1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 /*
205 * The vfs inode keeps clean during commit, but the f2fs inode
206 * doesn't. So clear the dirty state after commit and let
207 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 */
209 f2fs_inode_synced(inode);
210 f2fs_mark_inode_dirty_sync(inode, true);
211 }
212 stat_dec_atomic_inode(inode);
213
214 F2FS_I(inode)->atomic_write_task = NULL;
215
216 if (clean) {
217 f2fs_i_size_write(inode, fi->original_i_size);
218 fi->original_i_size = 0;
219 }
220 /* avoid stale dirty inode during eviction */
221 sync_inode_metadata(inode, 0);
222 }
223
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 block_t new_addr, block_t *old_addr, bool recover)
226 {
227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 struct dnode_of_data dn;
229 struct node_info ni;
230 int err;
231
232 retry:
233 set_new_dnode(&dn, inode, NULL, NULL, 0);
234 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 if (err) {
236 if (err == -ENOMEM) {
237 memalloc_retry_wait(GFP_NOFS);
238 goto retry;
239 }
240 return err;
241 }
242
243 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 if (err) {
245 f2fs_put_dnode(&dn);
246 return err;
247 }
248
249 if (recover) {
250 /* dn.data_blkaddr is always valid */
251 if (!__is_valid_data_blkaddr(new_addr)) {
252 if (new_addr == NULL_ADDR)
253 dec_valid_block_count(sbi, inode, 1);
254 f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 f2fs_update_data_blkaddr(&dn, new_addr);
256 } else {
257 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 new_addr, ni.version, true, true);
259 }
260 } else {
261 blkcnt_t count = 1;
262
263 err = inc_valid_block_count(sbi, inode, &count, true);
264 if (err) {
265 f2fs_put_dnode(&dn);
266 return err;
267 }
268
269 *old_addr = dn.data_blkaddr;
270 f2fs_truncate_data_blocks_range(&dn, 1);
271 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272
273 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 ni.version, true, false);
275 }
276
277 f2fs_put_dnode(&dn);
278
279 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 index, old_addr ? *old_addr : 0, new_addr, recover);
281 return 0;
282 }
283
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 bool revoke)
286 {
287 struct revoke_entry *cur, *tmp;
288 pgoff_t start_index = 0;
289 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290
291 list_for_each_entry_safe(cur, tmp, head, list) {
292 if (revoke) {
293 __replace_atomic_write_block(inode, cur->index,
294 cur->old_addr, NULL, true);
295 } else if (truncate) {
296 f2fs_truncate_hole(inode, start_index, cur->index);
297 start_index = cur->index + 1;
298 }
299
300 list_del(&cur->list);
301 kmem_cache_free(revoke_entry_slab, cur);
302 }
303
304 if (!revoke && truncate)
305 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 struct inode *cow_inode = fi->cow_inode;
313 struct revoke_entry *new;
314 struct list_head revoke_list;
315 block_t blkaddr;
316 struct dnode_of_data dn;
317 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 pgoff_t off = 0, blen, index;
319 int ret = 0, i;
320
321 INIT_LIST_HEAD(&revoke_list);
322
323 while (len) {
324 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325
326 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 if (ret && ret != -ENOENT) {
329 goto out;
330 } else if (ret == -ENOENT) {
331 ret = 0;
332 if (dn.max_level == 0)
333 goto out;
334 goto next;
335 }
336
337 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, cow_inode),
338 len);
339 index = off;
340 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 blkaddr = f2fs_data_blkaddr(&dn);
342
343 if (!__is_valid_data_blkaddr(blkaddr)) {
344 continue;
345 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 DATA_GENERIC_ENHANCE)) {
347 f2fs_put_dnode(&dn);
348 ret = -EFSCORRUPTED;
349 goto out;
350 }
351
352 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 true, NULL);
354
355 ret = __replace_atomic_write_block(inode, index, blkaddr,
356 &new->old_addr, false);
357 if (ret) {
358 f2fs_put_dnode(&dn);
359 kmem_cache_free(revoke_entry_slab, new);
360 goto out;
361 }
362
363 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 new->index = index;
365 list_add_tail(&new->list, &revoke_list);
366 }
367 f2fs_put_dnode(&dn);
368 next:
369 off += blen;
370 len -= blen;
371 }
372
373 out:
374 if (time_to_inject(sbi, FAULT_TIMEOUT))
375 f2fs_io_schedule_timeout_killable(DEFAULT_FAULT_TIMEOUT);
376
377 if (ret) {
378 sbi->revoked_atomic_block += fi->atomic_write_cnt;
379 } else {
380 sbi->committed_atomic_block += fi->atomic_write_cnt;
381 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
382
383 /*
384 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
385 * before commit.
386 */
387 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
388 /* clear atomic dirty status and set vfs dirty status */
389 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
390 f2fs_mark_inode_dirty_sync(inode, true);
391 }
392 }
393
394 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
395
396 return ret;
397 }
398
f2fs_commit_atomic_write(struct inode * inode)399 int f2fs_commit_atomic_write(struct inode *inode)
400 {
401 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 struct f2fs_inode_info *fi = F2FS_I(inode);
403 int err;
404
405 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
406 if (err)
407 return err;
408
409 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
410 f2fs_lock_op(sbi);
411
412 err = __f2fs_commit_atomic_write(inode);
413
414 f2fs_unlock_op(sbi);
415 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
416
417 return err;
418 }
419
420 /*
421 * This function balances dirty node and dentry pages.
422 * In addition, it controls garbage collection.
423 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)424 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
425 {
426 if (f2fs_cp_error(sbi))
427 return;
428
429 if (time_to_inject(sbi, FAULT_CHECKPOINT))
430 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
431
432 /* balance_fs_bg is able to be pending */
433 if (need && excess_cached_nats(sbi))
434 f2fs_balance_fs_bg(sbi, false);
435
436 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
437 return;
438
439 /*
440 * We should do GC or end up with checkpoint, if there are so many dirty
441 * dir/node pages without enough free segments.
442 */
443 if (has_enough_free_secs(sbi, 0, 0))
444 return;
445
446 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
447 sbi->gc_thread->f2fs_gc_task) {
448 DEFINE_WAIT(wait);
449
450 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
451 TASK_UNINTERRUPTIBLE);
452 wake_up(&sbi->gc_thread->gc_wait_queue_head);
453 io_schedule();
454 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
455 } else {
456 struct f2fs_gc_control gc_control = {
457 .victim_segno = NULL_SEGNO,
458 .init_gc_type = f2fs_sb_has_blkzoned(sbi) ?
459 FG_GC : BG_GC,
460 .no_bg_gc = true,
461 .should_migrate_blocks = false,
462 .err_gc_skipped = false,
463 .nr_free_secs = 1 };
464 f2fs_down_write(&sbi->gc_lock);
465 stat_inc_gc_call_count(sbi, FOREGROUND);
466 f2fs_gc(sbi, &gc_control);
467 }
468 }
469
excess_dirty_threshold(struct f2fs_sb_info * sbi)470 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
471 {
472 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
473 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
474 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
475 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
476 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
477 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
478 unsigned int threshold =
479 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
480 unsigned int global_threshold = threshold * 3 / 2;
481
482 if (dents >= threshold || qdata >= threshold ||
483 nodes >= threshold || meta >= threshold ||
484 imeta >= threshold)
485 return true;
486 return dents + qdata + nodes + meta + imeta > global_threshold;
487 }
488
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)489 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
490 {
491 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
492 return;
493
494 /* try to shrink extent cache when there is no enough memory */
495 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
496 f2fs_shrink_read_extent_tree(sbi,
497 READ_EXTENT_CACHE_SHRINK_NUMBER);
498
499 /* try to shrink age extent cache when there is no enough memory */
500 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
501 f2fs_shrink_age_extent_tree(sbi,
502 AGE_EXTENT_CACHE_SHRINK_NUMBER);
503
504 /* check the # of cached NAT entries */
505 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
506 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
507
508 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
509 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
510 else
511 f2fs_build_free_nids(sbi, false, false);
512
513 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
514 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
515 goto do_sync;
516
517 /* there is background inflight IO or foreground operation recently */
518 if (is_inflight_io(sbi, REQ_TIME) ||
519 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
520 return;
521
522 /* exceed periodical checkpoint timeout threshold */
523 if (f2fs_time_over(sbi, CP_TIME))
524 goto do_sync;
525
526 /* checkpoint is the only way to shrink partial cached entries */
527 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
528 f2fs_available_free_memory(sbi, INO_ENTRIES))
529 return;
530
531 do_sync:
532 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
533 struct blk_plug plug;
534
535 mutex_lock(&sbi->flush_lock);
536
537 blk_start_plug(&plug);
538 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
539 blk_finish_plug(&plug);
540
541 mutex_unlock(&sbi->flush_lock);
542 }
543 stat_inc_cp_call_count(sbi, BACKGROUND);
544 f2fs_sync_fs(sbi->sb, 1);
545 }
546
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)547 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
548 struct block_device *bdev)
549 {
550 int ret = blkdev_issue_flush(bdev);
551
552 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
553 test_opt(sbi, FLUSH_MERGE), ret);
554 if (!ret)
555 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
556 return ret;
557 }
558
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)559 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
560 {
561 int ret = 0;
562 int i;
563
564 if (!f2fs_is_multi_device(sbi))
565 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
566
567 for (i = 0; i < sbi->s_ndevs; i++) {
568 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
569 continue;
570 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
571 if (ret)
572 break;
573 }
574 return ret;
575 }
576
issue_flush_thread(void * data)577 static int issue_flush_thread(void *data)
578 {
579 struct f2fs_sb_info *sbi = data;
580 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
581 wait_queue_head_t *q = &fcc->flush_wait_queue;
582 repeat:
583 if (kthread_should_stop())
584 return 0;
585
586 if (!llist_empty(&fcc->issue_list)) {
587 struct flush_cmd *cmd, *next;
588 int ret;
589
590 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
591 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
592
593 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
594
595 ret = submit_flush_wait(sbi, cmd->ino);
596 atomic_inc(&fcc->issued_flush);
597
598 llist_for_each_entry_safe(cmd, next,
599 fcc->dispatch_list, llnode) {
600 cmd->ret = ret;
601 complete(&cmd->wait);
602 }
603 fcc->dispatch_list = NULL;
604 }
605
606 wait_event_interruptible(*q,
607 kthread_should_stop() || !llist_empty(&fcc->issue_list));
608 goto repeat;
609 }
610
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)611 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
612 {
613 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 struct flush_cmd cmd;
615 int ret;
616
617 if (test_opt(sbi, NOBARRIER))
618 return 0;
619
620 if (!test_opt(sbi, FLUSH_MERGE)) {
621 atomic_inc(&fcc->queued_flush);
622 ret = submit_flush_wait(sbi, ino);
623 atomic_dec(&fcc->queued_flush);
624 atomic_inc(&fcc->issued_flush);
625 return ret;
626 }
627
628 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
629 f2fs_is_multi_device(sbi)) {
630 ret = submit_flush_wait(sbi, ino);
631 atomic_dec(&fcc->queued_flush);
632
633 atomic_inc(&fcc->issued_flush);
634 return ret;
635 }
636
637 cmd.ino = ino;
638 init_completion(&cmd.wait);
639
640 llist_add(&cmd.llnode, &fcc->issue_list);
641
642 /*
643 * update issue_list before we wake up issue_flush thread, this
644 * smp_mb() pairs with another barrier in ___wait_event(), see
645 * more details in comments of waitqueue_active().
646 */
647 smp_mb();
648
649 if (waitqueue_active(&fcc->flush_wait_queue))
650 wake_up(&fcc->flush_wait_queue);
651
652 if (fcc->f2fs_issue_flush) {
653 wait_for_completion(&cmd.wait);
654 atomic_dec(&fcc->queued_flush);
655 } else {
656 struct llist_node *list;
657
658 list = llist_del_all(&fcc->issue_list);
659 if (!list) {
660 wait_for_completion(&cmd.wait);
661 atomic_dec(&fcc->queued_flush);
662 } else {
663 struct flush_cmd *tmp, *next;
664
665 ret = submit_flush_wait(sbi, ino);
666
667 llist_for_each_entry_safe(tmp, next, list, llnode) {
668 if (tmp == &cmd) {
669 cmd.ret = ret;
670 atomic_dec(&fcc->queued_flush);
671 continue;
672 }
673 tmp->ret = ret;
674 complete(&tmp->wait);
675 }
676 }
677 }
678
679 return cmd.ret;
680 }
681
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)682 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
683 {
684 dev_t dev = sbi->sb->s_bdev->bd_dev;
685 struct flush_cmd_control *fcc;
686
687 if (SM_I(sbi)->fcc_info) {
688 fcc = SM_I(sbi)->fcc_info;
689 if (fcc->f2fs_issue_flush)
690 return 0;
691 goto init_thread;
692 }
693
694 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
695 if (!fcc)
696 return -ENOMEM;
697 atomic_set(&fcc->issued_flush, 0);
698 atomic_set(&fcc->queued_flush, 0);
699 init_waitqueue_head(&fcc->flush_wait_queue);
700 init_llist_head(&fcc->issue_list);
701 SM_I(sbi)->fcc_info = fcc;
702 if (!test_opt(sbi, FLUSH_MERGE))
703 return 0;
704
705 init_thread:
706 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
707 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
708 if (IS_ERR(fcc->f2fs_issue_flush)) {
709 int err = PTR_ERR(fcc->f2fs_issue_flush);
710
711 fcc->f2fs_issue_flush = NULL;
712 return err;
713 }
714
715 return 0;
716 }
717
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)718 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
719 {
720 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
721
722 if (fcc && fcc->f2fs_issue_flush) {
723 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
724
725 fcc->f2fs_issue_flush = NULL;
726 kthread_stop(flush_thread);
727 }
728 if (free) {
729 kfree(fcc);
730 SM_I(sbi)->fcc_info = NULL;
731 }
732 }
733
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)734 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
735 {
736 int ret = 0, i;
737
738 if (!f2fs_is_multi_device(sbi))
739 return 0;
740
741 if (test_opt(sbi, NOBARRIER))
742 return 0;
743
744 for (i = 1; i < sbi->s_ndevs; i++) {
745 int count = DEFAULT_RETRY_IO_COUNT;
746
747 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
748 continue;
749
750 do {
751 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
752 if (ret)
753 f2fs_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT);
754 } while (ret && --count);
755
756 if (ret) {
757 f2fs_stop_checkpoint(sbi, false,
758 STOP_CP_REASON_FLUSH_FAIL);
759 break;
760 }
761
762 spin_lock(&sbi->dev_lock);
763 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
764 spin_unlock(&sbi->dev_lock);
765 }
766
767 return ret;
768 }
769
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)770 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
771 enum dirty_type dirty_type)
772 {
773 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774
775 /* need not be added */
776 if (is_curseg(sbi, segno))
777 return;
778
779 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
780 dirty_i->nr_dirty[dirty_type]++;
781
782 if (dirty_type == DIRTY) {
783 struct seg_entry *sentry = get_seg_entry(sbi, segno);
784 enum dirty_type t = sentry->type;
785
786 if (unlikely(t >= DIRTY)) {
787 f2fs_bug_on(sbi, 1);
788 return;
789 }
790 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
791 dirty_i->nr_dirty[t]++;
792
793 if (__is_large_section(sbi)) {
794 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
795 block_t valid_blocks =
796 get_valid_blocks(sbi, segno, true);
797
798 f2fs_bug_on(sbi,
799 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
800 !valid_blocks) ||
801 valid_blocks == CAP_BLKS_PER_SEC(sbi));
802
803 if (!is_cursec(sbi, secno))
804 set_bit(secno, dirty_i->dirty_secmap);
805 }
806 }
807 }
808
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)809 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
810 enum dirty_type dirty_type)
811 {
812 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
813 block_t valid_blocks;
814
815 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
816 dirty_i->nr_dirty[dirty_type]--;
817
818 if (dirty_type == DIRTY) {
819 struct seg_entry *sentry = get_seg_entry(sbi, segno);
820 enum dirty_type t = sentry->type;
821
822 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
823 dirty_i->nr_dirty[t]--;
824
825 valid_blocks = get_valid_blocks(sbi, segno, true);
826 if (valid_blocks == 0) {
827 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
828 dirty_i->victim_secmap);
829 #ifdef CONFIG_F2FS_CHECK_FS
830 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
831 #endif
832 }
833 if (__is_large_section(sbi)) {
834 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
835
836 if (!valid_blocks ||
837 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
838 clear_bit(secno, dirty_i->dirty_secmap);
839 return;
840 }
841
842 if (!is_cursec(sbi, secno))
843 set_bit(secno, dirty_i->dirty_secmap);
844 }
845 }
846 }
847
848 /*
849 * Should not occur error such as -ENOMEM.
850 * Adding dirty entry into seglist is not critical operation.
851 * If a given segment is one of current working segments, it won't be added.
