1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/gc.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *victim_entry_slab;
27
28 static unsigned int count_bits(const unsigned long *addr,
29 unsigned int offset, unsigned int len);
30
gc_thread_func(void * data)31 static int gc_thread_func(void *data)
32 {
33 struct f2fs_sb_info *sbi = data;
34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 unsigned int wait_ms;
38 struct f2fs_gc_control gc_control = {
39 .victim_segno = NULL_SEGNO,
40 .should_migrate_blocks = false,
41 .err_gc_skipped = false };
42
43 wait_ms = gc_th->min_sleep_time;
44
45 set_freezable();
46 do {
47 bool sync_mode, foreground = false;
48
49 wait_event_freezable_timeout(*wq,
50 kthread_should_stop() ||
51 waitqueue_active(fggc_wq) ||
52 gc_th->gc_wake,
53 msecs_to_jiffies(wait_ms));
54
55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
56 foreground = true;
57
58 /* give it a try one time */
59 if (gc_th->gc_wake)
60 gc_th->gc_wake = false;
61
62 if (f2fs_readonly(sbi->sb)) {
63 stat_other_skip_bggc_count(sbi);
64 continue;
65 }
66 if (kthread_should_stop())
67 break;
68
69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 increase_sleep_time(gc_th, &wait_ms);
71 stat_other_skip_bggc_count(sbi);
72 continue;
73 }
74
75 if (time_to_inject(sbi, FAULT_CHECKPOINT))
76 f2fs_stop_checkpoint(sbi, false,
77 STOP_CP_REASON_FAULT_INJECT);
78
79 if (!sb_start_write_trylock(sbi->sb)) {
80 stat_other_skip_bggc_count(sbi);
81 continue;
82 }
83
84 gc_control.one_time = false;
85
86 /*
87 * [GC triggering condition]
88 * 0. GC is not conducted currently.
89 * 1. There are enough dirty segments.
90 * 2. IO subsystem is idle by checking the # of writeback pages.
91 * 3. IO subsystem is idle by checking the # of requests in
92 * bdev's request list.
93 *
94 * Note) We have to avoid triggering GCs frequently.
95 * Because it is possible that some segments can be
96 * invalidated soon after by user update or deletion.
97 * So, I'd like to wait some time to collect dirty segments.
98 */
99 if (sbi->gc_mode == GC_URGENT_HIGH ||
100 sbi->gc_mode == GC_URGENT_MID) {
101 wait_ms = gc_th->urgent_sleep_time;
102 f2fs_down_write(&sbi->gc_lock);
103 goto do_gc;
104 }
105
106 if (foreground) {
107 f2fs_down_write(&sbi->gc_lock);
108 goto do_gc;
109 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
110 stat_other_skip_bggc_count(sbi);
111 goto next;
112 }
113
114 if (!is_idle(sbi, GC_TIME)) {
115 increase_sleep_time(gc_th, &wait_ms);
116 f2fs_up_write(&sbi->gc_lock);
117 stat_io_skip_bggc_count(sbi);
118 goto next;
119 }
120
121 if (f2fs_sb_has_blkzoned(sbi)) {
122 if (has_enough_free_blocks(sbi,
123 gc_th->no_zoned_gc_percent)) {
124 wait_ms = gc_th->no_gc_sleep_time;
125 f2fs_up_write(&sbi->gc_lock);
126 goto next;
127 }
128 if (wait_ms == gc_th->no_gc_sleep_time)
129 wait_ms = gc_th->max_sleep_time;
130 }
131
132 if (need_to_boost_gc(sbi)) {
133 decrease_sleep_time(gc_th, &wait_ms);
134 if (f2fs_sb_has_blkzoned(sbi))
135 gc_control.one_time = true;
136 } else {
137 increase_sleep_time(gc_th, &wait_ms);
138 }
139 do_gc:
140 stat_inc_gc_call_count(sbi, foreground ?
141 FOREGROUND : BACKGROUND);
142
143 sync_mode = (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) ||
144 gc_control.one_time;
145
146 /* foreground GC was been triggered via f2fs_balance_fs() */
147 if (foreground)
148 sync_mode = false;
149
150 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
151 gc_control.no_bg_gc = foreground;
152 gc_control.nr_free_secs = foreground ? 1 : 0;
153
154 /* if return value is not zero, no victim was selected */
155 if (f2fs_gc(sbi, &gc_control)) {
156 /* don't bother wait_ms by foreground gc */
157 if (!foreground)
158 wait_ms = gc_th->no_gc_sleep_time;
159 } else {
160 /* reset wait_ms to default sleep time */
161 if (wait_ms == gc_th->no_gc_sleep_time)
162 wait_ms = gc_th->min_sleep_time;
163 }
164
165 if (foreground)
166 wake_up_all(&gc_th->fggc_wq);
167
168 trace_f2fs_background_gc(sbi->sb, wait_ms,
169 prefree_segments(sbi), free_segments(sbi));
170
171 /* balancing f2fs's metadata periodically */
172 f2fs_balance_fs_bg(sbi, true);
173 next:
174 if (sbi->gc_mode != GC_NORMAL) {
175 spin_lock(&sbi->gc_remaining_trials_lock);
176 if (sbi->gc_remaining_trials) {
177 sbi->gc_remaining_trials--;
178 if (!sbi->gc_remaining_trials)
179 sbi->gc_mode = GC_NORMAL;
180 }
181 spin_unlock(&sbi->gc_remaining_trials_lock);
182 }
183 sb_end_write(sbi->sb);
184
185 } while (!kthread_should_stop());
186 return 0;
187 }
188
f2fs_start_gc_thread(struct f2fs_sb_info * sbi)189 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
190 {
191 struct f2fs_gc_kthread *gc_th;
192 dev_t dev = sbi->sb->s_bdev->bd_dev;
193
194 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
195 if (!gc_th)
196 return -ENOMEM;
197
198 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
199 gc_th->valid_thresh_ratio = DEF_GC_THREAD_VALID_THRESH_RATIO;
200
201 if (f2fs_sb_has_blkzoned(sbi)) {
202 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME_ZONED;
203 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME_ZONED;
204 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME_ZONED;
205 gc_th->no_zoned_gc_percent = LIMIT_NO_ZONED_GC;
206 gc_th->boost_zoned_gc_percent = LIMIT_BOOST_ZONED_GC;
207 } else {
208 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
209 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
210 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
211 gc_th->no_zoned_gc_percent = 0;
212 gc_th->boost_zoned_gc_percent = 0;
213 }
214
215 gc_th->gc_wake = false;
216
217 sbi->gc_thread = gc_th;
218 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
219 init_waitqueue_head(&sbi->gc_thread->fggc_wq);
220 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
221 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
222 if (IS_ERR(gc_th->f2fs_gc_task)) {
223 int err = PTR_ERR(gc_th->f2fs_gc_task);
224
225 kfree(gc_th);
226 sbi->gc_thread = NULL;
227 return err;
228 }
229
230 return 0;
231 }
232
f2fs_stop_gc_thread(struct f2fs_sb_info * sbi)233 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
234 {
235 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
236
237 if (!gc_th)
238 return;
239 kthread_stop(gc_th->f2fs_gc_task);
240 wake_up_all(&gc_th->fggc_wq);
241 kfree(gc_th);
242 sbi->gc_thread = NULL;
243 }
244
select_gc_type(struct f2fs_sb_info * sbi,int gc_type)245 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
246 {
247 int gc_mode;
248
249 if (gc_type == BG_GC) {
250 if (sbi->am.atgc_enabled)
251 gc_mode = GC_AT;
252 else
253 gc_mode = GC_CB;
254 } else {
255 gc_mode = GC_GREEDY;
256 }
257
258 switch (sbi->gc_mode) {
259 case GC_IDLE_CB:
260 gc_mode = GC_CB;
261 break;
262 case GC_IDLE_GREEDY:
263 case GC_URGENT_HIGH:
264 gc_mode = GC_GREEDY;
265 break;
266 case GC_IDLE_AT:
267 gc_mode = GC_AT;
268 break;
269 }
270
271 return gc_mode;
272 }
273
select_policy(struct f2fs_sb_info * sbi,int gc_type,int type,struct victim_sel_policy * p)274 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
275 int type, struct victim_sel_policy *p)
276 {
277 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
278
279 if (p->alloc_mode == SSR) {
280 p->gc_mode = GC_GREEDY;
281 p->dirty_bitmap = dirty_i->dirty_segmap[type];
282 p->max_search = dirty_i->nr_dirty[type];
283 p->ofs_unit = 1;
284 } else if (p->alloc_mode == AT_SSR) {
285 p->gc_mode = GC_GREEDY;
286 p->dirty_bitmap = dirty_i->dirty_segmap[type];
287 p->max_search = dirty_i->nr_dirty[type];
288 p->ofs_unit = 1;
289 } else {
290 p->gc_mode = select_gc_type(sbi, gc_type);
291 p->ofs_unit = SEGS_PER_SEC(sbi);
292 if (__is_large_section(sbi)) {
293 p->dirty_bitmap = dirty_i->dirty_secmap;
294 p->max_search = count_bits(p->dirty_bitmap,
295 0, MAIN_SECS(sbi));
296 } else {
297 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
298 p->max_search = dirty_i->nr_dirty[DIRTY];
299 }
300 }
301
302 /*
303 * adjust candidates range, should select all dirty segments for
304 * foreground GC and urgent GC cases.
