xref: /linux/fs/f2fs/file.c (revision 3e48a11675c50698374d4ac596fb506736eb1c53)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blk-crypto.h>
9 #include <linux/fs.h>
10 #include <linux/f2fs_fs.h>
11 #include <linux/stat.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/filelock.h>
16 #include <linux/types.h>
17 #include <linux/compat.h>
18 #include <linux/uaccess.h>
19 #include <linux/mount.h>
20 #include <linux/pagevec.h>
21 #include <linux/uio.h>
22 #include <linux/uuid.h>
23 #include <linux/file.h>
24 #include <linux/nls.h>
25 #include <linux/sched/signal.h>
26 #include <linux/fileattr.h>
27 #include <linux/fadvise.h>
28 #include <linux/iomap.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "acl.h"
35 #include "gc.h"
36 #include "iostat.h"
37 #include <trace/events/f2fs.h>
38 #include <uapi/linux/f2fs.h>
39 
40 static void f2fs_zero_post_eof_page(struct inode *inode,
41 					loff_t new_size, bool lock)
42 {
43 	loff_t old_size = i_size_read(inode);
44 
45 	if (old_size >= new_size)
46 		return;
47 
48 	if (mapping_empty(inode->i_mapping))
49 		return;
50 
51 	if (lock)
52 		filemap_invalidate_lock(inode->i_mapping);
53 	/* zero or drop pages only in range of [old_size, new_size] */
54 	truncate_inode_pages_range(inode->i_mapping, old_size, new_size);
55 	if (lock)
56 		filemap_invalidate_unlock(inode->i_mapping);
57 }
58 
59 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
60 {
61 	struct inode *inode = file_inode(vmf->vma->vm_file);
62 	vm_flags_t flags = vmf->vma->vm_flags;
63 	vm_fault_t ret;
64 
65 	ret = filemap_fault(vmf);
66 	if (ret & VM_FAULT_LOCKED)
67 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
68 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
69 
70 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
71 
72 	return ret;
73 }
74 
75 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
76 {
77 	struct folio *folio = page_folio(vmf->page);
78 	struct inode *inode = file_inode(vmf->vma->vm_file);
79 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80 	struct dnode_of_data dn;
81 	bool need_alloc = !f2fs_is_pinned_file(inode);
82 	int err = 0;
83 	vm_fault_t ret;
84 
85 	if (unlikely(IS_IMMUTABLE(inode)))
86 		return VM_FAULT_SIGBUS;
87 
88 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
89 		err = -EIO;
90 		goto out;
91 	}
92 
93 	if (unlikely(f2fs_cp_error(sbi))) {
94 		err = -EIO;
95 		goto out;
96 	}
97 
98 	if (!f2fs_is_checkpoint_ready(sbi)) {
99 		err = -ENOSPC;
100 		goto out;
101 	}
102 
103 	err = f2fs_convert_inline_inode(inode);
104 	if (err)
105 		goto out;
106 
107 #ifdef CONFIG_F2FS_FS_COMPRESSION
108 	if (f2fs_compressed_file(inode)) {
109 		int ret = f2fs_is_compressed_cluster(inode, folio->index);
110 
111 		if (ret < 0) {
112 			err = ret;
113 			goto out;
114 		} else if (ret) {
115 			need_alloc = false;
116 		}
117 	}
118 #endif
119 	/* should do out of any locked page */
120 	if (need_alloc)
121 		f2fs_balance_fs(sbi, true);
122 
123 	sb_start_pagefault(inode->i_sb);
124 
125 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
126 
127 	f2fs_zero_post_eof_page(inode, (folio->index + 1) << PAGE_SHIFT, true);
128 
129 	file_update_time(vmf->vma->vm_file);
130 	filemap_invalidate_lock_shared(inode->i_mapping);
131 
132 	folio_lock(folio);
133 	if (unlikely(folio->mapping != inode->i_mapping ||
134 			folio_pos(folio) > i_size_read(inode) ||
135 			!folio_test_uptodate(folio))) {
136 		folio_unlock(folio);
137 		err = -EFAULT;
138 		goto out_sem;
139 	}
140 
141 	set_new_dnode(&dn, inode, NULL, NULL, 0);
142 	if (need_alloc) {
143 		/* block allocation */
144 		err = f2fs_get_block_locked(&dn, folio->index);
145 	} else {
146 		err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
147 		f2fs_put_dnode(&dn);
148 		if (f2fs_is_pinned_file(inode) &&
149 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
150 			err = -EIO;
151 	}
152 
153 	if (err) {
154 		folio_unlock(folio);
155 		goto out_sem;
156 	}
157 
158 	f2fs_folio_wait_writeback(folio, DATA, false, true);
159 
160 	/* wait for GCed page writeback via META_MAPPING */
161 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
162 
163 	/*
164 	 * check to see if the page is mapped already (no holes)
165 	 */
166 	if (folio_test_mappedtodisk(folio))
167 		goto out_sem;
168 
169 	/* page is wholly or partially inside EOF */
170 	if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
171 						i_size_read(inode)) {
172 		loff_t offset;
173 
174 		offset = i_size_read(inode) & ~PAGE_MASK;
175 		folio_zero_segment(folio, offset, folio_size(folio));
176 	}
177 	folio_mark_dirty(folio);
178 
179 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
180 	f2fs_update_time(sbi, REQ_TIME);
181 
182 out_sem:
183 	filemap_invalidate_unlock_shared(inode->i_mapping);
184 
185 	sb_end_pagefault(inode->i_sb);
186 out:
187 	ret = vmf_fs_error(err);
188 
189 	trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
190 	return ret;
191 }
192 
193 static const struct vm_operations_struct f2fs_file_vm_ops = {
194 	.fault		= f2fs_filemap_fault,
195 	.map_pages	= filemap_map_pages,
196 	.page_mkwrite	= f2fs_vm_page_mkwrite,
197 };
198 
199 static int get_parent_ino(struct inode *inode, nid_t *pino)
200 {
201 	struct dentry *dentry;
202 
203 	/*
204 	 * Make sure to get the non-deleted alias.  The alias associated with
205 	 * the open file descriptor being fsync()'ed may be deleted already.
206 	 */
207 	dentry = d_find_alias(inode);
208 	if (!dentry)
209 		return 0;
210 
211 	*pino = d_parent_ino(dentry);
212 	dput(dentry);
213 	return 1;
214 }
215 
216 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
217 {
218 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
219 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
220 
221 	if (!S_ISREG(inode->i_mode))
222 		cp_reason = CP_NON_REGULAR;
223 	else if (f2fs_compressed_file(inode))
224 		cp_reason = CP_COMPRESSED;
225 	else if (inode->i_nlink != 1)
226 		cp_reason = CP_HARDLINK;
227 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
228 		cp_reason = CP_SB_NEED_CP;
229 	else if (file_wrong_pino(inode))
230 		cp_reason = CP_WRONG_PINO;
231 	else if (!f2fs_space_for_roll_forward(sbi))
232 		cp_reason = CP_NO_SPC_ROLL;
233 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
234 		cp_reason = CP_NODE_NEED_CP;
235 	else if (test_opt(sbi, FASTBOOT))
236 		cp_reason = CP_FASTBOOT_MODE;
237 	else if (F2FS_OPTION(sbi).active_logs == 2)
238 		cp_reason = CP_SPEC_LOG_NUM;
239 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
240 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
241 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
242 							TRANS_DIR_INO))
243 		cp_reason = CP_RECOVER_DIR;
244 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
245 							XATTR_DIR_INO))
246 		cp_reason = CP_XATTR_DIR;
247 
248 	return cp_reason;
249 }
250 
251 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
252 {
253 	struct folio *i = filemap_get_folio(NODE_MAPPING(sbi), ino);
254 	bool ret = false;
255 	/* But we need to avoid that there are some inode updates */
256 	if ((!IS_ERR(i) && folio_test_dirty(i)) ||
257 	    f2fs_need_inode_block_update(sbi, ino))
258 		ret = true;
259 	f2fs_folio_put(i, false);
260 	return ret;
261 }
262 
263 static void try_to_fix_pino(struct inode *inode)
264 {
265 	struct f2fs_inode_info *fi = F2FS_I(inode);
266 	nid_t pino;
267 
268 	f2fs_down_write(&fi->i_sem);
269 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
270 			get_parent_ino(inode, &pino)) {
271 		f2fs_i_pino_write(inode, pino);
272 		file_got_pino(inode);
273 	}
274 	f2fs_up_write(&fi->i_sem);
275 }
276 
277 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
278 						int datasync, bool atomic)
279 {
280 	struct inode *inode = file->f_mapping->host;
281 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
282 	nid_t ino = inode->i_ino;
283 	int ret = 0;
284 	enum cp_reason_type cp_reason = 0;
285 	struct writeback_control wbc = {
286 		.sync_mode = WB_SYNC_ALL,
287 		.nr_to_write = LONG_MAX,
288 	};
289 	unsigned int seq_id = 0;
290 
291 	if (unlikely(f2fs_readonly(inode->i_sb)))
292 		return 0;
293 
294 	trace_f2fs_sync_file_enter(inode);
295 
296 	if (S_ISDIR(inode->i_mode))
297 		goto go_write;
298 
299 	/* if fdatasync is triggered, let's do in-place-update */
300 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
301 		set_inode_flag(inode, FI_NEED_IPU);
302 	ret = file_write_and_wait_range(file, start, end);
303 	clear_inode_flag(inode, FI_NEED_IPU);
304 
305 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
306 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
307 		return ret;
308 	}
309 
310 	/* if the inode is dirty, let's recover all the time */
311 	if (!f2fs_skip_inode_update(inode, datasync)) {
312 		f2fs_write_inode(inode, NULL);
313 		goto go_write;
314 	}
315 
316 	/*
317 	 * if there is no written data, don't waste time to write recovery info.
318 	 */
319 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
320 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
321 
322 		/* it may call write_inode just prior to fsync */
323 		if (need_inode_page_update(sbi, ino))
324 			goto go_write;
325 
326 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
327 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
328 			goto flush_out;
329 		goto out;
330 	} else {
331 		/*
332 		 * for OPU case, during fsync(), node can be persisted before
333 		 * data when lower device doesn't support write barrier, result
334 		 * in data corruption after SPO.
335 		 * So for strict fsync mode, force to use atomic write semantics
336 		 * to keep write order in between data/node and last node to
337 		 * avoid potential data corruption.
338 		 */
339 		if (F2FS_OPTION(sbi).fsync_mode ==
340 				FSYNC_MODE_STRICT && !atomic)
341 			atomic = true;
342 	}
343 go_write:
344 	/*
345 	 * Both of fdatasync() and fsync() are able to be recovered from
346 	 * sudden-power-off.
347 	 */
348 	f2fs_down_read(&F2FS_I(inode)->i_sem);
349 	cp_reason = need_do_checkpoint(inode);
350 	f2fs_up_read(&F2FS_I(inode)->i_sem);
351 
352 	if (cp_reason) {
353 		/* all the dirty node pages should be flushed for POR */
354 		ret = f2fs_sync_fs(inode->i_sb, 1);
355 
356 		/*
357 		 * We've secured consistency through sync_fs. Following pino
358 		 * will be used only for fsynced inodes after checkpoint.
359 		 */
360 		try_to_fix_pino(inode);
361 		clear_inode_flag(inode, FI_APPEND_WRITE);
362 		clear_inode_flag(inode, FI_UPDATE_WRITE);
363 		goto out;
364 	}
365 sync_nodes:
366 	atomic_inc(&sbi->wb_sync_req[NODE]);
367 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
368 	atomic_dec(&sbi->wb_sync_req[NODE]);
369 	if (ret)
370 		goto out;
371 
372 	/* if cp_error was enabled, we should avoid infinite loop */
373 	if (unlikely(f2fs_cp_error(sbi))) {
374 		ret = -EIO;
375 		goto out;
376 	}
377 
378 	if (f2fs_need_inode_block_update(sbi, ino)) {
379 		f2fs_mark_inode_dirty_sync(inode, true);
380 		f2fs_write_inode(inode, NULL);
381 		goto sync_nodes;
382 	}
383 
384 	/*
385 	 * If it's atomic_write, it's just fine to keep write ordering. So
386 	 * here we don't need to wait for node write completion, since we use
387 	 * node chain which serializes node blocks. If one of node writes are
388 	 * reordered, we can see simply broken chain, resulting in stopping
389 	 * roll-forward recovery. It means we'll recover all or none node blocks
390 	 * given fsync mark.
391 	 */
392 	if (!atomic) {
393 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
394 		if (ret)
395 			goto out;
396 	}
397 
398 	/* once recovery info is written, don't need to tack this */
399 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
400 	clear_inode_flag(inode, FI_APPEND_WRITE);
401 flush_out:
402 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
403 		ret = f2fs_issue_flush(sbi, inode->i_ino);
404 	if (!ret) {
405 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
406 		clear_inode_flag(inode, FI_UPDATE_WRITE);
407 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
408 	}
409 	f2fs_update_time(sbi, REQ_TIME);
410 out:
411 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
412 	return ret;
413 }
414 
415 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
416 {
417 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
418 		return -EIO;
419 	return f2fs_do_sync_file(file, start, end, datasync, false);
420 }
421 
422 static bool __found_offset(struct address_space *mapping,
423 		struct dnode_of_data *dn, pgoff_t index, int whence)
424 {
425 	block_t blkaddr = f2fs_data_blkaddr(dn);
426 	struct inode *inode = mapping->host;
427 	bool compressed_cluster = false;
428 
429 	if (f2fs_compressed_file(inode)) {
430 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_folio,
431 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
432 
433 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
434 	}
435 
436 	switch (whence) {
437 	case SEEK_DATA:
438 		if (__is_valid_data_blkaddr(blkaddr))
439 			return true;
440 		if (blkaddr == NEW_ADDR &&
441 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
442 			return true;
443 		if (compressed_cluster)
444 			return true;
445 		break;
446 	case SEEK_HOLE:
447 		if (compressed_cluster)
448 			return false;
449 		if (blkaddr == NULL_ADDR)
450 			return true;
451 		break;
452 	}
453 	return false;
454 }
455 
456 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
457 {
458 	struct inode *inode = file->f_mapping->host;
459 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
460 	struct dnode_of_data dn;
461 	pgoff_t pgofs, end_offset;
462 	loff_t data_ofs = offset;
463 	loff_t isize;
464 	int err = 0;
465 
466 	inode_lock_shared(inode);
467 
468 	isize = i_size_read(inode);
469 	if (offset >= isize)
470 		goto fail;
471 
472 	/* handle inline data case */
473 	if (f2fs_has_inline_data(inode)) {
474 		if (whence == SEEK_HOLE) {
475 			data_ofs = isize;
476 			goto found;
477 		} else if (whence == SEEK_DATA) {
478 			data_ofs = offset;
479 			goto found;
480 		}
481 	}
482 
483 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
484 
485 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
486 		set_new_dnode(&dn, inode, NULL, NULL, 0);
487 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
488 		if (err && err != -ENOENT) {
489 			goto fail;
490 		} else if (err == -ENOENT) {
491 			/* direct node does not exists */
492 			if (whence == SEEK_DATA) {
493 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
494 				continue;
495 			} else {
496 				goto found;
497 			}
498 		}
499 
500 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
501 
502 		/* find data/hole in dnode block */
503 		for (; dn.ofs_in_node < end_offset;
504 				dn.ofs_in_node++, pgofs++,
505 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
506 			block_t blkaddr;
507 
508 			blkaddr = f2fs_data_blkaddr(&dn);
509 
510 			if (__is_valid_data_blkaddr(blkaddr) &&
511 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
512 					blkaddr, DATA_GENERIC_ENHANCE)) {
513 				f2fs_put_dnode(&dn);
514 				goto fail;
515 			}
516 
517 			if (__found_offset(file->f_mapping, &dn,
518 							pgofs, whence)) {
519 				f2fs_put_dnode(&dn);
520 				goto found;
521 			}
522 		}
523 		f2fs_put_dnode(&dn);
524 	}
525 
526 	if (whence == SEEK_DATA)
527 		goto fail;
528 found:
529 	if (whence == SEEK_HOLE && data_ofs > isize)
530 		data_ofs = isize;
531 	inode_unlock_shared(inode);
532 	return vfs_setpos(file, data_ofs, maxbytes);
533 fail:
534 	inode_unlock_shared(inode);
535 	return -ENXIO;
536 }
537 
538 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
539 {
540 	struct inode *inode = file->f_mapping->host;
541 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
542 
543 	switch (whence) {
544 	case SEEK_SET:
545 	case SEEK_CUR:
546 	case SEEK_END:
547 		return generic_file_llseek_size(file, offset, whence,
548 						maxbytes, i_size_read(inode));
549 	case SEEK_DATA:
550 	case SEEK_HOLE:
551 		if (offset < 0)
552 			return -ENXIO;
553 		return f2fs_seek_block(file, offset, whence);
554 	}
555 
556 	return -EINVAL;
557 }
558 
559 static int f2fs_file_mmap_prepare(struct vm_area_desc *desc)
560 {
561 	struct file *file = desc->file;
562 	struct inode *inode = file_inode(file);
563 
564 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
565 		return -EIO;
566 
567 	if (!f2fs_is_compress_backend_ready(inode))
568 		return -EOPNOTSUPP;
569 
570 	file_accessed(file);
571 	desc->vm_ops = &f2fs_file_vm_ops;
572 
573 	f2fs_down_read(&F2FS_I(inode)->i_sem);
574 	set_inode_flag(inode, FI_MMAP_FILE);
575 	f2fs_up_read(&F2FS_I(inode)->i_sem);
576 
577 	return 0;
578 }
579 
580 static int finish_preallocate_blocks(struct inode *inode)
581 {
582 	int ret = 0;
583 	bool opened;
584 
585 	f2fs_down_read(&F2FS_I(inode)->i_sem);
586 	opened = is_inode_flag_set(inode, FI_OPENED_FILE);
587 	f2fs_up_read(&F2FS_I(inode)->i_sem);
588 	if (opened)
589 		return 0;
590 
591 	inode_lock(inode);
592 	if (is_inode_flag_set(inode, FI_OPENED_FILE))
593 		goto out_unlock;
594 
595 	if (!file_should_truncate(inode))
596 		goto out_update;
597 
598 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
599 	filemap_invalidate_lock(inode->i_mapping);
600 
601 	truncate_setsize(inode, i_size_read(inode));
602 	ret = f2fs_truncate(inode);
603 
604 	filemap_invalidate_unlock(inode->i_mapping);
605 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
606 	if (ret)
607 		goto out_unlock;
608 
609 	file_dont_truncate(inode);
610 out_update:
611 	f2fs_down_write(&F2FS_I(inode)->i_sem);
612 	set_inode_flag(inode, FI_OPENED_FILE);
613 	f2fs_up_write(&F2FS_I(inode)->i_sem);
614 out_unlock:
615 	inode_unlock(inode);
616 	return ret;
617 }
618 
619 static int f2fs_file_open(struct inode *inode, struct file *filp)
620 {
621 	int err = fscrypt_file_open(inode, filp);
622 
623 	if (err)
624 		return err;
625 
626 	if (!f2fs_is_compress_backend_ready(inode))
627 		return -EOPNOTSUPP;
628 
629 	if (mapping_large_folio_support(inode->i_mapping) &&
630 	    filp->f_mode & FMODE_WRITE)
631 		return -EOPNOTSUPP;
632 
633 	err = fsverity_file_open(inode, filp);
634 	if (err)
635 		return err;
636 
637 	filp->f_mode |= FMODE_NOWAIT;
638 	filp->f_mode |= FMODE_CAN_ODIRECT;
639 
640 	err = dquot_file_open(inode, filp);
641 	if (err)
642 		return err;
643 
644 	err = finish_preallocate_blocks(inode);
645 	if (!err)
646 		atomic_inc(&F2FS_I(inode)->open_count);
647 	return err;
648 }
649 
650 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
651 {
652 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
653 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
654 	__le32 *addr;
655 	bool compressed_cluster = false;
656 	int cluster_index = 0, valid_blocks = 0;
657 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
658 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
659 	block_t blkstart;
660 	int blklen = 0;
661 
662 	addr = get_dnode_addr(dn->inode, dn->node_folio) + ofs;
663 	blkstart = le32_to_cpu(*addr);
664 
665 	/* Assumption: truncation starts with cluster */
666 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
667 		block_t blkaddr = le32_to_cpu(*addr);
668 
669 		if (f2fs_compressed_file(dn->inode) &&
670 					!(cluster_index & (cluster_size - 1))) {
671 			if (compressed_cluster)
672 				f2fs_i_compr_blocks_update(dn->inode,
673 							valid_blocks, false);
674 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
675 			valid_blocks = 0;
676 		}
677 
678 		if (blkaddr == NULL_ADDR)
679 			goto next;
680 
681 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
682 
683 		if (__is_valid_data_blkaddr(blkaddr)) {
684 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
685 				goto next;
686 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
687 						DATA_GENERIC_ENHANCE))
688 				goto next;
689 			if (compressed_cluster)
690 				valid_blocks++;
691 		}
692 
693 		if (blkstart + blklen == blkaddr) {
694 			blklen++;
695 		} else {
696 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
697 			blkstart = blkaddr;
698 			blklen = 1;
699 		}
700 
701 		if (!released || blkaddr != COMPRESS_ADDR)
702 			nr_free++;
703 
704 		continue;
705 
706 next:
707 		if (blklen)
708 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
709 
710 		blkstart = le32_to_cpu(*(addr + 1));
711 		blklen = 0;
712 	}
713 
714 	if (blklen)
715 		f2fs_invalidate_blocks(sbi, blkstart, blklen);
716 
717 	if (compressed_cluster)
718 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
719 
720 	if (nr_free) {
721 		pgoff_t fofs;
722 		/*
723 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
724 		 * we will invalidate all blkaddr in the whole range.