852 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)853 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
854 {
855 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
856 unsigned short valid_blocks, ckpt_valid_blocks;
857 unsigned int usable_blocks;
858
859 if (segno == NULL_SEGNO || is_curseg(sbi, segno))
860 return;
861
862 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
863 mutex_lock(&dirty_i->seglist_lock);
864
865 valid_blocks = get_valid_blocks(sbi, segno, false);
866 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
867
868 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
869 ckpt_valid_blocks == usable_blocks)) {
870 __locate_dirty_segment(sbi, segno, PRE);
871 __remove_dirty_segment(sbi, segno, DIRTY);
872 } else if (valid_blocks < usable_blocks) {
873 __locate_dirty_segment(sbi, segno, DIRTY);
874 } else {
875 /* Recovery routine with SSR needs this */
876 __remove_dirty_segment(sbi, segno, DIRTY);
877 }
878
879 mutex_unlock(&dirty_i->seglist_lock);
880 }
881
882 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)883 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
884 {
885 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
886 unsigned int segno;
887
888 mutex_lock(&dirty_i->seglist_lock);
889 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890 if (get_valid_blocks(sbi, segno, false))
891 continue;
892 if (is_curseg(sbi, segno))
893 continue;
894 __locate_dirty_segment(sbi, segno, PRE);
895 __remove_dirty_segment(sbi, segno, DIRTY);
896 }
897 mutex_unlock(&dirty_i->seglist_lock);
898 }
899
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)900 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
901 {
902 int ovp_hole_segs =
903 (overprovision_segments(sbi) - reserved_segments(sbi));
904 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
906 block_t holes[2] = {0, 0}; /* DATA and NODE */
907 block_t unusable;
908 struct seg_entry *se;
909 unsigned int segno;
910
911 mutex_lock(&dirty_i->seglist_lock);
912 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
913 se = get_seg_entry(sbi, segno);
914 if (IS_NODESEG(se->type))
915 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
916 se->valid_blocks;
917 else
918 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
919 se->valid_blocks;
920 }
921 mutex_unlock(&dirty_i->seglist_lock);
922
923 unusable = max(holes[DATA], holes[NODE]);
924 if (unusable > ovp_holes)
925 return unusable - ovp_holes;
926 return 0;
927 }
928
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)929 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
930 {
931 int ovp_hole_segs =
932 (overprovision_segments(sbi) - reserved_segments(sbi));
933
934 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
935 return 0;
936 if (unusable > F2FS_OPTION(sbi).unusable_cap)
937 return -EAGAIN;
938 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
939 dirty_segments(sbi) > ovp_hole_segs)
940 return -EAGAIN;
941 if (has_not_enough_free_secs(sbi, 0, 0))
942 return -EAGAIN;
943 return 0;
944 }
945
946 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)947 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
948 {
949 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
950 unsigned int segno = 0;
951
952 mutex_lock(&dirty_i->seglist_lock);
953 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
954 if (get_valid_blocks(sbi, segno, false))
955 continue;
956 if (get_ckpt_valid_blocks(sbi, segno, false))
957 continue;
958 mutex_unlock(&dirty_i->seglist_lock);
959 return segno;
960 }
961 mutex_unlock(&dirty_i->seglist_lock);
962 return NULL_SEGNO;
963 }
964
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)965 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
966 struct block_device *bdev, block_t lstart,
967 block_t start, block_t len)
968 {
969 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
970 struct list_head *pend_list;
971 struct discard_cmd *dc;
972
973 f2fs_bug_on(sbi, !len);
974
975 pend_list = &dcc->pend_list[plist_idx(len)];
976
977 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
978 INIT_LIST_HEAD(&dc->list);
979 dc->bdev = bdev;
980 dc->di.lstart = lstart;
981 dc->di.start = start;
982 dc->di.len = len;
983 dc->ref = 0;
984 dc->state = D_PREP;
985 dc->queued = 0;
986 dc->error = 0;
987 init_completion(&dc->wait);
988 list_add_tail(&dc->list, pend_list);
989 spin_lock_init(&dc->lock);
990 dc->bio_ref = 0;
991 atomic_inc(&dcc->discard_cmd_cnt);
992 dcc->undiscard_blks += len;
993
994 return dc;
995 }
996
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)997 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
998 {
999 #ifdef CONFIG_F2FS_CHECK_FS
1000 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1001 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
1002 struct discard_cmd *cur_dc, *next_dc;
1003
1004 while (cur) {
1005 next = rb_next(cur);
1006 if (!next)
1007 return true;
1008
1009 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1010 next_dc = rb_entry(next, struct discard_cmd, rb_node);
1011
1012 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1013 f2fs_info(sbi, "broken discard_rbtree, "
1014 "cur(%u, %u) next(%u, %u)",
1015 cur_dc->di.lstart, cur_dc->di.len,
1016 next_dc->di.lstart, next_dc->di.len);
1017 return false;
1018 }
1019 cur = next;
1020 }
1021 #endif
1022 return true;
1023 }
1024
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1025 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1026 block_t blkaddr)
1027 {
1028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029 struct rb_node *node = dcc->root.rb_root.rb_node;
1030 struct discard_cmd *dc;
1031
1032 while (node) {
1033 dc = rb_entry(node, struct discard_cmd, rb_node);
1034
1035 if (blkaddr < dc->di.lstart)
1036 node = node->rb_left;
1037 else if (blkaddr >= dc->di.lstart + dc->di.len)
1038 node = node->rb_right;
1039 else
1040 return dc;
1041 }
1042 return NULL;
1043 }
1044
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1045 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1046 block_t blkaddr,
1047 struct discard_cmd **prev_entry,
1048 struct discard_cmd **next_entry,
1049 struct rb_node ***insert_p,
1050 struct rb_node **insert_parent)
1051 {
1052 struct rb_node **pnode = &root->rb_root.rb_node;
1053 struct rb_node *parent = NULL, *tmp_node;
1054 struct discard_cmd *dc;
1055
1056 *insert_p = NULL;
1057 *insert_parent = NULL;
1058 *prev_entry = NULL;
1059 *next_entry = NULL;
1060
1061 if (RB_EMPTY_ROOT(&root->rb_root))
1062 return NULL;
1063
1064 while (*pnode) {
1065 parent = *pnode;
1066 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1067
1068 if (blkaddr < dc->di.lstart)
1069 pnode = &(*pnode)->rb_left;
1070 else if (blkaddr >= dc->di.lstart + dc->di.len)
1071 pnode = &(*pnode)->rb_right;
1072 else
1073 goto lookup_neighbors;
1074 }
1075
1076 *insert_p = pnode;
1077 *insert_parent = parent;
1078
1079 dc = rb_entry(parent, struct discard_cmd, rb_node);
1080 tmp_node = parent;
1081 if (parent && blkaddr > dc->di.lstart)
1082 tmp_node = rb_next(parent);
1083 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1084
1085 tmp_node = parent;
1086 if (parent && blkaddr < dc->di.lstart)
1087 tmp_node = rb_prev(parent);
1088 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1089 return NULL;
1090
1091 lookup_neighbors:
1092 /* lookup prev node for merging backward later */
1093 tmp_node = rb_prev(&dc->rb_node);
1094 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1095
1096 /* lookup next node for merging frontward later */
1097 tmp_node = rb_next(&dc->rb_node);
1098 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1099 return dc;
1100 }
1101
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1102 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1103 struct discard_cmd *dc)
1104 {
1105 if (dc->state == D_DONE)
1106 atomic_sub(dc->queued, &dcc->queued_discard);
1107
1108 list_del(&dc->list);
1109 rb_erase_cached(&dc->rb_node, &dcc->root);
1110 dcc->undiscard_blks -= dc->di.len;
1111
1112 kmem_cache_free(discard_cmd_slab, dc);
1113
1114 atomic_dec(&dcc->discard_cmd_cnt);
1115 }
1116
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1117 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1118 struct discard_cmd *dc)
1119 {
1120 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1121 unsigned long flags;
1122
1123 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1124
1125 spin_lock_irqsave(&dc->lock, flags);
1126 if (dc->bio_ref) {
1127 spin_unlock_irqrestore(&dc->lock, flags);
1128 return;
1129 }
1130 spin_unlock_irqrestore(&dc->lock, flags);
1131
1132 f2fs_bug_on(sbi, dc->ref);
1133
1134 if (dc->error == -EOPNOTSUPP)
1135 dc->error = 0;
1136
1137 if (dc->error)
1138 f2fs_info_ratelimited(sbi,
1139 "Issue discard(%u, %u, %u) failed, ret: %d",
1140 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1141 __detach_discard_cmd(dcc, dc);
1142 }
1143
f2fs_submit_discard_endio(struct bio * bio)1144 static void f2fs_submit_discard_endio(struct bio *bio)
1145 {
1146 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&dc->lock, flags);
1150 if (!dc->error)
1151 dc->error = blk_status_to_errno(bio->bi_status);
1152 dc->bio_ref--;
1153 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1154 dc->state = D_DONE;
1155 complete_all(&dc->wait);
1156 }
1157 spin_unlock_irqrestore(&dc->lock, flags);
1158 bio_put(bio);
1159 }
1160
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1161 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1162 block_t start, block_t end)
1163 {
1164 #ifdef CONFIG_F2FS_CHECK_FS
1165 struct seg_entry *sentry;
1166 unsigned int segno;
1167 block_t blk = start;
1168 unsigned long offset, size, *map;
1169
1170 while (blk < end) {
1171 segno = GET_SEGNO(sbi, blk);
1172 sentry = get_seg_entry(sbi, segno);
1173 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1174
1175 if (end < START_BLOCK(sbi, segno + 1))
1176 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1177 else
1178 size = BLKS_PER_SEG(sbi);
1179 map = (unsigned long *)(sentry->cur_valid_map);
1180 offset = __find_rev_next_bit(map, size, offset);
1181 f2fs_bug_on(sbi, offset != size);
1182 blk = START_BLOCK(sbi, segno + 1);
1183 }
1184 #endif
1185 }
1186
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1187 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1188 struct discard_policy *dpolicy,
1189 int discard_type, unsigned int granularity)
1190 {
1191 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1192
1193 /* common policy */
1194 dpolicy->type = discard_type;
1195 dpolicy->sync = true;
1196 dpolicy->ordered = false;
1197 dpolicy->granularity = granularity;
1198
1199 dpolicy->max_requests = dcc->max_discard_request;
1200 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1201 dpolicy->timeout = false;
1202
1203 if (discard_type == DPOLICY_BG) {
1204 dpolicy->min_interval = dcc->min_discard_issue_time;
1205 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206 dpolicy->max_interval = dcc->max_discard_issue_time;
1207 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1208 dpolicy->io_aware = true;
1209 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1210 dpolicy->io_aware = false;
1211 dpolicy->sync = false;
1212 dpolicy->ordered = true;
1213 if (utilization(sbi) > dcc->discard_urgent_util) {
1214 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1215 if (atomic_read(&dcc->discard_cmd_cnt))
1216 dpolicy->max_interval =
1217 dcc->min_discard_issue_time;
1218 }
1219 } else if (discard_type == DPOLICY_FORCE) {
1220 dpolicy->min_interval = dcc->min_discard_issue_time;
1221 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1222 dpolicy->max_interval = dcc->max_discard_issue_time;
1223 dpolicy->io_aware = false;
1224 } else if (discard_type == DPOLICY_FSTRIM) {
1225 dpolicy->io_aware = false;
1226 } else if (discard_type == DPOLICY_UMOUNT) {
1227 dpolicy->io_aware = false;
1228 /* we need to issue all to keep CP_TRIMMED_FLAG */
1229 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1230 dpolicy->timeout = true;
1231 }
1232 }
1233
1234 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1235 struct block_device *bdev, block_t lstart,
1236 block_t start, block_t len);
1237
1238 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1239 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1240 struct discard_cmd *dc, blk_opf_t flag,
1241 struct list_head *wait_list,
1242 unsigned int *issued)
1243 {
1244 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1245 struct block_device *bdev = dc->bdev;
1246 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1247 unsigned long flags;
1248
1249 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1250
1251 spin_lock_irqsave(&dc->lock, flags);
1252 dc->state = D_SUBMIT;
1253 dc->bio_ref++;
1254 spin_unlock_irqrestore(&dc->lock, flags);
1255
1256 if (issued)
1257 (*issued)++;
1258
1259 atomic_inc(&dcc->queued_discard);
1260 dc->queued++;
1261 list_move_tail(&dc->list, wait_list);
1262
1263 /* sanity check on discard range */
1264 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1265
1266 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1267 bio->bi_private = dc;
1268 bio->bi_end_io = f2fs_submit_discard_endio;
1269 submit_bio(bio);
1270
1271 atomic_inc(&dcc->issued_discard);
1272 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1273 }
1274 #endif
1275
1276 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1277 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1278 struct discard_policy *dpolicy,
1279 struct discard_cmd *dc, int *issued)
1280 {
1281 struct block_device *bdev = dc->bdev;
1282 unsigned int max_discard_blocks =
1283 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1284 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1285 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1286 &(dcc->fstrim_list) : &(dcc->wait_list);
1287 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1288 block_t lstart, start, len, total_len;
1289 int err = 0;
1290
1291 if (dc->state != D_PREP)
1292 return 0;
1293
1294 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1295 return 0;
1296
1297 #ifdef CONFIG_BLK_DEV_ZONED
1298 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1299 int devi = f2fs_bdev_index(sbi, bdev);
1300
1301 if (devi < 0)
1302 return -EINVAL;
1303
1304 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1305 __submit_zone_reset_cmd(sbi, dc, flag,
1306 wait_list, issued);
1307 return 0;
1308 }
1309 }
1310 #endif
1311
1312 /*
1313 * stop issuing discard for any of below cases:
1314 * 1. device is conventional zone, but it doesn't support discard.
1315 * 2. device is regulare device, after snapshot it doesn't support
1316 * discard.
1317 */
1318 if (!bdev_max_discard_sectors(bdev))
1319 return -EOPNOTSUPP;
1320
1321 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1322
1323 lstart = dc->di.lstart;
1324 start = dc->di.start;
1325 len = dc->di.len;
1326 total_len = len;
1327
1328 dc->di.len = 0;
1329
1330 while (total_len && *issued < dpolicy->max_requests && !err) {
1331 struct bio *bio = NULL;
1332 unsigned long flags;
1333 bool last = true;
1334
1335 if (len > max_discard_blocks) {
1336 len = max_discard_blocks;
1337 last = false;
1338 }
1339
1340 (*issued)++;
1341 if (*issued == dpolicy->max_requests)
1342 last = true;
1343
1344 dc->di.len += len;
1345
1346 err = 0;
1347 if (time_to_inject(sbi, FAULT_DISCARD)) {
1348 err = -EIO;
1349 spin_lock_irqsave(&dc->lock, flags);
1350 if (dc->state == D_PARTIAL)
1351 dc->state = D_SUBMIT;
1352 spin_unlock_irqrestore(&dc->lock, flags);
1353
1354 break;
1355 }
1356
1357 __blkdev_issue_discard(bdev, SECTOR_FROM_BLOCK(start),
1358 SECTOR_FROM_BLOCK(len), GFP_NOFS, &bio);
1359 f2fs_bug_on(sbi, !bio);
1360
1361 /*
1362 * should keep before submission to avoid D_DONE
1363 * right away
1364 */
1365 spin_lock_irqsave(&dc->lock, flags);
1366 if (last)
1367 dc->state = D_SUBMIT;
1368 else
1369 dc->state = D_PARTIAL;
1370 dc->bio_ref++;
1371 spin_unlock_irqrestore(&dc->lock, flags);
1372
1373 atomic_inc(&dcc->queued_discard);
1374 dc->queued++;
1375 list_move_tail(&dc->list, wait_list);
1376
1377 /* sanity check on discard range */
1378 __check_sit_bitmap(sbi, lstart, lstart + len);
1379
1380 bio->bi_private = dc;
1381 bio->bi_end_io = f2fs_submit_discard_endio;
1382 bio->bi_opf |= flag;
1383 submit_bio(bio);
1384
1385 atomic_inc(&dcc->issued_discard);
1386
1387 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1388
1389 lstart += len;
1390 start += len;
1391 total_len -= len;
1392 len = total_len;
1393 }
1394
1395 if (!err && len) {
1396 dcc->undiscard_blks -= len;
1397 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1398 }
1399 return err;
1400 }
1401
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1402 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1403 struct block_device *bdev, block_t lstart,
1404 block_t start, block_t len)
1405 {
1406 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 struct rb_node **p = &dcc->root.rb_root.rb_node;
1408 struct rb_node *parent = NULL;
1409 struct discard_cmd *dc;
1410 bool leftmost = true;
1411
1412 /* look up rb tree to find parent node */
1413 while (*p) {
1414 parent = *p;
1415 dc = rb_entry(parent, struct discard_cmd, rb_node);
1416
1417 if (lstart < dc->di.lstart) {
1418 p = &(*p)->rb_left;
1419 } else if (lstart >= dc->di.lstart + dc->di.len) {
1420 p = &(*p)->rb_right;
1421 leftmost = false;
1422 } else {
1423 /* Let's skip to add, if exists */
1424 return;
1425 }
1426 }
1427
1428 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1429
1430 rb_link_node(&dc->rb_node, parent, p);
1431 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1432 }
1433
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1434 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1435 struct discard_cmd *dc)
1436 {
1437 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1438 }
1439
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1440 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1441 struct discard_cmd *dc, block_t blkaddr)
1442 {
1443 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444 struct discard_info di = dc->di;
1445 bool modified = false;
1446
1447 if (dc->state == D_DONE || dc->di.len == 1) {
1448 __remove_discard_cmd(sbi, dc);
1449 return;
1450 }
1451
1452 dcc->undiscard_blks -= di.len;
1453
1454 if (blkaddr > di.lstart) {
1455 dc->di.len = blkaddr - dc->di.lstart;
1456 dcc->undiscard_blks += dc->di.len;
1457 __relocate_discard_cmd(dcc, dc);
1458 modified = true;
1459 }
1460
1461 if (blkaddr < di.lstart + di.len - 1) {
1462 if (modified) {
1463 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1464 di.start + blkaddr + 1 - di.lstart,
1465 di.lstart + di.len - 1 - blkaddr);
1466 } else {
1467 dc->di.lstart++;
1468 dc->di.len--;
1469 dc->di.start++;
1470 dcc->undiscard_blks += dc->di.len;
1471 __relocate_discard_cmd(dcc, dc);
1472 }
1473 }
1474 }
1475
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1476 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1477 struct block_device *bdev, block_t lstart,
1478 block_t start, block_t len)
1479 {
1480 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1481 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1482 struct discard_cmd *dc;
1483 struct discard_info di = {0};
1484 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1485 unsigned int max_discard_blocks =
1486 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1487 block_t end = lstart + len;
1488
1489 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1490 &prev_dc, &next_dc, &insert_p, &insert_parent);
1491 if (dc)
1492 prev_dc = dc;
1493
1494 if (!prev_dc) {
1495 di.lstart = lstart;
1496 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1497 di.len = min(di.len, len);
1498 di.start = start;
1499 }
1500
1501 while (1) {
1502 struct rb_node *node;
1503 bool merged = false;
1504 struct discard_cmd *tdc = NULL;
1505
1506 if (prev_dc) {
1507 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1508 if (di.lstart < lstart)
1509 di.lstart = lstart;
1510 if (di.lstart >= end)
1511 break;
1512
1513 if (!next_dc || next_dc->di.lstart > end)
1514 di.len = end - di.lstart;
1515 else
1516 di.len = next_dc->di.lstart - di.lstart;
1517 di.start = start + di.lstart - lstart;
1518 }
1519
1520 if (!di.len)
1521 goto next;
1522
1523 if (prev_dc && prev_dc->state == D_PREP &&
1524 prev_dc->bdev == bdev &&
1525 __is_discard_back_mergeable(&di, &prev_dc->di,
1526 max_discard_blocks)) {
1527 prev_dc->di.len += di.len;
1528 dcc->undiscard_blks += di.len;
1529 __relocate_discard_cmd(dcc, prev_dc);
1530 di = prev_dc->di;
1531 tdc = prev_dc;
1532 merged = true;
1533 }
1534
1535 if (next_dc && next_dc->state == D_PREP &&
1536 next_dc->bdev == bdev &&
1537 __is_discard_front_mergeable(&di, &next_dc->di,
1538 max_discard_blocks)) {
1539 next_dc->di.lstart = di.lstart;
1540 next_dc->di.len += di.len;
1541 next_dc->di.start = di.start;
1542 dcc->undiscard_blks += di.len;
1543 __relocate_discard_cmd(dcc, next_dc);
1544 if (tdc)
1545 __remove_discard_cmd(sbi, tdc);
1546 merged = true;
1547 }
1548
1549 if (!merged)
1550 __insert_discard_cmd(sbi, bdev,
1551 di.lstart, di.start, di.len);
1552 next:
1553 prev_dc = next_dc;
1554 if (!prev_dc)
1555 break;
1556
1557 node = rb_next(&prev_dc->rb_node);
1558 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1559 }
1560 }
1561
1562 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1563 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1564 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1565 block_t blklen)
1566 {
1567 trace_f2fs_queue_reset_zone(bdev, blkstart);
1568
1569 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1570 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1571 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1572 }
1573 #endif
1574
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1575 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1576 struct block_device *bdev, block_t blkstart, block_t blklen)
1577 {
1578 block_t lblkstart = blkstart;
1579
1580 if (!f2fs_bdev_support_discard(bdev))
1581 return;
1582
1583 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1584
1585 if (f2fs_is_multi_device(sbi)) {
1586 int devi = f2fs_target_device_index(sbi, blkstart);
1587
1588 blkstart -= FDEV(devi).start_blk;
1589 }
1590 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1591 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1592 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1593 }
1594
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1595 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1596 struct discard_policy *dpolicy, int *issued)
1597 {
1598 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1599 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1600 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1601 struct discard_cmd *dc;
1602 struct blk_plug plug;
1603 bool io_interrupted = false;
1604
1605 mutex_lock(&dcc->cmd_lock);
1606 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1607 &prev_dc, &next_dc, &insert_p, &insert_parent);
1608 if (!dc)
1609 dc = next_dc;
1610
1611 blk_start_plug(&plug);
1612
1613 while (dc) {
1614 struct rb_node *node;
1615 int err = 0;
1616
1617 if (dc->state != D_PREP)
1618 goto next;
1619
1620 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1621 io_interrupted = true;
1622 break;
1623 }
1624
1625 dcc->next_pos = dc->di.lstart + dc->di.len;
1626 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1627
1628 if (*issued >= dpolicy->max_requests)
1629 break;
1630 next:
1631 node = rb_next(&dc->rb_node);
1632 if (err)
1633 __remove_discard_cmd(sbi, dc);
1634 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1635 }
1636
1637 blk_finish_plug(&plug);
1638
1639 if (!dc)
1640 dcc->next_pos = 0;
1641
1642 mutex_unlock(&dcc->cmd_lock);
1643
1644 if (!(*issued) && io_interrupted)
1645 *issued = -1;
1646 }
1647 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1648 struct discard_policy *dpolicy);
