xref: /linux/rust/proc-macro2/lib.rs (revision 784faa8eca8270671e0ed6d9d21f04bbb80fc5f7)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
4 //!
5 //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
6 //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
7 //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
8 //!
9 //! <br>
10 //!
11 //! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
12 //! crate. This library serves two purposes:
13 //!
14 //! - **Bring proc-macro-like functionality to other contexts like build.rs and
15 //!   main.rs.** Types from `proc_macro` are entirely specific to procedural
16 //!   macros and cannot ever exist in code outside of a procedural macro.
17 //!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
18 //!   By developing foundational libraries like [syn] and [quote] against
19 //!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
20 //!   becomes easily applicable to many other use cases and we avoid
21 //!   reimplementing non-macro equivalents of those libraries.
22 //!
23 //! - **Make procedural macros unit testable.** As a consequence of being
24 //!   specific to procedural macros, nothing that uses `proc_macro` can be
25 //!   executed from a unit test. In order for helper libraries or components of
26 //!   a macro to be testable in isolation, they must be implemented using
27 //!   `proc_macro2`.
28 //!
29 //! [syn]: https://github.com/dtolnay/syn
30 //! [quote]: https://github.com/dtolnay/quote
31 //!
32 //! # Usage
33 //!
34 //! The skeleton of a typical procedural macro typically looks like this:
35 //!
36 //! ```
37 //! extern crate proc_macro;
38 //!
39 //! # const IGNORE: &str = stringify! {
40 //! #[proc_macro_derive(MyDerive)]
41 //! # };
42 //! # #[cfg(wrap_proc_macro)]
43 //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
44 //!     let input = proc_macro2::TokenStream::from(input);
45 //!
46 //!     let output: proc_macro2::TokenStream = {
47 //!         /* transform input */
48 //!         # input
49 //!     };
50 //!
51 //!     proc_macro::TokenStream::from(output)
52 //! }
53 //! ```
54 //!
55 //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
56 //! propagate parse errors correctly back to the compiler when parsing fails.
57 //!
58 //! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
59 //!
60 //! # Unstable features
61 //!
62 //! The default feature set of proc-macro2 tracks the most recent stable
63 //! compiler API. Functionality in `proc_macro` that is not yet stable is not
64 //! exposed by proc-macro2 by default.
65 //!
66 //! To opt into the additional APIs available in the most recent nightly
67 //! compiler, the `procmacro2_semver_exempt` config flag must be passed to
68 //! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
69 //! these are unstable APIs that track the nightly compiler, minor versions of
70 //! proc-macro2 may make breaking changes to them at any time.
71 //!
72 //! ```sh
73 //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
74 //! ```
75 //!
76 //! Note that this must not only be done for your crate, but for any crate that
77 //! depends on your crate. This infectious nature is intentional, as it serves
78 //! as a reminder that you are outside of the normal semver guarantees.
79 //!
80 //! Semver exempt methods are marked as such in the proc-macro2 documentation.
81 //!
82 //! # Thread-Safety
83 //!
84 //! Most types in this crate are `!Sync` because the underlying compiler
85 //! types make use of thread-local memory, meaning they cannot be accessed from
86 //! a different thread.
87 
88 // Proc-macro2 types in rustdoc of other crates get linked to here.
89 #![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.101")]
90 #![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
91 #![cfg_attr(super_unstable, feature(proc_macro_def_site))]
92 #![cfg_attr(docsrs, feature(doc_cfg))]
93 #![deny(unsafe_op_in_unsafe_fn)]
94 #![allow(
95     clippy::cast_lossless,
96     clippy::cast_possible_truncation,
97     clippy::checked_conversions,
98     clippy::doc_markdown,
99     clippy::elidable_lifetime_names,
100     clippy::incompatible_msrv,
101     clippy::items_after_statements,
102     clippy::iter_without_into_iter,
103     clippy::let_underscore_untyped,
104     clippy::manual_assert,
105     clippy::manual_range_contains,
106     clippy::missing_panics_doc,
107     clippy::missing_safety_doc,
108     clippy::must_use_candidate,
109     clippy::needless_doctest_main,
110     clippy::needless_lifetimes,
111     clippy::new_without_default,
112     clippy::return_self_not_must_use,
113     clippy::shadow_unrelated,
114     clippy::trivially_copy_pass_by_ref,
115     clippy::unnecessary_wraps,
116     clippy::unused_self,
117     clippy::used_underscore_binding,
118     clippy::vec_init_then_push
119 )]
120 #![allow(unknown_lints, mismatched_lifetime_syntaxes)]
121 
122 #[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
123 compile_error! {"\
124     Something is not right. If you've tried to turn on \
125     procmacro2_semver_exempt, you need to ensure that it \
126     is turned on for the compilation of the proc-macro2 \
127     build script as well.
128 "}
129 
130 #[cfg(all(
131     procmacro2_nightly_testing,
132     feature = "proc-macro",
133     not(proc_macro_span)
134 ))]
135 compile_error! {"\
136     Build script probe failed to compile.
137 "}
138 
139 extern crate alloc;
140 
141 #[cfg(feature = "proc-macro")]
142 extern crate proc_macro;
143 
144 mod marker;
145 mod parse;
146 mod probe;
147 mod rcvec;
148 
149 #[cfg(wrap_proc_macro)]
150 mod detection;
151 
152 // Public for proc_macro2::fallback::force() and unforce(), but those are quite
153 // a niche use case so we omit it from rustdoc.
154 #[doc(hidden)]
155 pub mod fallback;
156 
157 pub mod extra;
158 
159 #[cfg(not(wrap_proc_macro))]
160 use crate::fallback as imp;
161 #[path = "wrapper.rs"]
162 #[cfg(wrap_proc_macro)]
163 mod imp;
164 
165 #[cfg(span_locations)]
166 mod location;
167 
168 use crate::extra::DelimSpan;
169 use crate::marker::{ProcMacroAutoTraits, MARKER};
170 use core::cmp::Ordering;
171 use core::fmt::{self, Debug, Display};
172 use core::hash::{Hash, Hasher};
173 #[cfg(span_locations)]
174 use core::ops::Range;
175 use core::ops::RangeBounds;
176 use core::str::FromStr;
177 use std::error::Error;
178 use std::ffi::CStr;
179 #[cfg(span_locations)]
180 use std::path::PathBuf;
181 
182 #[cfg(span_locations)]
183 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
184 pub use crate::location::LineColumn;
185 
186 /// An abstract stream of tokens, or more concretely a sequence of token trees.