725 		 */
726 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_folio),
727 							dn->inode) + ofs;
728 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
729 		f2fs_update_age_extent_cache_range(dn, fofs, len);
730 		dec_valid_block_count(sbi, dn->inode, nr_free);
731 	}
732 	dn->ofs_in_node = ofs;
733 
734 	f2fs_update_time(sbi, REQ_TIME);
735 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
736 					 dn->ofs_in_node, nr_free);
737 }
738 
739 static int truncate_partial_data_page(struct inode *inode, u64 from,
740 								bool cache_only)
741 {
742 	loff_t offset = from & (PAGE_SIZE - 1);
743 	pgoff_t index = from >> PAGE_SHIFT;
744 	struct address_space *mapping = inode->i_mapping;
745 	struct folio *folio;
746 
747 	if (!offset && !cache_only)
748 		return 0;
749 
750 	if (cache_only) {
751 		folio = filemap_lock_folio(mapping, index);
752 		if (IS_ERR(folio))
753 		       return 0;
754 		if (folio_test_uptodate(folio))
755 			goto truncate_out;
756 		f2fs_folio_put(folio, true);
757 		return 0;
758 	}
759 
760 	folio = f2fs_get_lock_data_folio(inode, index, true);
761 	if (IS_ERR(folio))
762 		return PTR_ERR(folio) == -ENOENT ? 0 : PTR_ERR(folio);
763 truncate_out:
764 	f2fs_folio_wait_writeback(folio, DATA, true, true);
765 	folio_zero_segment(folio, offset, folio_size(folio));
766 
767 	/* An encrypted inode should have a key and truncate the last page. */
768 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
769 	if (!cache_only)
770 		folio_mark_dirty(folio);
771 	f2fs_folio_put(folio, true);
772 	return 0;
773 }
774 
775 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
776 {
777 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
778 	struct dnode_of_data dn;
779 	struct f2fs_lock_context lc;
780 	pgoff_t free_from;
781 	int count = 0, err = 0;
782 	struct folio *ifolio;
783 	bool truncate_page = false;
784 
785 	trace_f2fs_truncate_blocks_enter(inode, from);
786 
787 	if (IS_DEVICE_ALIASING(inode) && from) {
788 		err = -EINVAL;
789 		goto out_err;
790 	}
791 
792 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
793 
794 	if (free_from >= max_file_blocks(inode))
795 		goto free_partial;
796 
797 	if (lock)
798 		f2fs_lock_op(sbi, &lc);
799 
800 	ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
801 	if (IS_ERR(ifolio)) {
802 		err = PTR_ERR(ifolio);
803 		goto out;
804 	}
805 
806 	if (IS_DEVICE_ALIASING(inode)) {
807 		struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
808 		struct extent_info ei = et->largest;
809 
810 		f2fs_invalidate_blocks(sbi, ei.blk, ei.len);
811 
812 		dec_valid_block_count(sbi, inode, ei.len);
813 		f2fs_update_time(sbi, REQ_TIME);
814 
815 		f2fs_folio_put(ifolio, true);
816 		goto out;
817 	}
818 
819 	if (f2fs_has_inline_data(inode)) {
820 		f2fs_truncate_inline_inode(inode, ifolio, from);
821 		f2fs_folio_put(ifolio, true);
822 		truncate_page = true;
823 		goto out;
824 	}
825 
826 	set_new_dnode(&dn, inode, ifolio, NULL, 0);
827 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
828 	if (err) {
829 		if (err == -ENOENT)
830 			goto free_next;
831 		goto out;
832 	}
833 
834 	count = ADDRS_PER_PAGE(dn.node_folio, inode);
835 
836 	count -= dn.ofs_in_node;
837 	f2fs_bug_on(sbi, count < 0);
838 
839 	if (dn.ofs_in_node || IS_INODE(dn.node_folio)) {
840 		f2fs_truncate_data_blocks_range(&dn, count);
841 		free_from += count;
842 	}
843 
844 	f2fs_put_dnode(&dn);
845 free_next:
846 	err = f2fs_truncate_inode_blocks(inode, free_from);
847 out:
848 	if (lock)
849 		f2fs_unlock_op(sbi, &lc);
850 free_partial:
851 	/* lastly zero out the first data page */
852 	if (!err)
853 		err = truncate_partial_data_page(inode, from, truncate_page);
854 out_err:
855 	trace_f2fs_truncate_blocks_exit(inode, err);
856 	return err;
857 }
858 
859 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
860 {
861 	u64 free_from = from;
862 	int err;
863 
864 #ifdef CONFIG_F2FS_FS_COMPRESSION
865 	/*
866 	 * for compressed file, only support cluster size
867 	 * aligned truncation.
868 	 */
869 	if (f2fs_compressed_file(inode))
870 		free_from = round_up(from,
871 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
872 #endif
873 
874 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
875 	if (err)
876 		return err;
877 
878 #ifdef CONFIG_F2FS_FS_COMPRESSION
879 	/*
880 	 * For compressed file, after release compress blocks, don't allow write
881 	 * direct, but we should allow write direct after truncate to zero.
882 	 */
883 	if (f2fs_compressed_file(inode) && !free_from
884 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
885 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
886 
887 	if (from != free_from) {
888 		err = f2fs_truncate_partial_cluster(inode, from, lock);
889 		if (err)
890 			return err;
891 	}
892 #endif
893 
894 	return 0;
895 }
896 
897 int f2fs_truncate(struct inode *inode)
898 {
899 	int err;
900 
901 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
902 		return -EIO;
903 
904 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
905 				S_ISLNK(inode->i_mode)))
906 		return 0;
907 
908 	trace_f2fs_truncate(inode);
909 
910 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
911 		return -EIO;
912 
913 	err = f2fs_dquot_initialize(inode);
914 	if (err)
915 		return err;
916 
917 	/* we should check inline_data size */
918 	if (!f2fs_may_inline_data(inode)) {
919 		err = f2fs_convert_inline_inode(inode);
920 		if (err) {
921 			/*
922 			 * Always truncate page #0 to avoid page cache
923 			 * leak in evict() path.
924 			 */
925 			truncate_inode_pages_range(inode->i_mapping,
926 					F2FS_BLK_TO_BYTES(0),
927 					F2FS_BLK_END_BYTES(0));
928 			return err;
929 		}
930 	}
931 
932 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
933 	if (err)
934 		return err;
935 
936 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
937 	f2fs_mark_inode_dirty_sync(inode, false);
938 	return 0;
939 }
940 
941 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
942 {
943 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
944 
945 	if (!fscrypt_dio_supported(inode))
946 		return true;
947 	if (fsverity_active(inode))
948 		return true;
949 	if (f2fs_compressed_file(inode))
950 		return true;
951 	/*
952 	 * only force direct read to use buffered IO, for direct write,
953 	 * it expects inline data conversion before committing IO.
954 	 */
955 	if (f2fs_has_inline_data(inode) && rw == READ)
956 		return true;
957 
958 	/* disallow direct IO if any of devices has unaligned blksize */
959 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
960 		return true;
961 	/*
962 	 * for blkzoned device, fallback direct IO to buffered IO, so
963 	 * all IOs can be serialized by log-structured write.
964 	 */
965 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
966 	    !f2fs_is_pinned_file(inode))
967 		return true;
968 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
969 		return true;
970 
971 	return false;
972 }
973 
974 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
975 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
976 {
977 	struct inode *inode = d_inode(path->dentry);
978 	struct f2fs_inode_info *fi = F2FS_I(inode);
979 	struct f2fs_inode *ri = NULL;
980 	unsigned int flags;
981 
982 	if (f2fs_has_extra_attr(inode) &&
983 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
984 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
985 		stat->result_mask |= STATX_BTIME;
986 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
987 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
988 	}
989 
990 	/*
991 	 * Return the DIO alignment restrictions if requested.  We only return
992 	 * this information when requested, since on encrypted files it might
993 	 * take a fair bit of work to get if the file wasn't opened recently.
994 	 *
995 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
996 	 * cannot represent that, so in that case we report no DIO support.
997 	 */
998 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
999 		unsigned int bsize = i_blocksize(inode);
1000 
1001 		stat->result_mask |= STATX_DIOALIGN;
1002 		if (!f2fs_force_buffered_io(inode, WRITE)) {
1003 			stat->dio_mem_align = bsize;
1004 			stat->dio_offset_align = bsize;
1005 		}
1006 	}
1007 
1008 	flags = fi->i_flags;
1009 	if (flags & F2FS_COMPR_FL)
1010 		stat->attributes |= STATX_ATTR_COMPRESSED;
1011 	if (flags & F2FS_APPEND_FL)
1012 		stat->attributes |= STATX_ATTR_APPEND;
1013 	if (IS_ENCRYPTED(inode))
1014 		stat->attributes |= STATX_ATTR_ENCRYPTED;
1015 	if (flags & F2FS_IMMUTABLE_FL)
1016 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1017 	if (flags & F2FS_NODUMP_FL)
1018 		stat->attributes |= STATX_ATTR_NODUMP;
1019 	if (IS_VERITY(inode))
1020 		stat->attributes |= STATX_ATTR_VERITY;
1021 
1022 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
1023 				  STATX_ATTR_APPEND |
1024 				  STATX_ATTR_ENCRYPTED |
1025 				  STATX_ATTR_IMMUTABLE |
1026 				  STATX_ATTR_NODUMP |
1027 				  STATX_ATTR_VERITY);
1028 
1029 	generic_fillattr(idmap, request_mask, inode, stat);
1030 
1031 	/* we need to show initial sectors used for inline_data/dentries */
1032 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
1033 					f2fs_has_inline_dentry(inode))
1034 		stat->blocks += (stat->size + 511) >> 9;
1035 
1036 	return 0;
1037 }
1038 
1039 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1040 static void __setattr_copy(struct mnt_idmap *idmap,
1041 			   struct inode *inode, const struct iattr *attr)
1042 {
1043 	unsigned int ia_valid = attr->ia_valid;
1044 
1045 	i_uid_update(idmap, attr, inode);
1046 	i_gid_update(idmap, attr, inode);
1047 	if (ia_valid & ATTR_ATIME)
1048 		inode_set_atime_to_ts(inode, attr->ia_atime);
1049 	if (ia_valid & ATTR_MTIME)
1050 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
1051 	if (ia_valid & ATTR_CTIME)
1052 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1053 	if (ia_valid & ATTR_MODE) {
1054 		umode_t mode = attr->ia_mode;
1055 
1056 		if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
1057 			mode &= ~S_ISGID;
1058 		set_acl_inode(inode, mode);
1059 	}
1060 }
1061 #else
1062 #define __setattr_copy setattr_copy
1063 #endif
1064 
1065 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1066 		 struct iattr *attr)
1067 {
1068 	struct inode *inode = d_inode(dentry);
1069 	struct f2fs_inode_info *fi = F2FS_I(inode);
1070 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1071 	int err;
1072 
1073 	if (unlikely(f2fs_cp_error(sbi)))
1074 		return -EIO;
1075 
1076 	err = setattr_prepare(idmap, dentry, attr);
1077 	if (err)
1078 		return err;
1079 
1080 	err = fscrypt_prepare_setattr(dentry, attr);
1081 	if (err)
1082 		return err;
1083 
1084 	if (unlikely(IS_IMMUTABLE(inode)))
1085 		return -EPERM;
1086 
1087 	if (unlikely(IS_APPEND(inode) &&
1088 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
1089 				  ATTR_GID | ATTR_TIMES_SET))))
1090 		return -EPERM;
1091 
1092 	if ((attr->ia_valid & ATTR_SIZE)) {
1093 		if (!f2fs_is_compress_backend_ready(inode) ||
1094 				IS_DEVICE_ALIASING(inode))
1095 			return -EOPNOTSUPP;
1096 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1097 			!IS_ALIGNED(attr->ia_size,
1098 			F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1099 			return -EINVAL;
1100 		/*
1101 		 * To prevent scattered pin block generation, we don't allow
1102 		 * smaller/equal size unaligned truncation for pinned file.
1103 		 * We only support overwrite IO to pinned file, so don't
1104 		 * care about larger size truncation.
1105 		 */
1106 		if (f2fs_is_pinned_file(inode) &&
1107 			attr->ia_size <= i_size_read(inode) &&
1108 			!IS_ALIGNED(attr->ia_size,
1109 			F2FS_BLK_TO_BYTES(CAP_BLKS_PER_SEC(sbi))))
1110 			return -EINVAL;
1111 	}
1112 
1113 	if (is_quota_modification(idmap, inode, attr)) {
1114 		err = f2fs_dquot_initialize(inode);
1115 		if (err)
1116 			return err;
1117 	}
1118 	if (i_uid_needs_update(idmap, attr, inode) ||
1119 	    i_gid_needs_update(idmap, attr, inode)) {
1120 		struct f2fs_lock_context lc;
1121 
1122 		f2fs_lock_op(sbi, &lc);
1123 		err = dquot_transfer(idmap, inode, attr);
1124 		if (err) {
1125 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
1126 			f2fs_unlock_op(sbi, &lc);
1127 			return err;
1128 		}
1129 		/*
1130 		 * update uid/gid under lock_op(), so that dquot and inode can
1131 		 * be updated atomically.
1132 		 */
1133 		i_uid_update(idmap, attr, inode);
1134 		i_gid_update(idmap, attr, inode);
1135 		f2fs_mark_inode_dirty_sync(inode, true);
1136 		f2fs_unlock_op(sbi, &lc);
1137 	}
1138 
1139 	if (attr->ia_valid & ATTR_SIZE) {
1140 		loff_t old_size = i_size_read(inode);
1141 
1142 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1143 			/*
1144 			 * should convert inline inode before i_size_write to
1145 			 * keep smaller than inline_data size with inline flag.
1146 			 */
1147 			err = f2fs_convert_inline_inode(inode);
1148 			if (err)
1149 				return err;
1150 		}
1151 
1152 		/*
1153 		 * wait for inflight dio, blocks should be removed after
1154 		 * IO completion.
1155 		 */
1156 		if (attr->ia_size < old_size)
1157 			inode_dio_wait(inode);
1158 
1159 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1160 		filemap_invalidate_lock(inode->i_mapping);
1161 
1162 		if (attr->ia_size > old_size)
1163 			f2fs_zero_post_eof_page(inode, attr->ia_size, false);
1164 		truncate_setsize(inode, attr->ia_size);
1165 
1166 		if (attr->ia_size <= old_size)
1167 			err = f2fs_truncate(inode);
1168 		/*
1169 		 * do not trim all blocks after i_size if target size is
1170 		 * larger than i_size.
