1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS 128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
38
f2fs_init_bioset(void)39 int __init f2fs_init_bioset(void)
40 {
41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 0, BIOSET_NEED_BVECS);
43 }
44
f2fs_destroy_bioset(void)45 void f2fs_destroy_bioset(void)
46 {
47 bioset_exit(&f2fs_bioset);
48 }
49
f2fs_is_cp_guaranteed(struct page * page)50 bool f2fs_is_cp_guaranteed(struct page *page)
51 {
52 struct address_space *mapping = page->mapping;
53 struct inode *inode;
54 struct f2fs_sb_info *sbi;
55
56 if (!mapping)
57 return false;
58
59 inode = mapping->host;
60 sbi = F2FS_I_SB(inode);
61
62 if (inode->i_ino == F2FS_META_INO(sbi) ||
63 inode->i_ino == F2FS_NODE_INO(sbi) ||
64 S_ISDIR(inode->i_mode))
65 return true;
66
67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 page_private_gcing(page))
69 return true;
70 return false;
71 }
72
__read_io_type(struct folio * folio)73 static enum count_type __read_io_type(struct folio *folio)
74 {
75 struct address_space *mapping = folio->mapping;
76
77 if (mapping) {
78 struct inode *inode = mapping->host;
79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80
81 if (inode->i_ino == F2FS_META_INO(sbi))
82 return F2FS_RD_META;
83
84 if (inode->i_ino == F2FS_NODE_INO(sbi))
85 return F2FS_RD_NODE;
86 }
87 return F2FS_RD_DATA;
88 }
89
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 STEP_DECRYPT = BIT(0),
94 #else
95 STEP_DECRYPT = 0, /* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 STEP_DECOMPRESS = BIT(1),
99 #else
100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 STEP_VERITY = BIT(2),
104 #else
105 STEP_VERITY = 0, /* compile out the verity-related code */
106 #endif
107 };
108
109 struct bio_post_read_ctx {
110 struct bio *bio;
111 struct f2fs_sb_info *sbi;
112 struct work_struct work;
113 unsigned int enabled_steps;
114 /*
115 * decompression_attempted keeps track of whether
116 * f2fs_end_read_compressed_page() has been called on the pages in the
117 * bio that belong to a compressed cluster yet.
118 */
119 bool decompression_attempted;
120 block_t fs_blkaddr;
121 };
122
123 /*
124 * Update and unlock a bio's pages, and free the bio.
125 *
126 * This marks pages up-to-date only if there was no error in the bio (I/O error,
127 * decryption error, or verity error), as indicated by bio->bi_status.
128 *
129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130 * aren't marked up-to-date here, as decompression is done on a per-compression-
131 * cluster basis rather than a per-bio basis. Instead, we only must do two
132 * things for each compressed page here: call f2fs_end_read_compressed_page()
133 * with failed=true if an error occurred before it would have normally gotten
134 * called (i.e., I/O error or decryption error, but *not* verity error), and
135 * release the bio's reference to the decompress_io_ctx of the page's cluster.
136 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 struct folio_iter fi;
140 struct bio_post_read_ctx *ctx = bio->bi_private;
141
142 bio_for_each_folio_all(fi, bio) {
143 struct folio *folio = fi.folio;
144
145 if (f2fs_is_compressed_page(&folio->page)) {
146 if (ctx && !ctx->decompression_attempted)
147 f2fs_end_read_compressed_page(&folio->page, true, 0,
148 in_task);
149 f2fs_put_page_dic(&folio->page, in_task);
150 continue;
151 }
152
153 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
154 folio_end_read(folio, bio->bi_status == 0);
155 }
156
157 if (ctx)
158 mempool_free(ctx, bio_post_read_ctx_pool);
159 bio_put(bio);
160 }
161
f2fs_verify_bio(struct work_struct * work)162 static void f2fs_verify_bio(struct work_struct *work)
163 {
164 struct bio_post_read_ctx *ctx =
165 container_of(work, struct bio_post_read_ctx, work);
166 struct bio *bio = ctx->bio;
167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
168
169 /*
170 * fsverity_verify_bio() may call readahead() again, and while verity
171 * will be disabled for this, decryption and/or decompression may still
172 * be needed, resulting in another bio_post_read_ctx being allocated.
173 * So to prevent deadlocks we need to release the current ctx to the
174 * mempool first. This assumes that verity is the last post-read step.
175 */
176 mempool_free(ctx, bio_post_read_ctx_pool);
177 bio->bi_private = NULL;
178
179 /*
180 * Verify the bio's pages with fs-verity. Exclude compressed pages,
181 * as those were handled separately by f2fs_end_read_compressed_page().
182 */
183 if (may_have_compressed_pages) {
184 struct bio_vec *bv;
185 struct bvec_iter_all iter_all;
186
187 bio_for_each_segment_all(bv, bio, iter_all) {
188 struct page *page = bv->bv_page;
189
190 if (!f2fs_is_compressed_page(page) &&
191 !fsverity_verify_page(page)) {
192 bio->bi_status = BLK_STS_IOERR;
193 break;
194 }
195 }
196 } else {
197 fsverity_verify_bio(bio);
198 }
199
200 f2fs_finish_read_bio(bio, true);
201 }
202
203 /*
204 * If the bio's data needs to be verified with fs-verity, then enqueue the
205 * verity work for the bio. Otherwise finish the bio now.
206 *
207 * Note that to avoid deadlocks, the verity work can't be done on the
208 * decryption/decompression workqueue. This is because verifying the data pages
209 * can involve reading verity metadata pages from the file, and these verity
210 * metadata pages may be encrypted and/or compressed.
211 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)212 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
213 {
214 struct bio_post_read_ctx *ctx = bio->bi_private;
215
216 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
217 INIT_WORK(&ctx->work, f2fs_verify_bio);
218 fsverity_enqueue_verify_work(&ctx->work);
219 } else {
220 f2fs_finish_read_bio(bio, in_task);
221 }
222 }
223
224 /*
225 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
226 * remaining page was read by @ctx->bio.
227 *
228 * Note that a bio may span clusters (even a mix of compressed and uncompressed
229 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
230 * that the bio includes at least one compressed page. The actual decompression
231 * is done on a per-cluster basis, not a per-bio basis.
232 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)233 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
234 bool in_task)
235 {
236 struct bio_vec *bv;
237 struct bvec_iter_all iter_all;
238 bool all_compressed = true;
239 block_t blkaddr = ctx->fs_blkaddr;
240
241 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
242 struct page *page = bv->bv_page;
243
244 if (f2fs_is_compressed_page(page))
245 f2fs_end_read_compressed_page(page, false, blkaddr,
246 in_task);
247 else
248 all_compressed = false;
249
250 blkaddr++;
251 }
252
253 ctx->decompression_attempted = true;
254
255 /*
256 * Optimization: if all the bio's pages are compressed, then scheduling
257 * the per-bio verity work is unnecessary, as verity will be fully
258 * handled at the compression cluster level.
259 */
260 if (all_compressed)
261 ctx->enabled_steps &= ~STEP_VERITY;
262 }
263
f2fs_post_read_work(struct work_struct * work)264 static void f2fs_post_read_work(struct work_struct *work)
265 {
266 struct bio_post_read_ctx *ctx =
267 container_of(work, struct bio_post_read_ctx, work);
268 struct bio *bio = ctx->bio;
269
270 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
271 f2fs_finish_read_bio(bio, true);
272 return;
273 }
274
275 if (ctx->enabled_steps & STEP_DECOMPRESS)
276 f2fs_handle_step_decompress(ctx, true);
277
278 f2fs_verify_and_finish_bio(bio, true);
279 }
280
f2fs_read_end_io(struct bio * bio)281 static void f2fs_read_end_io(struct bio *bio)
282 {
283 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
284 struct bio_post_read_ctx *ctx;
285 bool intask = in_task();
286
287 iostat_update_and_unbind_ctx(bio);
288 ctx = bio->bi_private;
289
290 if (time_to_inject(sbi, FAULT_READ_IO))
291 bio->bi_status = BLK_STS_IOERR;
292
293 if (bio->bi_status) {
294 f2fs_finish_read_bio(bio, intask);
295 return;
296 }
297
298 if (ctx) {
299 unsigned int enabled_steps = ctx->enabled_steps &
300 (STEP_DECRYPT | STEP_DECOMPRESS);
301
302 /*
303 * If we have only decompression step between decompression and
304 * decrypt, we don't need post processing for this.
305 */
306 if (enabled_steps == STEP_DECOMPRESS &&
307 !f2fs_low_mem_mode(sbi)) {
308 f2fs_handle_step_decompress(ctx, intask);
309 } else if (enabled_steps) {
310 INIT_WORK(&ctx->work, f2fs_post_read_work);
311 queue_work(ctx->sbi->post_read_wq, &ctx->work);
312 return;
313 }
314 }
315
316 f2fs_verify_and_finish_bio(bio, intask);
317 }
318
f2fs_write_end_io(struct bio * bio)319 static void f2fs_write_end_io(struct bio *bio)
320 {
321 struct f2fs_sb_info *sbi;
322 struct folio_iter fi;
323
324 iostat_update_and_unbind_ctx(bio);
325 sbi = bio->bi_private;
326
327 if (time_to_inject(sbi, FAULT_WRITE_IO))
328 bio->bi_status = BLK_STS_IOERR;
329
330 bio_for_each_folio_all(fi, bio) {
331 struct folio *folio = fi.folio;
332 enum count_type type;
333
334 if (fscrypt_is_bounce_folio(folio)) {
335 struct folio *io_folio = folio;
336
337 folio = fscrypt_pagecache_folio(io_folio);
338 fscrypt_free_bounce_page(&io_folio->page);
339 }
340
341 #ifdef CONFIG_F2FS_FS_COMPRESSION
342 if (f2fs_is_compressed_page(&folio->page)) {
343 f2fs_compress_write_end_io(bio, &folio->page);
344 continue;
345 }
346 #endif
347
348 type = WB_DATA_TYPE(&folio->page, false);
349
350 if (unlikely(bio->bi_status)) {
351 mapping_set_error(folio->mapping, -EIO);
352 if (type == F2FS_WB_CP_DATA)
353 f2fs_stop_checkpoint(sbi, true,
354 STOP_CP_REASON_WRITE_FAIL);
355 }
356
357 f2fs_bug_on(sbi, folio->mapping == NODE_MAPPING(sbi) &&
358 folio->index != nid_of_node(&folio->page));
359
360 dec_page_count(sbi, type);
361 if (f2fs_in_warm_node_list(sbi, folio))
362 f2fs_del_fsync_node_entry(sbi, &folio->page);
363 clear_page_private_gcing(&folio->page);
364 folio_end_writeback(folio);
365 }
366 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 wq_has_sleeper(&sbi->cp_wait))
368 wake_up(&sbi->cp_wait);
369
370 bio_put(bio);
371 }
372
373 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377
378 bio->bi_private = io->bi_private;
379 complete(&io->zone_wait);
380 f2fs_write_end_io(bio);
381 }
382 #endif
383
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 block_t blk_addr, sector_t *sector)
386 {
387 struct block_device *bdev = sbi->sb->s_bdev;
388 int i;
389
390 if (f2fs_is_multi_device(sbi)) {
391 for (i = 0; i < sbi->s_ndevs; i++) {
392 if (FDEV(i).start_blk <= blk_addr &&
393 FDEV(i).end_blk >= blk_addr) {
394 blk_addr -= FDEV(i).start_blk;
395 bdev = FDEV(i).bdev;
396 break;
397 }
398 }
399 }
400
401 if (sector)
402 *sector = SECTOR_FROM_BLOCK(blk_addr);
403 return bdev;
404 }
405
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 int i;
409
410 if (!f2fs_is_multi_device(sbi))
411 return 0;
412
413 for (i = 0; i < sbi->s_ndevs; i++)
414 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 return i;
416 return 0;
417 }
418
f2fs_io_flags(struct f2fs_io_info * fio)419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 struct folio *fio_folio = page_folio(fio->page);
423 unsigned int fua_flag, meta_flag, io_flag;
424 blk_opf_t op_flags = 0;
425
426 if (fio->op != REQ_OP_WRITE)
427 return 0;
428 if (fio->type == DATA)
429 io_flag = fio->sbi->data_io_flag;
430 else if (fio->type == NODE)
431 io_flag = fio->sbi->node_io_flag;
432 else
433 return 0;
434
435 fua_flag = io_flag & temp_mask;
436 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
437
438 /*
439 * data/node io flag bits per temp:
440 * REQ_META | REQ_FUA |
441 * 5 | 4 | 3 | 2 | 1 | 0 |
442 * Cold | Warm | Hot | Cold | Warm | Hot |
443 */
444 if (BIT(fio->temp) & meta_flag)
445 op_flags |= REQ_META;
446 if (BIT(fio->temp) & fua_flag)
447 op_flags |= REQ_FUA;
448
449 if (fio->type == DATA &&
450 F2FS_I(fio_folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE)
451 op_flags |= REQ_PRIO;
452
453 return op_flags;
454 }
455
__bio_alloc(struct f2fs_io_info * fio,int npages)456 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
457 {
458 struct f2fs_sb_info *sbi = fio->sbi;
459 struct block_device *bdev;
460 sector_t sector;
461 struct bio *bio;
462
463 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
464 bio = bio_alloc_bioset(bdev, npages,
465 fio->op | fio->op_flags | f2fs_io_flags(fio),
466 GFP_NOIO, &f2fs_bioset);
467 bio->bi_iter.bi_sector = sector;
468 if (is_read_io(fio->op)) {
469 bio->bi_end_io = f2fs_read_end_io;
470 bio->bi_private = NULL;
471 } else {
472 bio->bi_end_io = f2fs_write_end_io;
473 bio->bi_private = sbi;
474 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
475 fio->type, fio->temp);
476 }
477 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
478
479 if (fio->io_wbc)
480 wbc_init_bio(fio->io_wbc, bio);
481
482 return bio;
483 }
484
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)485 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
486 pgoff_t first_idx,
487 const struct f2fs_io_info *fio,
488 gfp_t gfp_mask)
489 {
490 /*
491 * The f2fs garbage collector sets ->encrypted_page when it wants to
492 * read/write raw data without encryption.
493 */
494 if (!fio || !fio->encrypted_page)
495 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
496 }
497
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)498 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
499 pgoff_t next_idx,
500 const struct f2fs_io_info *fio)
501 {
502 /*
503 * The f2fs garbage collector sets ->encrypted_page when it wants to
504 * read/write raw data without encryption.
