xref: /linux/fs/f2fs/data.c (revision 81d8e5e2132215d21f2cddffcd2b16d08c0389fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
f2fs_init_bioset(void)39 int __init f2fs_init_bioset(void)
40 {
41 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS);
43 }
44 
f2fs_destroy_bioset(void)45 void f2fs_destroy_bioset(void)
46 {
47 	bioset_exit(&f2fs_bioset);
48 }
49 
f2fs_is_cp_guaranteed(struct page * page)50 bool f2fs_is_cp_guaranteed(struct page *page)
51 {
52 	struct address_space *mapping = page->mapping;
53 	struct inode *inode;
54 	struct f2fs_sb_info *sbi;
55 
56 	if (!mapping)
57 		return false;
58 
59 	inode = mapping->host;
60 	sbi = F2FS_I_SB(inode);
61 
62 	if (inode->i_ino == F2FS_META_INO(sbi) ||
63 			inode->i_ino == F2FS_NODE_INO(sbi) ||
64 			S_ISDIR(inode->i_mode))
65 		return true;
66 
67 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 			page_private_gcing(page))
69 		return true;
70 	return false;
71 }
72 
__read_io_type(struct folio * folio)73 static enum count_type __read_io_type(struct folio *folio)
74 {
75 	struct address_space *mapping = folio->mapping;
76 
77 	if (mapping) {
78 		struct inode *inode = mapping->host;
79 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80 
81 		if (inode->i_ino == F2FS_META_INO(sbi))
82 			return F2FS_RD_META;
83 
84 		if (inode->i_ino == F2FS_NODE_INO(sbi))
85 			return F2FS_RD_NODE;
86 	}
87 	return F2FS_RD_DATA;
88 }
89 
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 	STEP_DECRYPT	= BIT(0),
94 #else
95 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 	STEP_DECOMPRESS	= BIT(1),
99 #else
100 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 	STEP_VERITY	= BIT(2),
104 #else
105 	STEP_VERITY	= 0,	/* compile out the verity-related code */
106 #endif
107 };
108 
109 struct bio_post_read_ctx {
110 	struct bio *bio;
111 	struct f2fs_sb_info *sbi;
112 	struct work_struct work;
113 	unsigned int enabled_steps;
114 	/*
115 	 * decompression_attempted keeps track of whether
116 	 * f2fs_end_read_compressed_page() has been called on the pages in the
117 	 * bio that belong to a compressed cluster yet.
118 	 */
119 	bool decompression_attempted;
120 	block_t fs_blkaddr;
121 };
122 
123 /*
124  * Update and unlock a bio's pages, and free the bio.
125  *
126  * This marks pages up-to-date only if there was no error in the bio (I/O error,
127  * decryption error, or verity error), as indicated by bio->bi_status.
128  *
129  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130  * aren't marked up-to-date here, as decompression is done on a per-compression-
131  * cluster basis rather than a per-bio basis.  Instead, we only must do two
132  * things for each compressed page here: call f2fs_end_read_compressed_page()
133  * with failed=true if an error occurred before it would have normally gotten
134  * called (i.e., I/O error or decryption error, but *not* verity error), and
135  * release the bio's reference to the decompress_io_ctx of the page's cluster.
136  */
f2fs_finish_read_bio(struct bio * bio,bool in_task)137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 	struct folio_iter fi;
140 	struct bio_post_read_ctx *ctx = bio->bi_private;
141 
142 	bio_for_each_folio_all(fi, bio) {
143 		struct folio *folio = fi.folio;
144 
145 		if (f2fs_is_compressed_page(&folio->page)) {
146 			if (ctx && !ctx->decompression_attempted)
147 				f2fs_end_read_compressed_page(&folio->page, true, 0,
148 							in_task);
149 			f2fs_put_page_dic(&folio->page, in_task);
150 			continue;
151 		}
152 
153 		dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
154 		folio_end_read(folio, bio->bi_status == 0);
155 	}
156 
157 	if (ctx)
158 		mempool_free(ctx, bio_post_read_ctx_pool);
159 	bio_put(bio);
160 }
161 
f2fs_verify_bio(struct work_struct * work)162 static void f2fs_verify_bio(struct work_struct *work)
163 {
164 	struct bio_post_read_ctx *ctx =
165 		container_of(work, struct bio_post_read_ctx, work);
166 	struct bio *bio = ctx->bio;
167 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
168 
169 	/*
170 	 * fsverity_verify_bio() may call readahead() again, and while verity
171 	 * will be disabled for this, decryption and/or decompression may still
172 	 * be needed, resulting in another bio_post_read_ctx being allocated.
173 	 * So to prevent deadlocks we need to release the current ctx to the
174 	 * mempool first.  This assumes that verity is the last post-read step.
175 	 */
176 	mempool_free(ctx, bio_post_read_ctx_pool);
177 	bio->bi_private = NULL;
178 
179 	/*
180 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
181 	 * as those were handled separately by f2fs_end_read_compressed_page().
182 	 */
183 	if (may_have_compressed_pages) {
184 		struct bio_vec *bv;
185 		struct bvec_iter_all iter_all;
186 
187 		bio_for_each_segment_all(bv, bio, iter_all) {
188 			struct page *page = bv->bv_page;
189 
190 			if (!f2fs_is_compressed_page(page) &&
191 			    !fsverity_verify_page(page)) {
192 				bio->bi_status = BLK_STS_IOERR;
193 				break;
194 			}
195 		}
196 	} else {
197 		fsverity_verify_bio(bio);
198 	}
199 
200 	f2fs_finish_read_bio(bio, true);
201 }
202 
203 /*
204  * If the bio's data needs to be verified with fs-verity, then enqueue the
205  * verity work for the bio.  Otherwise finish the bio now.
206  *
207  * Note that to avoid deadlocks, the verity work can't be done on the
208  * decryption/decompression workqueue.  This is because verifying the data pages
209  * can involve reading verity metadata pages from the file, and these verity
210  * metadata pages may be encrypted and/or compressed.
211  */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)212 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
213 {
214 	struct bio_post_read_ctx *ctx = bio->bi_private;
215 
216 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
217 		INIT_WORK(&ctx->work, f2fs_verify_bio);
218 		fsverity_enqueue_verify_work(&ctx->work);
219 	} else {
220 		f2fs_finish_read_bio(bio, in_task);
221 	}
222 }
223 
224 /*
225  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
226  * remaining page was read by @ctx->bio.
227  *
228  * Note that a bio may span clusters (even a mix of compressed and uncompressed
229  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
230  * that the bio includes at least one compressed page.  The actual decompression
231  * is done on a per-cluster basis, not a per-bio basis.
232  */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)233 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
234 		bool in_task)
235 {
236 	struct bio_vec *bv;
237 	struct bvec_iter_all iter_all;
238 	bool all_compressed = true;
239 	block_t blkaddr = ctx->fs_blkaddr;
240 
241 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
242 		struct page *page = bv->bv_page;
243 
244 		if (f2fs_is_compressed_page(page))
245 			f2fs_end_read_compressed_page(page, false, blkaddr,
246 						      in_task);
247 		else
248 			all_compressed = false;
249 
250 		blkaddr++;
251 	}
252 
253 	ctx->decompression_attempted = true;
254 
255 	/*
256 	 * Optimization: if all the bio's pages are compressed, then scheduling
257 	 * the per-bio verity work is unnecessary, as verity will be fully
258 	 * handled at the compression cluster level.
259 	 */
260 	if (all_compressed)
261 		ctx->enabled_steps &= ~STEP_VERITY;
262 }
263 
f2fs_post_read_work(struct work_struct * work)264 static void f2fs_post_read_work(struct work_struct *work)
265 {
266 	struct bio_post_read_ctx *ctx =
267 		container_of(work, struct bio_post_read_ctx, work);
268 	struct bio *bio = ctx->bio;
269 
270 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
271 		f2fs_finish_read_bio(bio, true);
272 		return;
273 	}
274 
275 	if (ctx->enabled_steps & STEP_DECOMPRESS)
276 		f2fs_handle_step_decompress(ctx, true);
277 
278 	f2fs_verify_and_finish_bio(bio, true);
279 }
280 
f2fs_read_end_io(struct bio * bio)281 static void f2fs_read_end_io(struct bio *bio)
282 {
283 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
284 	struct bio_post_read_ctx *ctx;
285 	bool intask = in_task();
286 
287 	iostat_update_and_unbind_ctx(bio);
288 	ctx = bio->bi_private;
289 
290 	if (time_to_inject(sbi, FAULT_READ_IO))
291 		bio->bi_status = BLK_STS_IOERR;
292 
293 	if (bio->bi_status) {
294 		f2fs_finish_read_bio(bio, intask);
295 		return;
296 	}
297 
298 	if (ctx) {
299 		unsigned int enabled_steps = ctx->enabled_steps &
300 					(STEP_DECRYPT | STEP_DECOMPRESS);
301 
302 		/*
303 		 * If we have only decompression step between decompression and
304 		 * decrypt, we don't need post processing for this.
305 		 */
306 		if (enabled_steps == STEP_DECOMPRESS &&
307 				!f2fs_low_mem_mode(sbi)) {
308 			f2fs_handle_step_decompress(ctx, intask);
309 		} else if (enabled_steps) {
310 			INIT_WORK(&ctx->work, f2fs_post_read_work);
311 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
312 			return;
313 		}
314 	}
315 
316 	f2fs_verify_and_finish_bio(bio, intask);
317 }
318 
f2fs_write_end_io(struct bio * bio)319 static void f2fs_write_end_io(struct bio *bio)
320 {
321 	struct f2fs_sb_info *sbi;
322 	struct folio_iter fi;
323 
324 	iostat_update_and_unbind_ctx(bio);
325 	sbi = bio->bi_private;
326 
327 	if (time_to_inject(sbi, FAULT_WRITE_IO))
328 		bio->bi_status = BLK_STS_IOERR;
329 
330 	bio_for_each_folio_all(fi, bio) {
331 		struct folio *folio = fi.folio;
332 		enum count_type type;
333 
334 		if (fscrypt_is_bounce_folio(folio)) {
335 			struct folio *io_folio = folio;
336 
337 			folio = fscrypt_pagecache_folio(io_folio);
338 			fscrypt_free_bounce_page(&io_folio->page);
339 		}
340 
341 #ifdef CONFIG_F2FS_FS_COMPRESSION
342 		if (f2fs_is_compressed_page(&folio->page)) {
343 			f2fs_compress_write_end_io(bio, &folio->page);
344 			continue;
345 		}
346 #endif
347 
348 		type = WB_DATA_TYPE(&folio->page, false);
349 
350 		if (unlikely(bio->bi_status)) {
351 			mapping_set_error(folio->mapping, -EIO);
352 			if (type == F2FS_WB_CP_DATA)
353 				f2fs_stop_checkpoint(sbi, true,
354 						STOP_CP_REASON_WRITE_FAIL);
355 		}
356 
357 		f2fs_bug_on(sbi, folio->mapping == NODE_MAPPING(sbi) &&
358 				folio->index != nid_of_node(&folio->page));
359 
360 		dec_page_count(sbi, type);
361 		if (f2fs_in_warm_node_list(sbi, folio))
362 			f2fs_del_fsync_node_entry(sbi, &folio->page);
363 		clear_page_private_gcing(&folio->page);
364 		folio_end_writeback(folio);
365 	}
366 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 				wq_has_sleeper(&sbi->cp_wait))
368 		wake_up(&sbi->cp_wait);
369 
370 	bio_put(bio);
371 }
372 
373 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377 
378 	bio->bi_private = io->bi_private;
379 	complete(&io->zone_wait);
380 	f2fs_write_end_io(bio);
381 }
382 #endif
383 
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 		block_t blk_addr, sector_t *sector)
386 {
387 	struct block_device *bdev = sbi->sb->s_bdev;
388 	int i;
389 
390 	if (f2fs_is_multi_device(sbi)) {
391 		for (i = 0; i < sbi->s_ndevs; i++) {
392 			if (FDEV(i).start_blk <= blk_addr &&
393 			    FDEV(i).end_blk >= blk_addr) {
394 				blk_addr -= FDEV(i).start_blk;
395 				bdev = FDEV(i).bdev;
396 				break;
397 			}
398 		}
399 	}
400 
401 	if (sector)
402 		*sector = SECTOR_FROM_BLOCK(blk_addr);
403 	return bdev;
404 }
405 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 	int i;
409 
410 	if (!f2fs_is_multi_device(sbi))
411 		return 0;
412 
413 	for (i = 0; i < sbi->s_ndevs; i++)
414 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 			return i;
416 	return 0;
417 }
418 
f2fs_io_flags(struct f2fs_io_info * fio)419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 	struct folio *fio_folio = page_folio(fio->page);
423 	unsigned int fua_flag, meta_flag, io_flag;
424 	blk_opf_t op_flags = 0;
425 
426 	if (fio->op != REQ_OP_WRITE)
427 		return 0;
428 	if (fio->type == DATA)
429 		io_flag = fio->sbi->data_io_flag;
430 	else if (fio->type == NODE)
431 		io_flag = fio->sbi->node_io_flag;
432 	else
433 		return 0;
434 
435 	fua_flag = io_flag & temp_mask;
436 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
437 
438 	/*
439 	 * data/node io flag bits per temp:
440 	 *      REQ_META     |      REQ_FUA      |
441 	 *    5 |    4 |   3 |    2 |    1 |   0 |
442 	 * Cold | Warm | Hot | Cold | Warm | Hot |
443 	 */
444 	if (BIT(fio->temp) & meta_flag)
445 		op_flags |= REQ_META;
446 	if (BIT(fio->temp) & fua_flag)
447 		op_flags |= REQ_FUA;
448 
449 	if (fio->type == DATA &&
450 	    F2FS_I(fio_folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE)
451 		op_flags |= REQ_PRIO;
452 
453 	return op_flags;
454 }
455 
__bio_alloc(struct f2fs_io_info * fio,int npages)456 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
457 {
458 	struct f2fs_sb_info *sbi = fio->sbi;
459 	struct block_device *bdev;
460 	sector_t sector;
461 	struct bio *bio;
462 
463 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
464 	bio = bio_alloc_bioset(bdev, npages,
465 				fio->op | fio->op_flags | f2fs_io_flags(fio),
466 				GFP_NOIO, &f2fs_bioset);
467 	bio->bi_iter.bi_sector = sector;
468 	if (is_read_io(fio->op)) {
469 		bio->bi_end_io = f2fs_read_end_io;
470 		bio->bi_private = NULL;
471 	} else {
472 		bio->bi_end_io = f2fs_write_end_io;
473 		bio->bi_private = sbi;
474 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
475 						fio->type, fio->temp);
476 	}
477 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
478 
479 	if (fio->io_wbc)
480 		wbc_init_bio(fio->io_wbc, bio);
481 
482 	return bio;
483 }
484 
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)485 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
486 				  pgoff_t first_idx,
487 				  const struct f2fs_io_info *fio,
488 				  gfp_t gfp_mask)
489 {
490 	/*
491 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
492 	 * read/write raw data without encryption.
493 	 */
494 	if (!fio || !fio->encrypted_page)
495 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
496 }
497 
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)498 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
499 				     pgoff_t next_idx,
500 				     const struct f2fs_io_info *fio)
501 {
502 	/*
503 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
504 	 * read/write raw data without encryption.
