request size in bytes
2148  *
2149  * Due to hardware alignment restrictions (4K alignment), we need to
2150  * assume that we can have no more than 12K of data per descriptor, even
2151  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2152  * Thus, we need to divide by 12K. But division is slow! Instead,
2153  * we decompose the operation into shifts and one relatively cheap
2154  * multiply operation.
2155  *
2156  * To divide by 12K, we first divide by 4K, then divide by 3:
2157  *     To divide by 4K, shift right by 12 bits
2158  *     To divide by 3, multiply by 85, then divide by 256
2159  *     (Divide by 256 is done by shifting right by 8 bits)
2160  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2161  * 3, we'll underestimate near each multiple of 12K. This is actually more
2162  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2163  * segment. For our purposes this is accurate out to 1M which is orders of
2164  * magnitude greater than our largest possible GSO size.
2165  *
2166  * This would then be implemented as:
2167  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2168  *
2169  * Since multiplication and division are commutative, we can reorder
2170  * operations into:
2171  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2172  */
ice_txd_use_count(unsigned int size)2173 static unsigned int ice_txd_use_count(unsigned int size)
2174 {
2175 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2176 }
2177 
2178 /**
2179  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2180  * @skb: send buffer
2181  *
2182  * Returns number of data descriptors needed for this skb.
2183  */
ice_xmit_desc_count(struct sk_buff * skb)2184 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2185 {
2186 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2187 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2188 	unsigned int count = 0, size = skb_headlen(skb);
2189 
2190 	for (;;) {
2191 		count += ice_txd_use_count(size);
2192 
2193 		if (!nr_frags--)
2194 			break;
2195 
2196 		size = skb_frag_size(frag++);
2197 	}
2198 
2199 	return count;
2200 }
2201 
2202 /**
2203  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2204  * @skb: send buffer
2205  *
2206  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2207  * and so we need to figure out the cases where we need to linearize the skb.
2208  *
2209  * For TSO we need to count the TSO header and segment payload separately.
2210  * As such we need to check cases where we have 7 fragments or more as we
2211  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2212  * the segment payload in the first descriptor, and another 7 for the
2213  * fragments.
2214  */
__ice_chk_linearize(struct sk_buff * skb)2215 static bool __ice_chk_linearize(struct sk_buff *skb)
2216 {
2217 	const skb_frag_t *frag, *stale;
2218 	int nr_frags, sum;
2219 
2220 	/* no need to check if number of frags is less than 7 */
2221 	nr_frags = skb_shinfo(skb)->nr_frags;
2222 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2223 		return false;
2224 
2225 	/* We need to walk through the list and validate that each group
2226 	 * of 6 fragments totals at least gso_size.
2227 	 */
2228 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2229 	frag = &skb_shinfo(skb)->frags[0];
2230 
2231 	/* Initialize size to the negative value of gso_size minus 1. We
2232 	 * use this as the worst case scenario in which the frag ahead
2233 	 * of us only provides one byte which is why we are limited to 6
2234 	 * descriptors for a single transmit as the header and previous
2235 	 * fragment are already consuming 2 descriptors.
2236 	 */
2237 	sum = 1 - skb_shinfo(skb)->gso_size;
2238 
2239 	/* Add size of frags 0 through 4 to create our initial sum */
2240 	sum += skb_frag_size(frag++);
2241 	sum += skb_frag_size(frag++);
2242 	sum += skb_frag_size(frag++);
2243 	sum += skb_frag_size(frag++);
2244 	sum += skb_frag_size(frag++);
2245 
2246 	/* Walk through fragments adding latest fragment, testing it, and
2247 	 * then removing stale fragments from the sum.
2248 	 */
2249 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2250 		int stale_size = skb_frag_size(stale);
2251 
2252 		sum += skb_frag_size(frag++);
2253 
2254 		/* The stale fragment may present us with a smaller
2255 		 * descriptor than the actual fragment size. To account
2256 		 * for that we need to remove all the data on the front and
2257 		 * figure out what the remainder would be in the last
2258 		 * descriptor associated with the fragment.
2259 		 */
2260 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2261 			int align_pad = -(skb_frag_off(stale)) &
2262 					(ICE_MAX_READ_REQ_SIZE - 1);
2263 
2264 			sum -= align_pad;
2265 			stale_size -= align_pad;
2266 
2267 			do {
2268 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2269 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2270 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2271 		}
2272 
2273 		/* if sum is negative we failed to make sufficient progress */
2274 		if (sum < 0)
2275 			return true;
2276 
2277 		if (!nr_frags--)
2278 			break;
2279 
2280 		sum -= stale_size;
2281 	}
2282 
2283 	return false;
2284 }
2285 
2286 /**
2287  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2288  * @skb:      send buffer
2289  * @count:    number of buffers used
2290  *
2291  * Note: Our HW can't scatter-gather more than 8 fragments to build
2292  * a packet on the wire and so we need to figure out the cases where we
2293  * need to linearize the skb.
