1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct inode * inode,int nr)26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 unsigned int size = sizeof(struct page *) * nr;
30
31 if (likely(size <= sbi->page_array_slab_size))
32 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
page_array_free(struct inode * inode,void * pages,int nr)37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 unsigned int size = sizeof(struct page *) * nr;
41
42 if (!pages)
43 return;
44
45 if (likely(size <= sbi->page_array_slab_size))
46 kmem_cache_free(sbi->page_array_slab, pages);
47 else
48 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52 int (*init_compress_ctx)(struct compress_ctx *cc);
53 void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 int (*compress_pages)(struct compress_ctx *cc);
55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 int (*decompress_pages)(struct decompress_io_ctx *dic);
58 bool (*is_level_valid)(int level);
59 };
60
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63 return index & (cc->cluster_size - 1);
64 }
65
cluster_idx(struct compress_ctx * cc,pgoff_t index)66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68 return index >> cc->log_cluster_size;
69 }
70
start_idx_of_cluster(struct compress_ctx * cc)71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73 return cc->cluster_idx << cc->log_cluster_size;
74 }
75
f2fs_is_compressed_page(struct page * page)76 bool f2fs_is_compressed_page(struct page *page)
77 {
78 if (!PagePrivate(page))
79 return false;
80 if (!page_private(page))
81 return false;
82 if (page_private_nonpointer(page))
83 return false;
84
85 f2fs_bug_on(F2FS_M_SB(page->mapping),
86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87 return true;
88 }
89
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)90 static void f2fs_set_compressed_page(struct page *page,
91 struct inode *inode, pgoff_t index, void *data)
92 {
93 struct folio *folio = page_folio(page);
94
95 folio_attach_private(folio, (void *)data);
96
97 /* i_crypto_info and iv index */
98 folio->index = index;
99 folio->mapping = inode->i_mapping;
100 }
101
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)102 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
103 {
104 int i;
105
106 for (i = 0; i < len; i++) {
107 if (!cc->rpages[i])
108 continue;
109 if (unlock)
110 unlock_page(cc->rpages[i]);
111 else
112 put_page(cc->rpages[i]);
113 }
114 }
115
f2fs_put_rpages(struct compress_ctx * cc)116 static void f2fs_put_rpages(struct compress_ctx *cc)
117 {
118 f2fs_drop_rpages(cc, cc->cluster_size, false);
119 }
120
f2fs_unlock_rpages(struct compress_ctx * cc,int len)121 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
122 {
123 f2fs_drop_rpages(cc, len, true);
124 }
125
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)126 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
127 struct writeback_control *wbc, bool redirty, int unlock)
128 {
129 unsigned int i;
130
131 for (i = 0; i < cc->cluster_size; i++) {
132 if (!cc->rpages[i])
133 continue;
134 if (redirty)
135 redirty_page_for_writepage(wbc, cc->rpages[i]);
136 f2fs_put_page(cc->rpages[i], unlock);
137 }
138 }
139
f2fs_compress_control_page(struct page * page)140 struct page *f2fs_compress_control_page(struct page *page)
141 {
142 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
143 }
144
f2fs_init_compress_ctx(struct compress_ctx * cc)145 int f2fs_init_compress_ctx(struct compress_ctx *cc)
146 {
147 if (cc->rpages)
148 return 0;
149
150 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
151 return cc->rpages ? 0 : -ENOMEM;
152 }
153
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)154 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
155 {
156 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
157 cc->rpages = NULL;
158 cc->nr_rpages = 0;
159 cc->nr_cpages = 0;
160 cc->valid_nr_cpages = 0;
161 if (!reuse)
162 cc->cluster_idx = NULL_CLUSTER;
163 }
164
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct folio * folio)165 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio)
166 {
167 unsigned int cluster_ofs;
168
169 if (!f2fs_cluster_can_merge_page(cc, folio->index))
170 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
171
172 cluster_ofs = offset_in_cluster(cc, folio->index);
173 cc->rpages[cluster_ofs] = folio_page(folio, 0);
174 cc->nr_rpages++;
175 cc->cluster_idx = cluster_idx(cc, folio->index);
176 }
177
178 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)179 static int lzo_init_compress_ctx(struct compress_ctx *cc)
180 {
181 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
182 LZO1X_MEM_COMPRESS, GFP_NOFS);
183 if (!cc->private)
184 return -ENOMEM;
185
186 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
187 return 0;
188 }
189
lzo_destroy_compress_ctx(struct compress_ctx * cc)190 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
191 {
192 kvfree(cc->private);
193 cc->private = NULL;
194 }
195
lzo_compress_pages(struct compress_ctx * cc)196 static int lzo_compress_pages(struct compress_ctx *cc)
197 {
198 int ret;
199
200 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
201 &cc->clen, cc->private);
202 if (ret != LZO_E_OK) {
203 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
204 "lzo compress failed, ret:%d", ret);
205 return -EIO;
206 }
207 return 0;
208 }
209
lzo_decompress_pages(struct decompress_io_ctx * dic)210 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
211 {
212 int ret;
213
214 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
215 dic->rbuf, &dic->rlen);
216 if (ret != LZO_E_OK) {
217 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
218 "lzo decompress failed, ret:%d", ret);
219 return -EIO;
220 }
221
222 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
223 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
224 "lzo invalid rlen:%zu, expected:%lu",
225 dic->rlen, PAGE_SIZE << dic->log_cluster_size);
226 return -EIO;
227 }
228 return 0;
229 }
230
231 static const struct f2fs_compress_ops f2fs_lzo_ops = {
232 .init_compress_ctx = lzo_init_compress_ctx,
233 .destroy_compress_ctx = lzo_destroy_compress_ctx,
234 .compress_pages = lzo_compress_pages,
235 .decompress_pages = lzo_decompress_pages,
236 };
237 #endif
238
239 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)240 static int lz4_init_compress_ctx(struct compress_ctx *cc)
241 {
242 unsigned int size = LZ4_MEM_COMPRESS;
243
244 #ifdef CONFIG_F2FS_FS_LZ4HC
245 if (F2FS_I(cc->inode)->i_compress_level)
246 size = LZ4HC_MEM_COMPRESS;
247 #endif
248
249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250 if (!cc->private)
251 return -ENOMEM;
252
253 /*
254 * we do not change cc->clen to LZ4_compressBound(inputsize) to
255 * adapt worst compress case, because lz4 compressor can handle
256 * output budget properly.