1649
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1650 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1651 struct discard_policy *dpolicy)
1652 {
1653 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1654 struct list_head *pend_list;
1655 struct discard_cmd *dc, *tmp;
1656 struct blk_plug plug;
1657 int i, issued;
1658 bool io_interrupted = false;
1659
1660 if (dpolicy->timeout)
1661 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1662
1663 retry:
1664 issued = 0;
1665 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1666 if (dpolicy->timeout &&
1667 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1668 break;
1669
1670 if (i + 1 < dpolicy->granularity)
1671 break;
1672
1673 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1674 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1675 return issued;
1676 }
1677
1678 pend_list = &dcc->pend_list[i];
1679
1680 mutex_lock(&dcc->cmd_lock);
1681 if (list_empty(pend_list))
1682 goto next;
1683 if (unlikely(dcc->rbtree_check))
1684 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1685 blk_start_plug(&plug);
1686 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1687 f2fs_bug_on(sbi, dc->state != D_PREP);
1688
1689 if (dpolicy->timeout &&
1690 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1691 break;
1692
1693 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1694 !is_idle(sbi, DISCARD_TIME)) {
1695 io_interrupted = true;
1696 break;
1697 }
1698
1699 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1700
1701 if (issued >= dpolicy->max_requests)
1702 break;
1703 }
1704 blk_finish_plug(&plug);
1705 next:
1706 mutex_unlock(&dcc->cmd_lock);
1707
1708 if (issued >= dpolicy->max_requests || io_interrupted)
1709 break;
1710 }
1711
1712 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1713 __wait_all_discard_cmd(sbi, dpolicy);
1714 goto retry;
1715 }
1716
1717 if (!issued && io_interrupted)
1718 issued = -1;
1719
1720 return issued;
1721 }
1722
__drop_discard_cmd(struct f2fs_sb_info * sbi)1723 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1724 {
1725 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1726 struct list_head *pend_list;
1727 struct discard_cmd *dc, *tmp;
1728 int i;
1729 bool dropped = false;
1730
1731 mutex_lock(&dcc->cmd_lock);
1732 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1733 pend_list = &dcc->pend_list[i];
1734 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1735 f2fs_bug_on(sbi, dc->state != D_PREP);
1736 __remove_discard_cmd(sbi, dc);
1737 dropped = true;
1738 }
1739 }
1740 mutex_unlock(&dcc->cmd_lock);
1741
1742 return dropped;
1743 }
1744
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1745 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1746 {
1747 __drop_discard_cmd(sbi);
1748 }
1749
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1750 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1751 struct discard_cmd *dc)
1752 {
1753 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1754 unsigned int len = 0;
1755
1756 wait_for_completion_io(&dc->wait);
1757 mutex_lock(&dcc->cmd_lock);
1758 f2fs_bug_on(sbi, dc->state != D_DONE);
1759 dc->ref--;
1760 if (!dc->ref) {
1761 if (!dc->error)
1762 len = dc->di.len;
1763 __remove_discard_cmd(sbi, dc);
1764 }
1765 mutex_unlock(&dcc->cmd_lock);
1766
1767 return len;
1768 }
1769
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1770 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1771 struct discard_policy *dpolicy,
1772 block_t start, block_t end)
1773 {
1774 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1775 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1776 &(dcc->fstrim_list) : &(dcc->wait_list);
1777 struct discard_cmd *dc = NULL, *iter, *tmp;
1778 unsigned int trimmed = 0;
1779
1780 next:
1781 dc = NULL;
1782
1783 mutex_lock(&dcc->cmd_lock);
1784 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1785 if (iter->di.lstart + iter->di.len <= start ||
1786 end <= iter->di.lstart)
1787 continue;
1788 if (iter->di.len < dpolicy->granularity)
1789 continue;
1790 if (iter->state == D_DONE && !iter->ref) {
1791 wait_for_completion_io(&iter->wait);
1792 if (!iter->error)
1793 trimmed += iter->di.len;
1794 __remove_discard_cmd(sbi, iter);
1795 } else {
1796 iter->ref++;
1797 dc = iter;
1798 break;
1799 }
1800 }
1801 mutex_unlock(&dcc->cmd_lock);
1802
1803 if (dc) {
1804 trimmed += __wait_one_discard_bio(sbi, dc);
1805 goto next;
1806 }
1807
1808 return trimmed;
1809 }
1810
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1811 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1812 struct discard_policy *dpolicy)
1813 {
1814 struct discard_policy dp;
1815 unsigned int discard_blks;
1816
1817 if (dpolicy)
1818 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1819
1820 /* wait all */
1821 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1822 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1823 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1824 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1825
1826 return discard_blks;
1827 }
1828
1829 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1830 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1831 {
1832 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1833 struct discard_cmd *dc;
1834 bool need_wait = false;
1835
1836 mutex_lock(&dcc->cmd_lock);
1837 dc = __lookup_discard_cmd(sbi, blkaddr);
1838 #ifdef CONFIG_BLK_DEV_ZONED
1839 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1840 int devi = f2fs_bdev_index(sbi, dc->bdev);
1841
1842 if (devi < 0) {
1843 mutex_unlock(&dcc->cmd_lock);
1844 return;
1845 }
1846
1847 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1848 /* force submit zone reset */
1849 if (dc->state == D_PREP)
1850 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1851 &dcc->wait_list, NULL);
1852 dc->ref++;
1853 mutex_unlock(&dcc->cmd_lock);
1854 /* wait zone reset */
1855 __wait_one_discard_bio(sbi, dc);
1856 return;
1857 }
1858 }
1859 #endif
1860 if (dc) {
1861 if (dc->state == D_PREP) {
1862 __punch_discard_cmd(sbi, dc, blkaddr);
1863 } else {
1864 dc->ref++;
1865 need_wait = true;
1866 }
1867 }
1868 mutex_unlock(&dcc->cmd_lock);
1869
1870 if (need_wait)
1871 __wait_one_discard_bio(sbi, dc);
1872 }
1873
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1874 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1875 {
1876 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1877
1878 if (dcc && dcc->f2fs_issue_discard) {
1879 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1880
1881 dcc->f2fs_issue_discard = NULL;
1882 kthread_stop(discard_thread);
1883 }
1884 }
1885
1886 /**
1887 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1888 * @sbi: the f2fs_sb_info data for discard cmd to issue
1889 *
1890 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1891 *
1892 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1893 */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1894 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1895 {
1896 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1897 struct discard_policy dpolicy;
1898 bool dropped;
1899
1900 if (!atomic_read(&dcc->discard_cmd_cnt))
1901 return true;
1902
1903 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1904 dcc->discard_granularity);
1905 __issue_discard_cmd(sbi, &dpolicy);
1906 dropped = __drop_discard_cmd(sbi);
1907
1908 /* just to make sure there is no pending discard commands */
1909 __wait_all_discard_cmd(sbi, NULL);
1910
1911 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1912 return !dropped;
1913 }
1914
issue_discard_thread(void * data)1915 static int issue_discard_thread(void *data)
1916 {
1917 struct f2fs_sb_info *sbi = data;
1918 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1919 wait_queue_head_t *q = &dcc->discard_wait_queue;
1920 struct discard_policy dpolicy;
1921 unsigned int wait_ms = dcc->min_discard_issue_time;
1922 int issued;
1923
1924 set_freezable();
1925
1926 do {
1927 wait_event_freezable_timeout(*q,
1928 kthread_should_stop() || dcc->discard_wake,
1929 msecs_to_jiffies(wait_ms));
1930
1931 if (sbi->gc_mode == GC_URGENT_HIGH ||
1932 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1933 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1934 MIN_DISCARD_GRANULARITY);
1935 else
1936 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1937 dcc->discard_granularity);
1938
1939 if (dcc->discard_wake)
1940 dcc->discard_wake = false;
1941
1942 /* clean up pending candidates before going to sleep */
1943 if (atomic_read(&dcc->queued_discard))
1944 __wait_all_discard_cmd(sbi, NULL);
1945
1946 if (f2fs_readonly(sbi->sb))
1947 continue;
1948 if (kthread_should_stop())
1949 return 0;
1950 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1951 !atomic_read(&dcc->discard_cmd_cnt)) {
1952 wait_ms = dpolicy.max_interval;
1953 continue;
1954 }
1955
1956 sb_start_intwrite(sbi->sb);
1957
1958 issued = __issue_discard_cmd(sbi, &dpolicy);
1959 if (issued > 0) {
1960 __wait_all_discard_cmd(sbi, &dpolicy);
1961 wait_ms = dpolicy.min_interval;
1962 } else if (issued == -1) {
1963 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1964 if (!wait_ms)
1965 wait_ms = dpolicy.mid_interval;
1966 } else {
1967 wait_ms = dpolicy.max_interval;
1968 }
1969 if (!atomic_read(&dcc->discard_cmd_cnt))
1970 wait_ms = dpolicy.max_interval;
1971
1972 sb_end_intwrite(sbi->sb);
1973
1974 } while (!kthread_should_stop());
1975 return 0;
1976 }
1977
1978 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1979 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1980 struct block_device *bdev, block_t blkstart, block_t blklen)
1981 {
1982 sector_t sector, nr_sects;
1983 block_t lblkstart = blkstart;
1984 int devi = 0;
1985 u64 remainder = 0;
1986
1987 if (f2fs_is_multi_device(sbi)) {
1988 devi = f2fs_target_device_index(sbi, blkstart);
1989 if (blkstart < FDEV(devi).start_blk ||
1990 blkstart > FDEV(devi).end_blk) {
1991 f2fs_err(sbi, "Invalid block %x", blkstart);
1992 return -EIO;
1993 }
1994 blkstart -= FDEV(devi).start_blk;
1995 }
1996
1997 /* For sequential zones, reset the zone write pointer */
1998 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1999 sector = SECTOR_FROM_BLOCK(blkstart);
2000 nr_sects = SECTOR_FROM_BLOCK(blklen);
2001 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2002
2003 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2004 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2005 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2006 blkstart, blklen);
2007 return -EIO;
2008 }
2009
2010 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2011 unsigned int nofs_flags;
2012 int ret;
2013
2014 trace_f2fs_issue_reset_zone(bdev, blkstart);
2015 nofs_flags = memalloc_nofs_save();
2016 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2017 sector, nr_sects);
2018 memalloc_nofs_restore(nofs_flags);
2019 return ret;
2020 }
2021
2022 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2023 return 0;
2024 }
2025
2026 /* For conventional zones, use regular discard if supported */
2027 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2028 return 0;
2029 }
2030 #endif
2031
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2032 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2033 struct block_device *bdev, block_t blkstart, block_t blklen)
2034 {
2035 #ifdef CONFIG_BLK_DEV_ZONED
2036 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2037 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2038 #endif
2039 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2040 return 0;
2041 }
2042
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2043 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2044 block_t blkstart, block_t blklen)
2045 {
2046 sector_t start = blkstart, len = 0;
2047 struct block_device *bdev;
2048 struct seg_entry *se;
2049 unsigned int offset;
2050 block_t i;
2051 int err = 0;
2052
2053 bdev = f2fs_target_device(sbi, blkstart, NULL);
2054
2055 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2056 if (i != start) {
2057 struct block_device *bdev2 =
2058 f2fs_target_device(sbi, i, NULL);
2059
2060 if (bdev2 != bdev) {
2061 err = __issue_discard_async(sbi, bdev,
2062 start, len);
2063 if (err)
2064 return err;
2065 bdev = bdev2;
2066 start = i;
2067 len = 0;
2068 }
2069 }
2070
2071 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2072 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2073
2074 if (f2fs_block_unit_discard(sbi) &&
2075 !f2fs_test_and_set_bit(offset, se->discard_map))
2076 sbi->discard_blks--;
2077 }
2078
2079 if (len)
2080 err = __issue_discard_async(sbi, bdev, start, len);
2081 return err;
2082 }
2083
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2084 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2085 bool check_only)
2086 {
2087 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2088 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2089 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2090 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2091 unsigned long *discard_map = (unsigned long *)se->discard_map;
2092 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2093 unsigned int start = 0, end = -1;
2094 bool force = (cpc->reason & CP_DISCARD);
2095 struct discard_entry *de = NULL;
2096 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2097 int i;
2098
2099 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2100 !f2fs_hw_support_discard(sbi) ||
2101 !f2fs_block_unit_discard(sbi))
2102 return false;
2103
2104 if (!force) {
2105 if (!f2fs_realtime_discard_enable(sbi) ||
2106 (!se->valid_blocks &&
2107 !is_curseg(sbi, cpc->trim_start)) ||
2108 SM_I(sbi)->dcc_info->nr_discards >=
2109 SM_I(sbi)->dcc_info->max_discards)
2110 return false;
2111 }
2112
2113 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2114 for (i = 0; i < entries; i++)
2115 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2116 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2117
2118 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2119 SM_I(sbi)->dcc_info->max_discards) {
2120 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2121 if (start >= BLKS_PER_SEG(sbi))
2122 break;
2123
2124 end = __find_rev_next_zero_bit(dmap,
2125 BLKS_PER_SEG(sbi), start + 1);
2126 if (force && start && end != BLKS_PER_SEG(sbi) &&
2127 (end - start) < cpc->trim_minlen)
2128 continue;
2129
2130 if (check_only)
2131 return true;
2132
2133 if (!de) {
2134 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2135 GFP_F2FS_ZERO, true, NULL);
2136 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2137 list_add_tail(&de->list, head);
2138 }
2139
2140 for (i = start; i < end; i++)
2141 __set_bit_le(i, (void *)de->discard_map);
2142
2143 SM_I(sbi)->dcc_info->nr_discards += end - start;
2144 }
2145 return false;
2146 }
2147
release_discard_addr(struct discard_entry * entry)2148 static void release_discard_addr(struct discard_entry *entry)
2149 {
2150 list_del(&entry->list);
2151 kmem_cache_free(discard_entry_slab, entry);
2152 }
2153
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2154 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2155 {
2156 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2157 struct discard_entry *entry, *this;
2158
2159 /* drop caches */
2160 list_for_each_entry_safe(entry, this, head, list)
2161 release_discard_addr(entry);
2162 }
2163
2164 /*
2165 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2166 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2167 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2168 {
2169 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2170 unsigned int segno;
2171
2172 mutex_lock(&dirty_i->seglist_lock);
2173 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2174 __set_test_and_free(sbi, segno, false);
2175 mutex_unlock(&dirty_i->seglist_lock);
2176 }
2177
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2178 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2179 struct cp_control *cpc)
2180 {
2181 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2182 struct list_head *head = &dcc->entry_list;
2183 struct discard_entry *entry, *this;
2184 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2185 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2186 unsigned int start = 0, end = -1;
2187 unsigned int secno, start_segno;
2188 bool force = (cpc->reason & CP_DISCARD);
2189 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2190 DISCARD_UNIT_SECTION;
2191
2192 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2193 section_alignment = true;
2194
2195 mutex_lock(&dirty_i->seglist_lock);
2196
2197 while (1) {
2198 int i;
2199
2200 if (section_alignment && end != -1)
2201 end--;
2202 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2203 if (start >= MAIN_SEGS(sbi))
2204 break;
2205 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2206 start + 1);
2207
2208 if (section_alignment) {
2209 start = rounddown(start, SEGS_PER_SEC(sbi));
2210 end = roundup(end, SEGS_PER_SEC(sbi));
2211 }
2212
2213 for (i = start; i < end; i++) {
2214 if (test_and_clear_bit(i, prefree_map))
2215 dirty_i->nr_dirty[PRE]--;
2216 }
2217
2218 if (!f2fs_realtime_discard_enable(sbi))
2219 continue;
2220
2221 if (force && start >= cpc->trim_start &&
2222 (end - 1) <= cpc->trim_end)
2223 continue;
2224
2225 /* Should cover 2MB zoned device for zone-based reset */
2226 if (!f2fs_sb_has_blkzoned(sbi) &&
2227 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2228 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2229 SEGS_TO_BLKS(sbi, end - start));
2230 continue;
2231 }
2232 next:
2233 secno = GET_SEC_FROM_SEG(sbi, start);
2234 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2235 if (!is_cursec(sbi, secno) &&
2236 !get_valid_blocks(sbi, start, true))
2237 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2238 BLKS_PER_SEC(sbi));
2239
2240 start = start_segno + SEGS_PER_SEC(sbi);
2241 if (start < end)
2242 goto next;
2243 else
2244 end = start - 1;
2245 }
2246 mutex_unlock(&dirty_i->seglist_lock);
2247
2248 if (!f2fs_block_unit_discard(sbi))
2249 goto wakeup;
2250
2251 /* send small discards */
2252 list_for_each_entry_safe(entry, this, head, list) {
2253 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2254 bool is_valid = test_bit_le(0, entry->discard_map);
2255
2256 find_next:
2257 if (is_valid) {
2258 next_pos = find_next_zero_bit_le(entry->discard_map,
2259 BLKS_PER_SEG(sbi), cur_pos);
2260 len = next_pos - cur_pos;
2261
2262 if (f2fs_sb_has_blkzoned(sbi) ||
2263 (force && len < cpc->trim_minlen))
2264 goto skip;
2265
2266 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2267 len);
2268 total_len += len;
2269 } else {
2270 next_pos = find_next_bit_le(entry->discard_map,
2271 BLKS_PER_SEG(sbi), cur_pos);
2272 }
2273 skip:
2274 cur_pos = next_pos;
2275 is_valid = !is_valid;
2276
2277 if (cur_pos < BLKS_PER_SEG(sbi))
2278 goto find_next;
2279
2280 release_discard_addr(entry);
2281 dcc->nr_discards -= total_len;
2282 }
2283
2284 wakeup:
2285 wake_up_discard_thread(sbi, false);
2286 }
2287
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2288 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2289 {
2290 dev_t dev = sbi->sb->s_bdev->bd_dev;
2291 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2292 int err = 0;
2293
2294 if (f2fs_sb_has_readonly(sbi)) {
2295 f2fs_info(sbi,
2296 "Skip to start discard thread for readonly image");
2297 return 0;
2298 }
2299
2300 if (!f2fs_realtime_discard_enable(sbi))
2301 return 0;
2302
2303 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2304 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2305 if (IS_ERR(dcc->f2fs_issue_discard)) {
2306 err = PTR_ERR(dcc->f2fs_issue_discard);
2307 dcc->f2fs_issue_discard = NULL;
2308 }
2309
2310 return err;
2311 }
2312
create_discard_cmd_control(struct f2fs_sb_info * sbi)2313 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2314 {
2315 struct discard_cmd_control *dcc;
2316 int err = 0, i;
2317
2318 if (SM_I(sbi)->dcc_info) {
2319 dcc = SM_I(sbi)->dcc_info;
2320 goto init_thread;
2321 }
2322
2323 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2324 if (!dcc)
2325 return -ENOMEM;
2326
2327 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2328 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2329 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2330 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2331 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2332 F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2333 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2334
2335 INIT_LIST_HEAD(&dcc->entry_list);
2336 for (i = 0; i < MAX_PLIST_NUM; i++)
2337 INIT_LIST_HEAD(&dcc->pend_list[i]);
2338 INIT_LIST_HEAD(&dcc->wait_list);
2339 INIT_LIST_HEAD(&dcc->fstrim_list);
2340 mutex_init(&dcc->cmd_lock);
2341 atomic_set(&dcc->issued_discard, 0);
2342 atomic_set(&dcc->queued_discard, 0);
2343 atomic_set(&dcc->discard_cmd_cnt, 0);
2344 dcc->nr_discards = 0;
2345 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2346 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2347 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2348 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2349 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2350 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2351 dcc->undiscard_blks = 0;
2352 dcc->next_pos = 0;
2353 dcc->root = RB_ROOT_CACHED;
2354 dcc->rbtree_check = false;
2355
2356 init_waitqueue_head(&dcc->discard_wait_queue);
2357 SM_I(sbi)->dcc_info = dcc;
2358 init_thread:
2359 err = f2fs_start_discard_thread(sbi);
2360 if (err) {
2361 kfree(dcc);
2362 SM_I(sbi)->dcc_info = NULL;
2363 }
2364
2365 return err;
2366 }
2367
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2368 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2369 {
2370 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2371
2372 if (!dcc)
2373 return;
2374
2375 f2fs_stop_discard_thread(sbi);
2376
2377 /*
2378 * Recovery can cache discard commands, so in error path of
2379 * fill_super(), it needs to give a chance to handle them.
2380 */
2381 f2fs_issue_discard_timeout(sbi);
2382
2383 kfree(dcc);
2384 SM_I(sbi)->dcc_info = NULL;
2385 }
2386
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2387 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2388 {
2389 struct sit_info *sit_i = SIT_I(sbi);
2390
2391 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2392 sit_i->dirty_sentries++;
2393 return false;
2394 }
2395
2396 return true;
2397 }
2398
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2399 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2400 unsigned int segno, int modified)
2401 {
2402 struct seg_entry *se = get_seg_entry(sbi, segno);
2403
2404 se->type = type;
2405 if (modified)
2406 __mark_sit_entry_dirty(sbi, segno);
2407 }
2408
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2409 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2410 block_t blkaddr)
2411 {
2412 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2413
2414 if (segno == NULL_SEGNO)
2415 return 0;
2416 return get_seg_entry(sbi, segno)->mtime;
2417 }
2418
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2419 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2420 unsigned long long old_mtime)
2421 {
2422 struct seg_entry *se;
2423 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2424 unsigned long long ctime = get_mtime(sbi, false);
2425 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2426
2427 if (segno == NULL_SEGNO)
2428 return;
2429
2430 se = get_seg_entry(sbi, segno);
2431
2432 if (!se->mtime)
2433 se->mtime = mtime;
2434 else
2435 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2436 se->valid_blocks + 1);
2437
2438 if (ctime > SIT_I(sbi)->max_mtime)
2439 SIT_I(sbi)->max_mtime = ctime;
2440 }
2441
2442 /*
2443 * NOTE: when updating multiple blocks at the same time, please ensure
2444 * that the consecutive input blocks belong to the same segment.