2294  */
ice_chk_linearize(struct sk_buff * skb,unsigned int count)2295 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2296 {
2297 	/* Both TSO and single send will work if count is less than 8 */
2298 	if (likely(count < ICE_MAX_BUF_TXD))
2299 		return false;
2300 
2301 	if (skb_is_gso(skb))
2302 		return __ice_chk_linearize(skb);
2303 
2304 	/* we can support up to 8 data buffers for a single send */
2305 	return count != ICE_MAX_BUF_TXD;
2306 }
2307 
2308 /**
2309  * ice_tstamp - set up context descriptor for hardware timestamp
2310  * @tx_ring: pointer to the Tx ring to send buffer on
2311  * @skb: pointer to the SKB we're sending
2312  * @first: Tx buffer
2313  * @off: Tx offload parameters
2314  */
2315 static void
ice_tstamp(struct ice_tx_ring * tx_ring,struct sk_buff * skb,struct ice_tx_buf * first,struct ice_tx_offload_params * off)2316 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2317 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2318 {
2319 	s8 idx;
2320 
2321 	/* only timestamp the outbound packet if the user has requested it */
2322 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2323 		return;
2324 
2325 	/* Tx timestamps cannot be sampled when doing TSO */
2326 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2327 		return;
2328 
2329 	/* Grab an open timestamp slot */
2330 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2331 	if (idx < 0) {
2332 		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2333 		return;
2334 	}
2335 
2336 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2337 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2338 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2339 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2340 }
2341 
2342 /**
2343  * ice_xmit_frame_ring - Sends buffer on Tx ring
2344  * @skb: send buffer
2345  * @tx_ring: ring to send buffer on
2346  *
2347  * Returns NETDEV_TX_OK if sent, else an error code
2348  */
2349 static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff * skb,struct ice_tx_ring * tx_ring)2350 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2351 {
2352 	struct ice_tx_offload_params offload = { 0 };
2353 	struct ice_vsi *vsi = tx_ring->vsi;
2354 	struct ice_tx_buf *first;
2355 	struct ethhdr *eth;
2356 	unsigned int count;
2357 	int tso, csum;
2358 
2359 	ice_trace(xmit_frame_ring, tx_ring, skb);
2360 
2361 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2362 		goto out_drop;
2363 
2364 	count = ice_xmit_desc_count(skb);
2365 	if (ice_chk_linearize(skb, count)) {
2366 		if (__skb_linearize(skb))
2367 			goto out_drop;
2368 		count = ice_txd_use_count(skb->len);
2369 		tx_ring->ring_stats->tx_stats.tx_linearize++;
2370 	}
2371 
2372 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2373 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2374 	 *       + 4 desc gap to avoid the cache line where head is,
2375 	 *       + 1 desc for context descriptor,
2376 	 * otherwise try next time
2377 	 */
2378 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2379 			      ICE_DESCS_FOR_CTX_DESC)) {
2380 		tx_ring->ring_stats->tx_stats.tx_busy++;
2381 		return NETDEV_TX_BUSY;
2382 	}
2383 
2384 	/* prefetch for bql data which is infrequently used */
2385 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2386 
2387 	offload.tx_ring = tx_ring;
2388 
2389 	/* record the location of the first descriptor for this packet */
2390 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2391 	first->skb = skb;
2392 	first->type = ICE_TX_BUF_SKB;
2393 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2394 	first->gso_segs = 1;
2395 	first->tx_flags = 0;
2396 
2397 	/* prepare the VLAN tagging flags for Tx */
2398 	ice_tx_prepare_vlan_flags(tx_ring, first);
2399 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2400 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2401 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2402 					ICE_TXD_CTX_QW1_CMD_S));
2403 		offload.cd_l2tag2 = first->vid;
2404 	}
2405 
2406 	/* set up TSO offload */
2407 	tso = ice_tso(first, &offload);
2408 	if (tso < 0)
2409 		goto out_drop;
2410 
2411 	/* always set up Tx checksum offload */
2412 	csum = ice_tx_csum(first, &offload);
2413 	if (csum < 0)
2414 		goto out_drop;
2415 
2416 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2417 	eth = (struct ethhdr *)skb_mac_header(skb);
2418 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2419 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2420 		     vsi->type == ICE_VSI_PF &&
2421 		     vsi->port_info->qos_cfg.is_sw_lldp))
2422 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2423 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2424 					ICE_TXD_CTX_QW1_CMD_S);
2425 
2426 	ice_tstamp(tx_ring, skb, first, &offload);
2427 	if ((ice_is_switchdev_running(vsi->back) ||
2428 	     ice_lag_is_switchdev_running(vsi->back)) &&
2429 	    vsi->type != ICE_VSI_SF)
2430 		ice_eswitch_set_target_vsi(skb, &offload);
2431 
2432 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2433 		struct ice_tx_ctx_desc *cdesc;
2434 		u16 i = tx_ring->next_to_use;
2435 
2436 		/* grab the next descriptor */