505 */
506 if (fio && fio->encrypted_page)
507 return !bio_has_crypt_ctx(bio);
508
509 return fscrypt_mergeable_bio(bio, inode, next_idx);
510 }
511
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)512 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
513 enum page_type type)
514 {
515 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
516 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
517
518 iostat_update_submit_ctx(bio, type);
519 submit_bio(bio);
520 }
521
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)522 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
523 enum page_type type)
524 {
525 WARN_ON_ONCE(is_read_io(bio_op(bio)));
526 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
527 iostat_update_submit_ctx(bio, type);
528 submit_bio(bio);
529 }
530
__submit_merged_bio(struct f2fs_bio_info * io)531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533 struct f2fs_io_info *fio = &io->fio;
534
535 if (!io->bio)
536 return;
537
538 if (is_read_io(fio->op)) {
539 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
540 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
541 } else {
542 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
543 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
544 }
545 io->bio = NULL;
546 }
547
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)548 static bool __has_merged_page(struct bio *bio, struct inode *inode,
549 struct page *page, nid_t ino)
550 {
551 struct bio_vec *bvec;
552 struct bvec_iter_all iter_all;
553
554 if (!bio)
555 return false;
556
557 if (!inode && !page && !ino)
558 return true;
559
560 bio_for_each_segment_all(bvec, bio, iter_all) {
561 struct page *target = bvec->bv_page;
562
563 if (fscrypt_is_bounce_page(target)) {
564 target = fscrypt_pagecache_page(target);
565 if (IS_ERR(target))
566 continue;
567 }
568 if (f2fs_is_compressed_page(target)) {
569 target = f2fs_compress_control_page(target);
570 if (IS_ERR(target))
571 continue;
572 }
573
574 if (inode && inode == target->mapping->host)
575 return true;
576 if (page && page == target)
577 return true;
578 if (ino && ino == ino_of_node(target))
579 return true;
580 }
581
582 return false;
583 }
584
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)585 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
586 {
587 int i;
588
589 for (i = 0; i < NR_PAGE_TYPE; i++) {
590 int n = (i == META) ? 1 : NR_TEMP_TYPE;
591 int j;
592
593 sbi->write_io[i] = f2fs_kmalloc(sbi,
594 array_size(n, sizeof(struct f2fs_bio_info)),
595 GFP_KERNEL);
596 if (!sbi->write_io[i])
597 return -ENOMEM;
598
599 for (j = HOT; j < n; j++) {
600 struct f2fs_bio_info *io = &sbi->write_io[i][j];
601
602 init_f2fs_rwsem(&io->io_rwsem);
603 io->sbi = sbi;
604 io->bio = NULL;
605 io->last_block_in_bio = 0;
606 spin_lock_init(&io->io_lock);
607 INIT_LIST_HEAD(&io->io_list);
608 INIT_LIST_HEAD(&io->bio_list);
609 init_f2fs_rwsem(&io->bio_list_lock);
610 #ifdef CONFIG_BLK_DEV_ZONED
611 init_completion(&io->zone_wait);
612 io->zone_pending_bio = NULL;
613 io->bi_private = NULL;
614 #endif
615 }
616 }
617
618 return 0;
619 }
620
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)621 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
622 enum page_type type, enum temp_type temp)
623 {
624 enum page_type btype = PAGE_TYPE_OF_BIO(type);
625 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
626
627 f2fs_down_write(&io->io_rwsem);
628
629 if (!io->bio)
630 goto unlock_out;
631
632 /* change META to META_FLUSH in the checkpoint procedure */
633 if (type >= META_FLUSH) {
634 io->fio.type = META_FLUSH;
635 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
636 if (!test_opt(sbi, NOBARRIER))
637 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
638 }
639 __submit_merged_bio(io);
640 unlock_out:
641 f2fs_up_write(&io->io_rwsem);
642 }
643
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)644 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
645 struct inode *inode, struct page *page,
646 nid_t ino, enum page_type type, bool force)
647 {
648 enum temp_type temp;
649 bool ret = true;
650
651 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
652 if (!force) {
653 enum page_type btype = PAGE_TYPE_OF_BIO(type);
654 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
655
656 f2fs_down_read(&io->io_rwsem);
657 ret = __has_merged_page(io->bio, inode, page, ino);
658 f2fs_up_read(&io->io_rwsem);
659 }
660 if (ret)
661 __f2fs_submit_merged_write(sbi, type, temp);
662
663 /* TODO: use HOT temp only for meta pages now. */
664 if (type >= META)
665 break;
666 }
667 }
668
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)669 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
670 {
671 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
672 }
673
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)674 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
675 struct inode *inode, struct page *page,
676 nid_t ino, enum page_type type)
677 {
678 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
679 }
680
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)681 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
682 {
683 f2fs_submit_merged_write(sbi, DATA);
684 f2fs_submit_merged_write(sbi, NODE);
685 f2fs_submit_merged_write(sbi, META);
686 }
687
688 /*
689 * Fill the locked page with data located in the block address.
690 * A caller needs to unlock the page on failure.
691 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)692 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
693 {
694 struct bio *bio;
695 struct folio *fio_folio = page_folio(fio->page);
696 struct folio *data_folio = fio->encrypted_page ?
697 page_folio(fio->encrypted_page) : fio_folio;
698
699 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
700 fio->is_por ? META_POR : (__is_meta_io(fio) ?
701 META_GENERIC : DATA_GENERIC_ENHANCE)))
702 return -EFSCORRUPTED;
703
704 trace_f2fs_submit_folio_bio(data_folio, fio);
705
706 /* Allocate a new bio */
707 bio = __bio_alloc(fio, 1);
708
709 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
710 fio_folio->index, fio, GFP_NOIO);
711 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
712
713 if (fio->io_wbc && !is_read_io(fio->op))
714 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
715
716 inc_page_count(fio->sbi, is_read_io(fio->op) ?
717 __read_io_type(data_folio) : WB_DATA_TYPE(fio->page, false));
718
719 if (is_read_io(bio_op(bio)))
720 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
721 else
722 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
723 return 0;
724 }
725
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)726 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
727 block_t last_blkaddr, block_t cur_blkaddr)
728 {
729 if (unlikely(sbi->max_io_bytes &&
730 bio->bi_iter.bi_size >= sbi->max_io_bytes))
731 return false;
732 if (last_blkaddr + 1 != cur_blkaddr)
733 return false;
734 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
735 }
736
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)737 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
738 struct f2fs_io_info *fio)
739 {
740 if (io->fio.op != fio->op)
741 return false;
742 return io->fio.op_flags == fio->op_flags;
743 }
744
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)745 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
746 struct f2fs_bio_info *io,
747 struct f2fs_io_info *fio,
748 block_t last_blkaddr,
749 block_t cur_blkaddr)
750 {
751 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752 return false;
753 return io_type_is_mergeable(io, fio);
754 }
755
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757 struct page *page, enum temp_type temp)
758 {
759 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760 struct bio_entry *be;
761
762 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763 be->bio = bio;
764 bio_get(bio);
765
766 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
767 f2fs_bug_on(sbi, 1);
768
769 f2fs_down_write(&io->bio_list_lock);
770 list_add_tail(&be->list, &io->bio_list);
771 f2fs_up_write(&io->bio_list_lock);
772 }
773
del_bio_entry(struct bio_entry * be)774 static void del_bio_entry(struct bio_entry *be)
775 {
776 list_del(&be->list);
777 kmem_cache_free(bio_entry_slab, be);
778 }
779
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)780 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
781 struct page *page)
782 {
783 struct f2fs_sb_info *sbi = fio->sbi;
784 enum temp_type temp;
785 bool found = false;
786 int ret = -EAGAIN;
787
788 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 struct list_head *head = &io->bio_list;
791 struct bio_entry *be;
792
793 f2fs_down_write(&io->bio_list_lock);
794 list_for_each_entry(be, head, list) {
795 if (be->bio != *bio)
796 continue;
797
798 found = true;
799
800 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801 *fio->last_block,
802 fio->new_blkaddr));
803 if (f2fs_crypt_mergeable_bio(*bio,
804 fio->page->mapping->host,
805 page_folio(fio->page)->index, fio) &&
806 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807 PAGE_SIZE) {
808 ret = 0;
809 break;
810 }
811
812 /* page can't be merged into bio; submit the bio */
813 del_bio_entry(be);
814 f2fs_submit_write_bio(sbi, *bio, DATA);
815 break;
816 }
817 f2fs_up_write(&io->bio_list_lock);
818 }
819
820 if (ret) {
821 bio_put(*bio);
822 *bio = NULL;
823 }
824
825 return ret;
826 }
827
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829 struct bio **bio, struct page *page)
830 {
831 enum temp_type temp;
832 bool found = false;
833 struct bio *target = bio ? *bio : NULL;
834
835 f2fs_bug_on(sbi, !target && !page);
836
837 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
838 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
839 struct list_head *head = &io->bio_list;
840 struct bio_entry *be;
841
842 if (list_empty(head))
843 continue;
844
845 f2fs_down_read(&io->bio_list_lock);
846 list_for_each_entry(be, head, list) {
847 if (target)
848 found = (target == be->bio);
849 else
850 found = __has_merged_page(be->bio, NULL,
851 page, 0);
852 if (found)
853 break;
854 }
855 f2fs_up_read(&io->bio_list_lock);
856
857 if (!found)
858 continue;
859
860 found = false;
861
862 f2fs_down_write(&io->bio_list_lock);
863 list_for_each_entry(be, head, list) {
864 if (target)
865 found = (target == be->bio);
866 else
867 found = __has_merged_page(be->bio, NULL,
868 page, 0);
869 if (found) {
870 target = be->bio;
871 del_bio_entry(be);
872 break;
873 }
874 }
875 f2fs_up_write(&io->bio_list_lock);
876 }
877
878 if (found)
879 f2fs_submit_write_bio(sbi, target, DATA);
880 if (bio && *bio) {
881 bio_put(*bio);
882 *bio = NULL;
883 }
884 }
885
f2fs_merge_page_bio(struct f2fs_io_info * fio)886 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
887 {
888 struct bio *bio = *fio->bio;
889 struct page *page = fio->encrypted_page ?
890 fio->encrypted_page : fio->page;
891 struct folio *folio = page_folio(fio->page);
892
893 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
894 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
895 return -EFSCORRUPTED;
896
897 trace_f2fs_submit_folio_bio(page_folio(page), fio);
898
899 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
900 fio->new_blkaddr))
901 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
902 alloc_new:
903 if (!bio) {
904 bio = __bio_alloc(fio, BIO_MAX_VECS);
905 f2fs_set_bio_crypt_ctx(bio, folio->mapping->host,
906 folio->index, fio, GFP_NOIO);
907
908 add_bio_entry(fio->sbi, bio, page, fio->temp);
909 } else {
910 if (add_ipu_page(fio, &bio, page))
911 goto alloc_new;
912 }
913
914 if (fio->io_wbc)
915 wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio));
916
917 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
918
919 *fio->last_block = fio->new_blkaddr;
920 *fio->bio = bio;
921
922 return 0;
923 }
924
925 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)926 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
927 {
928 struct block_device *bdev = sbi->sb->s_bdev;
929 int devi = 0;
930
931 if (f2fs_is_multi_device(sbi)) {
932 devi = f2fs_target_device_index(sbi, blkaddr);
933 if (blkaddr < FDEV(devi).start_blk ||
934 blkaddr > FDEV(devi).end_blk) {
935 f2fs_err(sbi, "Invalid block %x", blkaddr);
936 return false;
937 }
938 blkaddr -= FDEV(devi).start_blk;
939 bdev = FDEV(devi).bdev;
940 }
941 return bdev_is_zoned(bdev) &&
942 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
943 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
944 }
945 #endif
946
f2fs_submit_page_write(struct f2fs_io_info * fio)947 void f2fs_submit_page_write(struct f2fs_io_info *fio)
948 {
949 struct f2fs_sb_info *sbi = fio->sbi;
950 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
951 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
952 struct page *bio_page;
953 enum count_type type;
954
955 f2fs_bug_on(sbi, is_read_io(fio->op));
956
957 f2fs_down_write(&io->io_rwsem);
958 next:
959 #ifdef CONFIG_BLK_DEV_ZONED
960 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
961 wait_for_completion_io(&io->zone_wait);
962 bio_put(io->zone_pending_bio);
963 io->zone_pending_bio = NULL;
964 io->bi_private = NULL;
965 }
966 #endif
967
968 if (fio->in_list) {
969 spin_lock(&io->io_lock);
970 if (list_empty(&io->io_list)) {
971 spin_unlock(&io->io_lock);
972 goto out;
973 }
974 fio = list_first_entry(&io->io_list,
975 struct f2fs_io_info, list);
976 list_del(&fio->list);
977 spin_unlock(&io->io_lock);
978 }
979
980 verify_fio_blkaddr(fio);
981
982 if (fio->encrypted_page)
983 bio_page = fio->encrypted_page;
984 else if (fio->compressed_page)
985 bio_page = fio->compressed_page;
986 else
987 bio_page = fio->page;
988
989 /* set submitted = true as a return value */
990 fio->submitted = 1;
991
992 type = WB_DATA_TYPE(bio_page, fio->compressed_page);
993 inc_page_count(sbi, type);
994
995 if (io->bio &&
996 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
997 fio->new_blkaddr) ||
998 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
999 page_folio(bio_page)->index, fio)))
1000 __submit_merged_bio(io);
1001 alloc_new:
1002 if (io->bio == NULL) {
1003 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1004 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1005 page_folio(bio_page)->index, fio, GFP_NOIO);
1006 io->fio = *fio;
1007 }
1008
1009 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1010 __submit_merged_bio(io);
1011 goto alloc_new;
1012 }
1013
1014 if (fio->io_wbc)
1015 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
1016 PAGE_SIZE);
1017
1018 io->last_block_in_bio = fio->new_blkaddr;
1019
1020 trace_f2fs_submit_folio_write(page_folio(fio->page), fio);
1021 #ifdef CONFIG_BLK_DEV_ZONED
1022 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1023 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1024 bio_get(io->bio);
1025 reinit_completion(&io->zone_wait);
1026 io->bi_private = io->bio->bi_private;
1027 io->bio->bi_private = io;
1028 io->bio->bi_end_io = f2fs_zone_write_end_io;
1029 io->zone_pending_bio = io->bio;
1030 __submit_merged_bio(io);
1031 }
1032 #endif
1033 if (fio->in_list)
1034 goto next;
1035 out:
1036 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1037 !f2fs_is_checkpoint_ready(sbi))
1038 __submit_merged_bio(io);
1039 f2fs_up_write(&io->io_rwsem);
1040 }
1041
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1042 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1043 unsigned nr_pages, blk_opf_t op_flag,
1044 pgoff_t first_idx, bool for_write)
1045 {
1046 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1047 struct bio *bio;
1048 struct bio_post_read_ctx *ctx = NULL;
1049 unsigned int post_read_steps = 0;
1050 sector_t sector;
1051 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1052
1053 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1054 REQ_OP_READ | op_flag,
1055 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1056 bio->bi_iter.bi_sector = sector;
1057 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 bio->bi_end_io = f2fs_read_end_io;
1059
1060 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 post_read_steps |= STEP_DECRYPT;
1062
1063 if (f2fs_need_verity(inode, first_idx))
1064 post_read_steps |= STEP_VERITY;
1065
1066 /*
1067 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 * contain both compressed and uncompressed clusters. We'll allocate a
1069 * bio_post_read_ctx if the file is compressed, but the caller is
1070 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071 */
1072
1073 if (post_read_steps || f2fs_compressed_file(inode)) {
1074 /* Due to the mempool, this never fails. */
1075 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076 ctx->bio = bio;
1077 ctx->sbi = sbi;
1078 ctx->enabled_steps = post_read_steps;
1079 ctx->fs_blkaddr = blkaddr;
1080 ctx->decompression_attempted = false;
1081 bio->bi_private = ctx;
1082 }
1083 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084
1085 return bio;
1086 }
1087
1088 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1089 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1090 block_t blkaddr, blk_opf_t op_flags,
1091 bool for_write)
1092 {
1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 struct bio *bio;
1095
1096 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097 folio->index, for_write);
1098 if (IS_ERR(bio))
1099 return PTR_ERR(bio);
1100
1101 /* wait for GCed page writeback via META_MAPPING */
1102 f2fs_wait_on_block_writeback(inode, blkaddr);
1103
1104 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1105 iostat_update_and_unbind_ctx(bio);
1106 if (bio->bi_private)
1107 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1108 bio_put(bio);
1109 return -EFAULT;
1110 }
1111 inc_page_count(sbi, F2FS_RD_DATA);
1112 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1113 f2fs_submit_read_bio(sbi, bio, DATA);
1114 return 0;
1115 }
1116
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1117 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1118 {
1119 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1120
1121 dn->data_blkaddr = blkaddr;
1122 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1123 }
1124
1125 /*
1126 * Lock ordering for the change of data block address:
1127 * ->data_page
1128 * ->node_page
1129 * update block addresses in the node page
1130 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1131 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1134 __set_data_blkaddr(dn, blkaddr);
1135 if (set_page_dirty(dn->node_page))
1136 dn->node_changed = true;
1137 }
1138
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1139 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1140 {
1141 f2fs_set_data_blkaddr(dn, blkaddr);
1142 f2fs_update_read_extent_cache(dn);
1143 }
1144
1145 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1146 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1147 {
1148 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1149 int err;
1150
1151 if (!count)
1152 return 0;
1153
1154 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1155 return -EPERM;
1156 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1157 if (unlikely(err))
1158 return err;
1159
1160 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1161 dn->ofs_in_node, count);
1162
1163 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1164
1165 for (; count > 0; dn->ofs_in_node++) {
1166 block_t blkaddr = f2fs_data_blkaddr(dn);
1167
1168 if (blkaddr == NULL_ADDR) {
1169 __set_data_blkaddr(dn, NEW_ADDR);
1170 count--;
1171 }
1172 }
1173
1174 if (set_page_dirty(dn->node_page))
1175 dn->node_changed = true;
1176 return 0;
1177 }
1178
1179 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1180 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1181 {
1182 unsigned int ofs_in_node = dn->ofs_in_node;
1183 int ret;
1184
1185 ret = f2fs_reserve_new_blocks(dn, 1);
1186 dn->ofs_in_node = ofs_in_node;
1187 return ret;
1188 }
1189
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1190 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1191 {
1192 bool need_put = dn->inode_page ? false : true;
1193 int err;
1194
1195 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1196 if (err)
1197 return err;
1198
1199 if (dn->data_blkaddr == NULL_ADDR)
1200 err = f2fs_reserve_new_block(dn);
1201 if (err || need_put)
1202 f2fs_put_dnode(dn);
1203 return err;
1204 }
1205
f2fs_get_read_data_folio(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1206 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
1207 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs)
1208 {
1209 struct address_space *mapping = inode->i_mapping;
1210 struct dnode_of_data dn;
1211 struct folio *folio;
1212 int err;
1213
1214 folio = f2fs_grab_cache_folio(mapping, index, for_write);
1215 if (IS_ERR(folio))
1216 return folio;
1217
1218 if (f2fs_lookup_read_extent_cache_block(inode, index,
1219 &dn.data_blkaddr)) {
1220 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1221 DATA_GENERIC_ENHANCE_READ)) {
1222 err = -EFSCORRUPTED;
1223 goto put_err;
1224 }
1225 goto got_it;
1226 }
1227
1228 set_new_dnode(&dn, inode, NULL, NULL, 0);
1229 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1230 if (err) {
1231 if (err == -ENOENT && next_pgofs)
1232 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1233 goto put_err;
1234 }
1235 f2fs_put_dnode(&dn);
1236
1237 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1238 err = -ENOENT;
1239 if (next_pgofs)
1240 *next_pgofs = index + 1;
1241 goto put_err;
1242 }
1243 if (dn.data_blkaddr != NEW_ADDR &&
1244 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1245 dn.data_blkaddr,
1246 DATA_GENERIC_ENHANCE)) {
1247 err = -EFSCORRUPTED;
1248 goto put_err;
1249 }
1250 got_it:
1251 if (folio_test_uptodate(folio)) {
1252 folio_unlock(folio);
1253 return folio;
1254 }
1255
1256 /*
1257 * A new dentry page is allocated but not able to be written, since its
1258 * new inode page couldn't be allocated due to -ENOSPC.