505 	 */
506 	if (fio && fio->encrypted_page)
507 		return !bio_has_crypt_ctx(bio);
508 
509 	return fscrypt_mergeable_bio(bio, inode, next_idx);
510 }
511 
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)512 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
513 				 enum page_type type)
514 {
515 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
516 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
517 
518 	iostat_update_submit_ctx(bio, type);
519 	submit_bio(bio);
520 }
521 
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)522 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
523 				  enum page_type type)
524 {
525 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
526 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
527 	iostat_update_submit_ctx(bio, type);
528 	submit_bio(bio);
529 }
530 
__submit_merged_bio(struct f2fs_bio_info * io)531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533 	struct f2fs_io_info *fio = &io->fio;
534 
535 	if (!io->bio)
536 		return;
537 
538 	if (is_read_io(fio->op)) {
539 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
540 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
541 	} else {
542 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
543 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
544 	}
545 	io->bio = NULL;
546 }
547 
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)548 static bool __has_merged_page(struct bio *bio, struct inode *inode,
549 						struct page *page, nid_t ino)
550 {
551 	struct bio_vec *bvec;
552 	struct bvec_iter_all iter_all;
553 
554 	if (!bio)
555 		return false;
556 
557 	if (!inode && !page && !ino)
558 		return true;
559 
560 	bio_for_each_segment_all(bvec, bio, iter_all) {
561 		struct page *target = bvec->bv_page;
562 
563 		if (fscrypt_is_bounce_page(target)) {
564 			target = fscrypt_pagecache_page(target);
565 			if (IS_ERR(target))
566 				continue;
567 		}
568 		if (f2fs_is_compressed_page(target)) {
569 			target = f2fs_compress_control_page(target);
570 			if (IS_ERR(target))
571 				continue;
572 		}
573 
574 		if (inode && inode == target->mapping->host)
575 			return true;
576 		if (page && page == target)
577 			return true;
578 		if (ino && ino == ino_of_node(target))
579 			return true;
580 	}
581 
582 	return false;
583 }
584 
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)585 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
586 {
587 	int i;
588 
589 	for (i = 0; i < NR_PAGE_TYPE; i++) {
590 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
591 		int j;
592 
593 		sbi->write_io[i] = f2fs_kmalloc(sbi,
594 				array_size(n, sizeof(struct f2fs_bio_info)),
595 				GFP_KERNEL);
596 		if (!sbi->write_io[i])
597 			return -ENOMEM;
598 
599 		for (j = HOT; j < n; j++) {
600 			struct f2fs_bio_info *io = &sbi->write_io[i][j];
601 
602 			init_f2fs_rwsem(&io->io_rwsem);
603 			io->sbi = sbi;
604 			io->bio = NULL;
605 			io->last_block_in_bio = 0;
606 			spin_lock_init(&io->io_lock);
607 			INIT_LIST_HEAD(&io->io_list);
608 			INIT_LIST_HEAD(&io->bio_list);
609 			init_f2fs_rwsem(&io->bio_list_lock);
610 #ifdef CONFIG_BLK_DEV_ZONED
611 			init_completion(&io->zone_wait);
612 			io->zone_pending_bio = NULL;
613 			io->bi_private = NULL;
614 #endif
615 		}
616 	}
617 
618 	return 0;
619 }
620 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)621 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
622 				enum page_type type, enum temp_type temp)
623 {
624 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
625 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
626 
627 	f2fs_down_write(&io->io_rwsem);
628 
629 	if (!io->bio)
630 		goto unlock_out;
631 
632 	/* change META to META_FLUSH in the checkpoint procedure */
633 	if (type >= META_FLUSH) {
634 		io->fio.type = META_FLUSH;
635 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
636 		if (!test_opt(sbi, NOBARRIER))
637 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
638 	}
639 	__submit_merged_bio(io);
640 unlock_out:
641 	f2fs_up_write(&io->io_rwsem);
642 }
643 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)644 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
645 				struct inode *inode, struct page *page,
646 				nid_t ino, enum page_type type, bool force)
647 {
648 	enum temp_type temp;
649 	bool ret = true;
650 
651 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
652 		if (!force)	{
653 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
654 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
655 
656 			f2fs_down_read(&io->io_rwsem);
657 			ret = __has_merged_page(io->bio, inode, page, ino);
658 			f2fs_up_read(&io->io_rwsem);
659 		}
660 		if (ret)
661 			__f2fs_submit_merged_write(sbi, type, temp);
662 
663 		/* TODO: use HOT temp only for meta pages now. */
664 		if (type >= META)
665 			break;
666 	}
667 }
668 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)669 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
670 {
671 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
672 }
673 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)674 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
675 				struct inode *inode, struct page *page,
676 				nid_t ino, enum page_type type)
677 {
678 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
679 }
680 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)681 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
682 {
683 	f2fs_submit_merged_write(sbi, DATA);
684 	f2fs_submit_merged_write(sbi, NODE);
685 	f2fs_submit_merged_write(sbi, META);
686 }
687 
688 /*
689  * Fill the locked page with data located in the block address.
690  * A caller needs to unlock the page on failure.
691  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)692 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
693 {
694 	struct bio *bio;
695 	struct folio *fio_folio = page_folio(fio->page);
696 	struct folio *data_folio = fio->encrypted_page ?
697 			page_folio(fio->encrypted_page) : fio_folio;
698 
699 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
700 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
701 			META_GENERIC : DATA_GENERIC_ENHANCE)))
702 		return -EFSCORRUPTED;
703 
704 	trace_f2fs_submit_folio_bio(data_folio, fio);
705 
706 	/* Allocate a new bio */
707 	bio = __bio_alloc(fio, 1);
708 
709 	f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
710 			fio_folio->index, fio, GFP_NOIO);
711 	bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
712 
713 	if (fio->io_wbc && !is_read_io(fio->op))
714 		wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
715 
716 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
717 			__read_io_type(data_folio) : WB_DATA_TYPE(fio->page, false));
718 
719 	if (is_read_io(bio_op(bio)))
720 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
721 	else
722 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
723 	return 0;
724 }
725 
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)726 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
727 				block_t last_blkaddr, block_t cur_blkaddr)
728 {
729 	if (unlikely(sbi->max_io_bytes &&
730 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
731 		return false;
732 	if (last_blkaddr + 1 != cur_blkaddr)
733 		return false;
734 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
735 }
736 
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)737 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
738 						struct f2fs_io_info *fio)
739 {
740 	if (io->fio.op != fio->op)
741 		return false;
742 	return io->fio.op_flags == fio->op_flags;
743 }
744 
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)745 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
746 					struct f2fs_bio_info *io,
747 					struct f2fs_io_info *fio,
748 					block_t last_blkaddr,
749 					block_t cur_blkaddr)
750 {
751 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752 		return false;
753 	return io_type_is_mergeable(io, fio);
754 }
755 
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757 				struct page *page, enum temp_type temp)
758 {
759 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760 	struct bio_entry *be;
761 
762 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763 	be->bio = bio;
764 	bio_get(bio);
765 
766 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
767 		f2fs_bug_on(sbi, 1);
768 
769 	f2fs_down_write(&io->bio_list_lock);
770 	list_add_tail(&be->list, &io->bio_list);
771 	f2fs_up_write(&io->bio_list_lock);
772 }
773 
del_bio_entry(struct bio_entry * be)774 static void del_bio_entry(struct bio_entry *be)
775 {
776 	list_del(&be->list);
777 	kmem_cache_free(bio_entry_slab, be);
778 }
779 
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)780 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
781 							struct page *page)
782 {
783 	struct f2fs_sb_info *sbi = fio->sbi;
784 	enum temp_type temp;
785 	bool found = false;
786 	int ret = -EAGAIN;
787 
788 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 		struct list_head *head = &io->bio_list;
791 		struct bio_entry *be;
792 
793 		f2fs_down_write(&io->bio_list_lock);
794 		list_for_each_entry(be, head, list) {
795 			if (be->bio != *bio)
796 				continue;
797 
798 			found = true;
799 
800 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801 							    *fio->last_block,
802 							    fio->new_blkaddr));
803 			if (f2fs_crypt_mergeable_bio(*bio,
804 					fio->page->mapping->host,
805 					page_folio(fio->page)->index, fio) &&
806 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807 					PAGE_SIZE) {
808 				ret = 0;
809 				break;
810 			}
811 
812 			/* page can't be merged into bio; submit the bio */
813 			del_bio_entry(be);
814 			f2fs_submit_write_bio(sbi, *bio, DATA);
815 			break;
816 		}
817 		f2fs_up_write(&io->bio_list_lock);
818 	}
819 
820 	if (ret) {
821 		bio_put(*bio);
822 		*bio = NULL;
823 	}
824 
825 	return ret;
826 }
827 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829 					struct bio **bio, struct page *page)
830 {
831 	enum temp_type temp;
832 	bool found = false;
833 	struct bio *target = bio ? *bio : NULL;
834 
835 	f2fs_bug_on(sbi, !target && !page);
836 
837 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
838 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
839 		struct list_head *head = &io->bio_list;
840 		struct bio_entry *be;
841 
842 		if (list_empty(head))
843 			continue;
844 
845 		f2fs_down_read(&io->bio_list_lock);
846 		list_for_each_entry(be, head, list) {
847 			if (target)
848 				found = (target == be->bio);
849 			else
850 				found = __has_merged_page(be->bio, NULL,
851 								page, 0);
852 			if (found)
853 				break;
854 		}
855 		f2fs_up_read(&io->bio_list_lock);
856 
857 		if (!found)
858 			continue;
859 
860 		found = false;
861 
862 		f2fs_down_write(&io->bio_list_lock);
863 		list_for_each_entry(be, head, list) {
864 			if (target)
865 				found = (target == be->bio);
866 			else
867 				found = __has_merged_page(be->bio, NULL,
868 								page, 0);
869 			if (found) {
870 				target = be->bio;
871 				del_bio_entry(be);
872 				break;
873 			}
874 		}
875 		f2fs_up_write(&io->bio_list_lock);
876 	}
877 
878 	if (found)
879 		f2fs_submit_write_bio(sbi, target, DATA);
880 	if (bio && *bio) {
881 		bio_put(*bio);
882 		*bio = NULL;
883 	}
884 }
885 
f2fs_merge_page_bio(struct f2fs_io_info * fio)886 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
887 {
888 	struct bio *bio = *fio->bio;
889 	struct page *page = fio->encrypted_page ?
890 			fio->encrypted_page : fio->page;
891 	struct folio *folio = page_folio(fio->page);
892 
893 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
894 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
895 		return -EFSCORRUPTED;
896 
897 	trace_f2fs_submit_folio_bio(page_folio(page), fio);
898 
899 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
900 						fio->new_blkaddr))
901 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
902 alloc_new:
903 	if (!bio) {
904 		bio = __bio_alloc(fio, BIO_MAX_VECS);
905 		f2fs_set_bio_crypt_ctx(bio, folio->mapping->host,
906 				folio->index, fio, GFP_NOIO);
907 
908 		add_bio_entry(fio->sbi, bio, page, fio->temp);
909 	} else {
910 		if (add_ipu_page(fio, &bio, page))
911 			goto alloc_new;
912 	}
913 
914 	if (fio->io_wbc)
915 		wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio));
916 
917 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
918 
919 	*fio->last_block = fio->new_blkaddr;
920 	*fio->bio = bio;
921 
922 	return 0;
923 }
924 
925 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)926 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
927 {
928 	struct block_device *bdev = sbi->sb->s_bdev;
929 	int devi = 0;
930 
931 	if (f2fs_is_multi_device(sbi)) {
932 		devi = f2fs_target_device_index(sbi, blkaddr);
933 		if (blkaddr < FDEV(devi).start_blk ||
934 		    blkaddr > FDEV(devi).end_blk) {
935 			f2fs_err(sbi, "Invalid block %x", blkaddr);
936 			return false;
937 		}
938 		blkaddr -= FDEV(devi).start_blk;
939 		bdev = FDEV(devi).bdev;
940 	}
941 	return bdev_is_zoned(bdev) &&
942 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
943 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
944 }
945 #endif
946 
f2fs_submit_page_write(struct f2fs_io_info * fio)947 void f2fs_submit_page_write(struct f2fs_io_info *fio)
948 {
949 	struct f2fs_sb_info *sbi = fio->sbi;
950 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
951 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
952 	struct page *bio_page;
953 	enum count_type type;
954 
955 	f2fs_bug_on(sbi, is_read_io(fio->op));
956 
957 	f2fs_down_write(&io->io_rwsem);
958 next:
959 #ifdef CONFIG_BLK_DEV_ZONED
960 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
961 		wait_for_completion_io(&io->zone_wait);
962 		bio_put(io->zone_pending_bio);
963 		io->zone_pending_bio = NULL;
964 		io->bi_private = NULL;
965 	}
966 #endif
967 
968 	if (fio->in_list) {
969 		spin_lock(&io->io_lock);
970 		if (list_empty(&io->io_list)) {
971 			spin_unlock(&io->io_lock);
972 			goto out;
973 		}
974 		fio = list_first_entry(&io->io_list,
975 						struct f2fs_io_info, list);
976 		list_del(&fio->list);
977 		spin_unlock(&io->io_lock);
978 	}
979 
980 	verify_fio_blkaddr(fio);
981 
982 	if (fio->encrypted_page)
983 		bio_page = fio->encrypted_page;
984 	else if (fio->compressed_page)
985 		bio_page = fio->compressed_page;
986 	else
987 		bio_page = fio->page;
988 
989 	/* set submitted = true as a return value */
990 	fio->submitted = 1;
991 
992 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
993 	inc_page_count(sbi, type);
994 
995 	if (io->bio &&
996 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
997 			      fio->new_blkaddr) ||
998 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
999 				page_folio(bio_page)->index, fio)))
1000 		__submit_merged_bio(io);
1001 alloc_new:
1002 	if (io->bio == NULL) {
1003 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1004 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1005 				page_folio(bio_page)->index, fio, GFP_NOIO);
1006 		io->fio = *fio;
1007 	}
1008 
1009 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1010 		__submit_merged_bio(io);
1011 		goto alloc_new;
1012 	}
1013 
1014 	if (fio->io_wbc)
1015 		wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
1016 					 PAGE_SIZE);
1017 
1018 	io->last_block_in_bio = fio->new_blkaddr;
1019 
1020 	trace_f2fs_submit_folio_write(page_folio(fio->page), fio);
1021 #ifdef CONFIG_BLK_DEV_ZONED
1022 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1023 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1024 		bio_get(io->bio);
1025 		reinit_completion(&io->zone_wait);
1026 		io->bi_private = io->bio->bi_private;
1027 		io->bio->bi_private = io;
1028 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1029 		io->zone_pending_bio = io->bio;
1030 		__submit_merged_bio(io);
1031 	}
1032 #endif
1033 	if (fio->in_list)
1034 		goto next;
1035 out:
1036 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1037 				!f2fs_is_checkpoint_ready(sbi))
1038 		__submit_merged_bio(io);
1039 	f2fs_up_write(&io->io_rwsem);
1040 }
1041 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1042 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1043 				      unsigned nr_pages, blk_opf_t op_flag,
1044 				      pgoff_t first_idx, bool for_write)
1045 {
1046 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1047 	struct bio *bio;
1048 	struct bio_post_read_ctx *ctx = NULL;
1049 	unsigned int post_read_steps = 0;
1050 	sector_t sector;
1051 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1052 
1053 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1054 			       REQ_OP_READ | op_flag,
1055 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1056 	bio->bi_iter.bi_sector = sector;
1057 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 	bio->bi_end_io = f2fs_read_end_io;
1059 
1060 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 		post_read_steps |= STEP_DECRYPT;
1062 
1063 	if (f2fs_need_verity(inode, first_idx))
1064 		post_read_steps |= STEP_VERITY;
1065 
1066 	/*
1067 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1069 	 * bio_post_read_ctx if the file is compressed, but the caller is
1070 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071 	 */
1072 
1073 	if (post_read_steps || f2fs_compressed_file(inode)) {
1074 		/* Due to the mempool, this never fails. */
1075 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076 		ctx->bio = bio;
1077 		ctx->sbi = sbi;
1078 		ctx->enabled_steps = post_read_steps;
1079 		ctx->fs_blkaddr = blkaddr;
1080 		ctx->decompression_attempted = false;
1081 		bio->bi_private = ctx;
1082 	}
1083 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084 
1085 	return bio;
1086 }
1087 
1088 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1089 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1090 				 block_t blkaddr, blk_opf_t op_flags,
1091 				 bool for_write)
1092 {
1093 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 	struct bio *bio;
1095 
1096 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097 					folio->index, for_write);
1098 	if (IS_ERR(bio))
1099 		return PTR_ERR(bio);
1100 
1101 	/* wait for GCed page writeback via META_MAPPING */
1102 	f2fs_wait_on_block_writeback(inode, blkaddr);
1103 
1104 	if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1105 		iostat_update_and_unbind_ctx(bio);
1106 		if (bio->bi_private)
1107 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1108 		bio_put(bio);
1109 		return -EFAULT;
1110 	}
1111 	inc_page_count(sbi, F2FS_RD_DATA);
1112 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1113 	f2fs_submit_read_bio(sbi, bio, DATA);
1114 	return 0;
1115 }
1116 
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1117 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1118 {
1119 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1120 
1121 	dn->data_blkaddr = blkaddr;
1122 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1123 }
1124 
1125 /*
1126  * Lock ordering for the change of data block address:
1127  * ->data_page
1128  *  ->node_page
1129  *    update block addresses in the node page
1130  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1131 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1134 	__set_data_blkaddr(dn, blkaddr);
1135 	if (set_page_dirty(dn->node_page))
1136 		dn->node_changed = true;
1137 }
1138 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1139 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1140 {
1141 	f2fs_set_data_blkaddr(dn, blkaddr);
1142 	f2fs_update_read_extent_cache(dn);
1143 }
1144 
1145 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1146 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1147 {
1148 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1149 	int err;
1150 
1151 	if (!count)
1152 		return 0;
1153 
1154 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1155 		return -EPERM;
1156 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1157 	if (unlikely(err))
1158 		return err;
1159 
1160 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1161 						dn->ofs_in_node, count);
1162 
1163 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1164 
1165 	for (; count > 0; dn->ofs_in_node++) {
1166 		block_t blkaddr = f2fs_data_blkaddr(dn);
1167 
1168 		if (blkaddr == NULL_ADDR) {
1169 			__set_data_blkaddr(dn, NEW_ADDR);
1170 			count--;
1171 		}
1172 	}
1173 
1174 	if (set_page_dirty(dn->node_page))
1175 		dn->node_changed = true;
1176 	return 0;
1177 }
1178 
1179 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1180 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1181 {
1182 	unsigned int ofs_in_node = dn->ofs_in_node;
1183 	int ret;
1184 
1185 	ret = f2fs_reserve_new_blocks(dn, 1);
1186 	dn->ofs_in_node = ofs_in_node;
1187 	return ret;
1188 }
1189 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1190 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1191 {
1192 	bool need_put = dn->inode_page ? false : true;
1193 	int err;
1194 
1195 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1196 	if (err)
1197 		return err;
1198 
1199 	if (dn->data_blkaddr == NULL_ADDR)
1200 		err = f2fs_reserve_new_block(dn);
1201 	if (err || need_put)
1202 		f2fs_put_dnode(dn);
1203 	return err;
1204 }
1205 
f2fs_get_read_data_folio(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1206 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
1207 		blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs)
1208 {
1209 	struct address_space *mapping = inode->i_mapping;
1210 	struct dnode_of_data dn;
1211 	struct folio *folio;
1212 	int err;
1213 
1214 	folio = f2fs_grab_cache_folio(mapping, index, for_write);
1215 	if (IS_ERR(folio))
1216 		return folio;
1217 
1218 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1219 						&dn.data_blkaddr)) {
1220 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1221 						DATA_GENERIC_ENHANCE_READ)) {
1222 			err = -EFSCORRUPTED;
1223 			goto put_err;
1224 		}
1225 		goto got_it;
1226 	}
1227 
1228 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1229 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1230 	if (err) {
1231 		if (err == -ENOENT && next_pgofs)
1232 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1233 		goto put_err;
1234 	}
1235 	f2fs_put_dnode(&dn);
1236 
1237 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1238 		err = -ENOENT;
1239 		if (next_pgofs)
1240 			*next_pgofs = index + 1;
1241 		goto put_err;
1242 	}
1243 	if (dn.data_blkaddr != NEW_ADDR &&
1244 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1245 						dn.data_blkaddr,
1246 						DATA_GENERIC_ENHANCE)) {
1247 		err = -EFSCORRUPTED;
1248 		goto put_err;
1249 	}
1250 got_it:
1251 	if (folio_test_uptodate(folio)) {
1252 		folio_unlock(folio);
1253 		return folio;
1254 	}
1255 
1256 	/*
1257 	 * A new dentry page is allocated but not able to be written, since its
1258 	 * new inode page couldn't be allocated due to -ENOSPC.