257 */
258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259 return 0;
260 }
261
lz4_destroy_compress_ctx(struct compress_ctx * cc)262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263 {
264 kvfree(cc->private);
265 cc->private = NULL;
266 }
267
lz4_compress_pages(struct compress_ctx * cc)268 static int lz4_compress_pages(struct compress_ctx *cc)
269 {
270 int len = -EINVAL;
271 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272
273 if (!level)
274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 cc->clen, cc->private);
276 #ifdef CONFIG_F2FS_FS_LZ4HC
277 else
278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 cc->clen, level, cc->private);
280 #endif
281 if (len < 0)
282 return len;
283 if (!len)
284 return -EAGAIN;
285
286 cc->clen = len;
287 return 0;
288 }
289
lz4_decompress_pages(struct decompress_io_ctx * dic)290 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291 {
292 int ret;
293
294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295 dic->clen, dic->rlen);
296 if (ret < 0) {
297 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
298 "lz4 decompress failed, ret:%d", ret);
299 return -EIO;
300 }
301
302 if (ret != PAGE_SIZE << dic->log_cluster_size) {
303 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
304 "lz4 invalid ret:%d, expected:%lu",
305 ret, PAGE_SIZE << dic->log_cluster_size);
306 return -EIO;
307 }
308 return 0;
309 }
310
lz4_is_level_valid(int lvl)311 static bool lz4_is_level_valid(int lvl)
312 {
313 #ifdef CONFIG_F2FS_FS_LZ4HC
314 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
315 #else
316 return lvl == 0;
317 #endif
318 }
319
320 static const struct f2fs_compress_ops f2fs_lz4_ops = {
321 .init_compress_ctx = lz4_init_compress_ctx,
322 .destroy_compress_ctx = lz4_destroy_compress_ctx,
323 .compress_pages = lz4_compress_pages,
324 .decompress_pages = lz4_decompress_pages,
325 .is_level_valid = lz4_is_level_valid,
326 };
327 #endif
328
329 #ifdef CONFIG_F2FS_FS_ZSTD
zstd_init_compress_ctx(struct compress_ctx * cc)330 static int zstd_init_compress_ctx(struct compress_ctx *cc)
331 {
332 zstd_parameters params;
333 zstd_cstream *stream;
334 void *workspace;
335 unsigned int workspace_size;
336 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
337
338 /* Need to remain this for backward compatibility */
339 if (!level)
340 level = F2FS_ZSTD_DEFAULT_CLEVEL;
341
342 params = zstd_get_params(level, cc->rlen);
343 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
344
345 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
346 workspace_size, GFP_NOFS);
347 if (!workspace)
348 return -ENOMEM;
349
350 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
351 if (!stream) {
352 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
353 "%s zstd_init_cstream failed", __func__);
354 kvfree(workspace);
355 return -EIO;
356 }
357
358 cc->private = workspace;
359 cc->private2 = stream;
360
361 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
362 return 0;
363 }
364
zstd_destroy_compress_ctx(struct compress_ctx * cc)365 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
366 {
367 kvfree(cc->private);
368 cc->private = NULL;
369 cc->private2 = NULL;
370 }
371
zstd_compress_pages(struct compress_ctx * cc)372 static int zstd_compress_pages(struct compress_ctx *cc)
373 {
374 zstd_cstream *stream = cc->private2;
375 zstd_in_buffer inbuf;
376 zstd_out_buffer outbuf;
377 int src_size = cc->rlen;
378 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
379 int ret;
380
381 inbuf.pos = 0;
382 inbuf.src = cc->rbuf;
383 inbuf.size = src_size;
384
385 outbuf.pos = 0;
386 outbuf.dst = cc->cbuf->cdata;
387 outbuf.size = dst_size;
388
389 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
390 if (zstd_is_error(ret)) {
391 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
392 "%s zstd_compress_stream failed, ret: %d",
393 __func__, zstd_get_error_code(ret));
394 return -EIO;
395 }
396
397 ret = zstd_end_stream(stream, &outbuf);
398 if (zstd_is_error(ret)) {
399 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
400 "%s zstd_end_stream returned %d",
401 __func__, zstd_get_error_code(ret));
402 return -EIO;
403 }
404
405 /*
406 * there is compressed data remained in intermediate buffer due to
407 * no more space in cbuf.cdata
408 */
409 if (ret)
410 return -EAGAIN;
411
412 cc->clen = outbuf.pos;
413 return 0;
414 }
415
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)416 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
417 {
418 zstd_dstream *stream;
419 void *workspace;
420 unsigned int workspace_size;
421 unsigned int max_window_size =
422 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
423
424 workspace_size = zstd_dstream_workspace_bound(max_window_size);
425
426 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
427 workspace_size, GFP_NOFS);
428 if (!workspace)
429 return -ENOMEM;
430
431 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
432 if (!stream) {
433 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
434 "%s zstd_init_dstream failed", __func__);
435 kvfree(workspace);
436 return -EIO;
437 }
438
439 dic->private = workspace;
440 dic->private2 = stream;
441
442 return 0;
443 }
444
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)445 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
446 {
447 kvfree(dic->private);
448 dic->private = NULL;
449 dic->private2 = NULL;
450 }
451
zstd_decompress_pages(struct decompress_io_ctx * dic)452 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
453 {
454 zstd_dstream *stream = dic->private2;
455 zstd_in_buffer inbuf;
456 zstd_out_buffer outbuf;
457 int ret;
458
459 inbuf.pos = 0;
460 inbuf.src = dic->cbuf->cdata;
461 inbuf.size = dic->clen;
462
463 outbuf.pos = 0;
464 outbuf.dst = dic->rbuf;
465 outbuf.size = dic->rlen;
466
467 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
468 if (zstd_is_error(ret)) {
469 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
470 "%s zstd_decompress_stream failed, ret: %d",
471 __func__, zstd_get_error_code(ret));
472 return -EIO;
473 }
474
475 if (dic->rlen != outbuf.pos) {
476 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
477 "%s ZSTD invalid rlen:%zu, expected:%lu",
478 __func__, dic->rlen,
479 PAGE_SIZE << dic->log_cluster_size);
480 return -EIO;
481 }
482
483 return 0;
484 }
485
zstd_is_level_valid(int lvl)486 static bool zstd_is_level_valid(int lvl)
487 {
488 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
489 }
490
491 static const struct f2fs_compress_ops f2fs_zstd_ops = {
492 .init_compress_ctx = zstd_init_compress_ctx,
493 .destroy_compress_ctx = zstd_destroy_compress_ctx,
494 .compress_pages = zstd_compress_pages,
495 .init_decompress_ctx = zstd_init_decompress_ctx,
496 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
497 .decompress_pages = zstd_decompress_pages,
498 .is_level_valid = zstd_is_level_valid,
499 };
500 #endif
501
502 #ifdef CONFIG_F2FS_FS_LZO
503 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)504 static int lzorle_compress_pages(struct compress_ctx *cc)
505 {
506 int ret;
507
508 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
509 &cc->clen, cc->private);
510 if (ret != LZO_E_OK) {
511 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
512 "lzo-rle compress failed, ret:%d", ret);
513 return -EIO;
514 }
515 return 0;
516 }
517
518 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
519 .init_compress_ctx = lzo_init_compress_ctx,
520 .destroy_compress_ctx = lzo_destroy_compress_ctx,
521 .compress_pages = lzorle_compress_pages,
522 .decompress_pages = lzo_decompress_pages,
523 };
524 #endif
525 #endif
526
527 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
528 #ifdef CONFIG_F2FS_FS_LZO
529 &f2fs_lzo_ops,
530 #else
531 NULL,
532 #endif
533 #ifdef CONFIG_F2FS_FS_LZ4
534 &f2fs_lz4_ops,
535 #else
536 NULL,
537 #endif
538 #ifdef CONFIG_F2FS_FS_ZSTD
539 &f2fs_zstd_ops,
540 #else
541 NULL,
542 #endif
543 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
544 &f2fs_lzorle_ops,
545 #else
546 NULL,
547 #endif
548 };
549
f2fs_is_compress_backend_ready(struct inode * inode)550 bool f2fs_is_compress_backend_ready(struct inode *inode)
551 {
552 if (!f2fs_compressed_file(inode))
553 return true;
554 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
555 }
556
f2fs_is_compress_level_valid(int alg,int lvl)557 bool f2fs_is_compress_level_valid(int alg, int lvl)
558 {
559 const struct f2fs_compress_ops *cops = f2fs_cops[alg];
560
561 if (cops->is_level_valid)
562 return cops->is_level_valid(lvl);
563
564 return lvl == 0;
565 }
566
567 static mempool_t *compress_page_pool;
568 static int num_compress_pages = 512;