305 */
306 if (gc_type != FG_GC &&
307 (sbi->gc_mode != GC_URGENT_HIGH) &&
308 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
309 p->max_search > sbi->max_victim_search)
310 p->max_search = sbi->max_victim_search;
311
312 /* let's select beginning hot/small space first. */
313 if (f2fs_need_rand_seg(sbi))
314 p->offset = get_random_u32_below(MAIN_SECS(sbi) *
315 SEGS_PER_SEC(sbi));
316 else if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
317 p->offset = 0;
318 else
319 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
320 }
321
get_max_cost(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)322 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
323 struct victim_sel_policy *p)
324 {
325 /* SSR allocates in a segment unit */
326 if (p->alloc_mode == SSR)
327 return BLKS_PER_SEG(sbi);
328 else if (p->alloc_mode == AT_SSR)
329 return UINT_MAX;
330
331 /* LFS */
332 if (p->gc_mode == GC_GREEDY)
333 return SEGS_TO_BLKS(sbi, 2 * p->ofs_unit);
334 else if (p->gc_mode == GC_CB)
335 return UINT_MAX;
336 else if (p->gc_mode == GC_AT)
337 return UINT_MAX;
338 else /* No other gc_mode */
339 return 0;
340 }
341
check_bg_victims(struct f2fs_sb_info * sbi)342 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
343 {
344 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
345 unsigned int secno;
346
347 /*
348 * If the gc_type is FG_GC, we can select victim segments
349 * selected by background GC before.
350 * Those segments guarantee they have small valid blocks.
351 */
352 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
353 if (sec_usage_check(sbi, secno))
354 continue;
355 clear_bit(secno, dirty_i->victim_secmap);
356 return GET_SEG_FROM_SEC(sbi, secno);
357 }
358 return NULL_SEGNO;
359 }
360
get_cb_cost(struct f2fs_sb_info * sbi,unsigned int segno)361 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
362 {
363 struct sit_info *sit_i = SIT_I(sbi);
364 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
365 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
366 unsigned long long mtime = 0;
367 unsigned int vblocks;
368 unsigned char age = 0;
369 unsigned char u;
370 unsigned int i;
371 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
372
373 for (i = 0; i < usable_segs_per_sec; i++)
374 mtime += get_seg_entry(sbi, start + i)->mtime;
375 vblocks = get_valid_blocks(sbi, segno, true);
376
377 mtime = div_u64(mtime, usable_segs_per_sec);
378 vblocks = div_u64(vblocks, usable_segs_per_sec);
379
380 u = BLKS_TO_SEGS(sbi, vblocks * 100);
381
382 /* Handle if the system time has changed by the user */
383 if (mtime < sit_i->min_mtime)
384 sit_i->min_mtime = mtime;
385 if (mtime > sit_i->max_mtime)
386 sit_i->max_mtime = mtime;
387 if (sit_i->max_mtime != sit_i->min_mtime)
388 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
389 sit_i->max_mtime - sit_i->min_mtime);
390
391 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
392 }
393
get_gc_cost(struct f2fs_sb_info * sbi,unsigned int segno,struct victim_sel_policy * p)394 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
395 unsigned int segno, struct victim_sel_policy *p)
396 {
397 if (p->alloc_mode == SSR)
398 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
399
400 if (p->one_time_gc && (get_valid_blocks(sbi, segno, true) >=
401 CAP_BLKS_PER_SEC(sbi) * sbi->gc_thread->valid_thresh_ratio /
402 100))
403 return UINT_MAX;
404
405 /* alloc_mode == LFS */
406 if (p->gc_mode == GC_GREEDY)
407 return get_valid_blocks(sbi, segno, true);
408 else if (p->gc_mode == GC_CB)
409 return get_cb_cost(sbi, segno);
410
411 f2fs_bug_on(sbi, 1);
412 return 0;
413 }
414
count_bits(const unsigned long * addr,unsigned int offset,unsigned int len)415 static unsigned int count_bits(const unsigned long *addr,
416 unsigned int offset, unsigned int len)
417 {
418 unsigned int end = offset + len, sum = 0;
419
420 while (offset < end) {
421 if (test_bit(offset++, addr))
422 ++sum;
423 }
424 return sum;
425 }
426
f2fs_check_victim_tree(struct f2fs_sb_info * sbi,struct rb_root_cached * root)427 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi,
428 struct rb_root_cached *root)
429 {
430 #ifdef CONFIG_F2FS_CHECK_FS
431 struct rb_node *cur = rb_first_cached(root), *next;
432 struct victim_entry *cur_ve, *next_ve;
433
434 while (cur) {
435 next = rb_next(cur);
436 if (!next)
437 return true;
438
439 cur_ve = rb_entry(cur, struct victim_entry, rb_node);
440 next_ve = rb_entry(next, struct victim_entry, rb_node);
441
442 if (cur_ve->mtime > next_ve->mtime) {
443 f2fs_info(sbi, "broken victim_rbtree, "
444 "cur_mtime(%llu) next_mtime(%llu)",
445 cur_ve->mtime, next_ve->mtime);
446 return false;
447 }
448 cur = next;
449 }
450 #endif
451 return true;
452 }
453
__lookup_victim_entry(struct f2fs_sb_info * sbi,unsigned long long mtime)454 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi,
455 unsigned long long mtime)
456 {
457 struct atgc_management *am = &sbi->am;
458 struct rb_node *node = am->root.rb_root.rb_node;
459 struct victim_entry *ve = NULL;
460
461 while (node) {
462 ve = rb_entry(node, struct victim_entry, rb_node);
463
464 if (mtime < ve->mtime)
465 node = node->rb_left;
466 else
467 node = node->rb_right;
468 }
469 return ve;
470 }
471
__create_victim_entry(struct f2fs_sb_info * sbi,unsigned long long mtime,unsigned int segno)472 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi,
473 unsigned long long mtime, unsigned int segno)
474 {
475 struct atgc_management *am = &sbi->am;
476 struct victim_entry *ve;
477
478 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL);
479
480 ve->mtime = mtime;
481 ve->segno = segno;
482
483 list_add_tail(&ve->list, &am->victim_list);
484 am->victim_count++;
485
486 return ve;
487 }
488
__insert_victim_entry(struct f2fs_sb_info * sbi,unsigned long long mtime,unsigned int segno)489 static void __insert_victim_entry(struct f2fs_sb_info *sbi,
490 unsigned long long mtime, unsigned int segno)
491 {
492 struct atgc_management *am = &sbi->am;
493 struct rb_root_cached *root = &am->root;
494 struct rb_node **p = &root->rb_root.rb_node;
495 struct rb_node *parent = NULL;
496 struct victim_entry *ve;
497 bool left_most = true;
498
499 /* look up rb tree to find parent node */
500 while (*p) {
501 parent = *p;
502 ve = rb_entry(parent, struct victim_entry, rb_node);
503
504 if (mtime < ve->mtime) {
505 p = &(*p)->rb_left;
506 } else {
507 p = &(*p)->rb_right;
508 left_most = false;
509 }
510 }
511
512 ve = __create_victim_entry(sbi, mtime, segno);
513
514 rb_link_node(&ve->rb_node, parent, p);
515 rb_insert_color_cached(&ve->rb_node, root, left_most);
516 }
517
add_victim_entry(struct f2fs_sb_info * sbi,struct victim_sel_policy * p,unsigned int segno)518 static void add_victim_entry(struct f2fs_sb_info *sbi,
519 struct victim_sel_policy *p, unsigned int segno)
520 {
521 struct sit_info *sit_i = SIT_I(sbi);
522 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
523 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
524 unsigned long long mtime = 0;
525 unsigned int i;
526
527 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
528 if (p->gc_mode == GC_AT &&
529 get_valid_blocks(sbi, segno, true) == 0)
530 return;
531 }
532
533 for (i = 0; i < SEGS_PER_SEC(sbi); i++)
534 mtime += get_seg_entry(sbi, start + i)->mtime;
535 mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
536
537 /* Handle if the system time has changed by the user */
538 if (mtime < sit_i->min_mtime)
539 sit_i->min_mtime = mtime;
540 if (mtime > sit_i->max_mtime)
541 sit_i->max_mtime = mtime;
542 if (mtime < sit_i->dirty_min_mtime)
543 sit_i->dirty_min_mtime = mtime;
544 if (mtime > sit_i->dirty_max_mtime)
545 sit_i->dirty_max_mtime = mtime;
546
547 /* don't choose young section as candidate */
548 if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
549 return;
550
551 __insert_victim_entry(sbi, mtime, segno);
552 }
553
atgc_lookup_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)554 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
555 struct victim_sel_policy *p)
556 {
557 struct sit_info *sit_i = SIT_I(sbi);
558 struct atgc_management *am = &sbi->am;
559 struct rb_root_cached *root = &am->root;
560 struct rb_node *node;
561 struct victim_entry *ve;
562 unsigned long long total_time;
563 unsigned long long age, u, accu;
564 unsigned long long max_mtime = sit_i->dirty_max_mtime;
565 unsigned long long min_mtime = sit_i->dirty_min_mtime;
566 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
567 unsigned int vblocks;
568 unsigned int dirty_threshold = max(am->max_candidate_count,
569 am->candidate_ratio *
570 am->victim_count / 100);
571 unsigned int age_weight = am->age_weight;
572 unsigned int cost;
573 unsigned int iter = 0;
574
575 if (max_mtime < min_mtime)
576 return;
577
578 max_mtime += 1;