187 ///
188 /// This type provides interfaces for iterating over token trees and for
189 /// collecting token trees into one stream.
190 ///
191 /// Token stream is both the input and output of `#[proc_macro]`,
192 /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
193 #[derive(Clone)]
194 pub struct TokenStream {
195     inner: imp::TokenStream,
196     _marker: ProcMacroAutoTraits,
197 }
198 
199 /// Error returned from `TokenStream::from_str`.
200 pub struct LexError {
201     inner: imp::LexError,
202     _marker: ProcMacroAutoTraits,
203 }
204 
205 impl TokenStream {
_new(inner: imp::TokenStream) -> Self206     fn _new(inner: imp::TokenStream) -> Self {
207         TokenStream {
208             inner,
209             _marker: MARKER,
210         }
211     }
212 
_new_fallback(inner: fallback::TokenStream) -> Self213     fn _new_fallback(inner: fallback::TokenStream) -> Self {
214         TokenStream {
215             inner: imp::TokenStream::from(inner),
216             _marker: MARKER,
217         }
218     }
219 
220     /// Returns an empty `TokenStream` containing no token trees.
new() -> Self221     pub fn new() -> Self {
222         TokenStream::_new(imp::TokenStream::new())
223     }
224 
225     /// Checks if this `TokenStream` is empty.
is_empty(&self) -> bool226     pub fn is_empty(&self) -> bool {
227         self.inner.is_empty()
228     }
229 }
230 
231 /// `TokenStream::default()` returns an empty stream,
232 /// i.e. this is equivalent with `TokenStream::new()`.
233 impl Default for TokenStream {
default() -> Self234     fn default() -> Self {
235         TokenStream::new()
236     }
237 }
238 
239 /// Attempts to break the string into tokens and parse those tokens into a token
240 /// stream.
241 ///
242 /// May fail for a number of reasons, for example, if the string contains
243 /// unbalanced delimiters or characters not existing in the language.
244 ///
245 /// NOTE: Some errors may cause panics instead of returning `LexError`. We
246 /// reserve the right to change these errors into `LexError`s later.
247 impl FromStr for TokenStream {
248     type Err = LexError;
249 
from_str(src: &str) -> Result<TokenStream, LexError>250     fn from_str(src: &str) -> Result<TokenStream, LexError> {
251         match imp::TokenStream::from_str_checked(src) {
252             Ok(tokens) => Ok(TokenStream::_new(tokens)),
253             Err(lex) => Err(LexError {
254                 inner: lex,
255                 _marker: MARKER,
256             }),
257         }
258     }
259 }
260 
261 #[cfg(feature = "proc-macro")]
262 #[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
263 impl From<proc_macro::TokenStream> for TokenStream {
from(inner: proc_macro::TokenStream) -> Self264     fn from(inner: proc_macro::TokenStream) -> Self {
265         TokenStream::_new(imp::TokenStream::from(inner))
266     }
267 }
268 
269 #[cfg(feature = "proc-macro")]
270 #[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
271 impl From<TokenStream> for proc_macro::TokenStream {
from(inner: TokenStream) -> Self272     fn from(inner: TokenStream) -> Self {
273         proc_macro::TokenStream::from(inner.inner)
274     }
275 }
276 
277 impl From<TokenTree> for TokenStream {
from(token: TokenTree) -> Self278     fn from(token: TokenTree) -> Self {
279         TokenStream::_new(imp::TokenStream::from(token))
280     }
281 }
282 
283 impl Extend<TokenTree> for TokenStream {
extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I)284     fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
285         self.inner.extend(streams);
286     }
287 }
288 
289 impl Extend<TokenStream> for TokenStream {
extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I)290     fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
291         self.inner
292             .extend(streams.into_iter().map(|stream| stream.inner));
293     }
294 }
295 
296 /// Collects a number of token trees into a single stream.
297 impl FromIterator<TokenTree> for TokenStream {
from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self298     fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
299         TokenStream::_new(streams.into_iter().collect())
300     }
301 }
302 impl FromIterator<TokenStream> for TokenStream {
from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self303     fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
304         TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
305     }
306 }
307 
308 /// Prints the token stream as a string that is supposed to be losslessly
309 /// convertible back into the same token stream (modulo spans), except for
310 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
311 /// numeric literals.
312 impl Display for TokenStream {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result313     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
314         Display::fmt(&self.inner, f)
315     }
316 }
317 
318 /// Prints token in a form convenient for debugging.
319 impl Debug for TokenStream {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result320     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
321         Debug::fmt(&self.inner, f)
322     }
323 }
324 
325 impl LexError {
span(&self) -> Span326     pub fn span(&self) -> Span {
327         Span::_new(self.inner.span())
328     }
329 }
330 
331 impl Debug for LexError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result332     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
333         Debug::fmt(&self.inner, f)
334     }
335 }
336 
337 impl Display for LexError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result338     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
339         Display::fmt(&self.inner, f)
340     }
341 }
342 
343 impl Error for LexError {}
344 
345 /// A region of source code, along with macro expansion information.
346 #[derive(Copy, Clone)]
347 pub struct Span {
348     inner: imp::Span,
349     _marker: ProcMacroAutoTraits,
350 }
351 
352 impl Span {
_new(inner: imp::Span) -> Self353     fn _new(inner: imp::Span) -> Self {
354         Span {
355             inner,
356             _marker: MARKER,
357         }
358     }
359 
_new_fallback(inner: fallback::Span) -> Self360     fn _new_fallback(inner: fallback::Span) -> Self {
361         Span {
362             inner: imp::Span::from(inner),
363             _marker: MARKER,
364         }
365     }
366 
367     /// The span of the invocation of the current procedural macro.