569 module_param(num_compress_pages, uint, 0444);
570 MODULE_PARM_DESC(num_compress_pages,
571 "Number of intermediate compress pages to preallocate");
572
f2fs_init_compress_mempool(void)573 int __init f2fs_init_compress_mempool(void)
574 {
575 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
576 return compress_page_pool ? 0 : -ENOMEM;
577 }
578
f2fs_destroy_compress_mempool(void)579 void f2fs_destroy_compress_mempool(void)
580 {
581 mempool_destroy(compress_page_pool);
582 }
583
f2fs_compress_alloc_page(void)584 static struct page *f2fs_compress_alloc_page(void)
585 {
586 struct page *page;
587
588 page = mempool_alloc(compress_page_pool, GFP_NOFS);
589 lock_page(page);
590
591 return page;
592 }
593
f2fs_compress_free_page(struct page * page)594 static void f2fs_compress_free_page(struct page *page)
595 {
596 if (!page)
597 return;
598 detach_page_private(page);
599 page->mapping = NULL;
600 unlock_page(page);
601 mempool_free(page, compress_page_pool);
602 }
603
604 #define MAX_VMAP_RETRIES 3
605
f2fs_vmap(struct page ** pages,unsigned int count)606 static void *f2fs_vmap(struct page **pages, unsigned int count)
607 {
608 int i;
609 void *buf = NULL;
610
611 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
612 buf = vm_map_ram(pages, count, -1);
613 if (buf)
614 break;
615 vm_unmap_aliases();
616 }
617 return buf;
618 }
619
f2fs_compress_pages(struct compress_ctx * cc)620 static int f2fs_compress_pages(struct compress_ctx *cc)
621 {
622 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
623 const struct f2fs_compress_ops *cops =
624 f2fs_cops[fi->i_compress_algorithm];
625 unsigned int max_len, new_nr_cpages;
626 u32 chksum = 0;
627 int i, ret;
628
629 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
630 cc->cluster_size, fi->i_compress_algorithm);
631
632 if (cops->init_compress_ctx) {
633 ret = cops->init_compress_ctx(cc);
634 if (ret)
635 goto out;
636 }
637
638 max_len = COMPRESS_HEADER_SIZE + cc->clen;
639 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
640 cc->valid_nr_cpages = cc->nr_cpages;
641
642 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
643 if (!cc->cpages) {
644 ret = -ENOMEM;
645 goto destroy_compress_ctx;
646 }
647
648 for (i = 0; i < cc->nr_cpages; i++)
649 cc->cpages[i] = f2fs_compress_alloc_page();
650
651 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
652 if (!cc->rbuf) {
653 ret = -ENOMEM;
654 goto out_free_cpages;
655 }
656
657 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
658 if (!cc->cbuf) {
659 ret = -ENOMEM;
660 goto out_vunmap_rbuf;
661 }
662
663 ret = cops->compress_pages(cc);
664 if (ret)
665 goto out_vunmap_cbuf;
666
667 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
668
669 if (cc->clen > max_len) {
670 ret = -EAGAIN;
671 goto out_vunmap_cbuf;
672 }
673
674 cc->cbuf->clen = cpu_to_le32(cc->clen);
675
676 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
677 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
678 cc->cbuf->cdata, cc->clen);
679 cc->cbuf->chksum = cpu_to_le32(chksum);
680
681 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
682 cc->cbuf->reserved[i] = cpu_to_le32(0);
683
684 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
685
686 /* zero out any unused part of the last page */
687 memset(&cc->cbuf->cdata[cc->clen], 0,
688 (new_nr_cpages * PAGE_SIZE) -
689 (cc->clen + COMPRESS_HEADER_SIZE));
690
691 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
692 vm_unmap_ram(cc->rbuf, cc->cluster_size);
693
694 for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
695 f2fs_compress_free_page(cc->cpages[i]);
696 cc->cpages[i] = NULL;
697 }
698
699 if (cops->destroy_compress_ctx)
700 cops->destroy_compress_ctx(cc);
701
702 cc->valid_nr_cpages = new_nr_cpages;
703
704 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
705 cc->clen, ret);
706 return 0;
707
708 out_vunmap_cbuf:
709 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
710 out_vunmap_rbuf:
711 vm_unmap_ram(cc->rbuf, cc->cluster_size);
712 out_free_cpages:
713 for (i = 0; i < cc->nr_cpages; i++) {
714 if (cc->cpages[i])
715 f2fs_compress_free_page(cc->cpages[i]);
716 }
717 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
718 cc->cpages = NULL;
719 destroy_compress_ctx:
720 if (cops->destroy_compress_ctx)
721 cops->destroy_compress_ctx(cc);
722 out:
723 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
724 cc->clen, ret);
725 return ret;
726 }
727
728 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
729 bool pre_alloc);
730 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
731 bool bypass_destroy_callback, bool pre_alloc);
732
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)733 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
734 {
735 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
736 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
737 const struct f2fs_compress_ops *cops =
738 f2fs_cops[fi->i_compress_algorithm];
739 bool bypass_callback = false;
740 int ret;
741
742 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
743 dic->cluster_size, fi->i_compress_algorithm);
744
745 if (dic->failed) {
746 ret = -EIO;
747 goto out_end_io;
748 }
749
750 ret = f2fs_prepare_decomp_mem(dic, false);
751 if (ret) {
752 bypass_callback = true;
753 goto out_release;
754 }
755
756 dic->clen = le32_to_cpu(dic->cbuf->clen);
757 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
758
759 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
760 ret = -EFSCORRUPTED;
761
762 /* Avoid f2fs_commit_super in irq context */
763 if (!in_task)
764 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
765 else
766 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
767 goto out_release;
768 }
769
770 ret = cops->decompress_pages(dic);
771
772 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
773 u32 provided = le32_to_cpu(dic->cbuf->chksum);
774 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
775
776 if (provided != calculated) {
777 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
778 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
779 f2fs_info_ratelimited(sbi,
780 "checksum invalid, nid = %lu, %x vs %x",
781 dic->inode->i_ino,
782 provided, calculated);
783 }
784 set_sbi_flag(sbi, SBI_NEED_FSCK);
785 }
786 }
787
788 out_release:
789 f2fs_release_decomp_mem(dic, bypass_callback, false);
790
791 out_end_io:
792 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
793 dic->clen, ret);
794 f2fs_decompress_end_io(dic, ret, in_task);
795 }
796
797 /*
798 * This is called when a page of a compressed cluster has been read from disk
799 * (or failed to be read from disk). It checks whether this page was the last
800 * page being waited on in the cluster, and if so, it decompresses the cluster
801 * (or in the case of a failure, cleans up without actually decompressing).
802 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)803 void f2fs_end_read_compressed_page(struct page *page, bool failed,
804 block_t blkaddr, bool in_task)
805 {
806 struct decompress_io_ctx *dic =
807 (struct decompress_io_ctx *)page_private(page);
808 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
809
810 dec_page_count(sbi, F2FS_RD_DATA);
811
812 if (failed)
813 WRITE_ONCE(dic->failed, true);
814 else if (blkaddr && in_task)
815 f2fs_cache_compressed_page(sbi, page,
816 dic->inode->i_ino, blkaddr);
817
818 if (atomic_dec_and_test(&dic->remaining_pages))
819 f2fs_decompress_cluster(dic, in_task);
820 }
821
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)822 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
823 {
824 if (cc->cluster_idx == NULL_CLUSTER)
825 return true;
826 return cc->cluster_idx == cluster_idx(cc, index);
827 }
828
f2fs_cluster_is_empty(struct compress_ctx * cc)829 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
830 {
831 return cc->nr_rpages == 0;
832 }
833
f2fs_cluster_is_full(struct compress_ctx * cc)834 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
835 {
836 return cc->cluster_size == cc->nr_rpages;
837 }
838
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)839 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
840 {
841 if (f2fs_cluster_is_empty(cc))
842 return true;
843 return is_page_in_cluster(cc, index);
844 }
845
f2fs_all_cluster_page_ready(struct compress_ctx * cc,struct page ** pages,int index,int nr_pages,bool uptodate)846 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
847 int index, int nr_pages, bool uptodate)
848 {
849 unsigned long pgidx = page_folio(pages[index])->index;
850 int i = uptodate ? 0 : 1;
851
852 /*
853 * when uptodate set to true, try to check all pages in cluster is
854 * uptodate or not.