1171 		 */
1172 		filemap_invalidate_unlock(inode->i_mapping);
1173 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1174 		if (err)
1175 			return err;
1176 
1177 		spin_lock(&fi->i_size_lock);
1178 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1179 		fi->last_disk_size = i_size_read(inode);
1180 		spin_unlock(&fi->i_size_lock);
1181 	}
1182 
1183 	__setattr_copy(idmap, inode, attr);
1184 
1185 	if (attr->ia_valid & ATTR_MODE) {
1186 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1187 
1188 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1189 			if (!err)
1190 				inode->i_mode = fi->i_acl_mode;
1191 			clear_inode_flag(inode, FI_ACL_MODE);
1192 		}
1193 	}
1194 
1195 	/* file size may changed here */
1196 	f2fs_mark_inode_dirty_sync(inode, true);
1197 
1198 	/* inode change will produce dirty node pages flushed by checkpoint */
1199 	f2fs_balance_fs(sbi, true);
1200 
1201 	return err;
1202 }
1203 
1204 const struct inode_operations f2fs_file_inode_operations = {
1205 	.getattr	= f2fs_getattr,
1206 	.setattr	= f2fs_setattr,
1207 	.get_inode_acl	= f2fs_get_acl,
1208 	.set_acl	= f2fs_set_acl,
1209 	.listxattr	= f2fs_listxattr,
1210 	.fiemap		= f2fs_fiemap,
1211 	.fileattr_get	= f2fs_fileattr_get,
1212 	.fileattr_set	= f2fs_fileattr_set,
1213 };
1214 
1215 static int fill_zero(struct inode *inode, pgoff_t index,
1216 					loff_t start, loff_t len)
1217 {
1218 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1219 	struct folio *folio;
1220 	struct f2fs_lock_context lc;
1221 
1222 	if (!len)
1223 		return 0;
1224 
1225 	f2fs_balance_fs(sbi, true);
1226 
1227 	f2fs_lock_op(sbi, &lc);
1228 	folio = f2fs_get_new_data_folio(inode, NULL, index, false);
1229 	f2fs_unlock_op(sbi, &lc);
1230 
1231 	if (IS_ERR(folio))
1232 		return PTR_ERR(folio);
1233 
1234 	f2fs_folio_wait_writeback(folio, DATA, true, true);
1235 	folio_zero_range(folio, start, len);
1236 	folio_mark_dirty(folio);
1237 	f2fs_folio_put(folio, true);
1238 	return 0;
1239 }
1240 
1241 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1242 {
1243 	int err;
1244 
1245 	while (pg_start < pg_end) {
1246 		struct dnode_of_data dn;
1247 		pgoff_t end_offset, count;
1248 
1249 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1250 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1251 		if (err) {
1252 			if (err == -ENOENT) {
1253 				pg_start = f2fs_get_next_page_offset(&dn,
1254 								pg_start);
1255 				continue;
1256 			}
1257 			return err;
1258 		}
1259 
1260 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1261 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1262 
1263 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1264 
1265 		f2fs_truncate_data_blocks_range(&dn, count);
1266 		f2fs_put_dnode(&dn);
1267 
1268 		pg_start += count;
1269 	}
1270 	return 0;
1271 }
1272 
1273 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1274 {
1275 	pgoff_t pg_start, pg_end;
1276 	loff_t off_start, off_end;
1277 	int ret;
1278 
1279 	ret = f2fs_convert_inline_inode(inode);
1280 	if (ret)
1281 		return ret;
1282 
1283 	f2fs_zero_post_eof_page(inode, offset + len, true);
1284 
1285 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1286 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1287 
1288 	off_start = offset & (PAGE_SIZE - 1);
1289 	off_end = (offset + len) & (PAGE_SIZE - 1);
1290 
1291 	if (pg_start == pg_end) {
1292 		ret = fill_zero(inode, pg_start, off_start,
1293 						off_end - off_start);
1294 		if (ret)
1295 			return ret;
1296 	} else {
1297 		if (off_start) {
1298 			ret = fill_zero(inode, pg_start++, off_start,
1299 						PAGE_SIZE - off_start);
1300 			if (ret)
1301 				return ret;
1302 		}
1303 		if (off_end) {
1304 			ret = fill_zero(inode, pg_end, 0, off_end);
1305 			if (ret)
1306 				return ret;
1307 		}
1308 
1309 		if (pg_start < pg_end) {
1310 			loff_t blk_start, blk_end;
1311 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1312 			struct f2fs_lock_context lc;
1313 
1314 			f2fs_balance_fs(sbi, true);
1315 
1316 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1317 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1318 
1319 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1320 			filemap_invalidate_lock(inode->i_mapping);
1321 
1322 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1323 
1324 			f2fs_lock_op(sbi, &lc);
1325 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1326 			f2fs_unlock_op(sbi, &lc);
1327 
1328 			filemap_invalidate_unlock(inode->i_mapping);
1329 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1330 		}
1331 	}
1332 
1333 	return ret;
1334 }
1335 
1336 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1337 				int *do_replace, pgoff_t off, pgoff_t len)
1338 {
1339 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1340 	struct dnode_of_data dn;
1341 	int ret, done, i;
1342 
1343 next_dnode:
1344 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1345 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1346 	if (ret && ret != -ENOENT) {
1347 		return ret;
1348 	} else if (ret == -ENOENT) {
1349 		if (dn.max_level == 0)
1350 			return -ENOENT;
1351 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1352 						dn.ofs_in_node, len);
1353 		blkaddr += done;
1354 		do_replace += done;
1355 		goto next;
1356 	}
1357 
1358 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, inode) -
1359 							dn.ofs_in_node, len);
1360 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1361 		*blkaddr = f2fs_data_blkaddr(&dn);
1362 
1363 		if (__is_valid_data_blkaddr(*blkaddr) &&
1364 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1365 					DATA_GENERIC_ENHANCE)) {
1366 			f2fs_put_dnode(&dn);
1367 			return -EFSCORRUPTED;
1368 		}
1369 
1370 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1371 
1372 			if (f2fs_lfs_mode(sbi)) {
1373 				f2fs_put_dnode(&dn);
1374 				return -EOPNOTSUPP;
1375 			}
1376 
1377 			/* do not invalidate this block address */
1378 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1379 			*do_replace = 1;
1380 		}
1381 	}
1382 	f2fs_put_dnode(&dn);
1383 next:
1384 	len -= done;
1385 	off += done;
1386 	if (len)
1387 		goto next_dnode;
1388 	return 0;
1389 }
1390 
1391 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1392 				int *do_replace, pgoff_t off, int len)
1393 {
1394 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1395 	struct dnode_of_data dn;
1396 	int ret, i;
1397 
1398 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1399 		if (*do_replace == 0)
1400 			continue;
1401 
1402 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1403 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1404 		if (ret) {
1405 			dec_valid_block_count(sbi, inode, 1);
1406 			f2fs_invalidate_blocks(sbi, *blkaddr, 1);
1407 		} else {
1408 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1409 		}
1410 		f2fs_put_dnode(&dn);
1411 	}
1412 	return 0;
1413 }
1414 
1415 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1416 			block_t *blkaddr, int *do_replace,
1417 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1418 {
1419 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1420 	pgoff_t i = 0;
1421 	int ret;
1422 
1423 	while (i < len) {
1424 		if (blkaddr[i] == NULL_ADDR && !full) {
1425 			i++;
1426 			continue;
1427 		}
1428 
1429 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1430 			struct dnode_of_data dn;
1431 			struct node_info ni;
1432 			size_t new_size;
1433 			pgoff_t ilen;
1434 
1435 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1436 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1437 			if (ret)
1438 				return ret;
1439 
1440 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1441 			if (ret) {
1442 				f2fs_put_dnode(&dn);
1443 				return ret;
1444 			}
1445 
1446 			ilen = min((pgoff_t)
1447 				ADDRS_PER_PAGE(dn.node_folio, dst_inode) -
1448 						dn.ofs_in_node, len - i);
1449 			do {
1450 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1451 				f2fs_truncate_data_blocks_range(&dn, 1);
1452 
1453 				if (do_replace[i]) {
1454 					f2fs_i_blocks_write(src_inode,
1455 							1, false, false);
1456 					f2fs_i_blocks_write(dst_inode,
1457 							1, true, false);
1458 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1459 					blkaddr[i], ni.version, true, false);
1460 
1461 					do_replace[i] = 0;
1462 				}
1463 				dn.ofs_in_node++;
1464 				i++;
1465 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1466 				if (dst_inode->i_size < new_size)
1467 					f2fs_i_size_write(dst_inode, new_size);
1468 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1469 
1470 			f2fs_put_dnode(&dn);
1471 		} else {
1472 			struct folio *fsrc, *fdst;
1473 
1474 			fsrc = f2fs_get_lock_data_folio(src_inode,
1475 							src + i, true);
1476 			if (IS_ERR(fsrc))
1477 				return PTR_ERR(fsrc);
1478 			fdst = f2fs_get_new_data_folio(dst_inode, NULL, dst + i,
1479 								true);
1480 			if (IS_ERR(fdst)) {
1481 				f2fs_folio_put(fsrc, true);
1482 				return PTR_ERR(fdst);
1483 			}
1484 
1485 			f2fs_folio_wait_writeback(fdst, DATA, true, true);
1486 
1487 			memcpy_folio(fdst, 0, fsrc, 0, PAGE_SIZE);
1488 			folio_mark_dirty(fdst);
1489 			folio_set_f2fs_gcing(fdst);
1490 			f2fs_folio_put(fdst, true);
1491 			f2fs_folio_put(fsrc, true);
1492 
1493 			ret = f2fs_truncate_hole(src_inode,
1494 						src + i, src + i + 1);
1495 			if (ret)
1496 				return ret;
1497 			i++;
1498 		}
1499 	}
1500 	return 0;
1501 }
1502 
1503 static int __exchange_data_block(struct inode *src_inode,
1504 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1505 			pgoff_t len, bool full)
1506 {
1507 	block_t *src_blkaddr;
1508 	int *do_replace;
1509 	pgoff_t olen;
1510 	int ret;
1511 
1512 	while (len) {
1513 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1514 
1515 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1516 					array_size(olen, sizeof(block_t)),
1517 					GFP_NOFS);
1518 		if (!src_blkaddr)
1519 			return -ENOMEM;
1520 
1521 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1522 					array_size(olen, sizeof(int)),
1523 					GFP_NOFS);
1524 		if (!do_replace) {
1525 			kvfree(src_blkaddr);
1526 			return -ENOMEM;
1527 		}
1528 
1529 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1530 					do_replace, src, olen);
1531 		if (ret)
1532 			goto roll_back;
1533 
1534 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1535 					do_replace, src, dst, olen, full);
1536 		if (ret)
1537 			goto roll_back;
1538 
1539 		src += olen;
1540 		dst += olen;
1541 		len -= olen;
1542 
1543 		kvfree(src_blkaddr);
1544 		kvfree(do_replace);
1545 	}
1546 	return 0;
1547 
1548 roll_back:
1549 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1550 	kvfree(src_blkaddr);
1551 	kvfree(do_replace);
1552 	return ret;
1553 }
1554 
1555 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1556 {
1557 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1558 	struct f2fs_lock_context lc;
1559 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1560 	pgoff_t start = offset >> PAGE_SHIFT;
1561 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1562 	int ret;
1563 
1564 	f2fs_balance_fs(sbi, true);
1565 
1566 	/* avoid gc operation during block exchange */
1567 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1568 	filemap_invalidate_lock(inode->i_mapping);
1569 
1570 	f2fs_zero_post_eof_page(inode, offset + len, false);
1571 
1572 	f2fs_lock_op(sbi, &lc);
1573 	f2fs_drop_extent_tree(inode);
1574 	truncate_pagecache(inode, offset);
1575 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1576 	f2fs_unlock_op(sbi, &lc);
1577 
1578 	filemap_invalidate_unlock(inode->i_mapping);
1579 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1580 	return ret;
1581 }
1582 
1583 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1584 {
1585 	loff_t new_size;
1586 	int ret;
1587 
1588 	if (offset + len >= i_size_read(inode))
1589 		return -EINVAL;
1590 
1591 	/* collapse range should be aligned to block size of f2fs. */
1592 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1593 		return -EINVAL;
1594 
1595 	ret = f2fs_convert_inline_inode(inode);
1596 	if (ret)
1597 		return ret;
1598 
1599 	/* write out all dirty pages from offset */
1600 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1601 	if (ret)
1602 		return ret;
1603 
1604 	ret = f2fs_do_collapse(inode, offset, len);
1605 	if (ret)
1606 		return ret;
1607 
1608 	/* write out all moved pages, if possible */
1609 	filemap_invalidate_lock(inode->i_mapping);
1610 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1611 	truncate_pagecache(inode, offset);
1612 
1613 	new_size = i_size_read(inode) - len;
1614 	ret = f2fs_truncate_blocks(inode, new_size, true);
1615 	filemap_invalidate_unlock(inode->i_mapping);
1616 	if (!ret)
1617 		f2fs_i_size_write(inode, new_size);
1618 	return ret;
1619 }
1620 
1621 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1622 								pgoff_t end)
1623 {
1624 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1625 	pgoff_t index = start;
1626 	unsigned int ofs_in_node = dn->ofs_in_node;
1627 	blkcnt_t count = 0;
1628 	int ret;
1629 
1630 	for (; index < end; index++, dn->ofs_in_node++) {
1631 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1632 			count++;
1633 	}
1634 
1635 	dn->ofs_in_node = ofs_in_node;
1636 	ret = f2fs_reserve_new_blocks(dn, count);
1637 	if (ret)
1638 		return ret;
1639 
1640 	dn->ofs_in_node = ofs_in_node;
1641 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1642 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1643 		/*
1644 		 * f2fs_reserve_new_blocks will not guarantee entire block
1645 		 * allocation.
1646 		 */
1647 		if (dn->data_blkaddr == NULL_ADDR) {
1648 			ret = -ENOSPC;
1649 			break;
1650 		}
1651 
1652 		if (dn->data_blkaddr == NEW_ADDR)
1653 			continue;
1654 
1655 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1656 					DATA_GENERIC_ENHANCE)) {
1657 			ret = -EFSCORRUPTED;
1658 			break;
1659 		}
1660 
1661 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr, 1);
1662 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1663 	}
1664 
1665 	if (index > start) {
1666 		f2fs_update_read_extent_cache_range(dn, start, 0,
1667 							index - start);
1668 		f2fs_update_age_extent_cache_range(dn, start, index - start);
1669 	}
1670 
1671 	return ret;
1672 }
1673 
1674 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1675 								int mode)
1676 {
1677 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1678 	struct address_space *mapping = inode->i_mapping;
1679 	pgoff_t index, pg_start, pg_end;
1680 	loff_t new_size = i_size_read(inode);
1681 	loff_t off_start, off_end;
1682 	int ret = 0;
1683 
1684 	ret = inode_newsize_ok(inode, (len + offset));
1685 	if (ret)
1686 		return ret;
1687 
1688 	ret = f2fs_convert_inline_inode(inode);
1689 	if (ret)
1690 		return ret;
1691 
1692 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1693 	if (ret)
1694 		return ret;
1695 
1696 	f2fs_zero_post_eof_page(inode, offset + len, true);
1697 
1698 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1699 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1700 
1701 	off_start = offset & (PAGE_SIZE - 1);
1702 	off_end = (offset + len) & (PAGE_SIZE - 1);
1703 
1704 	if (pg_start == pg_end) {
1705 		ret = fill_zero(inode, pg_start, off_start,
1706 						off_end - off_start);
1707 		if (ret)
1708 			return ret;
1709 
1710 		new_size = max_t(loff_t, new_size, offset + len);
1711 	} else {
1712 		if (off_start) {
1713 			ret = fill_zero(inode, pg_start++, off_start,
1714 						PAGE_SIZE - off_start);
1715 			if (ret)
1716 				return ret;
1717 
1718 			new_size = max_t(loff_t, new_size,
1719 					(loff_t)pg_start << PAGE_SHIFT);
1720 		}
1721 
1722 		for (index = pg_start; index < pg_end;) {
1723 			struct dnode_of_data dn;
1724 			struct f2fs_lock_context lc;
1725 			unsigned int end_offset;
1726 			pgoff_t end;
1727 
1728 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1729 			filemap_invalidate_lock(mapping);
1730 
1731 			truncate_pagecache_range(inode,
1732 				(loff_t)index << PAGE_SHIFT,
1733 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1734 
1735 			f2fs_lock_op(sbi, &lc);
1736 
1737 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1738 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1739 			if (ret) {
1740 				f2fs_unlock_op(sbi, &lc);
1741 				filemap_invalidate_unlock(mapping);
1742 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1743 				goto out;
1744 			}
1745 
1746 			end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1747 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1748 
1749 			ret = f2fs_do_zero_range(&dn, index, end);
1750 			f2fs_put_dnode(&dn);
1751 
1752 			f2fs_unlock_op(sbi, &lc);
1753 			filemap_invalidate_unlock(mapping);
1754 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1755 
1756 			f2fs_balance_fs(sbi, dn.node_changed);
1757 
1758 			if (ret)
1759 				goto out;
1760 
1761 			index = end;
1762 			new_size = max_t(loff_t, new_size,
1763 					(loff_t)index << PAGE_SHIFT);
1764 		}
1765 
1766 		if (off_end) {
1767 			ret = fill_zero(inode, pg_end, 0, off_end);
1768 			if (ret)
1769 				goto out;
1770 
1771 			new_size = max_t(loff_t, new_size, offset + len);
1772 		}
1773 	}
1774 
1775 out:
1776 	if (new_size > i_size_read(inode)) {
1777 		if (mode & FALLOC_FL_KEEP_SIZE)
1778 			file_set_keep_isize(inode);
1779 		else
1780 			f2fs_i_size_write(inode, new_size);
1781 	}
1782 	return ret;
1783 }
1784 
1785 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1786 {
1787 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1788 	struct address_space *mapping = inode->i_mapping;
1789 	pgoff_t nr, pg_start, pg_end, delta, idx;
1790 	loff_t new_size;
1791 	int ret = 0;
1792 
1793 	new_size = i_size_read(inode) + len;
1794 	ret = inode_newsize_ok(inode, new_size);
1795 	if (ret)
1796 		return ret;
1797 
1798 	if (offset >= i_size_read(inode))
1799 		return -EINVAL;
1800 
1801 	/* insert range should be aligned to block size of f2fs. */
1802 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1803 		return -EINVAL;
1804 
1805 	ret = f2fs_convert_inline_inode(inode);
1806 	if (ret)
1807 		return ret;
1808 
1809 	f2fs_balance_fs(sbi, true);
1810 
1811 	filemap_invalidate_lock(mapping);
1812 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1813 	filemap_invalidate_unlock(mapping);
1814 	if (ret)
1815 		return ret;
1816 
1817 	/* write out all dirty pages from offset */
1818 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1819 	if (ret)
1820 		return ret;
1821 
1822 	pg_start = offset >> PAGE_SHIFT;
1823 	pg_end = (offset + len) >> PAGE_SHIFT;
1824 	delta = pg_end - pg_start;
1825 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1826 
1827 	/* avoid gc operation during block exchange */
1828 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1829 	filemap_invalidate_lock(mapping);
1830 
1831 	f2fs_zero_post_eof_page(inode, offset + len, false);
1832 	truncate_pagecache(inode, offset);
1833 
1834 	while (!ret && idx > pg_start) {
1835 		struct f2fs_lock_context lc;
1836 
1837 		nr = idx - pg_start;
1838 		if (nr > delta)
1839 			nr = delta;
1840 		idx -= nr;
1841 
1842 		f2fs_lock_op(sbi, &lc);
1843 		f2fs_drop_extent_tree(inode);
1844 
1845 		ret = __exchange_data_block(inode, inode, idx,
1846 					idx + delta, nr, false);
1847 		f2fs_unlock_op(sbi, &lc);
1848 	}
1849 	filemap_invalidate_unlock(mapping);
1850 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1851 	if (ret)
1852 		return ret;
1853 
1854 	/* write out all moved pages, if possible */
1855 	filemap_invalidate_lock(mapping);
1856 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1857 	truncate_pagecache(inode, offset);
1858 	filemap_invalidate_unlock(mapping);
1859 
1860 	if (!ret)
1861 		f2fs_i_size_write(inode, new_size);
1862 	return ret;
1863 }
1864 
1865 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1866 					loff_t len, int mode)
1867 {
1868 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1869 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1870 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1871 			.m_may_create = true };
1872 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1873 			.init_gc_type = FG_GC,
1874 			.should_migrate_blocks = false,
1875 			.err_gc_skipped = true,
1876 			.nr_free_secs = 0 };
1877 	pgoff_t pg_start, pg_end;
1878 	loff_t new_size;
1879 	loff_t off_end;
1880 	block_t expanded = 0;
1881 	int err;
1882 
1883 	err = inode_newsize_ok(inode, (len + offset));
1884 	if (err)
1885 		return err;
1886 
1887 	err = f2fs_convert_inline_inode(inode);
1888 	if (err)
1889 		return err;
1890 
1891 	f2fs_zero_post_eof_page(inode, offset + len, true);
1892 
1893 	f2fs_balance_fs(sbi, true);
1894 
1895 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1896 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1897 	off_end = (offset + len) & (PAGE_SIZE - 1);
1898 
1899 	map.m_lblk = pg_start;
1900 	map.m_len = pg_end - pg_start;
1901 	if (off_end)
1902 		map.m_len++;
1903 
1904 	if (!map.m_len)
1905 		return 0;
1906 
1907 	if (f2fs_is_pinned_file(inode)) {
1908 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1909 		block_t sec_len = roundup(map.m_len, sec_blks);
1910 
1911 		map.m_len = sec_blks;
1912 next_alloc:
1913 		f2fs_down_write(&sbi->pin_sem);
1914 
1915 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1916 			if (has_not_enough_free_secs(sbi, 0, 0)) {
1917 				f2fs_up_write(&sbi->pin_sem);
1918 				err = -ENOSPC;
1919 				f2fs_warn_ratelimited(sbi,
1920 					"ino:%lu, start:%lu, end:%lu, need to trigger GC to "
1921 					"reclaim enough free segment when checkpoint is enabled",
1922 					inode->i_ino, pg_start, pg_end);
1923 				goto out_err;
1924 			}
1925 		}
1926 
1927 		if (has_not_enough_free_secs(sbi, 0,
1928 				sbi->reserved_pin_section)) {
1929 			f2fs_down_write_trace(&sbi->gc_lock, &gc_control.lc);
1930 			stat_inc_gc_call_count(sbi, FOREGROUND);
1931 			err = f2fs_gc(sbi, &gc_control);
1932 			if (err && err != -ENODATA) {
1933 				f2fs_up_write(&sbi->pin_sem);
1934 				goto out_err;
1935 			}
1936 		}
1937 
1938 		err = f2fs_allocate_pinning_section(sbi);
1939 		if (err) {
1940 			f2fs_up_write(&sbi->pin_sem);
1941 			goto out_err;
1942 		}
1943 
1944 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1945 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1946 		file_dont_truncate(inode);
1947 
1948 		f2fs_up_write(&sbi->pin_sem);
1949 
1950 		expanded += map.m_len;
1951 		sec_len -= map.m_len;
1952 		map.m_lblk += map.m_len;
1953 		if (!err && sec_len)
1954 			goto next_alloc;
1955 
1956 		map.m_len = expanded;
1957 	} else {
1958 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1959 		expanded = map.m_len;
1960 	}
1961 out_err:
1962 	if (err) {
1963 		pgoff_t last_off;
1964 
1965 		if (!expanded)
1966 			return err;
1967 
1968 		last_off = pg_start + expanded - 1;
1969 
1970 		/* update new size to the failed position */
1971 		new_size = (last_off == pg_end) ? offset + len :
1972 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1973 	} else {
1974 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1975 	}
1976 
1977 	if (new_size > i_size_read(inode)) {
1978 		if (mode & FALLOC_FL_KEEP_SIZE)
1979 			file_set_keep_isize(inode);
1980 		else
1981 			f2fs_i_size_write(inode, new_size);
1982 	}
1983 
1984 	return err;
1985 }
1986 
1987 static long f2fs_fallocate(struct file *file, int mode,
1988 				loff_t offset, loff_t len)
1989 {
1990 	struct inode *inode = file_inode(file);
1991 	long ret = 0;
1992 
1993 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1994 		return -EIO;
1995 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1996 		return -ENOSPC;
1997 	if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1998 		return -EOPNOTSUPP;
1999 
2000 	/* f2fs only support ->fallocate for regular file */
2001 	if (!S_ISREG(inode->i_mode))
2002 		return -EINVAL;
2003 
2004 	if (IS_ENCRYPTED(inode) &&
2005 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
2006 		return -EOPNOTSUPP;
2007 
2008 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2009 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
2010 			FALLOC_FL_INSERT_RANGE))
2011 		return -EOPNOTSUPP;
2012 
2013 	inode_lock(inode);
2014 
2015 	/*
2016 	 * Pinned file should not support partial truncation since the block
2017 	 * can be used by applications.
2018 	 */
2019 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
2020 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
2021 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
2022 		ret = -EOPNOTSUPP;
2023 		goto out;
2024 	}
2025 
2026 	ret = file_modified(file);
2027 	if (ret)
2028 		goto out;
2029 
2030 	/*
2031 	 * wait for inflight dio, blocks should be removed after IO
2032 	 * completion.