368     ///
369     /// Identifiers created with this span will be resolved as if they were
370     /// written directly at the macro call location (call-site hygiene) and
371     /// other code at the macro call site will be able to refer to them as well.
call_site() -> Self372     pub fn call_site() -> Self {
373         Span::_new(imp::Span::call_site())
374     }
375 
376     /// The span located at the invocation of the procedural macro, but with
377     /// local variables, labels, and `$crate` resolved at the definition site
378     /// of the macro. This is the same hygiene behavior as `macro_rules`.
mixed_site() -> Self379     pub fn mixed_site() -> Self {
380         Span::_new(imp::Span::mixed_site())
381     }
382 
383     /// A span that resolves at the macro definition site.
384     ///
385     /// This method is semver exempt and not exposed by default.
386     #[cfg(procmacro2_semver_exempt)]
387     #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
def_site() -> Self388     pub fn def_site() -> Self {
389         Span::_new(imp::Span::def_site())
390     }
391 
392     /// Creates a new span with the same line/column information as `self` but
393     /// that resolves symbols as though it were at `other`.
resolved_at(&self, other: Span) -> Span394     pub fn resolved_at(&self, other: Span) -> Span {
395         Span::_new(self.inner.resolved_at(other.inner))
396     }
397 
398     /// Creates a new span with the same name resolution behavior as `self` but
399     /// with the line/column information of `other`.
located_at(&self, other: Span) -> Span400     pub fn located_at(&self, other: Span) -> Span {
401         Span::_new(self.inner.located_at(other.inner))
402     }
403 
404     /// Convert `proc_macro2::Span` to `proc_macro::Span`.
405     ///
406     /// This method is available when building with a nightly compiler, or when
407     /// building with rustc 1.29+ *without* semver exempt features.
408     ///
409     /// # Panics
410     ///
411     /// Panics if called from outside of a procedural macro. Unlike
412     /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
413     /// the context of a procedural macro invocation.
414     #[cfg(wrap_proc_macro)]
unwrap(self) -> proc_macro::Span415     pub fn unwrap(self) -> proc_macro::Span {
416         self.inner.unwrap()
417     }
418 
419     // Soft deprecated. Please use Span::unwrap.
420     #[cfg(wrap_proc_macro)]
421     #[doc(hidden)]
unstable(self) -> proc_macro::Span422     pub fn unstable(self) -> proc_macro::Span {
423         self.unwrap()
424     }
425 
426     /// Returns the span's byte position range in the source file.
427     ///
428     /// This method requires the `"span-locations"` feature to be enabled.
429     ///
430     /// When executing in a procedural macro context, the returned range is only
431     /// accurate if compiled with a nightly toolchain. The stable toolchain does
432     /// not have this information available. When executing outside of a
433     /// procedural macro, such as main.rs or build.rs, the byte range is always
434     /// accurate regardless of toolchain.
435     #[cfg(span_locations)]
436     #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
byte_range(&self) -> Range<usize>437     pub fn byte_range(&self) -> Range<usize> {
438         self.inner.byte_range()
439     }
440 
441     /// Get the starting line/column in the source file for this span.
442     ///
443     /// This method requires the `"span-locations"` feature to be enabled.
444     ///
445     /// When executing in a procedural macro context, the returned line/column
446     /// are only meaningful if compiled with a nightly toolchain. The stable
447     /// toolchain does not have this information available. When executing
448     /// outside of a procedural macro, such as main.rs or build.rs, the
449     /// line/column are always meaningful regardless of toolchain.
450     #[cfg(span_locations)]
451     #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
start(&self) -> LineColumn452     pub fn start(&self) -> LineColumn {
453         self.inner.start()
454     }
455 
456     /// Get the ending line/column in the source file for this span.
457     ///
458     /// This method requires the `"span-locations"` feature to be enabled.
459     ///
460     /// When executing in a procedural macro context, the returned line/column
461     /// are only meaningful if compiled with a nightly toolchain. The stable
462     /// toolchain does not have this information available. When executing
463     /// outside of a procedural macro, such as main.rs or build.rs, the
464     /// line/column are always meaningful regardless of toolchain.
465     #[cfg(span_locations)]
466     #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
end(&self) -> LineColumn467     pub fn end(&self) -> LineColumn {
468         self.inner.end()
469     }
470 
471     /// The path to the source file in which this span occurs, for display
472     /// purposes.
473     ///
474     /// This might not correspond to a valid file system path. It might be
475     /// remapped, or might be an artificial path such as `"<macro expansion>"`.
476     #[cfg(span_locations)]
477     #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
file(&self) -> String478     pub fn file(&self) -> String {
479         self.inner.file()
480     }
481 
482     /// The path to the source file in which this span occurs on disk.
483     ///
484     /// This is the actual path on disk. It is unaffected by path remapping.
485     ///
486     /// This path should not be embedded in the output of the macro; prefer
487     /// `file()` instead.
488     #[cfg(span_locations)]
489     #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
local_file(&self) -> Option<PathBuf>490     pub fn local_file(&self) -> Option<PathBuf> {
491         self.inner.local_file()
492     }
493 
494     /// Create a new span encompassing `self` and `other`.
495     ///
496     /// Returns `None` if `self` and `other` are from different files.
497     ///
498     /// Warning: the underlying [`proc_macro::Span::join`] method is
499     /// nightly-only. When called from within a procedural macro not using a
500     /// nightly compiler, this method will always return `None`.
join(&self, other: Span) -> Option<Span>501     pub fn join(&self, other: Span) -> Option<Span> {
502         self.inner.join(other.inner).map(Span::_new)
503     }
504 
505     /// Compares two spans to see if they're equal.
506     ///
507     /// This method is semver exempt and not exposed by default.