855 */
856 if (uptodate && (pgidx % cc->cluster_size))
857 return false;
858
859 if (nr_pages - index < cc->cluster_size)
860 return false;
861
862 for (; i < cc->cluster_size; i++) {
863 struct folio *folio = page_folio(pages[index + i]);
864
865 if (folio->index != pgidx + i)
866 return false;
867 if (uptodate && !folio_test_uptodate(folio))
868 return false;
869 }
870
871 return true;
872 }
873
cluster_has_invalid_data(struct compress_ctx * cc)874 static bool cluster_has_invalid_data(struct compress_ctx *cc)
875 {
876 loff_t i_size = i_size_read(cc->inode);
877 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
878 int i;
879
880 for (i = 0; i < cc->cluster_size; i++) {
881 struct page *page = cc->rpages[i];
882
883 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
884
885 /* beyond EOF */
886 if (page_folio(page)->index >= nr_pages)
887 return true;
888 }
889 return false;
890 }
891
f2fs_sanity_check_cluster(struct dnode_of_data * dn)892 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
893 {
894 #ifdef CONFIG_F2FS_CHECK_FS
895 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
896 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
897 int cluster_end = 0;
898 unsigned int count;
899 int i;
900 char *reason = "";
901
902 if (dn->data_blkaddr != COMPRESS_ADDR)
903 return false;
904
905 /* [..., COMPR_ADDR, ...] */
906 if (dn->ofs_in_node % cluster_size) {
907 reason = "[*|C|*|*]";
908 goto out;
909 }
910
911 for (i = 1, count = 1; i < cluster_size; i++, count++) {
912 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
913 dn->ofs_in_node + i);
914
915 /* [COMPR_ADDR, ..., COMPR_ADDR] */
916 if (blkaddr == COMPRESS_ADDR) {
917 reason = "[C|*|C|*]";
918 goto out;
919 }
920 if (!__is_valid_data_blkaddr(blkaddr)) {
921 if (!cluster_end)
922 cluster_end = i;
923 continue;
924 }
925 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
926 if (cluster_end) {
927 reason = "[C|N|N|V]";
928 goto out;
929 }
930 }
931
932 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
933 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
934
935 return false;
936 out:
937 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
938 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
939 set_sbi_flag(sbi, SBI_NEED_FSCK);
940 return true;
941 #else
942 return false;
943 #endif
944 }
945
__f2fs_get_cluster_blocks(struct inode * inode,struct dnode_of_data * dn)946 static int __f2fs_get_cluster_blocks(struct inode *inode,
947 struct dnode_of_data *dn)
948 {
949 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
950 int count, i;
951
952 for (i = 0, count = 0; i < cluster_size; i++) {
953 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
954 dn->ofs_in_node + i);
955
956 if (__is_valid_data_blkaddr(blkaddr))
957 count++;
958 }
959
960 return count;
961 }
962
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,enum cluster_check_type type)963 static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx,
964 enum cluster_check_type type)
965 {
966 struct dnode_of_data dn;
967 unsigned int start_idx = cluster_idx <<
968 F2FS_I(inode)->i_log_cluster_size;
969 int ret;
970
971 set_new_dnode(&dn, inode, NULL, NULL, 0);
972 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
973 if (ret) {
974 if (ret == -ENOENT)
975 ret = 0;
976 goto fail;
977 }
978
979 if (f2fs_sanity_check_cluster(&dn)) {
980 ret = -EFSCORRUPTED;
981 goto fail;
982 }
983
984 if (dn.data_blkaddr == COMPRESS_ADDR) {
985 if (type == CLUSTER_COMPR_BLKS)
986 ret = 1 + __f2fs_get_cluster_blocks(inode, &dn);
987 else if (type == CLUSTER_IS_COMPR)
988 ret = 1;
989 } else if (type == CLUSTER_RAW_BLKS) {
990 ret = __f2fs_get_cluster_blocks(inode, &dn);
991 }
992 fail:
993 f2fs_put_dnode(&dn);
994 return ret;
995 }
996
997 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)998 static int f2fs_compressed_blocks(struct compress_ctx *cc)
999 {
1000 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx,
1001 CLUSTER_COMPR_BLKS);
1002 }
1003
1004 /* return # of raw blocks in non-compressed cluster */
f2fs_decompressed_blocks(struct inode * inode,unsigned int cluster_idx)1005 static int f2fs_decompressed_blocks(struct inode *inode,
1006 unsigned int cluster_idx)
1007 {
1008 return __f2fs_cluster_blocks(inode, cluster_idx,
1009 CLUSTER_RAW_BLKS);
1010 }
1011
1012 /* return whether cluster is compressed one or not */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)1013 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1014 {
1015 return __f2fs_cluster_blocks(inode,
1016 index >> F2FS_I(inode)->i_log_cluster_size,
1017 CLUSTER_IS_COMPR);
1018 }
1019
1020 /* return whether cluster contains non raw blocks or not */
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)1021 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index)
1022 {
1023 unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size;
1024
1025 return f2fs_decompressed_blocks(inode, cluster_idx) !=
1026 F2FS_I(inode)->i_cluster_size;
1027 }
1028
cluster_may_compress(struct compress_ctx * cc)1029 static bool cluster_may_compress(struct compress_ctx *cc)
1030 {
1031 if (!f2fs_need_compress_data(cc->inode))
1032 return false;
1033 if (f2fs_is_atomic_file(cc->inode))
1034 return false;
1035 if (!f2fs_cluster_is_full(cc))
1036 return false;
1037 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1038 return false;
1039 return !cluster_has_invalid_data(cc);
1040 }
1041
set_cluster_writeback(struct compress_ctx * cc)1042 static void set_cluster_writeback(struct compress_ctx *cc)
1043 {
1044 int i;
1045
1046 for (i = 0; i < cc->cluster_size; i++) {
1047 if (cc->rpages[i])
1048 set_page_writeback(cc->rpages[i]);
1049 }
1050 }
1051
cancel_cluster_writeback(struct compress_ctx * cc,struct compress_io_ctx * cic,int submitted)1052 static void cancel_cluster_writeback(struct compress_ctx *cc,
1053 struct compress_io_ctx *cic, int submitted)
1054 {
1055 int i;
1056
1057 /* Wait for submitted IOs. */
1058 if (submitted > 1) {
1059 f2fs_submit_merged_write(F2FS_I_SB(cc->inode), DATA);
1060 while (atomic_read(&cic->pending_pages) !=
1061 (cc->valid_nr_cpages - submitted + 1))
1062 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1063 }
1064
1065 /* Cancel writeback and stay locked. */
1066 for (i = 0; i < cc->cluster_size; i++) {
1067 if (i < submitted) {
1068 inode_inc_dirty_pages(cc->inode);
1069 lock_page(cc->rpages[i]);
1070 }
1071 clear_page_private_gcing(cc->rpages[i]);
1072 if (folio_test_writeback(page_folio(cc->rpages[i])))
1073 end_page_writeback(cc->rpages[i]);
1074 }
1075 }
1076
set_cluster_dirty(struct compress_ctx * cc)1077 static void set_cluster_dirty(struct compress_ctx *cc)
