1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_RT, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io,unsigned char reason)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 unsigned char reason)
31 {
32 f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 f2fs_handle_critical_error(sbi, reason);
36 }
37
38 /*
39 * We guarantee no failure on the returned page.
40 */
f2fs_grab_meta_folio(struct f2fs_sb_info * sbi,pgoff_t index)41 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index)
42 {
43 struct address_space *mapping = META_MAPPING(sbi);
44 struct folio *folio;
45 repeat:
46 folio = f2fs_grab_cache_folio(mapping, index, false);
47 if (IS_ERR(folio)) {
48 cond_resched();
49 goto repeat;
50 }
51 f2fs_folio_wait_writeback(folio, META, true, true);
52 if (!folio_test_uptodate(folio))
53 folio_mark_uptodate(folio);
54 return folio;
55 }
56
__get_meta_folio(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)57 static struct folio *__get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index,
58 bool is_meta)
59 {
60 struct address_space *mapping = META_MAPPING(sbi);
61 struct folio *folio;
62 struct f2fs_io_info fio = {
63 .sbi = sbi,
64 .type = META,
65 .op = REQ_OP_READ,
66 .op_flags = REQ_META | REQ_PRIO,
67 .old_blkaddr = index,
68 .new_blkaddr = index,
69 .encrypted_page = NULL,
70 .is_por = !is_meta ? 1 : 0,
71 };
72 int err;
73
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76 repeat:
77 folio = f2fs_grab_cache_folio(mapping, index, false);
78 if (IS_ERR(folio)) {
79 cond_resched();
80 goto repeat;
81 }
82 if (folio_test_uptodate(folio))
83 goto out;
84
85 fio.page = &folio->page;
86
87 err = f2fs_submit_page_bio(&fio);
88 if (err) {
89 f2fs_folio_put(folio, true);
90 return ERR_PTR(err);
91 }
92
93 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
94
95 folio_lock(folio);
96 if (unlikely(!is_meta_folio(folio))) {
97 f2fs_folio_put(folio, true);
98 goto repeat;
99 }
100
101 if (unlikely(!folio_test_uptodate(folio))) {
102 f2fs_handle_page_eio(sbi, folio, META);
103 f2fs_folio_put(folio, true);
104 return ERR_PTR(-EIO);
105 }
106 out:
107 return folio;
108 }
109
f2fs_get_meta_folio(struct f2fs_sb_info * sbi,pgoff_t index)110 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112 return __get_meta_folio(sbi, index, true);
113 }
114
f2fs_get_meta_folio_retry(struct f2fs_sb_info * sbi,pgoff_t index)115 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 struct folio *folio;
118 int count = 0;
119
120 retry:
121 folio = __get_meta_folio(sbi, index, true);
122 if (IS_ERR(folio)) {
123 if (PTR_ERR(folio) == -EIO &&
124 ++count <= DEFAULT_RETRY_IO_COUNT)
125 goto retry;
126 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
127 }
128 return folio;
129 }
130
131 /* for POR only */
f2fs_get_tmp_folio(struct f2fs_sb_info * sbi,pgoff_t index)132 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index)
133 {
134 return __get_meta_folio(sbi, index, false);
135 }
136
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138 int type)
139 {
140 struct seg_entry *se;
141 unsigned int segno, offset;
142 bool exist;
143
144 if (type == DATA_GENERIC)
145 return true;
146
147 segno = GET_SEGNO(sbi, blkaddr);
148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149 se = get_seg_entry(sbi, segno);
150
151 exist = f2fs_test_bit(offset, se->cur_valid_map);
152
153 /* skip data, if we already have an error in checkpoint. */
154 if (unlikely(f2fs_cp_error(sbi)))
155 return exist;
156
157 if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
158 (!exist && type == DATA_GENERIC_ENHANCE))
159 goto out_err;
160 if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
161 goto out_handle;
162 return exist;
163
164 out_err:
165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166 blkaddr, exist);
167 set_sbi_flag(sbi, SBI_NEED_FSCK);
168 dump_stack();
169 out_handle:
170 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
171 return exist;
172 }
173
__f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
175 block_t blkaddr, int type)
176 {
177 switch (type) {
178 case META_NAT:
179 break;
180 case META_SIT:
181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182 goto check_only;
183 break;
184 case META_SSA:
185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186 blkaddr < SM_I(sbi)->ssa_blkaddr))
187 goto check_only;
188 break;
189 case META_CP:
190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191 blkaddr < __start_cp_addr(sbi)))
192 goto check_only;
193 break;
194 case META_POR:
195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196 blkaddr < MAIN_BLKADDR(sbi)))
197 goto check_only;
198 break;
199 case DATA_GENERIC:
200 case DATA_GENERIC_ENHANCE:
201 case DATA_GENERIC_ENHANCE_READ:
202 case DATA_GENERIC_ENHANCE_UPDATE:
203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204 blkaddr < MAIN_BLKADDR(sbi))) {
205
206 /* Skip to emit an error message. */
207 if (unlikely(f2fs_cp_error(sbi)))
208 return false;
209
210 f2fs_warn(sbi, "access invalid blkaddr:%u",
211 blkaddr);
212 set_sbi_flag(sbi, SBI_NEED_FSCK);
213 dump_stack();
214 goto err;
215 } else {
216 return __is_bitmap_valid(sbi, blkaddr, type);
217 }
218 break;
219 case META_GENERIC:
220 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
221 blkaddr >= MAIN_BLKADDR(sbi)))
222 goto err;
223 break;
224 default:
225 BUG();
226 }
227
228 return true;
229 err:
230 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
231 check_only:
232 return false;
233 }
234
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
236 block_t blkaddr, int type)
237 {
238 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
239 return false;
240 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
241 }
242
f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info * sbi,block_t blkaddr,int type)243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
244 block_t blkaddr, int type)
245 {
246 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
247 }
248
249 /*
250 * Readahead CP/NAT/SIT/SSA/POR pages
251 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
253 int type, bool sync)
254 {
255 block_t blkno = start;
256 struct f2fs_io_info fio = {
257 .sbi = sbi,
258 .type = META,
259 .op = REQ_OP_READ,
260 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
261 .encrypted_page = NULL,
262 .in_list = 0,
263 .is_por = (type == META_POR) ? 1 : 0,
264 };
265 struct blk_plug plug;
266 int err;
267
268 if (unlikely(type == META_POR))
269 fio.op_flags &= ~REQ_META;
270
271 blk_start_plug(&plug);
272 for (; nrpages-- > 0; blkno++) {
273 struct folio *folio;
274
275 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
276 goto out;
277
278 switch (type) {
279 case META_NAT:
280 if (unlikely(blkno >=
281 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
282 blkno = 0;
283 /* get nat block addr */
284 fio.new_blkaddr = current_nat_addr(sbi,
285 blkno * NAT_ENTRY_PER_BLOCK);
286 break;
287 case META_SIT:
288 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