2033 	 */
2034 	inode_dio_wait(inode);
2035 
2036 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2037 		if (offset >= inode->i_size)
2038 			goto out;
2039 
2040 		ret = f2fs_punch_hole(inode, offset, len);
2041 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
2042 		ret = f2fs_collapse_range(inode, offset, len);
2043 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
2044 		ret = f2fs_zero_range(inode, offset, len, mode);
2045 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
2046 		ret = f2fs_insert_range(inode, offset, len);
2047 	} else {
2048 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
2049 	}
2050 
2051 	if (!ret) {
2052 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2053 		f2fs_mark_inode_dirty_sync(inode, false);
2054 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2055 	}
2056 
2057 out:
2058 	inode_unlock(inode);
2059 
2060 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
2061 	return ret;
2062 }
2063 
2064 static int f2fs_release_file(struct inode *inode, struct file *filp)
2065 {
2066 	if (atomic_dec_and_test(&F2FS_I(inode)->open_count))
2067 		f2fs_remove_donate_inode(inode);
2068 
2069 	/*
2070 	 * f2fs_release_file is called at every close calls. So we should
2071 	 * not drop any inmemory pages by close called by other process.
2072 	 */
2073 	if (!(filp->f_mode & FMODE_WRITE) ||
2074 			atomic_read(&inode->i_writecount) != 1)
2075 		return 0;
2076 
2077 	inode_lock(inode);
2078 	f2fs_abort_atomic_write(inode, true);
2079 	inode_unlock(inode);
2080 
2081 	return 0;
2082 }
2083 
2084 static int f2fs_file_flush(struct file *file, fl_owner_t id)
2085 {
2086 	struct inode *inode = file_inode(file);
2087 
2088 	/*
2089 	 * If the process doing a transaction is crashed, we should do
2090 	 * roll-back. Otherwise, other reader/write can see corrupted database
2091 	 * until all the writers close its file. Since this should be done
2092 	 * before dropping file lock, it needs to do in ->flush.
2093 	 */
2094 	if (F2FS_I(inode)->atomic_write_task == current &&
2095 				(current->flags & PF_EXITING)) {
2096 		inode_lock(inode);
2097 		f2fs_abort_atomic_write(inode, true);
2098 		inode_unlock(inode);
2099 	}
2100 
2101 	return 0;
2102 }
2103 
2104 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
2105 {
2106 	struct f2fs_inode_info *fi = F2FS_I(inode);
2107 	u32 masked_flags = fi->i_flags & mask;
2108 
2109 	/* mask can be shrunk by flags_valid selector */
2110 	iflags &= mask;
2111 
2112 	/* Is it quota file? Do not allow user to mess with it */
2113 	if (IS_NOQUOTA(inode))
2114 		return -EPERM;
2115 
2116 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2117 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2118 			return -EOPNOTSUPP;
2119 		if (!f2fs_empty_dir(inode))
2120 			return -ENOTEMPTY;
2121 	}
2122 
2123 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2124 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2125 			return -EOPNOTSUPP;
2126 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2127 			return -EINVAL;
2128 	}
2129 
2130 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2131 		if (masked_flags & F2FS_COMPR_FL) {
2132 			if (!f2fs_disable_compressed_file(inode))
2133 				return -EINVAL;
2134 		} else {
2135 			/* try to convert inline_data to support compression */
2136 			int err = f2fs_convert_inline_inode(inode);
2137 			if (err)
2138 				return err;
2139 
2140 			f2fs_down_write(&fi->i_sem);
2141 			if (!f2fs_may_compress(inode) ||
2142 				atomic_read(&fi->writeback) ||
2143 				(S_ISREG(inode->i_mode) &&
2144 				F2FS_HAS_BLOCKS(inode))) {
2145 				f2fs_up_write(&fi->i_sem);
2146 				return -EINVAL;
2147 			}
2148 			err = set_compress_context(inode);
2149 			f2fs_up_write(&fi->i_sem);
2150 
2151 			if (err)
2152 				return err;
2153 		}
2154 	}
2155 
2156 	fi->i_flags = iflags | (fi->i_flags & ~mask);
2157 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2158 					(fi->i_flags & F2FS_NOCOMP_FL));
2159 
2160 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2161 		set_inode_flag(inode, FI_PROJ_INHERIT);
2162 	else
2163 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2164 
2165 	inode_set_ctime_current(inode);
2166 	f2fs_set_inode_flags(inode);
2167 	f2fs_mark_inode_dirty_sync(inode, true);
2168 	return 0;
2169 }
2170 
2171 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2172 
2173 /*
2174  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2175  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2176  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2177  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2178  *
2179  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2180  * FS_IOC_FSSETXATTR is done by the VFS.
2181  */
2182 
2183 static const struct {
2184 	u32 iflag;
2185 	u32 fsflag;
2186 } f2fs_fsflags_map[] = {
2187 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2188 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2189 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2190 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2191 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2192 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2193 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2194 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2195 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2196 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2197 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2198 };
2199 
2200 #define F2FS_GETTABLE_FS_FL (		\
2201 		FS_COMPR_FL |		\
2202 		FS_SYNC_FL |		\
2203 		FS_IMMUTABLE_FL |	\
2204 		FS_APPEND_FL |		\
2205 		FS_NODUMP_FL |		\
2206 		FS_NOATIME_FL |		\
2207 		FS_NOCOMP_FL |		\
2208 		FS_INDEX_FL |		\
2209 		FS_DIRSYNC_FL |		\
2210 		FS_PROJINHERIT_FL |	\
2211 		FS_ENCRYPT_FL |		\
2212 		FS_INLINE_DATA_FL |	\
2213 		FS_NOCOW_FL |		\
2214 		FS_VERITY_FL |		\
2215 		FS_CASEFOLD_FL)
2216 
2217 #define F2FS_SETTABLE_FS_FL (		\
2218 		FS_COMPR_FL |		\
2219 		FS_SYNC_FL |		\
2220 		FS_IMMUTABLE_FL |	\
2221 		FS_APPEND_FL |		\
2222 		FS_NODUMP_FL |		\
2223 		FS_NOATIME_FL |		\
2224 		FS_NOCOMP_FL |		\
2225 		FS_DIRSYNC_FL |		\
2226 		FS_PROJINHERIT_FL |	\
2227 		FS_CASEFOLD_FL)
2228 
2229 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2230 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2231 {
2232 	u32 fsflags = 0;
2233 	int i;
2234 
2235 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2236 		if (iflags & f2fs_fsflags_map[i].iflag)
2237 			fsflags |= f2fs_fsflags_map[i].fsflag;
2238 
2239 	return fsflags;
2240 }
2241 
2242 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2243 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2244 {
2245 	u32 iflags = 0;
2246 	int i;
2247 
2248 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2249 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2250 			iflags |= f2fs_fsflags_map[i].iflag;
2251 
2252 	return iflags;
2253 }
2254 
2255 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2256 {
2257 	struct inode *inode = file_inode(filp);
2258 
2259 	return put_user(inode->i_generation, (int __user *)arg);
2260 }
2261 
2262 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2263 {
2264 	struct inode *inode = file_inode(filp);
2265 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2266 	struct f2fs_inode_info *fi = F2FS_I(inode);
2267 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2268 	loff_t isize;
2269 	int ret;
2270 
2271 	if (!(filp->f_mode & FMODE_WRITE))
2272 		return -EBADF;
2273 
2274 	if (!inode_owner_or_capable(idmap, inode))
2275 		return -EACCES;
2276 
2277 	if (!S_ISREG(inode->i_mode))
2278 		return -EINVAL;
2279 
2280 	if (filp->f_flags & O_DIRECT)
2281 		return -EINVAL;
2282 
2283 	ret = mnt_want_write_file(filp);
2284 	if (ret)
2285 		return ret;
2286 
2287 	inode_lock(inode);
2288 
2289 	if (!f2fs_disable_compressed_file(inode) ||
2290 			f2fs_is_pinned_file(inode)) {
2291 		ret = -EINVAL;
2292 		goto out;
2293 	}
2294 
2295 	if (f2fs_is_atomic_file(inode))
2296 		goto out;
2297 
2298 	ret = f2fs_convert_inline_inode(inode);
2299 	if (ret)
2300 		goto out;
2301 
2302 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2303 	f2fs_down_write(&fi->i_gc_rwsem[READ]);
2304 
2305 	/*
2306 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2307 	 * f2fs_is_atomic_file.
2308 	 */
2309 	if (get_dirty_pages(inode))
2310 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2311 			  inode->i_ino, get_dirty_pages(inode));
2312 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2313 	if (ret)
2314 		goto out_unlock;
2315 
2316 	/* Check if the inode already has a COW inode */
2317 	if (fi->cow_inode == NULL) {
2318 		/* Create a COW inode for atomic write */
2319 		struct dentry *dentry = file_dentry(filp);
2320 		struct inode *dir = d_inode(dentry->d_parent);
2321 
2322 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2323 		if (ret)
2324 			goto out_unlock;
2325 
2326 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2327 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2328 
2329 		/* Set the COW inode's atomic_inode to the atomic inode */
2330 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2331 	} else {
2332 		/* Reuse the already created COW inode */
2333 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2334 
2335 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2336 
2337 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2338 		if (ret)
2339 			goto out_unlock;
2340 	}
2341 
2342 	f2fs_write_inode(inode, NULL);
2343 
2344 	stat_inc_atomic_inode(inode);
2345 
2346 	set_inode_flag(inode, FI_ATOMIC_FILE);
2347 
2348 	isize = i_size_read(inode);
2349 	fi->original_i_size = isize;
2350 	if (truncate) {
2351 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2352 		truncate_inode_pages_final(inode->i_mapping);
2353 		f2fs_i_size_write(inode, 0);
2354 		isize = 0;
2355 	}
2356 	f2fs_i_size_write(fi->cow_inode, isize);
2357 
2358 out_unlock:
2359 	f2fs_up_write(&fi->i_gc_rwsem[READ]);
2360 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2361 	if (ret)
2362 		goto out;
2363 
2364 	f2fs_update_time(sbi, REQ_TIME);
2365 	fi->atomic_write_task = current;
2366 	stat_update_max_atomic_write(inode);
2367 	fi->atomic_write_cnt = 0;
2368 out:
2369 	inode_unlock(inode);
2370 	mnt_drop_write_file(filp);
2371 	return ret;
2372 }
2373 
2374 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2375 {
2376 	struct inode *inode = file_inode(filp);
2377 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2378 	int ret;
2379 
2380 	if (!(filp->f_mode & FMODE_WRITE))
2381 		return -EBADF;
2382 
2383 	if (!inode_owner_or_capable(idmap, inode))
2384 		return -EACCES;
2385 
2386 	ret = mnt_want_write_file(filp);
2387 	if (ret)
2388 		return ret;
2389 
2390 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2391 
2392 	inode_lock(inode);
2393 
2394 	if (f2fs_is_atomic_file(inode)) {
2395 		ret = f2fs_commit_atomic_write(inode);
2396 		if (!ret)
2397 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2398 
2399 		f2fs_abort_atomic_write(inode, ret);
2400 	} else {
2401 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2402 	}
2403 
2404 	inode_unlock(inode);
2405 	mnt_drop_write_file(filp);
2406 	return ret;
2407 }
2408 
2409 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2410 {
2411 	struct inode *inode = file_inode(filp);
2412 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2413 	int ret;
2414 
2415 	if (!(filp->f_mode & FMODE_WRITE))
2416 		return -EBADF;
2417 
2418 	if (!inode_owner_or_capable(idmap, inode))
2419 		return -EACCES;
2420 
2421 	ret = mnt_want_write_file(filp);
2422 	if (ret)
2423 		return ret;
2424 
2425 	inode_lock(inode);
2426 
2427 	f2fs_abort_atomic_write(inode, true);
2428 
2429 	inode_unlock(inode);
2430 
2431 	mnt_drop_write_file(filp);
2432 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2433 	return ret;
2434 }
2435 
2436 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2437 						bool readonly, bool need_lock)
2438 {
2439 	struct super_block *sb = sbi->sb;
2440 	int ret = 0;
2441 
2442 	switch (flag) {
2443 	case F2FS_GOING_DOWN_FULLSYNC:
2444 		ret = bdev_freeze(sb->s_bdev);
2445 		if (ret)
2446 			goto out;
2447 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2448 		bdev_thaw(sb->s_bdev);
2449 		break;
2450 	case F2FS_GOING_DOWN_METASYNC:
2451 		/* do checkpoint only */
2452 		ret = f2fs_sync_fs(sb, 1);
2453 		if (ret) {
2454 			if (ret == -EIO)
2455 				ret = 0;
2456 			goto out;
2457 		}
2458 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2459 		break;
2460 	case F2FS_GOING_DOWN_NOSYNC:
2461 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2462 		break;
2463 	case F2FS_GOING_DOWN_METAFLUSH:
2464 		f2fs_sync_meta_pages(sbi, LONG_MAX, FS_META_IO);
2465 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2466 		break;
2467 	case F2FS_GOING_DOWN_NEED_FSCK:
2468 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2469 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2470 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2471 		/* do checkpoint only */
2472 		ret = f2fs_sync_fs(sb, 1);
2473 		if (ret == -EIO)
2474 			ret = 0;
2475 		goto out;
2476 	default:
2477 		ret = -EINVAL;
2478 		goto out;
2479 	}
2480 
2481 	if (readonly)
2482 		goto out;
2483 
2484 	/*
2485 	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2486 	 * paths.
2487 	 */
2488 	if (need_lock)
2489 		down_write(&sbi->sb->s_umount);
2490 
2491 	f2fs_stop_gc_thread(sbi);
2492 	f2fs_stop_discard_thread(sbi);
2493 
2494 	f2fs_drop_discard_cmd(sbi);
2495 	clear_opt(sbi, DISCARD);
2496 
2497 	if (need_lock)
2498 		up_write(&sbi->sb->s_umount);
2499 
2500 	f2fs_update_time(sbi, REQ_TIME);
2501 out:
2502 
2503 	trace_f2fs_shutdown(sbi, flag, ret);
2504 
2505 	return ret;
2506 }
2507 
2508 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2509 {
2510 	struct inode *inode = file_inode(filp);
2511 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2512 	__u32 in;
2513 	int ret;
2514 	bool need_drop = false, readonly = false;
2515 
2516 	if (!capable(CAP_SYS_ADMIN))
2517 		return -EPERM;
2518 
2519 	if (get_user(in, (__u32 __user *)arg))
2520 		return -EFAULT;
2521 
2522 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2523 		ret = mnt_want_write_file(filp);
2524 		if (ret) {
2525 			if (ret != -EROFS)
2526 				return ret;
2527 
2528 			/* fallback to nosync shutdown for readonly fs */
2529 			in = F2FS_GOING_DOWN_NOSYNC;
2530 			readonly = true;
2531 		} else {
2532 			need_drop = true;
2533 		}
2534 	}
2535 
2536 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2537 
2538 	if (need_drop)
2539 		mnt_drop_write_file(filp);
2540 
2541 	return ret;
2542 }
2543 
2544 static int f2fs_keep_noreuse_range(struct inode *inode,
2545 				loff_t offset, loff_t len)
2546 {
2547 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2548 	u64 max_bytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2549 	u64 start, end;
2550 	int ret = 0;
2551 
2552 	if (!S_ISREG(inode->i_mode))
2553 		return 0;
2554 
2555 	if (offset >= max_bytes || len > max_bytes ||
2556 	    (offset + len) > max_bytes)
2557 		return 0;
2558 
2559 	start = offset >> PAGE_SHIFT;
2560 	end = DIV_ROUND_UP(offset + len, PAGE_SIZE);
2561 
2562 	inode_lock(inode);
2563 	if (f2fs_is_atomic_file(inode)) {
2564 		inode_unlock(inode);
2565 		return 0;
2566 	}
2567 
2568 	spin_lock(&sbi->inode_lock[DONATE_INODE]);
2569 	/* let's remove the range, if len = 0 */
2570 	if (!len) {
2571 		if (!list_empty(&F2FS_I(inode)->gdonate_list)) {
2572 			list_del_init(&F2FS_I(inode)->gdonate_list);
2573 			sbi->donate_files--;
2574 			if (is_inode_flag_set(inode, FI_DONATE_FINISHED))
2575 				ret = -EALREADY;
2576 			else
2577 				set_inode_flag(inode, FI_DONATE_FINISHED);
2578 		} else
2579 			ret = -ENOENT;
2580 	} else {
2581 		if (list_empty(&F2FS_I(inode)->gdonate_list)) {
2582 			list_add_tail(&F2FS_I(inode)->gdonate_list,
2583 					&sbi->inode_list[DONATE_INODE]);
2584 			sbi->donate_files++;
2585 		} else {
2586 			list_move_tail(&F2FS_I(inode)->gdonate_list,
2587 					&sbi->inode_list[DONATE_INODE]);
2588 		}
2589 		F2FS_I(inode)->donate_start = start;
2590 		F2FS_I(inode)->donate_end = end - 1;
2591 		clear_inode_flag(inode, FI_DONATE_FINISHED);
2592 	}
2593 	spin_unlock(&sbi->inode_lock[DONATE_INODE]);
2594 	inode_unlock(inode);
2595 
2596 	return ret;
2597 }
2598 
2599 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2600 {
2601 	struct inode *inode = file_inode(filp);
2602 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2603 	struct fstrim_range range;
2604 	int ret;
2605 
2606 	if (!capable(CAP_SYS_ADMIN))
2607 		return -EPERM;
2608 
2609 	if (!f2fs_hw_support_discard(sbi))
2610 		return -EOPNOTSUPP;
2611 
2612 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2613 				sizeof(range)))
2614 		return -EFAULT;
2615 
2616 	ret = mnt_want_write_file(filp);
2617 	if (ret)
2618 		return ret;
2619 
2620 	range.minlen = max_t(unsigned int, range.minlen,
2621 			f2fs_hw_discard_granularity(sbi));
2622 	ret = f2fs_trim_fs(sbi, &range);
2623 	mnt_drop_write_file(filp);
2624 	if (ret < 0)
2625 		return ret;
2626 
2627 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2628 				sizeof(range)))
2629 		return -EFAULT;
2630 	f2fs_update_time(sbi, REQ_TIME);
2631 	return 0;
2632 }
2633 
2634 static bool uuid_is_nonzero(__u8 u[16])
2635 {
2636 	int i;
2637 
2638 	for (i = 0; i < 16; i++)
2639 		if (u[i])
2640 			return true;
2641 	return false;
2642 }
2643 
2644 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2645 {
2646 	struct inode *inode = file_inode(filp);
2647 	int ret;
2648 
2649 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2650 		return -EOPNOTSUPP;
2651 
2652 	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2653 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2654 	return ret;
2655 }
2656 
2657 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2658 {
2659 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2660 		return -EOPNOTSUPP;
2661 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2662 }
2663 
2664 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2665 {
2666 	struct inode *inode = file_inode(filp);
2667 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2668 	u8 encrypt_pw_salt[16];
2669 	int err;
2670 
2671 	if (!f2fs_sb_has_encrypt(sbi))
2672 		return -EOPNOTSUPP;
2673 
2674 	err = mnt_want_write_file(filp);
2675 	if (err)
2676 		return err;
2677 
2678 	f2fs_down_write(&sbi->sb_lock);
2679 
2680 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2681 		goto got_it;
2682 
2683 	/* update superblock with uuid */
2684 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2685 
2686 	err = f2fs_commit_super(sbi, false);
2687 	if (err) {
2688 		/* undo new data */
2689 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2690 		goto out_err;
2691 	}
2692 got_it:
2693 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2694 out_err:
2695 	f2fs_up_write(&sbi->sb_lock);
2696 	mnt_drop_write_file(filp);
2697 
2698 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2699 		err = -EFAULT;
2700 
2701 	return err;
2702 }
2703 
2704 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2705 					     unsigned long arg)
2706 {
2707 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2708 		return -EOPNOTSUPP;
2709 
2710 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2711 }
2712 
2713 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2714 {
2715 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2716 		return -EOPNOTSUPP;
2717 
2718 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2719 }
2720 
2721 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2722 {
2723 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2724 		return -EOPNOTSUPP;
2725 
2726 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2727 }
2728 
2729 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2730 						    unsigned long arg)
2731 {
2732 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2733 		return -EOPNOTSUPP;
2734 
2735 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2736 }
2737 
2738 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2739 					      unsigned long arg)
2740 {
2741 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2742 		return -EOPNOTSUPP;
2743 
2744 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2745 }
2746 
2747 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2748 {
2749 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2750 		return -EOPNOTSUPP;
2751 
2752 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2753 }
2754 
2755 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2756 {
2757 	struct inode *inode = file_inode(filp);
2758 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2759 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2760 			.no_bg_gc = false,
2761 			.should_migrate_blocks = false,
2762 			.nr_free_secs = 0 };
2763 	__u32 sync;
2764 	int ret;
2765 
2766 	if (!capable(CAP_SYS_ADMIN))
2767 		return -EPERM;
2768 
2769 	if (get_user(sync, (__u32 __user *)arg))
2770 		return -EFAULT;
2771 
2772 	if (f2fs_readonly(sbi->sb))
2773 		return -EROFS;
2774 
2775 	ret = mnt_want_write_file(filp);
2776 	if (ret)
2777 		return ret;
2778 
2779 	if (!sync) {
2780 		if (!f2fs_down_write_trylock_trace(&sbi->gc_lock,
2781 						&gc_control.lc)) {
2782 			ret = -EBUSY;
2783 			goto out;
2784 		}
2785 	} else {
2786 		f2fs_down_write_trace(&sbi->gc_lock, &gc_control.lc);
2787 	}
2788 
2789 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2790 	gc_control.err_gc_skipped = sync;
2791 	stat_inc_gc_call_count(sbi, FOREGROUND);
2792 	ret = f2fs_gc(sbi, &gc_control);
2793 out:
2794 	mnt_drop_write_file(filp);
2795 	return ret;
2796 }
2797 
2798 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2799 {
2800 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2801 	struct f2fs_gc_control gc_control = {
2802 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2803 			.no_bg_gc = false,
2804 			.should_migrate_blocks = false,
2805 			.err_gc_skipped = range->sync,
2806 			.nr_free_secs = 0 };
2807 	u64 end;
2808 	int ret;
2809 
2810 	if (!capable(CAP_SYS_ADMIN))
2811 		return -EPERM;
2812 	if (f2fs_readonly(sbi->sb))
2813 		return -EROFS;
2814 
2815 	end = range->start + range->len;
2816 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2817 					end >= MAX_BLKADDR(sbi))
2818 		return -EINVAL;
2819 
2820 	ret = mnt_want_write_file(filp);
2821 	if (ret)
2822 		return ret;
2823 
2824 do_more:
2825 	if (!range->sync) {
2826 		if (!f2fs_down_write_trylock_trace(&sbi->gc_lock, &gc_control.lc)) {
2827 			ret = -EBUSY;
2828 			goto out;
2829 		}
2830 	} else {
2831 		f2fs_down_write_trace(&sbi->gc_lock, &gc_control.lc);
2832 	}
2833 
2834 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2835 	stat_inc_gc_call_count(sbi, FOREGROUND);
2836 	ret = f2fs_gc(sbi, &gc_control);
2837 	if (ret) {
2838 		if (ret == -EBUSY)
2839 			ret = -EAGAIN;
2840 		goto out;
2841 	}
2842 	range->start += CAP_BLKS_PER_SEC(sbi);
2843 	if (range->start <= end)
2844 		goto do_more;
2845 out:
2846 	mnt_drop_write_file(filp);
2847 	return ret;
2848 }
2849 
2850 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2851 {
2852 	struct f2fs_gc_range range;
2853 
2854 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2855 							sizeof(range)))
2856 		return -EFAULT;
2857 	return __f2fs_ioc_gc_range(filp, &range);
2858 }
2859 
2860 static int f2fs_ioc_write_checkpoint(struct file *filp)
2861 {
2862 	struct inode *inode = file_inode(filp);
2863 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2864 	int ret;
2865 
2866 	if (!capable(CAP_SYS_ADMIN))
2867 		return -EPERM;
2868 
2869 	if (f2fs_readonly(sbi->sb))
2870 		return -EROFS;
2871 
2872 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2873 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2874 		return -EINVAL;
2875 	}
2876 
2877 	ret = mnt_want_write_file(filp);
2878 	if (ret)
2879 		return ret;
2880 
2881 	ret = f2fs_sync_fs(sbi->sb, 1);
2882 
2883 	mnt_drop_write_file(filp);
2884 	return ret;
2885 }
2886 
2887 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2888 					struct file *filp,
2889 					struct f2fs_defragment *range)
2890 {
2891 	struct inode *inode = file_inode(filp);
2892 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2893 					.m_seg_type = NO_CHECK_TYPE,
2894 					.m_may_create = false };
2895 	struct extent_info ei = {};
2896 	pgoff_t pg_start, pg_end, next_pgofs;
2897 	unsigned int total = 0, sec_num;
2898 	block_t blk_end = 0;
2899 	bool fragmented = false;
2900 	int err;
2901 
2902 	f2fs_balance_fs(sbi, true);
2903 
2904 	inode_lock(inode);
2905 	pg_start = range->start >> PAGE_SHIFT;
2906 	pg_end = min_t(pgoff_t,
2907 				(range->start + range->len) >> PAGE_SHIFT,
2908 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2909 
2910 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2911 		f2fs_is_atomic_file(inode)) {
2912 		err = -EINVAL;
2913 		goto unlock_out;
2914 	}
2915 
2916 	/* if in-place-update policy is enabled, don't waste time here */
2917 	set_inode_flag(inode, FI_OPU_WRITE);
2918 	if (f2fs_should_update_inplace(inode, NULL)) {
2919 		err = -EINVAL;
2920 		goto out;
2921 	}
2922 
2923 	/* writeback all dirty pages in the range */
2924 	err = filemap_write_and_wait_range(inode->i_mapping,
2925 						pg_start << PAGE_SHIFT,
2926 						(pg_end << PAGE_SHIFT) - 1);
2927 	if (err)
2928 		goto out;
2929 
2930 	/*
2931 	 * lookup mapping info in extent cache, skip defragmenting if physical
2932 	 * block addresses are continuous.