1259 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1260 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1261 	 * f2fs_init_inode_metadata.
1262 	 */
1263 	if (dn.data_blkaddr == NEW_ADDR) {
1264 		folio_zero_segment(folio, 0, folio_size(folio));
1265 		if (!folio_test_uptodate(folio))
1266 			folio_mark_uptodate(folio);
1267 		folio_unlock(folio);
1268 		return folio;
1269 	}
1270 
1271 	err = f2fs_submit_page_read(inode, folio, dn.data_blkaddr,
1272 						op_flags, for_write);
1273 	if (err)
1274 		goto put_err;
1275 	return folio;
1276 
1277 put_err:
1278 	f2fs_folio_put(folio, true);
1279 	return ERR_PTR(err);
1280 }
1281 
f2fs_find_data_folio(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1282 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
1283 					pgoff_t *next_pgofs)
1284 {
1285 	struct address_space *mapping = inode->i_mapping;
1286 	struct folio *folio;
1287 
1288 	folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0);
1289 	if (IS_ERR(folio))
1290 		goto read;
1291 	if (folio_test_uptodate(folio))
1292 		return folio;
1293 	f2fs_folio_put(folio, false);
1294 
1295 read:
1296 	folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs);
1297 	if (IS_ERR(folio))
1298 		return folio;
1299 
1300 	if (folio_test_uptodate(folio))
1301 		return folio;
1302 
1303 	folio_wait_locked(folio);
1304 	if (unlikely(!folio_test_uptodate(folio))) {
1305 		f2fs_folio_put(folio, false);
1306 		return ERR_PTR(-EIO);
1307 	}
1308 	return folio;
1309 }
1310 
1311 /*
1312  * If it tries to access a hole, return an error.
1313  * Because, the callers, functions in dir.c and GC, should be able to know
1314  * whether this page exists or not.
1315  */
f2fs_get_lock_data_folio(struct inode * inode,pgoff_t index,bool for_write)1316 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
1317 							bool for_write)
1318 {
1319 	struct address_space *mapping = inode->i_mapping;
1320 	struct folio *folio;
1321 
1322 	folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL);
1323 	if (IS_ERR(folio))
1324 		return folio;
1325 
1326 	/* wait for read completion */
1327 	folio_lock(folio);
1328 	if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) {
1329 		f2fs_folio_put(folio, true);
1330 		return ERR_PTR(-EIO);
1331 	}
1332 	return folio;
1333 }
1334 
1335 /*
1336  * Caller ensures that this data page is never allocated.
1337  * A new zero-filled data page is allocated in the page cache.
1338  *
1339  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1340  * f2fs_unlock_op().
1341  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1342  * ipage should be released by this function.
1343  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1344 struct page *f2fs_get_new_data_page(struct inode *inode,
1345 		struct page *ipage, pgoff_t index, bool new_i_size)
1346 {
1347 	struct address_space *mapping = inode->i_mapping;
1348 	struct page *page;
1349 	struct dnode_of_data dn;
1350 	int err;
1351 
1352 	page = f2fs_grab_cache_page(mapping, index, true);
1353 	if (!page) {
1354 		/*
1355 		 * before exiting, we should make sure ipage will be released
1356 		 * if any error occur.
1357 		 */
1358 		f2fs_put_page(ipage, 1);
1359 		return ERR_PTR(-ENOMEM);
1360 	}
1361 
1362 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1363 	err = f2fs_reserve_block(&dn, index);
1364 	if (err) {
1365 		f2fs_put_page(page, 1);
1366 		return ERR_PTR(err);
1367 	}
1368 	if (!ipage)
1369 		f2fs_put_dnode(&dn);
1370 
1371 	if (PageUptodate(page))
1372 		goto got_it;
1373 
1374 	if (dn.data_blkaddr == NEW_ADDR) {
1375 		zero_user_segment(page, 0, PAGE_SIZE);
1376 		if (!PageUptodate(page))
1377 			SetPageUptodate(page);
1378 	} else {
1379 		f2fs_put_page(page, 1);
1380 
1381 		/* if ipage exists, blkaddr should be NEW_ADDR */
1382 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1383 		page = f2fs_get_lock_data_page(inode, index, true);
1384 		if (IS_ERR(page))
1385 			return page;
1386 	}
1387 got_it:
1388 	if (new_i_size && i_size_read(inode) <
1389 				((loff_t)(index + 1) << PAGE_SHIFT))
1390 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1391 	return page;
1392 }
1393 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1394 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 	struct f2fs_summary sum;
1398 	struct node_info ni;
1399 	block_t old_blkaddr;
1400 	blkcnt_t count = 1;
1401 	int err;
1402 
1403 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1404 		return -EPERM;
1405 
1406 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1407 	if (err)
1408 		return err;
1409 
1410 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1411 	if (dn->data_blkaddr == NULL_ADDR) {
1412 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1413 		if (unlikely(err))
1414 			return err;
1415 	}
1416 
1417 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1418 	old_blkaddr = dn->data_blkaddr;
1419 	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1420 				&dn->data_blkaddr, &sum, seg_type, NULL);
1421 	if (err)
1422 		return err;
1423 
1424 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1425 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1426 
1427 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1428 	return 0;
1429 }
1430 
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1431 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1432 {
1433 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1434 		f2fs_down_read(&sbi->node_change);
1435 	else
1436 		f2fs_lock_op(sbi);
1437 }
1438 
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1439 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1440 {
1441 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1442 		f2fs_up_read(&sbi->node_change);
1443 	else
1444 		f2fs_unlock_op(sbi);
1445 }
1446 
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1447 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1448 {
1449 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1450 	int err = 0;
1451 
1452 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1453 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1454 						&dn->data_blkaddr))
1455 		err = f2fs_reserve_block(dn, index);
1456 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1457 
1458 	return err;
1459 }
1460 
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1461 static int f2fs_map_no_dnode(struct inode *inode,
1462 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1463 		pgoff_t pgoff)
1464 {
1465 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1466 
1467 	/*
1468 	 * There is one exceptional case that read_node_page() may return
1469 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1470 	 * -EIO in that case.
1471 	 */
1472 	if (map->m_may_create &&
1473 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1474 		return -EIO;
1475 
1476 	if (map->m_next_pgofs)
1477 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1478 	if (map->m_next_extent)
1479 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1480 	return 0;
1481 }
1482 
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1483 static bool f2fs_map_blocks_cached(struct inode *inode,
1484 		struct f2fs_map_blocks *map, int flag)
1485 {
1486 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 	unsigned int maxblocks = map->m_len;
1488 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1489 	struct extent_info ei = {};
1490 
1491 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1492 		return false;
1493 
1494 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1495 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1496 	map->m_flags = F2FS_MAP_MAPPED;
1497 	if (map->m_next_extent)
1498 		*map->m_next_extent = pgoff + map->m_len;
1499 
1500 	/* for hardware encryption, but to avoid potential issue in future */
1501 	if (flag == F2FS_GET_BLOCK_DIO)
1502 		f2fs_wait_on_block_writeback_range(inode,
1503 					map->m_pblk, map->m_len);
1504 
1505 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1506 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1507 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1508 
1509 		map->m_bdev = dev->bdev;
1510 		map->m_pblk -= dev->start_blk;
1511 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1512 	} else {
1513 		map->m_bdev = inode->i_sb->s_bdev;
1514 	}
1515 	return true;
1516 }
1517 
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1518 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1519 				struct f2fs_map_blocks *map,
1520 				block_t blkaddr, int flag, int bidx,
1521 				int ofs)
1522 {
1523 	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1524 		return false;
1525 	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1526 		return true;
1527 	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1528 		return true;
1529 	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1530 		return true;
1531 	if (flag == F2FS_GET_BLOCK_DIO &&
1532 		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1533 		return true;
1534 	return false;
1535 }
1536 
1537 /*
1538  * f2fs_map_blocks() tries to find or build mapping relationship which
1539  * maps continuous logical blocks to physical blocks, and return such
1540  * info via f2fs_map_blocks structure.