289 goto out;
290 /* get sit block addr */
291 fio.new_blkaddr = current_sit_addr(sbi,
292 blkno * SIT_ENTRY_PER_BLOCK);
293 break;
294 case META_SSA:
295 case META_CP:
296 case META_POR:
297 fio.new_blkaddr = blkno;
298 break;
299 default:
300 BUG();
301 }
302
303 folio = f2fs_grab_cache_folio(META_MAPPING(sbi),
304 fio.new_blkaddr, false);
305 if (IS_ERR(folio))
306 continue;
307 if (folio_test_uptodate(folio)) {
308 f2fs_folio_put(folio, true);
309 continue;
310 }
311
312 fio.page = &folio->page;
313 err = f2fs_submit_page_bio(&fio);
314 f2fs_folio_put(folio, err ? true : false);
315
316 if (!err)
317 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
318 F2FS_BLKSIZE);
319 }
320 out:
321 blk_finish_plug(&plug);
322 return blkno - start;
323 }
324
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index,unsigned int ra_blocks)325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
326 unsigned int ra_blocks)
327 {
328 struct folio *folio;
329 bool readahead = false;
330
331 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
332 return;
333
334 folio = filemap_get_folio(META_MAPPING(sbi), index);
335 if (IS_ERR(folio) || !folio_test_uptodate(folio))
336 readahead = true;
337 f2fs_folio_put(folio, false);
338
339 if (readahead)
340 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
341 }
342
__f2fs_write_meta_folio(struct folio * folio,struct writeback_control * wbc,enum iostat_type io_type)343 static bool __f2fs_write_meta_folio(struct folio *folio,
344 struct writeback_control *wbc,
345 enum iostat_type io_type)
346 {
347 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
348
349 trace_f2fs_writepage(folio, META);
350
351 if (unlikely(f2fs_cp_error(sbi))) {
352 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
353 folio_clear_uptodate(folio);
354 dec_page_count(sbi, F2FS_DIRTY_META);
355 folio_unlock(folio);
356 return true;
357 }
358 goto redirty_out;
359 }
360 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
361 goto redirty_out;
362
363 f2fs_do_write_meta_page(sbi, folio, io_type);
364 dec_page_count(sbi, F2FS_DIRTY_META);
365
366 folio_unlock(folio);
367
368 if (unlikely(f2fs_cp_error(sbi)))
369 f2fs_submit_merged_write(sbi, META);
370
371 return true;
372
373 redirty_out:
374 folio_redirty_for_writepage(wbc, folio);
375 return false;
376 }
377
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)378 static int f2fs_write_meta_pages(struct address_space *mapping,
379 struct writeback_control *wbc)
380 {
381 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
382 long diff, written;
383
384 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
385 goto skip_write;
386
387 /* collect a number of dirty meta pages and write together */
388 if (wbc->sync_mode != WB_SYNC_ALL &&
389 get_pages(sbi, F2FS_DIRTY_META) <
390 nr_pages_to_skip(sbi, META))
391 goto skip_write;
392
393 /* if locked failed, cp will flush dirty pages instead */
394 if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
395 goto skip_write;
396
397 trace_f2fs_writepages(mapping->host, wbc, META);
398 diff = nr_pages_to_write(sbi, META, wbc);
399 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
400 f2fs_up_write(&sbi->cp_global_sem);
401 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
402 return 0;
403
404 skip_write:
405 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
406 trace_f2fs_writepages(mapping->host, wbc, META);
407 return 0;
408 }
409
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)410 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
411 long nr_to_write, enum iostat_type io_type)
412 {
413 struct address_space *mapping = META_MAPPING(sbi);
414 pgoff_t index = 0, prev = ULONG_MAX;
415 struct folio_batch fbatch;
416 long nwritten = 0;
417 int nr_folios;
418 struct writeback_control wbc = {};
419 struct blk_plug plug;
420
421 folio_batch_init(&fbatch);
422
423 blk_start_plug(&plug);
424
425 while ((nr_folios = filemap_get_folios_tag(mapping, &index,
426 (pgoff_t)-1,
427 PAGECACHE_TAG_DIRTY, &fbatch))) {
428 int i;
429
430 for (i = 0; i < nr_folios; i++) {
431 struct folio *folio = fbatch.folios[i];
432
433 if (nr_to_write != LONG_MAX && i != 0 &&
434 folio->index != prev +
435 folio_nr_pages(fbatch.folios[i-1])) {
436 folio_batch_release(&fbatch);
437 goto stop;
438 }
439
440 folio_lock(folio);
441
442 if (unlikely(!is_meta_folio(folio))) {
443 continue_unlock:
444 folio_unlock(folio);
445 continue;
446 }
447 if (!folio_test_dirty(folio)) {
448 /* someone wrote it for us */
449 goto continue_unlock;
450 }
451
452 f2fs_folio_wait_writeback(folio, META, true, true);
453
454 if (!folio_clear_dirty_for_io(folio))
455 goto continue_unlock;
456
457 if (!__f2fs_write_meta_folio(folio, &wbc,
458 io_type)) {
459 folio_unlock(folio);
460 break;
461 }
462 nwritten += folio_nr_pages(folio);
463 prev = folio->index;
464 if (unlikely(nwritten >= nr_to_write))
465 break;
466 }
467 folio_batch_release(&fbatch);
468 cond_resched();
469 }
470 stop:
471 if (nwritten)
472 f2fs_submit_merged_write(sbi, type);
473
474 blk_finish_plug(&plug);
475
476 return nwritten;
477 }
478
f2fs_dirty_meta_folio(struct address_space * mapping,struct folio * folio)479 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
480 struct folio *folio)
481 {
482 trace_f2fs_set_page_dirty(folio, META);
483
484 if (!folio_test_uptodate(folio))
485 folio_mark_uptodate(folio);
486 if (filemap_dirty_folio(mapping, folio)) {
487 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
488 set_page_private_reference(&folio->page);
489 return true;
490 }
491 return false;
492 }
493
494 const struct address_space_operations f2fs_meta_aops = {
495 .writepages = f2fs_write_meta_pages,
496 .dirty_folio = f2fs_dirty_meta_folio,
497 .invalidate_folio = f2fs_invalidate_folio,
498 .release_folio = f2fs_release_folio,
499 .migrate_folio = filemap_migrate_folio,
500 };
501
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)502 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
503 unsigned int devidx, int type)
504 {
505 struct inode_management *im = &sbi->im[type];
506 struct ino_entry *e = NULL, *new = NULL;
507 int ret;
508
509 if (type == FLUSH_INO) {
510 rcu_read_lock();
511 e = radix_tree_lookup(&im->ino_root, ino);
512 rcu_read_unlock();
513 }
514
515 retry:
516 if (!e)
517 new = f2fs_kmem_cache_alloc(ino_entry_slab,
518 GFP_NOFS, true, NULL);
519
520 ret = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
521 f2fs_bug_on(sbi, ret);
522
523 spin_lock(&im->ino_lock);
524 e = radix_tree_lookup(&im->ino_root, ino);
525 if (!e) {
526 if (!new) {
527 spin_unlock(&im->ino_lock);
528 radix_tree_preload_end();
529 goto retry;
530 }
531 e = new;
532 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
533 f2fs_bug_on(sbi, 1);
534
535 memset(e, 0, sizeof(struct ino_entry));
536 e->ino = ino;
537
538 list_add_tail(&e->list, &im->ino_list);
539 if (type != ORPHAN_INO)
540 im->ino_num++;
541 }
542
543 if (type == FLUSH_INO)
544 f2fs_set_bit(devidx, (char *)&e->dirty_device);