1259 * In such the case, its blkaddr can be remained as NEW_ADDR.
1260 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1261 * f2fs_init_inode_metadata.
1262 */
1263 if (dn.data_blkaddr == NEW_ADDR) {
1264 folio_zero_segment(folio, 0, folio_size(folio));
1265 if (!folio_test_uptodate(folio))
1266 folio_mark_uptodate(folio);
1267 folio_unlock(folio);
1268 return folio;
1269 }
1270
1271 err = f2fs_submit_page_read(inode, folio, dn.data_blkaddr,
1272 op_flags, for_write);
1273 if (err)
1274 goto put_err;
1275 return folio;
1276
1277 put_err:
1278 f2fs_folio_put(folio, true);
1279 return ERR_PTR(err);
1280 }
1281
f2fs_find_data_folio(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1282 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
1283 pgoff_t *next_pgofs)
1284 {
1285 struct address_space *mapping = inode->i_mapping;
1286 struct folio *folio;
1287
1288 folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0);
1289 if (IS_ERR(folio))
1290 goto read;
1291 if (folio_test_uptodate(folio))
1292 return folio;
1293 f2fs_folio_put(folio, false);
1294
1295 read:
1296 folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs);
1297 if (IS_ERR(folio))
1298 return folio;
1299
1300 if (folio_test_uptodate(folio))
1301 return folio;
1302
1303 folio_wait_locked(folio);
1304 if (unlikely(!folio_test_uptodate(folio))) {
1305 f2fs_folio_put(folio, false);
1306 return ERR_PTR(-EIO);
1307 }
1308 return folio;
1309 }
1310
1311 /*
1312 * If it tries to access a hole, return an error.
1313 * Because, the callers, functions in dir.c and GC, should be able to know
1314 * whether this page exists or not.
1315 */
f2fs_get_lock_data_folio(struct inode * inode,pgoff_t index,bool for_write)1316 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
1317 bool for_write)
1318 {
1319 struct address_space *mapping = inode->i_mapping;
1320 struct folio *folio;
1321
1322 folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL);
1323 if (IS_ERR(folio))
1324 return folio;
1325
1326 /* wait for read completion */
1327 folio_lock(folio);
1328 if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) {
1329 f2fs_folio_put(folio, true);
1330 return ERR_PTR(-EIO);
1331 }
1332 return folio;
1333 }
1334
1335 /*
1336 * Caller ensures that this data page is never allocated.
1337 * A new zero-filled data page is allocated in the page cache.
1338 *
1339 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1340 * f2fs_unlock_op().
1341 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1342 * ipage should be released by this function.
1343 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1344 struct page *f2fs_get_new_data_page(struct inode *inode,
1345 struct page *ipage, pgoff_t index, bool new_i_size)
1346 {
1347 struct address_space *mapping = inode->i_mapping;
1348 struct page *page;
1349 struct dnode_of_data dn;
1350 int err;
1351
1352 page = f2fs_grab_cache_page(mapping, index, true);
1353 if (!page) {
1354 /*
1355 * before exiting, we should make sure ipage will be released
1356 * if any error occur.
1357 */
1358 f2fs_put_page(ipage, 1);
1359 return ERR_PTR(-ENOMEM);
1360 }
1361
1362 set_new_dnode(&dn, inode, ipage, NULL, 0);
1363 err = f2fs_reserve_block(&dn, index);
1364 if (err) {
1365 f2fs_put_page(page, 1);
1366 return ERR_PTR(err);
1367 }
1368 if (!ipage)
1369 f2fs_put_dnode(&dn);
1370
1371 if (PageUptodate(page))
1372 goto got_it;
1373
1374 if (dn.data_blkaddr == NEW_ADDR) {
1375 zero_user_segment(page, 0, PAGE_SIZE);
1376 if (!PageUptodate(page))
1377 SetPageUptodate(page);
1378 } else {
1379 f2fs_put_page(page, 1);
1380
1381 /* if ipage exists, blkaddr should be NEW_ADDR */
1382 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1383 page = f2fs_get_lock_data_page(inode, index, true);
1384 if (IS_ERR(page))
1385 return page;
1386 }
1387 got_it:
1388 if (new_i_size && i_size_read(inode) <
1389 ((loff_t)(index + 1) << PAGE_SHIFT))
1390 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1391 return page;
1392 }
1393
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1394 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1395 {
1396 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 struct f2fs_summary sum;
1398 struct node_info ni;
1399 block_t old_blkaddr;
1400 blkcnt_t count = 1;
1401 int err;
1402
1403 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1404 return -EPERM;
1405
1406 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1407 if (err)
1408 return err;
1409
1410 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1411 if (dn->data_blkaddr == NULL_ADDR) {
1412 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1413 if (unlikely(err))
1414 return err;
1415 }
1416
1417 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1418 old_blkaddr = dn->data_blkaddr;
1419 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1420 &dn->data_blkaddr, &sum, seg_type, NULL);
1421 if (err)
1422 return err;
1423
1424 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1425 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1426
1427 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1428 return 0;
1429 }
1430
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1431 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1432 {
1433 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1434 f2fs_down_read(&sbi->node_change);
1435 else
1436 f2fs_lock_op(sbi);
1437 }
1438
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1439 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1440 {
1441 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1442 f2fs_up_read(&sbi->node_change);
1443 else
1444 f2fs_unlock_op(sbi);
1445 }
1446
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1447 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1448 {
1449 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1450 int err = 0;
1451
1452 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1453 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1454 &dn->data_blkaddr))
1455 err = f2fs_reserve_block(dn, index);
1456 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1457
1458 return err;
1459 }
1460
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1461 static int f2fs_map_no_dnode(struct inode *inode,
1462 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1463 pgoff_t pgoff)
1464 {
1465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1466
1467 /*
1468 * There is one exceptional case that read_node_page() may return
1469 * -ENOENT due to filesystem has been shutdown or cp_error, return
1470 * -EIO in that case.
1471 */
1472 if (map->m_may_create &&
1473 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1474 return -EIO;
1475
1476 if (map->m_next_pgofs)
1477 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1478 if (map->m_next_extent)
1479 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1480 return 0;
1481 }
1482
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1483 static bool f2fs_map_blocks_cached(struct inode *inode,
1484 struct f2fs_map_blocks *map, int flag)
1485 {
1486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 unsigned int maxblocks = map->m_len;
1488 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1489 struct extent_info ei = {};
1490
1491 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1492 return false;
1493
1494 map->m_pblk = ei.blk + pgoff - ei.fofs;
1495 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1496 map->m_flags = F2FS_MAP_MAPPED;
1497 if (map->m_next_extent)
1498 *map->m_next_extent = pgoff + map->m_len;
1499
1500 /* for hardware encryption, but to avoid potential issue in future */
1501 if (flag == F2FS_GET_BLOCK_DIO)
1502 f2fs_wait_on_block_writeback_range(inode,
1503 map->m_pblk, map->m_len);
1504
1505 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1506 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1507 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1508
1509 map->m_bdev = dev->bdev;
1510 map->m_pblk -= dev->start_blk;
1511 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1512 } else {
1513 map->m_bdev = inode->i_sb->s_bdev;
1514 }
1515 return true;
1516 }
1517
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1518 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1519 struct f2fs_map_blocks *map,
1520 block_t blkaddr, int flag, int bidx,
1521 int ofs)
1522 {
1523 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1524 return false;
1525 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1526 return true;
1527 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1528 return true;
1529 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1530 return true;
1531 if (flag == F2FS_GET_BLOCK_DIO &&
1532 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1533 return true;
1534 return false;
1535 }
1536
1537 /*
1538 * f2fs_map_blocks() tries to find or build mapping relationship which
1539 * maps continuous logical blocks to physical blocks, and return such
1540 * info via f2fs_map_blocks structure.