508     #[cfg(procmacro2_semver_exempt)]
509     #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
eq(&self, other: &Span) -> bool510     pub fn eq(&self, other: &Span) -> bool {
511         self.inner.eq(&other.inner)
512     }
513 
514     /// Returns the source text behind a span. This preserves the original
515     /// source code, including spaces and comments. It only returns a result if
516     /// the span corresponds to real source code.
517     ///
518     /// Note: The observable result of a macro should only rely on the tokens
519     /// and not on this source text. The result of this function is a best
520     /// effort to be used for diagnostics only.
source_text(&self) -> Option<String>521     pub fn source_text(&self) -> Option<String> {
522         self.inner.source_text()
523     }
524 }
525 
526 /// Prints a span in a form convenient for debugging.
527 impl Debug for Span {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result528     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
529         Debug::fmt(&self.inner, f)
530     }
531 }
532 
533 /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
534 #[derive(Clone)]
535 pub enum TokenTree {
536     /// A token stream surrounded by bracket delimiters.
537     Group(Group),
538     /// An identifier.
539     Ident(Ident),
540     /// A single punctuation character (`+`, `,`, `$`, etc.).
541     Punct(Punct),
542     /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
543     Literal(Literal),
544 }
545 
546 impl TokenTree {
547     /// Returns the span of this tree, delegating to the `span` method of
548     /// the contained token or a delimited stream.
span(&self) -> Span549     pub fn span(&self) -> Span {
550         match self {
551             TokenTree::Group(t) => t.span(),
552             TokenTree::Ident(t) => t.span(),
553             TokenTree::Punct(t) => t.span(),
554             TokenTree::Literal(t) => t.span(),
555         }
556     }
557 
558     /// Configures the span for *only this token*.
559     ///
560     /// Note that if this token is a `Group` then this method will not configure
561     /// the span of each of the internal tokens, this will simply delegate to
562     /// the `set_span` method of each variant.
set_span(&mut self, span: Span)563     pub fn set_span(&mut self, span: Span) {
564         match self {
565             TokenTree::Group(t) => t.set_span(span),
566             TokenTree::Ident(t) => t.set_span(span),
567             TokenTree::Punct(t) => t.set_span(span),
568             TokenTree::Literal(t) => t.set_span(span),
569         }
570     }
571 }
572 
573 impl From<Group> for TokenTree {
from(g: Group) -> Self574     fn from(g: Group) -> Self {
575         TokenTree::Group(g)
576     }
577 }
578 
579 impl From<Ident> for TokenTree {
from(g: Ident) -> Self580     fn from(g: Ident) -> Self {
581         TokenTree::Ident(g)
582     }
583 }
584 
585 impl From<Punct> for TokenTree {
from(g: Punct) -> Self586     fn from(g: Punct) -> Self {
587         TokenTree::Punct(g)
588     }
589 }
590 
591 impl From<Literal> for TokenTree {
from(g: Literal) -> Self592     fn from(g: Literal) -> Self {
593         TokenTree::Literal(g)
594     }
595 }
596 
597 /// Prints the token tree as a string that is supposed to be losslessly
598 /// convertible back into the same token tree (modulo spans), except for
599 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
600 /// numeric literals.
601 impl Display for TokenTree {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result602     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
603         match self {
604             TokenTree::Group(t) => Display::fmt(t, f),
605             TokenTree::Ident(t) => Display::fmt(t, f),
606             TokenTree::Punct(t) => Display::fmt(t, f),
607             TokenTree::Literal(t) => Display::fmt(t, f),
608         }
609     }
610 }
611 
612 /// Prints token tree in a form convenient for debugging.
613 impl Debug for TokenTree {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result614     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
615         // Each of these has the name in the struct type in the derived debug,
616         // so don't bother with an extra layer of indirection
617         match self {
618             TokenTree::Group(t) => Debug::fmt(t, f),
619             TokenTree::Ident(t) => {
620                 let mut debug = f.debug_struct("Ident");
621                 debug.field("sym", &format_args!("{}", t));
622                 imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
623                 debug.finish()
624             }
625             TokenTree::Punct(t) => Debug::fmt(t, f),
626             TokenTree::Literal(t) => Debug::fmt(t, f),
627         }
628     }
629 }
630 
631 /// A delimited token stream.
632 ///
633 /// A `Group` internally contains a `TokenStream` which is surrounded by
634 /// `Delimiter`s.
635 #[derive(Clone)]
636 pub struct Group {
637     inner: imp::Group,
638 }
639 
640 /// Describes how a sequence of token trees is delimited.
641 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
642 pub enum Delimiter {
643     /// `( ... )`
644     Parenthesis,
645     /// `{ ... }`
646     Brace,
647     /// `[ ... ]`
648     Bracket,
649     /// `∅ ... ∅`
650     ///
651     /// An invisible delimiter, that may, for example, appear around tokens
652     /// coming from a "macro variable" `$var`. It is important to preserve
653     /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
654     /// Invisible delimiters may not survive roundtrip of a token stream through
655     /// a string.
656     ///
657     /// <div class="warning">
658     ///
659     /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
660     /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
661     /// of a proc_macro macro are preserved, and only in very specific circumstances.
662     /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
663     /// operator priorities as indicated above. The other `Delimiter` variants should be used
664     /// instead in this context. This is a rustc bug. For details, see
665     /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
666     ///
667     /// </div>
668     None,
669 }
670 
671 impl Group {
_new(inner: imp::Group) -> Self672     fn _new(inner: imp::Group) -> Self {
673         Group { inner }
674     }
675 
_new_fallback(inner: fallback::Group) -> Self676     fn _new_fallback(inner: fallback::Group) -> Self {
677         Group {
678             inner: imp::Group::from(inner),
679         }
680     }
681 
682     /// Creates a new `Group` with the given delimiter and token stream.