579 total_time = max_mtime - min_mtime;
580
581 accu = div64_u64(ULLONG_MAX, total_time);
582 accu = min_t(unsigned long long, div_u64(accu, 100),
583 DEFAULT_ACCURACY_CLASS);
584
585 node = rb_first_cached(root);
586 next:
587 ve = rb_entry_safe(node, struct victim_entry, rb_node);
588 if (!ve)
589 return;
590
591 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
592 goto skip;
593
594 /* age = 10000 * x% * 60 */
595 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
596 age_weight;
597
598 vblocks = get_valid_blocks(sbi, ve->segno, true);
599 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
600
601 /* u = 10000 * x% * 40 */
602 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
603 (100 - age_weight);
604
605 f2fs_bug_on(sbi, age + u >= UINT_MAX);
606
607 cost = UINT_MAX - (age + u);
608 iter++;
609
610 if (cost < p->min_cost ||
611 (cost == p->min_cost && age > p->oldest_age)) {
612 p->min_cost = cost;
613 p->oldest_age = age;
614 p->min_segno = ve->segno;
615 }
616 skip:
617 if (iter < dirty_threshold) {
618 node = rb_next(node);
619 goto next;
620 }
621 }
622
623 /*
624 * select candidates around source section in range of
625 * [target - dirty_threshold, target + dirty_threshold]
626 */
atssr_lookup_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)627 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
628 struct victim_sel_policy *p)
629 {
630 struct sit_info *sit_i = SIT_I(sbi);
631 struct atgc_management *am = &sbi->am;
632 struct victim_entry *ve;
633 unsigned long long age;
634 unsigned long long max_mtime = sit_i->dirty_max_mtime;
635 unsigned long long min_mtime = sit_i->dirty_min_mtime;
636 unsigned int vblocks;
637 unsigned int dirty_threshold = max(am->max_candidate_count,
638 am->candidate_ratio *
639 am->victim_count / 100);
640 unsigned int cost, iter;
641 int stage = 0;
642
643 if (max_mtime < min_mtime)
644 return;
645 max_mtime += 1;
646 next_stage:
647 iter = 0;
648 ve = __lookup_victim_entry(sbi, p->age);
649 next_node:
650 if (!ve) {
651 if (stage++ == 0)
652 goto next_stage;
653 return;
654 }
655
656 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
657 goto skip_node;
658
659 age = max_mtime - ve->mtime;
660
661 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
662 f2fs_bug_on(sbi, !vblocks);
663
664 /* rare case */
665 if (vblocks == BLKS_PER_SEG(sbi))
666 goto skip_node;
667
668 iter++;
669
670 age = max_mtime - abs(p->age - age);
671 cost = UINT_MAX - vblocks;
672
673 if (cost < p->min_cost ||
674 (cost == p->min_cost && age > p->oldest_age)) {
675 p->min_cost = cost;
676 p->oldest_age = age;
677 p->min_segno = ve->segno;
678 }
679 skip_node:
680 if (iter < dirty_threshold) {
681 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) :
682 rb_next(&ve->rb_node),
683 struct victim_entry, rb_node);
684 goto next_node;
685 }
686
687 if (stage++ == 0)
688 goto next_stage;
689 }
690
lookup_victim_by_age(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)691 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
692 struct victim_sel_policy *p)
693 {
694 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root));
695
696 if (p->gc_mode == GC_AT)
697 atgc_lookup_victim(sbi, p);
698 else if (p->alloc_mode == AT_SSR)
699 atssr_lookup_victim(sbi, p);
700 else
701 f2fs_bug_on(sbi, 1);
702 }
703
release_victim_entry(struct f2fs_sb_info * sbi)704 static void release_victim_entry(struct f2fs_sb_info *sbi)
705 {
706 struct atgc_management *am = &sbi->am;
707 struct victim_entry *ve, *tmp;
708
709 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
710 list_del(&ve->list);
711 kmem_cache_free(victim_entry_slab, ve);
712 am->victim_count--;
713 }
714
715 am->root = RB_ROOT_CACHED;
716
717 f2fs_bug_on(sbi, am->victim_count);
718 f2fs_bug_on(sbi, !list_empty(&am->victim_list));
719 }
720
f2fs_pin_section(struct f2fs_sb_info * sbi,unsigned int segno)721 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
722 {
723 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
724 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
725
726 if (!dirty_i->enable_pin_section)
727 return false;
728 if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
729 dirty_i->pinned_secmap_cnt++;
730 return true;
731 }
732
f2fs_pinned_section_exists(struct dirty_seglist_info * dirty_i)733 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
734 {
735 return dirty_i->pinned_secmap_cnt;
736 }
737
f2fs_section_is_pinned(struct dirty_seglist_info * dirty_i,unsigned int secno)738 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
739 unsigned int secno)
740 {
741 return dirty_i->enable_pin_section &&
742 f2fs_pinned_section_exists(dirty_i) &&
743 test_bit(secno, dirty_i->pinned_secmap);
744 }
745
f2fs_unpin_all_sections(struct f2fs_sb_info * sbi,bool enable)746 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
747 {
748 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
749
750 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
751 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
752 DIRTY_I(sbi)->pinned_secmap_cnt = 0;
753 }
754 DIRTY_I(sbi)->enable_pin_section = enable;
755 }
756
f2fs_gc_pinned_control(struct inode * inode,int gc_type,unsigned int segno)757 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
758 unsigned int segno)
759 {
760 if (!f2fs_is_pinned_file(inode))
761 return 0;
762 if (gc_type != FG_GC)
763 return -EBUSY;
764 if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
765 f2fs_pin_file_control(inode, true);
766 return -EAGAIN;
767 }
768
769 /*
770 * This function is called from two paths.
771 * One is garbage collection and the other is SSR segment selection.
772 * When it is called during GC, it just gets a victim segment
773 * and it does not remove it from dirty seglist.
774 * When it is called from SSR segment selection, it finds a segment
775 * which has minimum valid blocks and removes it from dirty seglist.
776 */
f2fs_get_victim(struct f2fs_sb_info * sbi,unsigned int * result,int gc_type,int type,char alloc_mode,unsigned long long age,bool one_time)777 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
778 int gc_type, int type, char alloc_mode,
779 unsigned long long age, bool one_time)
780 {
781 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
782 struct sit_info *sm = SIT_I(sbi);
783 struct victim_sel_policy p;
784 unsigned int secno, last_victim;
785 unsigned int last_segment;
786 unsigned int nsearched;
787 bool is_atgc;
788 int ret = 0;
789
790 mutex_lock(&dirty_i->seglist_lock);
791 last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
792
793 p.alloc_mode = alloc_mode;
794 p.age = age;
795 p.age_threshold = sbi->am.age_threshold;
796 p.one_time_gc = one_time;
797
798 retry:
799 select_policy(sbi, gc_type, type, &p);
800 p.min_segno = NULL_SEGNO;
801 p.oldest_age = 0;
802 p.min_cost = get_max_cost(sbi, &p);
803
804 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
805 nsearched = 0;
806
807 if (is_atgc)
808 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
809
810 if (*result != NULL_SEGNO) {
811 if (!get_valid_blocks(sbi, *result, false)) {
812 ret = -ENODATA;
813 goto out;
814 }
815
816 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
817 ret = -EBUSY;
818 else
819 p.min_segno = *result;
820 goto out;
821 }
822
823 ret = -ENODATA;
824 if (p.max_search == 0)
825 goto out;
826
827 if (__is_large_section(sbi) && p.alloc_mode == LFS) {
828 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
829 p.min_segno = sbi->next_victim_seg[BG_GC];
830 *result = p.min_segno;
831 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
832 goto got_result;
833 }
834 if (gc_type == FG_GC &&
835 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
836 p.min_segno = sbi->next_victim_seg[FG_GC];
837 *result = p.min_segno;
838 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
839 goto got_result;
840 }
841 }
842
843 last_victim = sm->last_victim[p.gc_mode];
844 if (p.alloc_mode == LFS && gc_type == FG_GC) {
845 p.min_segno = check_bg_victims(sbi);
846 if (p.min_segno != NULL_SEGNO)
847 goto got_it;
848 }
849
850 while (1) {
851 unsigned long cost, *dirty_bitmap;
852 unsigned int unit_no, segno;
853
854 dirty_bitmap = p.dirty_bitmap;
855 unit_no = find_next_bit(dirty_bitmap,
856 last_segment / p.ofs_unit,
857 p.offset / p.ofs_unit);
858 segno = unit_no * p.ofs_unit;
859 if (segno >= last_segment) {
860 if (sm->last_victim[p.gc_mode]) {
861 last_segment =
862 sm->last_victim[p.gc_mode];
863 sm->last_victim[p.gc_mode] = 0;
864 p.offset = 0;
865 continue;
866 }
867 break;
868 }
869
870 p.offset = segno + p.ofs_unit;
871 nsearched++;
872
873 #ifdef CONFIG_F2FS_CHECK_FS
874 /*
875 * skip selecting the invalid segno (that is failed due to block
876 * validity check failure during GC) to avoid endless GC loop in
877 * such cases.