1541 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1542 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1543 {
1544 unsigned int maxblocks = map->m_len;
1545 struct dnode_of_data dn;
1546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1547 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1548 pgoff_t pgofs, end_offset, end;
1549 int err = 0, ofs = 1;
1550 unsigned int ofs_in_node, last_ofs_in_node;
1551 blkcnt_t prealloc;
1552 block_t blkaddr;
1553 unsigned int start_pgofs;
1554 int bidx = 0;
1555 bool is_hole;
1556
1557 if (!maxblocks)
1558 return 0;
1559
1560 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1561 goto out;
1562
1563 map->m_bdev = inode->i_sb->s_bdev;
1564 map->m_multidev_dio =
1565 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1566
1567 map->m_len = 0;
1568 map->m_flags = 0;
1569
1570 /* it only supports block size == page size */
1571 pgofs = (pgoff_t)map->m_lblk;
1572 end = pgofs + maxblocks;
1573
1574 next_dnode:
1575 if (map->m_may_create)
1576 f2fs_map_lock(sbi, flag);
1577
1578 /* When reading holes, we need its node page */
1579 set_new_dnode(&dn, inode, NULL, NULL, 0);
1580 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1581 if (err) {
1582 if (flag == F2FS_GET_BLOCK_BMAP)
1583 map->m_pblk = 0;
1584 if (err == -ENOENT)
1585 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1586 goto unlock_out;
1587 }
1588
1589 start_pgofs = pgofs;
1590 prealloc = 0;
1591 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1592 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1593
1594 next_block:
1595 blkaddr = f2fs_data_blkaddr(&dn);
1596 is_hole = !__is_valid_data_blkaddr(blkaddr);
1597 if (!is_hole &&
1598 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1599 err = -EFSCORRUPTED;
1600 goto sync_out;
1601 }
1602
1603 /* use out-place-update for direct IO under LFS mode */
1604 if (map->m_may_create && (is_hole ||
1605 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1606 !f2fs_is_pinned_file(inode)))) {
1607 if (unlikely(f2fs_cp_error(sbi))) {
1608 err = -EIO;
1609 goto sync_out;
1610 }
1611
1612 switch (flag) {
1613 case F2FS_GET_BLOCK_PRE_AIO:
1614 if (blkaddr == NULL_ADDR) {
1615 prealloc++;
1616 last_ofs_in_node = dn.ofs_in_node;
1617 }
1618 break;
1619 case F2FS_GET_BLOCK_PRE_DIO:
1620 case F2FS_GET_BLOCK_DIO:
1621 err = __allocate_data_block(&dn, map->m_seg_type);
1622 if (err)
1623 goto sync_out;
1624 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1625 file_need_truncate(inode);
1626 set_inode_flag(inode, FI_APPEND_WRITE);
1627 break;
1628 default:
1629 WARN_ON_ONCE(1);
1630 err = -EIO;
1631 goto sync_out;
1632 }
1633
1634 blkaddr = dn.data_blkaddr;
1635 if (is_hole)
1636 map->m_flags |= F2FS_MAP_NEW;
1637 } else if (is_hole) {
1638 if (f2fs_compressed_file(inode) &&
1639 f2fs_sanity_check_cluster(&dn)) {
1640 err = -EFSCORRUPTED;
1641 f2fs_handle_error(sbi,
1642 ERROR_CORRUPTED_CLUSTER);
1643 goto sync_out;
1644 }
1645
1646 switch (flag) {
1647 case F2FS_GET_BLOCK_PRECACHE:
1648 goto sync_out;
1649 case F2FS_GET_BLOCK_BMAP:
1650 map->m_pblk = 0;
1651 goto sync_out;
1652 case F2FS_GET_BLOCK_FIEMAP:
1653 if (blkaddr == NULL_ADDR) {
1654 if (map->m_next_pgofs)
1655 *map->m_next_pgofs = pgofs + 1;
1656 goto sync_out;
1657 }
1658 break;
1659 case F2FS_GET_BLOCK_DIO:
1660 if (map->m_next_pgofs)
1661 *map->m_next_pgofs = pgofs + 1;
1662 break;
1663 default:
1664 /* for defragment case */
1665 if (map->m_next_pgofs)
1666 *map->m_next_pgofs = pgofs + 1;
1667 goto sync_out;
1668 }
1669 }
1670
1671 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1672 goto skip;
1673
1674 if (map->m_multidev_dio)
1675 bidx = f2fs_target_device_index(sbi, blkaddr);
1676
1677 if (map->m_len == 0) {
1678 /* reserved delalloc block should be mapped for fiemap. */
1679 if (blkaddr == NEW_ADDR)
1680 map->m_flags |= F2FS_MAP_DELALLOC;
1681 /* DIO READ and hole case, should not map the blocks. */
1682 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1683 map->m_flags |= F2FS_MAP_MAPPED;
1684
1685 map->m_pblk = blkaddr;
1686 map->m_len = 1;
1687
1688 if (map->m_multidev_dio)
1689 map->m_bdev = FDEV(bidx).bdev;
1690 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1691 ofs++;
1692 map->m_len++;
1693 } else {
1694 goto sync_out;
1695 }
1696
1697 skip:
1698 dn.ofs_in_node++;
1699 pgofs++;
1700
1701 /* preallocate blocks in batch for one dnode page */
1702 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1703 (pgofs == end || dn.ofs_in_node == end_offset)) {
1704
1705 dn.ofs_in_node = ofs_in_node;
1706 err = f2fs_reserve_new_blocks(&dn, prealloc);
1707 if (err)
1708 goto sync_out;
1709
1710 map->m_len += dn.ofs_in_node - ofs_in_node;
1711 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1712 err = -ENOSPC;
1713 goto sync_out;
1714 }
1715 dn.ofs_in_node = end_offset;
1716 }
1717
1718 if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1719 map->m_may_create) {
1720 /* the next block to be allocated may not be contiguous. */
1721 if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1722 CAP_BLKS_PER_SEC(sbi) - 1)
1723 goto sync_out;
1724 }
1725
1726 if (pgofs >= end)
1727 goto sync_out;
1728 else if (dn.ofs_in_node < end_offset)
1729 goto next_block;
1730
1731 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1732 if (map->m_flags & F2FS_MAP_MAPPED) {
1733 unsigned int ofs = start_pgofs - map->m_lblk;
1734
1735 f2fs_update_read_extent_cache_range(&dn,
1736 start_pgofs, map->m_pblk + ofs,
1737 map->m_len - ofs);
1738 }
1739 }
1740
1741 f2fs_put_dnode(&dn);
1742
1743 if (map->m_may_create) {
1744 f2fs_map_unlock(sbi, flag);
1745 f2fs_balance_fs(sbi, dn.node_changed);
1746 }
1747 goto next_dnode;
1748
1749 sync_out:
1750
1751 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1752 /*
1753 * for hardware encryption, but to avoid potential issue
1754 * in future
1755 */
1756 f2fs_wait_on_block_writeback_range(inode,
1757 map->m_pblk, map->m_len);
1758
1759 if (map->m_multidev_dio) {
1760 block_t blk_addr = map->m_pblk;
1761
1762 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1763
1764 map->m_bdev = FDEV(bidx).bdev;
1765 map->m_pblk -= FDEV(bidx).start_blk;
1766
1767 if (map->m_may_create)
1768 f2fs_update_device_state(sbi, inode->i_ino,
1769 blk_addr, map->m_len);
1770
1771 f2fs_bug_on(sbi, blk_addr + map->m_len >
1772 FDEV(bidx).end_blk + 1);
1773 }
1774 }
1775
1776 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1777 if (map->m_flags & F2FS_MAP_MAPPED) {
1778 unsigned int ofs = start_pgofs - map->m_lblk;
1779
1780 f2fs_update_read_extent_cache_range(&dn,
1781 start_pgofs, map->m_pblk + ofs,
1782 map->m_len - ofs);
1783 }
1784 if (map->m_next_extent)
1785 *map->m_next_extent = pgofs + 1;
1786 }
1787 f2fs_put_dnode(&dn);
1788 unlock_out:
1789 if (map->m_may_create) {
1790 f2fs_map_unlock(sbi, flag);
1791 f2fs_balance_fs(sbi, dn.node_changed);
1792 }
1793 out:
1794 trace_f2fs_map_blocks(inode, map, flag, err);
1795 return err;
1796 }
1797
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1798 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1799 {
1800 struct f2fs_map_blocks map;
1801 block_t last_lblk;
1802 int err;
1803
1804 if (pos + len > i_size_read(inode))
1805 return false;
1806
1807 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1808 map.m_next_pgofs = NULL;
1809 map.m_next_extent = NULL;
1810 map.m_seg_type = NO_CHECK_TYPE;
1811 map.m_may_create = false;
1812 last_lblk = F2FS_BLK_ALIGN(pos + len);
1813
1814 while (map.m_lblk < last_lblk) {
1815 map.m_len = last_lblk - map.m_lblk;
1816 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1817 if (err || map.m_len == 0)
1818 return false;
1819 map.m_lblk += map.m_len;
1820 }
1821 return true;
1822 }
1823
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1824 static int f2fs_xattr_fiemap(struct inode *inode,
1825 struct fiemap_extent_info *fieinfo)
1826 {
1827 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1828 struct page *page;
1829 struct node_info ni;
1830 __u64 phys = 0, len;
1831 __u32 flags;
1832 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1833 int err = 0;
1834
1835 if (f2fs_has_inline_xattr(inode)) {
1836 int offset;
1837
1838 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1839 inode->i_ino, false);
1840 if (!page)
1841 return -ENOMEM;
1842
1843 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1844 if (err) {
1845 f2fs_put_page(page, 1);
1846 return err;
1847 }
1848
1849 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1850 offset = offsetof(struct f2fs_inode, i_addr) +
1851 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1852 get_inline_xattr_addrs(inode));
1853
1854 phys += offset;
1855 len = inline_xattr_size(inode);
1856
1857 f2fs_put_page(page, 1);
1858
1859 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1860
1861 if (!xnid)
1862 flags |= FIEMAP_EXTENT_LAST;
1863
1864 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1865 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1866 if (err)
1867 return err;
1868 }
1869
1870 if (xnid) {
1871 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1872 if (!page)
1873 return -ENOMEM;
1874
1875 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1876 if (err) {
1877 f2fs_put_page(page, 1);
1878 return err;
1879 }
1880
1881 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1882 len = inode->i_sb->s_blocksize;
1883
1884 f2fs_put_page(page, 1);
1885
1886 flags = FIEMAP_EXTENT_LAST;
1887 }
1888
1889 if (phys) {
1890 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1891 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1892 }
1893
1894 return (err < 0 ? err : 0);
1895 }
1896
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1897 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1898 u64 start, u64 len)
1899 {
1900 struct f2fs_map_blocks map;
1901 sector_t start_blk, last_blk, blk_len, max_len;
1902 pgoff_t next_pgofs;
1903 u64 logical = 0, phys = 0, size = 0;
1904 u32 flags = 0;
1905 int ret = 0;
1906 bool compr_cluster = false, compr_appended;
1907 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1908 unsigned int count_in_cluster = 0;
1909 loff_t maxbytes;
1910
1911 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1912 ret = f2fs_precache_extents(inode);
1913 if (ret)
1914 return ret;
1915 }
1916
1917 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1918 if (ret)
1919 return ret;
1920
1921 inode_lock_shared(inode);
1922
1923 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1924 if (start > maxbytes) {
1925 ret = -EFBIG;
1926 goto out;
1927 }
1928
1929 if (len > maxbytes || (maxbytes - len) < start)
1930 len = maxbytes - start;
1931
1932 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1933 ret = f2fs_xattr_fiemap(inode, fieinfo);
1934 goto out;
1935 }
1936
1937 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1938 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1939 if (ret != -EAGAIN)
1940 goto out;
1941 }
1942
1943 start_blk = F2FS_BYTES_TO_BLK(start);
1944 last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1945 blk_len = last_blk - start_blk + 1;
1946 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1947
1948 next:
1949 memset(&map, 0, sizeof(map));
1950 map.m_lblk = start_blk;
1951 map.m_len = blk_len;
1952 map.m_next_pgofs = &next_pgofs;
1953 map.m_seg_type = NO_CHECK_TYPE;
1954
1955 if (compr_cluster) {
1956 map.m_lblk += 1;
1957 map.m_len = cluster_size - count_in_cluster;
1958 }
1959
1960 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1961 if (ret)
1962 goto out;
1963
1964 /* HOLE */
1965 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1966 start_blk = next_pgofs;
1967
1968 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1969 goto prep_next;
1970
1971 flags |= FIEMAP_EXTENT_LAST;
1972 }
1973
1974 /*
1975 * current extent may cross boundary of inquiry, increase len to
1976 * requery.
1977 */
1978 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1979 map.m_lblk + map.m_len - 1 == last_blk &&
1980 blk_len != max_len) {
1981 blk_len = max_len;
1982 goto next;
1983 }
1984
1985 compr_appended = false;
1986 /* In a case of compressed cluster, append this to the last extent */
1987 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1988 !(map.m_flags & F2FS_MAP_FLAGS))) {
1989 compr_appended = true;
1990 goto skip_fill;
1991 }
1992
1993 if (size) {
1994 flags |= FIEMAP_EXTENT_MERGED;
1995 if (IS_ENCRYPTED(inode))
1996 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1997
1998 ret = fiemap_fill_next_extent(fieinfo, logical,
1999 phys, size, flags);
2000 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2001 if (ret)
2002 goto out;
2003 size = 0;
2004 }
2005
2006 if (start_blk > last_blk)
2007 goto out;
2008
2009 skip_fill:
2010 if (map.m_pblk == COMPRESS_ADDR) {
2011 compr_cluster = true;
2012 count_in_cluster = 1;
2013 } else if (compr_appended) {
2014 unsigned int appended_blks = cluster_size -
2015 count_in_cluster + 1;
2016 size += F2FS_BLK_TO_BYTES(appended_blks);
2017 start_blk += appended_blks;
2018 compr_cluster = false;
2019 } else {
2020 logical = F2FS_BLK_TO_BYTES(start_blk);
2021 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2022 F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2023 size = F2FS_BLK_TO_BYTES(map.m_len);
2024 flags = 0;
2025
2026 if (compr_cluster) {
2027 flags = FIEMAP_EXTENT_ENCODED;
2028 count_in_cluster += map.m_len;
2029 if (count_in_cluster == cluster_size) {
2030 compr_cluster = false;
2031 size += F2FS_BLKSIZE;
2032 }
2033 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2034 flags = FIEMAP_EXTENT_UNWRITTEN;
2035 }
2036
2037 start_blk += F2FS_BYTES_TO_BLK(size);
2038 }
2039
2040 prep_next:
2041 cond_resched();
2042 if (fatal_signal_pending(current))
2043 ret = -EINTR;
2044 else
2045 goto next;
2046 out:
2047 if (ret == 1)
2048 ret = 0;
2049
2050 inode_unlock_shared(inode);
2051 return ret;
2052 }
2053
f2fs_readpage_limit(struct inode * inode)2054 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2055 {
2056 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2057 return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2058
2059 return i_size_read(inode);
2060 }
2061
f2fs_ra_op_flags(struct readahead_control * rac)2062 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2063 {
2064 return rac ? REQ_RAHEAD : 0;
2065 }
2066
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2067 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2068 unsigned nr_pages,
2069 struct f2fs_map_blocks *map,
2070 struct bio **bio_ret,
2071 sector_t *last_block_in_bio,
2072 struct readahead_control *rac)
2073 {
2074 struct bio *bio = *bio_ret;
2075 const unsigned int blocksize = F2FS_BLKSIZE;
2076 sector_t block_in_file;
2077 sector_t last_block;
2078 sector_t last_block_in_file;
2079 sector_t block_nr;
2080 pgoff_t index = folio_index(folio);
2081 int ret = 0;
2082
2083 block_in_file = (sector_t)index;
2084 last_block = block_in_file + nr_pages;
2085 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2086 blocksize - 1);
2087 if (last_block > last_block_in_file)
2088 last_block = last_block_in_file;
2089
2090 /* just zeroing out page which is beyond EOF */
2091 if (block_in_file >= last_block)
2092 goto zero_out;
2093 /*
2094 * Map blocks using the previous result first.
2095 */
2096 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2097 block_in_file > map->m_lblk &&
2098 block_in_file < (map->m_lblk + map->m_len))
2099 goto got_it;
2100
2101 /*
2102 * Then do more f2fs_map_blocks() calls until we are
2103 * done with this page.
2104 */
2105 map->m_lblk = block_in_file;
2106 map->m_len = last_block - block_in_file;
2107
2108 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2109 if (ret)
2110 goto out;
2111 got_it:
2112 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2113 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2114 folio_set_mappedtodisk(folio);
2115
2116 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2117 DATA_GENERIC_ENHANCE_READ)) {
2118 ret = -EFSCORRUPTED;
2119 goto out;
2120 }
2121 } else {
2122 zero_out:
2123 folio_zero_segment(folio, 0, folio_size(folio));
2124 if (f2fs_need_verity(inode, index) &&
2125 !fsverity_verify_folio(folio)) {
2126 ret = -EIO;
2127 goto out;
2128 }
2129 if (!folio_test_uptodate(folio))
2130 folio_mark_uptodate(folio);
2131 folio_unlock(folio);
2132 goto out;
2133 }
2134
2135 /*
2136 * This page will go to BIO. Do we need to send this
2137 * BIO off first?
2138 */
2139 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2140 *last_block_in_bio, block_nr) ||
2141 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2142 submit_and_realloc:
2143 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2144 bio = NULL;
2145 }
2146 if (bio == NULL) {
2147 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2148 f2fs_ra_op_flags(rac), index,
2149 false);
2150 if (IS_ERR(bio)) {
2151 ret = PTR_ERR(bio);
2152 bio = NULL;
2153 goto out;
2154 }
2155 }
2156
2157 /*
2158 * If the page is under writeback, we need to wait for
2159 * its completion to see the correct decrypted data.