683     ///
684     /// This constructor will set the span for this group to
685     /// `Span::call_site()`. To change the span you can use the `set_span`
686     /// method below.
new(delimiter: Delimiter, stream: TokenStream) -> Self687     pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
688         Group {
689             inner: imp::Group::new(delimiter, stream.inner),
690         }
691     }
692 
693     /// Returns the punctuation used as the delimiter for this group: a set of
694     /// parentheses, square brackets, or curly braces.
delimiter(&self) -> Delimiter695     pub fn delimiter(&self) -> Delimiter {
696         self.inner.delimiter()
697     }
698 
699     /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
700     ///
701     /// Note that the returned token stream does not include the delimiter
702     /// returned above.
stream(&self) -> TokenStream703     pub fn stream(&self) -> TokenStream {
704         TokenStream::_new(self.inner.stream())
705     }
706 
707     /// Returns the span for the delimiters of this token stream, spanning the
708     /// entire `Group`.
709     ///
710     /// ```text
711     /// pub fn span(&self) -> Span {
712     ///            ^^^^^^^
713     /// ```
span(&self) -> Span714     pub fn span(&self) -> Span {
715         Span::_new(self.inner.span())
716     }
717 
718     /// Returns the span pointing to the opening delimiter of this group.
719     ///
720     /// ```text
721     /// pub fn span_open(&self) -> Span {
722     ///                 ^
723     /// ```
span_open(&self) -> Span724     pub fn span_open(&self) -> Span {
725         Span::_new(self.inner.span_open())
726     }
727 
728     /// Returns the span pointing to the closing delimiter of this group.
729     ///
730     /// ```text
731     /// pub fn span_close(&self) -> Span {
732     ///                        ^
733     /// ```
span_close(&self) -> Span734     pub fn span_close(&self) -> Span {
735         Span::_new(self.inner.span_close())
736     }
737 
738     /// Returns an object that holds this group's `span_open()` and
739     /// `span_close()` together (in a more compact representation than holding
740     /// those 2 spans individually).
delim_span(&self) -> DelimSpan741     pub fn delim_span(&self) -> DelimSpan {
742         DelimSpan::new(&self.inner)
743     }
744 
745     /// Configures the span for this `Group`'s delimiters, but not its internal
746     /// tokens.
747     ///
748     /// This method will **not** set the span of all the internal tokens spanned
749     /// by this group, but rather it will only set the span of the delimiter
750     /// tokens at the level of the `Group`.
set_span(&mut self, span: Span)751     pub fn set_span(&mut self, span: Span) {
752         self.inner.set_span(span.inner);
753     }
754 }
755 
756 /// Prints the group as a string that should be losslessly convertible back
757 /// into the same group (modulo spans), except for possibly `TokenTree::Group`s
758 /// with `Delimiter::None` delimiters.
759 impl Display for Group {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result760     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
761         Display::fmt(&self.inner, formatter)
762     }
763 }
764 
765 impl Debug for Group {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result766     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
767         Debug::fmt(&self.inner, formatter)
768     }
769 }
770 
771 /// A `Punct` is a single punctuation character like `+`, `-` or `#`.
772 ///
773 /// Multicharacter operators like `+=` are represented as two instances of
774 /// `Punct` with different forms of `Spacing` returned.
775 #[derive(Clone)]
776 pub struct Punct {
777     ch: char,
778     spacing: Spacing,
779     span: Span,
780 }
781 
782 /// Whether a `Punct` is followed immediately by another `Punct` or followed by
783 /// another token or whitespace.
784 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
785 pub enum Spacing {
786     /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
787     Alone,
788     /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
789     ///
790     /// Additionally, single quote `'` can join with identifiers to form
791     /// lifetimes `'ident`.
792     Joint,
793 }
794 
795 impl Punct {
796     /// Creates a new `Punct` from the given character and spacing.
797     ///
798     /// The `ch` argument must be a valid punctuation character permitted by the
799     /// language, otherwise the function will panic.
800     ///
801     /// The returned `Punct` will have the default span of `Span::call_site()`
802     /// which can be further configured with the `set_span` method below.
new(ch: char, spacing: Spacing) -> Self803     pub fn new(ch: char, spacing: Spacing) -> Self {
804         if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
805         | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
806         {
807             Punct {
808                 ch,
809                 spacing,
810                 span: Span::call_site(),
811             }
812         } else {
813             panic!("unsupported proc macro punctuation character {:?}", ch);
814         }
815     }
816 
817     /// Returns the value of this punctuation character as `char`.
as_char(&self) -> char818     pub fn as_char(&self) -> char {
819         self.ch
820     }
821 
822     /// Returns the spacing of this punctuation character, indicating whether
823     /// it's immediately followed by another `Punct` in the token stream, so
824     /// they can potentially be combined into a multicharacter operator
825     /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
826     /// so the operator has certainly ended.
spacing(&self) -> Spacing827     pub fn spacing(&self) -> Spacing {
828         self.spacing
829     }
830 
831     /// Returns the span for this punctuation character.
span(&self) -> Span832     pub fn span(&self) -> Span {
833         self.span
834     }
835 
836     /// Configure the span for this punctuation character.
set_span(&mut self, span: Span)837     pub fn set_span(&mut self, span: Span) {
838         self.span = span;
839     }
840 }
841 
842 /// Prints the punctuation character as a string that should be losslessly
843 /// convertible back into the same character.
844 impl Display for Punct {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result845     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
846         Display::fmt(&self.ch, f)
847     }
848 }
849 
850 impl Debug for Punct {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result851     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
852         let mut debug = fmt.debug_struct("Punct");
853         debug.field("char", &self.ch);
854         debug.field("spacing", &self.spacing);
855         imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
856         debug.finish()
857     }
858 }
859 
860 /// A word of Rust code, which may be a keyword or legal variable name.
861 ///
862 /// An identifier consists of at least one Unicode code point, the first of
863 /// which has the XID_Start property and the rest of which have the XID_Continue
864 /// property.
865 ///
866 /// - The empty string is not an identifier. Use `Option<Ident>`.
867 /// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
868 ///
869 /// An identifier constructed with `Ident::new` is permitted to be a Rust
870 /// keyword, though parsing one through its [`Parse`] implementation rejects
871 /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
872 /// behaviour of `Ident::new`.