878 */
879 if (test_bit(segno, sm->invalid_segmap))
880 goto next;
881 #endif
882
883 secno = GET_SEC_FROM_SEG(sbi, segno);
884
885 if (sec_usage_check(sbi, secno))
886 goto next;
887
888 /* Don't touch checkpointed data */
889 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
890 if (p.alloc_mode == LFS) {
891 /*
892 * LFS is set to find source section during GC.
893 * The victim should have no checkpointed data.
894 */
895 if (get_ckpt_valid_blocks(sbi, segno, true))
896 goto next;
897 } else {
898 /*
899 * SSR | AT_SSR are set to find target segment
900 * for writes which can be full by checkpointed
901 * and newly written blocks.
902 */
903 if (!f2fs_segment_has_free_slot(sbi, segno))
904 goto next;
905 }
906 }
907
908 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
909 goto next;
910
911 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
912 goto next;
913
914 if (is_atgc) {
915 add_victim_entry(sbi, &p, segno);
916 goto next;
917 }
918
919 cost = get_gc_cost(sbi, segno, &p);
920
921 if (p.min_cost > cost) {
922 p.min_segno = segno;
923 p.min_cost = cost;
924 }
925 next:
926 if (nsearched >= p.max_search) {
927 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
928 sm->last_victim[p.gc_mode] =
929 last_victim + p.ofs_unit;
930 else
931 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
932 sm->last_victim[p.gc_mode] %=
933 (MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
934 break;
935 }
936 }
937
938 /* get victim for GC_AT/AT_SSR */
939 if (is_atgc) {
940 lookup_victim_by_age(sbi, &p);
941 release_victim_entry(sbi);
942 }
943
944 if (is_atgc && p.min_segno == NULL_SEGNO &&
945 sm->elapsed_time < p.age_threshold) {
946 p.age_threshold = 0;
947 goto retry;
948 }
949
950 if (p.min_segno != NULL_SEGNO) {
951 got_it:
952 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
953 got_result:
954 if (p.alloc_mode == LFS) {
955 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
956 if (gc_type == FG_GC)
957 sbi->cur_victim_sec = secno;
958 else
959 set_bit(secno, dirty_i->victim_secmap);
960 }
961 ret = 0;
962
963 }
964 out:
965 if (p.min_segno != NULL_SEGNO)
966 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
967 sbi->cur_victim_sec,
968 prefree_segments(sbi), free_segments(sbi));
969 mutex_unlock(&dirty_i->seglist_lock);
970
971 return ret;
972 }
973
find_gc_inode(struct gc_inode_list * gc_list,nid_t ino)974 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
975 {
976 struct inode_entry *ie;
977
978 ie = radix_tree_lookup(&gc_list->iroot, ino);
979 if (ie)
980 return ie->inode;
981 return NULL;
982 }
983
add_gc_inode(struct gc_inode_list * gc_list,struct inode * inode)984 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
985 {
986 struct inode_entry *new_ie;
987
988 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
989 iput(inode);
990 return;
991 }
992 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
993 GFP_NOFS, true, NULL);
994 new_ie->inode = inode;
995
996 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
997 list_add_tail(&new_ie->list, &gc_list->ilist);
998 }
999
put_gc_inode(struct gc_inode_list * gc_list)1000 static void put_gc_inode(struct gc_inode_list *gc_list)
1001 {
1002 struct inode_entry *ie, *next_ie;
1003
1004 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
1005 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
1006 iput(ie->inode);
1007 list_del(&ie->list);
1008 kmem_cache_free(f2fs_inode_entry_slab, ie);
1009 }
1010 }
1011
check_valid_map(struct f2fs_sb_info * sbi,unsigned int segno,int offset)1012 static int check_valid_map(struct f2fs_sb_info *sbi,
1013 unsigned int segno, int offset)
1014 {
1015 struct sit_info *sit_i = SIT_I(sbi);
1016 struct seg_entry *sentry;
1017 int ret;
1018
1019 down_read(&sit_i->sentry_lock);
1020 sentry = get_seg_entry(sbi, segno);
1021 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
1022 up_read(&sit_i->sentry_lock);
1023 return ret;
1024 }
1025
1026 /*
1027 * This function compares node address got in summary with that in NAT.
1028 * On validity, copy that node with cold status, otherwise (invalid node)
1029 * ignore that.
1030 */
gc_node_segment(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,unsigned int segno,int gc_type)1031 static int gc_node_segment(struct f2fs_sb_info *sbi,
1032 struct f2fs_summary *sum, unsigned int segno, int gc_type)
1033 {
1034 struct f2fs_summary *entry;
1035 block_t start_addr;
1036 int off;
1037 int phase = 0;
1038 bool fggc = (gc_type == FG_GC);
1039 int submitted = 0;
1040 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1041
1042 start_addr = START_BLOCK(sbi, segno);
1043
1044 next_step:
1045 entry = sum;
1046
1047 if (fggc && phase == 2)
1048 atomic_inc(&sbi->wb_sync_req[NODE]);
1049
1050 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1051 nid_t nid = le32_to_cpu(entry->nid);
1052 struct page *node_page;
1053 struct node_info ni;
1054 int err;
1055
1056 /* stop BG_GC if there is not enough free sections. */
1057 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
1058 return submitted;
1059
1060 if (check_valid_map(sbi, segno, off) == 0)
1061 continue;
1062
1063 if (phase == 0) {
1064 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1065 META_NAT, true);
1066 continue;
1067 }
1068
1069 if (phase == 1) {
1070 f2fs_ra_node_page(sbi, nid);
1071 continue;
1072 }
1073
1074 /* phase == 2 */
1075 node_page = f2fs_get_node_page(sbi, nid);
1076 if (IS_ERR(node_page))
1077 continue;
1078
1079 /* block may become invalid during f2fs_get_node_page */
1080 if (check_valid_map(sbi, segno, off) == 0) {
1081 f2fs_put_page(node_page, 1);
1082 continue;
1083 }
1084
1085 if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1086 f2fs_put_page(node_page, 1);
1087 continue;
1088 }
1089
1090 if (ni.blk_addr != start_addr + off) {
1091 f2fs_put_page(node_page, 1);
1092 continue;
1093 }
1094
1095 err = f2fs_move_node_page(node_page, gc_type);
1096 if (!err && gc_type == FG_GC)
1097 submitted++;
1098 stat_inc_node_blk_count(sbi, 1, gc_type);
1099 }
1100
1101 if (++phase < 3)
1102 goto next_step;
1103
1104 if (fggc)
1105 atomic_dec(&sbi->wb_sync_req[NODE]);
1106 return submitted;
1107 }
1108
1109 /*
1110 * Calculate start block index indicating the given node offset.
1111 * Be careful, caller should give this node offset only indicating direct node
1112 * blocks. If any node offsets, which point the other types of node blocks such
1113 * as indirect or double indirect node blocks, are given, it must be a caller's
1114 * bug.
1115 */
f2fs_start_bidx_of_node(unsigned int node_ofs,struct inode * inode)1116 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1117 {
1118 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1119 unsigned int bidx;
1120
1121 if (node_ofs == 0)
1122 return 0;
1123
1124 if (node_ofs <= 2) {
1125 bidx = node_ofs - 1;
1126 } else if (node_ofs <= indirect_blks) {
1127 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1128
1129 bidx = node_ofs - 2 - dec;
1130 } else {
1131 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1132
1133 bidx = node_ofs - 5 - dec;
1134 }
1135 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1136 }
1137
is_alive(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,struct node_info * dni,block_t blkaddr,unsigned int * nofs)1138 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1139 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1140 {
1141 struct page *node_page;
1142 nid_t nid;
1143 unsigned int ofs_in_node, max_addrs, base;
1144 block_t source_blkaddr;
1145
1146 nid = le32_to_cpu(sum->nid);
1147 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1148
1149 node_page = f2fs_get_node_page(sbi, nid);
1150 if (IS_ERR(node_page))
1151 return false;
1152
1153 if (f2fs_get_node_info(sbi, nid, dni, false)) {
1154 f2fs_put_page(node_page, 1);
1155 return false;
1156 }
1157
1158 if (sum->version != dni->version) {
1159 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1160 __func__);
1161 set_sbi_flag(sbi, SBI_NEED_FSCK);
1162 }
1163
1164 if (f2fs_check_nid_range(sbi, dni->ino)) {
1165 f2fs_put_page(node_page, 1);
1166 return false;
1167 }
1168
1169 if (IS_INODE(node_page)) {
1170 base = offset_in_addr(F2FS_INODE(node_page));
1171 max_addrs = DEF_ADDRS_PER_INODE;
1172 } else {
1173 base = 0;
1174 max_addrs = DEF_ADDRS_PER_BLOCK;
1175 }
1176
1177 if (base + ofs_in_node >= max_addrs) {
1178 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1179 base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1180 f2fs_put_page(node_page, 1);
1181 return false;
1182 }
1183
1184 *nofs = ofs_of_node(node_page);
1185 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1186 f2fs_put_page(node_page, 1);
1187
1188 if (source_blkaddr != blkaddr) {
1189 #ifdef CONFIG_F2FS_CHECK_FS
1190 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1191 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1192
1193 if (unlikely(check_valid_map(sbi, segno, offset))) {
1194 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1195 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1196 blkaddr, source_blkaddr, segno);
1197 set_sbi_flag(sbi, SBI_NEED_FSCK);
1198 }
1199 }
1200 #endif
1201 return false;
1202 }
1203 return true;
1204 }
1205
ra_data_block(struct inode * inode,pgoff_t index)1206 static int ra_data_block(struct inode *inode, pgoff_t index)
1207 {
1208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1209 struct address_space *mapping = f2fs_is_cow_file(inode) ?