2933 	 */
2934 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2935 		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2936 			goto out;
2937 	}
2938 
2939 	map.m_lblk = pg_start;
2940 	map.m_next_pgofs = &next_pgofs;
2941 
2942 	/*
2943 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2944 	 * physical block addresses are continuous even if there are hole(s)
2945 	 * in logical blocks.
2946 	 */
2947 	while (map.m_lblk < pg_end) {
2948 		map.m_len = pg_end - map.m_lblk;
2949 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2950 		if (err)
2951 			goto out;
2952 
2953 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2954 			map.m_lblk = next_pgofs;
2955 			continue;
2956 		}
2957 
2958 		if (blk_end && blk_end != map.m_pblk)
2959 			fragmented = true;
2960 
2961 		/* record total count of block that we're going to move */
2962 		total += map.m_len;
2963 
2964 		blk_end = map.m_pblk + map.m_len;
2965 
2966 		map.m_lblk += map.m_len;
2967 	}
2968 
2969 	if (!fragmented) {
2970 		total = 0;
2971 		goto out;
2972 	}
2973 
2974 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2975 
2976 	/*
2977 	 * make sure there are enough free section for LFS allocation, this can
2978 	 * avoid defragment running in SSR mode when free section are allocated
2979 	 * intensively
2980 	 */
2981 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2982 		err = -EAGAIN;
2983 		goto out;
2984 	}
2985 
2986 	map.m_lblk = pg_start;
2987 	map.m_len = pg_end - pg_start;
2988 	total = 0;
2989 
2990 	while (map.m_lblk < pg_end) {
2991 		pgoff_t idx;
2992 		int cnt = 0;
2993 
2994 do_map:
2995 		map.m_len = pg_end - map.m_lblk;
2996 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2997 		if (err)
2998 			goto clear_out;
2999 
3000 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3001 			map.m_lblk = next_pgofs;
3002 			goto check;
3003 		}
3004 
3005 		set_inode_flag(inode, FI_SKIP_WRITES);
3006 
3007 		idx = map.m_lblk;
3008 		while (idx < map.m_lblk + map.m_len &&
3009 						cnt < BLKS_PER_SEG(sbi)) {
3010 			struct folio *folio;
3011 
3012 			folio = f2fs_get_lock_data_folio(inode, idx, true);
3013 			if (IS_ERR(folio)) {
3014 				err = PTR_ERR(folio);
3015 				goto clear_out;
3016 			}
3017 
3018 			f2fs_folio_wait_writeback(folio, DATA, true, true);
3019 
3020 			folio_mark_dirty(folio);
3021 			folio_set_f2fs_gcing(folio);
3022 			f2fs_folio_put(folio, true);
3023 
3024 			idx++;
3025 			cnt++;
3026 			total++;
3027 		}
3028 
3029 		map.m_lblk = idx;
3030 check:
3031 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
3032 			goto do_map;
3033 
3034 		clear_inode_flag(inode, FI_SKIP_WRITES);
3035 
3036 		err = filemap_fdatawrite(inode->i_mapping);
3037 		if (err)
3038 			goto out;
3039 	}
3040 clear_out:
3041 	clear_inode_flag(inode, FI_SKIP_WRITES);
3042 out:
3043 	clear_inode_flag(inode, FI_OPU_WRITE);
3044 unlock_out:
3045 	inode_unlock(inode);
3046 	if (!err)
3047 		range->len = (u64)total << PAGE_SHIFT;
3048 	return err;
3049 }
3050 
3051 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
3052 {
3053 	struct inode *inode = file_inode(filp);
3054 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3055 	struct f2fs_defragment range;
3056 	int err;
3057 
3058 	if (!capable(CAP_SYS_ADMIN))
3059 		return -EPERM;
3060 
3061 	if (!S_ISREG(inode->i_mode))
3062 		return -EINVAL;
3063 
3064 	if (f2fs_readonly(sbi->sb))
3065 		return -EROFS;
3066 
3067 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
3068 							sizeof(range)))
3069 		return -EFAULT;
3070 
3071 	/* verify alignment of offset & size */
3072 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
3073 		return -EINVAL;
3074 
3075 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
3076 					max_file_blocks(inode)))
3077 		return -EINVAL;
3078 
3079 	err = mnt_want_write_file(filp);
3080 	if (err)
3081 		return err;
3082 
3083 	err = f2fs_defragment_range(sbi, filp, &range);
3084 	mnt_drop_write_file(filp);
3085 
3086 	if (range.len)
3087 		f2fs_update_time(sbi, REQ_TIME);
3088 	if (err < 0)
3089 		return err;
3090 
3091 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
3092 							sizeof(range)))
3093 		return -EFAULT;
3094 
3095 	return 0;
3096 }
3097 
3098 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
3099 			struct file *file_out, loff_t pos_out, size_t len)
3100 {
3101 	struct inode *src = file_inode(file_in);
3102 	struct inode *dst = file_inode(file_out);
3103 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
3104 	struct f2fs_lock_context lc;
3105 	size_t olen = len, dst_max_i_size = 0;
3106 	size_t dst_osize;
3107 	int ret;
3108 
3109 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
3110 				src->i_sb != dst->i_sb)
3111 		return -EXDEV;
3112 
3113 	if (unlikely(f2fs_readonly(src->i_sb)))
3114 		return -EROFS;
3115 
3116 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
3117 		return -EINVAL;
3118 
3119 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
3120 		return -EOPNOTSUPP;
3121 
3122 	if (pos_out < 0 || pos_in < 0)
3123 		return -EINVAL;
3124 
3125 	if (src == dst) {
3126 		if (pos_in == pos_out)
3127 			return 0;
3128 		if (pos_out > pos_in && pos_out < pos_in + len)
3129 			return -EINVAL;
3130 	}
3131 
3132 	inode_lock(src);
3133 	if (src != dst) {
3134 		ret = -EBUSY;
3135 		if (!inode_trylock(dst))
3136 			goto out;
3137 	}
3138 
3139 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
3140 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
3141 		ret = -EOPNOTSUPP;
3142 		goto out_unlock;
3143 	}
3144 
3145 	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
3146 		ret = -EINVAL;
3147 		goto out_unlock;
3148 	}
3149 
3150 	ret = -EINVAL;
3151 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
3152 		goto out_unlock;
3153 	if (len == 0)
3154 		olen = len = src->i_size - pos_in;
3155 	if (pos_in + len == src->i_size)
3156 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
3157 	if (len == 0) {
3158 		ret = 0;
3159 		goto out_unlock;
3160 	}
3161 
3162 	dst_osize = dst->i_size;
3163 	if (pos_out + olen > dst->i_size)
3164 		dst_max_i_size = pos_out + olen;
3165 
3166 	/* verify the end result is block aligned */
3167 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
3168 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3169 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3170 		goto out_unlock;
3171 
3172 	ret = f2fs_convert_inline_inode(src);
3173 	if (ret)
3174 		goto out_unlock;
3175 
3176 	ret = f2fs_convert_inline_inode(dst);
3177 	if (ret)
3178 		goto out_unlock;
3179 
3180 	/* write out all dirty pages from offset */
3181 	ret = filemap_write_and_wait_range(src->i_mapping,
3182 					pos_in, pos_in + len);
3183 	if (ret)
3184 		goto out_unlock;
3185 
3186 	ret = filemap_write_and_wait_range(dst->i_mapping,
3187 					pos_out, pos_out + len);
3188 	if (ret)
3189 		goto out_unlock;
3190 
3191 	f2fs_balance_fs(sbi, true);
3192 
3193 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3194 	if (src != dst) {
3195 		ret = -EBUSY;
3196 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3197 			goto out_src;
3198 	}
3199 
3200 	f2fs_lock_op(sbi, &lc);
3201 	ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3202 				F2FS_BYTES_TO_BLK(pos_out),
3203 				F2FS_BYTES_TO_BLK(len), false);
3204 
3205 	if (!ret) {
3206 		if (dst_max_i_size)
3207 			f2fs_i_size_write(dst, dst_max_i_size);
3208 		else if (dst_osize != dst->i_size)
3209 			f2fs_i_size_write(dst, dst_osize);
3210 	}
3211 	f2fs_unlock_op(sbi, &lc);
3212 
3213 	if (src != dst)
3214 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3215 out_src:
3216 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3217 	if (ret)
3218 		goto out_unlock;
3219 
3220 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3221 	f2fs_mark_inode_dirty_sync(src, false);
3222 	if (src != dst) {
3223 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3224 		f2fs_mark_inode_dirty_sync(dst, false);
3225 	}
3226 	f2fs_update_time(sbi, REQ_TIME);
3227 
3228 out_unlock:
3229 	if (src != dst)
3230 		inode_unlock(dst);
3231 out:
3232 	inode_unlock(src);
3233 	return ret;
3234 }
3235 
3236 static int __f2fs_ioc_move_range(struct file *filp,
3237 				struct f2fs_move_range *range)
3238 {
3239 	int err;
3240 
3241 	if (!(filp->f_mode & FMODE_READ) ||
3242 			!(filp->f_mode & FMODE_WRITE))
3243 		return -EBADF;
3244 
3245 	CLASS(fd, dst)(range->dst_fd);
3246 	if (fd_empty(dst))
3247 		return -EBADF;
3248 
3249 	if (!(fd_file(dst)->f_mode & FMODE_WRITE))
3250 		return -EBADF;
3251 
3252 	err = mnt_want_write_file(filp);
3253 	if (err)
3254 		return err;
3255 
3256 	err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3257 					range->pos_out, range->len);
3258 
3259 	mnt_drop_write_file(filp);
3260 	return err;
3261 }
3262 
3263 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3264 {
3265 	struct f2fs_move_range range;
3266 
3267 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3268 							sizeof(range)))
3269 		return -EFAULT;
3270 	return __f2fs_ioc_move_range(filp, &range);
3271 }
3272 
3273 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3274 {
3275 	struct inode *inode = file_inode(filp);
3276 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3277 	struct sit_info *sm = SIT_I(sbi);
3278 	unsigned int start_segno = 0, end_segno = 0;
3279 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3280 	struct f2fs_flush_device range;
3281 	struct f2fs_gc_control gc_control = {
3282 			.init_gc_type = FG_GC,
3283 			.should_migrate_blocks = true,
3284 			.err_gc_skipped = true,
3285 			.nr_free_secs = 0 };
3286 	int ret;
3287 
3288 	if (!capable(CAP_SYS_ADMIN))
3289 		return -EPERM;
3290 
3291 	if (f2fs_readonly(sbi->sb))
3292 		return -EROFS;
3293 
3294 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3295 		return -EINVAL;
3296 
3297 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3298 							sizeof(range)))
3299 		return -EFAULT;
3300 
3301 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3302 			__is_large_section(sbi)) {
3303 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3304 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3305 		return -EINVAL;
3306 	}
3307 
3308 	ret = mnt_want_write_file(filp);
3309 	if (ret)
3310 		return ret;
3311 
3312 	if (range.dev_num != 0)
3313 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3314 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3315 
3316 	start_segno = sm->last_victim[FLUSH_DEVICE];
3317 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3318 		start_segno = dev_start_segno;
3319 	end_segno = min(start_segno + range.segments, dev_end_segno);
3320 
3321 	while (start_segno < end_segno) {
3322 		if (!f2fs_down_write_trylock_trace(&sbi->gc_lock, &gc_control.lc)) {
3323 			ret = -EBUSY;
3324 			goto out;
3325 		}
3326 		sm->last_victim[GC_CB] = end_segno + 1;
3327 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3328 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3329 
3330 		gc_control.victim_segno = start_segno;
3331 		stat_inc_gc_call_count(sbi, FOREGROUND);
3332 		ret = f2fs_gc(sbi, &gc_control);
3333 		if (ret == -EAGAIN)
3334 			ret = 0;
3335 		else if (ret < 0)
3336 			break;
3337 		start_segno++;
3338 	}
3339 out:
3340 	mnt_drop_write_file(filp);
3341 	return ret;
3342 }
3343 
3344 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3345 {
3346 	struct inode *inode = file_inode(filp);
3347 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3348 
3349 	/* Must validate to set it with SQLite behavior in Android. */
3350 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3351 
3352 	return put_user(sb_feature, (u32 __user *)arg);
3353 }
3354 
3355 #ifdef CONFIG_QUOTA
3356 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3357 {
3358 	struct dquot *transfer_to[MAXQUOTAS] = {};
3359 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3360 	struct super_block *sb = sbi->sb;
3361 	int err;
3362 
3363 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3364 	if (IS_ERR(transfer_to[PRJQUOTA]))
3365 		return PTR_ERR(transfer_to[PRJQUOTA]);
3366 
3367 	err = __dquot_transfer(inode, transfer_to);
3368 	if (err)
3369 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3370 	dqput(transfer_to[PRJQUOTA]);
3371 	return err;
3372 }
3373 
3374 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3375 {
3376 	struct f2fs_inode_info *fi = F2FS_I(inode);
3377 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3378 	struct f2fs_inode *ri = NULL;
3379 	struct f2fs_lock_context lc;
3380 	kprojid_t kprojid;
3381 	int err;
3382 
3383 	if (!f2fs_sb_has_project_quota(sbi)) {
3384 		if (projid != F2FS_DEF_PROJID)
3385 			return -EOPNOTSUPP;
3386 		else
3387 			return 0;
3388 	}
3389 
3390 	if (!f2fs_has_extra_attr(inode))
3391 		return -EOPNOTSUPP;
3392 
3393 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3394 
3395 	if (projid_eq(kprojid, fi->i_projid))
3396 		return 0;
3397 
3398 	err = -EPERM;
3399 	/* Is it quota file? Do not allow user to mess with it */
3400 	if (IS_NOQUOTA(inode))
3401 		return err;
3402 
3403 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3404 		return -EOVERFLOW;
3405 
3406 	err = f2fs_dquot_initialize(inode);
3407 	if (err)
3408 		return err;
3409 
3410 	f2fs_lock_op(sbi, &lc);
3411 	err = f2fs_transfer_project_quota(inode, kprojid);
3412 	if (err)
3413 		goto out_unlock;
3414 
3415 	fi->i_projid = kprojid;
3416 	inode_set_ctime_current(inode);
3417 	f2fs_mark_inode_dirty_sync(inode, true);
3418 out_unlock:
3419 	f2fs_unlock_op(sbi, &lc);
3420 	return err;
3421 }
3422 #else
3423 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3424 {
3425 	return 0;
3426 }
3427 
3428 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3429 {
3430 	if (projid != F2FS_DEF_PROJID)
3431 		return -EOPNOTSUPP;
3432 	return 0;
3433 }
3434 #endif
3435 
3436 int f2fs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
3437 {
3438 	struct inode *inode = d_inode(dentry);
3439 	struct f2fs_inode_info *fi = F2FS_I(inode);
3440 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3441 
3442 	if (IS_ENCRYPTED(inode))
3443 		fsflags |= FS_ENCRYPT_FL;
3444 	if (IS_VERITY(inode))
3445 		fsflags |= FS_VERITY_FL;
3446 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3447 		fsflags |= FS_INLINE_DATA_FL;
3448 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3449 		fsflags |= FS_NOCOW_FL;
3450 
3451 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3452 
3453 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3454 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3455 
3456 	return 0;
3457 }
3458 
3459 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3460 		      struct dentry *dentry, struct file_kattr *fa)
3461 {
3462 	struct inode *inode = d_inode(dentry);
3463 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3464 	u32 iflags;
3465 	int err;
3466 
3467 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3468 		return -EIO;
3469 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3470 		return -ENOSPC;
3471 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3472 		return -EOPNOTSUPP;
3473 	fsflags &= F2FS_SETTABLE_FS_FL;
3474 	if (!fa->flags_valid)
3475 		mask &= FS_COMMON_FL;
3476 
3477 	iflags = f2fs_fsflags_to_iflags(fsflags);
3478 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3479 		return -EOPNOTSUPP;
3480 
3481 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3482 	if (!err)
3483 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3484 
3485 	return err;
3486 }
3487 
3488 int f2fs_pin_file_control(struct inode *inode, bool inc)
3489 {
3490 	struct f2fs_inode_info *fi = F2FS_I(inode);
3491 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3492 
3493 	if (IS_DEVICE_ALIASING(inode))
3494 		return -EINVAL;
3495 
3496 	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3497 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3498 			  __func__, inode->i_ino, fi->i_gc_failures);
3499 		clear_inode_flag(inode, FI_PIN_FILE);
3500 		return -EAGAIN;
3501 	}
3502 
3503 	/* Use i_gc_failures for normal file as a risk signal. */
3504 	if (inc)
3505 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3506 
3507 	return 0;
3508 }
3509 
3510 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3511 {
3512 	struct inode *inode = file_inode(filp);
3513 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3514 	__u32 pin;
3515 	int ret = 0;
3516 
3517 	if (get_user(pin, (__u32 __user *)arg))
3518 		return -EFAULT;
3519 
3520 	if (!S_ISREG(inode->i_mode))
3521 		return -EINVAL;
3522 
3523 	if (f2fs_readonly(sbi->sb))
3524 		return -EROFS;
3525 
3526 	if (!pin && IS_DEVICE_ALIASING(inode))
3527 		return -EOPNOTSUPP;
3528 
3529 	ret = mnt_want_write_file(filp);
3530 	if (ret)
3531 		return ret;
3532 
3533 	inode_lock(inode);
3534 
3535 	if (f2fs_is_atomic_file(inode)) {
3536 		ret = -EINVAL;
3537 		goto out;
3538 	}
3539 
3540 	if (!pin) {
3541 		clear_inode_flag(inode, FI_PIN_FILE);
3542 		f2fs_i_gc_failures_write(inode, 0);
3543 		goto done;
3544 	} else if (f2fs_is_pinned_file(inode)) {
3545 		goto done;
3546 	}
3547 
3548 	if (F2FS_HAS_BLOCKS(inode)) {
3549 		ret = -EFBIG;
3550 		goto out;
3551 	}
3552 
3553 	/* Let's allow file pinning on zoned device. */
3554 	if (!f2fs_sb_has_blkzoned(sbi) &&
3555 	    f2fs_should_update_outplace(inode, NULL)) {
3556 		ret = -EINVAL;
3557 		goto out;
3558 	}
3559 
3560 	if (f2fs_pin_file_control(inode, false)) {
3561 		ret = -EAGAIN;
3562 		goto out;
3563 	}
3564 
3565 	ret = f2fs_convert_inline_inode(inode);
3566 	if (ret)
3567 		goto out;
3568 
3569 	if (!f2fs_disable_compressed_file(inode)) {
3570 		ret = -EOPNOTSUPP;
3571 		goto out;
3572 	}
3573 
3574 	set_inode_flag(inode, FI_PIN_FILE);
3575 	ret = F2FS_I(inode)->i_gc_failures;
3576 done:
3577 	f2fs_update_time(sbi, REQ_TIME);
3578 out:
3579 	inode_unlock(inode);