1078 {
1079 int i;
1080
1081 for (i = 0; i < cc->cluster_size; i++)
1082 if (cc->rpages[i]) {
1083 set_page_dirty(cc->rpages[i]);
1084 set_page_private_gcing(cc->rpages[i]);
1085 }
1086 }
1087
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1088 static int prepare_compress_overwrite(struct compress_ctx *cc,
1089 struct page **pagep, pgoff_t index, void **fsdata)
1090 {
1091 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1092 struct address_space *mapping = cc->inode->i_mapping;
1093 struct page *page;
1094 sector_t last_block_in_bio;
1095 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1096 pgoff_t start_idx = start_idx_of_cluster(cc);
1097 int i, ret;
1098
1099 retry:
1100 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1101 if (ret <= 0)
1102 return ret;
1103
1104 ret = f2fs_init_compress_ctx(cc);
1105 if (ret)
1106 return ret;
1107
1108 /* keep page reference to avoid page reclaim */
1109 for (i = 0; i < cc->cluster_size; i++) {
1110 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1111 fgp_flag, GFP_NOFS);
1112 if (!page) {
1113 ret = -ENOMEM;
1114 goto unlock_pages;
1115 }
1116
1117 if (PageUptodate(page))
1118 f2fs_put_page(page, 1);
1119 else
1120 f2fs_compress_ctx_add_page(cc, page_folio(page));
1121 }
1122
1123 if (!f2fs_cluster_is_empty(cc)) {
1124 struct bio *bio = NULL;
1125
1126 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1127 &last_block_in_bio, NULL, true);
1128 f2fs_put_rpages(cc);
1129 f2fs_destroy_compress_ctx(cc, true);
1130 if (ret)
1131 goto out;
1132 if (bio)
1133 f2fs_submit_read_bio(sbi, bio, DATA);
1134
1135 ret = f2fs_init_compress_ctx(cc);
1136 if (ret)
1137 goto out;
1138 }
1139
1140 for (i = 0; i < cc->cluster_size; i++) {
1141 f2fs_bug_on(sbi, cc->rpages[i]);
1142
1143 page = find_lock_page(mapping, start_idx + i);
1144 if (!page) {
1145 /* page can be truncated */
1146 goto release_and_retry;
1147 }
1148
1149 f2fs_wait_on_page_writeback(page, DATA, true, true);
1150 f2fs_compress_ctx_add_page(cc, page_folio(page));
1151
1152 if (!PageUptodate(page)) {
1153 f2fs_handle_page_eio(sbi, page_folio(page), DATA);
1154 release_and_retry:
1155 f2fs_put_rpages(cc);
1156 f2fs_unlock_rpages(cc, i + 1);
1157 f2fs_destroy_compress_ctx(cc, true);
1158 goto retry;
1159 }
1160 }
1161
1162 if (likely(!ret)) {
1163 *fsdata = cc->rpages;
1164 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1165 return cc->cluster_size;
1166 }
1167
1168 unlock_pages:
1169 f2fs_put_rpages(cc);
1170 f2fs_unlock_rpages(cc, i);
1171 f2fs_destroy_compress_ctx(cc, true);
1172 out:
1173 return ret;
1174 }
1175
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1176 int f2fs_prepare_compress_overwrite(struct inode *inode,
1177 struct page **pagep, pgoff_t index, void **fsdata)
1178 {
1179 struct compress_ctx cc = {
1180 .inode = inode,
1181 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1182 .cluster_size = F2FS_I(inode)->i_cluster_size,
1183 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1184 .rpages = NULL,
1185 .nr_rpages = 0,
1186 };
1187
1188 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1189 }
1190
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1191 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1192 pgoff_t index, unsigned copied)
1193
1194 {
1195 struct compress_ctx cc = {
1196 .inode = inode,
1197 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1198 .cluster_size = F2FS_I(inode)->i_cluster_size,
1199 .rpages = fsdata,
1200 };
1201 struct folio *folio = page_folio(cc.rpages[0]);
1202 bool first_index = (index == folio->index);
1203
1204 if (copied)
1205 set_cluster_dirty(&cc);
1206
1207 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1208 f2fs_destroy_compress_ctx(&cc, false);
1209
1210 return first_index;
1211 }
1212
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1213 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1214 {
1215 void *fsdata = NULL;
1216 struct page *pagep;
1217 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1218 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1219 log_cluster_size;
1220 int err;
1221
1222 err = f2fs_is_compressed_cluster(inode, start_idx);
1223 if (err < 0)
1224 return err;
1225
1226 /* truncate normal cluster */
1227 if (!err)
1228 return f2fs_do_truncate_blocks(inode, from, lock);
1229
1230 /* truncate compressed cluster */
1231 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1232 start_idx, &fsdata);
1233
1234 /* should not be a normal cluster */
1235 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1236
1237 if (err <= 0)
1238 return err;
1239
1240 if (err > 0) {
1241 struct page **rpages = fsdata;
1242 int cluster_size = F2FS_I(inode)->i_cluster_size;
1243 int i;
1244
1245 for (i = cluster_size - 1; i >= 0; i--) {
1246 struct folio *folio = page_folio(rpages[i]);
1247 loff_t start = folio->index << PAGE_SHIFT;
1248
1249 if (from <= start) {
1250 folio_zero_segment(folio, 0, folio_size(folio));
1251 } else {
1252 folio_zero_segment(folio, from - start,
1253 folio_size(folio));
1254 break;
1255 }
1256 }
1257
1258 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1259 }
1260 return 0;
1261 }
1262
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1263 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1264 int *submitted,
1265 struct writeback_control *wbc,
1266 enum iostat_type io_type)
1267 {
1268 struct inode *inode = cc->inode;
1269 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1270 struct f2fs_inode_info *fi = F2FS_I(inode);
1271 struct f2fs_io_info fio = {
1272 .sbi = sbi,
1273 .ino = cc->inode->i_ino,
1274 .type = DATA,
1275 .op = REQ_OP_WRITE,
1276 .op_flags = wbc_to_write_flags(wbc),
1277 .old_blkaddr = NEW_ADDR,
1278 .page = NULL,
1279 .encrypted_page = NULL,
1280 .compressed_page = NULL,
1281 .io_type = io_type,
1282 .io_wbc = wbc,
1283 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1284 1 : 0,
1285 };
1286 struct folio *folio;
1287 struct dnode_of_data dn;
1288 struct node_info ni;
1289 struct compress_io_ctx *cic;
1290 pgoff_t start_idx = start_idx_of_cluster(cc);
1291 unsigned int last_index = cc->cluster_size - 1;
1292 loff_t psize;
1293 int i, err;
1294 bool quota_inode = IS_NOQUOTA(inode);
1295
1296 /* we should bypass data pages to proceed the kworker jobs */
1297 if (unlikely(f2fs_cp_error(sbi))) {
1298 mapping_set_error(inode->i_mapping, -EIO);
1299 goto out_free;
1300 }
1301
1302 if (quota_inode) {
1303 /*
1304 * We need to wait for node_write to avoid block allocation during
1305 * checkpoint. This can only happen to quota writes which can cause
1306 * the below discard race condition.