1541  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1542 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1543 {
1544 	unsigned int maxblocks = map->m_len;
1545 	struct dnode_of_data dn;
1546 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1547 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1548 	pgoff_t pgofs, end_offset, end;
1549 	int err = 0, ofs = 1;
1550 	unsigned int ofs_in_node, last_ofs_in_node;
1551 	blkcnt_t prealloc;
1552 	block_t blkaddr;
1553 	unsigned int start_pgofs;
1554 	int bidx = 0;
1555 	bool is_hole;
1556 
1557 	if (!maxblocks)
1558 		return 0;
1559 
1560 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1561 		goto out;
1562 
1563 	map->m_bdev = inode->i_sb->s_bdev;
1564 	map->m_multidev_dio =
1565 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1566 
1567 	map->m_len = 0;
1568 	map->m_flags = 0;
1569 
1570 	/* it only supports block size == page size */
1571 	pgofs =	(pgoff_t)map->m_lblk;
1572 	end = pgofs + maxblocks;
1573 
1574 next_dnode:
1575 	if (map->m_may_create)
1576 		f2fs_map_lock(sbi, flag);
1577 
1578 	/* When reading holes, we need its node page */
1579 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1580 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1581 	if (err) {
1582 		if (flag == F2FS_GET_BLOCK_BMAP)
1583 			map->m_pblk = 0;
1584 		if (err == -ENOENT)
1585 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1586 		goto unlock_out;
1587 	}
1588 
1589 	start_pgofs = pgofs;
1590 	prealloc = 0;
1591 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1592 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1593 
1594 next_block:
1595 	blkaddr = f2fs_data_blkaddr(&dn);
1596 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1597 	if (!is_hole &&
1598 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1599 		err = -EFSCORRUPTED;
1600 		goto sync_out;
1601 	}
1602 
1603 	/* use out-place-update for direct IO under LFS mode */
1604 	if (map->m_may_create && (is_hole ||
1605 		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1606 		!f2fs_is_pinned_file(inode)))) {
1607 		if (unlikely(f2fs_cp_error(sbi))) {
1608 			err = -EIO;
1609 			goto sync_out;
1610 		}
1611 
1612 		switch (flag) {
1613 		case F2FS_GET_BLOCK_PRE_AIO:
1614 			if (blkaddr == NULL_ADDR) {
1615 				prealloc++;
1616 				last_ofs_in_node = dn.ofs_in_node;
1617 			}
1618 			break;
1619 		case F2FS_GET_BLOCK_PRE_DIO:
1620 		case F2FS_GET_BLOCK_DIO:
1621 			err = __allocate_data_block(&dn, map->m_seg_type);
1622 			if (err)
1623 				goto sync_out;
1624 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1625 				file_need_truncate(inode);
1626 			set_inode_flag(inode, FI_APPEND_WRITE);
1627 			break;
1628 		default:
1629 			WARN_ON_ONCE(1);
1630 			err = -EIO;
1631 			goto sync_out;
1632 		}
1633 
1634 		blkaddr = dn.data_blkaddr;
1635 		if (is_hole)
1636 			map->m_flags |= F2FS_MAP_NEW;
1637 	} else if (is_hole) {
1638 		if (f2fs_compressed_file(inode) &&
1639 		    f2fs_sanity_check_cluster(&dn)) {
1640 			err = -EFSCORRUPTED;
1641 			f2fs_handle_error(sbi,
1642 					ERROR_CORRUPTED_CLUSTER);
1643 			goto sync_out;
1644 		}
1645 
1646 		switch (flag) {
1647 		case F2FS_GET_BLOCK_PRECACHE:
1648 			goto sync_out;
1649 		case F2FS_GET_BLOCK_BMAP:
1650 			map->m_pblk = 0;
1651 			goto sync_out;
1652 		case F2FS_GET_BLOCK_FIEMAP:
1653 			if (blkaddr == NULL_ADDR) {
1654 				if (map->m_next_pgofs)
1655 					*map->m_next_pgofs = pgofs + 1;
1656 				goto sync_out;
1657 			}
1658 			break;
1659 		case F2FS_GET_BLOCK_DIO:
1660 			if (map->m_next_pgofs)
1661 				*map->m_next_pgofs = pgofs + 1;
1662 			break;
1663 		default:
1664 			/* for defragment case */
1665 			if (map->m_next_pgofs)
1666 				*map->m_next_pgofs = pgofs + 1;
1667 			goto sync_out;
1668 		}
1669 	}
1670 
1671 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1672 		goto skip;
1673 
1674 	if (map->m_multidev_dio)
1675 		bidx = f2fs_target_device_index(sbi, blkaddr);
1676 
1677 	if (map->m_len == 0) {
1678 		/* reserved delalloc block should be mapped for fiemap. */
1679 		if (blkaddr == NEW_ADDR)
1680 			map->m_flags |= F2FS_MAP_DELALLOC;
1681 		/* DIO READ and hole case, should not map the blocks. */
1682 		if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1683 			map->m_flags |= F2FS_MAP_MAPPED;
1684 
1685 		map->m_pblk = blkaddr;
1686 		map->m_len = 1;
1687 
1688 		if (map->m_multidev_dio)
1689 			map->m_bdev = FDEV(bidx).bdev;
1690 	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1691 		ofs++;
1692 		map->m_len++;
1693 	} else {
1694 		goto sync_out;
1695 	}
1696 
1697 skip:
1698 	dn.ofs_in_node++;
1699 	pgofs++;
1700 
1701 	/* preallocate blocks in batch for one dnode page */
1702 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1703 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1704 
1705 		dn.ofs_in_node = ofs_in_node;
1706 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1707 		if (err)
1708 			goto sync_out;
1709 
1710 		map->m_len += dn.ofs_in_node - ofs_in_node;
1711 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1712 			err = -ENOSPC;
1713 			goto sync_out;
1714 		}
1715 		dn.ofs_in_node = end_offset;
1716 	}
1717 
1718 	if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1719 	    map->m_may_create) {
1720 		/* the next block to be allocated may not be contiguous. */
1721 		if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1722 		    CAP_BLKS_PER_SEC(sbi) - 1)
1723 			goto sync_out;
1724 	}
1725 
1726 	if (pgofs >= end)
1727 		goto sync_out;
1728 	else if (dn.ofs_in_node < end_offset)
1729 		goto next_block;
1730 
1731 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1732 		if (map->m_flags & F2FS_MAP_MAPPED) {
1733 			unsigned int ofs = start_pgofs - map->m_lblk;
1734 
1735 			f2fs_update_read_extent_cache_range(&dn,
1736 				start_pgofs, map->m_pblk + ofs,
1737 				map->m_len - ofs);
1738 		}
1739 	}
1740 
1741 	f2fs_put_dnode(&dn);
1742 
1743 	if (map->m_may_create) {
1744 		f2fs_map_unlock(sbi, flag);
1745 		f2fs_balance_fs(sbi, dn.node_changed);
1746 	}
1747 	goto next_dnode;
1748 
1749 sync_out:
1750 
1751 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1752 		/*
1753 		 * for hardware encryption, but to avoid potential issue
1754 		 * in future
1755 		 */
1756 		f2fs_wait_on_block_writeback_range(inode,
1757 						map->m_pblk, map->m_len);
1758 
1759 		if (map->m_multidev_dio) {
1760 			block_t blk_addr = map->m_pblk;
1761 
1762 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1763 
1764 			map->m_bdev = FDEV(bidx).bdev;
1765 			map->m_pblk -= FDEV(bidx).start_blk;
1766 
1767 			if (map->m_may_create)
1768 				f2fs_update_device_state(sbi, inode->i_ino,
1769 							blk_addr, map->m_len);
1770 
1771 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1772 						FDEV(bidx).end_blk + 1);
1773 		}
1774 	}
1775 
1776 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1777 		if (map->m_flags & F2FS_MAP_MAPPED) {
1778 			unsigned int ofs = start_pgofs - map->m_lblk;
1779 
1780 			f2fs_update_read_extent_cache_range(&dn,
1781 				start_pgofs, map->m_pblk + ofs,
1782 				map->m_len - ofs);
1783 		}
1784 		if (map->m_next_extent)
1785 			*map->m_next_extent = pgofs + 1;
1786 	}
1787 	f2fs_put_dnode(&dn);
1788 unlock_out:
1789 	if (map->m_may_create) {
1790 		f2fs_map_unlock(sbi, flag);
1791 		f2fs_balance_fs(sbi, dn.node_changed);
1792 	}
1793 out:
1794 	trace_f2fs_map_blocks(inode, map, flag, err);
1795 	return err;
1796 }
1797 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1798 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1799 {
1800 	struct f2fs_map_blocks map;
1801 	block_t last_lblk;
1802 	int err;
1803 
1804 	if (pos + len > i_size_read(inode))
1805 		return false;
1806 
1807 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1808 	map.m_next_pgofs = NULL;
1809 	map.m_next_extent = NULL;
1810 	map.m_seg_type = NO_CHECK_TYPE;
1811 	map.m_may_create = false;
1812 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1813 
1814 	while (map.m_lblk < last_lblk) {
1815 		map.m_len = last_lblk - map.m_lblk;
1816 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1817 		if (err || map.m_len == 0)
1818 			return false;
1819 		map.m_lblk += map.m_len;
1820 	}
1821 	return true;
1822 }
1823 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1824 static int f2fs_xattr_fiemap(struct inode *inode,
1825 				struct fiemap_extent_info *fieinfo)
1826 {
1827 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1828 	struct page *page;
1829 	struct node_info ni;
1830 	__u64 phys = 0, len;
1831 	__u32 flags;
1832 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1833 	int err = 0;
1834 
1835 	if (f2fs_has_inline_xattr(inode)) {
1836 		int offset;
1837 
1838 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1839 						inode->i_ino, false);
1840 		if (!page)
1841 			return -ENOMEM;
1842 
1843 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1844 		if (err) {
1845 			f2fs_put_page(page, 1);
1846 			return err;
1847 		}
1848 
1849 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1850 		offset = offsetof(struct f2fs_inode, i_addr) +
1851 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1852 					get_inline_xattr_addrs(inode));
1853 
1854 		phys += offset;
1855 		len = inline_xattr_size(inode);
1856 
1857 		f2fs_put_page(page, 1);
1858 
1859 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1860 
1861 		if (!xnid)
1862 			flags |= FIEMAP_EXTENT_LAST;
1863 
1864 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1865 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1866 		if (err)
1867 			return err;
1868 	}
1869 
1870 	if (xnid) {
1871 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1872 		if (!page)
1873 			return -ENOMEM;
1874 
1875 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1876 		if (err) {
1877 			f2fs_put_page(page, 1);
1878 			return err;
1879 		}
1880 
1881 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1882 		len = inode->i_sb->s_blocksize;
1883 
1884 		f2fs_put_page(page, 1);
1885 
1886 		flags = FIEMAP_EXTENT_LAST;
1887 	}
1888 
1889 	if (phys) {
1890 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1891 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1892 	}
1893 
1894 	return (err < 0 ? err : 0);
1895 }
1896 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1897 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1898 		u64 start, u64 len)
1899 {
1900 	struct f2fs_map_blocks map;
1901 	sector_t start_blk, last_blk, blk_len, max_len;
1902 	pgoff_t next_pgofs;
1903 	u64 logical = 0, phys = 0, size = 0;
1904 	u32 flags = 0;
1905 	int ret = 0;
1906 	bool compr_cluster = false, compr_appended;
1907 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1908 	unsigned int count_in_cluster = 0;
1909 	loff_t maxbytes;
1910 
1911 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1912 		ret = f2fs_precache_extents(inode);
1913 		if (ret)
1914 			return ret;
1915 	}
1916 
1917 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1918 	if (ret)
1919 		return ret;
1920 
1921 	inode_lock_shared(inode);
1922 
1923 	maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1924 	if (start > maxbytes) {
1925 		ret = -EFBIG;
1926 		goto out;
1927 	}
1928 
1929 	if (len > maxbytes || (maxbytes - len) < start)
1930 		len = maxbytes - start;
1931 
1932 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1933 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1934 		goto out;
1935 	}
1936 
1937 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1938 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1939 		if (ret != -EAGAIN)
1940 			goto out;
1941 	}
1942 
1943 	start_blk = F2FS_BYTES_TO_BLK(start);
1944 	last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1945 	blk_len = last_blk - start_blk + 1;
1946 	max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1947 
1948 next:
1949 	memset(&map, 0, sizeof(map));
1950 	map.m_lblk = start_blk;
1951 	map.m_len = blk_len;
1952 	map.m_next_pgofs = &next_pgofs;
1953 	map.m_seg_type = NO_CHECK_TYPE;
1954 
1955 	if (compr_cluster) {
1956 		map.m_lblk += 1;
1957 		map.m_len = cluster_size - count_in_cluster;
1958 	}
1959 
1960 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1961 	if (ret)
1962 		goto out;
1963 
1964 	/* HOLE */
1965 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1966 		start_blk = next_pgofs;
1967 
1968 		if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1969 			goto prep_next;
1970 
1971 		flags |= FIEMAP_EXTENT_LAST;
1972 	}
1973 
1974 	/*
1975 	 * current extent may cross boundary of inquiry, increase len to
1976 	 * requery.
1977 	 */
1978 	if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1979 				map.m_lblk + map.m_len - 1 == last_blk &&
1980 				blk_len != max_len) {
1981 		blk_len = max_len;
1982 		goto next;
1983 	}
1984 
1985 	compr_appended = false;
1986 	/* In a case of compressed cluster, append this to the last extent */
1987 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1988 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1989 		compr_appended = true;
1990 		goto skip_fill;
1991 	}
1992 
1993 	if (size) {
1994 		flags |= FIEMAP_EXTENT_MERGED;
1995 		if (IS_ENCRYPTED(inode))
1996 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1997 
1998 		ret = fiemap_fill_next_extent(fieinfo, logical,
1999 				phys, size, flags);
2000 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2001 		if (ret)
2002 			goto out;
2003 		size = 0;
2004 	}
2005 
2006 	if (start_blk > last_blk)
2007 		goto out;
2008 
2009 skip_fill:
2010 	if (map.m_pblk == COMPRESS_ADDR) {
2011 		compr_cluster = true;
2012 		count_in_cluster = 1;
2013 	} else if (compr_appended) {
2014 		unsigned int appended_blks = cluster_size -
2015 						count_in_cluster + 1;
2016 		size += F2FS_BLK_TO_BYTES(appended_blks);
2017 		start_blk += appended_blks;
2018 		compr_cluster = false;
2019 	} else {
2020 		logical = F2FS_BLK_TO_BYTES(start_blk);
2021 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2022 			F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2023 		size = F2FS_BLK_TO_BYTES(map.m_len);
2024 		flags = 0;
2025 
2026 		if (compr_cluster) {
2027 			flags = FIEMAP_EXTENT_ENCODED;
2028 			count_in_cluster += map.m_len;
2029 			if (count_in_cluster == cluster_size) {
2030 				compr_cluster = false;
2031 				size += F2FS_BLKSIZE;
2032 			}
2033 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2034 			flags = FIEMAP_EXTENT_UNWRITTEN;
2035 		}
2036 
2037 		start_blk += F2FS_BYTES_TO_BLK(size);
2038 	}
2039 
2040 prep_next:
2041 	cond_resched();
2042 	if (fatal_signal_pending(current))
2043 		ret = -EINTR;
2044 	else
2045 		goto next;
2046 out:
2047 	if (ret == 1)
2048 		ret = 0;
2049 
2050 	inode_unlock_shared(inode);
2051 	return ret;
2052 }
2053 
f2fs_readpage_limit(struct inode * inode)2054 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2055 {
2056 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2057 		return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2058 
2059 	return i_size_read(inode);
2060 }
2061 
f2fs_ra_op_flags(struct readahead_control * rac)2062 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2063 {
2064 	return rac ? REQ_RAHEAD : 0;
2065 }
2066 
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2067 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2068 					unsigned nr_pages,
2069 					struct f2fs_map_blocks *map,
2070 					struct bio **bio_ret,
2071 					sector_t *last_block_in_bio,
2072 					struct readahead_control *rac)
2073 {
2074 	struct bio *bio = *bio_ret;
2075 	const unsigned int blocksize = F2FS_BLKSIZE;
2076 	sector_t block_in_file;
2077 	sector_t last_block;
2078 	sector_t last_block_in_file;
2079 	sector_t block_nr;
2080 	pgoff_t index = folio_index(folio);
2081 	int ret = 0;
2082 
2083 	block_in_file = (sector_t)index;
2084 	last_block = block_in_file + nr_pages;
2085 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2086 							blocksize - 1);
2087 	if (last_block > last_block_in_file)
2088 		last_block = last_block_in_file;
2089 
2090 	/* just zeroing out page which is beyond EOF */
2091 	if (block_in_file >= last_block)
2092 		goto zero_out;
2093 	/*
2094 	 * Map blocks using the previous result first.
2095 	 */
2096 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2097 			block_in_file > map->m_lblk &&
2098 			block_in_file < (map->m_lblk + map->m_len))
2099 		goto got_it;
2100 
2101 	/*
2102 	 * Then do more f2fs_map_blocks() calls until we are
2103 	 * done with this page.
2104 	 */
2105 	map->m_lblk = block_in_file;
2106 	map->m_len = last_block - block_in_file;
2107 
2108 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2109 	if (ret)
2110 		goto out;
2111 got_it:
2112 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2113 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2114 		folio_set_mappedtodisk(folio);
2115 
2116 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2117 						DATA_GENERIC_ENHANCE_READ)) {
2118 			ret = -EFSCORRUPTED;
2119 			goto out;
2120 		}
2121 	} else {
2122 zero_out:
2123 		folio_zero_segment(folio, 0, folio_size(folio));
2124 		if (f2fs_need_verity(inode, index) &&
2125 		    !fsverity_verify_folio(folio)) {
2126 			ret = -EIO;
2127 			goto out;
2128 		}
2129 		if (!folio_test_uptodate(folio))
2130 			folio_mark_uptodate(folio);
2131 		folio_unlock(folio);
2132 		goto out;
2133 	}
2134 
2135 	/*
2136 	 * This page will go to BIO.  Do we need to send this
2137 	 * BIO off first?
2138 	 */
2139 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2140 				       *last_block_in_bio, block_nr) ||
2141 		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2142 submit_and_realloc:
2143 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2144 		bio = NULL;
2145 	}
2146 	if (bio == NULL) {
2147 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2148 				f2fs_ra_op_flags(rac), index,
2149 				false);
2150 		if (IS_ERR(bio)) {
2151 			ret = PTR_ERR(bio);
2152 			bio = NULL;
2153 			goto out;
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * If the page is under writeback, we need to wait for
2159 	 * its completion to see the correct decrypted data.