545
546 spin_unlock(&im->ino_lock);
547 radix_tree_preload_end();
548
549 if (new && e != new)
550 kmem_cache_free(ino_entry_slab, new);
551 }
552
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)553 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
554 {
555 struct inode_management *im = &sbi->im[type];
556 struct ino_entry *e;
557
558 spin_lock(&im->ino_lock);
559 e = radix_tree_lookup(&im->ino_root, ino);
560 if (e) {
561 list_del(&e->list);
562 radix_tree_delete(&im->ino_root, ino);
563 im->ino_num--;
564 spin_unlock(&im->ino_lock);
565 kmem_cache_free(ino_entry_slab, e);
566 return;
567 }
568 spin_unlock(&im->ino_lock);
569 }
570
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)571 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
572 {
573 /* add new dirty ino entry into list */
574 __add_ino_entry(sbi, ino, 0, type);
575 }
576
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)577 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
578 {
579 /* remove dirty ino entry from list */
580 __remove_ino_entry(sbi, ino, type);
581 }
582
583 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)584 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
585 {
586 struct inode_management *im = &sbi->im[mode];
587 struct ino_entry *e;
588
589 spin_lock(&im->ino_lock);
590 e = radix_tree_lookup(&im->ino_root, ino);
591 spin_unlock(&im->ino_lock);
592 return e ? true : false;
593 }
594
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)595 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
596 {
597 struct ino_entry *e, *tmp;
598 int i;
599
600 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
601 struct inode_management *im = &sbi->im[i];
602
603 spin_lock(&im->ino_lock);
604 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
605 list_del(&e->list);
606 radix_tree_delete(&im->ino_root, e->ino);
607 kmem_cache_free(ino_entry_slab, e);
608 im->ino_num--;
609 }
610 spin_unlock(&im->ino_lock);
611 }
612 }
613
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)614 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
615 unsigned int devidx, int type)
616 {
617 __add_ino_entry(sbi, ino, devidx, type);
618 }
619
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)620 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
621 unsigned int devidx, int type)
622 {
623 struct inode_management *im = &sbi->im[type];
624 struct ino_entry *e;
625 bool is_dirty = false;
626
627 spin_lock(&im->ino_lock);
628 e = radix_tree_lookup(&im->ino_root, ino);
629 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
630 is_dirty = true;
631 spin_unlock(&im->ino_lock);
632 return is_dirty;
633 }
634
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)635 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
636 {
637 struct inode_management *im = &sbi->im[ORPHAN_INO];
638 int err = 0;
639
640 spin_lock(&im->ino_lock);
641
642 if (time_to_inject(sbi, FAULT_ORPHAN)) {
643 spin_unlock(&im->ino_lock);
644 return -ENOSPC;
645 }
646
647 if (unlikely(im->ino_num >= sbi->max_orphans))
648 err = -ENOSPC;
649 else
650 im->ino_num++;
651 spin_unlock(&im->ino_lock);
652
653 return err;
654 }
655
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)656 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
657 {
658 struct inode_management *im = &sbi->im[ORPHAN_INO];
659
660 spin_lock(&im->ino_lock);
661 f2fs_bug_on(sbi, im->ino_num == 0);
662 im->ino_num--;
663 spin_unlock(&im->ino_lock);
664 }
665
f2fs_add_orphan_inode(struct inode * inode)666 void f2fs_add_orphan_inode(struct inode *inode)
667 {
668 /* add new orphan ino entry into list */
669 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
670 f2fs_update_inode_page(inode);
671 }
672
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)673 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
674 {
675 /* remove orphan entry from orphan list */
676 __remove_ino_entry(sbi, ino, ORPHAN_INO);
677 }
678
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)679 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
680 {
681 struct inode *inode;
682 struct node_info ni;
683 int err;
684
685 inode = f2fs_iget_retry(sbi->sb, ino);
686 if (IS_ERR(inode)) {
687 /*
688 * there should be a bug that we can't find the entry
689 * to orphan inode.
690 */
691 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
692 return PTR_ERR(inode);
693 }
694
695 err = f2fs_dquot_initialize(inode);
696 if (err) {
697 iput(inode);
698 goto err_out;
699 }
700
701 clear_nlink(inode);
702
703 /* truncate all the data during iput */
704 iput(inode);
705
706 err = f2fs_get_node_info(sbi, ino, &ni, false);
707 if (err)
708 goto err_out;
709
710 /* ENOMEM was fully retried in f2fs_evict_inode. */
711 if (ni.blk_addr != NULL_ADDR) {
712 err = -EIO;
713 goto err_out;
714 }
715 return 0;
716
717 err_out:
718 set_sbi_flag(sbi, SBI_NEED_FSCK);
719 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
720 __func__, ino);
721 return err;
722 }
723
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)724 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
725 {
726 block_t start_blk, orphan_blocks, i, j;
727 int err = 0;
728
729 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
730 return 0;
731
732 if (f2fs_hw_is_readonly(sbi)) {
733 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
734 return 0;
735 }
736
737 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
738 f2fs_info(sbi, "orphan cleanup on readonly fs");
739
740 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
741 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
742
743 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
744
745 for (i = 0; i < orphan_blocks; i++) {
746 struct folio *folio;
747 struct f2fs_orphan_block *orphan_blk;
748
749 folio = f2fs_get_meta_folio(sbi, start_blk + i);
750 if (IS_ERR(folio)) {
751 err = PTR_ERR(folio);
752 goto out;
753 }
754
755 orphan_blk = folio_address(folio);
756 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
757 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
758
759 err = recover_orphan_inode(sbi, ino);
760 if (err) {
761 f2fs_folio_put(folio, true);
762 goto out;
763 }
764 }
765 f2fs_folio_put(folio, true);
766 }
767 /* clear Orphan Flag */
768 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
769 out:
770 set_sbi_flag(sbi, SBI_IS_RECOVERED);
771
772 return err;
773 }
774
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)775 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
776 {
777 struct list_head *head;
778 struct f2fs_orphan_block *orphan_blk = NULL;
779 unsigned int nentries = 0;
780 unsigned short index = 1;
781 unsigned short orphan_blocks;
782 struct folio *folio = NULL;
783 struct ino_entry *orphan = NULL;
784 struct inode_management *im = &sbi->im[ORPHAN_INO];
785
786 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
787
788 /*
789 * we don't need to do spin_lock(&im->ino_lock) here, since all the
790 * orphan inode operations are covered under f2fs_lock_op().