873 ///
874 /// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
875 ///
876 /// # Examples
877 ///
878 /// A new ident can be created from a string using the `Ident::new` function.
879 /// A span must be provided explicitly which governs the name resolution
880 /// behavior of the resulting identifier.
881 ///
882 /// ```
883 /// use proc_macro2::{Ident, Span};
884 ///
885 /// fn main() {
886 ///     let call_ident = Ident::new("calligraphy", Span::call_site());
887 ///
888 ///     println!("{}", call_ident);
889 /// }
890 /// ```
891 ///
892 /// An ident can be interpolated into a token stream using the `quote!` macro.
893 ///
894 /// ```
895 /// use proc_macro2::{Ident, Span};
896 /// use quote::quote;
897 ///
898 /// fn main() {
899 ///     let ident = Ident::new("demo", Span::call_site());
900 ///
901 ///     // Create a variable binding whose name is this ident.
902 ///     let expanded = quote! { let #ident = 10; };
903 ///
904 ///     // Create a variable binding with a slightly different name.
905 ///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
906 ///     let expanded = quote! { let #temp_ident = 10; };
907 /// }
908 /// ```
909 ///
910 /// A string representation of the ident is available through the `to_string()`
911 /// method.
912 ///
913 /// ```
914 /// # use proc_macro2::{Ident, Span};
915 /// #
916 /// # let ident = Ident::new("another_identifier", Span::call_site());
917 /// #
918 /// // Examine the ident as a string.
919 /// let ident_string = ident.to_string();
920 /// if ident_string.len() > 60 {
921 ///     println!("Very long identifier: {}", ident_string)
922 /// }
923 /// ```
924 #[derive(Clone)]
925 pub struct Ident {
926     inner: imp::Ident,
927     _marker: ProcMacroAutoTraits,
928 }
929 
930 impl Ident {
_new(inner: imp::Ident) -> Self931     fn _new(inner: imp::Ident) -> Self {
932         Ident {
933             inner,
934             _marker: MARKER,
935         }
936     }
937 
_new_fallback(inner: fallback::Ident) -> Self938     fn _new_fallback(inner: fallback::Ident) -> Self {
939         Ident {
940             inner: imp::Ident::from(inner),
941             _marker: MARKER,
942         }
943     }
944 
945     /// Creates a new `Ident` with the given `string` as well as the specified
946     /// `span`.
947     ///
948     /// The `string` argument must be a valid identifier permitted by the
949     /// language, otherwise the function will panic.
950     ///
951     /// Note that `span`, currently in rustc, configures the hygiene information
952     /// for this identifier.
953     ///
954     /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
955     /// hygiene meaning that identifiers created with this span will be resolved
956     /// as if they were written directly at the location of the macro call, and
957     /// other code at the macro call site will be able to refer to them as well.
958     ///
959     /// Later spans like `Span::def_site()` will allow to opt-in to
960     /// "definition-site" hygiene meaning that identifiers created with this
961     /// span will be resolved at the location of the macro definition and other
962     /// code at the macro call site will not be able to refer to them.
963     ///
964     /// Due to the current importance of hygiene this constructor, unlike other
965     /// tokens, requires a `Span` to be specified at construction.
966     ///
967     /// # Panics
968     ///
969     /// Panics if the input string is neither a keyword nor a legal variable
970     /// name. If you are not sure whether the string contains an identifier and
971     /// need to handle an error case, use
972     /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
973     ///   style="padding-right:0;">syn::parse_str</code></a><code
974     ///   style="padding-left:0;">::&lt;Ident&gt;</code>
975     /// rather than `Ident::new`.
976     #[track_caller]
new(string: &str, span: Span) -> Self977     pub fn new(string: &str, span: Span) -> Self {
978         Ident::_new(imp::Ident::new_checked(string, span.inner))
979     }
980 
981     /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
982     /// `string` argument must be a valid identifier permitted by the language
983     /// (including keywords, e.g. `fn`). Keywords which are usable in path
984     /// segments (e.g. `self`, `super`) are not supported, and will cause a
985     /// panic.
986     #[track_caller]
new_raw(string: &str, span: Span) -> Self987     pub fn new_raw(string: &str, span: Span) -> Self {
988         Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
989     }
990 
991     /// Returns the span of this `Ident`.
span(&self) -> Span992     pub fn span(&self) -> Span {
993         Span::_new(self.inner.span())
994     }
995 
996     /// Configures the span of this `Ident`, possibly changing its hygiene
997     /// context.
set_span(&mut self, span: Span)998     pub fn set_span(&mut self, span: Span) {
999         self.inner.set_span(span.inner);
1000     }
1001 }
1002 
1003 impl PartialEq for Ident {
eq(&self, other: &Ident) -> bool1004     fn eq(&self, other: &Ident) -> bool {
1005         self.inner == other.inner
1006     }
1007 }
1008 
1009 impl<T> PartialEq<T> for Ident
1010 where
1011     T: ?Sized + AsRef<str>,
1012 {
eq(&self, other: &T) -> bool1013     fn eq(&self, other: &T) -> bool {
1014         self.inner == other
1015     }
1016 }
1017 
1018 impl Eq for Ident {}
1019 
1020 impl PartialOrd for Ident {
partial_cmp(&self, other: &Ident) -> Option<Ordering>1021     fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1022         Some(self.cmp(other))
1023     }
1024 }
1025 
1026 impl Ord for Ident {
cmp(&self, other: &Ident) -> Ordering1027     fn cmp(&self, other: &Ident) -> Ordering {
1028         self.to_string().cmp(&other.to_string())
1029     }
1030 }
1031 
1032 impl Hash for Ident {
hash<H: Hasher>(&self, hasher: &mut H)1033     fn hash<H: Hasher>(&self, hasher: &mut H) {
1034         self.to_string().hash(hasher);
1035     }
1036 }
1037 
1038 /// Prints the identifier as a string that should be losslessly convertible back
1039 /// into the same identifier.