2445 */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2446 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2447 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2448 {
2449 bool exist;
2450 #ifdef CONFIG_F2FS_CHECK_FS
2451 bool mir_exist;
2452 #endif
2453 int i;
2454 int del_count = -del;
2455
2456 f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2457
2458 for (i = 0; i < del_count; i++) {
2459 exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2460 #ifdef CONFIG_F2FS_CHECK_FS
2461 mir_exist = f2fs_test_and_clear_bit(offset + i,
2462 se->cur_valid_map_mir);
2463 if (unlikely(exist != mir_exist)) {
2464 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2465 blkaddr + i, exist);
2466 f2fs_bug_on(sbi, 1);
2467 }
2468 #endif
2469 if (unlikely(!exist)) {
2470 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2471 f2fs_bug_on(sbi, 1);
2472 se->valid_blocks++;
2473 del += 1;
2474 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2475 /*
2476 * If checkpoints are off, we must not reuse data that
2477 * was used in the previous checkpoint. If it was used
2478 * before, we must track that to know how much space we
2479 * really have.
2480 */
2481 if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2482 spin_lock(&sbi->stat_lock);
2483 sbi->unusable_block_count++;
2484 spin_unlock(&sbi->stat_lock);
2485 }
2486 }
2487
2488 if (f2fs_block_unit_discard(sbi) &&
2489 f2fs_test_and_clear_bit(offset + i, se->discard_map))
2490 sbi->discard_blks++;
2491
2492 if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2493 se->ckpt_valid_blocks -= 1;
2494 if (__is_large_section(sbi))
2495 get_sec_entry(sbi, segno)->ckpt_valid_blocks -= 1;
2496 }
2497 }
2498
2499 if (__is_large_section(sbi))
2500 sanity_check_valid_blocks(sbi, segno);
2501
2502 return del;
2503 }
2504
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2505 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2506 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2507 {
2508 bool exist;
2509 #ifdef CONFIG_F2FS_CHECK_FS
2510 bool mir_exist;
2511 #endif
2512
2513 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2514 #ifdef CONFIG_F2FS_CHECK_FS
2515 mir_exist = f2fs_test_and_set_bit(offset,
2516 se->cur_valid_map_mir);
2517 if (unlikely(exist != mir_exist)) {
2518 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2519 blkaddr, exist);
2520 f2fs_bug_on(sbi, 1);
2521 }
2522 #endif
2523 if (unlikely(exist)) {
2524 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2525 f2fs_bug_on(sbi, 1);
2526 se->valid_blocks--;
2527 del = 0;
2528 }
2529
2530 if (f2fs_block_unit_discard(sbi) &&
2531 !f2fs_test_and_set_bit(offset, se->discard_map))
2532 sbi->discard_blks--;
2533
2534 /*
2535 * SSR should never reuse block which is checkpointed
2536 * or newly invalidated.
2537 */
2538 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2539 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2540 se->ckpt_valid_blocks++;
2541 if (__is_large_section(sbi))
2542 get_sec_entry(sbi, segno)->ckpt_valid_blocks++;
2543 }
2544 }
2545
2546 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2547 se->ckpt_valid_blocks += del;
2548 if (__is_large_section(sbi))
2549 get_sec_entry(sbi, segno)->ckpt_valid_blocks += del;
2550 }
2551
2552 if (__is_large_section(sbi))
2553 sanity_check_valid_blocks(sbi, segno);
2554
2555 return del;
2556 }
2557
2558 /*
2559 * If releasing blocks, this function supports updating multiple consecutive blocks
2560 * at one time, but please note that these consecutive blocks need to belong to the
2561 * same segment.
2562 */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2563 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2564 {
2565 struct seg_entry *se;
2566 unsigned int segno, offset;
2567 long int new_vblocks;
2568
2569 segno = GET_SEGNO(sbi, blkaddr);
2570 if (segno == NULL_SEGNO)
2571 return;
2572
2573 se = get_seg_entry(sbi, segno);
2574 new_vblocks = se->valid_blocks + del;
2575 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2576
2577 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2578 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2579
2580 se->valid_blocks = new_vblocks;
2581
2582 /* Update valid block bitmap */
2583 if (del > 0) {
2584 del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2585 } else {
2586 del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2587 }
2588
2589 __mark_sit_entry_dirty(sbi, segno);
2590
2591 /* update total number of valid blocks to be written in ckpt area */
2592 SIT_I(sbi)->written_valid_blocks += del;
2593
2594 if (__is_large_section(sbi))
2595 get_sec_entry(sbi, segno)->valid_blocks += del;
2596 }
2597
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2598 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2599 unsigned int len)
2600 {
2601 unsigned int segno = GET_SEGNO(sbi, addr);
2602 struct sit_info *sit_i = SIT_I(sbi);
2603 block_t addr_start = addr, addr_end = addr + len - 1;
2604 unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2605 unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2606
2607 f2fs_bug_on(sbi, addr == NULL_ADDR);
2608 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2609 return;
2610
2611 f2fs_invalidate_internal_cache(sbi, addr, len);
2612
2613 /* add it into sit main buffer */
2614 down_write(&sit_i->sentry_lock);
2615
2616 if (seg_num == 1)
2617 cnt = len;
2618 else
2619 cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2620
2621 do {
2622 update_segment_mtime(sbi, addr_start, 0);
2623 update_sit_entry(sbi, addr_start, -cnt);
2624
2625 /* add it into dirty seglist */
2626 locate_dirty_segment(sbi, segno);
2627
2628 /* update @addr_start and @cnt and @segno */
2629 addr_start = START_BLOCK(sbi, ++segno);
2630 if (++i == seg_num)
2631 cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2632 else
2633 cnt = max_blocks;
2634 } while (i <= seg_num);
2635
2636 up_write(&sit_i->sentry_lock);
2637 }
2638
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2639 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2640 {
2641 struct sit_info *sit_i = SIT_I(sbi);
2642 unsigned int segno, offset;
2643 struct seg_entry *se;
2644 bool is_cp = false;
2645
2646 if (!__is_valid_data_blkaddr(blkaddr))
2647 return true;
2648
2649 down_read(&sit_i->sentry_lock);
2650
2651 segno = GET_SEGNO(sbi, blkaddr);
2652 se = get_seg_entry(sbi, segno);
2653 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2654
2655 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2656 is_cp = true;
2657
2658 up_read(&sit_i->sentry_lock);
2659
2660 return is_cp;
2661 }
2662
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2663 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2664 {
2665 struct curseg_info *curseg = CURSEG_I(sbi, type);
2666
2667 if (sbi->ckpt->alloc_type[type] == SSR)
2668 return BLKS_PER_SEG(sbi);
2669 return curseg->next_blkoff;
2670 }
2671
2672 /*
2673 * Calculate the number of current summary pages for writing
2674 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2675 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2676 {
2677 int valid_sum_count = 0;
2678 int i, sum_in_page;
2679
2680 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2681 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2682 valid_sum_count +=
2683 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2684 else
2685 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2686 }
2687
2688 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2689 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2690 if (valid_sum_count <= sum_in_page)
2691 return 1;
2692 else if ((valid_sum_count - sum_in_page) <=
2693 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2694 return 2;
2695 return 3;
2696 }
2697
2698 /*
2699 * Caller should put this summary folio
2700 */
f2fs_get_sum_folio(struct f2fs_sb_info * sbi,unsigned int segno)2701 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno)
2702 {
2703 if (unlikely(f2fs_cp_error(sbi)))
2704 return ERR_PTR(-EIO);
2705 return f2fs_get_meta_folio_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2706 }
2707
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2708 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2709 void *src, block_t blk_addr)
2710 {
2711 struct folio *folio;
2712
2713 if (SUMS_PER_BLOCK == 1)
2714 folio = f2fs_grab_meta_folio(sbi, blk_addr);
2715 else
2716 folio = f2fs_get_meta_folio_retry(sbi, blk_addr);
2717
2718 if (IS_ERR(folio))
2719 return;
2720
2721 memcpy(folio_address(folio), src, PAGE_SIZE);
2722 folio_mark_dirty(folio);
2723 f2fs_folio_put(folio, true);
2724 }
2725
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,unsigned int segno)2726 static void write_sum_page(struct f2fs_sb_info *sbi,
2727 struct f2fs_summary_block *sum_blk, unsigned int segno)
2728 {
2729 struct folio *folio;
2730
2731 if (SUMS_PER_BLOCK == 1)
2732 return f2fs_update_meta_page(sbi, (void *)sum_blk,
2733 GET_SUM_BLOCK(sbi, segno));
2734
2735 folio = f2fs_get_sum_folio(sbi, segno);
2736 if (IS_ERR(folio))
2737 return;
2738
2739 memcpy(SUM_BLK_PAGE_ADDR(folio, segno), sum_blk, sizeof(*sum_blk));
2740 folio_mark_dirty(folio);
2741 f2fs_folio_put(folio, true);
2742 }
2743
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2744 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2745 int type, block_t blk_addr)
2746 {
2747 struct curseg_info *curseg = CURSEG_I(sbi, type);
2748 struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2749 struct f2fs_summary_block *src = curseg->sum_blk;
2750 struct f2fs_summary_block *dst;
2751
2752 dst = folio_address(folio);
2753 memset(dst, 0, PAGE_SIZE);
2754
2755 mutex_lock(&curseg->curseg_mutex);
2756
2757 down_read(&curseg->journal_rwsem);
2758 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2759 up_read(&curseg->journal_rwsem);
2760
2761 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2762 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2763
2764 mutex_unlock(&curseg->curseg_mutex);
2765
2766 folio_mark_dirty(folio);
2767 f2fs_folio_put(folio, true);
2768 }
2769
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2770 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2771 struct curseg_info *curseg)
2772 {
2773 unsigned int segno = curseg->segno + 1;
2774 struct free_segmap_info *free_i = FREE_I(sbi);
2775
2776 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2777 return !test_bit(segno, free_i->free_segmap);
2778 return 0;
2779 }
2780
2781 /*
2782 * Find a new segment from the free segments bitmap to right order
2783 * This function should be returned with success, otherwise BUG
2784 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2785 static int get_new_segment(struct f2fs_sb_info *sbi,
2786 unsigned int *newseg, bool new_sec, bool pinning)
2787 {
2788 struct free_segmap_info *free_i = FREE_I(sbi);
2789 unsigned int segno, secno, zoneno;
2790 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2791 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2792 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2793 unsigned int alloc_policy = sbi->allocate_section_policy;
2794 unsigned int alloc_hint = sbi->allocate_section_hint;
2795 bool init = true;
2796 int i;
2797 int ret = 0;
2798
2799 spin_lock(&free_i->segmap_lock);
2800
2801 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2802 ret = -ENOSPC;
2803 goto out_unlock;
2804 }
2805
2806 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2807 segno = find_next_zero_bit(free_i->free_segmap,
2808 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2809 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2810 goto got_it;
2811 }
2812
2813 #ifdef CONFIG_BLK_DEV_ZONED
2814 /*
2815 * If we format f2fs on zoned storage, let's try to get pinned sections
2816 * from beginning of the storage, which should be a conventional one.
2817 */
2818 if (f2fs_sb_has_blkzoned(sbi)) {
2819 /* Prioritize writing to conventional zones */
2820 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2821 segno = 0;
2822 else
2823 segno = max(sbi->first_seq_zone_segno, *newseg);
2824 hint = GET_SEC_FROM_SEG(sbi, segno);
2825 }
2826 #endif
2827
2828 /*
2829 * Prevent allocate_section_hint from exceeding MAIN_SECS()
2830 * due to desynchronization.
2831 */
2832 if (alloc_policy != ALLOCATE_FORWARD_NOHINT &&
2833 alloc_hint > MAIN_SECS(sbi))
2834 alloc_hint = MAIN_SECS(sbi);
2835
2836 if (alloc_policy == ALLOCATE_FORWARD_FROM_HINT &&
2837 hint < alloc_hint)
2838 hint = alloc_hint;
2839 else if (alloc_policy == ALLOCATE_FORWARD_WITHIN_HINT &&
2840 hint >= alloc_hint)
2841 hint = 0;
2842
2843 find_other_zone:
2844 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2845
2846 #ifdef CONFIG_BLK_DEV_ZONED
2847 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2848 /* Write only to sequential zones */
2849 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2850 hint = GET_SEC_FROM_SEG(sbi, sbi->first_seq_zone_segno);
2851 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2852 } else
2853 secno = find_first_zero_bit(free_i->free_secmap,
2854 MAIN_SECS(sbi));
2855 if (secno >= MAIN_SECS(sbi)) {
2856 ret = -ENOSPC;
2857 f2fs_bug_on(sbi, 1);
2858 goto out_unlock;
2859 }
2860 }
2861 #endif
2862
2863 if (secno >= MAIN_SECS(sbi)) {
2864 secno = find_first_zero_bit(free_i->free_secmap,
2865 MAIN_SECS(sbi));
2866 if (secno >= MAIN_SECS(sbi)) {
2867 ret = -ENOSPC;
2868 f2fs_bug_on(sbi, !pinning);
2869 goto out_unlock;
2870 }
2871 }
2872 segno = GET_SEG_FROM_SEC(sbi, secno);
2873 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2874
2875 /* give up on finding another zone */
2876 if (!init)
2877 goto got_it;
2878 if (sbi->secs_per_zone == 1)
2879 goto got_it;
2880 if (zoneno == old_zoneno)
2881 goto got_it;
2882 for (i = 0; i < NR_CURSEG_TYPE; i++)
2883 if (CURSEG_I(sbi, i)->zone == zoneno)
2884 break;
2885
2886 if (i < NR_CURSEG_TYPE) {
2887 /* zone is in user, try another */
2888 if (zoneno + 1 >= total_zones)
2889 hint = 0;
2890 else
2891 hint = (zoneno + 1) * sbi->secs_per_zone;
2892 init = false;
2893 goto find_other_zone;
2894 }
2895 got_it:
2896 /* set it as dirty segment in free segmap */
2897 if (test_bit(segno, free_i->free_segmap)) {
2898 ret = -EFSCORRUPTED;
2899 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2900 goto out_unlock;
2901 }
2902
2903 /* no free section in conventional device or conventional zone */
2904 if (new_sec && pinning &&
2905 f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2906 ret = -EAGAIN;
2907 goto out_unlock;
2908 }
2909 __set_inuse(sbi, segno);
2910 *newseg = segno;
2911 out_unlock:
2912 spin_unlock(&free_i->segmap_lock);
2913
2914 if (ret == -ENOSPC && !pinning)
2915 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2916 return ret;
2917 }
2918
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2919 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2920 {
2921 struct curseg_info *curseg = CURSEG_I(sbi, type);
2922 struct summary_footer *sum_footer;
2923 unsigned short seg_type = curseg->seg_type;
2924
2925 /* only happen when get_new_segment() fails */
2926 if (curseg->next_segno == NULL_SEGNO)
2927 return;
2928
2929 curseg->inited = true;
2930 curseg->segno = curseg->next_segno;
2931 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2932 curseg->next_blkoff = 0;
2933 curseg->next_segno = NULL_SEGNO;
2934
2935 sum_footer = &(curseg->sum_blk->footer);
2936 memset(sum_footer, 0, sizeof(struct summary_footer));
2937
2938 sanity_check_seg_type(sbi, seg_type);
2939
2940 if (IS_DATASEG(seg_type))
2941 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2942 if (IS_NODESEG(seg_type))
2943 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2944 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2945 }
2946
__get_next_segno(struct f2fs_sb_info * sbi,int type)2947 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2948 {
2949 struct curseg_info *curseg = CURSEG_I(sbi, type);
2950 unsigned short seg_type = curseg->seg_type;
2951
2952 sanity_check_seg_type(sbi, seg_type);
2953 if (__is_large_section(sbi)) {
2954 if (f2fs_need_rand_seg(sbi)) {
2955 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2956
2957 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2958 return curseg->segno;
2959 return get_random_u32_inclusive(curseg->segno + 1,
2960 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2961 }
2962 return curseg->segno;
2963 } else if (f2fs_need_rand_seg(sbi)) {
2964 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2965 }
2966
2967 /* inmem log may not locate on any segment after mount */
2968 if (!curseg->inited)
2969 return 0;
2970
2971 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2972 return 0;
2973
2974 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2975 return 0;
2976
2977 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2978 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2979
2980 /* find segments from 0 to reuse freed segments */
2981 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2982 return 0;
2983
2984 return curseg->segno;
2985 }
2986
reset_curseg_fields(struct curseg_info * curseg)2987 static void reset_curseg_fields(struct curseg_info *curseg)
2988 {
2989 curseg->inited = false;
2990 curseg->segno = NULL_SEGNO;
2991 curseg->next_segno = 0;
2992 }
2993
2994 /*
2995 * Allocate a current working segment.
2996 * This function always allocates a free segment in LFS manner.