3580 	mnt_drop_write_file(filp);
3581 	return ret;
3582 }
3583 
3584 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3585 {
3586 	struct inode *inode = file_inode(filp);
3587 	__u32 pin = 0;
3588 
3589 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3590 		pin = F2FS_I(inode)->i_gc_failures;
3591 	return put_user(pin, (u32 __user *)arg);
3592 }
3593 
3594 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3595 {
3596 	return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3597 			(u32 __user *)arg);
3598 }
3599 
3600 static int f2fs_ioc_io_prio(struct file *filp, unsigned long arg)
3601 {
3602 	struct inode *inode = file_inode(filp);
3603 	__u32 level;
3604 
3605 	if (get_user(level, (__u32 __user *)arg))
3606 		return -EFAULT;
3607 
3608 	if (!S_ISREG(inode->i_mode) || level >= F2FS_IOPRIO_MAX)
3609 		return -EINVAL;
3610 
3611 	inode_lock(inode);
3612 	F2FS_I(inode)->ioprio_hint = level;
3613 	inode_unlock(inode);
3614 	return 0;
3615 }
3616 
3617 int f2fs_precache_extents(struct inode *inode)
3618 {
3619 	struct f2fs_inode_info *fi = F2FS_I(inode);
3620 	struct f2fs_map_blocks map;
3621 	pgoff_t m_next_extent;
3622 	loff_t end;
3623 	int err;
3624 
3625 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3626 		return -EOPNOTSUPP;
3627 
3628 	map.m_lblk = 0;
3629 	map.m_pblk = 0;
3630 	map.m_next_pgofs = NULL;
3631 	map.m_next_extent = &m_next_extent;
3632 	map.m_seg_type = NO_CHECK_TYPE;
3633 	map.m_may_create = false;
3634 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3635 
3636 	while (map.m_lblk < end) {
3637 		map.m_len = end - map.m_lblk;
3638 
3639 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3640 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3641 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3642 		if (err || !map.m_len)
3643 			return err;
3644 
3645 		map.m_lblk = m_next_extent;
3646 	}
3647 
3648 	return 0;
3649 }
3650 
3651 static int f2fs_ioc_precache_extents(struct file *filp)
3652 {
3653 	return f2fs_precache_extents(file_inode(filp));
3654 }
3655 
3656 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3657 {
3658 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3659 	__u64 block_count;
3660 
3661 	if (!capable(CAP_SYS_ADMIN))
3662 		return -EPERM;
3663 
3664 	if (f2fs_readonly(sbi->sb))
3665 		return -EROFS;
3666 
3667 	if (copy_from_user(&block_count, (void __user *)arg,
3668 			   sizeof(block_count)))
3669 		return -EFAULT;
3670 
3671 	return f2fs_resize_fs(filp, block_count);
3672 }
3673 
3674 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3675 {
3676 	struct inode *inode = file_inode(filp);
3677 
3678 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3679 
3680 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3681 		f2fs_warn(F2FS_I_SB(inode),
3682 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3683 			  inode->i_ino);
3684 		return -EOPNOTSUPP;
3685 	}
3686 
3687 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3688 }
3689 
3690 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3691 {
3692 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3693 		return -EOPNOTSUPP;
3694 
3695 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3696 }
3697 
3698 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3699 {
3700 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3701 		return -EOPNOTSUPP;
3702 
3703 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3704 }
3705 
3706 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3707 {
3708 	struct inode *inode = file_inode(filp);
3709 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710 	char *vbuf;
3711 	int count;
3712 	int err = 0;
3713 
3714 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3715 	if (!vbuf)
3716 		return -ENOMEM;
3717 
3718 	f2fs_down_read(&sbi->sb_lock);
3719 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3720 			ARRAY_SIZE(sbi->raw_super->volume_name),
3721 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3722 	f2fs_up_read(&sbi->sb_lock);
3723 
3724 	if (copy_to_user((char __user *)arg, vbuf,
3725 				min(FSLABEL_MAX, count)))
3726 		err = -EFAULT;
3727 
3728 	kfree(vbuf);
3729 	return err;
3730 }
3731 
3732 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3733 {
3734 	struct inode *inode = file_inode(filp);
3735 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3736 	char *vbuf;
3737 	int err = 0;
3738 
3739 	if (!capable(CAP_SYS_ADMIN))
3740 		return -EPERM;
3741 
3742 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3743 	if (IS_ERR(vbuf))
3744 		return PTR_ERR(vbuf);
3745 
3746 	err = mnt_want_write_file(filp);
3747 	if (err)
3748 		goto out;
3749 
3750 	f2fs_down_write(&sbi->sb_lock);
3751 
3752 	memset(sbi->raw_super->volume_name, 0,
3753 			sizeof(sbi->raw_super->volume_name));
3754 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3755 			sbi->raw_super->volume_name,
3756 			ARRAY_SIZE(sbi->raw_super->volume_name));
3757 
3758 	err = f2fs_commit_super(sbi, false);
3759 
3760 	f2fs_up_write(&sbi->sb_lock);
3761 
3762 	mnt_drop_write_file(filp);
3763 out:
3764 	kfree(vbuf);
3765 	return err;
3766 }
3767 
3768 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3769 {
3770 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3771 		return -EOPNOTSUPP;
3772 
3773 	if (!f2fs_compressed_file(inode))
3774 		return -EINVAL;
3775 
3776 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3777 
3778 	return 0;
3779 }
3780 
3781 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3782 {
3783 	struct inode *inode = file_inode(filp);
3784 	__u64 blocks;
3785 	int ret;
3786 
3787 	ret = f2fs_get_compress_blocks(inode, &blocks);
3788 	if (ret < 0)
3789 		return ret;
3790 
3791 	return put_user(blocks, (u64 __user *)arg);
3792 }
3793 
3794 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3795 {
3796 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3797 	unsigned int released_blocks = 0;
3798 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3799 	block_t blkaddr;
3800 	int i;
3801 
3802 	for (i = 0; i < count; i++) {
3803 		blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3804 						dn->ofs_in_node + i);
3805 
3806 		if (!__is_valid_data_blkaddr(blkaddr))
3807 			continue;
3808 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3809 					DATA_GENERIC_ENHANCE)))
3810 			return -EFSCORRUPTED;
3811 	}
3812 
3813 	while (count) {
3814 		int compr_blocks = 0;
3815 
3816 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3817 			blkaddr = f2fs_data_blkaddr(dn);
3818 
3819 			if (i == 0) {
3820 				if (blkaddr == COMPRESS_ADDR)
3821 					continue;
3822 				dn->ofs_in_node += cluster_size;
3823 				goto next;
3824 			}
3825 
3826 			if (__is_valid_data_blkaddr(blkaddr))
3827 				compr_blocks++;
3828 
3829 			if (blkaddr != NEW_ADDR)
3830 				continue;
3831 
3832 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3833 		}
3834 
3835 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3836 		dec_valid_block_count(sbi, dn->inode,
3837 					cluster_size - compr_blocks);
3838 
3839 		released_blocks += cluster_size - compr_blocks;
3840 next:
3841 		count -= cluster_size;
3842 	}
3843 
3844 	return released_blocks;
3845 }
3846 
3847 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3848 {
3849 	struct inode *inode = file_inode(filp);
3850 	struct f2fs_inode_info *fi = F2FS_I(inode);
3851 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3852 	struct f2fs_lock_context lc;
3853 	pgoff_t page_idx = 0, last_idx;
3854 	unsigned int released_blocks = 0;
3855 	int ret;
3856 	int writecount;
3857 
3858 	if (!f2fs_sb_has_compression(sbi))
3859 		return -EOPNOTSUPP;
3860 
3861 	if (f2fs_readonly(sbi->sb))
3862 		return -EROFS;
3863 
3864 	ret = mnt_want_write_file(filp);
3865 	if (ret)
3866 		return ret;
3867 
3868 	f2fs_balance_fs(sbi, true);
3869 
3870 	inode_lock(inode);
3871 
3872 	writecount = atomic_read(&inode->i_writecount);
3873 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3874 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3875 		ret = -EBUSY;
3876 		goto out;
3877 	}
3878 
3879 	if (!f2fs_compressed_file(inode) ||
3880 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3881 		ret = -EINVAL;
3882 		goto out;
3883 	}
3884 
3885 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3886 	if (ret)
3887 		goto out;
3888 
3889 	if (!atomic_read(&fi->i_compr_blocks)) {
3890 		ret = -EPERM;
3891 		goto out;
3892 	}
3893 
3894 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3895 	inode_set_ctime_current(inode);
3896 	f2fs_mark_inode_dirty_sync(inode, true);
3897 
3898 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3899 	filemap_invalidate_lock(inode->i_mapping);
3900 
3901 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3902 
3903 	while (page_idx < last_idx) {
3904 		struct dnode_of_data dn;
3905 		pgoff_t end_offset, count;
3906 
3907 		f2fs_lock_op(sbi, &lc);
3908 
3909 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3910 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3911 		if (ret) {
3912 			f2fs_unlock_op(sbi, &lc);
3913 			if (ret == -ENOENT) {
3914 				page_idx = f2fs_get_next_page_offset(&dn,
3915 								page_idx);
3916 				ret = 0;
3917 				continue;
3918 			}
3919 			break;
3920 		}
3921 
3922 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
3923 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3924 		count = round_up(count, fi->i_cluster_size);
3925 
3926 		ret = release_compress_blocks(&dn, count);
3927 
3928 		f2fs_put_dnode(&dn);
3929 
3930 		f2fs_unlock_op(sbi, &lc);
3931 
3932 		if (ret < 0)
3933 			break;
3934 
3935 		page_idx += count;
3936 		released_blocks += ret;
3937 	}
3938 
3939 	filemap_invalidate_unlock(inode->i_mapping);
3940 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3941 out:
3942 	if (released_blocks)
3943 		f2fs_update_time(sbi, REQ_TIME);
3944 	inode_unlock(inode);
3945 
3946 	mnt_drop_write_file(filp);
3947 
3948 	if (ret >= 0) {
3949 		ret = put_user(released_blocks, (u64 __user *)arg);
3950 	} else if (released_blocks &&
3951 			atomic_read(&fi->i_compr_blocks)) {
3952 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3953 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3954 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3955 			"run fsck to fix.",
3956 			__func__, inode->i_ino, inode->i_blocks,
3957 			released_blocks,
3958 			atomic_read(&fi->i_compr_blocks));
3959 	}
3960 
3961 	return ret;
3962 }
3963 
3964 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3965 		unsigned int *reserved_blocks)
3966 {
3967 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3968 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3969 	block_t blkaddr;
3970 	int i;
3971 
3972 	for (i = 0; i < count; i++) {
3973 		blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3974 						dn->ofs_in_node + i);
3975 
3976 		if (!__is_valid_data_blkaddr(blkaddr))
3977 			continue;
3978 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3979 					DATA_GENERIC_ENHANCE)))
3980 			return -EFSCORRUPTED;
3981 	}
3982 
3983 	while (count) {
3984 		int compr_blocks = 0;
3985 		blkcnt_t reserved = 0;
3986 		blkcnt_t to_reserved;
3987 		int ret;
3988 
3989 		for (i = 0; i < cluster_size; i++) {
3990 			blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3991 						dn->ofs_in_node + i);
3992 
3993 			if (i == 0) {
3994 				if (blkaddr != COMPRESS_ADDR) {
3995 					dn->ofs_in_node += cluster_size;
3996 					goto next;
3997 				}
3998 				continue;
3999 			}
4000 
4001 			/*
4002 			 * compressed cluster was not released due to it
4003 			 * fails in release_compress_blocks(), so NEW_ADDR
4004 			 * is a possible case.
4005 			 */
4006 			if (blkaddr == NEW_ADDR) {
4007 				reserved++;
4008 				continue;
4009 			}
4010 			if (__is_valid_data_blkaddr(blkaddr)) {
4011 				compr_blocks++;
4012 				continue;
4013 			}
4014 		}
4015 
4016 		to_reserved = cluster_size - compr_blocks - reserved;
4017 
4018 		/* for the case all blocks in cluster were reserved */
4019 		if (reserved && to_reserved == 1) {
4020 			dn->ofs_in_node += cluster_size;
4021 			goto next;
4022 		}
4023 
4024 		ret = inc_valid_block_count(sbi, dn->inode,
4025 						&to_reserved, false);
4026 		if (unlikely(ret))
4027 			return ret;
4028 
4029 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
4030 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
4031 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
4032 		}
4033 
4034 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
4035 
4036 		*reserved_blocks += to_reserved;
4037 next:
4038 		count -= cluster_size;
4039 	}
4040 
4041 	return 0;
4042 }
4043 
4044 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
4045 {
4046 	struct inode *inode = file_inode(filp);
4047 	struct f2fs_inode_info *fi = F2FS_I(inode);
4048 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4049 	pgoff_t page_idx = 0, last_idx;
4050 	unsigned int reserved_blocks = 0;
4051 	int ret;
4052 
4053 	if (!f2fs_sb_has_compression(sbi))
4054 		return -EOPNOTSUPP;
4055 
4056 	if (f2fs_readonly(sbi->sb))
4057 		return -EROFS;
4058 
4059 	ret = mnt_want_write_file(filp);
4060 	if (ret)
4061 		return ret;
4062 
4063 	f2fs_balance_fs(sbi, true);
4064 
4065 	inode_lock(inode);
4066 
4067 	if (!f2fs_compressed_file(inode) ||
4068 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4069 		ret = -EINVAL;
4070 		goto unlock_inode;
4071 	}
4072 
4073 	if (atomic_read(&fi->i_compr_blocks))
4074 		goto unlock_inode;
4075 
4076 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
4077 	filemap_invalidate_lock(inode->i_mapping);
4078 
4079 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4080 
4081 	while (page_idx < last_idx) {
4082 		struct dnode_of_data dn;
4083 		struct f2fs_lock_context lc;
4084 		pgoff_t end_offset, count;
4085 
4086 		f2fs_lock_op(sbi, &lc);
4087 
4088 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4089 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
4090 		if (ret) {
4091 			f2fs_unlock_op(sbi, &lc);
4092 			if (ret == -ENOENT) {
4093 				page_idx = f2fs_get_next_page_offset(&dn,
4094 								page_idx);
4095 				ret = 0;
4096 				continue;
4097 			}
4098 			break;
4099 		}
4100 
4101 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
4102 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
4103 		count = round_up(count, fi->i_cluster_size);
4104 
4105 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
4106 
4107 		f2fs_put_dnode(&dn);
4108 
4109 		f2fs_unlock_op(sbi, &lc);
4110 
4111 		if (ret < 0)
4112 			break;
4113 
4114 		page_idx += count;
4115 	}
4116 
4117 	filemap_invalidate_unlock(inode->i_mapping);
4118 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
4119 
4120 	if (!ret) {
4121 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
4122 		inode_set_ctime_current(inode);
4123 		f2fs_mark_inode_dirty_sync(inode, true);
4124 	}
4125 unlock_inode:
4126 	if (reserved_blocks)
4127 		f2fs_update_time(sbi, REQ_TIME);
4128 	inode_unlock(inode);
4129 	mnt_drop_write_file(filp);
4130 
4131 	if (!ret) {
4132 		ret = put_user(reserved_blocks, (u64 __user *)arg);
4133 	} else if (reserved_blocks &&
4134 			atomic_read(&fi->i_compr_blocks)) {
4135 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4136 		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
4137 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
4138 			"run fsck to fix.",
4139 			__func__, inode->i_ino, inode->i_blocks,
4140 			reserved_blocks,
4141 			atomic_read(&fi->i_compr_blocks));
4142 	}
4143 
4144 	return ret;
4145 }
4146 
4147 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
4148 		pgoff_t off, block_t block, block_t len, u32 flags)
4149 {
4150 	sector_t sector = SECTOR_FROM_BLOCK(block);
4151 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
4152 	int ret = 0;
4153 
4154 	if (flags & F2FS_TRIM_FILE_DISCARD) {
4155 		if (bdev_max_secure_erase_sectors(bdev))
4156 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
4157 					GFP_NOFS);
4158 		else
4159 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
4160 					GFP_NOFS);
4161 	}
4162 
4163 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
4164 		if (IS_ENCRYPTED(inode))
4165 			ret = fscrypt_zeroout_range(inode, off, block, len);
4166 		else
4167 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
4168 					GFP_NOFS, 0);
4169 	}
4170 
4171 	return ret;
4172 }
4173 
4174 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
4175 {
4176 	struct inode *inode = file_inode(filp);
4177 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4178 	struct address_space *mapping = inode->i_mapping;
4179 	struct block_device *prev_bdev = NULL;
4180 	struct f2fs_sectrim_range range;
4181 	pgoff_t index, pg_end, prev_index = 0;
4182 	block_t prev_block = 0, len = 0;
4183 	loff_t end_addr;
4184 	bool to_end = false;
4185 	int ret = 0;
4186 
4187 	if (!(filp->f_mode & FMODE_WRITE))
4188 		return -EBADF;
4189 
4190 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4191 				sizeof(range)))
4192 		return -EFAULT;
4193 
4194 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4195 			!S_ISREG(inode->i_mode))
4196 		return -EINVAL;
4197 
4198 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4199 			!f2fs_hw_support_discard(sbi)) ||
4200 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4201 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4202 		return -EOPNOTSUPP;
4203 
4204 	ret = mnt_want_write_file(filp);
4205 	if (ret)
4206 		return ret;
4207 	inode_lock(inode);
4208 
4209 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4210 			range.start >= inode->i_size) {
4211 		ret = -EINVAL;
4212 		goto err;
4213 	}
4214 
4215 	if (range.len == 0)
4216 		goto err;
4217 
4218 	if (inode->i_size - range.start > range.len) {
4219 		end_addr = range.start + range.len;
4220 	} else {
4221 		end_addr = range.len == (u64)-1 ?