791 * And, spin_lock should be avoided due to page operations below.
792 */
793 head = &im->ino_list;
794
795 /* loop for each orphan inode entry and write them in journal block */
796 list_for_each_entry(orphan, head, list) {
797 if (!folio) {
798 folio = f2fs_grab_meta_folio(sbi, start_blk++);
799 orphan_blk = folio_address(folio);
800 memset(orphan_blk, 0, sizeof(*orphan_blk));
801 }
802
803 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
804
805 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
806 /*
807 * an orphan block is full of 1020 entries,
808 * then we need to flush current orphan blocks
809 * and bring another one in memory
810 */
811 orphan_blk->blk_addr = cpu_to_le16(index);
812 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
813 orphan_blk->entry_count = cpu_to_le32(nentries);
814 folio_mark_dirty(folio);
815 f2fs_folio_put(folio, true);
816 index++;
817 nentries = 0;
818 folio = NULL;
819 }
820 }
821
822 if (folio) {
823 orphan_blk->blk_addr = cpu_to_le16(index);
824 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
825 orphan_blk->entry_count = cpu_to_le32(nentries);
826 folio_mark_dirty(folio);
827 f2fs_folio_put(folio, true);
828 }
829 }
830
f2fs_checkpoint_chksum(struct f2fs_checkpoint * ckpt)831 static __u32 f2fs_checkpoint_chksum(struct f2fs_checkpoint *ckpt)
832 {
833 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
834 __u32 chksum;
835
836 chksum = f2fs_crc32(ckpt, chksum_ofs);
837 if (chksum_ofs < CP_CHKSUM_OFFSET) {
838 chksum_ofs += sizeof(chksum);
839 chksum = f2fs_chksum(chksum, (__u8 *)ckpt + chksum_ofs,
840 F2FS_BLKSIZE - chksum_ofs);
841 }
842 return chksum;
843 }
844
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct folio ** cp_folio,unsigned long long * version)845 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
846 struct f2fs_checkpoint **cp_block, struct folio **cp_folio,
847 unsigned long long *version)
848 {
849 size_t crc_offset = 0;
850 __u32 crc;
851
852 *cp_folio = f2fs_get_meta_folio(sbi, cp_addr);
853 if (IS_ERR(*cp_folio))
854 return PTR_ERR(*cp_folio);
855
856 *cp_block = folio_address(*cp_folio);
857
858 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
859 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
860 crc_offset > CP_CHKSUM_OFFSET) {
861 f2fs_folio_put(*cp_folio, true);
862 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
863 return -EINVAL;
864 }
865
866 crc = f2fs_checkpoint_chksum(*cp_block);
867 if (crc != cur_cp_crc(*cp_block)) {
868 f2fs_folio_put(*cp_folio, true);
869 f2fs_warn(sbi, "invalid crc value");
870 return -EINVAL;
871 }
872
873 *version = cur_cp_version(*cp_block);
874 return 0;
875 }
876
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)877 static struct folio *validate_checkpoint(struct f2fs_sb_info *sbi,
878 block_t cp_addr, unsigned long long *version)
879 {
880 struct folio *cp_folio_1 = NULL, *cp_folio_2 = NULL;
881 struct f2fs_checkpoint *cp_block = NULL;
882 unsigned long long cur_version = 0, pre_version = 0;
883 unsigned int cp_blocks;
884 int err;
885
886 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
887 &cp_folio_1, version);
888 if (err)
889 return NULL;
890
891 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
892
893 if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
894 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
895 le32_to_cpu(cp_block->cp_pack_total_block_count));
896 goto invalid_cp;
897 }
898 pre_version = *version;
899
900 cp_addr += cp_blocks - 1;
901 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
902 &cp_folio_2, version);
903 if (err)
904 goto invalid_cp;
905 cur_version = *version;
906
907 if (cur_version == pre_version) {
908 *version = cur_version;
909 f2fs_folio_put(cp_folio_2, true);
910 return cp_folio_1;
911 }
912 f2fs_folio_put(cp_folio_2, true);
913 invalid_cp:
914 f2fs_folio_put(cp_folio_1, true);
915 return NULL;
916 }
917
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)918 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
919 {
920 struct f2fs_checkpoint *cp_block;
921 struct f2fs_super_block *fsb = sbi->raw_super;
922 struct folio *cp1, *cp2, *cur_folio;
923 unsigned long blk_size = sbi->blocksize;
924 unsigned long long cp1_version = 0, cp2_version = 0;
925 unsigned long long cp_start_blk_no;
926 unsigned int cp_blks = 1 + __cp_payload(sbi);
927 block_t cp_blk_no;
928 int i;
929 int err;
930
931 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
932 GFP_KERNEL);
933 if (!sbi->ckpt)
934 return -ENOMEM;
935 /*
936 * Finding out valid cp block involves read both
937 * sets( cp pack 1 and cp pack 2)
938 */
939 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
940 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
941
942 /* The second checkpoint pack should start at the next segment */
943 cp_start_blk_no += ((unsigned long long)1) <<
944 le32_to_cpu(fsb->log_blocks_per_seg);
945 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
946
947 if (cp1 && cp2) {
948 if (ver_after(cp2_version, cp1_version))
949 cur_folio = cp2;
950 else
951 cur_folio = cp1;
952 } else if (cp1) {
953 cur_folio = cp1;
954 } else if (cp2) {
955 cur_folio = cp2;
956 } else {
957 err = -EFSCORRUPTED;
958 goto fail_no_cp;
959 }
960
961 cp_block = folio_address(cur_folio);
962 memcpy(sbi->ckpt, cp_block, blk_size);
963
964 if (cur_folio == cp1)
965 sbi->cur_cp_pack = 1;
966 else
967 sbi->cur_cp_pack = 2;
968
969 /* Sanity checking of checkpoint */
970 if (f2fs_sanity_check_ckpt(sbi)) {
971 err = -EFSCORRUPTED;
972 goto free_fail_no_cp;
973 }
974
975 if (cp_blks <= 1)
976 goto done;
977
978 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
979 if (cur_folio == cp2)
980 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
981
982 for (i = 1; i < cp_blks; i++) {
983 void *sit_bitmap_ptr;
984 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
985
986 cur_folio = f2fs_get_meta_folio(sbi, cp_blk_no + i);
987 if (IS_ERR(cur_folio)) {
988 err = PTR_ERR(cur_folio);
989 goto free_fail_no_cp;
990 }
991 sit_bitmap_ptr = folio_address(cur_folio);
992 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
993 f2fs_folio_put(cur_folio, true);
994 }
995 done:
996 f2fs_folio_put(cp1, true);
997 f2fs_folio_put(cp2, true);
998 return 0;
999
1000 free_fail_no_cp:
1001 f2fs_folio_put(cp1, true);
1002 f2fs_folio_put(cp2, true);
1003 fail_no_cp:
1004 kvfree(sbi->ckpt);
1005 return err;
1006 }
1007