1210 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping;
1211 struct dnode_of_data dn;
1212 struct page *page;
1213 struct f2fs_io_info fio = {
1214 .sbi = sbi,
1215 .ino = inode->i_ino,
1216 .type = DATA,
1217 .temp = COLD,
1218 .op = REQ_OP_READ,
1219 .op_flags = 0,
1220 .encrypted_page = NULL,
1221 .in_list = 0,
1222 };
1223 int err;
1224
1225 page = f2fs_grab_cache_page(mapping, index, true);
1226 if (!page)
1227 return -ENOMEM;
1228
1229 if (f2fs_lookup_read_extent_cache_block(inode, index,
1230 &dn.data_blkaddr)) {
1231 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1232 DATA_GENERIC_ENHANCE_READ))) {
1233 err = -EFSCORRUPTED;
1234 goto put_page;
1235 }
1236 goto got_it;
1237 }
1238
1239 set_new_dnode(&dn, inode, NULL, NULL, 0);
1240 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1241 if (err)
1242 goto put_page;
1243 f2fs_put_dnode(&dn);
1244
1245 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1246 err = -ENOENT;
1247 goto put_page;
1248 }
1249 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1250 DATA_GENERIC_ENHANCE))) {
1251 err = -EFSCORRUPTED;
1252 goto put_page;
1253 }
1254 got_it:
1255 /* read page */
1256 fio.page = page;
1257 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1258
1259 /*
1260 * don't cache encrypted data into meta inode until previous dirty
1261 * data were writebacked to avoid racing between GC and flush.
1262 */
1263 f2fs_wait_on_page_writeback(page, DATA, true, true);
1264
1265 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1266
1267 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1268 dn.data_blkaddr,
1269 FGP_LOCK | FGP_CREAT, GFP_NOFS);
1270 if (!fio.encrypted_page) {
1271 err = -ENOMEM;
1272 goto put_page;
1273 }
1274
1275 err = f2fs_submit_page_bio(&fio);
1276 if (err)
1277 goto put_encrypted_page;
1278 f2fs_put_page(fio.encrypted_page, 0);
1279 f2fs_put_page(page, 1);
1280
1281 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
1282 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1283
1284 return 0;
1285 put_encrypted_page:
1286 f2fs_put_page(fio.encrypted_page, 1);
1287 put_page:
1288 f2fs_put_page(page, 1);
1289 return err;
1290 }
1291
1292 /*
1293 * Move data block via META_MAPPING while keeping locked data page.
1294 * This can be used to move blocks, aka LBAs, directly on disk.
1295 */
move_data_block(struct inode * inode,block_t bidx,int gc_type,unsigned int segno,int off)1296 static int move_data_block(struct inode *inode, block_t bidx,
1297 int gc_type, unsigned int segno, int off)
1298 {
1299 struct address_space *mapping = f2fs_is_cow_file(inode) ?
1300 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping;
1301 struct f2fs_io_info fio = {
1302 .sbi = F2FS_I_SB(inode),
1303 .ino = inode->i_ino,
1304 .type = DATA,
1305 .temp = COLD,
1306 .op = REQ_OP_READ,
1307 .op_flags = 0,
1308 .encrypted_page = NULL,
1309 .in_list = 0,
1310 };
1311 struct dnode_of_data dn;
1312 struct f2fs_summary sum;
1313 struct node_info ni;
1314 struct page *page, *mpage;
1315 block_t newaddr;
1316 int err = 0;
1317 bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1318 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1319 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1320 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1321
1322 /* do not read out */
1323 page = f2fs_grab_cache_page(mapping, bidx, false);
1324 if (!page)
1325 return -ENOMEM;
1326
1327 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1328 err = -ENOENT;
1329 goto out;
1330 }
1331
1332 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1333 if (err)
1334 goto out;
1335
1336 set_new_dnode(&dn, inode, NULL, NULL, 0);
1337 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1338 if (err)
1339 goto out;
1340
1341 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1342 ClearPageUptodate(page);
1343 err = -ENOENT;
1344 goto put_out;
1345 }
1346
1347 /*
1348 * don't cache encrypted data into meta inode until previous dirty
1349 * data were writebacked to avoid racing between GC and flush.
1350 */
1351 f2fs_wait_on_page_writeback(page, DATA, true, true);
1352
1353 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1354
1355 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1356 if (err)
1357 goto put_out;
1358
1359 /* read page */
1360 fio.page = page;
1361 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1362
1363 if (lfs_mode)
1364 f2fs_down_write(&fio.sbi->io_order_lock);
1365
1366 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1367 fio.old_blkaddr, false);
1368 if (!mpage) {
1369 err = -ENOMEM;
1370 goto up_out;
1371 }
1372
1373 fio.encrypted_page = mpage;
1374
1375 /* read source block in mpage */
1376 if (!PageUptodate(mpage)) {
1377 err = f2fs_submit_page_bio(&fio);
1378 if (err) {
1379 f2fs_put_page(mpage, 1);
1380 goto up_out;
1381 }
1382
1383 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO,
1384 F2FS_BLKSIZE);
1385 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO,
1386 F2FS_BLKSIZE);
1387
1388 lock_page(mpage);
1389 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1390 !PageUptodate(mpage))) {
1391 err = -EIO;
1392 f2fs_put_page(mpage, 1);
1393 goto up_out;
1394 }
1395 }
1396
1397 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1398
1399 /* allocate block address */
1400 err = f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1401 &sum, type, NULL);
1402 if (err) {
1403 f2fs_put_page(mpage, 1);
1404 /* filesystem should shutdown, no need to recovery block */
1405 goto up_out;
1406 }
1407
1408 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1409 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1410 if (!fio.encrypted_page) {
1411 err = -ENOMEM;
1412 f2fs_put_page(mpage, 1);
1413 goto recover_block;
1414 }
1415
1416 /* write target block */
1417 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1418 memcpy(page_address(fio.encrypted_page),
1419 page_address(mpage), PAGE_SIZE);
1420 f2fs_put_page(mpage, 1);
1421
1422 f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr);
1423
1424 set_page_dirty(fio.encrypted_page);
1425 if (clear_page_dirty_for_io(fio.encrypted_page))
1426 dec_page_count(fio.sbi, F2FS_DIRTY_META);
1427
1428 set_page_writeback(fio.encrypted_page);
1429
1430 fio.op = REQ_OP_WRITE;
1431 fio.op_flags = REQ_SYNC;
1432 fio.new_blkaddr = newaddr;
1433 f2fs_submit_page_write(&fio);
1434
1435 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE);
1436
1437 f2fs_update_data_blkaddr(&dn, newaddr);
1438 set_inode_flag(inode, FI_APPEND_WRITE);
1439
1440 f2fs_put_page(fio.encrypted_page, 1);
1441 recover_block:
1442 if (err)
1443 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1444 true, true, true);
1445 up_out:
1446 if (lfs_mode)
1447 f2fs_up_write(&fio.sbi->io_order_lock);
1448 put_out:
1449 f2fs_put_dnode(&dn);
1450 out:
1451 f2fs_put_page(page, 1);
1452 return err;
1453 }
1454
move_data_page(struct inode * inode,block_t bidx,int gc_type,unsigned int segno,int off)1455 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1456 unsigned int segno, int off)
1457 {
1458 struct page *page;
1459 int err = 0;
1460
1461 page = f2fs_get_lock_data_page(inode, bidx, true);
1462 if (IS_ERR(page))
1463 return PTR_ERR(page);
1464
1465 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1466 err = -ENOENT;
1467 goto out;
1468 }
1469
1470 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1471 if (err)
1472 goto out;
1473
1474 if (gc_type == BG_GC) {
1475 if (folio_test_writeback(page_folio(page))) {
1476 err = -EAGAIN;
1477 goto out;
1478 }
1479 set_page_dirty(page);
1480 set_page_private_gcing(page);
1481 } else {
1482 struct f2fs_io_info fio = {
1483 .sbi = F2FS_I_SB(inode),
1484 .ino = inode->i_ino,
1485 .type = DATA,
1486 .temp = COLD,
1487 .op = REQ_OP_WRITE,
1488 .op_flags = REQ_SYNC,
1489 .old_blkaddr = NULL_ADDR,
1490 .page = page,
1491 .encrypted_page = NULL,
1492 .need_lock = LOCK_REQ,
1493 .io_type = FS_GC_DATA_IO,
1494 };
1495 bool is_dirty = PageDirty(page);
1496
1497 retry:
1498 f2fs_wait_on_page_writeback(page, DATA, true, true);
1499
1500 set_page_dirty(page);
1501 if (clear_page_dirty_for_io(page)) {
1502 inode_dec_dirty_pages(inode);
1503 f2fs_remove_dirty_inode(inode);
1504 }
1505
1506 set_page_private_gcing(page);
1507
1508 err = f2fs_do_write_data_page(&fio);
1509 if (err) {
1510 clear_page_private_gcing(page);
1511 if (err == -ENOMEM) {
1512 memalloc_retry_wait(GFP_NOFS);
1513 goto retry;
1514 }
1515 if (is_dirty)
1516 set_page_dirty(page);
1517 }
1518 }
1519 out:
1520 f2fs_put_page(page, 1);
1521 return err;
1522 }
1523
1524 /*
1525 * This function tries to get parent node of victim data block, and identifies
1526 * data block validity. If the block is valid, copy that with cold status and
1527 * modify parent node.