2997 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2998 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2999 {
3000 struct curseg_info *curseg = CURSEG_I(sbi, type);
3001 unsigned int segno = curseg->segno;
3002 bool pinning = type == CURSEG_COLD_DATA_PINNED;
3003 int ret;
3004
3005 if (curseg->inited)
3006 write_sum_page(sbi, curseg->sum_blk, segno);
3007
3008 segno = __get_next_segno(sbi, type);
3009 ret = get_new_segment(sbi, &segno, new_sec, pinning);
3010 if (ret) {
3011 if (ret == -ENOSPC)
3012 reset_curseg_fields(curseg);
3013 return ret;
3014 }
3015
3016 curseg->next_segno = segno;
3017 reset_curseg(sbi, type, 1);
3018 curseg->alloc_type = LFS;
3019 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3020 curseg->fragment_remained_chunk =
3021 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3022 return 0;
3023 }
3024
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)3025 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
3026 int segno, block_t start)
3027 {
3028 struct seg_entry *se = get_seg_entry(sbi, segno);
3029 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
3030 unsigned long *target_map = SIT_I(sbi)->tmp_map;
3031 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
3032 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
3033 int i;
3034
3035 for (i = 0; i < entries; i++)
3036 target_map[i] = ckpt_map[i] | cur_map[i];
3037
3038 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3039 }
3040
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3041 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3042 struct curseg_info *seg)
3043 {
3044 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3045 }
3046
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3047 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3048 {
3049 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3050 }
3051
3052 /*
3053 * This function always allocates a used segment(from dirty seglist) by SSR
3054 * manner, so it should recover the existing segment information of valid blocks
3055 */
change_curseg(struct f2fs_sb_info * sbi,int type)3056 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3057 {
3058 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3059 struct curseg_info *curseg = CURSEG_I(sbi, type);
3060 unsigned int new_segno = curseg->next_segno;
3061 struct f2fs_summary_block *sum_node;
3062 struct folio *sum_folio;
3063
3064 if (curseg->inited)
3065 write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3066
3067 __set_test_and_inuse(sbi, new_segno);
3068
3069 mutex_lock(&dirty_i->seglist_lock);
3070 __remove_dirty_segment(sbi, new_segno, PRE);
3071 __remove_dirty_segment(sbi, new_segno, DIRTY);
3072 mutex_unlock(&dirty_i->seglist_lock);
3073
3074 reset_curseg(sbi, type, 1);
3075 curseg->alloc_type = SSR;
3076 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3077
3078 sum_folio = f2fs_get_sum_folio(sbi, new_segno);
3079 if (IS_ERR(sum_folio)) {
3080 /* GC won't be able to use stale summary pages by cp_error */
3081 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3082 return PTR_ERR(sum_folio);
3083 }
3084 sum_node = SUM_BLK_PAGE_ADDR(sum_folio, new_segno);
3085 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3086 f2fs_folio_put(sum_folio, true);
3087 return 0;
3088 }
3089
3090 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3091 int alloc_mode, unsigned long long age);
3092
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3093 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3094 int target_type, int alloc_mode,
3095 unsigned long long age)
3096 {
3097 struct curseg_info *curseg = CURSEG_I(sbi, type);
3098 int ret = 0;
3099
3100 curseg->seg_type = target_type;
3101
3102 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3103 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3104
3105 curseg->seg_type = se->type;
3106 ret = change_curseg(sbi, type);
3107 } else {
3108 /* allocate cold segment by default */
3109 curseg->seg_type = CURSEG_COLD_DATA;
3110 ret = new_curseg(sbi, type, true);
3111 }
3112 stat_inc_seg_type(sbi, curseg);
3113 return ret;
3114 }
3115
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3116 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3117 {
3118 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3119 int ret = 0;
3120
3121 if (!sbi->am.atgc_enabled && !force)
3122 return 0;
3123
3124 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3125
3126 mutex_lock(&curseg->curseg_mutex);
3127 down_write(&SIT_I(sbi)->sentry_lock);
3128
3129 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3130 CURSEG_COLD_DATA, SSR, 0);
3131
3132 up_write(&SIT_I(sbi)->sentry_lock);
3133 mutex_unlock(&curseg->curseg_mutex);
3134
3135 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3136 return ret;
3137 }
3138
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3139 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3140 {
3141 return __f2fs_init_atgc_curseg(sbi, false);
3142 }
3143
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3144 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3145 {
3146 int ret;
3147
3148 if (!test_opt(sbi, ATGC))
3149 return 0;
3150 if (sbi->am.atgc_enabled)
3151 return 0;
3152 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3153 sbi->am.age_threshold)
3154 return 0;
3155
3156 ret = __f2fs_init_atgc_curseg(sbi, true);
3157 if (!ret) {
3158 sbi->am.atgc_enabled = true;
3159 f2fs_info(sbi, "reenabled age threshold GC");
3160 }
3161 return ret;
3162 }
3163
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3164 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3165 {
3166 struct curseg_info *curseg = CURSEG_I(sbi, type);
3167
3168 mutex_lock(&curseg->curseg_mutex);
3169 if (!curseg->inited)
3170 goto out;
3171
3172 if (get_valid_blocks(sbi, curseg->segno, false)) {
3173 write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3174 } else {
3175 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3176 __set_test_and_free(sbi, curseg->segno, true);
3177 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3178 }
3179 out:
3180 mutex_unlock(&curseg->curseg_mutex);
3181 }
3182
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3183 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3184 {
3185 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3186
3187 if (sbi->am.atgc_enabled)
3188 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3189 }
3190
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3191 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3192 {
3193 struct curseg_info *curseg = CURSEG_I(sbi, type);
3194
3195 mutex_lock(&curseg->curseg_mutex);
3196 if (!curseg->inited)
3197 goto out;
3198 if (get_valid_blocks(sbi, curseg->segno, false))
3199 goto out;
3200
3201 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3202 __set_test_and_inuse(sbi, curseg->segno);
3203 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3204 out:
3205 mutex_unlock(&curseg->curseg_mutex);
3206 }
3207
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3208 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3209 {
3210 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3211
3212 if (sbi->am.atgc_enabled)
3213 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3214 }
3215
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3216 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3217 int alloc_mode, unsigned long long age)
3218 {
3219 struct curseg_info *curseg = CURSEG_I(sbi, type);
3220 unsigned segno = NULL_SEGNO;
3221 unsigned short seg_type = curseg->seg_type;
3222 int i, cnt;
3223 bool reversed = false;
3224
3225 sanity_check_seg_type(sbi, seg_type);
3226
3227 /* f2fs_need_SSR() already forces to do this */
3228 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3229 alloc_mode, age, false)) {
3230 curseg->next_segno = segno;
3231 return 1;
3232 }
3233
3234 /* For node segments, let's do SSR more intensively */
3235 if (IS_NODESEG(seg_type)) {
3236 if (seg_type >= CURSEG_WARM_NODE) {
3237 reversed = true;
3238 i = CURSEG_COLD_NODE;
3239 } else {
3240 i = CURSEG_HOT_NODE;
3241 }
3242 cnt = NR_CURSEG_NODE_TYPE;
3243 } else {
3244 if (seg_type >= CURSEG_WARM_DATA) {
3245 reversed = true;
3246 i = CURSEG_COLD_DATA;
3247 } else {
3248 i = CURSEG_HOT_DATA;
3249 }
3250 cnt = NR_CURSEG_DATA_TYPE;
3251 }
3252
3253 for (; cnt-- > 0; reversed ? i-- : i++) {
3254 if (i == seg_type)
3255 continue;
3256 if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3257 alloc_mode, age, false)) {
3258 curseg->next_segno = segno;
3259 return 1;
3260 }
3261 }
3262
3263 /* find valid_blocks=0 in dirty list */
3264 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3265 segno = get_free_segment(sbi);
3266 if (segno != NULL_SEGNO) {
3267 curseg->next_segno = segno;
3268 return 1;
3269 }
3270 }
3271 return 0;
3272 }
3273
need_new_seg(struct f2fs_sb_info * sbi,int type)3274 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3275 {
3276 struct curseg_info *curseg = CURSEG_I(sbi, type);
3277
3278 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3279 curseg->seg_type == CURSEG_WARM_NODE)
3280 return true;
3281 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3282 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3283 return true;
3284 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3285 return true;
3286 return false;
3287 }
3288
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3289 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3290 unsigned int start, unsigned int end)
3291 {
3292 struct curseg_info *curseg = CURSEG_I(sbi, type);
3293 unsigned int segno;
3294 int ret = 0;
3295
3296 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3297 mutex_lock(&curseg->curseg_mutex);
3298 down_write(&SIT_I(sbi)->sentry_lock);
3299
3300 segno = CURSEG_I(sbi, type)->segno;
3301 if (segno < start || segno > end)
3302 goto unlock;
3303
3304 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3305 ret = change_curseg(sbi, type);
3306 else
3307 ret = new_curseg(sbi, type, true);
3308
3309 stat_inc_seg_type(sbi, curseg);
3310
3311 locate_dirty_segment(sbi, segno);
3312 unlock:
3313 up_write(&SIT_I(sbi)->sentry_lock);
3314
3315 if (segno != curseg->segno)
3316 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3317 type, segno, curseg->segno);
3318
3319 mutex_unlock(&curseg->curseg_mutex);
3320 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3321 return ret;
3322 }
3323
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3324 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3325 bool new_sec, bool force)
3326 {
3327 struct curseg_info *curseg = CURSEG_I(sbi, type);
3328 unsigned int old_segno;
3329 int err = 0;
3330
3331 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3332 goto allocate;
3333
3334 if (!force && curseg->inited &&
3335 !curseg->next_blkoff &&
3336 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3337 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3338 return 0;
3339
3340 allocate:
3341 old_segno = curseg->segno;
3342 err = new_curseg(sbi, type, true);
3343 if (err)
3344 return err;
3345 stat_inc_seg_type(sbi, curseg);
3346 locate_dirty_segment(sbi, old_segno);
3347 return 0;
3348 }
3349
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3350 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3351 {
3352 int ret;
3353
3354 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3355 down_write(&SIT_I(sbi)->sentry_lock);
3356 ret = __allocate_new_segment(sbi, type, true, force);
3357 up_write(&SIT_I(sbi)->sentry_lock);
3358 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3359
3360 return ret;
3361 }
3362
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3363 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3364 {
3365 int err;
3366 bool gc_required = true;
3367
3368 retry:
3369 f2fs_lock_op(sbi);
3370 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3371 f2fs_unlock_op(sbi);
3372
3373 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3374 f2fs_down_write(&sbi->gc_lock);
3375 err = f2fs_gc_range(sbi, 0, sbi->first_seq_zone_segno - 1,
3376 true, ZONED_PIN_SEC_REQUIRED_COUNT);
3377 f2fs_up_write(&sbi->gc_lock);
3378
3379 gc_required = false;
3380 if (!err)
3381 goto retry;
3382 }
3383
3384 return err;
3385 }
3386
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3387 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3388 {
3389 int i;
3390 int err = 0;
3391
3392 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3393 down_write(&SIT_I(sbi)->sentry_lock);
3394 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3395 err += __allocate_new_segment(sbi, i, false, false);
3396 up_write(&SIT_I(sbi)->sentry_lock);
3397 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3398
3399 return err;
3400 }
3401
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3402 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3403 struct cp_control *cpc)
3404 {
3405 __u64 trim_start = cpc->trim_start;
3406 bool has_candidate = false;
3407
3408 down_write(&SIT_I(sbi)->sentry_lock);
3409 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3410 if (add_discard_addrs(sbi, cpc, true)) {
3411 has_candidate = true;
3412 break;
3413 }
3414 }
3415 up_write(&SIT_I(sbi)->sentry_lock);
3416
3417 cpc->trim_start = trim_start;
3418 return has_candidate;
3419 }
3420
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3421 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3422 struct discard_policy *dpolicy,
3423 unsigned int start, unsigned int end)
3424 {
3425 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3426 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3427 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3428 struct discard_cmd *dc;
3429 struct blk_plug plug;
3430 int issued;
3431 unsigned int trimmed = 0;
3432
3433 next:
3434 issued = 0;
3435
3436 mutex_lock(&dcc->cmd_lock);
3437 if (unlikely(dcc->rbtree_check))
3438 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3439
3440 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3441 &prev_dc, &next_dc, &insert_p, &insert_parent);
3442 if (!dc)
3443 dc = next_dc;
3444
3445 blk_start_plug(&plug);
3446
3447 while (dc && dc->di.lstart <= end) {
3448 struct rb_node *node;
3449 int err = 0;
3450
3451 if (dc->di.len < dpolicy->granularity)
3452 goto skip;
3453
3454 if (dc->state != D_PREP) {
3455 list_move_tail(&dc->list, &dcc->fstrim_list);
3456 goto skip;
3457 }
3458
3459 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3460
3461 if (issued >= dpolicy->max_requests) {
3462 start = dc->di.lstart + dc->di.len;
3463
3464 if (err)
3465 __remove_discard_cmd(sbi, dc);
3466
3467 blk_finish_plug(&plug);
3468 mutex_unlock(&dcc->cmd_lock);
3469 trimmed += __wait_all_discard_cmd(sbi, NULL);
3470 f2fs_schedule_timeout(DEFAULT_DISCARD_INTERVAL);
3471 goto next;
3472 }
3473 skip:
3474 node = rb_next(&dc->rb_node);
3475 if (err)
3476 __remove_discard_cmd(sbi, dc);
3477 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3478
3479 if (fatal_signal_pending(current))
3480 break;
3481 }
3482
3483 blk_finish_plug(&plug);
3484 mutex_unlock(&dcc->cmd_lock);
3485
3486 return trimmed;
3487 }
3488
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3489 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3490 {
3491 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3492 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3493 unsigned int start_segno, end_segno;
3494 block_t start_block, end_block;
3495 struct cp_control cpc;
3496 struct discard_policy dpolicy;
3497 unsigned long long trimmed = 0;
3498 int err = 0;
3499 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3500
3501 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3502 return -EINVAL;
3503
3504 if (end < MAIN_BLKADDR(sbi))
3505 goto out;
3506
3507 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3508 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3509 return -EFSCORRUPTED;
3510 }
3511
3512 /* start/end segment number in main_area */
3513 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3514 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3515 GET_SEGNO(sbi, end);
3516 if (need_align) {
3517 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3518 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3519 }
3520
3521 cpc.reason = CP_DISCARD;
3522 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3523 cpc.trim_start = start_segno;
3524 cpc.trim_end = end_segno;
3525
3526 if (sbi->discard_blks == 0)
3527 goto out;
3528
3529 f2fs_down_write(&sbi->gc_lock);
3530 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3531 err = f2fs_write_checkpoint(sbi, &cpc);
3532 f2fs_up_write(&sbi->gc_lock);
3533 if (err)
3534 goto out;
3535
3536 /*
3537 * We filed discard candidates, but actually we don't need to wait for
3538 * all of them, since they'll be issued in idle time along with runtime
3539 * discard option. User configuration looks like using runtime discard
3540 * or periodic fstrim instead of it.
3541 */
3542 if (f2fs_realtime_discard_enable(sbi))
3543 goto out;
3544
3545 start_block = START_BLOCK(sbi, start_segno);
3546 end_block = START_BLOCK(sbi, end_segno + 1);
3547
3548 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3549 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3550 start_block, end_block);
3551
3552 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3553 start_block, end_block);
3554 out:
3555 if (!err)
3556 range->len = F2FS_BLK_TO_BYTES(trimmed);
3557 return err;
3558 }
3559
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3560 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3561 {
3562 if (F2FS_OPTION(sbi).active_logs == 2)
3563 return CURSEG_HOT_DATA;
3564 else if (F2FS_OPTION(sbi).active_logs == 4)
3565 return CURSEG_COLD_DATA;
3566
3567 /* active_log == 6 */
3568 switch (hint) {
3569 case WRITE_LIFE_SHORT:
3570 return CURSEG_HOT_DATA;
3571 case WRITE_LIFE_EXTREME:
3572 return CURSEG_COLD_DATA;
3573 default:
3574 return CURSEG_WARM_DATA;
3575 }
3576 }
3577
3578 /*
3579 * This returns write hints for each segment type. This hints will be
3580 * passed down to block layer as below by default.
3581 *
3582 * User F2FS Block
3583 * ---- ---- -----
3584 * META WRITE_LIFE_NONE|REQ_META
3585 * HOT_NODE WRITE_LIFE_NONE
3586 * WARM_NODE WRITE_LIFE_MEDIUM
3587 * COLD_NODE WRITE_LIFE_LONG
3588 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3589 * extension list " "
3590 *
3591 * -- buffered io
3592 * COLD_DATA WRITE_LIFE_EXTREME
3593 * HOT_DATA WRITE_LIFE_SHORT
3594 * WARM_DATA WRITE_LIFE_NOT_SET
3595 *
3596 * -- direct io
3597 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3598 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3599 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3600 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3601 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3602 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3603 */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3604 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3605 enum page_type type, enum temp_type temp)
3606 {
3607 switch (type) {
3608 case DATA:
3609 switch (temp) {
3610 case WARM:
3611 return WRITE_LIFE_NOT_SET;
3612 case HOT:
3613 return WRITE_LIFE_SHORT;
3614 case COLD:
3615 return WRITE_LIFE_EXTREME;
3616 default:
3617 return WRITE_LIFE_NONE;
3618 }
3619 case NODE:
3620 switch (temp) {
3621 case WARM:
3622 return WRITE_LIFE_MEDIUM;
3623 case HOT:
3624 return WRITE_LIFE_NONE;
3625 case COLD:
3626 return WRITE_LIFE_LONG;
3627 default:
3628 return WRITE_LIFE_NONE;
3629 }
3630 case META:
3631 return WRITE_LIFE_NONE;
3632 default:
3633 return WRITE_LIFE_NONE;
3634 }
3635 }
3636
__get_segment_type_2(struct f2fs_io_info * fio)3637 static int __get_segment_type_2(struct f2fs_io_info *fio)
3638 {
3639 if (fio->type == DATA)
3640 return CURSEG_HOT_DATA;
3641 else
3642 return CURSEG_HOT_NODE;
3643 }
3644
__get_segment_type_4(struct f2fs_io_info * fio)3645 static int __get_segment_type_4(struct f2fs_io_info *fio)
3646 {
3647 if (fio->type == DATA) {
3648 struct inode *inode = fio_inode(fio);
3649
3650 if (S_ISDIR(inode->i_mode))
3651 return CURSEG_HOT_DATA;
3652 else
3653 return CURSEG_COLD_DATA;
3654 } else {
3655 if (IS_DNODE(fio->folio) && is_cold_node(fio->folio))
3656 return CURSEG_WARM_NODE;
3657 else
3658 return CURSEG_COLD_NODE;
3659 }
3660 }
3661
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3662 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3663 {
3664 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665 struct extent_info ei = {};
3666
3667 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3668 if (!ei.age)
3669 return NO_CHECK_TYPE;
3670 if (ei.age <= sbi->hot_data_age_threshold)
3671 return CURSEG_HOT_DATA;
3672 if (ei.age <= sbi->warm_data_age_threshold)
3673 return CURSEG_WARM_DATA;
3674 return CURSEG_COLD_DATA;
3675 }
3676 return NO_CHECK_TYPE;
3677 }
3678
__get_segment_type_6(struct f2fs_io_info * fio)3679 static int __get_segment_type_6(struct f2fs_io_info *fio)
3680 {
3681 if (fio->type == DATA) {
3682 struct inode *inode = fio_inode(fio);
3683 int type;
3684
3685 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3686 return CURSEG_COLD_DATA_PINNED;
3687
3688 if (page_private_gcing(fio->page)) {
3689 if (fio->sbi->am.atgc_enabled &&
3690 (fio->io_type == FS_DATA_IO) &&
3691 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3692 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3693 !is_inode_flag_set(inode, FI_OPU_WRITE))
3694 return CURSEG_ALL_DATA_ATGC;
3695 else
3696 return CURSEG_COLD_DATA;
3697 }
3698 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3699 return CURSEG_COLD_DATA;
3700
3701 type = __get_age_segment_type(inode, fio->folio->index);
3702 if (type != NO_CHECK_TYPE)
3703 return type;
3704
3705 if (file_is_hot(inode) ||
3706 is_inode_flag_set(inode, FI_HOT_DATA) ||
3707 f2fs_is_cow_file(inode) ||
3708 is_inode_flag_set(inode, FI_NEED_IPU))
3709 return CURSEG_HOT_DATA;
3710 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3711 inode->i_write_hint);
3712 } else {
3713 if (IS_DNODE(fio->folio))
3714 return is_cold_node(fio->folio) ? CURSEG_WARM_NODE :
3715 CURSEG_HOT_NODE;
3716 return CURSEG_COLD_NODE;
3717 }
3718 }
3719
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3720 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3721 enum log_type type)
3722 {
3723 struct curseg_info *curseg = CURSEG_I(sbi, type);
3724 enum temp_type temp = COLD;
3725
3726 switch (curseg->seg_type) {
3727 case CURSEG_HOT_NODE:
3728 case CURSEG_HOT_DATA:
3729 temp = HOT;
3730 break;
3731 case CURSEG_WARM_NODE:
3732 case CURSEG_WARM_DATA:
3733 temp = WARM;
3734 break;
3735 case CURSEG_COLD_NODE:
3736 case CURSEG_COLD_DATA:
3737 temp = COLD;
3738 break;
3739 default:
3740 f2fs_bug_on(sbi, 1);
3741 }
3742
3743 return temp;
3744 }
3745
__get_segment_type(struct f2fs_io_info * fio)3746 static int __get_segment_type(struct f2fs_io_info *fio)
3747 {
3748 enum log_type type = CURSEG_HOT_DATA;
3749
3750 switch (F2FS_OPTION(fio->sbi).active_logs) {
3751 case 2:
3752 type = __get_segment_type_2(fio);
3753 break;
3754 case 4:
3755 type = __get_segment_type_4(fio);
3756 break;
3757 case 6:
3758 type = __get_segment_type_6(fio);
3759 break;
3760 default:
3761 f2fs_bug_on(fio->sbi, true);
3762 }
3763
3764 fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3765
3766 return type;
3767 }
3768
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3769 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3770 struct curseg_info *seg)
3771 {
3772 /* To allocate block chunks in different sizes, use random number */
3773 if (--seg->fragment_remained_chunk > 0)
3774 return;
3775
3776 seg->fragment_remained_chunk =
3777 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3778 seg->next_blkoff +=
3779 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3780 }
3781
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct folio * folio,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3782 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3783 block_t old_blkaddr, block_t *new_blkaddr,
3784 struct f2fs_summary *sum, int type,
3785 struct f2fs_io_info *fio)
3786 {
3787 struct sit_info *sit_i = SIT_I(sbi);
3788 struct curseg_info *curseg = CURSEG_I(sbi, type);
3789 unsigned long long old_mtime;
3790 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3791 struct seg_entry *se = NULL;
3792 bool segment_full = false;
3793 int ret = 0;
3794
3795 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3796
3797 mutex_lock(&curseg->curseg_mutex);
3798 down_write(&sit_i->sentry_lock);
3799
3800 if (curseg->segno == NULL_SEGNO) {
3801 ret = -ENOSPC;
3802 goto out_err;
3803 }
3804
3805 if (from_gc) {
3806 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3807 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3808 sanity_check_seg_type(sbi, se->type);
3809 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3810 }
3811 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3812
3813 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3814
3815 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3816
3817 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3818 if (curseg->alloc_type == SSR) {
3819 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3820 } else {
3821 curseg->next_blkoff++;
3822 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3823 f2fs_randomize_chunk(sbi, curseg);
3824 }
3825 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3826 segment_full = true;
3827 stat_inc_block_count(sbi, curseg);
3828
3829 if (from_gc) {
3830 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3831 } else {
3832 update_segment_mtime(sbi, old_blkaddr, 0);
3833 old_mtime = 0;
3834 }
3835 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3836
3837 /*
3838 * SIT information should be updated before segment allocation,
3839 * since SSR needs latest valid block information.