__add_dirty_inode(struct inode * inode,enum inode_type type)1008 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1009 {
1010 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1011 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1012
1013 if (is_inode_flag_set(inode, flag))
1014 return;
1015
1016 set_inode_flag(inode, flag);
1017 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1018 stat_inc_dirty_inode(sbi, type);
1019 }
1020
__remove_dirty_inode(struct inode * inode,enum inode_type type)1021 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1022 {
1023 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1024
1025 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1026 return;
1027
1028 list_del_init(&F2FS_I(inode)->dirty_list);
1029 clear_inode_flag(inode, flag);
1030 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1031 }
1032
f2fs_update_dirty_folio(struct inode * inode,struct folio * folio)1033 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1034 {
1035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1037
1038 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1039 !S_ISLNK(inode->i_mode))
1040 return;
1041
1042 spin_lock(&sbi->inode_lock[type]);
1043 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1044 __add_dirty_inode(inode, type);
1045 inode_inc_dirty_pages(inode);
1046 spin_unlock(&sbi->inode_lock[type]);
1047
1048 set_page_private_reference(&folio->page);
1049 }
1050
f2fs_remove_dirty_inode(struct inode * inode)1051 void f2fs_remove_dirty_inode(struct inode *inode)
1052 {
1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1055
1056 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1057 !S_ISLNK(inode->i_mode))
1058 return;
1059
1060 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1061 return;
1062
1063 spin_lock(&sbi->inode_lock[type]);
1064 __remove_dirty_inode(inode, type);
1065 spin_unlock(&sbi->inode_lock[type]);
1066 }
1067
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1068 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1069 bool from_cp)
1070 {
1071 struct list_head *head;
1072 struct inode *inode;
1073 struct f2fs_inode_info *fi;
1074 bool is_dir = (type == DIR_INODE);
1075 unsigned long ino = 0;
1076
1077 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1078 get_pages(sbi, is_dir ?
1079 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1080 retry:
1081 if (unlikely(f2fs_cp_error(sbi))) {
1082 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1083 get_pages(sbi, is_dir ?
1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1085 return -EIO;
1086 }
1087
1088 spin_lock(&sbi->inode_lock[type]);
1089
1090 head = &sbi->inode_list[type];
1091 if (list_empty(head)) {
1092 spin_unlock(&sbi->inode_lock[type]);
1093 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1094 get_pages(sbi, is_dir ?
1095 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1096 return 0;
1097 }
1098 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1099 inode = igrab(&fi->vfs_inode);
1100 spin_unlock(&sbi->inode_lock[type]);
1101 if (inode) {
1102 unsigned long cur_ino = inode->i_ino;
1103
1104 if (from_cp)
1105 F2FS_I(inode)->cp_task = current;
1106 F2FS_I(inode)->wb_task = current;
1107
1108 filemap_fdatawrite(inode->i_mapping);
1109
1110 F2FS_I(inode)->wb_task = NULL;
1111 if (from_cp)
1112 F2FS_I(inode)->cp_task = NULL;
1113
1114 iput(inode);
1115 /* We need to give cpu to another writers. */
1116 if (ino == cur_ino)
1117 cond_resched();
1118 else
1119 ino = cur_ino;
1120 } else {
1121 /*
1122 * We should submit bio, since it exists several
1123 * writebacking dentry pages in the freeing inode.
1124 */
1125 f2fs_submit_merged_write(sbi, DATA);
1126 cond_resched();
1127 }
1128 goto retry;
1129 }
1130
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1131 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1132 {
1133 struct list_head *head = &sbi->inode_list[DIRTY_META];
1134 struct inode *inode;
1135 struct f2fs_inode_info *fi;
1136 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1137
1138 while (total--) {
1139 if (unlikely(f2fs_cp_error(sbi)))
1140 return -EIO;
1141
1142 spin_lock(&sbi->inode_lock[DIRTY_META]);
1143 if (list_empty(head)) {
1144 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1145 return 0;
1146 }
1147 fi = list_first_entry(head, struct f2fs_inode_info,
1148 gdirty_list);
1149 inode = igrab(&fi->vfs_inode);
1150 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1151 if (inode) {
1152 sync_inode_metadata(inode, 0);
1153
1154 /* it's on eviction */
1155 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1156 f2fs_update_inode_page(inode);
1157 iput(inode);
1158 }
1159 }
1160 return 0;
1161 }
1162
__prepare_cp_block(struct f2fs_sb_info * sbi)1163 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1164 {
1165 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1166 struct f2fs_nm_info *nm_i = NM_I(sbi);
1167 nid_t last_nid = nm_i->next_scan_nid;
1168
1169 next_free_nid(sbi, &last_nid);
1170 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1171 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1172 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1173 ckpt->next_free_nid = cpu_to_le32(last_nid);
1174
1175 /* update user_block_counts */
1176 sbi->last_valid_block_count = sbi->total_valid_block_count;
1177 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1178 percpu_counter_set(&sbi->rf_node_block_count, 0);
1179 }
1180
__need_flush_quota(struct f2fs_sb_info * sbi)1181 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1182 {
1183 bool ret = false;
1184
1185 if (!is_journalled_quota(sbi))
1186 return false;
1187
1188 if (!f2fs_down_write_trylock(&sbi->quota_sem))
1189 return true;
1190 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1191 ret = false;
1192 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1193 ret = false;
1194 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1195 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1196 ret = true;
1197 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1198 ret = true;
1199 }
1200 f2fs_up_write(&sbi->quota_sem);
1201 return ret;
1202 }
1203
1204 /*
1205 * Freeze all the FS-operations for checkpoint.
1206 */
block_operations(struct f2fs_sb_info * sbi)1207 static int block_operations(struct f2fs_sb_info *sbi)
1208 {
1209 struct writeback_control wbc = {
1210 .sync_mode = WB_SYNC_ALL,
1211 .nr_to_write = LONG_MAX,
1212 };
1213 int err = 0, cnt = 0;
1214
1215 /*
1216 * Let's flush inline_data in dirty node pages.