1528 * If the parent node is not valid or the data block address is different,
1529 * the victim data block is ignored.
1530 */
gc_data_segment(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,struct gc_inode_list * gc_list,unsigned int segno,int gc_type,bool force_migrate)1531 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1532 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1533 bool force_migrate)
1534 {
1535 struct super_block *sb = sbi->sb;
1536 struct f2fs_summary *entry;
1537 block_t start_addr;
1538 int off;
1539 int phase = 0;
1540 int submitted = 0;
1541 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1542
1543 start_addr = START_BLOCK(sbi, segno);
1544
1545 next_step:
1546 entry = sum;
1547
1548 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1549 struct page *data_page;
1550 struct inode *inode;
1551 struct node_info dni; /* dnode info for the data */
1552 unsigned int ofs_in_node, nofs;
1553 block_t start_bidx;
1554 nid_t nid = le32_to_cpu(entry->nid);
1555
1556 /*
1557 * stop BG_GC if there is not enough free sections.
1558 * Or, stop GC if the segment becomes fully valid caused by
1559 * race condition along with SSR block allocation.
1560 */
1561 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1562 (!force_migrate && get_valid_blocks(sbi, segno, true) ==
1563 CAP_BLKS_PER_SEC(sbi)))
1564 return submitted;
1565
1566 if (check_valid_map(sbi, segno, off) == 0)
1567 continue;
1568
1569 if (phase == 0) {
1570 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1571 META_NAT, true);
1572 continue;
1573 }
1574
1575 if (phase == 1) {
1576 f2fs_ra_node_page(sbi, nid);
1577 continue;
1578 }
1579
1580 /* Get an inode by ino with checking validity */
1581 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1582 continue;
1583
1584 if (phase == 2) {
1585 f2fs_ra_node_page(sbi, dni.ino);
1586 continue;
1587 }
1588
1589 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1590
1591 if (phase == 3) {
1592 int err;
1593
1594 inode = f2fs_iget(sb, dni.ino);
1595 if (IS_ERR(inode))
1596 continue;
1597
1598 if (is_bad_inode(inode) ||
1599 special_file(inode->i_mode)) {
1600 iput(inode);
1601 continue;
1602 }
1603
1604 if (f2fs_has_inline_data(inode)) {
1605 iput(inode);
1606 set_sbi_flag(sbi, SBI_NEED_FSCK);
1607 f2fs_err_ratelimited(sbi,
1608 "inode %lx has both inline_data flag and "
1609 "data block, nid=%u, ofs_in_node=%u",
1610 inode->i_ino, dni.nid, ofs_in_node);
1611 continue;
1612 }
1613
1614 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1615 if (err == -EAGAIN) {
1616 iput(inode);
1617 return submitted;
1618 }
1619
1620 if (!f2fs_down_write_trylock(
1621 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1622 iput(inode);
1623 sbi->skipped_gc_rwsem++;
1624 continue;
1625 }
1626
1627 start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1628 ofs_in_node;
1629
1630 if (f2fs_meta_inode_gc_required(inode)) {
1631 int err = ra_data_block(inode, start_bidx);
1632
1633 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1634 if (err) {
1635 iput(inode);
1636 continue;
1637 }
1638 add_gc_inode(gc_list, inode);
1639 continue;
1640 }
1641
1642 data_page = f2fs_get_read_data_page(inode, start_bidx,
1643 REQ_RAHEAD, true, NULL);
1644 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1645 if (IS_ERR(data_page)) {
1646 iput(inode);
1647 continue;
1648 }
1649
1650 f2fs_put_page(data_page, 0);
1651 add_gc_inode(gc_list, inode);
1652 continue;
1653 }
1654
1655 /* phase 4 */
1656 inode = find_gc_inode(gc_list, dni.ino);
1657 if (inode) {
1658 struct f2fs_inode_info *fi = F2FS_I(inode);
1659 bool locked = false;
1660 int err;
1661
1662 if (S_ISREG(inode->i_mode)) {
1663 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) {
1664 sbi->skipped_gc_rwsem++;
1665 continue;
1666 }
1667 if (!f2fs_down_write_trylock(
1668 &fi->i_gc_rwsem[READ])) {
1669 sbi->skipped_gc_rwsem++;
1670 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1671 continue;
1672 }
1673 locked = true;
1674
1675 /* wait for all inflight aio data */
1676 inode_dio_wait(inode);
1677 }
1678
1679 start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1680 + ofs_in_node;
1681 if (f2fs_meta_inode_gc_required(inode))
1682 err = move_data_block(inode, start_bidx,
1683 gc_type, segno, off);
1684 else
1685 err = move_data_page(inode, start_bidx, gc_type,
1686 segno, off);
1687
1688 if (!err && (gc_type == FG_GC ||
1689 f2fs_meta_inode_gc_required(inode)))
1690 submitted++;
1691
1692 if (locked) {
1693 f2fs_up_write(&fi->i_gc_rwsem[READ]);
1694 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1695 }
1696
1697 stat_inc_data_blk_count(sbi, 1, gc_type);
1698 }
1699 }
1700
1701 if (++phase < 5)
1702 goto next_step;
1703
1704 return submitted;
1705 }
1706
__get_victim(struct f2fs_sb_info * sbi,unsigned int * victim,int gc_type,bool one_time)1707 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1708 int gc_type, bool one_time)
1709 {
1710 struct sit_info *sit_i = SIT_I(sbi);
1711 int ret;
1712
1713 down_write(&sit_i->sentry_lock);
1714 ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE,
1715 LFS, 0, one_time);
1716 up_write(&sit_i->sentry_lock);
1717 return ret;
1718 }
1719
do_garbage_collect(struct f2fs_sb_info * sbi,unsigned int start_segno,struct gc_inode_list * gc_list,int gc_type,bool force_migrate,bool one_time)1720 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1721 unsigned int start_segno,
1722 struct gc_inode_list *gc_list, int gc_type,
1723 bool force_migrate, bool one_time)
1724 {
1725 struct page *sum_page;
1726 struct f2fs_summary_block *sum;
1727 struct blk_plug plug;
1728 unsigned int segno = start_segno;
1729 unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi);
1730 unsigned int sec_end_segno;
1731 int seg_freed = 0, migrated = 0;
1732 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1733 SUM_TYPE_DATA : SUM_TYPE_NODE;
1734 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE;
1735 int submitted = 0;
1736
1737 if (__is_large_section(sbi)) {
1738 sec_end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi));
1739
1740 /*
1741 * zone-capacity can be less than zone-size in zoned devices,
1742 * resulting in less than expected usable segments in the zone,
1743 * calculate the end segno in the zone which can be garbage
1744 * collected
1745 */
1746 if (f2fs_sb_has_blkzoned(sbi))
1747 sec_end_segno -= SEGS_PER_SEC(sbi) -
1748 f2fs_usable_segs_in_sec(sbi);
1749
1750 if (gc_type == BG_GC || one_time) {
1751 unsigned int window_granularity =
1752 sbi->migration_window_granularity;
1753
1754 if (f2fs_sb_has_blkzoned(sbi) &&
1755 !has_enough_free_blocks(sbi,
1756 sbi->gc_thread->boost_zoned_gc_percent))
1757 window_granularity *=
1758 BOOST_GC_MULTIPLE;
1759
1760 end_segno = start_segno + window_granularity;
1761 }
1762
1763 if (end_segno > sec_end_segno)
1764 end_segno = sec_end_segno;
1765 }
1766
1767 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1768
1769 /* readahead multi ssa blocks those have contiguous address */
1770 if (__is_large_section(sbi))
1771 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1772 end_segno - segno, META_SSA, true);
1773
1774 /* reference all summary page */
1775 while (segno < end_segno) {
1776 sum_page = f2fs_get_sum_page(sbi, segno++);
1777 if (IS_ERR(sum_page)) {
1778 int err = PTR_ERR(sum_page);
1779
1780 end_segno = segno - 1;
1781 for (segno = start_segno; segno < end_segno; segno++) {
1782 sum_page = find_get_page(META_MAPPING(sbi),
1783 GET_SUM_BLOCK(sbi, segno));
1784 f2fs_put_page(sum_page, 0);
1785 f2fs_put_page(sum_page, 0);
1786 }
1787 return err;
1788 }
1789 unlock_page(sum_page);
1790 }
1791
1792 blk_start_plug(&plug);
1793
1794 for (segno = start_segno; segno < end_segno; segno++) {
1795
1796 /* find segment summary of victim */
1797 sum_page = find_get_page(META_MAPPING(sbi),
1798 GET_SUM_BLOCK(sbi, segno));
1799 f2fs_put_page(sum_page, 0);
1800
1801 if (get_valid_blocks(sbi, segno, false) == 0)
1802 goto freed;
1803 if (gc_type == BG_GC && __is_large_section(sbi) &&
1804 migrated >= sbi->migration_granularity)
1805 goto skip;
1806 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1807 goto skip;
1808
1809 sum = page_address(sum_page);
1810 if (type != GET_SUM_TYPE((&sum->footer))) {
1811 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1812 segno, type, GET_SUM_TYPE((&sum->footer)));
1813 f2fs_stop_checkpoint(sbi, false,
1814 STOP_CP_REASON_CORRUPTED_SUMMARY);
1815 goto skip;
1816 }
1817
1818 /*
1819 * this is to avoid deadlock:
1820 * - lock_page(sum_page) - f2fs_replace_block
1821 * - check_valid_map() - down_write(sentry_lock)
1822 * - down_read(sentry_lock) - change_curseg()
1823 * - lock_page(sum_page)
1824 */
1825 if (type == SUM_TYPE_NODE)
1826 submitted += gc_node_segment(sbi, sum->entries, segno,
1827 gc_type);
1828 else
1829 submitted += gc_data_segment(sbi, sum->entries, gc_list,
1830 segno, gc_type,
1831 force_migrate);
1832
1833 stat_inc_gc_seg_count(sbi, data_type, gc_type);
1834 sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1835 migrated++;
1836
1837 freed:
1838 if (gc_type == FG_GC &&
1839 get_valid_blocks(sbi, segno, false) == 0)
1840 seg_freed++;
1841
1842 if (__is_large_section(sbi))
1843 sbi->next_victim_seg[gc_type] =
1844 (segno + 1 < sec_end_segno) ?