4222 			sbi->sb->s_maxbytes : inode->i_size;
4223 		to_end = true;
4224 	}
4225 
4226 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4227 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4228 		ret = -EINVAL;
4229 		goto err;
4230 	}
4231 
4232 	index = F2FS_BYTES_TO_BLK(range.start);
4233 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4234 
4235 	ret = f2fs_convert_inline_inode(inode);
4236 	if (ret)
4237 		goto err;
4238 
4239 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4240 	filemap_invalidate_lock(mapping);
4241 
4242 	ret = filemap_write_and_wait_range(mapping, range.start,
4243 			to_end ? LLONG_MAX : end_addr - 1);
4244 	if (ret)
4245 		goto out;
4246 
4247 	truncate_inode_pages_range(mapping, range.start,
4248 			to_end ? -1 : end_addr - 1);
4249 
4250 	while (index < pg_end) {
4251 		struct dnode_of_data dn;
4252 		pgoff_t end_offset, count;
4253 		int i;
4254 
4255 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4256 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4257 		if (ret) {
4258 			if (ret == -ENOENT) {
4259 				index = f2fs_get_next_page_offset(&dn, index);
4260 				continue;
4261 			}
4262 			goto out;
4263 		}
4264 
4265 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
4266 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4267 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4268 			struct block_device *cur_bdev;
4269 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4270 
4271 			if (!__is_valid_data_blkaddr(blkaddr))
4272 				continue;
4273 
4274 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4275 						DATA_GENERIC_ENHANCE)) {
4276 				ret = -EFSCORRUPTED;
4277 				f2fs_put_dnode(&dn);
4278 				goto out;
4279 			}
4280 
4281 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4282 			if (f2fs_is_multi_device(sbi)) {
4283 				int di = f2fs_target_device_index(sbi, blkaddr);
4284 
4285 				blkaddr -= FDEV(di).start_blk;
4286 			}
4287 
4288 			if (len) {
4289 				if (prev_bdev == cur_bdev &&
4290 						index == prev_index + len &&
4291 						blkaddr == prev_block + len) {
4292 					len++;
4293 				} else {
4294 					ret = f2fs_secure_erase(prev_bdev,
4295 						inode, prev_index, prev_block,
4296 						len, range.flags);
4297 					if (ret) {
4298 						f2fs_put_dnode(&dn);
4299 						goto out;
4300 					}
4301 
4302 					len = 0;
4303 				}
4304 			}
4305 
4306 			if (!len) {
4307 				prev_bdev = cur_bdev;
4308 				prev_index = index;
4309 				prev_block = blkaddr;
4310 				len = 1;
4311 			}
4312 		}
4313 
4314 		f2fs_put_dnode(&dn);
4315 
4316 		if (fatal_signal_pending(current)) {
4317 			ret = -EINTR;
4318 			goto out;
4319 		}
4320 		cond_resched();
4321 	}
4322 
4323 	if (len)
4324 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4325 				prev_block, len, range.flags);
4326 	f2fs_update_time(sbi, REQ_TIME);
4327 out:
4328 	filemap_invalidate_unlock(mapping);
4329 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4330 err:
4331 	inode_unlock(inode);
4332 	mnt_drop_write_file(filp);
4333 
4334 	return ret;
4335 }
4336 
4337 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4338 {
4339 	struct inode *inode = file_inode(filp);
4340 	struct f2fs_comp_option option;
4341 
4342 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4343 		return -EOPNOTSUPP;
4344 
4345 	inode_lock_shared(inode);
4346 
4347 	if (!f2fs_compressed_file(inode)) {
4348 		inode_unlock_shared(inode);
4349 		return -ENODATA;
4350 	}
4351 
4352 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4353 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4354 
4355 	inode_unlock_shared(inode);
4356 
4357 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4358 				sizeof(option)))
4359 		return -EFAULT;
4360 
4361 	return 0;
4362 }
4363 
4364 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4365 {
4366 	struct inode *inode = file_inode(filp);
4367 	struct f2fs_inode_info *fi = F2FS_I(inode);
4368 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4369 	struct f2fs_comp_option option;
4370 	int ret = 0;
4371 
4372 	if (!f2fs_sb_has_compression(sbi))
4373 		return -EOPNOTSUPP;
4374 
4375 	if (!(filp->f_mode & FMODE_WRITE))
4376 		return -EBADF;
4377 
4378 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4379 				sizeof(option)))
4380 		return -EFAULT;
4381 
4382 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4383 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4384 		option.algorithm >= COMPRESS_MAX)
4385 		return -EINVAL;
4386 
4387 	ret = mnt_want_write_file(filp);
4388 	if (ret)
4389 		return ret;
4390 	inode_lock(inode);
4391 
4392 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4393 	if (!f2fs_compressed_file(inode)) {
4394 		ret = -EINVAL;
4395 		goto out;
4396 	}
4397 
4398 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4399 		ret = -EBUSY;
4400 		goto out;
4401 	}
4402 
4403 	if (F2FS_HAS_BLOCKS(inode)) {
4404 		ret = -EFBIG;
4405 		goto out;
4406 	}
4407 
4408 	fi->i_compress_algorithm = option.algorithm;
4409 	fi->i_log_cluster_size = option.log_cluster_size;
4410 	fi->i_cluster_size = BIT(option.log_cluster_size);
4411 	/* Set default level */
4412 	if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4413 		fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4414 	else
4415 		fi->i_compress_level = 0;
4416 	/* Adjust mount option level */
4417 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4418 	    F2FS_OPTION(sbi).compress_level)
4419 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4420 	f2fs_mark_inode_dirty_sync(inode, true);
4421 
4422 	if (!f2fs_is_compress_backend_ready(inode))
4423 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4424 			"but current kernel doesn't support this algorithm.");
4425 out:
4426 	f2fs_up_write(&fi->i_sem);
4427 	inode_unlock(inode);
4428 	mnt_drop_write_file(filp);
4429 
4430 	return ret;
4431 }
4432 
4433 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4434 {
4435 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4436 	struct address_space *mapping = inode->i_mapping;
4437 	struct folio *folio;
4438 	pgoff_t redirty_idx = page_idx;
4439 	int page_len = 0, ret = 0;
4440 
4441 	filemap_invalidate_lock_shared(mapping);
4442 	page_cache_ra_unbounded(&ractl, len, 0);
4443 	filemap_invalidate_unlock_shared(mapping);
4444 
4445 	do {
4446 		folio = read_cache_folio(mapping, page_idx, NULL, NULL);
4447 		if (IS_ERR(folio)) {
4448 			ret = PTR_ERR(folio);
4449 			break;
4450 		}
4451 		page_len += folio_nr_pages(folio) - (page_idx - folio->index);
4452 		page_idx = folio_next_index(folio);
4453 	} while (page_len < len);
4454 
4455 	do {
4456 		folio = filemap_lock_folio(mapping, redirty_idx);
4457 
4458 		/* It will never fail, when folio has pinned above */
4459 		f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(folio));
4460 
4461 		f2fs_folio_wait_writeback(folio, DATA, true, true);
4462 
4463 		folio_mark_dirty(folio);
4464 		folio_set_f2fs_gcing(folio);
4465 		redirty_idx = folio_next_index(folio);
4466 		folio_unlock(folio);
4467 		folio_put_refs(folio, 2);
4468 	} while (redirty_idx < page_idx);
4469 
4470 	return ret;
4471 }
4472 
4473 static int f2fs_ioc_decompress_file(struct file *filp)
4474 {
4475 	struct inode *inode = file_inode(filp);
4476 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4477 	struct f2fs_inode_info *fi = F2FS_I(inode);
4478 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4479 	int ret;
4480 
4481 	if (!f2fs_sb_has_compression(sbi) ||
4482 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4483 		return -EOPNOTSUPP;
4484 
4485 	if (!(filp->f_mode & FMODE_WRITE))
4486 		return -EBADF;
4487 
4488 	f2fs_balance_fs(sbi, true);
4489 
4490 	ret = mnt_want_write_file(filp);
4491 	if (ret)
4492 		return ret;
4493 	inode_lock(inode);
4494 
4495 	if (!f2fs_is_compress_backend_ready(inode)) {
4496 		ret = -EOPNOTSUPP;
4497 		goto out;
4498 	}
4499 
4500 	if (!f2fs_compressed_file(inode) ||
4501 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4502 		ret = -EINVAL;
4503 		goto out;
4504 	}
4505 
4506 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4507 	if (ret)
4508 		goto out;
4509 
4510 	if (!atomic_read(&fi->i_compr_blocks))
4511 		goto out;
4512 
4513 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4514 	last_idx >>= fi->i_log_cluster_size;
4515 
4516 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4517 		page_idx = cluster_idx << fi->i_log_cluster_size;
4518 
4519 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4520 			continue;
4521 
4522 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4523 		if (ret < 0)
4524 			break;
4525 
4526 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4527 			ret = filemap_fdatawrite(inode->i_mapping);
4528 			if (ret < 0)
4529 				break;
4530 		}
4531 
4532 		cond_resched();
4533 		if (fatal_signal_pending(current)) {
4534 			ret = -EINTR;
4535 			break;
4536 		}
4537 	}
4538 
4539 	if (!ret)
4540 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4541 							LLONG_MAX);
4542 
4543 	if (ret)
4544 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4545 			  __func__, ret);
4546 	f2fs_update_time(sbi, REQ_TIME);
4547 out:
4548 	inode_unlock(inode);
4549 	mnt_drop_write_file(filp);
4550 
4551 	return ret;
4552 }
4553 
4554 static int f2fs_ioc_compress_file(struct file *filp)
4555 {
4556 	struct inode *inode = file_inode(filp);
4557 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4558 	struct f2fs_inode_info *fi = F2FS_I(inode);
4559 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4560 	int ret;
4561 
4562 	if (!f2fs_sb_has_compression(sbi) ||
4563 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4564 		return -EOPNOTSUPP;
4565 
4566 	if (!(filp->f_mode & FMODE_WRITE))
4567 		return -EBADF;
4568 
4569 	f2fs_balance_fs(sbi, true);
4570 
4571 	ret = mnt_want_write_file(filp);
4572 	if (ret)
4573 		return ret;
4574 	inode_lock(inode);
4575 
4576 	if (!f2fs_is_compress_backend_ready(inode)) {
4577 		ret = -EOPNOTSUPP;
4578 		goto out;
4579 	}
4580 
4581 	if (!f2fs_compressed_file(inode) ||
4582 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4583 		ret = -EINVAL;
4584 		goto out;
4585 	}
4586 
4587 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4588 	if (ret)
4589 		goto out;
4590 
4591 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4592 
4593 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4594 	last_idx >>= fi->i_log_cluster_size;
4595 
4596 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4597 		page_idx = cluster_idx << fi->i_log_cluster_size;
4598 
4599 		if (f2fs_is_sparse_cluster(inode, page_idx))
4600 			continue;
4601 
4602 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4603 		if (ret < 0)
4604 			break;
4605 
4606 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4607 			ret = filemap_fdatawrite(inode->i_mapping);
4608 			if (ret < 0)
4609 				break;
4610 		}
4611 
4612 		cond_resched();
4613 		if (fatal_signal_pending(current)) {
4614 			ret = -EINTR;
4615 			break;
4616 		}
4617 	}
4618 
4619 	if (!ret)
4620 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4621 							LLONG_MAX);
4622 
4623 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4624 
4625 	if (ret)
4626 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4627 			  __func__, ret);
4628 	f2fs_update_time(sbi, REQ_TIME);
4629 out:
4630 	inode_unlock(inode);
4631 	mnt_drop_write_file(filp);
4632 
4633 	return ret;
4634 }
4635 
4636 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4637 {
4638 	switch (cmd) {
4639 	case FS_IOC_GETVERSION:
4640 		return f2fs_ioc_getversion(filp, arg);
4641 	case F2FS_IOC_START_ATOMIC_WRITE:
4642 		return f2fs_ioc_start_atomic_write(filp, false);
4643 	case F2FS_IOC_START_ATOMIC_REPLACE:
4644 		return f2fs_ioc_start_atomic_write(filp, true);
4645 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4646 		return f2fs_ioc_commit_atomic_write(filp);
4647 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4648 		return f2fs_ioc_abort_atomic_write(filp);
4649 	case F2FS_IOC_START_VOLATILE_WRITE:
4650 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4651 		return -EOPNOTSUPP;
4652 	case F2FS_IOC_SHUTDOWN:
4653 		return f2fs_ioc_shutdown(filp, arg);
4654 	case FITRIM:
4655 		return f2fs_ioc_fitrim(filp, arg);
4656 	case FS_IOC_SET_ENCRYPTION_POLICY:
4657 		return f2fs_ioc_set_encryption_policy(filp, arg);
4658 	case FS_IOC_GET_ENCRYPTION_POLICY:
4659 		return f2fs_ioc_get_encryption_policy(filp, arg);
4660 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4661 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4662 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4663 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4664 	case FS_IOC_ADD_ENCRYPTION_KEY:
4665 		return f2fs_ioc_add_encryption_key(filp, arg);
4666 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4667 		return f2fs_ioc_remove_encryption_key(filp, arg);
4668 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4669 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4670 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4671 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4672 	case FS_IOC_GET_ENCRYPTION_NONCE:
4673 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4674 	case F2FS_IOC_GARBAGE_COLLECT:
4675 		return f2fs_ioc_gc(filp, arg);
4676 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4677 		return f2fs_ioc_gc_range(filp, arg);
4678 	case F2FS_IOC_WRITE_CHECKPOINT:
4679 		return f2fs_ioc_write_checkpoint(filp);
4680 	case F2FS_IOC_DEFRAGMENT:
4681 		return f2fs_ioc_defragment(filp, arg);
4682 	case F2FS_IOC_MOVE_RANGE:
4683 		return f2fs_ioc_move_range(filp, arg);
4684 	case F2FS_IOC_FLUSH_DEVICE:
4685 		return f2fs_ioc_flush_device(filp, arg);
4686 	case F2FS_IOC_GET_FEATURES:
4687 		return f2fs_ioc_get_features(filp, arg);
4688 	case F2FS_IOC_GET_PIN_FILE:
4689 		return f2fs_ioc_get_pin_file(filp, arg);
4690 	case F2FS_IOC_SET_PIN_FILE:
4691 		return f2fs_ioc_set_pin_file(filp, arg);
4692 	case F2FS_IOC_PRECACHE_EXTENTS:
4693 		return f2fs_ioc_precache_extents(filp);
4694 	case F2FS_IOC_RESIZE_FS:
4695 		return f2fs_ioc_resize_fs(filp, arg);
4696 	case FS_IOC_ENABLE_VERITY:
4697 		return f2fs_ioc_enable_verity(filp, arg);
4698 	case FS_IOC_MEASURE_VERITY:
4699 		return f2fs_ioc_measure_verity(filp, arg);
4700 	case FS_IOC_READ_VERITY_METADATA:
4701 		return f2fs_ioc_read_verity_metadata(filp, arg);
4702 	case FS_IOC_GETFSLABEL:
4703 		return f2fs_ioc_getfslabel(filp, arg);
4704 	case FS_IOC_SETFSLABEL:
4705 		return f2fs_ioc_setfslabel(filp, arg);
4706 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4707 		return f2fs_ioc_get_compress_blocks(filp, arg);
4708 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4709 		return f2fs_release_compress_blocks(filp, arg);
4710 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4711 		return f2fs_reserve_compress_blocks(filp, arg);
4712 	case F2FS_IOC_SEC_TRIM_FILE:
4713 		return f2fs_sec_trim_file(filp, arg);
4714 	case F2FS_IOC_GET_COMPRESS_OPTION:
4715 		return f2fs_ioc_get_compress_option(filp, arg);
4716 	case F2FS_IOC_SET_COMPRESS_OPTION:
4717 		return f2fs_ioc_set_compress_option(filp, arg);
4718 	case F2FS_IOC_DECOMPRESS_FILE:
4719 		return f2fs_ioc_decompress_file(filp);
4720 	case F2FS_IOC_COMPRESS_FILE:
4721 		return f2fs_ioc_compress_file(filp);
4722 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
4723 		return f2fs_ioc_get_dev_alias_file(filp, arg);
4724 	case F2FS_IOC_IO_PRIO:
4725 		return f2fs_ioc_io_prio(filp, arg);
4726 	default:
4727 		return -ENOTTY;
4728 	}
4729 }
4730 
4731 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4732 {
4733 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4734 		return -EIO;
4735 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4736 		return -ENOSPC;
4737 
4738 	return __f2fs_ioctl(filp, cmd, arg);
4739 }
4740 
4741 /*
4742  * Return %true if the given read or write request should use direct I/O, or
4743  * %false if it should use buffered I/O.
4744  */
4745 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4746 				struct iov_iter *iter)
4747 {
4748 	unsigned int align;
4749 
4750 	if (!(iocb->ki_flags & IOCB_DIRECT))
4751 		return false;
4752 
4753 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4754 		return false;
4755 
4756 	/*
4757 	 * Direct I/O not aligned to the disk's logical_block_size will be
4758 	 * attempted, but will fail with -EINVAL.
4759 	 *
4760 	 * f2fs additionally requires that direct I/O be aligned to the
4761 	 * filesystem block size, which is often a stricter requirement.
4762 	 * However, f2fs traditionally falls back to buffered I/O on requests
4763 	 * that are logical_block_size-aligned but not fs-block aligned.
4764 	 *
4765 	 * The below logic implements this behavior.