1040 impl Display for Ident {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1041     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1042         Display::fmt(&self.inner, f)
1043     }
1044 }
1045 
1046 impl Debug for Ident {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1047     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1048         Debug::fmt(&self.inner, f)
1049     }
1050 }
1051 
1052 /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1053 /// byte character (`b'a'`), an integer or floating point number with or without
1054 /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1055 ///
1056 /// Boolean literals like `true` and `false` do not belong here, they are
1057 /// `Ident`s.
1058 #[derive(Clone)]
1059 pub struct Literal {
1060     inner: imp::Literal,
1061     _marker: ProcMacroAutoTraits,
1062 }
1063 
1064 macro_rules! suffixed_int_literals {
1065     ($($name:ident => $kind:ident,)*) => ($(
1066         /// Creates a new suffixed integer literal with the specified value.
1067         ///
1068         /// This function will create an integer like `1u32` where the integer
1069         /// value specified is the first part of the token and the integral is
1070         /// also suffixed at the end. Literals created from negative numbers may
1071         /// not survive roundtrips through `TokenStream` or strings and may be
1072         /// broken into two tokens (`-` and positive literal).
1073         ///
1074         /// Literals created through this method have the `Span::call_site()`
1075         /// span by default, which can be configured with the `set_span` method
1076         /// below.
1077         pub fn $name(n: $kind) -> Literal {
1078             Literal::_new(imp::Literal::$name(n))
1079         }
1080     )*)
1081 }
1082 
1083 macro_rules! unsuffixed_int_literals {
1084     ($($name:ident => $kind:ident,)*) => ($(
1085         /// Creates a new unsuffixed integer literal with the specified value.
1086         ///
1087         /// This function will create an integer like `1` where the integer
1088         /// value specified is the first part of the token. No suffix is
1089         /// specified on this token, meaning that invocations like
1090         /// `Literal::i8_unsuffixed(1)` are equivalent to
1091         /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1092         /// may not survive roundtrips through `TokenStream` or strings and may
1093         /// be broken into two tokens (`-` and positive literal).
1094         ///
1095         /// Literals created through this method have the `Span::call_site()`
1096         /// span by default, which can be configured with the `set_span` method
1097         /// below.
1098         pub fn $name(n: $kind) -> Literal {
1099             Literal::_new(imp::Literal::$name(n))
1100         }
1101     )*)
1102 }
1103 
1104 impl Literal {
_new(inner: imp::Literal) -> Self1105     fn _new(inner: imp::Literal) -> Self {
1106         Literal {
1107             inner,
1108             _marker: MARKER,
1109         }
1110     }
1111 
_new_fallback(inner: fallback::Literal) -> Self1112     fn _new_fallback(inner: fallback::Literal) -> Self {
1113         Literal {
1114             inner: imp::Literal::from(inner),
1115             _marker: MARKER,
1116         }
1117     }
1118 
1119     suffixed_int_literals! {
1120         u8_suffixed => u8,
1121         u16_suffixed => u16,
1122         u32_suffixed => u32,
1123         u64_suffixed => u64,
1124         u128_suffixed => u128,
1125         usize_suffixed => usize,
1126         i8_suffixed => i8,
1127         i16_suffixed => i16,
1128         i32_suffixed => i32,
1129         i64_suffixed => i64,
1130         i128_suffixed => i128,
1131         isize_suffixed => isize,
1132     }
1133 
1134     unsuffixed_int_literals! {
1135         u8_unsuffixed => u8,
1136         u16_unsuffixed => u16,
1137         u32_unsuffixed => u32,
1138         u64_unsuffixed => u64,
1139         u128_unsuffixed => u128,
1140         usize_unsuffixed => usize,
1141         i8_unsuffixed => i8,
1142         i16_unsuffixed => i16,
1143         i32_unsuffixed => i32,
1144         i64_unsuffixed => i64,
1145         i128_unsuffixed => i128,
1146         isize_unsuffixed => isize,
1147     }
1148 
1149     /// Creates a new unsuffixed floating-point literal.
1150     ///
1151     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1152     /// the float's value is emitted directly into the token but no suffix is
1153     /// used, so it may be inferred to be a `f64` later in the compiler.
1154     /// Literals created from negative numbers may not survive round-trips
1155     /// through `TokenStream` or strings and may be broken into two tokens (`-`
1156     /// and positive literal).
1157     ///
1158     /// # Panics
1159     ///
1160     /// This function requires that the specified float is finite, for example
1161     /// if it is infinity or NaN this function will panic.
f64_unsuffixed(f: f64) -> Literal1162     pub fn f64_unsuffixed(f: f64) -> Literal {
1163         assert!(f.is_finite());
1164         Literal::_new(imp::Literal::f64_unsuffixed(f))
1165     }
1166 
1167     /// Creates a new suffixed floating-point literal.
1168     ///
1169     /// This constructor will create a literal like `1.0f64` where the value
1170     /// specified is the preceding part of the token and `f64` is the suffix of
1171     /// the token. This token will always be inferred to be an `f64` in the
1172     /// compiler. Literals created from negative numbers may not survive
1173     /// round-trips through `TokenStream` or strings and may be broken into two
1174     /// tokens (`-` and positive literal).
1175     ///
1176     /// # Panics
1177     ///
1178     /// This function requires that the specified float is finite, for example
1179     /// if it is infinity or NaN this function will panic.
f64_suffixed(f: f64) -> Literal1180     pub fn f64_suffixed(f: f64) -> Literal {
1181         assert!(f.is_finite());
1182         Literal::_new(imp::Literal::f64_suffixed(f))
1183     }
1184 
1185     /// Creates a new unsuffixed floating-point literal.
1186     ///
1187     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1188     /// the float's value is emitted directly into the token but no suffix is
1189     /// used, so it may be inferred to be a `f64` later in the compiler.
1190     /// Literals created from negative numbers may not survive round-trips
1191     /// through `TokenStream` or strings and may be broken into two tokens (`-`
1192     /// and positive literal).