1845 segno + 1 : NULL_SEGNO;
1846 skip:
1847 f2fs_put_page(sum_page, 0);
1848 }
1849
1850 if (submitted)
1851 f2fs_submit_merged_write(sbi, data_type);
1852
1853 blk_finish_plug(&plug);
1854
1855 if (migrated)
1856 stat_inc_gc_sec_count(sbi, data_type, gc_type);
1857
1858 return seg_freed;
1859 }
1860
f2fs_gc(struct f2fs_sb_info * sbi,struct f2fs_gc_control * gc_control)1861 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1862 {
1863 int gc_type = gc_control->init_gc_type;
1864 unsigned int segno = gc_control->victim_segno;
1865 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0;
1866 int ret = 0;
1867 struct cp_control cpc;
1868 struct gc_inode_list gc_list = {
1869 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1870 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1871 };
1872 unsigned int skipped_round = 0, round = 0;
1873 unsigned int upper_secs;
1874
1875 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1876 gc_control->nr_free_secs,
1877 get_pages(sbi, F2FS_DIRTY_NODES),
1878 get_pages(sbi, F2FS_DIRTY_DENTS),
1879 get_pages(sbi, F2FS_DIRTY_IMETA),
1880 free_sections(sbi),
1881 free_segments(sbi),
1882 reserved_segments(sbi),
1883 prefree_segments(sbi));
1884
1885 cpc.reason = __get_cp_reason(sbi);
1886 gc_more:
1887 sbi->skipped_gc_rwsem = 0;
1888 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1889 ret = -EINVAL;
1890 goto stop;
1891 }
1892 if (unlikely(f2fs_cp_error(sbi))) {
1893 ret = -EIO;
1894 goto stop;
1895 }
1896
1897 /* Let's run FG_GC, if we don't have enough space. */
1898 if (has_not_enough_free_secs(sbi, 0, 0)) {
1899 gc_type = FG_GC;
1900
1901 /*
1902 * For example, if there are many prefree_segments below given
1903 * threshold, we can make them free by checkpoint. Then, we
1904 * secure free segments which doesn't need fggc any more.
1905 */
1906 if (prefree_segments(sbi)) {
1907 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1908 ret = f2fs_write_checkpoint(sbi, &cpc);
1909 if (ret)
1910 goto stop;
1911 /* Reset due to checkpoint */
1912 sec_freed = 0;
1913 }
1914 }
1915
1916 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1917 if (gc_type == BG_GC && gc_control->no_bg_gc) {
1918 ret = -EINVAL;
1919 goto stop;
1920 }
1921 retry:
1922 ret = __get_victim(sbi, &segno, gc_type, gc_control->one_time);
1923 if (ret) {
1924 /* allow to search victim from sections has pinned data */
1925 if (ret == -ENODATA && gc_type == FG_GC &&
1926 f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1927 f2fs_unpin_all_sections(sbi, false);
1928 goto retry;
1929 }
1930 goto stop;
1931 }
1932
1933 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1934 gc_control->should_migrate_blocks,
1935 gc_control->one_time);
1936 if (seg_freed < 0)
1937 goto stop;
1938
1939 total_freed += seg_freed;
1940
1941 if (seg_freed == f2fs_usable_segs_in_sec(sbi)) {
1942 sec_freed++;
1943 total_sec_freed++;
1944 }
1945
1946 if (gc_control->one_time)
1947 goto stop;
1948
1949 if (gc_type == FG_GC) {
1950 sbi->cur_victim_sec = NULL_SEGNO;
1951
1952 if (has_enough_free_secs(sbi, sec_freed, 0)) {
1953 if (!gc_control->no_bg_gc &&
1954 total_sec_freed < gc_control->nr_free_secs)
1955 goto go_gc_more;
1956 goto stop;
1957 }
1958 if (sbi->skipped_gc_rwsem)
1959 skipped_round++;
1960 round++;
1961 if (skipped_round > MAX_SKIP_GC_COUNT &&
1962 skipped_round * 2 >= round) {
1963 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1964 ret = f2fs_write_checkpoint(sbi, &cpc);
1965 goto stop;
1966 }
1967 } else if (has_enough_free_secs(sbi, 0, 0)) {
1968 goto stop;
1969 }
1970
1971 __get_secs_required(sbi, NULL, &upper_secs, NULL);
1972
1973 /*
1974 * Write checkpoint to reclaim prefree segments.
1975 * We need more three extra sections for writer's data/node/dentry.