2160 */
2161 f2fs_wait_on_block_writeback(inode, block_nr);
2162
2163 if (!bio_add_folio(bio, folio, blocksize, 0))
2164 goto submit_and_realloc;
2165
2166 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2167 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2168 F2FS_BLKSIZE);
2169 *last_block_in_bio = block_nr;
2170 out:
2171 *bio_ret = bio;
2172 return ret;
2173 }
2174
2175 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2176 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2177 unsigned nr_pages, sector_t *last_block_in_bio,
2178 struct readahead_control *rac, bool for_write)
2179 {
2180 struct dnode_of_data dn;
2181 struct inode *inode = cc->inode;
2182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2183 struct bio *bio = *bio_ret;
2184 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2185 sector_t last_block_in_file;
2186 const unsigned int blocksize = F2FS_BLKSIZE;
2187 struct decompress_io_ctx *dic = NULL;
2188 struct extent_info ei = {};
2189 bool from_dnode = true;
2190 int i;
2191 int ret = 0;
2192
2193 if (unlikely(f2fs_cp_error(sbi))) {
2194 ret = -EIO;
2195 from_dnode = false;
2196 goto out_put_dnode;
2197 }
2198
2199 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2200
2201 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2202 blocksize - 1);
2203
2204 /* get rid of pages beyond EOF */
2205 for (i = 0; i < cc->cluster_size; i++) {
2206 struct page *page = cc->rpages[i];
2207 struct folio *folio;
2208
2209 if (!page)
2210 continue;
2211
2212 folio = page_folio(page);
2213 if ((sector_t)folio->index >= last_block_in_file) {
2214 folio_zero_segment(folio, 0, folio_size(folio));
2215 if (!folio_test_uptodate(folio))
2216 folio_mark_uptodate(folio);
2217 } else if (!folio_test_uptodate(folio)) {
2218 continue;
2219 }
2220 folio_unlock(folio);
2221 if (for_write)
2222 folio_put(folio);
2223 cc->rpages[i] = NULL;
2224 cc->nr_rpages--;
2225 }
2226
2227 /* we are done since all pages are beyond EOF */
2228 if (f2fs_cluster_is_empty(cc))
2229 goto out;
2230
2231 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2232 from_dnode = false;
2233
2234 if (!from_dnode)
2235 goto skip_reading_dnode;
2236
2237 set_new_dnode(&dn, inode, NULL, NULL, 0);
2238 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2239 if (ret)
2240 goto out;
2241
2242 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2243
2244 skip_reading_dnode:
2245 for (i = 1; i < cc->cluster_size; i++) {
2246 block_t blkaddr;
2247
2248 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2249 dn.ofs_in_node + i) :
2250 ei.blk + i - 1;
2251
2252 if (!__is_valid_data_blkaddr(blkaddr))
2253 break;
2254
2255 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2256 ret = -EFAULT;
2257 goto out_put_dnode;
2258 }
2259 cc->nr_cpages++;
2260
2261 if (!from_dnode && i >= ei.c_len)
2262 break;
2263 }
2264
2265 /* nothing to decompress */
2266 if (cc->nr_cpages == 0) {
2267 ret = 0;
2268 goto out_put_dnode;
2269 }
2270
2271 dic = f2fs_alloc_dic(cc);
2272 if (IS_ERR(dic)) {
2273 ret = PTR_ERR(dic);
2274 goto out_put_dnode;
2275 }
2276
2277 for (i = 0; i < cc->nr_cpages; i++) {
2278 struct folio *folio = page_folio(dic->cpages[i]);
2279 block_t blkaddr;
2280 struct bio_post_read_ctx *ctx;
2281
2282 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2283 dn.ofs_in_node + i + 1) :
2284 ei.blk + i;
2285
2286 f2fs_wait_on_block_writeback(inode, blkaddr);
2287
2288 if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2289 blkaddr)) {
2290 if (atomic_dec_and_test(&dic->remaining_pages)) {
2291 f2fs_decompress_cluster(dic, true);
2292 break;
2293 }
2294 continue;
2295 }
2296
2297 if (bio && (!page_is_mergeable(sbi, bio,
2298 *last_block_in_bio, blkaddr) ||
2299 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2300 submit_and_realloc:
2301 f2fs_submit_read_bio(sbi, bio, DATA);
2302 bio = NULL;
2303 }
2304
2305 if (!bio) {
2306 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2307 f2fs_ra_op_flags(rac),
2308 folio->index, for_write);
2309 if (IS_ERR(bio)) {
2310 ret = PTR_ERR(bio);
2311 f2fs_decompress_end_io(dic, ret, true);
2312 f2fs_put_dnode(&dn);
2313 *bio_ret = NULL;
2314 return ret;
2315 }
2316 }
2317
2318 if (!bio_add_folio(bio, folio, blocksize, 0))
2319 goto submit_and_realloc;
2320
2321 ctx = get_post_read_ctx(bio);
2322 ctx->enabled_steps |= STEP_DECOMPRESS;
2323 refcount_inc(&dic->refcnt);
2324
2325 inc_page_count(sbi, F2FS_RD_DATA);
2326 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2327 *last_block_in_bio = blkaddr;
2328 }
2329
2330 if (from_dnode)
2331 f2fs_put_dnode(&dn);
2332
2333 *bio_ret = bio;
2334 return 0;
2335
2336 out_put_dnode:
2337 if (from_dnode)
2338 f2fs_put_dnode(&dn);
2339 out:
2340 for (i = 0; i < cc->cluster_size; i++) {
2341 if (cc->rpages[i]) {
2342 ClearPageUptodate(cc->rpages[i]);
2343 unlock_page(cc->rpages[i]);
2344 }
2345 }
2346 *bio_ret = bio;
2347 return ret;
2348 }
2349 #endif
2350
2351 /*
2352 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2353 * Major change was from block_size == page_size in f2fs by default.
2354 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2355 static int f2fs_mpage_readpages(struct inode *inode,
2356 struct readahead_control *rac, struct folio *folio)
2357 {
2358 struct bio *bio = NULL;
2359 sector_t last_block_in_bio = 0;
2360 struct f2fs_map_blocks map;
2361 #ifdef CONFIG_F2FS_FS_COMPRESSION
2362 struct compress_ctx cc = {
2363 .inode = inode,
2364 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2365 .cluster_size = F2FS_I(inode)->i_cluster_size,
2366 .cluster_idx = NULL_CLUSTER,
2367 .rpages = NULL,
2368 .cpages = NULL,
2369 .nr_rpages = 0,
2370 .nr_cpages = 0,
2371 };
2372 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2373 pgoff_t index;
2374 #endif
2375 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2376 unsigned max_nr_pages = nr_pages;
2377 int ret = 0;
2378
2379 map.m_pblk = 0;
2380 map.m_lblk = 0;
2381 map.m_len = 0;
2382 map.m_flags = 0;
2383 map.m_next_pgofs = NULL;
2384 map.m_next_extent = NULL;
2385 map.m_seg_type = NO_CHECK_TYPE;
2386 map.m_may_create = false;
2387
2388 for (; nr_pages; nr_pages--) {
2389 if (rac) {
2390 folio = readahead_folio(rac);
2391 prefetchw(&folio->flags);
2392 }
2393
2394 #ifdef CONFIG_F2FS_FS_COMPRESSION
2395 index = folio_index(folio);
2396
2397 if (!f2fs_compressed_file(inode))
2398 goto read_single_page;
2399
2400 /* there are remained compressed pages, submit them */
2401 if (!f2fs_cluster_can_merge_page(&cc, index)) {
2402 ret = f2fs_read_multi_pages(&cc, &bio,
2403 max_nr_pages,
2404 &last_block_in_bio,
2405 rac, false);
2406 f2fs_destroy_compress_ctx(&cc, false);
2407 if (ret)
2408 goto set_error_page;
2409 }
2410 if (cc.cluster_idx == NULL_CLUSTER) {
2411 if (nc_cluster_idx == index >> cc.log_cluster_size)
2412 goto read_single_page;
2413
2414 ret = f2fs_is_compressed_cluster(inode, index);
2415 if (ret < 0)
2416 goto set_error_page;
2417 else if (!ret) {
2418 nc_cluster_idx =
2419 index >> cc.log_cluster_size;
2420 goto read_single_page;
2421 }
2422
2423 nc_cluster_idx = NULL_CLUSTER;
2424 }
2425 ret = f2fs_init_compress_ctx(&cc);
2426 if (ret)
2427 goto set_error_page;
2428
2429 f2fs_compress_ctx_add_page(&cc, folio);
2430
2431 goto next_page;
2432 read_single_page:
2433 #endif
2434
2435 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2436 &bio, &last_block_in_bio, rac);
2437 if (ret) {
2438 #ifdef CONFIG_F2FS_FS_COMPRESSION
2439 set_error_page:
2440 #endif
2441 folio_zero_segment(folio, 0, folio_size(folio));
2442 folio_unlock(folio);
2443 }
2444 #ifdef CONFIG_F2FS_FS_COMPRESSION
2445 next_page:
2446 #endif
2447
2448 #ifdef CONFIG_F2FS_FS_COMPRESSION
2449 if (f2fs_compressed_file(inode)) {
2450 /* last page */
2451 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2452 ret = f2fs_read_multi_pages(&cc, &bio,
2453 max_nr_pages,
2454 &last_block_in_bio,
2455 rac, false);
2456 f2fs_destroy_compress_ctx(&cc, false);
2457 }
2458 }
2459 #endif
2460 }
2461 if (bio)
2462 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2463 return ret;
2464 }
2465
f2fs_read_data_folio(struct file * file,struct folio * folio)2466 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2467 {
2468 struct inode *inode = folio->mapping->host;
2469 int ret = -EAGAIN;
2470
2471 trace_f2fs_readpage(folio, DATA);
2472
2473 if (!f2fs_is_compress_backend_ready(inode)) {
2474 folio_unlock(folio);
2475 return -EOPNOTSUPP;
2476 }
2477
2478 /* If the file has inline data, try to read it directly */
2479 if (f2fs_has_inline_data(inode))
2480 ret = f2fs_read_inline_data(inode, folio);
2481 if (ret == -EAGAIN)
2482 ret = f2fs_mpage_readpages(inode, NULL, folio);
2483 return ret;
2484 }
2485
f2fs_readahead(struct readahead_control * rac)2486 static void f2fs_readahead(struct readahead_control *rac)
2487 {
2488 struct inode *inode = rac->mapping->host;
2489
2490 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2491
2492 if (!f2fs_is_compress_backend_ready(inode))
2493 return;
2494
2495 /* If the file has inline data, skip readahead */
2496 if (f2fs_has_inline_data(inode))
2497 return;
2498
2499 f2fs_mpage_readpages(inode, rac, NULL);
2500 }
2501
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2503 {
2504 struct inode *inode = fio->page->mapping->host;
2505 struct page *mpage, *page;
2506 gfp_t gfp_flags = GFP_NOFS;
2507
2508 if (!f2fs_encrypted_file(inode))
2509 return 0;
2510
2511 page = fio->compressed_page ? fio->compressed_page : fio->page;
2512
2513 if (fscrypt_inode_uses_inline_crypto(inode))
2514 return 0;
2515
2516 retry_encrypt:
2517 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page),
2518 PAGE_SIZE, 0, gfp_flags);
2519 if (IS_ERR(fio->encrypted_page)) {
2520 /* flush pending IOs and wait for a while in the ENOMEM case */
2521 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2522 f2fs_flush_merged_writes(fio->sbi);
2523 memalloc_retry_wait(GFP_NOFS);
2524 gfp_flags |= __GFP_NOFAIL;
2525 goto retry_encrypt;
2526 }
2527 return PTR_ERR(fio->encrypted_page);
2528 }
2529
2530 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2531 if (mpage) {
2532 if (PageUptodate(mpage))
2533 memcpy(page_address(mpage),
2534 page_address(fio->encrypted_page), PAGE_SIZE);
2535 f2fs_put_page(mpage, 1);
2536 }
2537 return 0;
2538 }
2539
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2540 static inline bool check_inplace_update_policy(struct inode *inode,
2541 struct f2fs_io_info *fio)
2542 {
2543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2544
2545 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2546 is_inode_flag_set(inode, FI_OPU_WRITE))
2547 return false;
2548 if (IS_F2FS_IPU_FORCE(sbi))
2549 return true;
2550 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2551 return true;
2552 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2553 return true;
2554 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2555 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2556 return true;
2557
2558 /*
2559 * IPU for rewrite async pages
2560 */
2561 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2562 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2563 return true;
2564
2565 /* this is only set during fdatasync */
2566 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2567 return true;
2568
2569 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2570 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2571 return true;
2572
2573 return false;
2574 }
2575
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2576 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2577 {
2578 /* swap file is migrating in aligned write mode */
2579 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2580 return false;
2581
2582 if (f2fs_is_pinned_file(inode))
2583 return true;
2584
2585 /* if this is cold file, we should overwrite to avoid fragmentation */
2586 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2587 return true;
2588
2589 return check_inplace_update_policy(inode, fio);
2590 }
2591
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2592 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2593 {
2594 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2595
2596 /* The below cases were checked when setting it. */
2597 if (f2fs_is_pinned_file(inode))
2598 return false;
2599 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2600 return true;
2601 if (f2fs_lfs_mode(sbi))
2602 return true;
2603 if (S_ISDIR(inode->i_mode))
2604 return true;
2605 if (IS_NOQUOTA(inode))
2606 return true;
2607 if (f2fs_used_in_atomic_write(inode))
2608 return true;
2609 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2610 if (f2fs_compressed_file(inode) &&
2611 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2612 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2613 return true;
2614
2615 /* swap file is migrating in aligned write mode */
2616 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2617 return true;
2618
2619 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2620 return true;
2621
2622 if (fio) {
2623 if (page_private_gcing(fio->page))
2624 return true;
2625 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2626 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2627 return true;
2628 }
2629 return false;
2630 }
2631
need_inplace_update(struct f2fs_io_info * fio)2632 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2633 {
2634 struct inode *inode = fio->page->mapping->host;
2635
2636 if (f2fs_should_update_outplace(inode, fio))
2637 return false;
2638
2639 return f2fs_should_update_inplace(inode, fio);
2640 }
2641
f2fs_do_write_data_page(struct f2fs_io_info * fio)2642 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2643 {
2644 struct folio *folio = page_folio(fio->page);
2645 struct inode *inode = folio->mapping->host;
2646 struct dnode_of_data dn;
2647 struct node_info ni;
2648 bool ipu_force = false;
2649 bool atomic_commit;
2650 int err = 0;
2651
2652 /* Use COW inode to make dnode_of_data for atomic write */
2653 atomic_commit = f2fs_is_atomic_file(inode) &&
2654 page_private_atomic(folio_page(folio, 0));
2655 if (atomic_commit)
2656 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2657 else
2658 set_new_dnode(&dn, inode, NULL, NULL, 0);
2659
2660 if (need_inplace_update(fio) &&
2661 f2fs_lookup_read_extent_cache_block(inode, folio->index,
2662 &fio->old_blkaddr)) {
2663 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2664 DATA_GENERIC_ENHANCE))
2665 return -EFSCORRUPTED;
2666
2667 ipu_force = true;
2668 fio->need_lock = LOCK_DONE;
2669 goto got_it;
2670 }
2671
2672 /* Deadlock due to between page->lock and f2fs_lock_op */
2673 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2674 return -EAGAIN;
2675
2676 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2677 if (err)
2678 goto out;
2679
2680 fio->old_blkaddr = dn.data_blkaddr;
2681
2682 /* This page is already truncated */
2683 if (fio->old_blkaddr == NULL_ADDR) {
2684 folio_clear_uptodate(folio);
2685 clear_page_private_gcing(folio_page(folio, 0));
2686 goto out_writepage;
2687 }
2688 got_it:
2689 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2690 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2691 DATA_GENERIC_ENHANCE)) {
2692 err = -EFSCORRUPTED;
2693 goto out_writepage;
2694 }
2695
2696 /* wait for GCed page writeback via META_MAPPING */
2697 if (fio->meta_gc)
2698 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2699
2700 /*
2701 * If current allocation needs SSR,
2702 * it had better in-place writes for updated data.