3840 */
3841 update_sit_entry(sbi, *new_blkaddr, 1);
3842 update_sit_entry(sbi, old_blkaddr, -1);
3843
3844 /*
3845 * If the current segment is full, flush it out and replace it with a
3846 * new segment.
3847 */
3848 if (segment_full) {
3849 if (type == CURSEG_COLD_DATA_PINNED &&
3850 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3851 write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3852 reset_curseg_fields(curseg);
3853 goto skip_new_segment;
3854 }
3855
3856 if (from_gc) {
3857 ret = get_atssr_segment(sbi, type, se->type,
3858 AT_SSR, se->mtime);
3859 } else {
3860 if (need_new_seg(sbi, type))
3861 ret = new_curseg(sbi, type, false);
3862 else
3863 ret = change_curseg(sbi, type);
3864 stat_inc_seg_type(sbi, curseg);
3865 }
3866
3867 if (ret)
3868 goto out_err;
3869 }
3870
3871 skip_new_segment:
3872 /*
3873 * segment dirty status should be updated after segment allocation,
3874 * so we just need to update status only one time after previous
3875 * segment being closed.
3876 */
3877 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3878 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3879
3880 if (IS_DATASEG(curseg->seg_type)) {
3881 unsigned long long new_val;
3882
3883 new_val = atomic64_inc_return(&sbi->allocated_data_blocks);
3884 if (unlikely(new_val == ULLONG_MAX))
3885 atomic64_set(&sbi->allocated_data_blocks, 0);
3886 }
3887
3888 up_write(&sit_i->sentry_lock);
3889
3890 if (folio && IS_NODESEG(curseg->seg_type)) {
3891 fill_node_footer_blkaddr(folio, NEXT_FREE_BLKADDR(sbi, curseg));
3892
3893 f2fs_inode_chksum_set(sbi, folio);
3894 }
3895
3896 if (fio) {
3897 struct f2fs_bio_info *io;
3898
3899 INIT_LIST_HEAD(&fio->list);
3900 fio->in_list = 1;
3901 io = sbi->write_io[fio->type] + fio->temp;
3902 spin_lock(&io->io_lock);
3903 list_add_tail(&fio->list, &io->io_list);
3904 spin_unlock(&io->io_lock);
3905 }
3906
3907 mutex_unlock(&curseg->curseg_mutex);
3908 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3909 return 0;
3910
3911 out_err:
3912 *new_blkaddr = NULL_ADDR;
3913 up_write(&sit_i->sentry_lock);
3914 mutex_unlock(&curseg->curseg_mutex);
3915 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3916 return ret;
3917 }
3918
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3919 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3920 block_t blkaddr, unsigned int blkcnt)
3921 {
3922 if (!f2fs_is_multi_device(sbi))
3923 return;
3924
3925 while (1) {
3926 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3927 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3928
3929 /* update device state for fsync */
3930 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3931
3932 /* update device state for checkpoint */
3933 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3934 spin_lock(&sbi->dev_lock);
3935 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3936 spin_unlock(&sbi->dev_lock);
3937 }
3938
3939 if (blkcnt <= blks)
3940 break;
3941 blkcnt -= blks;
3942 blkaddr += blks;
3943 }
3944 }
3945
log_type_to_seg_type(enum log_type type)3946 static int log_type_to_seg_type(enum log_type type)
3947 {
3948 int seg_type = CURSEG_COLD_DATA;
3949
3950 switch (type) {
3951 case CURSEG_HOT_DATA:
3952 case CURSEG_WARM_DATA:
3953 case CURSEG_COLD_DATA:
3954 case CURSEG_HOT_NODE:
3955 case CURSEG_WARM_NODE:
3956 case CURSEG_COLD_NODE:
3957 seg_type = (int)type;
3958 break;
3959 case CURSEG_COLD_DATA_PINNED:
3960 case CURSEG_ALL_DATA_ATGC:
3961 seg_type = CURSEG_COLD_DATA;
3962 break;
3963 default:
3964 break;
3965 }
3966 return seg_type;
3967 }
3968
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3969 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3970 {
3971 struct folio *folio = fio->folio;
3972 enum log_type type = __get_segment_type(fio);
3973 int seg_type = log_type_to_seg_type(type);
3974 bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3975 seg_type == CURSEG_COLD_DATA);
3976 int err;
3977
3978 if (keep_order)
3979 f2fs_down_read(&fio->sbi->io_order_lock);
3980
3981 err = f2fs_allocate_data_block(fio->sbi, folio, fio->old_blkaddr,
3982 &fio->new_blkaddr, sum, type, fio);
3983 if (unlikely(err)) {
3984 f2fs_err_ratelimited(fio->sbi,
3985 "%s Failed to allocate data block, ino:%u, index:%lu, type:%d, old_blkaddr:0x%x, new_blkaddr:0x%x, err:%d",
3986 __func__, fio->ino, folio->index, type,
3987 fio->old_blkaddr, fio->new_blkaddr, err);
3988 if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3989 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3990 folio_end_writeback(folio);
3991 if (f2fs_in_warm_node_list(fio->sbi, folio))
3992 f2fs_del_fsync_node_entry(fio->sbi, folio);
3993 f2fs_bug_on(fio->sbi, !is_set_ckpt_flags(fio->sbi,
3994 CP_ERROR_FLAG));
3995 goto out;
3996 }
3997
3998 f2fs_bug_on(fio->sbi, !f2fs_is_valid_blkaddr_raw(fio->sbi,
3999 fio->new_blkaddr, DATA_GENERIC_ENHANCE));
4000
4001 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
4002 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
4003
4004 /* writeout dirty page into bdev */
4005 f2fs_submit_page_write(fio);
4006
4007 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
4008 out:
4009 if (keep_order)
4010 f2fs_up_read(&fio->sbi->io_order_lock);
4011 }
4012
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)4013 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
4014 enum iostat_type io_type)
4015 {
4016 struct f2fs_io_info fio = {
4017 .sbi = sbi,
4018 .type = META,
4019 .temp = HOT,
4020 .op = REQ_OP_WRITE,
4021 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
4022 .old_blkaddr = folio->index,
4023 .new_blkaddr = folio->index,
4024 .folio = folio,
4025 .encrypted_page = NULL,
4026 .in_list = 0,
4027 };
4028
4029 if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
4030 fio.op_flags &= ~REQ_META;
4031
4032 folio_start_writeback(folio);
4033 f2fs_submit_page_write(&fio);
4034
4035 stat_inc_meta_count(sbi, folio->index);
4036 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
4037 }
4038
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)4039 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
4040 {
4041 struct f2fs_summary sum;
4042
4043 set_summary(&sum, nid, 0, 0);
4044 do_write_page(&sum, fio);
4045
4046 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
4047 }
4048
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4049 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4050 struct f2fs_io_info *fio)
4051 {
4052 struct f2fs_sb_info *sbi = fio->sbi;
4053 struct f2fs_summary sum;
4054
4055 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4056 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4057 f2fs_update_age_extent_cache(dn);
4058 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4059 do_write_page(&sum, fio);
4060 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4061
4062 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4063 }
4064
f2fs_inplace_write_data(struct f2fs_io_info * fio)4065 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4066 {
4067 int err;
4068 struct f2fs_sb_info *sbi = fio->sbi;
4069 unsigned int segno;
4070
4071 fio->new_blkaddr = fio->old_blkaddr;
4072 /* i/o temperature is needed for passing down write hints */
4073 __get_segment_type(fio);
4074
4075 segno = GET_SEGNO(sbi, fio->new_blkaddr);
4076
4077 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4078 set_sbi_flag(sbi, SBI_NEED_FSCK);
4079 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4080 __func__, segno);
4081 err = -EFSCORRUPTED;
4082 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4083 goto drop_bio;
4084 }
4085
4086 if (f2fs_cp_error(sbi)) {
4087 err = -EIO;
4088 goto drop_bio;
4089 }
4090
4091 if (fio->meta_gc)
4092 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4093
4094 stat_inc_inplace_blocks(fio->sbi);
4095
4096 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4097 err = f2fs_merge_page_bio(fio);
4098 else
4099 err = f2fs_submit_page_bio(fio);
4100 if (!err) {
4101 f2fs_update_device_state(fio->sbi, fio->ino,
4102 fio->new_blkaddr, 1);
4103 f2fs_update_iostat(fio->sbi, fio_inode(fio),
4104 fio->io_type, F2FS_BLKSIZE);
4105 }
4106
4107 return err;
4108 drop_bio:
4109 if (fio->bio && *(fio->bio)) {
4110 struct bio *bio = *(fio->bio);
4111
4112 bio->bi_status = BLK_STS_IOERR;
4113 bio_endio(bio);
4114 *(fio->bio) = NULL;
4115 }
4116 return err;
4117 }
4118
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4119 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4120 unsigned int segno)
4121 {
4122 int i;
4123
4124 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4125 if (CURSEG_I(sbi, i)->segno == segno)
4126 break;
4127 }
4128 return i;
4129 }
4130
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4131 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4132 block_t old_blkaddr, block_t new_blkaddr,
4133 bool recover_curseg, bool recover_newaddr,
4134 bool from_gc)
4135 {
4136 struct sit_info *sit_i = SIT_I(sbi);
4137 struct curseg_info *curseg;
4138 unsigned int segno, old_cursegno;
4139 struct seg_entry *se;
4140 int type;
4141 unsigned short old_blkoff;
4142 unsigned char old_alloc_type;
4143
4144 segno = GET_SEGNO(sbi, new_blkaddr);
4145 se = get_seg_entry(sbi, segno);
4146 type = se->type;
4147
4148 f2fs_down_write(&SM_I(sbi)->curseg_lock);
4149
4150 if (!recover_curseg) {
4151 /* for recovery flow */
4152 if (se->valid_blocks == 0 && !is_curseg(sbi, segno)) {
4153 if (old_blkaddr == NULL_ADDR)
4154 type = CURSEG_COLD_DATA;
4155 else
4156 type = CURSEG_WARM_DATA;
4157 }
4158 } else {
4159 if (is_curseg(sbi, segno)) {
4160 /* se->type is volatile as SSR allocation */
4161 type = __f2fs_get_curseg(sbi, segno);
4162 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4163 } else {
4164 type = CURSEG_WARM_DATA;
4165 }
4166 }
4167
4168 curseg = CURSEG_I(sbi, type);
4169 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4170
4171 mutex_lock(&curseg->curseg_mutex);
4172 down_write(&sit_i->sentry_lock);
4173
4174 old_cursegno = curseg->segno;
4175 old_blkoff = curseg->next_blkoff;
4176 old_alloc_type = curseg->alloc_type;
4177
4178 /* change the current segment */
4179 if (segno != curseg->segno) {
4180 curseg->next_segno = segno;
4181 if (change_curseg(sbi, type))
4182 goto out_unlock;
4183 }
4184
4185 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4186 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4187
4188 if (!recover_curseg || recover_newaddr) {
4189 if (!from_gc)
4190 update_segment_mtime(sbi, new_blkaddr, 0);
4191 update_sit_entry(sbi, new_blkaddr, 1);
4192 }
4193 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4194 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4195 if (!from_gc)
4196 update_segment_mtime(sbi, old_blkaddr, 0);
4197 update_sit_entry(sbi, old_blkaddr, -1);
4198 }
4199
4200 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4201 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4202
4203 locate_dirty_segment(sbi, old_cursegno);
4204
4205 if (recover_curseg) {
4206 if (old_cursegno != curseg->segno) {
4207 curseg->next_segno = old_cursegno;
4208 if (change_curseg(sbi, type))
4209 goto out_unlock;
4210 }
4211 curseg->next_blkoff = old_blkoff;
4212 curseg->alloc_type = old_alloc_type;
4213 }
4214
4215 out_unlock:
4216 up_write(&sit_i->sentry_lock);
4217 mutex_unlock(&curseg->curseg_mutex);
4218 f2fs_up_write(&SM_I(sbi)->curseg_lock);
4219 }
4220
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4221 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4222 block_t old_addr, block_t new_addr,
4223 unsigned char version, bool recover_curseg,
4224 bool recover_newaddr)
4225 {
4226 struct f2fs_summary sum;
4227
4228 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4229
4230 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4231 recover_curseg, recover_newaddr, false);
4232
4233 f2fs_update_data_blkaddr(dn, new_addr);
4234 }
4235
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4236 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4237 bool ordered, bool locked)
4238 {
4239 if (folio_test_writeback(folio)) {
4240 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4241
4242 /* submit cached LFS IO */
4243 f2fs_submit_merged_write_cond(sbi, NULL, folio, 0, type);
4244 /* submit cached IPU IO */
4245 f2fs_submit_merged_ipu_write(sbi, NULL, folio);
4246 if (ordered) {
4247 folio_wait_writeback(folio);
4248 f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4249 } else {
4250 folio_wait_stable(folio);
4251 }
4252 }
4253 }
4254
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4255 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4256 {
4257 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4258 struct folio *cfolio;
4259
4260 if (!f2fs_meta_inode_gc_required(inode))
4261 return;
4262
4263 if (!__is_valid_data_blkaddr(blkaddr))
4264 return;
4265
4266 cfolio = filemap_lock_folio(META_MAPPING(sbi), blkaddr);
4267 if (!IS_ERR(cfolio)) {
4268 f2fs_folio_wait_writeback(cfolio, DATA, true, true);
4269 f2fs_folio_put(cfolio, true);
4270 }
4271 }
4272
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4273 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4274 block_t len)
4275 {
4276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4277 block_t i;
4278
4279 if (!f2fs_meta_inode_gc_required(inode))
4280 return;
4281
4282 for (i = 0; i < len; i++)
4283 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4284
4285 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4286 }
4287
read_compacted_summaries(struct f2fs_sb_info * sbi)4288 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4289 {
4290 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4291 struct curseg_info *seg_i;
4292 unsigned char *kaddr;
4293 struct folio *folio;
4294 block_t start;
4295 int i, j, offset;
4296
4297 start = start_sum_block(sbi);
4298
4299 folio = f2fs_get_meta_folio(sbi, start++);
4300 if (IS_ERR(folio))
4301 return PTR_ERR(folio);
4302 kaddr = folio_address(folio);
4303
4304 /* Step 1: restore nat cache */
4305 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4306 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4307
4308 /* Step 2: restore sit cache */
4309 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4310 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4311 offset = 2 * SUM_JOURNAL_SIZE;
4312
4313 /* Step 3: restore summary entries */
4314 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4315 unsigned short blk_off;
4316 unsigned int segno;
4317
4318 seg_i = CURSEG_I(sbi, i);
4319 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4320 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4321 seg_i->next_segno = segno;
4322 reset_curseg(sbi, i, 0);
4323 seg_i->alloc_type = ckpt->alloc_type[i];
4324 seg_i->next_blkoff = blk_off;
4325
4326 if (seg_i->alloc_type == SSR)
4327 blk_off = BLKS_PER_SEG(sbi);
4328
4329 for (j = 0; j < blk_off; j++) {
4330 struct f2fs_summary *s;
4331
4332 s = (struct f2fs_summary *)(kaddr + offset);
4333 seg_i->sum_blk->entries[j] = *s;
4334 offset += SUMMARY_SIZE;
4335 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4336 SUM_FOOTER_SIZE)
4337 continue;
4338
4339 f2fs_folio_put(folio, true);
4340
4341 folio = f2fs_get_meta_folio(sbi, start++);
4342 if (IS_ERR(folio))
4343 return PTR_ERR(folio);
4344 kaddr = folio_address(folio);
4345 offset = 0;
4346 }
4347 }
4348 f2fs_folio_put(folio, true);
4349 return 0;
4350 }
4351
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4352 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4353 {
4354 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4355 struct f2fs_summary_block *sum;
4356 struct curseg_info *curseg;
4357 struct folio *new;
4358 unsigned short blk_off;
4359 unsigned int segno = 0;
4360 block_t blk_addr = 0;
4361 int err = 0;
4362
4363 /* get segment number and block addr */
4364 if (IS_DATASEG(type)) {
4365 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4366 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4367 CURSEG_HOT_DATA]);
4368 if (__exist_node_summaries(sbi))
4369 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4370 else
4371 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4372 } else {
4373 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4374 CURSEG_HOT_NODE]);
4375 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4376 CURSEG_HOT_NODE]);
4377 if (__exist_node_summaries(sbi))
4378 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4379 type - CURSEG_HOT_NODE);
4380 else
4381 blk_addr = GET_SUM_BLOCK(sbi, segno);
4382 }
4383
4384 new = f2fs_get_meta_folio(sbi, blk_addr);
4385 if (IS_ERR(new))
4386 return PTR_ERR(new);
4387 sum = folio_address(new);
4388
4389 if (IS_NODESEG(type)) {
4390 if (__exist_node_summaries(sbi)) {
4391 struct f2fs_summary *ns = &sum->entries[0];
4392 int i;
4393
4394 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4395 ns->version = 0;
4396 ns->ofs_in_node = 0;
4397 }
4398 } else {
4399 err = f2fs_restore_node_summary(sbi, segno, sum);
4400 if (err)
4401 goto out;
4402 }
4403 }
4404
4405 /* set uncompleted segment to curseg */
4406 curseg = CURSEG_I(sbi, type);
4407 mutex_lock(&curseg->curseg_mutex);
4408
4409 /* update journal info */
4410 down_write(&curseg->journal_rwsem);
4411 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4412 up_write(&curseg->journal_rwsem);
4413
4414 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4415 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4416 curseg->next_segno = segno;
4417 reset_curseg(sbi, type, 0);
4418 curseg->alloc_type = ckpt->alloc_type[type];
4419 curseg->next_blkoff = blk_off;
4420 mutex_unlock(&curseg->curseg_mutex);
4421 out:
4422 f2fs_folio_put(new, true);
4423 return err;
4424 }
4425
restore_curseg_summaries(struct f2fs_sb_info * sbi)4426 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4427 {
4428 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4429 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4430 int type = CURSEG_HOT_DATA;
4431 int err;
4432
4433 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4434 int npages = f2fs_npages_for_summary_flush(sbi, true);
4435
4436 if (npages >= 2)
4437 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4438 META_CP, true);
4439
4440 /* restore for compacted data summary */
4441 err = read_compacted_summaries(sbi);
4442 if (err)
4443 return err;
4444 type = CURSEG_HOT_NODE;
4445 }
4446
4447 if (__exist_node_summaries(sbi))
4448 f2fs_ra_meta_pages(sbi,
4449 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4450 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4451
4452 for (; type <= CURSEG_COLD_NODE; type++) {
4453 err = read_normal_summaries(sbi, type);
4454 if (err)
4455 return err;
4456 }
4457
4458 /* sanity check for summary blocks */
4459 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4460 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4461 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4462 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4463 return -EINVAL;
4464 }
4465
4466 return 0;
4467 }
4468
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4469 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4470 {
4471 struct folio *folio;
4472 unsigned char *kaddr;
4473 struct f2fs_summary *summary;
4474 struct curseg_info *seg_i;
4475 int written_size = 0;
4476 int i, j;
4477
4478 folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4479 kaddr = folio_address(folio);
4480 memset(kaddr, 0, PAGE_SIZE);
4481
4482 /* Step 1: write nat cache */
4483 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4484 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4485 written_size += SUM_JOURNAL_SIZE;
4486
4487 /* Step 2: write sit cache */
4488 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4489 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4490 written_size += SUM_JOURNAL_SIZE;
4491
4492 /* Step 3: write summary entries */
4493 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4494 seg_i = CURSEG_I(sbi, i);
4495 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4496 if (!folio) {
4497 folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4498 kaddr = folio_address(folio);
4499 memset(kaddr, 0, PAGE_SIZE);
4500 written_size = 0;
4501 }
4502 summary = (struct f2fs_summary *)(kaddr + written_size);
4503 *summary = seg_i->sum_blk->entries[j];
4504 written_size += SUMMARY_SIZE;
4505
4506 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4507 SUM_FOOTER_SIZE)
4508 continue;
4509
4510 folio_mark_dirty(folio);
4511 f2fs_folio_put(folio, true);
4512 folio = NULL;
4513 }
4514 }
4515 if (folio) {
4516 folio_mark_dirty(folio);
4517 f2fs_folio_put(folio, true);
4518 }
4519 }
4520
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4521 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4522 block_t blkaddr, int type)
4523 {
4524 int i, end;
4525
4526 if (IS_DATASEG(type))
4527 end = type + NR_CURSEG_DATA_TYPE;
4528 else
4529 end = type + NR_CURSEG_NODE_TYPE;
4530
4531 for (i = type; i < end; i++)
4532 write_current_sum_page(sbi, i, blkaddr + (i - type));
4533 }
4534
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4535 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4536 {
4537 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4538 write_compacted_summaries(sbi, start_blk);
4539 else
4540 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4541 }
4542
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4543 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4544 {
4545 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4546 }
4547
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4548 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4549 unsigned int val, int alloc)
4550 {
4551 int i;
4552
4553 if (type == NAT_JOURNAL) {
4554 for (i = 0; i < nats_in_cursum(journal); i++) {
4555 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4556 return i;
4557 }
4558 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4559 return update_nats_in_cursum(journal, 1);
4560 } else if (type == SIT_JOURNAL) {
4561 for (i = 0; i < sits_in_cursum(journal); i++)
4562 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4563 return i;
4564 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4565 return update_sits_in_cursum(journal, 1);
4566 }
4567 return -1;
4568 }
4569
get_current_sit_folio(struct f2fs_sb_info * sbi,unsigned int segno)4570 static struct folio *get_current_sit_folio(struct f2fs_sb_info *sbi,
4571 unsigned int segno)
4572 {
4573 return f2fs_get_meta_folio(sbi, current_sit_addr(sbi, segno));
4574 }
4575
get_next_sit_folio(struct f2fs_sb_info * sbi,unsigned int start)4576 static struct folio *get_next_sit_folio(struct f2fs_sb_info *sbi,
4577 unsigned int start)
4578 {
4579 struct sit_info *sit_i = SIT_I(sbi);
4580 struct folio *folio;
4581 pgoff_t src_off, dst_off;
4582
4583 src_off = current_sit_addr(sbi, start);
4584 dst_off = next_sit_addr(sbi, src_off);
4585
4586 folio = f2fs_grab_meta_folio(sbi, dst_off);
4587 seg_info_to_sit_folio(sbi, folio, start);
4588
4589 folio_mark_dirty(folio);
4590 set_to_next_sit(sit_i, start);
4591
4592 return folio;
4593 }
4594
grab_sit_entry_set(void)4595 static struct sit_entry_set *grab_sit_entry_set(void)
4596 {
4597 struct sit_entry_set *ses =
4598 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4599 GFP_NOFS, true, NULL);
4600
4601 ses->entry_cnt = 0;
4602 INIT_LIST_HEAD(&ses->set_list);
4603 return ses;
4604 }
4605
release_sit_entry_set(struct sit_entry_set * ses)4606 static void release_sit_entry_set(struct sit_entry_set *ses)
4607 {
4608 list_del(&ses->set_list);
4609 kmem_cache_free(sit_entry_set_slab, ses);
4610 }
4611
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4612 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4613 struct list_head *head)
4614 {
4615 struct sit_entry_set *next = ses;
4616
4617 if (list_is_last(&ses->set_list, head))
4618 return;
4619
4620 list_for_each_entry_continue(next, head, set_list)
4621 if (ses->entry_cnt <= next->entry_cnt) {
4622 list_move_tail(&ses->set_list, &next->set_list);
4623 return;
4624 }
4625
4626 list_move_tail(&ses->set_list, head);
4627 }
4628
add_sit_entry(unsigned int segno,struct list_head * head)4629 static void add_sit_entry(unsigned int segno, struct list_head *head)
4630 {
4631 struct sit_entry_set *ses;
4632 unsigned int start_segno = START_SEGNO(segno);
4633
4634 list_for_each_entry(ses, head, set_list) {
4635 if (ses->start_segno == start_segno) {
4636 ses->entry_cnt++;
4637 adjust_sit_entry_set(ses, head);
4638 return;
4639 }
4640 }
4641
4642 ses = grab_sit_entry_set();
4643
4644 ses->start_segno = start_segno;
4645 ses->entry_cnt++;
4646 list_add(&ses->set_list, head);
4647 }
4648
add_sits_in_set(struct f2fs_sb_info * sbi)4649 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4650 {
4651 struct f2fs_sm_info *sm_info = SM_I(sbi);
4652 struct list_head *set_list = &sm_info->sit_entry_set;
4653 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4654 unsigned int segno;
4655
4656 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4657 add_sit_entry(segno, set_list);
4658 }
4659
remove_sits_in_journal(struct f2fs_sb_info * sbi)4660 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4661 {
4662 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4663 struct f2fs_journal *journal = curseg->journal;
4664 int i;
4665
4666 down_write(&curseg->journal_rwsem);
4667 for (i = 0; i < sits_in_cursum(journal); i++) {
4668 unsigned int segno;
4669 bool dirtied;
4670
4671 segno = le32_to_cpu(segno_in_journal(journal, i));
4672 dirtied = __mark_sit_entry_dirty(sbi, segno);
4673
4674 if (!dirtied)
4675 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4676 }
4677 update_sits_in_cursum(journal, -i);
4678 up_write(&curseg->journal_rwsem);
4679 }
4680
4681 /*
4682 * CP calls this function, which flushes SIT entries including sit_journal,
4683 * and moves prefree segs to free segs.