1976 */
1977 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS &&
1978 prefree_segments(sbi)) {
1979 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1980 ret = f2fs_write_checkpoint(sbi, &cpc);
1981 if (ret)
1982 goto stop;
1983 /* Reset due to checkpoint */
1984 sec_freed = 0;
1985 }
1986 go_gc_more:
1987 segno = NULL_SEGNO;
1988 goto gc_more;
1989
1990 stop:
1991 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1992 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1993
1994 if (gc_type == FG_GC)
1995 f2fs_unpin_all_sections(sbi, true);
1996
1997 trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed,
1998 get_pages(sbi, F2FS_DIRTY_NODES),
1999 get_pages(sbi, F2FS_DIRTY_DENTS),
2000 get_pages(sbi, F2FS_DIRTY_IMETA),
2001 free_sections(sbi),
2002 free_segments(sbi),
2003 reserved_segments(sbi),
2004 prefree_segments(sbi));
2005
2006 f2fs_up_write(&sbi->gc_lock);
2007
2008 put_gc_inode(&gc_list);
2009
2010 if (gc_control->err_gc_skipped && !ret)
2011 ret = total_sec_freed ? 0 : -EAGAIN;
2012 return ret;
2013 }
2014
f2fs_create_garbage_collection_cache(void)2015 int __init f2fs_create_garbage_collection_cache(void)
2016 {
2017 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
2018 sizeof(struct victim_entry));
2019 return victim_entry_slab ? 0 : -ENOMEM;
2020 }
2021
f2fs_destroy_garbage_collection_cache(void)2022 void f2fs_destroy_garbage_collection_cache(void)
2023 {
2024 kmem_cache_destroy(victim_entry_slab);
2025 }
2026
init_atgc_management(struct f2fs_sb_info * sbi)2027 static void init_atgc_management(struct f2fs_sb_info *sbi)
2028 {
2029 struct atgc_management *am = &sbi->am;
2030
2031 if (test_opt(sbi, ATGC) &&
2032 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
2033 am->atgc_enabled = true;
2034
2035 am->root = RB_ROOT_CACHED;
2036 INIT_LIST_HEAD(&am->victim_list);
2037 am->victim_count = 0;
2038
2039 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
2040 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
2041 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
2042 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
2043 }
2044
f2fs_build_gc_manager(struct f2fs_sb_info * sbi)2045 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
2046 {
2047 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
2048
2049 /* give warm/cold data area from slower device */
2050 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
2051 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
2052 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
2053
2054 init_atgc_management(sbi);
2055 }
2056
f2fs_gc_range(struct f2fs_sb_info * sbi,unsigned int start_seg,unsigned int end_seg,bool dry_run,unsigned int dry_run_sections)2057 int f2fs_gc_range(struct f2fs_sb_info *sbi,
2058 unsigned int start_seg, unsigned int end_seg,
2059 bool dry_run, unsigned int dry_run_sections)
2060 {
2061 unsigned int segno;
2062 unsigned int gc_secs = dry_run_sections;
2063
2064 if (unlikely(f2fs_cp_error(sbi)))
2065 return -EIO;
2066
2067 for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) {
2068 struct gc_inode_list gc_list = {
2069 .ilist = LIST_HEAD_INIT(gc_list.ilist),
2070 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
2071 };
2072
2073 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true, false);
2074 put_gc_inode(&gc_list);
2075
2076 if (!dry_run && get_valid_blocks(sbi, segno, true))
2077 return -EAGAIN;
2078 if (dry_run && dry_run_sections &&
2079 !get_valid_blocks(sbi, segno, true) && --gc_secs == 0)
2080 break;
2081
2082 if (fatal_signal_pending(current))
2083 return -ERESTARTSYS;
2084 }
2085
2086 return 0;
2087 }
2088
free_segment_range(struct f2fs_sb_info * sbi,unsigned int secs,bool dry_run)2089 static int free_segment_range(struct f2fs_sb_info *sbi,
2090 unsigned int secs, bool dry_run)
2091 {
2092 unsigned int next_inuse, start, end;
2093 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2094 int gc_mode, gc_type;
2095 int err = 0;
2096 int type;
2097
2098 /* Force block allocation for GC */
2099 MAIN_SECS(sbi) -= secs;
2100 start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
2101 end = MAIN_SEGS(sbi) - 1;
2102
2103 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2104 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
2105 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
2106 SIT_I(sbi)->last_victim[gc_mode] = 0;
2107
2108 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
2109 if (sbi->next_victim_seg[gc_type] >= start)
2110 sbi->next_victim_seg[gc_type] = NULL_SEGNO;
2111 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2112
2113 /* Move out cursegs from the target range */
2114 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) {
2115 err = f2fs_allocate_segment_for_resize(sbi, type, start, end);
2116 if (err)
2117 goto out;
2118 }
2119
2120 /* do GC to move out valid blocks in the range */
2121 err = f2fs_gc_range(sbi, start, end, dry_run, 0);
2122 if (err || dry_run)
2123 goto out;
2124
2125 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2126 err = f2fs_write_checkpoint(sbi, &cpc);
2127 if (err)
2128 goto out;
2129
2130 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
2131 if (next_inuse <= end) {
2132 f2fs_err(sbi, "segno %u should be free but still inuse!",
2133 next_inuse);
2134 f2fs_bug_on(sbi, 1);
2135 }
2136 out:
2137 MAIN_SECS(sbi) += secs;
2138 return err;
2139 }
2140
update_sb_metadata(struct f2fs_sb_info * sbi,int secs)2141 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2142 {
2143 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2144 int section_count;
2145 int segment_count;
2146 int segment_count_main;
2147 long long block_count;
2148 int segs = secs * SEGS_PER_SEC(sbi);
2149
2150 f2fs_down_write(&sbi->sb_lock);
2151
2152 section_count = le32_to_cpu(raw_sb->section_count);
2153 segment_count = le32_to_cpu(raw_sb->segment_count);
2154 segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2155 block_count = le64_to_cpu(raw_sb->block_count);
2156
2157 raw_sb->section_count = cpu_to_le32(section_count + secs);
2158 raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2159 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2160 raw_sb->block_count = cpu_to_le64(block_count +
2161 (long long)SEGS_TO_BLKS(sbi, segs));
2162 if (f2fs_is_multi_device(sbi)) {
2163 int last_dev = sbi->s_ndevs - 1;
2164 int dev_segs =
2165 le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2166
2167 raw_sb->devs[last_dev].total_segments =
2168 cpu_to_le32(dev_segs + segs);
2169 }
2170
2171 f2fs_up_write(&sbi->sb_lock);
2172 }
2173
update_fs_metadata(struct f2fs_sb_info * sbi,int secs)2174 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2175 {
2176 int segs = secs * SEGS_PER_SEC(sbi);
2177 long long blks = SEGS_TO_BLKS(sbi, segs);
2178 long long user_block_count =
2179 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2180
2181 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2182 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2183 MAIN_SECS(sbi) += secs;
2184 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2185 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2186 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2187
2188 if (f2fs_is_multi_device(sbi)) {
2189 int last_dev = sbi->s_ndevs - 1;
2190
2191 FDEV(last_dev).total_segments =
2192 (int)FDEV(last_dev).total_segments + segs;
2193 FDEV(last_dev).end_blk =
2194 (long long)FDEV(last_dev).end_blk + blks;
2195 #ifdef CONFIG_BLK_DEV_ZONED
2196 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz +
2197 div_u64(blks, sbi->blocks_per_blkz);
2198 #endif
2199 }
2200 }
2201
f2fs_resize_fs(struct file * filp,__u64 block_count)2202 int f2fs_resize_fs(struct file *filp, __u64 block_count)
2203 {
2204 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2205 __u64 old_block_count, shrunk_blocks;
2206 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2207 unsigned int secs;
2208 int err = 0;
2209 __u32 rem;
2210
2211 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2212 if (block_count > old_block_count)
2213 return -EINVAL;
2214
2215 if (f2fs_is_multi_device(sbi)) {
2216 int last_dev = sbi->s_ndevs - 1;
2217 __u64 last_segs = FDEV(last_dev).total_segments;
2218
2219 if (block_count + SEGS_TO_BLKS(sbi, last_segs) <=
2220 old_block_count)
2221 return -EINVAL;
2222 }
2223
2224 /* new fs size should align to section size */
2225 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2226 if (rem)
2227 return -EINVAL;
2228
2229 if (block_count == old_block_count)
2230 return 0;
2231
2232 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2233 f2fs_err(sbi, "Should run fsck to repair first.");
2234 return -EFSCORRUPTED;
2235 }
2236
2237 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2238 f2fs_err(sbi, "Checkpoint should be enabled.");
2239 return -EINVAL;
2240 }
2241
2242 err = mnt_want_write_file(filp);
2243 if (err)
2244 return err;
2245
2246 shrunk_blocks = old_block_count - block_count;
2247 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2248
2249 /* stop other GC */
2250 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2251 err = -EAGAIN;
2252 goto out_drop_write;
2253 }
2254
2255 /* stop CP to protect MAIN_SEC in free_segment_range */
2256 f2fs_lock_op(sbi);
2257
2258 spin_lock(&sbi->stat_lock);
2259 if (shrunk_blocks + valid_user_blocks(sbi) +
2260 sbi->current_reserved_blocks + sbi->unusable_block_count +
2261 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2262 err = -ENOSPC;
2263 spin_unlock(&sbi->stat_lock);
2264
2265 if (err)
2266 goto out_unlock;
2267
2268 err = free_segment_range(sbi, secs, true);
2269
2270 out_unlock:
2271 f2fs_unlock_op(sbi);
2272 f2fs_up_write(&sbi->gc_lock);
2273 out_drop_write:
2274 mnt_drop_write_file(filp);
2275 if (err)
2276 return err;
2277
2278 err = freeze_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2279 if (err)
2280 return err;
2281
2282 if (f2fs_readonly(sbi->sb)) {
2283 err = thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2284 if (err)
2285 return err;
2286 return -EROFS;
2287 }
2288
2289 f2fs_down_write(&sbi->gc_lock);
2290 f2fs_down_write(&sbi->cp_global_sem);
2291
2292 spin_lock(&sbi->stat_lock);
2293 if (shrunk_blocks + valid_user_blocks(sbi) +
2294 sbi->current_reserved_blocks + sbi->unusable_block_count +
2295 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2296 err = -ENOSPC;
2297 else
2298 sbi->user_block_count -= shrunk_blocks;
2299 spin_unlock(&sbi->stat_lock);
2300 if (err)
2301 goto out_err;
2302
2303 set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2304 err = free_segment_range(sbi, secs, false);
2305 if (err)
2306 goto recover_out;
2307
2308 update_sb_metadata(sbi, -secs);
2309
2310 err = f2fs_commit_super(sbi, false);
2311 if (err) {
2312 update_sb_metadata(sbi, secs);
2313 goto recover_out;
2314 }
2315
2316 update_fs_metadata(sbi, -secs);
2317 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2318 set_sbi_flag(sbi, SBI_IS_DIRTY);
2319
2320 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2321 err = f2fs_write_checkpoint(sbi, &cpc);
2322 if (err) {
2323 update_fs_metadata(sbi, secs);
2324 update_sb_metadata(sbi, secs);
2325 f2fs_commit_super(sbi, false);
2326 }
2327 recover_out:
2328 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2329 if (err) {
2330 set_sbi_flag(sbi, SBI_NEED_FSCK);
2331 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2332
2333 spin_lock(&sbi->stat_lock);
2334 sbi->user_block_count += shrunk_blocks;
2335 spin_unlock(&sbi->stat_lock);
2336 }
2337 out_err:
2338 f2fs_up_write(&sbi->cp_global_sem);
2339 f2fs_up_write(&sbi->gc_lock);
2340 thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2341 return err;
2342 }
2343