2703 */
2704 if (ipu_force ||
2705 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2706 need_inplace_update(fio))) {
2707 err = f2fs_encrypt_one_page(fio);
2708 if (err)
2709 goto out_writepage;
2710
2711 folio_start_writeback(folio);
2712 f2fs_put_dnode(&dn);
2713 if (fio->need_lock == LOCK_REQ)
2714 f2fs_unlock_op(fio->sbi);
2715 err = f2fs_inplace_write_data(fio);
2716 if (err) {
2717 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2718 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2719 folio_end_writeback(folio);
2720 } else {
2721 set_inode_flag(inode, FI_UPDATE_WRITE);
2722 }
2723 trace_f2fs_do_write_data_page(folio, IPU);
2724 return err;
2725 }
2726
2727 if (fio->need_lock == LOCK_RETRY) {
2728 if (!f2fs_trylock_op(fio->sbi)) {
2729 err = -EAGAIN;
2730 goto out_writepage;
2731 }
2732 fio->need_lock = LOCK_REQ;
2733 }
2734
2735 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2736 if (err)
2737 goto out_writepage;
2738
2739 fio->version = ni.version;
2740
2741 err = f2fs_encrypt_one_page(fio);
2742 if (err)
2743 goto out_writepage;
2744
2745 folio_start_writeback(folio);
2746
2747 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2748 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2749
2750 /* LFS mode write path */
2751 f2fs_outplace_write_data(&dn, fio);
2752 trace_f2fs_do_write_data_page(folio, OPU);
2753 set_inode_flag(inode, FI_APPEND_WRITE);
2754 if (atomic_commit)
2755 clear_page_private_atomic(folio_page(folio, 0));
2756 out_writepage:
2757 f2fs_put_dnode(&dn);
2758 out:
2759 if (fio->need_lock == LOCK_REQ)
2760 f2fs_unlock_op(fio->sbi);
2761 return err;
2762 }
2763
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2764 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2765 struct bio **bio,
2766 sector_t *last_block,
2767 struct writeback_control *wbc,
2768 enum iostat_type io_type,
2769 int compr_blocks,
2770 bool allow_balance)
2771 {
2772 struct inode *inode = folio->mapping->host;
2773 struct page *page = folio_page(folio, 0);
2774 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2775 loff_t i_size = i_size_read(inode);
2776 const pgoff_t end_index = ((unsigned long long)i_size)
2777 >> PAGE_SHIFT;
2778 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2779 unsigned offset = 0;
2780 bool need_balance_fs = false;
2781 bool quota_inode = IS_NOQUOTA(inode);
2782 int err = 0;
2783 struct f2fs_io_info fio = {
2784 .sbi = sbi,
2785 .ino = inode->i_ino,
2786 .type = DATA,
2787 .op = REQ_OP_WRITE,
2788 .op_flags = wbc_to_write_flags(wbc),
2789 .old_blkaddr = NULL_ADDR,
2790 .page = page,
2791 .encrypted_page = NULL,
2792 .submitted = 0,
2793 .compr_blocks = compr_blocks,
2794 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2795 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2796 .io_type = io_type,
2797 .io_wbc = wbc,
2798 .bio = bio,
2799 .last_block = last_block,
2800 };
2801
2802 trace_f2fs_writepage(folio, DATA);
2803
2804 /* we should bypass data pages to proceed the kworker jobs */
2805 if (unlikely(f2fs_cp_error(sbi))) {
2806 mapping_set_error(folio->mapping, -EIO);
2807 /*
2808 * don't drop any dirty dentry pages for keeping lastest
2809 * directory structure.
2810 */
2811 if (S_ISDIR(inode->i_mode) &&
2812 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2813 goto redirty_out;
2814
2815 /* keep data pages in remount-ro mode */
2816 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2817 goto redirty_out;
2818 goto out;
2819 }
2820
2821 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2822 goto redirty_out;
2823
2824 if (folio->index < end_index ||
2825 f2fs_verity_in_progress(inode) ||
2826 compr_blocks)
2827 goto write;
2828
2829 /*
2830 * If the offset is out-of-range of file size,
2831 * this page does not have to be written to disk.
2832 */
2833 offset = i_size & (PAGE_SIZE - 1);
2834 if ((folio->index >= end_index + 1) || !offset)
2835 goto out;
2836
2837 folio_zero_segment(folio, offset, folio_size(folio));
2838 write:
2839 /* Dentry/quota blocks are controlled by checkpoint */
2840 if (S_ISDIR(inode->i_mode) || quota_inode) {
2841 /*
2842 * We need to wait for node_write to avoid block allocation during
2843 * checkpoint. This can only happen to quota writes which can cause
2844 * the below discard race condition.
2845 */
2846 if (quota_inode)
2847 f2fs_down_read(&sbi->node_write);
2848
2849 fio.need_lock = LOCK_DONE;
2850 err = f2fs_do_write_data_page(&fio);
2851
2852 if (quota_inode)
2853 f2fs_up_read(&sbi->node_write);
2854
2855 goto done;
2856 }
2857
2858 if (!wbc->for_reclaim)
2859 need_balance_fs = true;
2860 else if (has_not_enough_free_secs(sbi, 0, 0))
2861 goto redirty_out;
2862 else
2863 set_inode_flag(inode, FI_HOT_DATA);
2864
2865 err = -EAGAIN;
2866 if (f2fs_has_inline_data(inode)) {
2867 err = f2fs_write_inline_data(inode, folio);
2868 if (!err)
2869 goto out;
2870 }
2871
2872 if (err == -EAGAIN) {
2873 err = f2fs_do_write_data_page(&fio);
2874 if (err == -EAGAIN) {
2875 f2fs_bug_on(sbi, compr_blocks);
2876 fio.need_lock = LOCK_REQ;
2877 err = f2fs_do_write_data_page(&fio);
2878 }
2879 }
2880
2881 if (err) {
2882 file_set_keep_isize(inode);
2883 } else {
2884 spin_lock(&F2FS_I(inode)->i_size_lock);
2885 if (F2FS_I(inode)->last_disk_size < psize)
2886 F2FS_I(inode)->last_disk_size = psize;
2887 spin_unlock(&F2FS_I(inode)->i_size_lock);
2888 }
2889
2890 done:
2891 if (err && err != -ENOENT)
2892 goto redirty_out;
2893
2894 out:
2895 inode_dec_dirty_pages(inode);
2896 if (err) {
2897 folio_clear_uptodate(folio);
2898 clear_page_private_gcing(page);
2899 }
2900
2901 if (wbc->for_reclaim) {
2902 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2903 clear_inode_flag(inode, FI_HOT_DATA);
2904 f2fs_remove_dirty_inode(inode);
2905 submitted = NULL;
2906 }
2907 folio_unlock(folio);
2908 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2909 !F2FS_I(inode)->wb_task && allow_balance)
2910 f2fs_balance_fs(sbi, need_balance_fs);
2911
2912 if (unlikely(f2fs_cp_error(sbi))) {
2913 f2fs_submit_merged_write(sbi, DATA);
2914 if (bio && *bio)
2915 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2916 submitted = NULL;
2917 }
2918
2919 if (submitted)
2920 *submitted = fio.submitted;
2921
2922 return 0;
2923
2924 redirty_out:
2925 folio_redirty_for_writepage(wbc, folio);
2926 /*
2927 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2928 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2929 * file_write_and_wait_range() will see EIO error, which is critical
2930 * to return value of fsync() followed by atomic_write failure to user.
2931 */
2932 if (!err || wbc->for_reclaim)
2933 return AOP_WRITEPAGE_ACTIVATE;
2934 folio_unlock(folio);
2935 return err;
2936 }
2937
2938 /*
2939 * This function was copied from write_cache_pages from mm/page-writeback.c.
2940 * The major change is making write step of cold data page separately from
2941 * warm/hot data page.
2942 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2943 static int f2fs_write_cache_pages(struct address_space *mapping,
2944 struct writeback_control *wbc,
2945 enum iostat_type io_type)
2946 {
2947 int ret = 0;
2948 int done = 0, retry = 0;
2949 struct page *pages_local[F2FS_ONSTACK_PAGES];
2950 struct page **pages = pages_local;
2951 struct folio_batch fbatch;
2952 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2953 struct bio *bio = NULL;
2954 sector_t last_block;
2955 #ifdef CONFIG_F2FS_FS_COMPRESSION
2956 struct inode *inode = mapping->host;
2957 struct compress_ctx cc = {
2958 .inode = inode,
2959 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2960 .cluster_size = F2FS_I(inode)->i_cluster_size,
2961 .cluster_idx = NULL_CLUSTER,
2962 .rpages = NULL,
2963 .nr_rpages = 0,
2964 .cpages = NULL,
2965 .valid_nr_cpages = 0,
2966 .rbuf = NULL,
2967 .cbuf = NULL,
2968 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2969 .private = NULL,
2970 };
2971 #endif
2972 int nr_folios, p, idx;
2973 int nr_pages;
2974 unsigned int max_pages = F2FS_ONSTACK_PAGES;
2975 pgoff_t index;
2976 pgoff_t end; /* Inclusive */
2977 pgoff_t done_index;
2978 int range_whole = 0;
2979 xa_mark_t tag;
2980 int nwritten = 0;
2981 int submitted = 0;
2982 int i;
2983
2984 #ifdef CONFIG_F2FS_FS_COMPRESSION
2985 if (f2fs_compressed_file(inode) &&
2986 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2987 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2988 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2989 max_pages = 1 << cc.log_cluster_size;
2990 }
2991 #endif
2992
2993 folio_batch_init(&fbatch);
2994
2995 if (get_dirty_pages(mapping->host) <=
2996 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2997 set_inode_flag(mapping->host, FI_HOT_DATA);
2998 else
2999 clear_inode_flag(mapping->host, FI_HOT_DATA);
3000
3001 if (wbc->range_cyclic) {
3002 index = mapping->writeback_index; /* prev offset */
3003 end = -1;
3004 } else {
3005 index = wbc->range_start >> PAGE_SHIFT;
3006 end = wbc->range_end >> PAGE_SHIFT;
3007 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3008 range_whole = 1;
3009 }
3010 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3011 tag = PAGECACHE_TAG_TOWRITE;
3012 else
3013 tag = PAGECACHE_TAG_DIRTY;
3014 retry:
3015 retry = 0;
3016 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3017 tag_pages_for_writeback(mapping, index, end);
3018 done_index = index;
3019 while (!done && !retry && (index <= end)) {
3020 nr_pages = 0;
3021 again:
3022 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3023 tag, &fbatch);
3024 if (nr_folios == 0) {
3025 if (nr_pages)
3026 goto write;
3027 break;
3028 }
3029
3030 for (i = 0; i < nr_folios; i++) {
3031 struct folio *folio = fbatch.folios[i];
3032
3033 idx = 0;
3034 p = folio_nr_pages(folio);
3035 add_more:
3036 pages[nr_pages] = folio_page(folio, idx);
3037 folio_get(folio);
3038 if (++nr_pages == max_pages) {
3039 index = folio->index + idx + 1;
3040 folio_batch_release(&fbatch);
3041 goto write;
3042 }
3043 if (++idx < p)
3044 goto add_more;
3045 }
3046 folio_batch_release(&fbatch);
3047 goto again;
3048 write:
3049 for (i = 0; i < nr_pages; i++) {
3050 struct page *page = pages[i];
3051 struct folio *folio = page_folio(page);
3052 bool need_readd;
3053 readd:
3054 need_readd = false;
3055 #ifdef CONFIG_F2FS_FS_COMPRESSION
3056 if (f2fs_compressed_file(inode)) {
3057 void *fsdata = NULL;
3058 struct page *pagep;
3059 int ret2;
3060
3061 ret = f2fs_init_compress_ctx(&cc);
3062 if (ret) {
3063 done = 1;
3064 break;
3065 }
3066
3067 if (!f2fs_cluster_can_merge_page(&cc,
3068 folio->index)) {
3069 ret = f2fs_write_multi_pages(&cc,
3070 &submitted, wbc, io_type);
3071 if (!ret)
3072 need_readd = true;
3073 goto result;
3074 }
3075
3076 if (unlikely(f2fs_cp_error(sbi)))
3077 goto lock_folio;
3078
3079 if (!f2fs_cluster_is_empty(&cc))
3080 goto lock_folio;
3081
3082 if (f2fs_all_cluster_page_ready(&cc,
3083 pages, i, nr_pages, true))
3084 goto lock_folio;
3085
3086 ret2 = f2fs_prepare_compress_overwrite(
3087 inode, &pagep,
3088 folio->index, &fsdata);
3089 if (ret2 < 0) {
3090 ret = ret2;
3091 done = 1;
3092 break;
3093 } else if (ret2 &&
3094 (!f2fs_compress_write_end(inode,
3095 fsdata, folio->index, 1) ||
3096 !f2fs_all_cluster_page_ready(&cc,
3097 pages, i, nr_pages,
3098 false))) {
3099 retry = 1;
3100 break;
3101 }
3102 }
3103 #endif
3104 /* give a priority to WB_SYNC threads */
3105 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3106 wbc->sync_mode == WB_SYNC_NONE) {
3107 done = 1;
3108 break;
3109 }
3110 #ifdef CONFIG_F2FS_FS_COMPRESSION
3111 lock_folio:
3112 #endif
3113 done_index = folio->index;
3114 retry_write:
3115 folio_lock(folio);
3116
3117 if (unlikely(folio->mapping != mapping)) {
3118 continue_unlock:
3119 folio_unlock(folio);
3120 continue;
3121 }
3122
3123 if (!folio_test_dirty(folio)) {
3124 /* someone wrote it for us */
3125 goto continue_unlock;
3126 }
3127
3128 if (folio_test_writeback(folio)) {
3129 if (wbc->sync_mode == WB_SYNC_NONE)
3130 goto continue_unlock;
3131 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3132 }
3133
3134 if (!folio_clear_dirty_for_io(folio))
3135 goto continue_unlock;
3136
3137 #ifdef CONFIG_F2FS_FS_COMPRESSION
3138 if (f2fs_compressed_file(inode)) {
3139 folio_get(folio);
3140 f2fs_compress_ctx_add_page(&cc, folio);
3141 continue;
3142 }
3143 #endif
3144 submitted = 0;
3145 ret = f2fs_write_single_data_page(folio,
3146 &submitted, &bio, &last_block,
3147 wbc, io_type, 0, true);
3148 if (ret == AOP_WRITEPAGE_ACTIVATE)
3149 folio_unlock(folio);
3150 #ifdef CONFIG_F2FS_FS_COMPRESSION
3151 result:
3152 #endif
3153 nwritten += submitted;
3154 wbc->nr_to_write -= submitted;
3155
3156 if (unlikely(ret)) {
3157 /*
3158 * keep nr_to_write, since vfs uses this to
3159 * get # of written pages.
3160 */
3161 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3162 ret = 0;
3163 goto next;
3164 } else if (ret == -EAGAIN) {
3165 ret = 0;
3166 if (wbc->sync_mode == WB_SYNC_ALL) {
3167 f2fs_io_schedule_timeout(
3168 DEFAULT_IO_TIMEOUT);
3169 goto retry_write;
3170 }
3171 goto next;
3172 }
3173 done_index = folio_next_index(folio);
3174 done = 1;
3175 break;
3176 }
3177
3178 if (wbc->nr_to_write <= 0 &&
3179 wbc->sync_mode == WB_SYNC_NONE) {
3180 done = 1;
3181 break;
3182 }
3183 next:
3184 if (need_readd)
3185 goto readd;
3186 }
3187 release_pages(pages, nr_pages);
3188 cond_resched();
3189 }
3190 #ifdef CONFIG_F2FS_FS_COMPRESSION
3191 /* flush remained pages in compress cluster */
3192 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3193 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3194 nwritten += submitted;
3195 wbc->nr_to_write -= submitted;
3196 if (ret) {
3197 done = 1;
3198 retry = 0;
3199 }
3200 }
3201 if (f2fs_compressed_file(inode))
3202 f2fs_destroy_compress_ctx(&cc, false);
3203 #endif
3204 if (retry) {
3205 index = 0;
3206 end = -1;
3207 goto retry;
3208 }
3209 if (wbc->range_cyclic && !done)
3210 done_index = 0;
3211 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3212 mapping->writeback_index = done_index;
3213
3214 if (nwritten)
3215 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3216 NULL, 0, DATA);
3217 /* submit cached bio of IPU write */
3218 if (bio)
3219 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3220
3221 #ifdef CONFIG_F2FS_FS_COMPRESSION
3222 if (pages != pages_local)
3223 kfree(pages);
3224 #endif
3225
3226 return ret;
3227 }
3228
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3229 static inline bool __should_serialize_io(struct inode *inode,
3230 struct writeback_control *wbc)
3231 {
3232 /* to avoid deadlock in path of data flush */
3233 if (F2FS_I(inode)->wb_task)
3234 return false;
3235
3236 if (!S_ISREG(inode->i_mode))
3237 return false;
3238 if (IS_NOQUOTA(inode))
3239 return false;
3240
3241 if (f2fs_need_compress_data(inode))
3242 return true;
3243 if (wbc->sync_mode != WB_SYNC_ALL)
3244 return true;
3245 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3246 return true;
3247 return false;
3248 }
3249
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3250 static int __f2fs_write_data_pages(struct address_space *mapping,
3251 struct writeback_control *wbc,
3252 enum iostat_type io_type)
3253 {
3254 struct inode *inode = mapping->host;
3255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3256 struct blk_plug plug;
3257 int ret;
3258 bool locked = false;
3259
3260 /* skip writing if there is no dirty page in this inode */
3261 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3262 return 0;
3263
3264 /* during POR, we don't need to trigger writepage at all. */
3265 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3266 goto skip_write;
3267
3268 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3269 wbc->sync_mode == WB_SYNC_NONE &&
3270 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3271 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3272 goto skip_write;
3273
3274 /* skip writing in file defragment preparing stage */
3275 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3276 goto skip_write;
3277
3278 trace_f2fs_writepages(mapping->host, wbc, DATA);
3279
3280 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3281 if (wbc->sync_mode == WB_SYNC_ALL)
3282 atomic_inc(&sbi->wb_sync_req[DATA]);
3283 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3284 /* to avoid potential deadlock */
3285 if (current->plug)
3286 blk_finish_plug(current->plug);
3287 goto skip_write;
3288 }
3289
3290 if (__should_serialize_io(inode, wbc)) {
3291 mutex_lock(&sbi->writepages);
3292 locked = true;
3293 }
3294
3295 blk_start_plug(&plug);
3296 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3297 blk_finish_plug(&plug);
3298
3299 if (locked)
3300 mutex_unlock(&sbi->writepages);
3301
3302 if (wbc->sync_mode == WB_SYNC_ALL)
3303 atomic_dec(&sbi->wb_sync_req[DATA]);
3304 /*
3305 * if some pages were truncated, we cannot guarantee its mapping->host
3306 * to detect pending bios.