4684 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4685 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4686 {
4687 struct sit_info *sit_i = SIT_I(sbi);
4688 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4689 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4690 struct f2fs_journal *journal = curseg->journal;
4691 struct sit_entry_set *ses, *tmp;
4692 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4693 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4694 struct seg_entry *se;
4695
4696 down_write(&sit_i->sentry_lock);
4697
4698 if (!sit_i->dirty_sentries)
4699 goto out;
4700
4701 /*
4702 * add and account sit entries of dirty bitmap in sit entry
4703 * set temporarily
4704 */
4705 add_sits_in_set(sbi);
4706
4707 /*
4708 * if there are no enough space in journal to store dirty sit
4709 * entries, remove all entries from journal and add and account
4710 * them in sit entry set.
4711 */
4712 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4713 !to_journal)
4714 remove_sits_in_journal(sbi);
4715
4716 /*
4717 * there are two steps to flush sit entries:
4718 * #1, flush sit entries to journal in current cold data summary block.
4719 * #2, flush sit entries to sit page.
4720 */
4721 list_for_each_entry_safe(ses, tmp, head, set_list) {
4722 struct folio *folio = NULL;
4723 struct f2fs_sit_block *raw_sit = NULL;
4724 unsigned int start_segno = ses->start_segno;
4725 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4726 (unsigned long)MAIN_SEGS(sbi));
4727 unsigned int segno = start_segno;
4728
4729 if (to_journal &&
4730 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4731 to_journal = false;
4732
4733 if (to_journal) {
4734 down_write(&curseg->journal_rwsem);
4735 } else {
4736 folio = get_next_sit_folio(sbi, start_segno);
4737 raw_sit = folio_address(folio);
4738 }
4739
4740 /* flush dirty sit entries in region of current sit set */
4741 for_each_set_bit_from(segno, bitmap, end) {
4742 int offset, sit_offset;
4743
4744 se = get_seg_entry(sbi, segno);
4745 #ifdef CONFIG_F2FS_CHECK_FS
4746 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4747 SIT_VBLOCK_MAP_SIZE))
4748 f2fs_bug_on(sbi, 1);
4749 #endif
4750
4751 /* add discard candidates */
4752 if (!(cpc->reason & CP_DISCARD)) {
4753 cpc->trim_start = segno;
4754 add_discard_addrs(sbi, cpc, false);
4755 }
4756
4757 if (to_journal) {
4758 offset = f2fs_lookup_journal_in_cursum(journal,
4759 SIT_JOURNAL, segno, 1);
4760 f2fs_bug_on(sbi, offset < 0);
4761 segno_in_journal(journal, offset) =
4762 cpu_to_le32(segno);
4763 seg_info_to_raw_sit(se,
4764 &sit_in_journal(journal, offset));
4765 check_block_count(sbi, segno,
4766 &sit_in_journal(journal, offset));
4767 } else {
4768 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4769 seg_info_to_raw_sit(se,
4770 &raw_sit->entries[sit_offset]);
4771 check_block_count(sbi, segno,
4772 &raw_sit->entries[sit_offset]);
4773 }
4774
4775 /* update ckpt_valid_block */
4776 if (__is_large_section(sbi)) {
4777 set_ckpt_valid_blocks(sbi, segno);
4778 sanity_check_valid_blocks(sbi, segno);
4779 }
4780
4781 __clear_bit(segno, bitmap);
4782 sit_i->dirty_sentries--;
4783 ses->entry_cnt--;
4784 }
4785
4786 if (to_journal)
4787 up_write(&curseg->journal_rwsem);
4788 else
4789 f2fs_folio_put(folio, true);
4790
4791 f2fs_bug_on(sbi, ses->entry_cnt);
4792 release_sit_entry_set(ses);
4793 }
4794
4795 f2fs_bug_on(sbi, !list_empty(head));
4796 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4797 out:
4798 if (cpc->reason & CP_DISCARD) {
4799 __u64 trim_start = cpc->trim_start;
4800
4801 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4802 add_discard_addrs(sbi, cpc, false);
4803
4804 cpc->trim_start = trim_start;
4805 }
4806 up_write(&sit_i->sentry_lock);
4807
4808 set_prefree_as_free_segments(sbi);
4809 }
4810
build_sit_info(struct f2fs_sb_info * sbi)4811 static int build_sit_info(struct f2fs_sb_info *sbi)
4812 {
4813 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4814 struct sit_info *sit_i;
4815 unsigned int sit_segs, start;
4816 char *src_bitmap, *bitmap;
4817 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4818 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4819
4820 /* allocate memory for SIT information */
4821 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4822 if (!sit_i)
4823 return -ENOMEM;
4824
4825 SM_I(sbi)->sit_info = sit_i;
4826
4827 sit_i->sentries =
4828 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4829 MAIN_SEGS(sbi)),
4830 GFP_KERNEL);
4831 if (!sit_i->sentries)
4832 return -ENOMEM;
4833
4834 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4835 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4836 GFP_KERNEL);
4837 if (!sit_i->dirty_sentries_bitmap)
4838 return -ENOMEM;
4839
4840 #ifdef CONFIG_F2FS_CHECK_FS
4841 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4842 #else
4843 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4844 #endif
4845 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4846 if (!sit_i->bitmap)
4847 return -ENOMEM;
4848
4849 bitmap = sit_i->bitmap;
4850
4851 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4852 sit_i->sentries[start].cur_valid_map = bitmap;
4853 bitmap += SIT_VBLOCK_MAP_SIZE;
4854
4855 sit_i->sentries[start].ckpt_valid_map = bitmap;
4856 bitmap += SIT_VBLOCK_MAP_SIZE;
4857
4858 #ifdef CONFIG_F2FS_CHECK_FS
4859 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4860 bitmap += SIT_VBLOCK_MAP_SIZE;
4861 #endif
4862
4863 if (discard_map) {
4864 sit_i->sentries[start].discard_map = bitmap;
4865 bitmap += SIT_VBLOCK_MAP_SIZE;
4866 }
4867 }
4868
4869 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4870 if (!sit_i->tmp_map)
4871 return -ENOMEM;
4872
4873 if (__is_large_section(sbi)) {
4874 sit_i->sec_entries =
4875 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4876 MAIN_SECS(sbi)),
4877 GFP_KERNEL);
4878 if (!sit_i->sec_entries)
4879 return -ENOMEM;
4880 }
4881
4882 /* get information related with SIT */
4883 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4884
4885 /* setup SIT bitmap from ckeckpoint pack */
4886 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4887 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4888
4889 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4890 if (!sit_i->sit_bitmap)
4891 return -ENOMEM;
4892
4893 #ifdef CONFIG_F2FS_CHECK_FS
4894 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4895 sit_bitmap_size, GFP_KERNEL);
4896 if (!sit_i->sit_bitmap_mir)
4897 return -ENOMEM;
4898
4899 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4900 main_bitmap_size, GFP_KERNEL);
4901 if (!sit_i->invalid_segmap)
4902 return -ENOMEM;
4903 #endif
4904
4905 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4906 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4907 sit_i->written_valid_blocks = 0;
4908 sit_i->bitmap_size = sit_bitmap_size;
4909 sit_i->dirty_sentries = 0;
4910 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4911 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4912 sit_i->mounted_time = ktime_get_boottime_seconds();
4913 init_rwsem(&sit_i->sentry_lock);
4914 return 0;
4915 }
4916
build_free_segmap(struct f2fs_sb_info * sbi)4917 static int build_free_segmap(struct f2fs_sb_info *sbi)
4918 {
4919 struct free_segmap_info *free_i;
4920 unsigned int bitmap_size, sec_bitmap_size;
4921
4922 /* allocate memory for free segmap information */
4923 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4924 if (!free_i)
4925 return -ENOMEM;
4926
4927 SM_I(sbi)->free_info = free_i;
4928
4929 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4930 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4931 if (!free_i->free_segmap)
4932 return -ENOMEM;
4933
4934 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4935 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4936 if (!free_i->free_secmap)
4937 return -ENOMEM;
4938
4939 /* set all segments as dirty temporarily */
4940 memset(free_i->free_segmap, 0xff, bitmap_size);
4941 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4942
4943 /* init free segmap information */
4944 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4945 free_i->free_segments = 0;
4946 free_i->free_sections = 0;
4947 spin_lock_init(&free_i->segmap_lock);
4948 return 0;
4949 }
4950
build_curseg(struct f2fs_sb_info * sbi)4951 static int build_curseg(struct f2fs_sb_info *sbi)
4952 {
4953 struct curseg_info *array;
4954 int i;
4955
4956 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4957 sizeof(*array)), GFP_KERNEL);
4958 if (!array)
4959 return -ENOMEM;
4960
4961 SM_I(sbi)->curseg_array = array;
4962
4963 for (i = 0; i < NO_CHECK_TYPE; i++) {
4964 mutex_init(&array[i].curseg_mutex);
4965 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4966 if (!array[i].sum_blk)
4967 return -ENOMEM;
4968 init_rwsem(&array[i].journal_rwsem);
4969 array[i].journal = f2fs_kzalloc(sbi,
4970 sizeof(struct f2fs_journal), GFP_KERNEL);
4971 if (!array[i].journal)
4972 return -ENOMEM;
4973 array[i].seg_type = log_type_to_seg_type(i);
4974 reset_curseg_fields(&array[i]);
4975 }
4976 return restore_curseg_summaries(sbi);
4977 }
4978
build_sit_entries(struct f2fs_sb_info * sbi)4979 static int build_sit_entries(struct f2fs_sb_info *sbi)
4980 {
4981 struct sit_info *sit_i = SIT_I(sbi);
4982 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4983 struct f2fs_journal *journal = curseg->journal;
4984 struct seg_entry *se;
4985 struct f2fs_sit_entry sit;
4986 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4987 unsigned int i, start, end;
4988 unsigned int readed, start_blk = 0;
4989 int err = 0;
4990 block_t sit_valid_blocks[2] = {0, 0};
4991
4992 do {
4993 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4994 META_SIT, true);
4995
4996 start = start_blk * sit_i->sents_per_block;
4997 end = (start_blk + readed) * sit_i->sents_per_block;
4998
4999 for (; start < end && start < MAIN_SEGS(sbi); start++) {
5000 struct f2fs_sit_block *sit_blk;
5001 struct folio *folio;
5002
5003 se = &sit_i->sentries[start];
5004 folio = get_current_sit_folio(sbi, start);
5005 if (IS_ERR(folio))
5006 return PTR_ERR(folio);
5007 sit_blk = folio_address(folio);
5008 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
5009 f2fs_folio_put(folio, true);
5010
5011 err = check_block_count(sbi, start, &sit);
5012 if (err)
5013 return err;
5014 seg_info_from_raw_sit(se, &sit);
5015
5016 if (se->type >= NR_PERSISTENT_LOG) {
5017 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5018 se->type, start);
5019 f2fs_handle_error(sbi,
5020 ERROR_INCONSISTENT_SUM_TYPE);
5021 return -EFSCORRUPTED;
5022 }
5023
5024 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5025
5026 if (!f2fs_block_unit_discard(sbi))
5027 goto init_discard_map_done;
5028
5029 /* build discard map only one time */
5030 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5031 memset(se->discard_map, 0xff,
5032 SIT_VBLOCK_MAP_SIZE);
5033 goto init_discard_map_done;
5034 }
5035 memcpy(se->discard_map, se->cur_valid_map,
5036 SIT_VBLOCK_MAP_SIZE);
5037 sbi->discard_blks += BLKS_PER_SEG(sbi) -
5038 se->valid_blocks;
5039 init_discard_map_done:
5040 if (__is_large_section(sbi))
5041 get_sec_entry(sbi, start)->valid_blocks +=
5042 se->valid_blocks;
5043 }
5044 start_blk += readed;
5045 } while (start_blk < sit_blk_cnt);
5046
5047 down_read(&curseg->journal_rwsem);
5048 for (i = 0; i < sits_in_cursum(journal); i++) {
5049 unsigned int old_valid_blocks;
5050
5051 start = le32_to_cpu(segno_in_journal(journal, i));
5052 if (start >= MAIN_SEGS(sbi)) {
5053 f2fs_err(sbi, "Wrong journal entry on segno %u",
5054 start);
5055 err = -EFSCORRUPTED;
5056 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5057 break;
5058 }
5059
5060 se = &sit_i->sentries[start];
5061 sit = sit_in_journal(journal, i);
5062
5063 old_valid_blocks = se->valid_blocks;
5064
5065 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5066
5067 err = check_block_count(sbi, start, &sit);
5068 if (err)
5069 break;
5070 seg_info_from_raw_sit(se, &sit);
5071
5072 if (se->type >= NR_PERSISTENT_LOG) {
5073 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5074 se->type, start);
5075 err = -EFSCORRUPTED;
5076 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5077 break;
5078 }
5079
5080 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5081
5082 if (f2fs_block_unit_discard(sbi)) {
5083 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5084 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5085 } else {
5086 memcpy(se->discard_map, se->cur_valid_map,
5087 SIT_VBLOCK_MAP_SIZE);
5088 sbi->discard_blks += old_valid_blocks;
5089 sbi->discard_blks -= se->valid_blocks;
5090 }
5091 }
5092
5093 if (__is_large_section(sbi)) {
5094 get_sec_entry(sbi, start)->valid_blocks +=
5095 se->valid_blocks;
5096 get_sec_entry(sbi, start)->valid_blocks -=
5097 old_valid_blocks;
5098 }
5099 }
5100 up_read(&curseg->journal_rwsem);
5101
5102 /* update ckpt_valid_block */
5103 if (__is_large_section(sbi)) {
5104 unsigned int segno;
5105
5106 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5107 set_ckpt_valid_blocks(sbi, segno);
5108 sanity_check_valid_blocks(sbi, segno);
5109 }
5110 }
5111
5112 if (err)
5113 return err;
5114
5115 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5116 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5117 sit_valid_blocks[NODE], valid_node_count(sbi));
5118 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5119 return -EFSCORRUPTED;
5120 }
5121
5122 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5123 valid_user_blocks(sbi)) {
5124 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5125 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5126 valid_user_blocks(sbi));
5127 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5128 return -EFSCORRUPTED;
5129 }
5130
5131 return 0;
5132 }
5133
init_free_segmap(struct f2fs_sb_info * sbi)5134 static void init_free_segmap(struct f2fs_sb_info *sbi)
5135 {
5136 unsigned int start;
5137 int type;
5138 struct seg_entry *sentry;
5139
5140 for (start = 0; start < MAIN_SEGS(sbi); start++) {
5141 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5142 continue;
5143 sentry = get_seg_entry(sbi, start);
5144 if (!sentry->valid_blocks)
5145 __set_free(sbi, start);
5146 else
5147 SIT_I(sbi)->written_valid_blocks +=
5148 sentry->valid_blocks;
5149 }
5150
5151 /* set use the current segments */
5152 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5153 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5154
5155 __set_test_and_inuse(sbi, curseg_t->segno);
5156 }
5157 }
5158
init_dirty_segmap(struct f2fs_sb_info * sbi)5159 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5160 {
5161 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5162 struct free_segmap_info *free_i = FREE_I(sbi);
5163 unsigned int segno = 0, offset = 0, secno;
5164 block_t valid_blocks, usable_blks_in_seg;
5165
5166 while (1) {
5167 /* find dirty segment based on free segmap */
5168 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5169 if (segno >= MAIN_SEGS(sbi))
5170 break;
5171 offset = segno + 1;
5172 valid_blocks = get_valid_blocks(sbi, segno, false);
5173 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5174 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5175 continue;
5176 if (valid_blocks > usable_blks_in_seg) {
5177 f2fs_bug_on(sbi, 1);
5178 continue;
5179 }
5180 mutex_lock(&dirty_i->seglist_lock);
5181 __locate_dirty_segment(sbi, segno, DIRTY);
5182 mutex_unlock(&dirty_i->seglist_lock);
5183 }
5184
5185 if (!__is_large_section(sbi))
5186 return;
5187
5188 mutex_lock(&dirty_i->seglist_lock);
5189 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5190 valid_blocks = get_valid_blocks(sbi, segno, true);
5191 secno = GET_SEC_FROM_SEG(sbi, segno);
5192
5193 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5194 continue;
5195 if (is_cursec(sbi, secno))
5196 continue;
5197 set_bit(secno, dirty_i->dirty_secmap);
5198 }
5199 mutex_unlock(&dirty_i->seglist_lock);
5200 }
5201
init_victim_secmap(struct f2fs_sb_info * sbi)5202 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5203 {
5204 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5205 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5206
5207 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5208 if (!dirty_i->victim_secmap)
5209 return -ENOMEM;
5210
5211 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5212 if (!dirty_i->pinned_secmap)
5213 return -ENOMEM;
5214
5215 dirty_i->pinned_secmap_cnt = 0;
5216 dirty_i->enable_pin_section = true;
5217 return 0;
5218 }
5219
build_dirty_segmap(struct f2fs_sb_info * sbi)5220 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5221 {
5222 struct dirty_seglist_info *dirty_i;
5223 unsigned int bitmap_size, i;
5224
5225 /* allocate memory for dirty segments list information */
5226 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5227 GFP_KERNEL);
5228 if (!dirty_i)
5229 return -ENOMEM;
5230
5231 SM_I(sbi)->dirty_info = dirty_i;
5232 mutex_init(&dirty_i->seglist_lock);
5233
5234 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5235
5236 for (i = 0; i < NR_DIRTY_TYPE; i++) {
5237 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5238 GFP_KERNEL);
5239 if (!dirty_i->dirty_segmap[i])
5240 return -ENOMEM;
5241 }
5242
5243 if (__is_large_section(sbi)) {
5244 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5245 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5246 bitmap_size, GFP_KERNEL);
5247 if (!dirty_i->dirty_secmap)
5248 return -ENOMEM;
5249 }
5250
5251 init_dirty_segmap(sbi);
5252 return init_victim_secmap(sbi);
5253 }
5254
sanity_check_curseg(struct f2fs_sb_info * sbi)5255 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5256 {
5257 int i;
5258
5259 /*
5260 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5261 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5262 */
5263 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5264 struct curseg_info *curseg = CURSEG_I(sbi, i);
5265 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5266 unsigned int blkofs = curseg->next_blkoff;
5267
5268 if (f2fs_sb_has_readonly(sbi) &&
5269 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5270 continue;
5271
5272 sanity_check_seg_type(sbi, curseg->seg_type);
5273
5274 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5275 f2fs_err(sbi,
5276 "Current segment has invalid alloc_type:%d",
5277 curseg->alloc_type);
5278 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5279 return -EFSCORRUPTED;
5280 }
5281
5282 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5283 goto out;
5284
5285 if (curseg->alloc_type == SSR)
5286 continue;
5287
5288 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5289 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5290 continue;
5291 out:
5292 f2fs_err(sbi,
5293 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5294 i, curseg->segno, curseg->alloc_type,
5295 curseg->next_blkoff, blkofs);
5296 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5297 return -EFSCORRUPTED;
5298 }
5299 }
5300 return 0;
5301 }
5302
5303 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5304 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5305 struct f2fs_dev_info *fdev,
5306 struct blk_zone *zone)
5307 {
5308 unsigned int zone_segno;
5309 block_t zone_block, valid_block_cnt;
5310 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5311 int ret;
5312 unsigned int nofs_flags;
5313
5314 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5315 return 0;
5316
5317 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5318 zone_segno = GET_SEGNO(sbi, zone_block);
5319
5320 /*
5321 * Skip check of zones cursegs point to, since
5322 * fix_curseg_write_pointer() checks them.