1193     ///
1194     /// # Panics
1195     ///
1196     /// This function requires that the specified float is finite, for example
1197     /// if it is infinity or NaN this function will panic.
f32_unsuffixed(f: f32) -> Literal1198     pub fn f32_unsuffixed(f: f32) -> Literal {
1199         assert!(f.is_finite());
1200         Literal::_new(imp::Literal::f32_unsuffixed(f))
1201     }
1202 
1203     /// Creates a new suffixed floating-point literal.
1204     ///
1205     /// This constructor will create a literal like `1.0f32` where the value
1206     /// specified is the preceding part of the token and `f32` is the suffix of
1207     /// the token. This token will always be inferred to be an `f32` in the
1208     /// compiler. Literals created from negative numbers may not survive
1209     /// round-trips through `TokenStream` or strings and may be broken into two
1210     /// tokens (`-` and positive literal).
1211     ///
1212     /// # Panics
1213     ///
1214     /// This function requires that the specified float is finite, for example
1215     /// if it is infinity or NaN this function will panic.
f32_suffixed(f: f32) -> Literal1216     pub fn f32_suffixed(f: f32) -> Literal {
1217         assert!(f.is_finite());
1218         Literal::_new(imp::Literal::f32_suffixed(f))
1219     }
1220 
1221     /// String literal.
string(string: &str) -> Literal1222     pub fn string(string: &str) -> Literal {
1223         Literal::_new(imp::Literal::string(string))
1224     }
1225 
1226     /// Character literal.
character(ch: char) -> Literal1227     pub fn character(ch: char) -> Literal {
1228         Literal::_new(imp::Literal::character(ch))
1229     }
1230 
1231     /// Byte character literal.
byte_character(byte: u8) -> Literal1232     pub fn byte_character(byte: u8) -> Literal {
1233         Literal::_new(imp::Literal::byte_character(byte))
1234     }
1235 
1236     /// Byte string literal.
byte_string(bytes: &[u8]) -> Literal1237     pub fn byte_string(bytes: &[u8]) -> Literal {
1238         Literal::_new(imp::Literal::byte_string(bytes))
1239     }
1240 
1241     /// C string literal.
c_string(string: &CStr) -> Literal1242     pub fn c_string(string: &CStr) -> Literal {
1243         Literal::_new(imp::Literal::c_string(string))
1244     }
1245 
1246     /// Returns the span encompassing this literal.
span(&self) -> Span1247     pub fn span(&self) -> Span {
1248         Span::_new(self.inner.span())
1249     }
1250 
1251     /// Configures the span associated for this literal.
set_span(&mut self, span: Span)1252     pub fn set_span(&mut self, span: Span) {
1253         self.inner.set_span(span.inner);
1254     }
1255 
1256     /// Returns a `Span` that is a subset of `self.span()` containing only
1257     /// the source bytes in range `range`. Returns `None` if the would-be
1258     /// trimmed span is outside the bounds of `self`.
1259     ///
1260     /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1261     /// nightly-only. When called from within a procedural macro not using a
1262     /// nightly compiler, this method will always return `None`.
subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span>1263     pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1264         self.inner.subspan(range).map(Span::_new)
1265     }
1266 
1267     // Intended for the `quote!` macro to use when constructing a proc-macro2
1268     // token out of a macro_rules $:literal token, which is already known to be
1269     // a valid literal. This avoids reparsing/validating the literal's string
1270     // representation. This is not public API other than for quote.
1271     #[doc(hidden)]
from_str_unchecked(repr: &str) -> Self1272     pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1273         Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1274     }
1275 }
1276 
1277 impl FromStr for Literal {
1278     type Err = LexError;
1279 
from_str(repr: &str) -> Result<Self, LexError>1280     fn from_str(repr: &str) -> Result<Self, LexError> {
1281         match imp::Literal::from_str_checked(repr) {
1282             Ok(lit) => Ok(Literal::_new(lit)),
1283             Err(lex) => Err(LexError {
1284                 inner: lex,
1285                 _marker: MARKER,
1286             }),
1287         }
1288     }
1289 }
1290 
1291 impl Debug for Literal {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1292     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1293         Debug::fmt(&self.inner, f)
1294     }
1295 }
1296 
1297 impl Display for Literal {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1298     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1299         Display::fmt(&self.inner, f)
1300     }
1301 }
1302 
1303 /// Public implementation details for the `TokenStream` type, such as iterators.
1304 pub mod token_stream {
1305     use crate::marker::{ProcMacroAutoTraits, MARKER};
1306     use crate::{imp, TokenTree};
1307     use core::fmt::{self, Debug};
1308 
1309     pub use crate::TokenStream;
1310 
1311     /// An iterator over `TokenStream`'s `TokenTree`s.
1312     ///
1313     /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1314     /// delimited groups, and returns whole groups as token trees.
1315     #[derive(Clone)]
1316     pub struct IntoIter {
1317         inner: imp::TokenTreeIter,
1318         _marker: ProcMacroAutoTraits,
1319     }
1320 
1321     impl Iterator for IntoIter {
1322         type Item = TokenTree;
1323 
next(&mut self) -> Option<TokenTree>1324         fn next(&mut self) -> Option<TokenTree> {
1325             self.inner.next()
1326         }
1327 
size_hint(&self) -> (usize, Option<usize>)1328         fn size_hint(&self) -> (usize, Option<usize>) {
1329             self.inner.size_hint()
1330         }
1331     }
1332 
1333     impl Debug for IntoIter {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1334         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1335             f.write_str("TokenStream ")?;
1336             f.debug_list().entries(self.clone()).finish()
1337         }
1338     }
1339 
1340     impl IntoIterator for TokenStream {
1341         type Item = TokenTree;
1342         type IntoIter = IntoIter;
1343 
into_iter(self) -> IntoIter1344         fn into_iter(self) -> IntoIter {
1345             IntoIter {
1346                 inner: self.inner.into_iter(),
1347                 _marker: MARKER,
1348             }
1349         }
1350     }
1351 }
1352