3307 */
3308
3309 f2fs_remove_dirty_inode(inode);
3310 return ret;
3311
3312 skip_write:
3313 wbc->pages_skipped += get_dirty_pages(inode);
3314 trace_f2fs_writepages(mapping->host, wbc, DATA);
3315 return 0;
3316 }
3317
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3318 static int f2fs_write_data_pages(struct address_space *mapping,
3319 struct writeback_control *wbc)
3320 {
3321 struct inode *inode = mapping->host;
3322
3323 return __f2fs_write_data_pages(mapping, wbc,
3324 F2FS_I(inode)->cp_task == current ?
3325 FS_CP_DATA_IO : FS_DATA_IO);
3326 }
3327
f2fs_write_failed(struct inode * inode,loff_t to)3328 void f2fs_write_failed(struct inode *inode, loff_t to)
3329 {
3330 loff_t i_size = i_size_read(inode);
3331
3332 if (IS_NOQUOTA(inode))
3333 return;
3334
3335 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3336 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3337 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3338 filemap_invalidate_lock(inode->i_mapping);
3339
3340 truncate_pagecache(inode, i_size);
3341 f2fs_truncate_blocks(inode, i_size, true);
3342
3343 filemap_invalidate_unlock(inode->i_mapping);
3344 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3345 }
3346 }
3347
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3348 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3349 struct folio *folio, loff_t pos, unsigned int len,
3350 block_t *blk_addr, bool *node_changed)
3351 {
3352 struct inode *inode = folio->mapping->host;
3353 pgoff_t index = folio->index;
3354 struct dnode_of_data dn;
3355 struct page *ipage;
3356 bool locked = false;
3357 int flag = F2FS_GET_BLOCK_PRE_AIO;
3358 int err = 0;
3359
3360 /*
3361 * If a whole page is being written and we already preallocated all the
3362 * blocks, then there is no need to get a block address now.
3363 */
3364 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3365 return 0;
3366
3367 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3368 if (f2fs_has_inline_data(inode)) {
3369 if (pos + len > MAX_INLINE_DATA(inode))
3370 flag = F2FS_GET_BLOCK_DEFAULT;
3371 f2fs_map_lock(sbi, flag);
3372 locked = true;
3373 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3374 f2fs_map_lock(sbi, flag);
3375 locked = true;
3376 }
3377
3378 restart:
3379 /* check inline_data */
3380 ipage = f2fs_get_inode_page(sbi, inode->i_ino);
3381 if (IS_ERR(ipage)) {
3382 err = PTR_ERR(ipage);
3383 goto unlock_out;
3384 }
3385
3386 set_new_dnode(&dn, inode, ipage, ipage, 0);
3387
3388 if (f2fs_has_inline_data(inode)) {
3389 if (pos + len <= MAX_INLINE_DATA(inode)) {
3390 f2fs_do_read_inline_data(folio, ipage);
3391 set_inode_flag(inode, FI_DATA_EXIST);
3392 if (inode->i_nlink)
3393 set_page_private_inline(ipage);
3394 goto out;
3395 }
3396 err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3397 if (err || dn.data_blkaddr != NULL_ADDR)
3398 goto out;
3399 }
3400
3401 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3402 &dn.data_blkaddr)) {
3403 if (IS_DEVICE_ALIASING(inode)) {
3404 err = -ENODATA;
3405 goto out;
3406 }
3407
3408 if (locked) {
3409 err = f2fs_reserve_block(&dn, index);
3410 goto out;
3411 }
3412
3413 /* hole case */
3414 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3415 if (!err && dn.data_blkaddr != NULL_ADDR)
3416 goto out;
3417 f2fs_put_dnode(&dn);
3418 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3419 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3420 locked = true;
3421 goto restart;
3422 }
3423 out:
3424 if (!err) {
3425 /* convert_inline_page can make node_changed */
3426 *blk_addr = dn.data_blkaddr;
3427 *node_changed = dn.node_changed;
3428 }
3429 f2fs_put_dnode(&dn);
3430 unlock_out:
3431 if (locked)
3432 f2fs_map_unlock(sbi, flag);
3433 return err;
3434 }
3435
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3436 static int __find_data_block(struct inode *inode, pgoff_t index,
3437 block_t *blk_addr)
3438 {
3439 struct dnode_of_data dn;
3440 struct page *ipage;
3441 int err = 0;
3442
3443 ipage = f2fs_get_inode_page(F2FS_I_SB(inode), inode->i_ino);
3444 if (IS_ERR(ipage))
3445 return PTR_ERR(ipage);
3446
3447 set_new_dnode(&dn, inode, ipage, ipage, 0);
3448
3449 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3450 &dn.data_blkaddr)) {
3451 /* hole case */
3452 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3453 if (err) {
3454 dn.data_blkaddr = NULL_ADDR;
3455 err = 0;
3456 }
3457 }
3458 *blk_addr = dn.data_blkaddr;
3459 f2fs_put_dnode(&dn);
3460 return err;
3461 }
3462
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3463 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3464 block_t *blk_addr, bool *node_changed)
3465 {
3466 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3467 struct dnode_of_data dn;
3468 struct page *ipage;
3469 int err = 0;
3470
3471 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3472
3473 ipage = f2fs_get_inode_page(sbi, inode->i_ino);
3474 if (IS_ERR(ipage)) {
3475 err = PTR_ERR(ipage);
3476 goto unlock_out;
3477 }
3478 set_new_dnode(&dn, inode, ipage, ipage, 0);
3479
3480 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3481 &dn.data_blkaddr))
3482 err = f2fs_reserve_block(&dn, index);
3483
3484 *blk_addr = dn.data_blkaddr;
3485 *node_changed = dn.node_changed;
3486 f2fs_put_dnode(&dn);
3487
3488 unlock_out:
3489 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3490 return err;
3491 }
3492
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3493 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3494 struct folio *folio, loff_t pos, unsigned int len,
3495 block_t *blk_addr, bool *node_changed, bool *use_cow)
3496 {
3497 struct inode *inode = folio->mapping->host;
3498 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3499 pgoff_t index = folio->index;
3500 int err = 0;
3501 block_t ori_blk_addr = NULL_ADDR;
3502
3503 /* If pos is beyond the end of file, reserve a new block in COW inode */
3504 if ((pos & PAGE_MASK) >= i_size_read(inode))
3505 goto reserve_block;
3506
3507 /* Look for the block in COW inode first */
3508 err = __find_data_block(cow_inode, index, blk_addr);
3509 if (err) {
3510 return err;
3511 } else if (*blk_addr != NULL_ADDR) {
3512 *use_cow = true;
3513 return 0;
3514 }
3515
3516 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3517 goto reserve_block;
3518
3519 /* Look for the block in the original inode */
3520 err = __find_data_block(inode, index, &ori_blk_addr);
3521 if (err)
3522 return err;
3523
3524 reserve_block:
3525 /* Finally, we should reserve a new block in COW inode for the update */
3526 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3527 if (err)
3528 return err;
3529 inc_atomic_write_cnt(inode);
3530
3531 if (ori_blk_addr != NULL_ADDR)
3532 *blk_addr = ori_blk_addr;
3533 return 0;
3534 }
3535
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3536 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3537 loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3538 {
3539 struct inode *inode = mapping->host;
3540 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3541 struct folio *folio;
3542 pgoff_t index = pos >> PAGE_SHIFT;
3543 bool need_balance = false;
3544 bool use_cow = false;
3545 block_t blkaddr = NULL_ADDR;
3546 int err = 0;
3547
3548 trace_f2fs_write_begin(inode, pos, len);
3549
3550 if (!f2fs_is_checkpoint_ready(sbi)) {
3551 err = -ENOSPC;
3552 goto fail;
3553 }
3554
3555 /*
3556 * We should check this at this moment to avoid deadlock on inode page
3557 * and #0 page. The locking rule for inline_data conversion should be:
3558 * folio_lock(folio #0) -> folio_lock(inode_page)
3559 */
3560 if (index != 0) {
3561 err = f2fs_convert_inline_inode(inode);
3562 if (err)
3563 goto fail;
3564 }
3565
3566 #ifdef CONFIG_F2FS_FS_COMPRESSION
3567 if (f2fs_compressed_file(inode)) {
3568 int ret;
3569 struct page *page;
3570
3571 *fsdata = NULL;
3572
3573 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3574 goto repeat;
3575
3576 ret = f2fs_prepare_compress_overwrite(inode, &page,
3577 index, fsdata);
3578 if (ret < 0) {
3579 err = ret;
3580 goto fail;
3581 } else if (ret) {
3582 *foliop = page_folio(page);
3583 return 0;
3584 }
3585 }
3586 #endif
3587
3588 repeat:
3589 /*
3590 * Do not use FGP_STABLE to avoid deadlock.
3591 * Will wait that below with our IO control.
3592 */
3593 folio = __filemap_get_folio(mapping, index,
3594 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3595 if (IS_ERR(folio)) {
3596 err = PTR_ERR(folio);
3597 goto fail;
3598 }
3599
3600 /* TODO: cluster can be compressed due to race with .writepage */
3601
3602 *foliop = folio;
3603
3604 if (f2fs_is_atomic_file(inode))
3605 err = prepare_atomic_write_begin(sbi, folio, pos, len,
3606 &blkaddr, &need_balance, &use_cow);
3607 else
3608 err = prepare_write_begin(sbi, folio, pos, len,
3609 &blkaddr, &need_balance);
3610 if (err)
3611 goto put_folio;
3612
3613 if (need_balance && !IS_NOQUOTA(inode) &&
3614 has_not_enough_free_secs(sbi, 0, 0)) {
3615 folio_unlock(folio);
3616 f2fs_balance_fs(sbi, true);
3617 folio_lock(folio);
3618 if (folio->mapping != mapping) {
3619 /* The folio got truncated from under us */
3620 folio_unlock(folio);
3621 folio_put(folio);
3622 goto repeat;
3623 }
3624 }
3625
3626 f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3627
3628 if (len == folio_size(folio) || folio_test_uptodate(folio))
3629 return 0;
3630
3631 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3632 !f2fs_verity_in_progress(inode)) {
3633 folio_zero_segment(folio, len, folio_size(folio));
3634 return 0;
3635 }
3636
3637 if (blkaddr == NEW_ADDR) {
3638 folio_zero_segment(folio, 0, folio_size(folio));
3639 folio_mark_uptodate(folio);
3640 } else {
3641 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3642 DATA_GENERIC_ENHANCE_READ)) {
3643 err = -EFSCORRUPTED;
3644 goto put_folio;
3645 }
3646 err = f2fs_submit_page_read(use_cow ?
3647 F2FS_I(inode)->cow_inode : inode,
3648 folio, blkaddr, 0, true);
3649 if (err)
3650 goto put_folio;
3651
3652 folio_lock(folio);
3653 if (unlikely(folio->mapping != mapping)) {
3654 folio_unlock(folio);
3655 folio_put(folio);
3656 goto repeat;
3657 }
3658 if (unlikely(!folio_test_uptodate(folio))) {
3659 err = -EIO;
3660 goto put_folio;
3661 }
3662 }
3663 return 0;
3664
3665 put_folio:
3666 folio_unlock(folio);
3667 folio_put(folio);
3668 fail:
3669 f2fs_write_failed(inode, pos + len);
3670 return err;
3671 }
3672
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3673 static int f2fs_write_end(struct file *file,
3674 struct address_space *mapping,
3675 loff_t pos, unsigned len, unsigned copied,
3676 struct folio *folio, void *fsdata)
3677 {
3678 struct inode *inode = folio->mapping->host;
3679
3680 trace_f2fs_write_end(inode, pos, len, copied);
3681
3682 /*
3683 * This should be come from len == PAGE_SIZE, and we expect copied
3684 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3685 * let generic_perform_write() try to copy data again through copied=0.