1307 */
1308 f2fs_down_read(&sbi->node_write);
1309 } else if (!f2fs_trylock_op(sbi)) {
1310 goto out_free;
1311 }
1312
1313 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1314
1315 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1316 if (err)
1317 goto out_unlock_op;
1318
1319 for (i = 0; i < cc->cluster_size; i++) {
1320 if (data_blkaddr(dn.inode, dn.node_page,
1321 dn.ofs_in_node + i) == NULL_ADDR)
1322 goto out_put_dnode;
1323 }
1324
1325 folio = page_folio(cc->rpages[last_index]);
1326 psize = folio_pos(folio) + folio_size(folio);
1327
1328 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1329 if (err)
1330 goto out_put_dnode;
1331
1332 fio.version = ni.version;
1333
1334 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1335 if (!cic)
1336 goto out_put_dnode;
1337
1338 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1339 cic->inode = inode;
1340 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1341 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1342 if (!cic->rpages)
1343 goto out_put_cic;
1344
1345 cic->nr_rpages = cc->cluster_size;
1346
1347 for (i = 0; i < cc->valid_nr_cpages; i++) {
1348 f2fs_set_compressed_page(cc->cpages[i], inode,
1349 page_folio(cc->rpages[i + 1])->index, cic);
1350 fio.compressed_page = cc->cpages[i];
1351
1352 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1353 dn.ofs_in_node + i + 1);
1354
1355 /* wait for GCed page writeback via META_MAPPING */
1356 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1357
1358 if (fio.encrypted) {
1359 fio.page = cc->rpages[i + 1];
1360 err = f2fs_encrypt_one_page(&fio);
1361 if (err)
1362 goto out_destroy_crypt;
1363 cc->cpages[i] = fio.encrypted_page;
1364 }
1365 }
1366
1367 set_cluster_writeback(cc);
1368
1369 for (i = 0; i < cc->cluster_size; i++)
1370 cic->rpages[i] = cc->rpages[i];
1371
1372 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1373 block_t blkaddr;
1374
1375 blkaddr = f2fs_data_blkaddr(&dn);
1376 fio.page = cc->rpages[i];
1377 fio.old_blkaddr = blkaddr;
1378
1379 /* cluster header */
1380 if (i == 0) {
1381 if (blkaddr == COMPRESS_ADDR)
1382 fio.compr_blocks++;
1383 if (__is_valid_data_blkaddr(blkaddr))
1384 f2fs_invalidate_blocks(sbi, blkaddr, 1);
1385 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1386 goto unlock_continue;
1387 }
1388
1389 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1390 fio.compr_blocks++;
1391
1392 if (i > cc->valid_nr_cpages) {
1393 if (__is_valid_data_blkaddr(blkaddr)) {
1394 f2fs_invalidate_blocks(sbi, blkaddr, 1);
1395 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1396 }
1397 goto unlock_continue;
1398 }
1399
1400 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1401
1402 if (fio.encrypted)
1403 fio.encrypted_page = cc->cpages[i - 1];
1404 else
1405 fio.compressed_page = cc->cpages[i - 1];
1406
1407 cc->cpages[i - 1] = NULL;
1408 fio.submitted = 0;
1409 f2fs_outplace_write_data(&dn, &fio);
1410 if (unlikely(!fio.submitted)) {
1411 cancel_cluster_writeback(cc, cic, i);
1412
1413 /* To call fscrypt_finalize_bounce_page */
1414 i = cc->valid_nr_cpages;
1415 *submitted = 0;
1416 goto out_destroy_crypt;
1417 }
1418 (*submitted)++;
1419 unlock_continue:
1420 inode_dec_dirty_pages(cc->inode);
1421 unlock_page(fio.page);
1422 }
1423
1424 if (fio.compr_blocks)
1425 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1426 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1427 add_compr_block_stat(inode, cc->valid_nr_cpages);
1428
1429 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1430
1431 f2fs_put_dnode(&dn);
1432 if (quota_inode)
1433 f2fs_up_read(&sbi->node_write);
1434 else
1435 f2fs_unlock_op(sbi);
1436
1437 spin_lock(&fi->i_size_lock);
1438 if (fi->last_disk_size < psize)
1439 fi->last_disk_size = psize;
1440 spin_unlock(&fi->i_size_lock);
1441
1442 f2fs_put_rpages(cc);
1443 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1444 cc->cpages = NULL;
1445 f2fs_destroy_compress_ctx(cc, false);
1446 return 0;
1447
1448 out_destroy_crypt:
1449 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1450
1451 for (--i; i >= 0; i--) {
1452 if (!cc->cpages[i])
1453 continue;
1454 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1455 }
1456 out_put_cic:
1457 kmem_cache_free(cic_entry_slab, cic);
1458 out_put_dnode:
1459 f2fs_put_dnode(&dn);
1460 out_unlock_op:
1461 if (quota_inode)
1462 f2fs_up_read(&sbi->node_write);
1463 else
1464 f2fs_unlock_op(sbi);
1465 out_free:
1466 for (i = 0; i < cc->valid_nr_cpages; i++) {
1467 f2fs_compress_free_page(cc->cpages[i]);
1468 cc->cpages[i] = NULL;
1469 }
1470 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1471 cc->cpages = NULL;
1472 return -EAGAIN;
1473 }
1474
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1475 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1476 {
1477 struct f2fs_sb_info *sbi = bio->bi_private;
1478 struct compress_io_ctx *cic =
1479 (struct compress_io_ctx *)page_private(page);
1480 enum count_type type = WB_DATA_TYPE(page,
1481 f2fs_is_compressed_page(page));
1482 int i;
1483
1484 if (unlikely(bio->bi_status))
1485 mapping_set_error(cic->inode->i_mapping, -EIO);
1486
1487 f2fs_compress_free_page(page);
1488
1489 dec_page_count(sbi, type);
1490
1491 if (atomic_dec_return(&cic->pending_pages))
1492 return;
1493
1494 for (i = 0; i < cic->nr_rpages; i++) {
1495 WARN_ON(!cic->rpages[i]);
1496 clear_page_private_gcing(cic->rpages[i]);
1497 end_page_writeback(cic->rpages[i]);
1498 }
1499
1500 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1501 kmem_cache_free(cic_entry_slab, cic);
1502 }
1503
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted_p,struct writeback_control * wbc,enum iostat_type io_type)1504 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1505 int *submitted_p,
1506 struct writeback_control *wbc,
1507 enum iostat_type io_type)
1508 {
1509 struct address_space *mapping = cc->inode->i_mapping;
1510 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1511 int submitted, compr_blocks, i;
1512 int ret = 0;
1513
1514 compr_blocks = f2fs_compressed_blocks(cc);
1515
1516 for (i = 0; i < cc->cluster_size; i++) {
1517 if (!cc->rpages[i])
1518 continue;
1519
1520 redirty_page_for_writepage(wbc, cc->rpages[i]);
1521 unlock_page(cc->rpages[i]);
1522 }
1523
1524 if (compr_blocks < 0)
1525 return compr_blocks;
1526
1527 /* overwrite compressed cluster w/ normal cluster */
1528 if (compr_blocks > 0)
1529 f2fs_lock_op(sbi);
1530
1531 for (i = 0; i < cc->cluster_size; i++) {
1532 if (!cc->rpages[i])
1533 continue;
1534 retry_write:
1535 lock_page(cc->rpages[i]);
1536
1537 if (cc->rpages[i]->mapping != mapping) {
1538 continue_unlock:
1539 unlock_page(cc->rpages[i]);
1540 continue;
1541 }
1542
1543 if (!PageDirty(cc->rpages[i]))
1544 goto continue_unlock;
1545
1546 if (folio_test_writeback(page_folio(cc->rpages[i]))) {
1547 if (wbc->sync_mode == WB_SYNC_NONE)
1548 goto continue_unlock;
1549 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1550 }
1551
1552 if (!clear_page_dirty_for_io(cc->rpages[i]))
1553 goto continue_unlock;
1554
1555 submitted = 0;
1556 ret = f2fs_write_single_data_page(page_folio(cc->rpages[i]),
1557 &submitted,
1558 NULL, NULL, wbc, io_type,
1559 compr_blocks, false);
1560 if (ret) {
1561 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1562 unlock_page(cc->rpages[i]);
1563 ret = 0;
1564 } else if (ret == -EAGAIN) {
1565 ret = 0;
1566 /*
1567 * for quota file, just redirty left pages to
1568 * avoid deadlock caused by cluster update race
1569 * from foreground operation.