2437 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2438 		i++;
2439 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2440 
2441 		/* setup context descriptor */
2442 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2443 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2444 		cdesc->rsvd = cpu_to_le16(0);
2445 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2446 	}
2447 
2448 	ice_tx_map(tx_ring, first, &offload);
2449 	return NETDEV_TX_OK;
2450 
2451 out_drop:
2452 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2453 	dev_kfree_skb_any(skb);
2454 	return NETDEV_TX_OK;
2455 }
2456 
2457 /**
2458  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2459  * @skb: send buffer
2460  * @netdev: network interface device structure
2461  *
2462  * Returns NETDEV_TX_OK if sent, else an error code
2463  */
ice_start_xmit(struct sk_buff * skb,struct net_device * netdev)2464 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2465 {
2466 	struct ice_netdev_priv *np = netdev_priv(netdev);
2467 	struct ice_vsi *vsi = np->vsi;
2468 	struct ice_tx_ring *tx_ring;
2469 
2470 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2471 
2472 	/* hardware can't handle really short frames, hardware padding works
2473 	 * beyond this point
2474 	 */
2475 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2476 		return NETDEV_TX_OK;
2477 
2478 	return ice_xmit_frame_ring(skb, tx_ring);
2479 }
2480 
2481 /**
2482  * ice_get_dscp_up - return the UP/TC value for a SKB
2483  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2484  * @skb: SKB to query for info to determine UP/TC
2485  *
2486  * This function is to only be called when the PF is in L3 DSCP PFC mode
2487  */
ice_get_dscp_up(struct ice_dcbx_cfg * dcbcfg,struct sk_buff * skb)2488 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2489 {
2490 	u8 dscp = 0;
2491 
2492 	if (skb->protocol == htons(ETH_P_IP))
2493 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2494 	else if (skb->protocol == htons(ETH_P_IPV6))
2495 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2496 
2497 	return dcbcfg->dscp_map[dscp];
2498 }
2499 
2500 u16
ice_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device * sb_dev)2501 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2502 		 struct net_device *sb_dev)
2503 {
2504 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2505 	struct ice_dcbx_cfg *dcbcfg;
2506 
2507 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2508 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2509 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2510 
2511 	return netdev_pick_tx(netdev, skb, sb_dev);
2512 }
2513 
2514 /**
2515  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2516  * @tx_ring: tx_ring to clean
2517  */
ice_clean_ctrl_tx_irq(struct ice_tx_ring * tx_ring)2518 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2519 {
2520 	struct ice_vsi *vsi = tx_ring->vsi;
2521 	s16 i = tx_ring->next_to_clean;
2522 	int budget = ICE_DFLT_IRQ_WORK;
2523 	struct ice_tx_desc *tx_desc;
2524 	struct ice_tx_buf *tx_buf;
2525 
2526 	tx_buf = &tx_ring->tx_buf[i];
2527 	tx_desc = ICE_TX_DESC(tx_ring, i);
2528 	i -= tx_ring->count;
2529 
2530 	do {
2531 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2532 
2533 		/* if next_to_watch is not set then there is no pending work */
2534 		if (!eop_desc)
2535 			break;
2536 
2537 		/* prevent any other reads prior to eop_desc */
2538 		smp_rmb();
2539 
2540 		/* if the descriptor isn't done, no work to do */
2541 		if (!(eop_desc->cmd_type_offset_bsz &
2542 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2543 			break;
2544 
2545 		/* clear next_to_watch to prevent false hangs */
2546 		tx_buf->next_to_watch = NULL;
2547 		tx_desc->buf_addr = 0;
2548 		tx_desc->cmd_type_offset_bsz = 0;
2549 
2550 		/* move past filter desc */
2551 		tx_buf++;
2552 		tx_desc++;
2553 		i++;
2554 		if (unlikely(!i)) {
2555 			i -= tx_ring->count;
2556 			tx_buf = tx_ring->tx_buf;
2557 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2558 		}
2559 
2560 		/* unmap the data header */
2561 		if (dma_unmap_len(tx_buf, len))
2562 			dma_unmap_single(tx_ring->dev,
2563 					 dma_unmap_addr(tx_buf, dma),
2564 					 dma_unmap_len(tx_buf, len),
2565 					 DMA_TO_DEVICE);
2566 		if (tx_buf->type == ICE_TX_BUF_DUMMY)
2567 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2568 
2569 		/* clear next_to_watch to prevent false hangs */
2570 		tx_buf->type = ICE_TX_BUF_EMPTY;
2571 		tx_buf->tx_flags = 0;
2572 		tx_buf->next_to_watch = NULL;
2573 		dma_unmap_len_set(tx_buf, len, 0);
2574 		tx_desc->buf_addr = 0;
2575 		tx_desc->cmd_type_offset_bsz = 0;
2576 
2577 		/* move past eop_desc for start of next FD desc */
2578 		tx_buf++;
2579 		tx_desc++;
2580 		i++;
2581 		if (unlikely(!i)) {
2582 			i -= tx_ring->count;
2583 			tx_buf = tx_ring->tx_buf;
2584 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2585 		}
2586 
2587 		budget--;
2588 	} while (likely(budget));
2589 
2590 	i += tx_ring->count;
2591 	tx_ring->next_to_clean = i;
2592 
2593 	/* re-enable interrupt if needed */
2594 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2595 }
2596