1217 */
1218 f2fs_flush_inline_data(sbi);
1219
1220 retry_flush_quotas:
1221 f2fs_lock_all(sbi);
1222 if (__need_flush_quota(sbi)) {
1223 bool need_lock = sbi->umount_lock_holder != current;
1224
1225 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1226 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1227 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1228 goto retry_flush_dents;
1229 }
1230 f2fs_unlock_all(sbi);
1231
1232 /* don't grab s_umount lock during mount/umount/remount/freeze/quotactl */
1233 if (!need_lock) {
1234 f2fs_do_quota_sync(sbi->sb, -1);
1235 } else if (down_read_trylock(&sbi->sb->s_umount)) {
1236 f2fs_do_quota_sync(sbi->sb, -1);
1237 up_read(&sbi->sb->s_umount);
1238 }
1239 cond_resched();
1240 goto retry_flush_quotas;
1241 }
1242
1243 retry_flush_dents:
1244 /* write all the dirty dentry pages */
1245 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1246 f2fs_unlock_all(sbi);
1247 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1248 if (err)
1249 return err;
1250 cond_resched();
1251 goto retry_flush_quotas;
1252 }
1253
1254 /*
1255 * POR: we should ensure that there are no dirty node pages
1256 * until finishing nat/sit flush. inode->i_blocks can be updated.
1257 */
1258 f2fs_down_write(&sbi->node_change);
1259
1260 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1261 f2fs_up_write(&sbi->node_change);
1262 f2fs_unlock_all(sbi);
1263 err = f2fs_sync_inode_meta(sbi);
1264 if (err)
1265 return err;
1266 cond_resched();
1267 goto retry_flush_quotas;
1268 }
1269
1270 retry_flush_nodes:
1271 f2fs_down_write(&sbi->node_write);
1272
1273 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1274 f2fs_up_write(&sbi->node_write);
1275 atomic_inc(&sbi->wb_sync_req[NODE]);
1276 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1277 atomic_dec(&sbi->wb_sync_req[NODE]);
1278 if (err) {
1279 f2fs_up_write(&sbi->node_change);
1280 f2fs_unlock_all(sbi);
1281 return err;
1282 }
1283 cond_resched();
1284 goto retry_flush_nodes;
1285 }
1286
1287 /*
1288 * sbi->node_change is used only for AIO write_begin path which produces
1289 * dirty node blocks and some checkpoint values by block allocation.
1290 */
1291 __prepare_cp_block(sbi);
1292 f2fs_up_write(&sbi->node_change);
1293 return err;
1294 }
1295
unblock_operations(struct f2fs_sb_info * sbi)1296 static void unblock_operations(struct f2fs_sb_info *sbi)
1297 {
1298 f2fs_up_write(&sbi->node_write);
1299 f2fs_unlock_all(sbi);
1300 }
1301
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1302 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1303 {
1304 DEFINE_WAIT(wait);
1305
1306 for (;;) {
1307 if (!get_pages(sbi, type))
1308 break;
1309
1310 if (unlikely(f2fs_cp_error(sbi) &&
1311 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1312 break;
1313
1314 if (type == F2FS_DIRTY_META)
1315 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1316 FS_CP_META_IO);
1317 else if (type == F2FS_WB_CP_DATA)
1318 f2fs_submit_merged_write(sbi, DATA);
1319
1320 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1321 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1322 }
1323 finish_wait(&sbi->cp_wait, &wait);
1324 }
1325
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1326 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1327 {
1328 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1329 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1330 unsigned long flags;
1331
1332 spin_lock_irqsave(&sbi->cp_lock, flags);
1333
1334 if ((cpc->reason & CP_UMOUNT) &&
1335 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1336 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1337 disable_nat_bits(sbi, false);
1338
1339 if (cpc->reason & CP_TRIMMED)
1340 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1341 else
1342 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1343
1344 if (cpc->reason & CP_UMOUNT)
1345 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1346 else
1347 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1348
1349 if (cpc->reason & CP_FASTBOOT)
1350 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1351 else
1352 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1353
1354 if (orphan_num)
1355 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1356 else
1357 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1358
1359 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1360 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1361
1362 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1363 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1364 else
1365 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1366
1367 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1368 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1369 else
1370 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1371
1372 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1373 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1374 else
1375 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1376
1377 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1378 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1379 else
1380 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1381
1382 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1383 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1384
1385 /* set this flag to activate crc|cp_ver for recovery */
1386 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1387 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1388
1389 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1390 }
1391
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1392 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1393 void *src, block_t blk_addr)
1394 {
1395 struct writeback_control wbc = {};
1396
1397 /*
1398 * filemap_get_folios_tag and folio_lock again will take
1399 * some extra time. Therefore, f2fs_update_meta_pages and
1400 * f2fs_sync_meta_pages are combined in this function.
1401 */
1402 struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
1403
1404 memcpy(folio_address(folio), src, PAGE_SIZE);
1405
1406 folio_mark_dirty(folio);
1407 if (unlikely(!folio_clear_dirty_for_io(folio)))
1408 f2fs_bug_on(sbi, 1);
1409
1410 /* writeout cp pack 2 page */
1411 if (unlikely(!__f2fs_write_meta_folio(folio, &wbc, FS_CP_META_IO))) {
1412 if (f2fs_cp_error(sbi)) {
1413 f2fs_folio_put(folio, true);
1414 return;
1415 }
1416 f2fs_bug_on(sbi, true);
1417 }
1418
1419 f2fs_folio_put(folio, false);
1420
1421 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1422 f2fs_submit_merged_write(sbi, META_FLUSH);
1423 }
1424
get_sectors_written(struct block_device * bdev)1425 static inline u64 get_sectors_written(struct block_device *bdev)
1426 {
1427 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1428 }
1429
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1430 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1431 {
1432 if (f2fs_is_multi_device(sbi)) {
1433 u64 sectors = 0;
1434 int i;
1435
1436 for (i = 0; i < sbi->s_ndevs; i++)
1437 sectors += get_sectors_written(FDEV(i).bdev);
1438
1439 return sectors;
1440 }
1441
1442 return get_sectors_written(sbi->sb->s_bdev);
1443 }
1444
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1445 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1446 {
1447 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1448 struct f2fs_nm_info *nm_i = NM_I(sbi);
1449 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1450 block_t start_blk;
1451 unsigned int data_sum_blocks, orphan_blocks;
1452 __u32 crc32 = 0;
1453 int i;
1454 int cp_payload_blks = __cp_payload(sbi);
1455 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1456 u64 kbytes_written;
1457 int err;