2160 	 */
2161 	f2fs_wait_on_block_writeback(inode, block_nr);
2162 
2163 	if (!bio_add_folio(bio, folio, blocksize, 0))
2164 		goto submit_and_realloc;
2165 
2166 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2167 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2168 							F2FS_BLKSIZE);
2169 	*last_block_in_bio = block_nr;
2170 out:
2171 	*bio_ret = bio;
2172 	return ret;
2173 }
2174 
2175 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2176 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2177 				unsigned nr_pages, sector_t *last_block_in_bio,
2178 				struct readahead_control *rac, bool for_write)
2179 {
2180 	struct dnode_of_data dn;
2181 	struct inode *inode = cc->inode;
2182 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2183 	struct bio *bio = *bio_ret;
2184 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2185 	sector_t last_block_in_file;
2186 	const unsigned int blocksize = F2FS_BLKSIZE;
2187 	struct decompress_io_ctx *dic = NULL;
2188 	struct extent_info ei = {};
2189 	bool from_dnode = true;
2190 	int i;
2191 	int ret = 0;
2192 
2193 	if (unlikely(f2fs_cp_error(sbi))) {
2194 		ret = -EIO;
2195 		from_dnode = false;
2196 		goto out_put_dnode;
2197 	}
2198 
2199 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2200 
2201 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2202 							blocksize - 1);
2203 
2204 	/* get rid of pages beyond EOF */
2205 	for (i = 0; i < cc->cluster_size; i++) {
2206 		struct page *page = cc->rpages[i];
2207 		struct folio *folio;
2208 
2209 		if (!page)
2210 			continue;
2211 
2212 		folio = page_folio(page);
2213 		if ((sector_t)folio->index >= last_block_in_file) {
2214 			folio_zero_segment(folio, 0, folio_size(folio));
2215 			if (!folio_test_uptodate(folio))
2216 				folio_mark_uptodate(folio);
2217 		} else if (!folio_test_uptodate(folio)) {
2218 			continue;
2219 		}
2220 		folio_unlock(folio);
2221 		if (for_write)
2222 			folio_put(folio);
2223 		cc->rpages[i] = NULL;
2224 		cc->nr_rpages--;
2225 	}
2226 
2227 	/* we are done since all pages are beyond EOF */
2228 	if (f2fs_cluster_is_empty(cc))
2229 		goto out;
2230 
2231 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2232 		from_dnode = false;
2233 
2234 	if (!from_dnode)
2235 		goto skip_reading_dnode;
2236 
2237 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2238 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2239 	if (ret)
2240 		goto out;
2241 
2242 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2243 
2244 skip_reading_dnode:
2245 	for (i = 1; i < cc->cluster_size; i++) {
2246 		block_t blkaddr;
2247 
2248 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2249 					dn.ofs_in_node + i) :
2250 					ei.blk + i - 1;
2251 
2252 		if (!__is_valid_data_blkaddr(blkaddr))
2253 			break;
2254 
2255 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2256 			ret = -EFAULT;
2257 			goto out_put_dnode;
2258 		}
2259 		cc->nr_cpages++;
2260 
2261 		if (!from_dnode && i >= ei.c_len)
2262 			break;
2263 	}
2264 
2265 	/* nothing to decompress */
2266 	if (cc->nr_cpages == 0) {
2267 		ret = 0;
2268 		goto out_put_dnode;
2269 	}
2270 
2271 	dic = f2fs_alloc_dic(cc);
2272 	if (IS_ERR(dic)) {
2273 		ret = PTR_ERR(dic);
2274 		goto out_put_dnode;
2275 	}
2276 
2277 	for (i = 0; i < cc->nr_cpages; i++) {
2278 		struct folio *folio = page_folio(dic->cpages[i]);
2279 		block_t blkaddr;
2280 		struct bio_post_read_ctx *ctx;
2281 
2282 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2283 					dn.ofs_in_node + i + 1) :
2284 					ei.blk + i;
2285 
2286 		f2fs_wait_on_block_writeback(inode, blkaddr);
2287 
2288 		if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2289 								blkaddr)) {
2290 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2291 				f2fs_decompress_cluster(dic, true);
2292 				break;
2293 			}
2294 			continue;
2295 		}
2296 
2297 		if (bio && (!page_is_mergeable(sbi, bio,
2298 					*last_block_in_bio, blkaddr) ||
2299 		    !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2300 submit_and_realloc:
2301 			f2fs_submit_read_bio(sbi, bio, DATA);
2302 			bio = NULL;
2303 		}
2304 
2305 		if (!bio) {
2306 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2307 					f2fs_ra_op_flags(rac),
2308 					folio->index, for_write);
2309 			if (IS_ERR(bio)) {
2310 				ret = PTR_ERR(bio);
2311 				f2fs_decompress_end_io(dic, ret, true);
2312 				f2fs_put_dnode(&dn);
2313 				*bio_ret = NULL;
2314 				return ret;
2315 			}
2316 		}
2317 
2318 		if (!bio_add_folio(bio, folio, blocksize, 0))
2319 			goto submit_and_realloc;
2320 
2321 		ctx = get_post_read_ctx(bio);
2322 		ctx->enabled_steps |= STEP_DECOMPRESS;
2323 		refcount_inc(&dic->refcnt);
2324 
2325 		inc_page_count(sbi, F2FS_RD_DATA);
2326 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2327 		*last_block_in_bio = blkaddr;
2328 	}
2329 
2330 	if (from_dnode)
2331 		f2fs_put_dnode(&dn);
2332 
2333 	*bio_ret = bio;
2334 	return 0;
2335 
2336 out_put_dnode:
2337 	if (from_dnode)
2338 		f2fs_put_dnode(&dn);
2339 out:
2340 	for (i = 0; i < cc->cluster_size; i++) {
2341 		if (cc->rpages[i]) {
2342 			ClearPageUptodate(cc->rpages[i]);
2343 			unlock_page(cc->rpages[i]);
2344 		}
2345 	}
2346 	*bio_ret = bio;
2347 	return ret;
2348 }
2349 #endif
2350 
2351 /*
2352  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2353  * Major change was from block_size == page_size in f2fs by default.
2354  */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2355 static int f2fs_mpage_readpages(struct inode *inode,
2356 		struct readahead_control *rac, struct folio *folio)
2357 {
2358 	struct bio *bio = NULL;
2359 	sector_t last_block_in_bio = 0;
2360 	struct f2fs_map_blocks map;
2361 #ifdef CONFIG_F2FS_FS_COMPRESSION
2362 	struct compress_ctx cc = {
2363 		.inode = inode,
2364 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2365 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2366 		.cluster_idx = NULL_CLUSTER,
2367 		.rpages = NULL,
2368 		.cpages = NULL,
2369 		.nr_rpages = 0,
2370 		.nr_cpages = 0,
2371 	};
2372 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2373 	pgoff_t index;
2374 #endif
2375 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2376 	unsigned max_nr_pages = nr_pages;
2377 	int ret = 0;
2378 
2379 	map.m_pblk = 0;
2380 	map.m_lblk = 0;
2381 	map.m_len = 0;
2382 	map.m_flags = 0;
2383 	map.m_next_pgofs = NULL;
2384 	map.m_next_extent = NULL;
2385 	map.m_seg_type = NO_CHECK_TYPE;
2386 	map.m_may_create = false;
2387 
2388 	for (; nr_pages; nr_pages--) {
2389 		if (rac) {
2390 			folio = readahead_folio(rac);
2391 			prefetchw(&folio->flags);
2392 		}
2393 
2394 #ifdef CONFIG_F2FS_FS_COMPRESSION
2395 		index = folio_index(folio);
2396 
2397 		if (!f2fs_compressed_file(inode))
2398 			goto read_single_page;
2399 
2400 		/* there are remained compressed pages, submit them */
2401 		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2402 			ret = f2fs_read_multi_pages(&cc, &bio,
2403 						max_nr_pages,
2404 						&last_block_in_bio,
2405 						rac, false);
2406 			f2fs_destroy_compress_ctx(&cc, false);
2407 			if (ret)
2408 				goto set_error_page;
2409 		}
2410 		if (cc.cluster_idx == NULL_CLUSTER) {
2411 			if (nc_cluster_idx == index >> cc.log_cluster_size)
2412 				goto read_single_page;
2413 
2414 			ret = f2fs_is_compressed_cluster(inode, index);
2415 			if (ret < 0)
2416 				goto set_error_page;
2417 			else if (!ret) {
2418 				nc_cluster_idx =
2419 					index >> cc.log_cluster_size;
2420 				goto read_single_page;
2421 			}
2422 
2423 			nc_cluster_idx = NULL_CLUSTER;
2424 		}
2425 		ret = f2fs_init_compress_ctx(&cc);
2426 		if (ret)
2427 			goto set_error_page;
2428 
2429 		f2fs_compress_ctx_add_page(&cc, folio);
2430 
2431 		goto next_page;
2432 read_single_page:
2433 #endif
2434 
2435 		ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2436 					&bio, &last_block_in_bio, rac);
2437 		if (ret) {
2438 #ifdef CONFIG_F2FS_FS_COMPRESSION
2439 set_error_page:
2440 #endif
2441 			folio_zero_segment(folio, 0, folio_size(folio));
2442 			folio_unlock(folio);
2443 		}
2444 #ifdef CONFIG_F2FS_FS_COMPRESSION
2445 next_page:
2446 #endif
2447 
2448 #ifdef CONFIG_F2FS_FS_COMPRESSION
2449 		if (f2fs_compressed_file(inode)) {
2450 			/* last page */
2451 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2452 				ret = f2fs_read_multi_pages(&cc, &bio,
2453 							max_nr_pages,
2454 							&last_block_in_bio,
2455 							rac, false);
2456 				f2fs_destroy_compress_ctx(&cc, false);
2457 			}
2458 		}
2459 #endif
2460 	}
2461 	if (bio)
2462 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2463 	return ret;
2464 }
2465 
f2fs_read_data_folio(struct file * file,struct folio * folio)2466 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2467 {
2468 	struct inode *inode = folio->mapping->host;
2469 	int ret = -EAGAIN;
2470 
2471 	trace_f2fs_readpage(folio, DATA);
2472 
2473 	if (!f2fs_is_compress_backend_ready(inode)) {
2474 		folio_unlock(folio);
2475 		return -EOPNOTSUPP;
2476 	}
2477 
2478 	/* If the file has inline data, try to read it directly */
2479 	if (f2fs_has_inline_data(inode))
2480 		ret = f2fs_read_inline_data(inode, folio);
2481 	if (ret == -EAGAIN)
2482 		ret = f2fs_mpage_readpages(inode, NULL, folio);
2483 	return ret;
2484 }
2485 
f2fs_readahead(struct readahead_control * rac)2486 static void f2fs_readahead(struct readahead_control *rac)
2487 {
2488 	struct inode *inode = rac->mapping->host;
2489 
2490 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2491 
2492 	if (!f2fs_is_compress_backend_ready(inode))
2493 		return;
2494 
2495 	/* If the file has inline data, skip readahead */
2496 	if (f2fs_has_inline_data(inode))
2497 		return;
2498 
2499 	f2fs_mpage_readpages(inode, rac, NULL);
2500 }
2501 
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2503 {
2504 	struct inode *inode = fio->page->mapping->host;
2505 	struct page *mpage, *page;
2506 	gfp_t gfp_flags = GFP_NOFS;
2507 
2508 	if (!f2fs_encrypted_file(inode))
2509 		return 0;
2510 
2511 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2512 
2513 	if (fscrypt_inode_uses_inline_crypto(inode))
2514 		return 0;
2515 
2516 retry_encrypt:
2517 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page),
2518 					PAGE_SIZE, 0, gfp_flags);
2519 	if (IS_ERR(fio->encrypted_page)) {
2520 		/* flush pending IOs and wait for a while in the ENOMEM case */
2521 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2522 			f2fs_flush_merged_writes(fio->sbi);
2523 			memalloc_retry_wait(GFP_NOFS);
2524 			gfp_flags |= __GFP_NOFAIL;
2525 			goto retry_encrypt;
2526 		}
2527 		return PTR_ERR(fio->encrypted_page);
2528 	}
2529 
2530 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2531 	if (mpage) {
2532 		if (PageUptodate(mpage))
2533 			memcpy(page_address(mpage),
2534 				page_address(fio->encrypted_page), PAGE_SIZE);
2535 		f2fs_put_page(mpage, 1);
2536 	}
2537 	return 0;
2538 }
2539 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2540 static inline bool check_inplace_update_policy(struct inode *inode,
2541 				struct f2fs_io_info *fio)
2542 {
2543 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2544 
2545 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2546 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2547 		return false;
2548 	if (IS_F2FS_IPU_FORCE(sbi))
2549 		return true;
2550 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2551 		return true;
2552 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2553 		return true;
2554 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2555 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2556 		return true;
2557 
2558 	/*
2559 	 * IPU for rewrite async pages
2560 	 */
2561 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2562 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2563 		return true;
2564 
2565 	/* this is only set during fdatasync */
2566 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2567 		return true;
2568 
2569 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2570 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2571 		return true;
2572 
2573 	return false;
2574 }
2575 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2576 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2577 {
2578 	/* swap file is migrating in aligned write mode */
2579 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2580 		return false;
2581 
2582 	if (f2fs_is_pinned_file(inode))
2583 		return true;
2584 
2585 	/* if this is cold file, we should overwrite to avoid fragmentation */
2586 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2587 		return true;
2588 
2589 	return check_inplace_update_policy(inode, fio);
2590 }
2591 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2592 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2593 {
2594 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2595 
2596 	/* The below cases were checked when setting it. */
2597 	if (f2fs_is_pinned_file(inode))
2598 		return false;
2599 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2600 		return true;
2601 	if (f2fs_lfs_mode(sbi))
2602 		return true;
2603 	if (S_ISDIR(inode->i_mode))
2604 		return true;
2605 	if (IS_NOQUOTA(inode))
2606 		return true;
2607 	if (f2fs_used_in_atomic_write(inode))
2608 		return true;
2609 	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2610 	if (f2fs_compressed_file(inode) &&
2611 		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2612 		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2613 		return true;
2614 
2615 	/* swap file is migrating in aligned write mode */
2616 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2617 		return true;
2618 
2619 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2620 		return true;
2621 
2622 	if (fio) {
2623 		if (page_private_gcing(fio->page))
2624 			return true;
2625 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2626 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2627 			return true;
2628 	}
2629 	return false;
2630 }
2631 
need_inplace_update(struct f2fs_io_info * fio)2632 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2633 {
2634 	struct inode *inode = fio->page->mapping->host;
2635 
2636 	if (f2fs_should_update_outplace(inode, fio))
2637 		return false;
2638 
2639 	return f2fs_should_update_inplace(inode, fio);
2640 }
2641 
f2fs_do_write_data_page(struct f2fs_io_info * fio)2642 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2643 {
2644 	struct folio *folio = page_folio(fio->page);
2645 	struct inode *inode = folio->mapping->host;
2646 	struct dnode_of_data dn;
2647 	struct node_info ni;
2648 	bool ipu_force = false;
2649 	bool atomic_commit;
2650 	int err = 0;
2651 
2652 	/* Use COW inode to make dnode_of_data for atomic write */
2653 	atomic_commit = f2fs_is_atomic_file(inode) &&
2654 				page_private_atomic(folio_page(folio, 0));
2655 	if (atomic_commit)
2656 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2657 	else
2658 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2659 
2660 	if (need_inplace_update(fio) &&
2661 	    f2fs_lookup_read_extent_cache_block(inode, folio->index,
2662 						&fio->old_blkaddr)) {
2663 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2664 						DATA_GENERIC_ENHANCE))
2665 			return -EFSCORRUPTED;
2666 
2667 		ipu_force = true;
2668 		fio->need_lock = LOCK_DONE;
2669 		goto got_it;
2670 	}
2671 
2672 	/* Deadlock due to between page->lock and f2fs_lock_op */
2673 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2674 		return -EAGAIN;
2675 
2676 	err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2677 	if (err)
2678 		goto out;
2679 
2680 	fio->old_blkaddr = dn.data_blkaddr;
2681 
2682 	/* This page is already truncated */
2683 	if (fio->old_blkaddr == NULL_ADDR) {
2684 		folio_clear_uptodate(folio);
2685 		clear_page_private_gcing(folio_page(folio, 0));
2686 		goto out_writepage;
2687 	}
2688 got_it:
2689 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2690 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2691 						DATA_GENERIC_ENHANCE)) {
2692 		err = -EFSCORRUPTED;
2693 		goto out_writepage;
2694 	}
2695 
2696 	/* wait for GCed page writeback via META_MAPPING */
2697 	if (fio->meta_gc)
2698 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2699 
2700 	/*
2701 	 * If current allocation needs SSR,
2702 	 * it had better in-place writes for updated data.