3686 */
3687 if (!folio_test_uptodate(folio)) {
3688 if (unlikely(copied != len))
3689 copied = 0;
3690 else
3691 folio_mark_uptodate(folio);
3692 }
3693
3694 #ifdef CONFIG_F2FS_FS_COMPRESSION
3695 /* overwrite compressed file */
3696 if (f2fs_compressed_file(inode) && fsdata) {
3697 f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3698 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3699
3700 if (pos + copied > i_size_read(inode) &&
3701 !f2fs_verity_in_progress(inode))
3702 f2fs_i_size_write(inode, pos + copied);
3703 return copied;
3704 }
3705 #endif
3706
3707 if (!copied)
3708 goto unlock_out;
3709
3710 folio_mark_dirty(folio);
3711
3712 if (f2fs_is_atomic_file(inode))
3713 set_page_private_atomic(folio_page(folio, 0));
3714
3715 if (pos + copied > i_size_read(inode) &&
3716 !f2fs_verity_in_progress(inode)) {
3717 f2fs_i_size_write(inode, pos + copied);
3718 if (f2fs_is_atomic_file(inode))
3719 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3720 pos + copied);
3721 }
3722 unlock_out:
3723 folio_unlock(folio);
3724 folio_put(folio);
3725 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3726 return copied;
3727 }
3728
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3729 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3730 {
3731 struct inode *inode = folio->mapping->host;
3732 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3733
3734 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3735 (offset || length != folio_size(folio)))
3736 return;
3737
3738 if (folio_test_dirty(folio)) {
3739 if (inode->i_ino == F2FS_META_INO(sbi)) {
3740 dec_page_count(sbi, F2FS_DIRTY_META);
3741 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3742 dec_page_count(sbi, F2FS_DIRTY_NODES);
3743 } else {
3744 inode_dec_dirty_pages(inode);
3745 f2fs_remove_dirty_inode(inode);
3746 }
3747 }
3748 clear_page_private_all(&folio->page);
3749 }
3750
f2fs_release_folio(struct folio * folio,gfp_t wait)3751 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3752 {
3753 /* If this is dirty folio, keep private data */
3754 if (folio_test_dirty(folio))
3755 return false;
3756
3757 clear_page_private_all(&folio->page);
3758 return true;
3759 }
3760
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3761 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3762 struct folio *folio)
3763 {
3764 struct inode *inode = mapping->host;
3765
3766 trace_f2fs_set_page_dirty(folio, DATA);
3767
3768 if (!folio_test_uptodate(folio))
3769 folio_mark_uptodate(folio);
3770 BUG_ON(folio_test_swapcache(folio));
3771
3772 if (filemap_dirty_folio(mapping, folio)) {
3773 f2fs_update_dirty_folio(inode, folio);
3774 return true;
3775 }
3776 return false;
3777 }
3778
3779
f2fs_bmap_compress(struct inode * inode,sector_t block)3780 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3781 {
3782 #ifdef CONFIG_F2FS_FS_COMPRESSION
3783 struct dnode_of_data dn;
3784 sector_t start_idx, blknr = 0;
3785 int ret;
3786
3787 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3788
3789 set_new_dnode(&dn, inode, NULL, NULL, 0);
3790 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3791 if (ret)
3792 return 0;
3793
3794 if (dn.data_blkaddr != COMPRESS_ADDR) {
3795 dn.ofs_in_node += block - start_idx;
3796 blknr = f2fs_data_blkaddr(&dn);
3797 if (!__is_valid_data_blkaddr(blknr))
3798 blknr = 0;
3799 }
3800
3801 f2fs_put_dnode(&dn);
3802 return blknr;
3803 #else
3804 return 0;
3805 #endif
3806 }
3807
3808
f2fs_bmap(struct address_space * mapping,sector_t block)3809 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3810 {
3811 struct inode *inode = mapping->host;
3812 sector_t blknr = 0;
3813
3814 if (f2fs_has_inline_data(inode))
3815 goto out;
3816
3817 /* make sure allocating whole blocks */
3818 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3819 filemap_write_and_wait(mapping);
3820
3821 /* Block number less than F2FS MAX BLOCKS */
3822 if (unlikely(block >= max_file_blocks(inode)))
3823 goto out;
3824
3825 if (f2fs_compressed_file(inode)) {
3826 blknr = f2fs_bmap_compress(inode, block);
3827 } else {
3828 struct f2fs_map_blocks map;
3829
3830 memset(&map, 0, sizeof(map));
3831 map.m_lblk = block;
3832 map.m_len = 1;
3833 map.m_next_pgofs = NULL;
3834 map.m_seg_type = NO_CHECK_TYPE;
3835
3836 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3837 blknr = map.m_pblk;
3838 }
3839 out:
3840 trace_f2fs_bmap(inode, block, blknr);
3841 return blknr;
3842 }
3843
3844 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3845 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3846 unsigned int blkcnt)
3847 {
3848 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3849 unsigned int blkofs;
3850 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3851 unsigned int end_blk = start_blk + blkcnt - 1;
3852 unsigned int secidx = start_blk / blk_per_sec;
3853 unsigned int end_sec;
3854 int ret = 0;
3855
3856 if (!blkcnt)
3857 return 0;
3858 end_sec = end_blk / blk_per_sec;
3859
3860 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3861 filemap_invalidate_lock(inode->i_mapping);
3862
3863 set_inode_flag(inode, FI_ALIGNED_WRITE);
3864 set_inode_flag(inode, FI_OPU_WRITE);
3865
3866 for (; secidx <= end_sec; secidx++) {
3867 unsigned int blkofs_end = secidx == end_sec ?
3868 end_blk % blk_per_sec : blk_per_sec - 1;
3869
3870 f2fs_down_write(&sbi->pin_sem);
3871
3872 ret = f2fs_allocate_pinning_section(sbi);
3873 if (ret) {
3874 f2fs_up_write(&sbi->pin_sem);
3875 break;
3876 }
3877
3878 set_inode_flag(inode, FI_SKIP_WRITES);
3879
3880 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3881 struct page *page;
3882 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3883
3884 page = f2fs_get_lock_data_page(inode, blkidx, true);
3885 if (IS_ERR(page)) {
3886 f2fs_up_write(&sbi->pin_sem);
3887 ret = PTR_ERR(page);
3888 goto done;
3889 }
3890
3891 set_page_dirty(page);
3892 f2fs_put_page(page, 1);
3893 }
3894
3895 clear_inode_flag(inode, FI_SKIP_WRITES);
3896
3897 ret = filemap_fdatawrite(inode->i_mapping);
3898
3899 f2fs_up_write(&sbi->pin_sem);
3900
3901 if (ret)
3902 break;
3903 }
3904
3905 done:
3906 clear_inode_flag(inode, FI_SKIP_WRITES);
3907 clear_inode_flag(inode, FI_OPU_WRITE);
3908 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3909
3910 filemap_invalidate_unlock(inode->i_mapping);
3911 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3912
3913 return ret;
3914 }
3915
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3916 static int check_swap_activate(struct swap_info_struct *sis,
3917 struct file *swap_file, sector_t *span)
3918 {
3919 struct address_space *mapping = swap_file->f_mapping;
3920 struct inode *inode = mapping->host;
3921 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3922 block_t cur_lblock;
3923 block_t last_lblock;
3924 block_t pblock;
3925 block_t lowest_pblock = -1;
3926 block_t highest_pblock = 0;
3927 int nr_extents = 0;
3928 unsigned int nr_pblocks;
3929 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3930 unsigned int not_aligned = 0;
3931 int ret = 0;
3932
3933 /*
3934 * Map all the blocks into the extent list. This code doesn't try
3935 * to be very smart.
3936 */
3937 cur_lblock = 0;
3938 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3939
3940 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3941 struct f2fs_map_blocks map;
3942 retry:
3943 cond_resched();
3944
3945 memset(&map, 0, sizeof(map));
3946 map.m_lblk = cur_lblock;
3947 map.m_len = last_lblock - cur_lblock;
3948 map.m_next_pgofs = NULL;
3949 map.m_next_extent = NULL;
3950 map.m_seg_type = NO_CHECK_TYPE;
3951 map.m_may_create = false;
3952
3953 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3954 if (ret)
3955 goto out;
3956
3957 /* hole */
3958 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3959 f2fs_err(sbi, "Swapfile has holes");
3960 ret = -EINVAL;
3961 goto out;
3962 }
3963
3964 pblock = map.m_pblk;
3965 nr_pblocks = map.m_len;
3966
3967 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3968 nr_pblocks % blks_per_sec ||
3969 !f2fs_valid_pinned_area(sbi, pblock)) {
3970 bool last_extent = false;
3971
3972 not_aligned++;
3973
3974 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3975 if (cur_lblock + nr_pblocks > sis->max)
3976 nr_pblocks -= blks_per_sec;
3977
3978 /* this extent is last one */
3979 if (!nr_pblocks) {
3980 nr_pblocks = last_lblock - cur_lblock;
3981 last_extent = true;
3982 }
3983
3984 ret = f2fs_migrate_blocks(inode, cur_lblock,
3985 nr_pblocks);
3986 if (ret) {
3987 if (ret == -ENOENT)
3988 ret = -EINVAL;
3989 goto out;
3990 }
3991
3992 if (!last_extent)
3993 goto retry;
3994 }
3995
3996 if (cur_lblock + nr_pblocks >= sis->max)
3997 nr_pblocks = sis->max - cur_lblock;
3998
3999 if (cur_lblock) { /* exclude the header page */
4000 if (pblock < lowest_pblock)
4001 lowest_pblock = pblock;
4002 if (pblock + nr_pblocks - 1 > highest_pblock)
4003 highest_pblock = pblock + nr_pblocks - 1;
4004 }
4005
4006 /*
4007 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4008 */
4009 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4010 if (ret < 0)
4011 goto out;
4012 nr_extents += ret;
4013 cur_lblock += nr_pblocks;
4014 }
4015 ret = nr_extents;
4016 *span = 1 + highest_pblock - lowest_pblock;
4017 if (cur_lblock == 0)
4018 cur_lblock = 1; /* force Empty message */
4019 sis->max = cur_lblock;
4020 sis->pages = cur_lblock - 1;
4021 out:
4022 if (not_aligned)
4023 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4024 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4025 return ret;
4026 }
4027
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4028 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4029 sector_t *span)
4030 {
4031 struct inode *inode = file_inode(file);
4032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4033 int ret;
4034
4035 if (!S_ISREG(inode->i_mode))
4036 return -EINVAL;
4037
4038 if (f2fs_readonly(sbi->sb))
4039 return -EROFS;
4040
4041 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4042 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4043 return -EINVAL;
4044 }
4045
4046 ret = f2fs_convert_inline_inode(inode);
4047 if (ret)
4048 return ret;
4049
4050 if (!f2fs_disable_compressed_file(inode))
4051 return -EINVAL;
4052
4053 ret = filemap_fdatawrite(inode->i_mapping);
4054 if (ret < 0)
4055 return ret;
4056
4057 f2fs_precache_extents(inode);
4058
4059 ret = check_swap_activate(sis, file, span);
4060 if (ret < 0)
4061 return ret;
4062
4063 stat_inc_swapfile_inode(inode);
4064 set_inode_flag(inode, FI_PIN_FILE);
4065 f2fs_update_time(sbi, REQ_TIME);
4066 return ret;
4067 }
4068
f2fs_swap_deactivate(struct file * file)4069 static void f2fs_swap_deactivate(struct file *file)
4070 {
4071 struct inode *inode = file_inode(file);
4072
4073 stat_dec_swapfile_inode(inode);
4074 clear_inode_flag(inode, FI_PIN_FILE);
4075 }
4076 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4077 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4078 sector_t *span)
4079 {
4080 return -EOPNOTSUPP;
4081 }
4082
f2fs_swap_deactivate(struct file * file)4083 static void f2fs_swap_deactivate(struct file *file)
4084 {
4085 }
4086 #endif
4087
4088 const struct address_space_operations f2fs_dblock_aops = {
4089 .read_folio = f2fs_read_data_folio,
4090 .readahead = f2fs_readahead,
4091 .writepages = f2fs_write_data_pages,
4092 .write_begin = f2fs_write_begin,
4093 .write_end = f2fs_write_end,
4094 .dirty_folio = f2fs_dirty_data_folio,
4095 .migrate_folio = filemap_migrate_folio,
4096 .invalidate_folio = f2fs_invalidate_folio,
4097 .release_folio = f2fs_release_folio,
4098 .bmap = f2fs_bmap,
4099 .swap_activate = f2fs_swap_activate,
4100 .swap_deactivate = f2fs_swap_deactivate,
4101 };
4102
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4103 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4104 {
4105 struct address_space *mapping = folio->mapping;
4106 unsigned long flags;
4107
4108 xa_lock_irqsave(&mapping->i_pages, flags);
4109 __xa_clear_mark(&mapping->i_pages, folio->index,
4110 PAGECACHE_TAG_DIRTY);
4111 xa_unlock_irqrestore(&mapping->i_pages, flags);
4112 }
4113
f2fs_init_post_read_processing(void)4114 int __init f2fs_init_post_read_processing(void)
4115 {
4116 bio_post_read_ctx_cache =
4117 kmem_cache_create("f2fs_bio_post_read_ctx",
4118 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4119 if (!bio_post_read_ctx_cache)
4120 goto fail;
4121 bio_post_read_ctx_pool =
4122 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4123 bio_post_read_ctx_cache);
4124 if (!bio_post_read_ctx_pool)
4125 goto fail_free_cache;
4126 return 0;
4127
4128 fail_free_cache:
4129 kmem_cache_destroy(bio_post_read_ctx_cache);
4130 fail:
4131 return -ENOMEM;
4132 }
4133
f2fs_destroy_post_read_processing(void)4134 void f2fs_destroy_post_read_processing(void)
4135 {
4136 mempool_destroy(bio_post_read_ctx_pool);
4137 kmem_cache_destroy(bio_post_read_ctx_cache);
4138 }
4139
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4140 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4141 {
4142 if (!f2fs_sb_has_encrypt(sbi) &&
4143 !f2fs_sb_has_verity(sbi) &&
4144 !f2fs_sb_has_compression(sbi))
4145 return 0;
4146
4147 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4148 WQ_UNBOUND | WQ_HIGHPRI,
4149 num_online_cpus());
4150 return sbi->post_read_wq ? 0 : -ENOMEM;
4151 }
4152
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4153 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4154 {
4155 if (sbi->post_read_wq)
4156 destroy_workqueue(sbi->post_read_wq);
4157 }
4158
f2fs_init_bio_entry_cache(void)4159 int __init f2fs_init_bio_entry_cache(void)
4160 {
4161 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4162 sizeof(struct bio_entry));
4163 return bio_entry_slab ? 0 : -ENOMEM;
4164 }
4165
f2fs_destroy_bio_entry_cache(void)4166 void f2fs_destroy_bio_entry_cache(void)
4167 {
4168 kmem_cache_destroy(bio_entry_slab);
4169 }
4170
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4171 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4172 unsigned int flags, struct iomap *iomap,
4173 struct iomap *srcmap)
4174 {
4175 struct f2fs_map_blocks map = {};
4176 pgoff_t next_pgofs = 0;
4177 int err;
4178
4179 map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4180 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4181 map.m_next_pgofs = &next_pgofs;
4182 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4183 inode->i_write_hint);
4184
4185 /*
4186 * If the blocks being overwritten are already allocated,
4187 * f2fs_map_lock and f2fs_balance_fs are not necessary.
4188 */
4189 if ((flags & IOMAP_WRITE) &&
4190 !f2fs_overwrite_io(inode, offset, length))
4191 map.m_may_create = true;
4192
4193 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4194 if (err)
4195 return err;
4196
4197 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4198
4199 /*
4200 * When inline encryption is enabled, sometimes I/O to an encrypted file
4201 * has to be broken up to guarantee DUN contiguity. Handle this by
4202 * limiting the length of the mapping returned.
4203 */
4204 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4205
4206 /*
4207 * We should never see delalloc or compressed extents here based on
4208 * prior flushing and checks.
4209 */
4210 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4211 return -EINVAL;
4212
4213 if (map.m_flags & F2FS_MAP_MAPPED) {
4214 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4215 return -EINVAL;
4216
4217 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4218 iomap->type = IOMAP_MAPPED;
4219 iomap->flags |= IOMAP_F_MERGED;
4220 iomap->bdev = map.m_bdev;
4221 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4222 } else {
4223 if (flags & IOMAP_WRITE)
4224 return -ENOTBLK;
4225
4226 if (map.m_pblk == NULL_ADDR) {
4227 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4228 iomap->offset;
4229 iomap->type = IOMAP_HOLE;
4230 } else if (map.m_pblk == NEW_ADDR) {
4231 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4232 iomap->type = IOMAP_UNWRITTEN;
4233 } else {
4234 f2fs_bug_on(F2FS_I_SB(inode), 1);
4235 }
4236 iomap->addr = IOMAP_NULL_ADDR;
4237 }
4238
4239 if (map.m_flags & F2FS_MAP_NEW)
4240 iomap->flags |= IOMAP_F_NEW;
4241 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4242 offset + length > i_size_read(inode))
4243 iomap->flags |= IOMAP_F_DIRTY;
4244
4245 return 0;
4246 }
4247
4248 const struct iomap_ops f2fs_iomap_ops = {
4249 .iomap_begin = f2fs_iomap_begin,
4250 };
4251