5323 */
5324 if (zone_segno >= MAIN_SEGS(sbi))
5325 return 0;
5326
5327 /*
5328 * Get # of valid block of the zone.
5329 */
5330 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5331 if (is_cursec(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5332 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5333 zone_segno, valid_block_cnt,
5334 blk_zone_cond_str(zone->cond));
5335 return 0;
5336 }
5337
5338 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5339 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5340 return 0;
5341
5342 if (!valid_block_cnt) {
5343 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5344 "pointer. Reset the write pointer: cond[%s]",
5345 blk_zone_cond_str(zone->cond));
5346 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5347 zone->len >> log_sectors_per_block);
5348 if (ret)
5349 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5350 fdev->path, ret);
5351 return ret;
5352 }
5353
5354 /*
5355 * If there are valid blocks and the write pointer doesn't match
5356 * with them, we need to report the inconsistency and fill
5357 * the zone till the end to close the zone. This inconsistency
5358 * does not cause write error because the zone will not be
5359 * selected for write operation until it get discarded.
5360 */
5361 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5362 "pointer: valid block[0x%x,0x%x] cond[%s]",
5363 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5364
5365 nofs_flags = memalloc_nofs_save();
5366 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5367 zone->start, zone->len);
5368 memalloc_nofs_restore(nofs_flags);
5369 if (ret == -EOPNOTSUPP) {
5370 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5371 zone->len - (zone->wp - zone->start),
5372 GFP_NOFS, 0);
5373 if (ret)
5374 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5375 fdev->path, ret);
5376 } else if (ret) {
5377 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5378 fdev->path, ret);
5379 }
5380
5381 return ret;
5382 }
5383
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5384 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5385 block_t zone_blkaddr)
5386 {
5387 int i;
5388
5389 for (i = 0; i < sbi->s_ndevs; i++) {
5390 if (!bdev_is_zoned(FDEV(i).bdev))
5391 continue;
5392 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5393 zone_blkaddr <= FDEV(i).end_blk))
5394 return &FDEV(i);
5395 }
5396
5397 return NULL;
5398 }
5399
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5400 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5401 void *data)
5402 {
5403 memcpy(data, zone, sizeof(struct blk_zone));
5404 return 0;
5405 }
5406
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5407 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5408 {
5409 struct curseg_info *cs = CURSEG_I(sbi, type);
5410 struct f2fs_dev_info *zbd;
5411 struct blk_zone zone;
5412 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5413 block_t cs_zone_block, wp_block;
5414 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5415 sector_t zone_sector;
5416 int err;
5417
5418 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5419 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5420
5421 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5422 if (!zbd)
5423 return 0;
5424
5425 /* report zone for the sector the curseg points to */
5426 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5427 << log_sectors_per_block;
5428 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5429 report_one_zone_cb, &zone);
5430 if (err != 1) {
5431 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5432 zbd->path, err);
5433 return err;
5434 }
5435
5436 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5437 return 0;
5438
5439 /*
5440 * When safely unmounted in the previous mount, we could use current
5441 * segments. Otherwise, allocate new sections.
5442 */
5443 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5444 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5445 wp_segno = GET_SEGNO(sbi, wp_block);
5446 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5447 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5448
5449 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5450 wp_sector_off == 0)
5451 return 0;
5452
5453 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5454 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5455 cs->next_blkoff, wp_segno, wp_blkoff);
5456 }
5457
5458 /* Allocate a new section if it's not new. */
5459 if (cs->next_blkoff ||
5460 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5461 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5462
5463 f2fs_allocate_new_section(sbi, type, true);
5464 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5465 "[0x%x,0x%x] -> [0x%x,0x%x]",
5466 type, old_segno, old_blkoff,
5467 cs->segno, cs->next_blkoff);
5468 }
5469
5470 /* check consistency of the zone curseg pointed to */
5471 if (check_zone_write_pointer(sbi, zbd, &zone))
5472 return -EIO;
5473
5474 /* check newly assigned zone */
5475 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5476 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5477
5478 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5479 if (!zbd)
5480 return 0;
5481
5482 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5483 << log_sectors_per_block;
5484 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5485 report_one_zone_cb, &zone);
5486 if (err != 1) {
5487 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5488 zbd->path, err);
5489 return err;
5490 }
5491
5492 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5493 return 0;
5494
5495 if (zone.wp != zone.start) {
5496 f2fs_notice(sbi,
5497 "New zone for curseg[%d] is not yet discarded. "
5498 "Reset the zone: curseg[0x%x,0x%x]",
5499 type, cs->segno, cs->next_blkoff);
5500 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5501 zone.len >> log_sectors_per_block);
5502 if (err) {
5503 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5504 zbd->path, err);
5505 return err;
5506 }
5507 }
5508
5509 return 0;
5510 }
5511
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5512 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5513 {
5514 int i, ret;
5515
5516 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5517 ret = do_fix_curseg_write_pointer(sbi, i);
5518 if (ret)
5519 return ret;
5520 }
5521
5522 return 0;
5523 }
5524
5525 struct check_zone_write_pointer_args {
5526 struct f2fs_sb_info *sbi;
5527 struct f2fs_dev_info *fdev;
5528 };
5529
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5530 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5531 void *data)
5532 {
5533 struct check_zone_write_pointer_args *args;
5534
5535 args = (struct check_zone_write_pointer_args *)data;
5536
5537 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5538 }
5539
check_write_pointer(struct f2fs_sb_info * sbi)5540 static int check_write_pointer(struct f2fs_sb_info *sbi)
5541 {
5542 int i, ret;
5543 struct check_zone_write_pointer_args args;
5544
5545 for (i = 0; i < sbi->s_ndevs; i++) {
5546 if (!bdev_is_zoned(FDEV(i).bdev))
5547 continue;
5548
5549 args.sbi = sbi;
5550 args.fdev = &FDEV(i);
5551 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5552 check_zone_write_pointer_cb, &args);
5553 if (ret < 0)
5554 return ret;
5555 }
5556
5557 return 0;
5558 }
5559
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5560 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5561 {
5562 int ret;
5563
5564 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5565 f2fs_hw_is_readonly(sbi))
5566 return 0;
5567
5568 f2fs_notice(sbi, "Checking entire write pointers");
5569 ret = fix_curseg_write_pointer(sbi);
5570 if (!ret)
5571 ret = check_write_pointer(sbi);
5572 return ret;
5573 }
5574
5575 /*
5576 * Return the number of usable blocks in a segment. The number of blocks
5577 * returned is always equal to the number of blocks in a segment for
5578 * segments fully contained within a sequential zone capacity or a
5579 * conventional zone. For segments partially contained in a sequential
5580 * zone capacity, the number of usable blocks up to the zone capacity
5581 * is returned. 0 is returned in all other cases.
5582 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5583 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5584 struct f2fs_sb_info *sbi, unsigned int segno)
5585 {
5586 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5587 unsigned int secno;
5588
5589 if (!sbi->unusable_blocks_per_sec)
5590 return BLKS_PER_SEG(sbi);
5591
5592 secno = GET_SEC_FROM_SEG(sbi, segno);
5593 seg_start = START_BLOCK(sbi, segno);
5594 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5595 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5596
5597 /*
5598 * If segment starts before zone capacity and spans beyond
5599 * zone capacity, then usable blocks are from seg start to
5600 * zone capacity. If the segment starts after the zone capacity,
5601 * then there are no usable blocks.
5602 */
5603 if (seg_start >= sec_cap_blkaddr)
5604 return 0;
5605 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5606 return sec_cap_blkaddr - seg_start;
5607
5608 return BLKS_PER_SEG(sbi);
5609 }
5610 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5611 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5612 {
5613 return 0;
5614 }
5615
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5616 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5617 unsigned int segno)
5618 {
5619 return 0;
5620 }
5621
5622 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5623 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5624 unsigned int segno)
5625 {
5626 if (f2fs_sb_has_blkzoned(sbi))
5627 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5628
5629 return BLKS_PER_SEG(sbi);
5630 }
5631
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5632 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5633 {
5634 if (f2fs_sb_has_blkzoned(sbi))
5635 return CAP_SEGS_PER_SEC(sbi);
5636
5637 return SEGS_PER_SEC(sbi);
5638 }
5639
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5640 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5641 unsigned int segno)
5642 {
5643 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5644 unsigned int secno = 0, start = 0;
5645 unsigned int total_valid_blocks = 0;
5646 unsigned long long mtime = 0;
5647 unsigned int i = 0;
5648
5649 secno = GET_SEC_FROM_SEG(sbi, segno);
5650 start = GET_SEG_FROM_SEC(sbi, secno);
5651
5652 if (!__is_large_section(sbi)) {
5653 mtime = get_seg_entry(sbi, start + i)->mtime;
5654 goto out;
5655 }
5656
5657 for (i = 0; i < usable_segs_per_sec; i++) {
5658 /* for large section, only check the mtime of valid segments */
5659 struct seg_entry *se = get_seg_entry(sbi, start+i);
5660
5661 mtime += se->mtime * se->valid_blocks;
5662 total_valid_blocks += se->valid_blocks;
5663 }
5664
5665 if (total_valid_blocks == 0)
5666 return INVALID_MTIME;
5667
5668 mtime = div_u64(mtime, total_valid_blocks);
5669 out:
5670 if (unlikely(mtime == INVALID_MTIME))
5671 mtime -= 1;
5672 return mtime;
5673 }
5674
5675 /*
5676 * Update min, max modified time for cost-benefit GC algorithm
5677 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5678 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5679 {
5680 struct sit_info *sit_i = SIT_I(sbi);
5681 unsigned int segno;
5682
5683 down_write(&sit_i->sentry_lock);
5684
5685 sit_i->min_mtime = ULLONG_MAX;
5686
5687 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5688 unsigned long long mtime = 0;
5689
5690 mtime = f2fs_get_section_mtime(sbi, segno);
5691
5692 if (sit_i->min_mtime > mtime)
5693 sit_i->min_mtime = mtime;
5694 }
5695 sit_i->max_mtime = get_mtime(sbi, false);
5696 sit_i->dirty_max_mtime = 0;
5697 up_write(&sit_i->sentry_lock);
5698 }
5699
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5700 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5701 {
5702 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5703 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5704 struct f2fs_sm_info *sm_info;
5705 int err;
5706
5707 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5708 if (!sm_info)
5709 return -ENOMEM;
5710
5711 /* init sm info */
5712 sbi->sm_info = sm_info;
5713 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5714 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5715 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5716 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5717 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5718 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5719 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5720 sm_info->rec_prefree_segments = sm_info->main_segments *
5721 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5722 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5723 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5724
5725 if (!f2fs_lfs_mode(sbi))
5726 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5727 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5728 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5729 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5730 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5731 sm_info->min_ssr_sections = reserved_sections(sbi);
5732
5733 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5734
5735 init_f2fs_rwsem(&sm_info->curseg_lock);
5736
5737 err = f2fs_create_flush_cmd_control(sbi);
5738 if (err)
5739 return err;
5740
5741 err = create_discard_cmd_control(sbi);
5742 if (err)
5743 return err;
5744
5745 err = build_sit_info(sbi);
5746 if (err)
5747 return err;
5748 err = build_free_segmap(sbi);
5749 if (err)
5750 return err;
5751 err = build_curseg(sbi);
5752 if (err)
5753 return err;
5754
5755 /* reinit free segmap based on SIT */
5756 err = build_sit_entries(sbi);
5757 if (err)
5758 return err;
5759
5760 init_free_segmap(sbi);
5761 err = build_dirty_segmap(sbi);
5762 if (err)
5763 return err;
5764
5765 err = sanity_check_curseg(sbi);
5766 if (err)
5767 return err;
5768
5769 init_min_max_mtime(sbi);
5770 return 0;
5771 }
5772
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5773 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5774 enum dirty_type dirty_type)
5775 {
5776 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5777
5778 mutex_lock(&dirty_i->seglist_lock);
5779 kvfree(dirty_i->dirty_segmap[dirty_type]);
5780 dirty_i->nr_dirty[dirty_type] = 0;
5781 mutex_unlock(&dirty_i->seglist_lock);
5782 }
5783
destroy_victim_secmap(struct f2fs_sb_info * sbi)5784 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5785 {
5786 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5787
5788 kvfree(dirty_i->pinned_secmap);
5789 kvfree(dirty_i->victim_secmap);
5790 }
5791
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5792 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5793 {
5794 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5795 int i;
5796
5797 if (!dirty_i)
5798 return;
5799
5800 /* discard pre-free/dirty segments list */
5801 for (i = 0; i < NR_DIRTY_TYPE; i++)
5802 discard_dirty_segmap(sbi, i);
5803
5804 if (__is_large_section(sbi)) {
5805 mutex_lock(&dirty_i->seglist_lock);
5806 kvfree(dirty_i->dirty_secmap);
5807 mutex_unlock(&dirty_i->seglist_lock);
5808 }
5809
5810 destroy_victim_secmap(sbi);
5811 SM_I(sbi)->dirty_info = NULL;
5812 kfree(dirty_i);
5813 }
5814
destroy_curseg(struct f2fs_sb_info * sbi)5815 static void destroy_curseg(struct f2fs_sb_info *sbi)
5816 {
5817 struct curseg_info *array = SM_I(sbi)->curseg_array;
5818 int i;
5819
5820 if (!array)
5821 return;
5822 SM_I(sbi)->curseg_array = NULL;
5823 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5824 kfree(array[i].sum_blk);
5825 kfree(array[i].journal);
5826 }
5827 kfree(array);
5828 }
5829
destroy_free_segmap(struct f2fs_sb_info * sbi)5830 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5831 {
5832 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5833
5834 if (!free_i)
5835 return;
5836 SM_I(sbi)->free_info = NULL;
5837 kvfree(free_i->free_segmap);
5838 kvfree(free_i->free_secmap);
5839 kfree(free_i);
5840 }
5841
destroy_sit_info(struct f2fs_sb_info * sbi)5842 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5843 {
5844 struct sit_info *sit_i = SIT_I(sbi);
5845
5846 if (!sit_i)
5847 return;
5848
5849 if (sit_i->sentries)
5850 kvfree(sit_i->bitmap);
5851 kfree(sit_i->tmp_map);
5852
5853 kvfree(sit_i->sentries);
5854 kvfree(sit_i->sec_entries);
5855 kvfree(sit_i->dirty_sentries_bitmap);
5856
5857 SM_I(sbi)->sit_info = NULL;
5858 kfree(sit_i->sit_bitmap);
5859 #ifdef CONFIG_F2FS_CHECK_FS
5860 kfree(sit_i->sit_bitmap_mir);
5861 kvfree(sit_i->invalid_segmap);
5862 #endif
5863 kfree(sit_i);
5864 }
5865
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5866 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5867 {
5868 struct f2fs_sm_info *sm_info = SM_I(sbi);
5869
5870 if (!sm_info)
5871 return;
5872 f2fs_destroy_flush_cmd_control(sbi, true);
5873 destroy_discard_cmd_control(sbi);
5874 destroy_dirty_segmap(sbi);
5875 destroy_curseg(sbi);
5876 destroy_free_segmap(sbi);
5877 destroy_sit_info(sbi);
5878 sbi->sm_info = NULL;
5879 kfree(sm_info);
5880 }
5881
f2fs_create_segment_manager_caches(void)5882 int __init f2fs_create_segment_manager_caches(void)
5883 {
5884 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5885 sizeof(struct discard_entry));
5886 if (!discard_entry_slab)
5887 goto fail;
5888
5889 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5890 sizeof(struct discard_cmd));
5891 if (!discard_cmd_slab)
5892 goto destroy_discard_entry;
5893
5894 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5895 sizeof(struct sit_entry_set));
5896 if (!sit_entry_set_slab)
5897 goto destroy_discard_cmd;
5898
5899 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5900 sizeof(struct revoke_entry));
5901 if (!revoke_entry_slab)
5902 goto destroy_sit_entry_set;
5903 return 0;
5904
5905 destroy_sit_entry_set:
5906 kmem_cache_destroy(sit_entry_set_slab);
5907 destroy_discard_cmd:
5908 kmem_cache_destroy(discard_cmd_slab);
5909 destroy_discard_entry:
5910 kmem_cache_destroy(discard_entry_slab);
5911 fail:
5912 return -ENOMEM;
5913 }
5914
f2fs_destroy_segment_manager_caches(void)5915 void f2fs_destroy_segment_manager_caches(void)
5916 {
5917 kmem_cache_destroy(sit_entry_set_slab);
5918 kmem_cache_destroy(discard_cmd_slab);
5919 kmem_cache_destroy(discard_entry_slab);
5920 kmem_cache_destroy(revoke_entry_slab);
5921 }
5922