2703 	 */
2704 	if (ipu_force ||
2705 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2706 					need_inplace_update(fio))) {
2707 		err = f2fs_encrypt_one_page(fio);
2708 		if (err)
2709 			goto out_writepage;
2710 
2711 		folio_start_writeback(folio);
2712 		f2fs_put_dnode(&dn);
2713 		if (fio->need_lock == LOCK_REQ)
2714 			f2fs_unlock_op(fio->sbi);
2715 		err = f2fs_inplace_write_data(fio);
2716 		if (err) {
2717 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2718 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2719 			folio_end_writeback(folio);
2720 		} else {
2721 			set_inode_flag(inode, FI_UPDATE_WRITE);
2722 		}
2723 		trace_f2fs_do_write_data_page(folio, IPU);
2724 		return err;
2725 	}
2726 
2727 	if (fio->need_lock == LOCK_RETRY) {
2728 		if (!f2fs_trylock_op(fio->sbi)) {
2729 			err = -EAGAIN;
2730 			goto out_writepage;
2731 		}
2732 		fio->need_lock = LOCK_REQ;
2733 	}
2734 
2735 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2736 	if (err)
2737 		goto out_writepage;
2738 
2739 	fio->version = ni.version;
2740 
2741 	err = f2fs_encrypt_one_page(fio);
2742 	if (err)
2743 		goto out_writepage;
2744 
2745 	folio_start_writeback(folio);
2746 
2747 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2748 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2749 
2750 	/* LFS mode write path */
2751 	f2fs_outplace_write_data(&dn, fio);
2752 	trace_f2fs_do_write_data_page(folio, OPU);
2753 	set_inode_flag(inode, FI_APPEND_WRITE);
2754 	if (atomic_commit)
2755 		clear_page_private_atomic(folio_page(folio, 0));
2756 out_writepage:
2757 	f2fs_put_dnode(&dn);
2758 out:
2759 	if (fio->need_lock == LOCK_REQ)
2760 		f2fs_unlock_op(fio->sbi);
2761 	return err;
2762 }
2763 
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2764 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2765 				struct bio **bio,
2766 				sector_t *last_block,
2767 				struct writeback_control *wbc,
2768 				enum iostat_type io_type,
2769 				int compr_blocks,
2770 				bool allow_balance)
2771 {
2772 	struct inode *inode = folio->mapping->host;
2773 	struct page *page = folio_page(folio, 0);
2774 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2775 	loff_t i_size = i_size_read(inode);
2776 	const pgoff_t end_index = ((unsigned long long)i_size)
2777 							>> PAGE_SHIFT;
2778 	loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2779 	unsigned offset = 0;
2780 	bool need_balance_fs = false;
2781 	bool quota_inode = IS_NOQUOTA(inode);
2782 	int err = 0;
2783 	struct f2fs_io_info fio = {
2784 		.sbi = sbi,
2785 		.ino = inode->i_ino,
2786 		.type = DATA,
2787 		.op = REQ_OP_WRITE,
2788 		.op_flags = wbc_to_write_flags(wbc),
2789 		.old_blkaddr = NULL_ADDR,
2790 		.page = page,
2791 		.encrypted_page = NULL,
2792 		.submitted = 0,
2793 		.compr_blocks = compr_blocks,
2794 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2795 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2796 		.io_type = io_type,
2797 		.io_wbc = wbc,
2798 		.bio = bio,
2799 		.last_block = last_block,
2800 	};
2801 
2802 	trace_f2fs_writepage(folio, DATA);
2803 
2804 	/* we should bypass data pages to proceed the kworker jobs */
2805 	if (unlikely(f2fs_cp_error(sbi))) {
2806 		mapping_set_error(folio->mapping, -EIO);
2807 		/*
2808 		 * don't drop any dirty dentry pages for keeping lastest
2809 		 * directory structure.
2810 		 */
2811 		if (S_ISDIR(inode->i_mode) &&
2812 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2813 			goto redirty_out;
2814 
2815 		/* keep data pages in remount-ro mode */
2816 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2817 			goto redirty_out;
2818 		goto out;
2819 	}
2820 
2821 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2822 		goto redirty_out;
2823 
2824 	if (folio->index < end_index ||
2825 			f2fs_verity_in_progress(inode) ||
2826 			compr_blocks)
2827 		goto write;
2828 
2829 	/*
2830 	 * If the offset is out-of-range of file size,
2831 	 * this page does not have to be written to disk.
2832 	 */
2833 	offset = i_size & (PAGE_SIZE - 1);
2834 	if ((folio->index >= end_index + 1) || !offset)
2835 		goto out;
2836 
2837 	folio_zero_segment(folio, offset, folio_size(folio));
2838 write:
2839 	/* Dentry/quota blocks are controlled by checkpoint */
2840 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2841 		/*
2842 		 * We need to wait for node_write to avoid block allocation during
2843 		 * checkpoint. This can only happen to quota writes which can cause
2844 		 * the below discard race condition.
2845 		 */
2846 		if (quota_inode)
2847 			f2fs_down_read(&sbi->node_write);
2848 
2849 		fio.need_lock = LOCK_DONE;
2850 		err = f2fs_do_write_data_page(&fio);
2851 
2852 		if (quota_inode)
2853 			f2fs_up_read(&sbi->node_write);
2854 
2855 		goto done;
2856 	}
2857 
2858 	if (!wbc->for_reclaim)
2859 		need_balance_fs = true;
2860 	else if (has_not_enough_free_secs(sbi, 0, 0))
2861 		goto redirty_out;
2862 	else
2863 		set_inode_flag(inode, FI_HOT_DATA);
2864 
2865 	err = -EAGAIN;
2866 	if (f2fs_has_inline_data(inode)) {
2867 		err = f2fs_write_inline_data(inode, folio);
2868 		if (!err)
2869 			goto out;
2870 	}
2871 
2872 	if (err == -EAGAIN) {
2873 		err = f2fs_do_write_data_page(&fio);
2874 		if (err == -EAGAIN) {
2875 			f2fs_bug_on(sbi, compr_blocks);
2876 			fio.need_lock = LOCK_REQ;
2877 			err = f2fs_do_write_data_page(&fio);
2878 		}
2879 	}
2880 
2881 	if (err) {
2882 		file_set_keep_isize(inode);
2883 	} else {
2884 		spin_lock(&F2FS_I(inode)->i_size_lock);
2885 		if (F2FS_I(inode)->last_disk_size < psize)
2886 			F2FS_I(inode)->last_disk_size = psize;
2887 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2888 	}
2889 
2890 done:
2891 	if (err && err != -ENOENT)
2892 		goto redirty_out;
2893 
2894 out:
2895 	inode_dec_dirty_pages(inode);
2896 	if (err) {
2897 		folio_clear_uptodate(folio);
2898 		clear_page_private_gcing(page);
2899 	}
2900 
2901 	if (wbc->for_reclaim) {
2902 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2903 		clear_inode_flag(inode, FI_HOT_DATA);
2904 		f2fs_remove_dirty_inode(inode);
2905 		submitted = NULL;
2906 	}
2907 	folio_unlock(folio);
2908 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2909 			!F2FS_I(inode)->wb_task && allow_balance)
2910 		f2fs_balance_fs(sbi, need_balance_fs);
2911 
2912 	if (unlikely(f2fs_cp_error(sbi))) {
2913 		f2fs_submit_merged_write(sbi, DATA);
2914 		if (bio && *bio)
2915 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2916 		submitted = NULL;
2917 	}
2918 
2919 	if (submitted)
2920 		*submitted = fio.submitted;
2921 
2922 	return 0;
2923 
2924 redirty_out:
2925 	folio_redirty_for_writepage(wbc, folio);
2926 	/*
2927 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2928 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2929 	 * file_write_and_wait_range() will see EIO error, which is critical
2930 	 * to return value of fsync() followed by atomic_write failure to user.
2931 	 */
2932 	if (!err || wbc->for_reclaim)
2933 		return AOP_WRITEPAGE_ACTIVATE;
2934 	folio_unlock(folio);
2935 	return err;
2936 }
2937 
2938 /*
2939  * This function was copied from write_cache_pages from mm/page-writeback.c.
2940  * The major change is making write step of cold data page separately from
2941  * warm/hot data page.
2942  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2943 static int f2fs_write_cache_pages(struct address_space *mapping,
2944 					struct writeback_control *wbc,
2945 					enum iostat_type io_type)
2946 {
2947 	int ret = 0;
2948 	int done = 0, retry = 0;
2949 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2950 	struct page **pages = pages_local;
2951 	struct folio_batch fbatch;
2952 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2953 	struct bio *bio = NULL;
2954 	sector_t last_block;
2955 #ifdef CONFIG_F2FS_FS_COMPRESSION
2956 	struct inode *inode = mapping->host;
2957 	struct compress_ctx cc = {
2958 		.inode = inode,
2959 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2960 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2961 		.cluster_idx = NULL_CLUSTER,
2962 		.rpages = NULL,
2963 		.nr_rpages = 0,
2964 		.cpages = NULL,
2965 		.valid_nr_cpages = 0,
2966 		.rbuf = NULL,
2967 		.cbuf = NULL,
2968 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2969 		.private = NULL,
2970 	};
2971 #endif
2972 	int nr_folios, p, idx;
2973 	int nr_pages;
2974 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2975 	pgoff_t index;
2976 	pgoff_t end;		/* Inclusive */
2977 	pgoff_t done_index;
2978 	int range_whole = 0;
2979 	xa_mark_t tag;
2980 	int nwritten = 0;
2981 	int submitted = 0;
2982 	int i;
2983 
2984 #ifdef CONFIG_F2FS_FS_COMPRESSION
2985 	if (f2fs_compressed_file(inode) &&
2986 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2987 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2988 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2989 		max_pages = 1 << cc.log_cluster_size;
2990 	}
2991 #endif
2992 
2993 	folio_batch_init(&fbatch);
2994 
2995 	if (get_dirty_pages(mapping->host) <=
2996 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2997 		set_inode_flag(mapping->host, FI_HOT_DATA);
2998 	else
2999 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3000 
3001 	if (wbc->range_cyclic) {
3002 		index = mapping->writeback_index; /* prev offset */
3003 		end = -1;
3004 	} else {
3005 		index = wbc->range_start >> PAGE_SHIFT;
3006 		end = wbc->range_end >> PAGE_SHIFT;
3007 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3008 			range_whole = 1;
3009 	}
3010 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3011 		tag = PAGECACHE_TAG_TOWRITE;
3012 	else
3013 		tag = PAGECACHE_TAG_DIRTY;
3014 retry:
3015 	retry = 0;
3016 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3017 		tag_pages_for_writeback(mapping, index, end);
3018 	done_index = index;
3019 	while (!done && !retry && (index <= end)) {
3020 		nr_pages = 0;
3021 again:
3022 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3023 				tag, &fbatch);
3024 		if (nr_folios == 0) {
3025 			if (nr_pages)
3026 				goto write;
3027 			break;
3028 		}
3029 
3030 		for (i = 0; i < nr_folios; i++) {
3031 			struct folio *folio = fbatch.folios[i];
3032 
3033 			idx = 0;
3034 			p = folio_nr_pages(folio);
3035 add_more:
3036 			pages[nr_pages] = folio_page(folio, idx);
3037 			folio_get(folio);
3038 			if (++nr_pages == max_pages) {
3039 				index = folio->index + idx + 1;
3040 				folio_batch_release(&fbatch);
3041 				goto write;
3042 			}
3043 			if (++idx < p)
3044 				goto add_more;
3045 		}
3046 		folio_batch_release(&fbatch);
3047 		goto again;
3048 write:
3049 		for (i = 0; i < nr_pages; i++) {
3050 			struct page *page = pages[i];
3051 			struct folio *folio = page_folio(page);
3052 			bool need_readd;
3053 readd:
3054 			need_readd = false;
3055 #ifdef CONFIG_F2FS_FS_COMPRESSION
3056 			if (f2fs_compressed_file(inode)) {
3057 				void *fsdata = NULL;
3058 				struct page *pagep;
3059 				int ret2;
3060 
3061 				ret = f2fs_init_compress_ctx(&cc);
3062 				if (ret) {
3063 					done = 1;
3064 					break;
3065 				}
3066 
3067 				if (!f2fs_cluster_can_merge_page(&cc,
3068 								folio->index)) {
3069 					ret = f2fs_write_multi_pages(&cc,
3070 						&submitted, wbc, io_type);
3071 					if (!ret)
3072 						need_readd = true;
3073 					goto result;
3074 				}
3075 
3076 				if (unlikely(f2fs_cp_error(sbi)))
3077 					goto lock_folio;
3078 
3079 				if (!f2fs_cluster_is_empty(&cc))
3080 					goto lock_folio;
3081 
3082 				if (f2fs_all_cluster_page_ready(&cc,
3083 					pages, i, nr_pages, true))
3084 					goto lock_folio;
3085 
3086 				ret2 = f2fs_prepare_compress_overwrite(
3087 							inode, &pagep,
3088 							folio->index, &fsdata);
3089 				if (ret2 < 0) {
3090 					ret = ret2;
3091 					done = 1;
3092 					break;
3093 				} else if (ret2 &&
3094 					(!f2fs_compress_write_end(inode,
3095 						fsdata, folio->index, 1) ||
3096 					 !f2fs_all_cluster_page_ready(&cc,
3097 						pages, i, nr_pages,
3098 						false))) {
3099 					retry = 1;
3100 					break;
3101 				}
3102 			}
3103 #endif
3104 			/* give a priority to WB_SYNC threads */
3105 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3106 					wbc->sync_mode == WB_SYNC_NONE) {
3107 				done = 1;
3108 				break;
3109 			}
3110 #ifdef CONFIG_F2FS_FS_COMPRESSION
3111 lock_folio:
3112 #endif
3113 			done_index = folio->index;
3114 retry_write:
3115 			folio_lock(folio);
3116 
3117 			if (unlikely(folio->mapping != mapping)) {
3118 continue_unlock:
3119 				folio_unlock(folio);
3120 				continue;
3121 			}
3122 
3123 			if (!folio_test_dirty(folio)) {
3124 				/* someone wrote it for us */
3125 				goto continue_unlock;
3126 			}
3127 
3128 			if (folio_test_writeback(folio)) {
3129 				if (wbc->sync_mode == WB_SYNC_NONE)
3130 					goto continue_unlock;
3131 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3132 			}
3133 
3134 			if (!folio_clear_dirty_for_io(folio))
3135 				goto continue_unlock;
3136 
3137 #ifdef CONFIG_F2FS_FS_COMPRESSION
3138 			if (f2fs_compressed_file(inode)) {
3139 				folio_get(folio);
3140 				f2fs_compress_ctx_add_page(&cc, folio);
3141 				continue;
3142 			}
3143 #endif
3144 			submitted = 0;
3145 			ret = f2fs_write_single_data_page(folio,
3146 					&submitted, &bio, &last_block,
3147 					wbc, io_type, 0, true);
3148 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3149 				folio_unlock(folio);
3150 #ifdef CONFIG_F2FS_FS_COMPRESSION
3151 result:
3152 #endif
3153 			nwritten += submitted;
3154 			wbc->nr_to_write -= submitted;
3155 
3156 			if (unlikely(ret)) {
3157 				/*
3158 				 * keep nr_to_write, since vfs uses this to
3159 				 * get # of written pages.