1570 */
1571 if (IS_NOQUOTA(cc->inode))
1572 goto out;
1573 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1574 goto retry_write;
1575 }
1576 goto out;
1577 }
1578
1579 *submitted_p += submitted;
1580 }
1581
1582 out:
1583 if (compr_blocks > 0)
1584 f2fs_unlock_op(sbi);
1585
1586 f2fs_balance_fs(sbi, true);
1587 return ret;
1588 }
1589
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1590 int f2fs_write_multi_pages(struct compress_ctx *cc,
1591 int *submitted,
1592 struct writeback_control *wbc,
1593 enum iostat_type io_type)
1594 {
1595 int err;
1596
1597 *submitted = 0;
1598 if (cluster_may_compress(cc)) {
1599 err = f2fs_compress_pages(cc);
1600 if (err == -EAGAIN) {
1601 add_compr_block_stat(cc->inode, cc->cluster_size);
1602 goto write;
1603 } else if (err) {
1604 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1605 goto destroy_out;
1606 }
1607
1608 err = f2fs_write_compressed_pages(cc, submitted,
1609 wbc, io_type);
1610 if (!err)
1611 return 0;
1612 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1613 }
1614 write:
1615 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1616
1617 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1618 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1619 destroy_out:
1620 f2fs_destroy_compress_ctx(cc, false);
1621 return err;
1622 }
1623
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1624 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1625 bool pre_alloc)
1626 {
1627 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1628 }
1629
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1630 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1631 bool pre_alloc)
1632 {
1633 const struct f2fs_compress_ops *cops =
1634 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1635 int i;
1636
1637 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1638 return 0;
1639
1640 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1641 if (!dic->tpages)
1642 return -ENOMEM;
1643
1644 for (i = 0; i < dic->cluster_size; i++) {
1645 if (dic->rpages[i]) {
1646 dic->tpages[i] = dic->rpages[i];
1647 continue;
1648 }
1649
1650 dic->tpages[i] = f2fs_compress_alloc_page();
1651 }
1652
1653 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1654 if (!dic->rbuf)
1655 return -ENOMEM;
1656
1657 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1658 if (!dic->cbuf)
1659 return -ENOMEM;
1660
1661 if (cops->init_decompress_ctx)
1662 return cops->init_decompress_ctx(dic);
1663
1664 return 0;
1665 }
1666
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1667 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1668 bool bypass_destroy_callback, bool pre_alloc)
1669 {
1670 const struct f2fs_compress_ops *cops =
1671 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1672
1673 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1674 return;
1675
1676 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1677 cops->destroy_decompress_ctx(dic);
1678
1679 if (dic->cbuf)
1680 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1681
1682 if (dic->rbuf)
1683 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1684 }
1685
1686 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1687 bool bypass_destroy_callback);
1688
f2fs_alloc_dic(struct compress_ctx * cc)1689 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1690 {
1691 struct decompress_io_ctx *dic;
1692 pgoff_t start_idx = start_idx_of_cluster(cc);
1693 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1694 int i, ret;
1695
1696 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1697 if (!dic)
1698 return ERR_PTR(-ENOMEM);
1699
1700 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1701 if (!dic->rpages) {
1702 kmem_cache_free(dic_entry_slab, dic);
1703 return ERR_PTR(-ENOMEM);
1704 }
1705
1706 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1707 dic->inode = cc->inode;
1708 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1709 dic->cluster_idx = cc->cluster_idx;
1710 dic->cluster_size = cc->cluster_size;
1711 dic->log_cluster_size = cc->log_cluster_size;
1712 dic->nr_cpages = cc->nr_cpages;
1713 refcount_set(&dic->refcnt, 1);
1714 dic->failed = false;
1715 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1716
1717 for (i = 0; i < dic->cluster_size; i++)
1718 dic->rpages[i] = cc->rpages[i];
1719 dic->nr_rpages = cc->cluster_size;
1720
1721 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1722 if (!dic->cpages) {
1723 ret = -ENOMEM;
1724 goto out_free;
1725 }
1726
1727 for (i = 0; i < dic->nr_cpages; i++) {
1728 struct page *page;
1729
1730 page = f2fs_compress_alloc_page();
1731 f2fs_set_compressed_page(page, cc->inode,
1732 start_idx + i + 1, dic);
1733 dic->cpages[i] = page;
1734 }
1735
1736 ret = f2fs_prepare_decomp_mem(dic, true);
1737 if (ret)
1738 goto out_free;
1739
1740 return dic;
1741
1742 out_free:
1743 f2fs_free_dic(dic, true);
1744 return ERR_PTR(ret);
1745 }
1746
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1747 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1748 bool bypass_destroy_callback)
1749 {
1750 int i;
1751
1752 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1753
1754 if (dic->tpages) {
1755 for (i = 0; i < dic->cluster_size; i++) {
1756 if (dic->rpages[i])
1757 continue;
1758 if (!dic->tpages[i])
1759 continue;
1760 f2fs_compress_free_page(dic->tpages[i]);
1761 }
1762 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1763 }
1764
1765 if (dic->cpages) {
1766 for (i = 0; i < dic->nr_cpages; i++) {
1767 if (!dic->cpages[i])
1768 continue;
1769 f2fs_compress_free_page(dic->cpages[i]);
1770 }
1771 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1772 }
1773
1774 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1775 kmem_cache_free(dic_entry_slab, dic);
1776 }
1777
f2fs_late_free_dic(struct work_struct * work)1778 static void f2fs_late_free_dic(struct work_struct *work)
1779 {
1780 struct decompress_io_ctx *dic =
1781 container_of(work, struct decompress_io_ctx, free_work);
1782
1783 f2fs_free_dic(dic, false);
1784 }
1785
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1786 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1787 {
1788 if (refcount_dec_and_test(&dic->refcnt)) {
1789 if (in_task) {
1790 f2fs_free_dic(dic, false);
1791 } else {
1792 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1793 queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1794 &dic->free_work);
1795 }
1796 }
1797 }
1798
f2fs_verify_cluster(struct work_struct * work)1799 static void f2fs_verify_cluster(struct work_struct *work)
1800 {
1801 struct decompress_io_ctx *dic =
1802 container_of(work, struct decompress_io_ctx, verity_work);
1803 int i;
1804
1805 /* Verify, update, and unlock the decompressed pages. */
1806 for (i = 0; i < dic->cluster_size; i++) {
1807 struct page *rpage = dic->rpages[i];
1808
1809 if (!rpage)
1810 continue;
1811
1812 if (fsverity_verify_page(rpage))
1813 SetPageUptodate(rpage);
1814 else
1815 ClearPageUptodate(rpage);
1816 unlock_page(rpage);
1817 }
1818
1819 f2fs_put_dic(dic, true);
1820 }
1821
1822 /*
1823 * This is called when a compressed cluster has been decompressed
1824 * (or failed to be read and/or decompressed).