1458
1459 /* Flush all the NAT/SIT pages */
1460 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1461
1462 /* start to update checkpoint, cp ver is already updated previously */
1463 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1464 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1465 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1466 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1467
1468 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1469 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1470 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1471 }
1472 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1473 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1474
1475 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1476 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1477 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1478 }
1479
1480 /* 2 cp + n data seg summary + orphan inode blocks */
1481 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1482 spin_lock_irqsave(&sbi->cp_lock, flags);
1483 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1484 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1485 else
1486 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1487 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1488
1489 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1490 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1491 orphan_blocks);
1492
1493 if (__remain_node_summaries(cpc->reason))
1494 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1495 cp_payload_blks + data_sum_blocks +
1496 orphan_blocks + NR_CURSEG_NODE_TYPE);
1497 else
1498 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1499 cp_payload_blks + data_sum_blocks +
1500 orphan_blocks);
1501
1502 /* update ckpt flag for checkpoint */
1503 update_ckpt_flags(sbi, cpc);
1504
1505 /* update SIT/NAT bitmap */
1506 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1507 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1508
1509 crc32 = f2fs_checkpoint_chksum(ckpt);
1510 *((__le32 *)((unsigned char *)ckpt +
1511 le32_to_cpu(ckpt->checksum_offset)))
1512 = cpu_to_le32(crc32);
1513
1514 start_blk = __start_cp_next_addr(sbi);
1515
1516 /* write nat bits */
1517 if (enabled_nat_bits(sbi, cpc)) {
1518 __u64 cp_ver = cur_cp_version(ckpt);
1519 block_t blk;
1520
1521 cp_ver |= ((__u64)crc32 << 32);
1522 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1523
1524 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
1525 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1526 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1527 F2FS_BLK_TO_BYTES(i), blk + i);
1528 }
1529
1530 /* write out checkpoint buffer at block 0 */
1531 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1532
1533 for (i = 1; i < 1 + cp_payload_blks; i++)
1534 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1535 start_blk++);
1536
1537 if (orphan_num) {
1538 write_orphan_inodes(sbi, start_blk);
1539 start_blk += orphan_blocks;
1540 }
1541
1542 f2fs_write_data_summaries(sbi, start_blk);
1543 start_blk += data_sum_blocks;
1544
1545 /* Record write statistics in the hot node summary */
1546 kbytes_written = sbi->kbytes_written;
1547 kbytes_written += (f2fs_get_sectors_written(sbi) -
1548 sbi->sectors_written_start) >> 1;
1549 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1550
1551 if (__remain_node_summaries(cpc->reason)) {
1552 f2fs_write_node_summaries(sbi, start_blk);
1553 start_blk += NR_CURSEG_NODE_TYPE;
1554 }
1555
1556 /* Here, we have one bio having CP pack except cp pack 2 page */
1557 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1558 /* Wait for all dirty meta pages to be submitted for IO */
1559 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1560
1561 /* wait for previous submitted meta pages writeback */
1562 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1563
1564 /* flush all device cache */
1565 err = f2fs_flush_device_cache(sbi);
1566 if (err)
1567 return err;
1568
1569 /* barrier and flush checkpoint cp pack 2 page if it can */
1570 commit_checkpoint(sbi, ckpt, start_blk);
1571 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1572
1573 /*
1574 * invalidate intermediate page cache borrowed from meta inode which are
1575 * used for migration of encrypted, verity or compressed inode's blocks.
1576 */
1577 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1578 f2fs_sb_has_compression(sbi))
1579 f2fs_bug_on(sbi,
1580 invalidate_inode_pages2_range(META_MAPPING(sbi),
1581 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
1582
1583 f2fs_release_ino_entry(sbi, false);
1584
1585 f2fs_reset_fsync_node_info(sbi);
1586
1587 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1588 clear_sbi_flag(sbi, SBI_NEED_CP);
1589 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1590
1591 spin_lock(&sbi->stat_lock);
1592 sbi->unusable_block_count = 0;
1593 spin_unlock(&sbi->stat_lock);
1594
1595 __set_cp_next_pack(sbi);
1596
1597 /*
1598 * redirty superblock if metadata like node page or inode cache is
1599 * updated during writing checkpoint.
1600 */
1601 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1602 get_pages(sbi, F2FS_DIRTY_IMETA))
1603 set_sbi_flag(sbi, SBI_IS_DIRTY);
1604
1605 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1606
1607 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1608 }
1609
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1610 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1611 {
1612 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1613 unsigned long long ckpt_ver;
1614 int err = 0;
1615
1616 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1617 return -EROFS;
1618
1619 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1620 if (cpc->reason != CP_PAUSE)
1621 return 0;
1622 f2fs_warn(sbi, "Start checkpoint disabled!");
1623 }
1624 if (cpc->reason != CP_RESIZE)
1625 f2fs_down_write(&sbi->cp_global_sem);
1626
1627 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1628 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1629 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1630 goto out;
1631 if (unlikely(f2fs_cp_error(sbi))) {
1632 err = -EIO;
1633 goto out;
1634 }
1635
1636 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1637
1638 err = block_operations(sbi);
1639 if (err)
1640 goto out;
1641
1642 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1643
1644 f2fs_flush_merged_writes(sbi);
1645
1646 /* this is the case of multiple fstrims without any changes */
1647 if (cpc->reason & CP_DISCARD) {
1648 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1649 unblock_operations(sbi);
1650 goto out;
1651 }
1652
1653 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1654 SIT_I(sbi)->dirty_sentries == 0 &&
1655 prefree_segments(sbi) == 0) {
1656 f2fs_flush_sit_entries(sbi, cpc);
1657 f2fs_clear_prefree_segments(sbi, cpc);
1658 unblock_operations(sbi);
1659 goto out;
1660 }
1661 }
1662
1663 /*
1664 * update checkpoint pack index
1665 * Increase the version number so that
1666 * SIT entries and seg summaries are written at correct place
1667 */
1668 ckpt_ver = cur_cp_version(ckpt);
1669 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1670
1671 /* write cached NAT/SIT entries to NAT/SIT area */
1672 err = f2fs_flush_nat_entries(sbi, cpc);
1673 if (err) {
1674 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1675 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1676 goto stop;
1677 }
1678
1679 f2fs_flush_sit_entries(sbi, cpc);
1680
1681 /* save inmem log status */
1682 f2fs_save_inmem_curseg(sbi);
1683
1684 err = do_checkpoint(sbi, cpc);
1685 if (err) {