3160 				 */
3161 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3162 					ret = 0;
3163 					goto next;
3164 				} else if (ret == -EAGAIN) {
3165 					ret = 0;
3166 					if (wbc->sync_mode == WB_SYNC_ALL) {
3167 						f2fs_io_schedule_timeout(
3168 							DEFAULT_IO_TIMEOUT);
3169 						goto retry_write;
3170 					}
3171 					goto next;
3172 				}
3173 				done_index = folio_next_index(folio);
3174 				done = 1;
3175 				break;
3176 			}
3177 
3178 			if (wbc->nr_to_write <= 0 &&
3179 					wbc->sync_mode == WB_SYNC_NONE) {
3180 				done = 1;
3181 				break;
3182 			}
3183 next:
3184 			if (need_readd)
3185 				goto readd;
3186 		}
3187 		release_pages(pages, nr_pages);
3188 		cond_resched();
3189 	}
3190 #ifdef CONFIG_F2FS_FS_COMPRESSION
3191 	/* flush remained pages in compress cluster */
3192 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3193 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3194 		nwritten += submitted;
3195 		wbc->nr_to_write -= submitted;
3196 		if (ret) {
3197 			done = 1;
3198 			retry = 0;
3199 		}
3200 	}
3201 	if (f2fs_compressed_file(inode))
3202 		f2fs_destroy_compress_ctx(&cc, false);
3203 #endif
3204 	if (retry) {
3205 		index = 0;
3206 		end = -1;
3207 		goto retry;
3208 	}
3209 	if (wbc->range_cyclic && !done)
3210 		done_index = 0;
3211 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3212 		mapping->writeback_index = done_index;
3213 
3214 	if (nwritten)
3215 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3216 								NULL, 0, DATA);
3217 	/* submit cached bio of IPU write */
3218 	if (bio)
3219 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3220 
3221 #ifdef CONFIG_F2FS_FS_COMPRESSION
3222 	if (pages != pages_local)
3223 		kfree(pages);
3224 #endif
3225 
3226 	return ret;
3227 }
3228 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3229 static inline bool __should_serialize_io(struct inode *inode,
3230 					struct writeback_control *wbc)
3231 {
3232 	/* to avoid deadlock in path of data flush */
3233 	if (F2FS_I(inode)->wb_task)
3234 		return false;
3235 
3236 	if (!S_ISREG(inode->i_mode))
3237 		return false;
3238 	if (IS_NOQUOTA(inode))
3239 		return false;
3240 
3241 	if (f2fs_need_compress_data(inode))
3242 		return true;
3243 	if (wbc->sync_mode != WB_SYNC_ALL)
3244 		return true;
3245 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3246 		return true;
3247 	return false;
3248 }
3249 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3250 static int __f2fs_write_data_pages(struct address_space *mapping,
3251 						struct writeback_control *wbc,
3252 						enum iostat_type io_type)
3253 {
3254 	struct inode *inode = mapping->host;
3255 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3256 	struct blk_plug plug;
3257 	int ret;
3258 	bool locked = false;
3259 
3260 	/* skip writing if there is no dirty page in this inode */
3261 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3262 		return 0;
3263 
3264 	/* during POR, we don't need to trigger writepage at all. */
3265 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3266 		goto skip_write;
3267 
3268 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3269 			wbc->sync_mode == WB_SYNC_NONE &&
3270 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3271 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3272 		goto skip_write;
3273 
3274 	/* skip writing in file defragment preparing stage */
3275 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3276 		goto skip_write;
3277 
3278 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3279 
3280 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3281 	if (wbc->sync_mode == WB_SYNC_ALL)
3282 		atomic_inc(&sbi->wb_sync_req[DATA]);
3283 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3284 		/* to avoid potential deadlock */
3285 		if (current->plug)
3286 			blk_finish_plug(current->plug);
3287 		goto skip_write;
3288 	}
3289 
3290 	if (__should_serialize_io(inode, wbc)) {
3291 		mutex_lock(&sbi->writepages);
3292 		locked = true;
3293 	}
3294 
3295 	blk_start_plug(&plug);
3296 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3297 	blk_finish_plug(&plug);
3298 
3299 	if (locked)
3300 		mutex_unlock(&sbi->writepages);
3301 
3302 	if (wbc->sync_mode == WB_SYNC_ALL)
3303 		atomic_dec(&sbi->wb_sync_req[DATA]);
3304 	/*
3305 	 * if some pages were truncated, we cannot guarantee its mapping->host
3306 	 * to detect pending bios.
3307 	 */
3308 
3309 	f2fs_remove_dirty_inode(inode);
3310 	return ret;
3311 
3312 skip_write:
3313 	wbc->pages_skipped += get_dirty_pages(inode);
3314 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3315 	return 0;
3316 }
3317 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3318 static int f2fs_write_data_pages(struct address_space *mapping,
3319 			    struct writeback_control *wbc)
3320 {
3321 	struct inode *inode = mapping->host;
3322 
3323 	return __f2fs_write_data_pages(mapping, wbc,
3324 			F2FS_I(inode)->cp_task == current ?
3325 			FS_CP_DATA_IO : FS_DATA_IO);
3326 }
3327 
f2fs_write_failed(struct inode * inode,loff_t to)3328 void f2fs_write_failed(struct inode *inode, loff_t to)
3329 {
3330 	loff_t i_size = i_size_read(inode);
3331 
3332 	if (IS_NOQUOTA(inode))
3333 		return;
3334 
3335 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3336 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3337 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3338 		filemap_invalidate_lock(inode->i_mapping);
3339 
3340 		truncate_pagecache(inode, i_size);
3341 		f2fs_truncate_blocks(inode, i_size, true);
3342 
3343 		filemap_invalidate_unlock(inode->i_mapping);
3344 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3345 	}
3346 }
3347 
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3348 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3349 			struct folio *folio, loff_t pos, unsigned int len,
3350 			block_t *blk_addr, bool *node_changed)
3351 {
3352 	struct inode *inode = folio->mapping->host;
3353 	pgoff_t index = folio->index;
3354 	struct dnode_of_data dn;
3355 	struct page *ipage;
3356 	bool locked = false;
3357 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3358 	int err = 0;
3359 
3360 	/*
3361 	 * If a whole page is being written and we already preallocated all the
3362 	 * blocks, then there is no need to get a block address now.
3363 	 */
3364 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3365 		return 0;
3366 
3367 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3368 	if (f2fs_has_inline_data(inode)) {
3369 		if (pos + len > MAX_INLINE_DATA(inode))
3370 			flag = F2FS_GET_BLOCK_DEFAULT;
3371 		f2fs_map_lock(sbi, flag);
3372 		locked = true;
3373 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3374 		f2fs_map_lock(sbi, flag);
3375 		locked = true;
3376 	}
3377 
3378 restart:
3379 	/* check inline_data */
3380 	ipage = f2fs_get_inode_page(sbi, inode->i_ino);
3381 	if (IS_ERR(ipage)) {
3382 		err = PTR_ERR(ipage);
3383 		goto unlock_out;
3384 	}
3385 
3386 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3387 
3388 	if (f2fs_has_inline_data(inode)) {
3389 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3390 			f2fs_do_read_inline_data(folio, ipage);
3391 			set_inode_flag(inode, FI_DATA_EXIST);
3392 			if (inode->i_nlink)
3393 				set_page_private_inline(ipage);
3394 			goto out;
3395 		}
3396 		err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3397 		if (err || dn.data_blkaddr != NULL_ADDR)
3398 			goto out;
3399 	}
3400 
3401 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3402 						 &dn.data_blkaddr)) {
3403 		if (IS_DEVICE_ALIASING(inode)) {
3404 			err = -ENODATA;
3405 			goto out;
3406 		}
3407 
3408 		if (locked) {
3409 			err = f2fs_reserve_block(&dn, index);
3410 			goto out;
3411 		}
3412 
3413 		/* hole case */
3414 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3415 		if (!err && dn.data_blkaddr != NULL_ADDR)
3416 			goto out;
3417 		f2fs_put_dnode(&dn);
3418 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3419 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3420 		locked = true;
3421 		goto restart;
3422 	}
3423 out:
3424 	if (!err) {
3425 		/* convert_inline_page can make node_changed */
3426 		*blk_addr = dn.data_blkaddr;
3427 		*node_changed = dn.node_changed;
3428 	}
3429 	f2fs_put_dnode(&dn);
3430 unlock_out:
3431 	if (locked)
3432 		f2fs_map_unlock(sbi, flag);
3433 	return err;
3434 }
3435 
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3436 static int __find_data_block(struct inode *inode, pgoff_t index,
3437 				block_t *blk_addr)
3438 {
3439 	struct dnode_of_data dn;
3440 	struct page *ipage;
3441 	int err = 0;
3442 
3443 	ipage = f2fs_get_inode_page(F2FS_I_SB(inode), inode->i_ino);
3444 	if (IS_ERR(ipage))
3445 		return PTR_ERR(ipage);
3446 
3447 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3448 
3449 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3450 						 &dn.data_blkaddr)) {
3451 		/* hole case */
3452 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3453 		if (err) {
3454 			dn.data_blkaddr = NULL_ADDR;
3455 			err = 0;
3456 		}
3457 	}
3458 	*blk_addr = dn.data_blkaddr;
3459 	f2fs_put_dnode(&dn);
3460 	return err;
3461 }
3462 
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3463 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3464 				block_t *blk_addr, bool *node_changed)
3465 {
3466 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3467 	struct dnode_of_data dn;
3468 	struct page *ipage;
3469 	int err = 0;
3470 
3471 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3472 
3473 	ipage = f2fs_get_inode_page(sbi, inode->i_ino);
3474 	if (IS_ERR(ipage)) {
3475 		err = PTR_ERR(ipage);
3476 		goto unlock_out;
3477 	}
3478 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3479 
3480 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3481 						&dn.data_blkaddr))
3482 		err = f2fs_reserve_block(&dn, index);
3483 
3484 	*blk_addr = dn.data_blkaddr;
3485 	*node_changed = dn.node_changed;
3486 	f2fs_put_dnode(&dn);
3487 
3488 unlock_out:
3489 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3490 	return err;
3491 }
3492 
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3493 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3494 			struct folio *folio, loff_t pos, unsigned int len,
3495 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3496 {
3497 	struct inode *inode = folio->mapping->host;
3498 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3499 	pgoff_t index = folio->index;
3500 	int err = 0;
3501 	block_t ori_blk_addr = NULL_ADDR;
3502 
3503 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3504 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3505 		goto reserve_block;
3506 
3507 	/* Look for the block in COW inode first */
3508 	err = __find_data_block(cow_inode, index, blk_addr);
3509 	if (err) {
3510 		return err;
3511 	} else if (*blk_addr != NULL_ADDR) {
3512 		*use_cow = true;
3513 		return 0;
3514 	}
3515 
3516 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3517 		goto reserve_block;
3518 
3519 	/* Look for the block in the original inode */
3520 	err = __find_data_block(inode, index, &ori_blk_addr);
3521 	if (err)
3522 		return err;
3523 
3524 reserve_block:
3525 	/* Finally, we should reserve a new block in COW inode for the update */
3526 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3527 	if (err)
3528 		return err;
3529 	inc_atomic_write_cnt(inode);
3530 
3531 	if (ori_blk_addr != NULL_ADDR)
3532 		*blk_addr = ori_blk_addr;
3533 	return 0;
3534 }
3535 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3536 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3537 		loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3538 {
3539 	struct inode *inode = mapping->host;
3540 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3541 	struct folio *folio;
3542 	pgoff_t index = pos >> PAGE_SHIFT;
3543 	bool need_balance = false;
3544 	bool use_cow = false;
3545 	block_t blkaddr = NULL_ADDR;
3546 	int err = 0;
3547 
3548 	trace_f2fs_write_begin(inode, pos, len);
3549 
3550 	if (!f2fs_is_checkpoint_ready(sbi)) {
3551 		err = -ENOSPC;
3552 		goto fail;
3553 	}
3554 
3555 	/*
3556 	 * We should check this at this moment to avoid deadlock on inode page
3557 	 * and #0 page. The locking rule for inline_data conversion should be:
3558 	 * folio_lock(folio #0) -> folio_lock(inode_page)
3559 	 */
3560 	if (index != 0) {
3561 		err = f2fs_convert_inline_inode(inode);
3562 		if (err)
3563 			goto fail;
3564 	}
3565 
3566 #ifdef CONFIG_F2FS_FS_COMPRESSION
3567 	if (f2fs_compressed_file(inode)) {
3568 		int ret;
3569 		struct page *page;
3570 
3571 		*fsdata = NULL;
3572 
3573 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3574 			goto repeat;
3575 
3576 		ret = f2fs_prepare_compress_overwrite(inode, &page,
3577 							index, fsdata);
3578 		if (ret < 0) {
3579 			err = ret;
3580 			goto fail;
3581 		} else if (ret) {
3582 			*foliop = page_folio(page);
3583 			return 0;
3584 		}
3585 	}
3586 #endif
3587 
3588 repeat:
3589 	/*
3590 	 * Do not use FGP_STABLE to avoid deadlock.
3591 	 * Will wait that below with our IO control.
3592 	 */
3593 	folio = __filemap_get_folio(mapping, index,
3594 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3595 	if (IS_ERR(folio)) {
3596 		err = PTR_ERR(folio);
3597 		goto fail;
3598 	}
3599 
3600 	/* TODO: cluster can be compressed due to race with .writepage */
3601 
3602 	*foliop = folio;
3603 
3604 	if (f2fs_is_atomic_file(inode))
3605 		err = prepare_atomic_write_begin(sbi, folio, pos, len,
3606 					&blkaddr, &need_balance, &use_cow);
3607 	else
3608 		err = prepare_write_begin(sbi, folio, pos, len,
3609 					&blkaddr, &need_balance);
3610 	if (err)
3611 		goto put_folio;
3612 
3613 	if (need_balance && !IS_NOQUOTA(inode) &&
3614 			has_not_enough_free_secs(sbi, 0, 0)) {
3615 		folio_unlock(folio);
3616 		f2fs_balance_fs(sbi, true);
3617 		folio_lock(folio);
3618 		if (folio->mapping != mapping) {
3619 			/* The folio got truncated from under us */
3620 			folio_unlock(folio);
3621 			folio_put(folio);
3622 			goto repeat;
3623 		}
3624 	}
3625 
3626 	f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3627 
3628 	if (len == folio_size(folio) || folio_test_uptodate(folio))
3629 		return 0;
3630 
3631 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3632 	    !f2fs_verity_in_progress(inode)) {
3633 		folio_zero_segment(folio, len, folio_size(folio));
3634 		return 0;
3635 	}
3636 
3637 	if (blkaddr == NEW_ADDR) {
3638 		folio_zero_segment(folio, 0, folio_size(folio));
3639 		folio_mark_uptodate(folio);
3640 	} else {
3641 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3642 				DATA_GENERIC_ENHANCE_READ)) {
3643 			err = -EFSCORRUPTED;
3644 			goto put_folio;
3645 		}
3646 		err = f2fs_submit_page_read(use_cow ?
3647 				F2FS_I(inode)->cow_inode : inode,
3648 				folio, blkaddr, 0, true);
3649 		if (err)
3650 			goto put_folio;
3651 
3652 		folio_lock(folio);
3653 		if (unlikely(folio->mapping != mapping)) {
3654 			folio_unlock(folio);
3655 			folio_put(folio);
3656 			goto repeat;
3657 		}
3658 		if (unlikely(!folio_test_uptodate(folio))) {
3659 			err = -EIO;
3660 			goto put_folio;
3661 		}
3662 	}
3663 	return 0;
3664 
3665 put_folio:
3666 	folio_unlock(folio);
3667 	folio_put(folio);
3668 fail:
3669 	f2fs_write_failed(inode, pos + len);
3670 	return err;
3671 }
3672 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3673 static int f2fs_write_end(struct file *file,
3674 			struct address_space *mapping,
3675 			loff_t pos, unsigned len, unsigned copied,
3676 			struct folio *folio, void *fsdata)
3677 {
3678 	struct inode *inode = folio->mapping->host;
3679 
3680 	trace_f2fs_write_end(inode, pos, len, copied);
3681 
3682 	/*
3683 	 * This should be come from len == PAGE_SIZE, and we expect copied
3684 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3685 	 * let generic_perform_write() try to copy data again through copied=0.