1825 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1826 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1827 bool in_task)
1828 {
1829 int i;
1830
1831 if (!failed && dic->need_verity) {
1832 /*
1833 * Note that to avoid deadlocks, the verity work can't be done
1834 * on the decompression workqueue. This is because verifying
1835 * the data pages can involve reading metadata pages from the
1836 * file, and these metadata pages may be compressed.
1837 */
1838 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1839 fsverity_enqueue_verify_work(&dic->verity_work);
1840 return;
1841 }
1842
1843 /* Update and unlock the cluster's pagecache pages. */
1844 for (i = 0; i < dic->cluster_size; i++) {
1845 struct page *rpage = dic->rpages[i];
1846
1847 if (!rpage)
1848 continue;
1849
1850 if (failed)
1851 ClearPageUptodate(rpage);
1852 else
1853 SetPageUptodate(rpage);
1854 unlock_page(rpage);
1855 }
1856
1857 /*
1858 * Release the reference to the decompress_io_ctx that was being held
1859 * for I/O completion.
1860 */
1861 f2fs_put_dic(dic, in_task);
1862 }
1863
1864 /*
1865 * Put a reference to a compressed page's decompress_io_ctx.
1866 *
1867 * This is called when the page is no longer needed and can be freed.
1868 */
f2fs_put_page_dic(struct page * page,bool in_task)1869 void f2fs_put_page_dic(struct page *page, bool in_task)
1870 {
1871 struct decompress_io_ctx *dic =
1872 (struct decompress_io_ctx *)page_private(page);
1873
1874 f2fs_put_dic(dic, in_task);
1875 }
1876
1877 /*
1878 * check whether cluster blocks are contiguous, and add extent cache entry
1879 * only if cluster blocks are logically and physically contiguous.
1880 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)1881 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1882 unsigned int ofs_in_node)
1883 {
1884 bool compressed = data_blkaddr(dn->inode, dn->node_page,
1885 ofs_in_node) == COMPRESS_ADDR;
1886 int i = compressed ? 1 : 0;
1887 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1888 ofs_in_node + i);
1889
1890 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1891 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1892 ofs_in_node + i);
1893
1894 if (!__is_valid_data_blkaddr(blkaddr))
1895 break;
1896 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1897 return 0;
1898 }
1899
1900 return compressed ? i - 1 : i;
1901 }
1902
1903 const struct address_space_operations f2fs_compress_aops = {
1904 .release_folio = f2fs_release_folio,
1905 .invalidate_folio = f2fs_invalidate_folio,
1906 .migrate_folio = filemap_migrate_folio,
1907 };
1908
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1909 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1910 {
1911 return sbi->compress_inode->i_mapping;
1912 }
1913
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)1914 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
1915 block_t blkaddr, unsigned int len)
1916 {
1917 if (!sbi->compress_inode)
1918 return;
1919 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr + len - 1);
1920 }
1921
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1922 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1923 nid_t ino, block_t blkaddr)
1924 {
1925 struct page *cpage;
1926 int ret;
1927
1928 if (!test_opt(sbi, COMPRESS_CACHE))
1929 return;
1930
1931 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1932 return;
1933
1934 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1935 return;
1936
1937 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1938 if (cpage) {
1939 f2fs_put_page(cpage, 0);
1940 return;
1941 }
1942
1943 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1944 if (!cpage)
1945 return;
1946
1947 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1948 blkaddr, GFP_NOFS);
1949 if (ret) {
1950 f2fs_put_page(cpage, 0);
1951 return;
1952 }
1953
1954 set_page_private_data(cpage, ino);
1955
1956 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1957 SetPageUptodate(cpage);
1958 f2fs_put_page(cpage, 1);
1959 }
1960
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1961 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1962 block_t blkaddr)
1963 {
1964 struct page *cpage;
1965 bool hitted = false;
1966
1967 if (!test_opt(sbi, COMPRESS_CACHE))
1968 return false;
1969
1970 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1971 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1972 if (cpage) {
1973 if (PageUptodate(cpage)) {
1974 atomic_inc(&sbi->compress_page_hit);
1975 memcpy(page_address(page),
1976 page_address(cpage), PAGE_SIZE);
1977 hitted = true;
1978 }
1979 f2fs_put_page(cpage, 1);
1980 }
1981
1982 return hitted;
1983 }
1984
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1985 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1986 {
1987 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1988 struct folio_batch fbatch;
1989 pgoff_t index = 0;
1990 pgoff_t end = MAX_BLKADDR(sbi);
1991
1992 if (!mapping->nrpages)
1993 return;
1994
1995 folio_batch_init(&fbatch);
1996
1997 do {
1998 unsigned int nr, i;
1999
2000 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
2001 if (!nr)
2002 break;
2003
2004 for (i = 0; i < nr; i++) {
2005 struct folio *folio = fbatch.folios[i];
2006
2007 folio_lock(folio);
2008 if (folio->mapping != mapping) {
2009 folio_unlock(folio);
2010 continue;
2011 }
2012
2013 if (ino != get_page_private_data(&folio->page)) {
2014 folio_unlock(folio);
2015 continue;
2016 }
2017
2018 generic_error_remove_folio(mapping, folio);
2019 folio_unlock(folio);
2020 }
2021 folio_batch_release(&fbatch);
2022 cond_resched();
2023 } while (index < end);
2024 }
2025
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)2026 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
2027 {
2028 struct inode *inode;
2029
2030 if (!test_opt(sbi, COMPRESS_CACHE))
2031 return 0;
2032
2033 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
2034 if (IS_ERR(inode))
2035 return PTR_ERR(inode);
2036 sbi->compress_inode = inode;
2037
2038 sbi->compress_percent = COMPRESS_PERCENT;
2039 sbi->compress_watermark = COMPRESS_WATERMARK;
2040
2041 atomic_set(&sbi->compress_page_hit, 0);
2042
2043 return 0;
2044 }
2045
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)2046 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
2047 {
2048 if (!sbi->compress_inode)
2049 return;
2050 iput(sbi->compress_inode);
2051 sbi->compress_inode = NULL;
2052 }
2053
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)2054 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
2055 {
2056 dev_t dev = sbi->sb->s_bdev->bd_dev;
2057 char slab_name[35];
2058
2059 if (!f2fs_sb_has_compression(sbi))
2060 return 0;
2061
2062 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
2063
2064 sbi->page_array_slab_size = sizeof(struct page *) <<
2065 F2FS_OPTION(sbi).compress_log_size;
2066
2067 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2068 sbi->page_array_slab_size);
2069 return sbi->page_array_slab ? 0 : -ENOMEM;
2070 }
2071
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)2072 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2073 {
2074 kmem_cache_destroy(sbi->page_array_slab);
2075 }
2076
f2fs_init_compress_cache(void)2077 int __init f2fs_init_compress_cache(void)
2078 {
2079 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2080 sizeof(struct compress_io_ctx));
2081 if (!cic_entry_slab)
2082 return -ENOMEM;
2083 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2084 sizeof(struct decompress_io_ctx));
2085 if (!dic_entry_slab)
2086 goto free_cic;
2087 return 0;
2088 free_cic:
2089 kmem_cache_destroy(cic_entry_slab);
2090 return -ENOMEM;
2091 }
2092
f2fs_destroy_compress_cache(void)2093 void f2fs_destroy_compress_cache(void)
2094 {
2095 kmem_cache_destroy(dic_entry_slab);
2096 kmem_cache_destroy(cic_entry_slab);
2097 }
2098