1686 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1687 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1688 f2fs_release_discard_addrs(sbi);
1689 } else {
1690 f2fs_clear_prefree_segments(sbi, cpc);
1691 }
1692
1693 f2fs_restore_inmem_curseg(sbi);
1694 f2fs_reinit_atgc_curseg(sbi);
1695 stat_inc_cp_count(sbi);
1696 stop:
1697 unblock_operations(sbi);
1698
1699 if (cpc->reason & CP_RECOVERY)
1700 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1701
1702 /* update CP_TIME to trigger checkpoint periodically */
1703 f2fs_update_time(sbi, CP_TIME);
1704 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1705 out:
1706 if (cpc->reason != CP_RESIZE)
1707 f2fs_up_write(&sbi->cp_global_sem);
1708 return err;
1709 }
1710
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1711 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1712 {
1713 int i;
1714
1715 for (i = 0; i < MAX_INO_ENTRY; i++) {
1716 struct inode_management *im = &sbi->im[i];
1717
1718 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1719 spin_lock_init(&im->ino_lock);
1720 INIT_LIST_HEAD(&im->ino_list);
1721 im->ino_num = 0;
1722 }
1723
1724 sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
1725 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1726 F2FS_ORPHANS_PER_BLOCK;
1727 }
1728
f2fs_create_checkpoint_caches(void)1729 int __init f2fs_create_checkpoint_caches(void)
1730 {
1731 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1732 sizeof(struct ino_entry));
1733 if (!ino_entry_slab)
1734 return -ENOMEM;
1735 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1736 sizeof(struct inode_entry));
1737 if (!f2fs_inode_entry_slab) {
1738 kmem_cache_destroy(ino_entry_slab);
1739 return -ENOMEM;
1740 }
1741 return 0;
1742 }
1743
f2fs_destroy_checkpoint_caches(void)1744 void f2fs_destroy_checkpoint_caches(void)
1745 {
1746 kmem_cache_destroy(ino_entry_slab);
1747 kmem_cache_destroy(f2fs_inode_entry_slab);
1748 }
1749
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1750 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1751 {
1752 struct cp_control cpc = { .reason = CP_SYNC, };
1753 int err;
1754
1755 f2fs_down_write(&sbi->gc_lock);
1756 err = f2fs_write_checkpoint(sbi, &cpc);
1757 f2fs_up_write(&sbi->gc_lock);
1758
1759 return err;
1760 }
1761
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1762 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1763 {
1764 struct ckpt_req_control *cprc = &sbi->cprc_info;
1765 struct ckpt_req *req, *next;
1766 struct llist_node *dispatch_list;
1767 u64 sum_diff = 0, diff, count = 0;
1768 int ret;
1769
1770 dispatch_list = llist_del_all(&cprc->issue_list);
1771 if (!dispatch_list)
1772 return;
1773 dispatch_list = llist_reverse_order(dispatch_list);
1774
1775 ret = __write_checkpoint_sync(sbi);
1776 atomic_inc(&cprc->issued_ckpt);
1777
1778 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1779 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1780 req->ret = ret;
1781 complete(&req->wait);
1782
1783 sum_diff += diff;
1784 count++;
1785 }
1786 atomic_sub(count, &cprc->queued_ckpt);
1787 atomic_add(count, &cprc->total_ckpt);
1788
1789 spin_lock(&cprc->stat_lock);
1790 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1791 if (cprc->peak_time < cprc->cur_time)
1792 cprc->peak_time = cprc->cur_time;
1793 spin_unlock(&cprc->stat_lock);
1794 }
1795
issue_checkpoint_thread(void * data)1796 static int issue_checkpoint_thread(void *data)
1797 {
1798 struct f2fs_sb_info *sbi = data;
1799 struct ckpt_req_control *cprc = &sbi->cprc_info;
1800 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1801 repeat:
1802 if (kthread_should_stop())
1803 return 0;
1804
1805 if (!llist_empty(&cprc->issue_list))
1806 __checkpoint_and_complete_reqs(sbi);
1807
1808 wait_event_interruptible(*q,
1809 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1810 goto repeat;
1811 }
1812
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1813 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1814 struct ckpt_req *wait_req)
1815 {
1816 struct ckpt_req_control *cprc = &sbi->cprc_info;
1817
1818 if (!llist_empty(&cprc->issue_list)) {
1819 __checkpoint_and_complete_reqs(sbi);
1820 } else {
1821 /* already dispatched by issue_checkpoint_thread */
1822 if (wait_req)
1823 wait_for_completion(&wait_req->wait);
1824 }
1825 }
1826
init_ckpt_req(struct ckpt_req * req)1827 static void init_ckpt_req(struct ckpt_req *req)
1828 {
1829 memset(req, 0, sizeof(struct ckpt_req));
1830
1831 init_completion(&req->wait);
1832 req->queue_time = ktime_get();
1833 }
1834
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1835 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1836 {
1837 struct ckpt_req_control *cprc = &sbi->cprc_info;
1838 struct ckpt_req req;
1839 struct cp_control cpc;
1840
1841 cpc.reason = __get_cp_reason(sbi);
1842 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC ||
1843 sbi->umount_lock_holder == current) {
1844 int ret;
1845
1846 f2fs_down_write(&sbi->gc_lock);
1847 ret = f2fs_write_checkpoint(sbi, &cpc);
1848 f2fs_up_write(&sbi->gc_lock);
1849
1850 return ret;
1851 }
1852
1853 if (!cprc->f2fs_issue_ckpt)
1854 return __write_checkpoint_sync(sbi);
1855
1856 init_ckpt_req(&req);
1857
1858 llist_add(&req.llnode, &cprc->issue_list);
1859 atomic_inc(&cprc->queued_ckpt);
1860
1861 /*
1862 * update issue_list before we wake up issue_checkpoint thread,
1863 * this smp_mb() pairs with another barrier in ___wait_event(),
1864 * see more details in comments of waitqueue_active().
1865 */
1866 smp_mb();
1867
1868 if (waitqueue_active(&cprc->ckpt_wait_queue))
1869 wake_up(&cprc->ckpt_wait_queue);
1870
1871 if (cprc->f2fs_issue_ckpt)
1872 wait_for_completion(&req.wait);
1873 else
1874 flush_remained_ckpt_reqs(sbi, &req);
1875
1876 return req.ret;
1877 }
1878
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1879 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1880 {
1881 dev_t dev = sbi->sb->s_bdev->bd_dev;
1882 struct ckpt_req_control *cprc = &sbi->cprc_info;
1883
1884 if (cprc->f2fs_issue_ckpt)
1885 return 0;
1886
1887 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1888 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1889 if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1890 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1891
1892 cprc->f2fs_issue_ckpt = NULL;
1893 return err;
1894 }
1895
1896 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1897
1898 return 0;
1899 }
1900
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1901 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1902 {
1903 struct ckpt_req_control *cprc = &sbi->cprc_info;
1904 struct task_struct *ckpt_task;
1905
1906 if (!cprc->f2fs_issue_ckpt)
1907 return;
1908
1909 ckpt_task = cprc->f2fs_issue_ckpt;
1910 cprc->f2fs_issue_ckpt = NULL;
1911 kthread_stop(ckpt_task);
1912
1913 f2fs_flush_ckpt_thread(sbi);
1914 }
1915
f2fs_flush_ckpt_thread(struct f2fs_sb_info * sbi)1916 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1917 {
1918 struct ckpt_req_control *cprc = &sbi->cprc_info;
1919
1920 flush_remained_ckpt_reqs(sbi, NULL);
1921
1922 /* Let's wait for the previous dispatched checkpoint. */
1923 while (atomic_read(&cprc->queued_ckpt))
1924 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1925 }
1926
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1927 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1928 {
1929 struct ckpt_req_control *cprc = &sbi->cprc_info;
1930
1931 atomic_set(&cprc->issued_ckpt, 0);
1932 atomic_set(&cprc->total_ckpt, 0);
1933 atomic_set(&cprc->queued_ckpt, 0);
1934 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1935 init_waitqueue_head(&cprc->ckpt_wait_queue);
1936 init_llist_head(&cprc->issue_list);
1937 spin_lock_init(&cprc->stat_lock);
1938 }
1939