3686 	 */
3687 	if (!folio_test_uptodate(folio)) {
3688 		if (unlikely(copied != len))
3689 			copied = 0;
3690 		else
3691 			folio_mark_uptodate(folio);
3692 	}
3693 
3694 #ifdef CONFIG_F2FS_FS_COMPRESSION
3695 	/* overwrite compressed file */
3696 	if (f2fs_compressed_file(inode) && fsdata) {
3697 		f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3698 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3699 
3700 		if (pos + copied > i_size_read(inode) &&
3701 				!f2fs_verity_in_progress(inode))
3702 			f2fs_i_size_write(inode, pos + copied);
3703 		return copied;
3704 	}
3705 #endif
3706 
3707 	if (!copied)
3708 		goto unlock_out;
3709 
3710 	folio_mark_dirty(folio);
3711 
3712 	if (f2fs_is_atomic_file(inode))
3713 		set_page_private_atomic(folio_page(folio, 0));
3714 
3715 	if (pos + copied > i_size_read(inode) &&
3716 	    !f2fs_verity_in_progress(inode)) {
3717 		f2fs_i_size_write(inode, pos + copied);
3718 		if (f2fs_is_atomic_file(inode))
3719 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3720 					pos + copied);
3721 	}
3722 unlock_out:
3723 	folio_unlock(folio);
3724 	folio_put(folio);
3725 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3726 	return copied;
3727 }
3728 
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3729 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3730 {
3731 	struct inode *inode = folio->mapping->host;
3732 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3733 
3734 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3735 				(offset || length != folio_size(folio)))
3736 		return;
3737 
3738 	if (folio_test_dirty(folio)) {
3739 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3740 			dec_page_count(sbi, F2FS_DIRTY_META);
3741 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3742 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3743 		} else {
3744 			inode_dec_dirty_pages(inode);
3745 			f2fs_remove_dirty_inode(inode);
3746 		}
3747 	}
3748 	clear_page_private_all(&folio->page);
3749 }
3750 
f2fs_release_folio(struct folio * folio,gfp_t wait)3751 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3752 {
3753 	/* If this is dirty folio, keep private data */
3754 	if (folio_test_dirty(folio))
3755 		return false;
3756 
3757 	clear_page_private_all(&folio->page);
3758 	return true;
3759 }
3760 
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3761 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3762 		struct folio *folio)
3763 {
3764 	struct inode *inode = mapping->host;
3765 
3766 	trace_f2fs_set_page_dirty(folio, DATA);
3767 
3768 	if (!folio_test_uptodate(folio))
3769 		folio_mark_uptodate(folio);
3770 	BUG_ON(folio_test_swapcache(folio));
3771 
3772 	if (filemap_dirty_folio(mapping, folio)) {
3773 		f2fs_update_dirty_folio(inode, folio);
3774 		return true;
3775 	}
3776 	return false;
3777 }
3778 
3779 
f2fs_bmap_compress(struct inode * inode,sector_t block)3780 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3781 {
3782 #ifdef CONFIG_F2FS_FS_COMPRESSION
3783 	struct dnode_of_data dn;
3784 	sector_t start_idx, blknr = 0;
3785 	int ret;
3786 
3787 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3788 
3789 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3790 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3791 	if (ret)
3792 		return 0;
3793 
3794 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3795 		dn.ofs_in_node += block - start_idx;
3796 		blknr = f2fs_data_blkaddr(&dn);
3797 		if (!__is_valid_data_blkaddr(blknr))
3798 			blknr = 0;
3799 	}
3800 
3801 	f2fs_put_dnode(&dn);
3802 	return blknr;
3803 #else
3804 	return 0;
3805 #endif
3806 }
3807 
3808 
f2fs_bmap(struct address_space * mapping,sector_t block)3809 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3810 {
3811 	struct inode *inode = mapping->host;
3812 	sector_t blknr = 0;
3813 
3814 	if (f2fs_has_inline_data(inode))
3815 		goto out;
3816 
3817 	/* make sure allocating whole blocks */
3818 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3819 		filemap_write_and_wait(mapping);
3820 
3821 	/* Block number less than F2FS MAX BLOCKS */
3822 	if (unlikely(block >= max_file_blocks(inode)))
3823 		goto out;
3824 
3825 	if (f2fs_compressed_file(inode)) {
3826 		blknr = f2fs_bmap_compress(inode, block);
3827 	} else {
3828 		struct f2fs_map_blocks map;
3829 
3830 		memset(&map, 0, sizeof(map));
3831 		map.m_lblk = block;
3832 		map.m_len = 1;
3833 		map.m_next_pgofs = NULL;
3834 		map.m_seg_type = NO_CHECK_TYPE;
3835 
3836 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3837 			blknr = map.m_pblk;
3838 	}
3839 out:
3840 	trace_f2fs_bmap(inode, block, blknr);
3841 	return blknr;
3842 }
3843 
3844 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3845 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3846 							unsigned int blkcnt)
3847 {
3848 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3849 	unsigned int blkofs;
3850 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3851 	unsigned int end_blk = start_blk + blkcnt - 1;
3852 	unsigned int secidx = start_blk / blk_per_sec;
3853 	unsigned int end_sec;
3854 	int ret = 0;
3855 
3856 	if (!blkcnt)
3857 		return 0;
3858 	end_sec = end_blk / blk_per_sec;
3859 
3860 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3861 	filemap_invalidate_lock(inode->i_mapping);
3862 
3863 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3864 	set_inode_flag(inode, FI_OPU_WRITE);
3865 
3866 	for (; secidx <= end_sec; secidx++) {
3867 		unsigned int blkofs_end = secidx == end_sec ?
3868 				end_blk % blk_per_sec : blk_per_sec - 1;
3869 
3870 		f2fs_down_write(&sbi->pin_sem);
3871 
3872 		ret = f2fs_allocate_pinning_section(sbi);
3873 		if (ret) {
3874 			f2fs_up_write(&sbi->pin_sem);
3875 			break;
3876 		}
3877 
3878 		set_inode_flag(inode, FI_SKIP_WRITES);
3879 
3880 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3881 			struct page *page;
3882 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3883 
3884 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3885 			if (IS_ERR(page)) {
3886 				f2fs_up_write(&sbi->pin_sem);
3887 				ret = PTR_ERR(page);
3888 				goto done;
3889 			}
3890 
3891 			set_page_dirty(page);
3892 			f2fs_put_page(page, 1);
3893 		}
3894 
3895 		clear_inode_flag(inode, FI_SKIP_WRITES);
3896 
3897 		ret = filemap_fdatawrite(inode->i_mapping);
3898 
3899 		f2fs_up_write(&sbi->pin_sem);
3900 
3901 		if (ret)
3902 			break;
3903 	}
3904 
3905 done:
3906 	clear_inode_flag(inode, FI_SKIP_WRITES);
3907 	clear_inode_flag(inode, FI_OPU_WRITE);
3908 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3909 
3910 	filemap_invalidate_unlock(inode->i_mapping);
3911 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3912 
3913 	return ret;
3914 }
3915 
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3916 static int check_swap_activate(struct swap_info_struct *sis,
3917 				struct file *swap_file, sector_t *span)
3918 {
3919 	struct address_space *mapping = swap_file->f_mapping;
3920 	struct inode *inode = mapping->host;
3921 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3922 	block_t cur_lblock;
3923 	block_t last_lblock;
3924 	block_t pblock;
3925 	block_t lowest_pblock = -1;
3926 	block_t highest_pblock = 0;
3927 	int nr_extents = 0;
3928 	unsigned int nr_pblocks;
3929 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3930 	unsigned int not_aligned = 0;
3931 	int ret = 0;
3932 
3933 	/*
3934 	 * Map all the blocks into the extent list.  This code doesn't try
3935 	 * to be very smart.
3936 	 */
3937 	cur_lblock = 0;
3938 	last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3939 
3940 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3941 		struct f2fs_map_blocks map;
3942 retry:
3943 		cond_resched();
3944 
3945 		memset(&map, 0, sizeof(map));
3946 		map.m_lblk = cur_lblock;
3947 		map.m_len = last_lblock - cur_lblock;
3948 		map.m_next_pgofs = NULL;
3949 		map.m_next_extent = NULL;
3950 		map.m_seg_type = NO_CHECK_TYPE;
3951 		map.m_may_create = false;
3952 
3953 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3954 		if (ret)
3955 			goto out;
3956 
3957 		/* hole */
3958 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3959 			f2fs_err(sbi, "Swapfile has holes");
3960 			ret = -EINVAL;
3961 			goto out;
3962 		}
3963 
3964 		pblock = map.m_pblk;
3965 		nr_pblocks = map.m_len;
3966 
3967 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3968 				nr_pblocks % blks_per_sec ||
3969 				!f2fs_valid_pinned_area(sbi, pblock)) {
3970 			bool last_extent = false;
3971 
3972 			not_aligned++;
3973 
3974 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3975 			if (cur_lblock + nr_pblocks > sis->max)
3976 				nr_pblocks -= blks_per_sec;
3977 
3978 			/* this extent is last one */
3979 			if (!nr_pblocks) {
3980 				nr_pblocks = last_lblock - cur_lblock;
3981 				last_extent = true;
3982 			}
3983 
3984 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3985 							nr_pblocks);
3986 			if (ret) {
3987 				if (ret == -ENOENT)
3988 					ret = -EINVAL;
3989 				goto out;
3990 			}
3991 
3992 			if (!last_extent)
3993 				goto retry;
3994 		}
3995 
3996 		if (cur_lblock + nr_pblocks >= sis->max)
3997 			nr_pblocks = sis->max - cur_lblock;
3998 
3999 		if (cur_lblock) {	/* exclude the header page */
4000 			if (pblock < lowest_pblock)
4001 				lowest_pblock = pblock;
4002 			if (pblock + nr_pblocks - 1 > highest_pblock)
4003 				highest_pblock = pblock + nr_pblocks - 1;
4004 		}
4005 
4006 		/*
4007 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4008 		 */
4009 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4010 		if (ret < 0)
4011 			goto out;
4012 		nr_extents += ret;
4013 		cur_lblock += nr_pblocks;
4014 	}
4015 	ret = nr_extents;
4016 	*span = 1 + highest_pblock - lowest_pblock;
4017 	if (cur_lblock == 0)
4018 		cur_lblock = 1;	/* force Empty message */
4019 	sis->max = cur_lblock;
4020 	sis->pages = cur_lblock - 1;
4021 out:
4022 	if (not_aligned)
4023 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4024 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4025 	return ret;
4026 }
4027 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4028 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4029 				sector_t *span)
4030 {
4031 	struct inode *inode = file_inode(file);
4032 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4033 	int ret;
4034 
4035 	if (!S_ISREG(inode->i_mode))
4036 		return -EINVAL;
4037 
4038 	if (f2fs_readonly(sbi->sb))
4039 		return -EROFS;
4040 
4041 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4042 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4043 		return -EINVAL;
4044 	}
4045 
4046 	ret = f2fs_convert_inline_inode(inode);
4047 	if (ret)
4048 		return ret;
4049 
4050 	if (!f2fs_disable_compressed_file(inode))
4051 		return -EINVAL;
4052 
4053 	ret = filemap_fdatawrite(inode->i_mapping);
4054 	if (ret < 0)
4055 		return ret;
4056 
4057 	f2fs_precache_extents(inode);
4058 
4059 	ret = check_swap_activate(sis, file, span);
4060 	if (ret < 0)
4061 		return ret;
4062 
4063 	stat_inc_swapfile_inode(inode);
4064 	set_inode_flag(inode, FI_PIN_FILE);
4065 	f2fs_update_time(sbi, REQ_TIME);
4066 	return ret;
4067 }
4068 
f2fs_swap_deactivate(struct file * file)4069 static void f2fs_swap_deactivate(struct file *file)
4070 {
4071 	struct inode *inode = file_inode(file);
4072 
4073 	stat_dec_swapfile_inode(inode);
4074 	clear_inode_flag(inode, FI_PIN_FILE);
4075 }
4076 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4077 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4078 				sector_t *span)
4079 {
4080 	return -EOPNOTSUPP;
4081 }
4082 
f2fs_swap_deactivate(struct file * file)4083 static void f2fs_swap_deactivate(struct file *file)
4084 {
4085 }
4086 #endif
4087 
4088 const struct address_space_operations f2fs_dblock_aops = {
4089 	.read_folio	= f2fs_read_data_folio,
4090 	.readahead	= f2fs_readahead,
4091 	.writepages	= f2fs_write_data_pages,
4092 	.write_begin	= f2fs_write_begin,
4093 	.write_end	= f2fs_write_end,
4094 	.dirty_folio	= f2fs_dirty_data_folio,
4095 	.migrate_folio	= filemap_migrate_folio,
4096 	.invalidate_folio = f2fs_invalidate_folio,
4097 	.release_folio	= f2fs_release_folio,
4098 	.bmap		= f2fs_bmap,
4099 	.swap_activate  = f2fs_swap_activate,
4100 	.swap_deactivate = f2fs_swap_deactivate,
4101 };
4102 
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4103 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4104 {
4105 	struct address_space *mapping = folio->mapping;
4106 	unsigned long flags;
4107 
4108 	xa_lock_irqsave(&mapping->i_pages, flags);
4109 	__xa_clear_mark(&mapping->i_pages, folio->index,
4110 						PAGECACHE_TAG_DIRTY);
4111 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4112 }
4113 
f2fs_init_post_read_processing(void)4114 int __init f2fs_init_post_read_processing(void)
4115 {
4116 	bio_post_read_ctx_cache =
4117 		kmem_cache_create("f2fs_bio_post_read_ctx",
4118 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4119 	if (!bio_post_read_ctx_cache)
4120 		goto fail;
4121 	bio_post_read_ctx_pool =
4122 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4123 					 bio_post_read_ctx_cache);
4124 	if (!bio_post_read_ctx_pool)
4125 		goto fail_free_cache;
4126 	return 0;
4127 
4128 fail_free_cache:
4129 	kmem_cache_destroy(bio_post_read_ctx_cache);
4130 fail:
4131 	return -ENOMEM;
4132 }
4133 
f2fs_destroy_post_read_processing(void)4134 void f2fs_destroy_post_read_processing(void)
4135 {
4136 	mempool_destroy(bio_post_read_ctx_pool);
4137 	kmem_cache_destroy(bio_post_read_ctx_cache);
4138 }
4139 
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4140 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4141 {
4142 	if (!f2fs_sb_has_encrypt(sbi) &&
4143 		!f2fs_sb_has_verity(sbi) &&
4144 		!f2fs_sb_has_compression(sbi))
4145 		return 0;
4146 
4147 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4148 						 WQ_UNBOUND | WQ_HIGHPRI,
4149 						 num_online_cpus());
4150 	return sbi->post_read_wq ? 0 : -ENOMEM;
4151 }
4152 
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4153 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4154 {
4155 	if (sbi->post_read_wq)
4156 		destroy_workqueue(sbi->post_read_wq);
4157 }
4158 
f2fs_init_bio_entry_cache(void)4159 int __init f2fs_init_bio_entry_cache(void)
4160 {
4161 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4162 			sizeof(struct bio_entry));
4163 	return bio_entry_slab ? 0 : -ENOMEM;
4164 }
4165 
f2fs_destroy_bio_entry_cache(void)4166 void f2fs_destroy_bio_entry_cache(void)
4167 {
4168 	kmem_cache_destroy(bio_entry_slab);
4169 }
4170 
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4171 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4172 			    unsigned int flags, struct iomap *iomap,
4173 			    struct iomap *srcmap)
4174 {
4175 	struct f2fs_map_blocks map = {};
4176 	pgoff_t next_pgofs = 0;
4177 	int err;
4178 
4179 	map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4180 	map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4181 	map.m_next_pgofs = &next_pgofs;
4182 	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4183 						inode->i_write_hint);
4184 
4185 	/*
4186 	 * If the blocks being overwritten are already allocated,
4187 	 * f2fs_map_lock and f2fs_balance_fs are not necessary.
4188 	 */
4189 	if ((flags & IOMAP_WRITE) &&
4190 		!f2fs_overwrite_io(inode, offset, length))
4191 		map.m_may_create = true;
4192 
4193 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4194 	if (err)
4195 		return err;
4196 
4197 	iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4198 
4199 	/*
4200 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4201 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4202 	 * limiting the length of the mapping returned.
4203 	 */
4204 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4205 
4206 	/*
4207 	 * We should never see delalloc or compressed extents here based on
4208 	 * prior flushing and checks.
4209 	 */
4210 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4211 		return -EINVAL;
4212 
4213 	if (map.m_flags & F2FS_MAP_MAPPED) {
4214 		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4215 			return -EINVAL;
4216 
4217 		iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4218 		iomap->type = IOMAP_MAPPED;
4219 		iomap->flags |= IOMAP_F_MERGED;
4220 		iomap->bdev = map.m_bdev;
4221 		iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4222 	} else {
4223 		if (flags & IOMAP_WRITE)
4224 			return -ENOTBLK;
4225 
4226 		if (map.m_pblk == NULL_ADDR) {
4227 			iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4228 							iomap->offset;
4229 			iomap->type = IOMAP_HOLE;
4230 		} else if (map.m_pblk == NEW_ADDR) {
4231 			iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4232 			iomap->type = IOMAP_UNWRITTEN;
4233 		} else {
4234 			f2fs_bug_on(F2FS_I_SB(inode), 1);
4235 		}
4236 		iomap->addr = IOMAP_NULL_ADDR;
4237 	}
4238 
4239 	if (map.m_flags & F2FS_MAP_NEW)
4240 		iomap->flags |= IOMAP_F_NEW;
4241 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4242 	    offset + length > i_size_read(inode))
4243 		iomap->flags |= IOMAP_F_DIRTY;
4244 
4245 	return 0;
4246 }
4247 
4248 const struct iomap_ops f2fs_iomap_ops = {
4249 	.iomap_begin	= f2fs_iomap_begin,
4250 };
4251