4766 	 */
4767 	align = iocb->ki_pos | iov_iter_alignment(iter);
4768 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4769 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4770 		return false;
4771 
4772 	return true;
4773 }
4774 
4775 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4776 				unsigned int flags)
4777 {
4778 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4779 
4780 	dec_page_count(sbi, F2FS_DIO_READ);
4781 	if (error)
4782 		return error;
4783 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4784 	return 0;
4785 }
4786 
4787 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4788 	.end_io = f2fs_dio_read_end_io,
4789 };
4790 
4791 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4792 {
4793 	struct file *file = iocb->ki_filp;
4794 	struct inode *inode = file_inode(file);
4795 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4796 	struct f2fs_inode_info *fi = F2FS_I(inode);
4797 	const loff_t pos = iocb->ki_pos;
4798 	const size_t count = iov_iter_count(to);
4799 	struct iomap_dio *dio;
4800 	ssize_t ret;
4801 
4802 	if (count == 0)
4803 		return 0; /* skip atime update */
4804 
4805 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4806 
4807 	if (iocb->ki_flags & IOCB_NOWAIT) {
4808 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4809 			ret = -EAGAIN;
4810 			goto out;
4811 		}
4812 	} else {
4813 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4814 	}
4815 
4816 	/* dio is not compatible w/ atomic file */
4817 	if (f2fs_is_atomic_file(inode)) {
4818 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4819 		ret = -EOPNOTSUPP;
4820 		goto out;
4821 	}
4822 
4823 	/*
4824 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4825 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4826 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4827 	 */
4828 	inc_page_count(sbi, F2FS_DIO_READ);
4829 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4830 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4831 	if (IS_ERR_OR_NULL(dio)) {
4832 		ret = PTR_ERR_OR_ZERO(dio);
4833 		if (ret != -EIOCBQUEUED)
4834 			dec_page_count(sbi, F2FS_DIO_READ);
4835 	} else {
4836 		ret = iomap_dio_complete(dio);
4837 	}
4838 
4839 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4840 
4841 	file_accessed(file);
4842 out:
4843 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4844 	return ret;
4845 }
4846 
4847 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4848 				    int rw)
4849 {
4850 	struct inode *inode = file_inode(file);
4851 	char *buf, *path;
4852 
4853 	buf = f2fs_getname(F2FS_I_SB(inode));
4854 	if (!buf)
4855 		return;
4856 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4857 	if (IS_ERR(path))
4858 		goto free_buf;
4859 	if (rw == WRITE)
4860 		trace_f2fs_datawrite_start(inode, pos, count,
4861 				current->pid, path, current->comm);
4862 	else
4863 		trace_f2fs_dataread_start(inode, pos, count,
4864 				current->pid, path, current->comm);
4865 free_buf:
4866 	f2fs_putname(buf);
4867 }
4868 
4869 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4870 {
4871 	struct inode *inode = file_inode(iocb->ki_filp);
4872 	const loff_t pos = iocb->ki_pos;
4873 	ssize_t ret;
4874 	bool dio;
4875 
4876 	if (!f2fs_is_compress_backend_ready(inode))
4877 		return -EOPNOTSUPP;
4878 
4879 	if (trace_f2fs_dataread_start_enabled())
4880 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4881 					iov_iter_count(to), READ);
4882 
4883 	dio = f2fs_should_use_dio(inode, iocb, to);
4884 
4885 	/* In LFS mode, if there is inflight dio, wait for its completion */
4886 	if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4887 	    get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE) &&
4888 		(!f2fs_is_pinned_file(inode) || !dio))
4889 		inode_dio_wait(inode);
4890 
4891 	if (dio) {
4892 		ret = f2fs_dio_read_iter(iocb, to);
4893 	} else {
4894 		ret = filemap_read(iocb, to, 0);
4895 		if (ret > 0)
4896 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4897 						APP_BUFFERED_READ_IO, ret);
4898 	}
4899 	trace_f2fs_dataread_end(inode, pos, ret);
4900 	return ret;
4901 }
4902 
4903 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4904 				     struct pipe_inode_info *pipe,
4905 				     size_t len, unsigned int flags)
4906 {
4907 	struct inode *inode = file_inode(in);
4908 	const loff_t pos = *ppos;
4909 	ssize_t ret;
4910 
4911 	if (!f2fs_is_compress_backend_ready(inode))
4912 		return -EOPNOTSUPP;
4913 
4914 	if (trace_f2fs_dataread_start_enabled())
4915 		f2fs_trace_rw_file_path(in, pos, len, READ);
4916 
4917 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4918 	if (ret > 0)
4919 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4920 				   APP_BUFFERED_READ_IO, ret);
4921 
4922 	trace_f2fs_dataread_end(inode, pos, ret);
4923 	return ret;
4924 }
4925 
4926 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4927 {
4928 	struct file *file = iocb->ki_filp;
4929 	struct inode *inode = file_inode(file);
4930 	ssize_t count;
4931 	int err;
4932 
4933 	if (IS_IMMUTABLE(inode))
4934 		return -EPERM;
4935 
4936 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4937 		return -EPERM;
4938 
4939 	count = generic_write_checks(iocb, from);
4940 	if (count <= 0)
4941 		return count;
4942 
4943 	err = file_modified(file);
4944 	if (err)
4945 		return err;
4946 
4947 	f2fs_zero_post_eof_page(inode,
4948 		iocb->ki_pos + iov_iter_count(from), true);
4949 	return count;
4950 }
4951 
4952 /*
4953  * Preallocate blocks for a write request, if it is possible and helpful to do
4954  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4955  * blocks were preallocated, or a negative errno value if something went
4956  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4957  * requested blocks (not just some of them) have been allocated.
4958  */
4959 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4960 				   bool dio)
4961 {
4962 	struct inode *inode = file_inode(iocb->ki_filp);
4963 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4964 	const loff_t pos = iocb->ki_pos;
4965 	const size_t count = iov_iter_count(iter);
4966 	struct f2fs_map_blocks map = {};
4967 	int flag;
4968 	int ret;
4969 
4970 	/* If it will be an out-of-place direct write, don't bother. */
4971 	if (dio && f2fs_lfs_mode(sbi))
4972 		return 0;
4973 	/*
4974 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4975 	 * buffered IO, if DIO meets any holes.
4976 	 */
4977 	if (dio && i_size_read(inode) &&
4978 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4979 		return 0;
4980 
4981 	/* No-wait I/O can't allocate blocks. */
4982 	if (iocb->ki_flags & IOCB_NOWAIT)
4983 		return 0;
4984 
4985 	/* If it will be a short write, don't bother. */
4986 	if (fault_in_iov_iter_readable(iter, count))
4987 		return 0;
4988 
4989 	if (f2fs_has_inline_data(inode)) {
4990 		/* If the data will fit inline, don't bother. */
4991 		if (pos + count <= MAX_INLINE_DATA(inode))
4992 			return 0;
4993 		ret = f2fs_convert_inline_inode(inode);
4994 		if (ret)
4995 			return ret;
4996 	}
4997 
4998 	/* Do not preallocate blocks that will be written partially in 4KB. */
4999 	map.m_lblk = F2FS_BLK_ALIGN(pos);
5000 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
5001 	if (map.m_len > map.m_lblk)
5002 		map.m_len -= map.m_lblk;
5003 	else
5004 		return 0;
5005 
5006 	if (!IS_DEVICE_ALIASING(inode))
5007 		map.m_may_create = true;
5008 	if (dio) {
5009 		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
5010 						inode->i_write_hint);
5011 		flag = F2FS_GET_BLOCK_PRE_DIO;
5012 	} else {
5013 		map.m_seg_type = NO_CHECK_TYPE;
5014 		flag = F2FS_GET_BLOCK_PRE_AIO;
5015 	}
5016 
5017 	ret = f2fs_map_blocks(inode, &map, flag);
5018 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
5019 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
5020 		return ret;
5021 	if (ret == 0)
5022 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
5023 	return map.m_len;
5024 }
5025 
5026 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
5027 					struct iov_iter *from)
5028 {
5029 	struct file *file = iocb->ki_filp;
5030 	struct inode *inode = file_inode(file);
5031 	ssize_t ret;
5032 
5033 	if (iocb->ki_flags & IOCB_NOWAIT)
5034 		return -EOPNOTSUPP;
5035 
5036 	ret = generic_perform_write(iocb, from);
5037 
5038 	if (ret > 0) {
5039 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
5040 						APP_BUFFERED_IO, ret);
5041 	}
5042 	return ret;
5043 }
5044 
5045 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
5046 				 unsigned int flags)
5047 {
5048 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
5049 
5050 	dec_page_count(sbi, F2FS_DIO_WRITE);
5051 	if (error)
5052 		return error;
5053 	f2fs_update_time(sbi, REQ_TIME);
5054 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
5055 	return 0;
5056 }
5057 
5058 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
5059 					struct bio *bio, loff_t file_offset)
5060 {
5061 	struct inode *inode = iter->inode;
5062 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5063 	enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
5064 	enum temp_type temp = f2fs_get_segment_temp(sbi, type);
5065 
5066 	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
5067 	blk_crypto_submit_bio(bio);
5068 }
5069 
5070 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
5071 	.end_io		= f2fs_dio_write_end_io,
5072 	.submit_io	= f2fs_dio_write_submit_io,
5073 };
5074 
5075 static void f2fs_flush_buffered_write(struct address_space *mapping,
5076 				      loff_t start_pos, loff_t end_pos)
5077 {
5078 	int ret;
5079 
5080 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
5081 	if (ret < 0)
5082 		return;
5083 	invalidate_mapping_pages(mapping,
5084 				 start_pos >> PAGE_SHIFT,
5085 				 end_pos >> PAGE_SHIFT);
5086 }
5087 
5088 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
5089 				   bool *may_need_sync)
5090 {
5091 	struct file *file = iocb->ki_filp;
5092 	struct inode *inode = file_inode(file);
5093 	struct f2fs_inode_info *fi = F2FS_I(inode);
5094 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5095 	const bool do_opu = f2fs_lfs_mode(sbi);
5096 	const loff_t pos = iocb->ki_pos;
5097 	const ssize_t count = iov_iter_count(from);
5098 	unsigned int dio_flags;
5099 	struct iomap_dio *dio;
5100 	ssize_t ret;
5101 
5102 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
5103 
5104 	if (iocb->ki_flags & IOCB_NOWAIT) {
5105 		/* f2fs_convert_inline_inode() and block allocation can block */
5106 		if (f2fs_has_inline_data(inode) ||
5107 		    !f2fs_overwrite_io(inode, pos, count)) {
5108 			ret = -EAGAIN;
5109 			goto out;
5110 		}
5111 
5112 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
5113 			ret = -EAGAIN;
5114 			goto out;
5115 		}
5116 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
5117 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5118 			ret = -EAGAIN;
5119 			goto out;
5120 		}
5121 	} else {
5122 		ret = f2fs_convert_inline_inode(inode);
5123 		if (ret)
5124 			goto out;
5125 
5126 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
5127 		if (do_opu)
5128 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
5129 	}
5130 
5131 	/*
5132 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
5133 	 * the higher-level function iomap_dio_rw() in order to ensure that the
5134 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
5135 	 */
5136 	inc_page_count(sbi, F2FS_DIO_WRITE);
5137 	dio_flags = 0;
5138 	if (pos + count > inode->i_size)
5139 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
5140 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
5141 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
5142 	if (IS_ERR_OR_NULL(dio)) {
5143 		ret = PTR_ERR_OR_ZERO(dio);
5144 		if (ret == -ENOTBLK)
5145 			ret = 0;
5146 		if (ret != -EIOCBQUEUED)
5147 			dec_page_count(sbi, F2FS_DIO_WRITE);
5148 	} else {
5149 		ret = iomap_dio_complete(dio);
5150 	}
5151 
5152 	if (do_opu)
5153 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
5154 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5155 
5156 	if (ret < 0)
5157 		goto out;
5158 	if (pos + ret > inode->i_size)
5159 		f2fs_i_size_write(inode, pos + ret);
5160 	if (!do_opu)
5161 		set_inode_flag(inode, FI_UPDATE_WRITE);
5162 
5163 	if (iov_iter_count(from)) {
5164 		ssize_t ret2;
5165 		loff_t bufio_start_pos = iocb->ki_pos;
5166 
5167 		/*
5168 		 * The direct write was partial, so we need to fall back to a
5169 		 * buffered write for the remainder.
5170 		 */
5171 
5172 		ret2 = f2fs_buffered_write_iter(iocb, from);
5173 		if (iov_iter_count(from))
5174 			f2fs_write_failed(inode, iocb->ki_pos);
5175 		if (ret2 < 0)
5176 			goto out;
5177 
5178 		/*
5179 		 * Ensure that the pagecache pages are written to disk and
5180 		 * invalidated to preserve the expected O_DIRECT semantics.
5181 		 */
5182 		if (ret2 > 0) {
5183 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
5184 
5185 			ret += ret2;
5186 
5187 			f2fs_flush_buffered_write(file->f_mapping,
5188 						  bufio_start_pos,
5189 						  bufio_end_pos);
5190 		}
5191 	} else {
5192 		/* iomap_dio_rw() already handled the generic_write_sync(). */
5193 		*may_need_sync = false;
5194 	}
5195 out:
5196 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
5197 	return ret;
5198 }
5199 
5200 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5201 {
5202 	struct inode *inode = file_inode(iocb->ki_filp);
5203 	const loff_t orig_pos = iocb->ki_pos;
5204 	const size_t orig_count = iov_iter_count(from);
5205 	loff_t target_size;
5206 	bool dio;
5207 	bool may_need_sync = true;
5208 	int preallocated;
5209 	const loff_t pos = iocb->ki_pos;
5210 	const ssize_t count = iov_iter_count(from);
5211 	ssize_t ret;
5212 
5213 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5214 		ret = -EIO;
5215 		goto out;
5216 	}
5217 
5218 	if (!f2fs_is_compress_backend_ready(inode)) {
5219 		ret = -EOPNOTSUPP;
5220 		goto out;
5221 	}
5222 
5223 	if (iocb->ki_flags & IOCB_NOWAIT) {
5224 		if (!inode_trylock(inode)) {
5225 			ret = -EAGAIN;
5226 			goto out;
5227 		}
5228 	} else {
5229 		inode_lock(inode);
5230 	}
5231 
5232 	if (f2fs_is_pinned_file(inode) &&
5233 	    !f2fs_overwrite_io(inode, pos, count)) {
5234 		ret = -EIO;
5235 		goto out_unlock;
5236 	}
5237 
5238 	ret = f2fs_write_checks(iocb, from);
5239 	if (ret <= 0)
5240 		goto out_unlock;
5241 
5242 	/* Determine whether we will do a direct write or a buffered write. */
5243 	dio = f2fs_should_use_dio(inode, iocb, from);
5244 
5245 	/* dio is not compatible w/ atomic write */
5246 	if (dio && f2fs_is_atomic_file(inode)) {
5247 		ret = -EOPNOTSUPP;
5248 		goto out_unlock;
5249 	}
5250 
5251 	/* Possibly preallocate the blocks for the write. */
5252 	target_size = iocb->ki_pos + iov_iter_count(from);
5253 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5254 	if (preallocated < 0) {
5255 		ret = preallocated;
5256 	} else {
5257 		if (trace_f2fs_datawrite_start_enabled())
5258 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5259 						orig_count, WRITE);
5260 
5261 		/* Do the actual write. */
5262 		ret = dio ?
5263 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5264 			f2fs_buffered_write_iter(iocb, from);
5265 
5266 		trace_f2fs_datawrite_end(inode, orig_pos, ret);
5267 	}
5268 
5269 	/* Don't leave any preallocated blocks around past i_size. */
5270 	if (preallocated && i_size_read(inode) < target_size) {
5271 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5272 		filemap_invalidate_lock(inode->i_mapping);
5273 		if (!f2fs_truncate(inode))
5274 			file_dont_truncate(inode);
5275 		filemap_invalidate_unlock(inode->i_mapping);
5276 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5277 	} else {
5278 		file_dont_truncate(inode);
5279 	}
5280 
5281 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5282 out_unlock:
5283 	inode_unlock(inode);
5284 out:
5285 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5286 
5287 	if (ret > 0 && may_need_sync)
5288 		ret = generic_write_sync(iocb, ret);
5289 
5290 	/* If buffered IO was forced, flush and drop the data from
5291 	 * the page cache to preserve O_DIRECT semantics
5292 	 */
5293 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5294 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5295 					  orig_pos,
5296 					  orig_pos + ret - 1);
5297 
5298 	return ret;
5299 }
5300 
5301 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5302 		int advice)
5303 {
5304 	struct address_space *mapping;
5305 	struct backing_dev_info *bdi;
5306 	struct inode *inode = file_inode(filp);
5307 	int err;
5308 
5309 	trace_f2fs_fadvise(inode, offset, len, advice);
5310 
5311 	if (advice == POSIX_FADV_SEQUENTIAL) {
5312 		if (S_ISFIFO(inode->i_mode))
5313 			return -ESPIPE;
5314 
5315 		mapping = filp->f_mapping;
5316 		if (!mapping || len < 0)
5317 			return -EINVAL;
5318 
5319 		bdi = inode_to_bdi(mapping->host);
5320 		filp->f_ra.ra_pages = bdi->ra_pages *
5321 			F2FS_I_SB(inode)->seq_file_ra_mul;
5322 		spin_lock(&filp->f_lock);
5323 		filp->f_mode &= ~FMODE_RANDOM;
5324 		spin_unlock(&filp->f_lock);
5325 		return 0;
5326 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5327 		/* Load extent cache at the first readahead. */
5328 		f2fs_precache_extents(inode);
5329 	}
5330 
5331 	err = generic_fadvise(filp, offset, len, advice);
5332 	if (err)
5333 		return err;
5334 
5335 	if (advice == POSIX_FADV_DONTNEED &&
5336 	    (test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5337 	     f2fs_compressed_file(inode)))
5338 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5339 	else if (advice == POSIX_FADV_NOREUSE)
5340 		err = f2fs_keep_noreuse_range(inode, offset, len);
5341 	return err;
5342 }
5343 
5344 #ifdef CONFIG_COMPAT
5345 struct compat_f2fs_gc_range {
5346 	u32 sync;
5347 	compat_u64 start;
5348 	compat_u64 len;
5349 };
5350 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5351 						struct compat_f2fs_gc_range)
5352 
5353 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5354 {
5355 	struct compat_f2fs_gc_range __user *urange;
5356 	struct f2fs_gc_range range;
5357 	int err;
5358 
5359 	urange = compat_ptr(arg);
5360 	err = get_user(range.sync, &urange->sync);
5361 	err |= get_user(range.start, &urange->start);
5362 	err |= get_user(range.len, &urange->len);
5363 	if (err)
5364 		return -EFAULT;
5365 
5366 	return __f2fs_ioc_gc_range(file, &range);
5367 }
5368 
5369 struct compat_f2fs_move_range {
5370 	u32 dst_fd;
5371 	compat_u64 pos_in;
5372 	compat_u64 pos_out;
5373 	compat_u64 len;
5374 };
5375 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5376 					struct compat_f2fs_move_range)
5377 
5378 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5379 {
5380 	struct compat_f2fs_move_range __user *urange;
5381 	struct f2fs_move_range range;
5382 	int err;
5383 
5384 	urange = compat_ptr(arg);
5385 	err = get_user(range.dst_fd, &urange->dst_fd);
5386 	err |= get_user(range.pos_in, &urange->pos_in);
5387 	err |= get_user(range.pos_out, &urange->pos_out);
5388 	err |= get_user(range.len, &urange->len);
5389 	if (err)
5390 		return -EFAULT;
5391 
5392 	return __f2fs_ioc_move_range(file, &range);
5393 }
5394 
5395 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5396 {
5397 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5398 		return -EIO;
5399 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5400 		return -ENOSPC;
5401 
5402 	switch (cmd) {
5403 	case FS_IOC32_GETVERSION:
5404 		cmd = FS_IOC_GETVERSION;
5405 		break;
5406 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5407 		return f2fs_compat_ioc_gc_range(file, arg);
5408 	case F2FS_IOC32_MOVE_RANGE:
5409 		return f2fs_compat_ioc_move_range(file, arg);
5410 	case F2FS_IOC_START_ATOMIC_WRITE:
5411 	case F2FS_IOC_START_ATOMIC_REPLACE:
5412 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5413 	case F2FS_IOC_START_VOLATILE_WRITE:
5414 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5415 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5416 	case F2FS_IOC_SHUTDOWN:
5417 	case FITRIM:
5418 	case FS_IOC_SET_ENCRYPTION_POLICY:
5419 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5420 	case FS_IOC_GET_ENCRYPTION_POLICY:
5421 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5422 	case FS_IOC_ADD_ENCRYPTION_KEY:
5423 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5424 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5425 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5426 	case FS_IOC_GET_ENCRYPTION_NONCE:
5427 	case F2FS_IOC_GARBAGE_COLLECT:
5428 	case F2FS_IOC_WRITE_CHECKPOINT:
5429 	case F2FS_IOC_DEFRAGMENT:
5430 	case F2FS_IOC_FLUSH_DEVICE:
5431 	case F2FS_IOC_GET_FEATURES:
5432 	case F2FS_IOC_GET_PIN_FILE:
5433 	case F2FS_IOC_SET_PIN_FILE:
5434 	case F2FS_IOC_PRECACHE_EXTENTS:
5435 	case F2FS_IOC_RESIZE_FS:
5436 	case FS_IOC_ENABLE_VERITY:
5437 	case FS_IOC_MEASURE_VERITY:
5438 	case FS_IOC_READ_VERITY_METADATA:
5439 	case FS_IOC_GETFSLABEL:
5440 	case FS_IOC_SETFSLABEL:
5441 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5442 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5443 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5444 	case F2FS_IOC_SEC_TRIM_FILE:
5445 	case F2FS_IOC_GET_COMPRESS_OPTION:
5446 	case F2FS_IOC_SET_COMPRESS_OPTION:
5447 	case F2FS_IOC_DECOMPRESS_FILE:
5448 	case F2FS_IOC_COMPRESS_FILE:
5449 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
5450 	case F2FS_IOC_IO_PRIO:
5451 		break;
5452 	default:
5453 		return -ENOIOCTLCMD;
5454 	}
5455 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5456 }
5457 #endif
5458 
5459 const struct file_operations f2fs_file_operations = {
5460 	.llseek		= f2fs_llseek,
5461 	.read_iter	= f2fs_file_read_iter,
5462 	.write_iter	= f2fs_file_write_iter,
5463 	.iopoll		= iocb_bio_iopoll,
5464 	.open		= f2fs_file_open,
5465 	.release	= f2fs_release_file,
5466 	.mmap_prepare	= f2fs_file_mmap_prepare,
5467 	.flush		= f2fs_file_flush,
5468 	.fsync		= f2fs_sync_file,
5469 	.fallocate	= f2fs_fallocate,
5470 	.unlocked_ioctl	= f2fs_ioctl,
5471 #ifdef CONFIG_COMPAT
5472 	.compat_ioctl	= f2fs_compat_ioctl,
5473 #endif
5474 	.splice_read	= f2fs_file_splice_read,
5475 	.splice_write	= iter_file_splice_write,
5476 	.fadvise	= f2fs_file_fadvise,
5477 	.fop_flags	= FOP_BUFFER_RASYNC,
5478 	.setlease	= generic_setlease,
5479 };
5480