xref: /linux/fs/f2fs/file.c (revision 9e2ac6ddb397408a77781b0de8525068f51a81cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/filelock.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static void f2fs_zero_post_eof_page(struct inode *inode,
40 					loff_t new_size, bool lock)
41 {
42 	loff_t old_size = i_size_read(inode);
43 
44 	if (old_size >= new_size)
45 		return;
46 
47 	if (mapping_empty(inode->i_mapping))
48 		return;
49 
50 	if (lock)
51 		filemap_invalidate_lock(inode->i_mapping);
52 	/* zero or drop pages only in range of [old_size, new_size] */
53 	truncate_inode_pages_range(inode->i_mapping, old_size, new_size);
54 	if (lock)
55 		filemap_invalidate_unlock(inode->i_mapping);
56 }
57 
58 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
59 {
60 	struct inode *inode = file_inode(vmf->vma->vm_file);
61 	vm_flags_t flags = vmf->vma->vm_flags;
62 	vm_fault_t ret;
63 
64 	ret = filemap_fault(vmf);
65 	if (ret & VM_FAULT_LOCKED)
66 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
67 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
68 
69 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
70 
71 	return ret;
72 }
73 
74 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
75 {
76 	struct folio *folio = page_folio(vmf->page);
77 	struct inode *inode = file_inode(vmf->vma->vm_file);
78 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
79 	struct dnode_of_data dn;
80 	bool need_alloc = !f2fs_is_pinned_file(inode);
81 	int err = 0;
82 	vm_fault_t ret;
83 
84 	if (unlikely(IS_IMMUTABLE(inode)))
85 		return VM_FAULT_SIGBUS;
86 
87 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
88 		err = -EIO;
89 		goto out;
90 	}
91 
92 	if (unlikely(f2fs_cp_error(sbi))) {
93 		err = -EIO;
94 		goto out;
95 	}
96 
97 	if (!f2fs_is_checkpoint_ready(sbi)) {
98 		err = -ENOSPC;
99 		goto out;
100 	}
101 
102 	err = f2fs_convert_inline_inode(inode);
103 	if (err)
104 		goto out;
105 
106 #ifdef CONFIG_F2FS_FS_COMPRESSION
107 	if (f2fs_compressed_file(inode)) {
108 		int ret = f2fs_is_compressed_cluster(inode, folio->index);
109 
110 		if (ret < 0) {
111 			err = ret;
112 			goto out;
113 		} else if (ret) {
114 			need_alloc = false;
115 		}
116 	}
117 #endif
118 	/* should do out of any locked page */
119 	if (need_alloc)
120 		f2fs_balance_fs(sbi, true);
121 
122 	sb_start_pagefault(inode->i_sb);
123 
124 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
125 
126 	f2fs_zero_post_eof_page(inode, (folio->index + 1) << PAGE_SHIFT, true);
127 
128 	file_update_time(vmf->vma->vm_file);
129 	filemap_invalidate_lock_shared(inode->i_mapping);
130 
131 	folio_lock(folio);
132 	if (unlikely(folio->mapping != inode->i_mapping ||
133 			folio_pos(folio) > i_size_read(inode) ||
134 			!folio_test_uptodate(folio))) {
135 		folio_unlock(folio);
136 		err = -EFAULT;
137 		goto out_sem;
138 	}
139 
140 	set_new_dnode(&dn, inode, NULL, NULL, 0);
141 	if (need_alloc) {
142 		/* block allocation */
143 		err = f2fs_get_block_locked(&dn, folio->index);
144 	} else {
145 		err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
146 		f2fs_put_dnode(&dn);
147 		if (f2fs_is_pinned_file(inode) &&
148 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
149 			err = -EIO;
150 	}
151 
152 	if (err) {
153 		folio_unlock(folio);
154 		goto out_sem;
155 	}
156 
157 	f2fs_folio_wait_writeback(folio, DATA, false, true);
158 
159 	/* wait for GCed page writeback via META_MAPPING */
160 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
161 
162 	/*
163 	 * check to see if the page is mapped already (no holes)
164 	 */
165 	if (folio_test_mappedtodisk(folio))
166 		goto out_sem;
167 
168 	/* page is wholly or partially inside EOF */
169 	if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
170 						i_size_read(inode)) {
171 		loff_t offset;
172 
173 		offset = i_size_read(inode) & ~PAGE_MASK;
174 		folio_zero_segment(folio, offset, folio_size(folio));
175 	}
176 	folio_mark_dirty(folio);
177 
178 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
179 	f2fs_update_time(sbi, REQ_TIME);
180 
181 out_sem:
182 	filemap_invalidate_unlock_shared(inode->i_mapping);
183 
184 	sb_end_pagefault(inode->i_sb);
185 out:
186 	ret = vmf_fs_error(err);
187 
188 	trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
189 	return ret;
190 }
191 
192 static const struct vm_operations_struct f2fs_file_vm_ops = {
193 	.fault		= f2fs_filemap_fault,
194 	.map_pages	= filemap_map_pages,
195 	.page_mkwrite	= f2fs_vm_page_mkwrite,
196 };
197 
198 static int get_parent_ino(struct inode *inode, nid_t *pino)
199 {
200 	struct dentry *dentry;
201 
202 	/*
203 	 * Make sure to get the non-deleted alias.  The alias associated with
204 	 * the open file descriptor being fsync()'ed may be deleted already.
205 	 */
206 	dentry = d_find_alias(inode);
207 	if (!dentry)
208 		return 0;
209 
210 	*pino = d_parent_ino(dentry);
211 	dput(dentry);
212 	return 1;
213 }
214 
215 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
216 {
217 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
219 
220 	if (!S_ISREG(inode->i_mode))
221 		cp_reason = CP_NON_REGULAR;
222 	else if (f2fs_compressed_file(inode))
223 		cp_reason = CP_COMPRESSED;
224 	else if (inode->i_nlink != 1)
225 		cp_reason = CP_HARDLINK;
226 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
227 		cp_reason = CP_SB_NEED_CP;
228 	else if (file_wrong_pino(inode))
229 		cp_reason = CP_WRONG_PINO;
230 	else if (!f2fs_space_for_roll_forward(sbi))
231 		cp_reason = CP_NO_SPC_ROLL;
232 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
233 		cp_reason = CP_NODE_NEED_CP;
234 	else if (test_opt(sbi, FASTBOOT))
235 		cp_reason = CP_FASTBOOT_MODE;
236 	else if (F2FS_OPTION(sbi).active_logs == 2)
237 		cp_reason = CP_SPEC_LOG_NUM;
238 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
239 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
240 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
241 							TRANS_DIR_INO))
242 		cp_reason = CP_RECOVER_DIR;
243 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
244 							XATTR_DIR_INO))
245 		cp_reason = CP_XATTR_DIR;
246 
247 	return cp_reason;
248 }
249 
250 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
251 {
252 	struct folio *i = filemap_get_folio(NODE_MAPPING(sbi), ino);
253 	bool ret = false;
254 	/* But we need to avoid that there are some inode updates */
255 	if ((!IS_ERR(i) && folio_test_dirty(i)) ||
256 	    f2fs_need_inode_block_update(sbi, ino))
257 		ret = true;
258 	f2fs_folio_put(i, false);
259 	return ret;
260 }
261 
262 static void try_to_fix_pino(struct inode *inode)
263 {
264 	struct f2fs_inode_info *fi = F2FS_I(inode);
265 	nid_t pino;
266 
267 	f2fs_down_write(&fi->i_sem);
268 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
269 			get_parent_ino(inode, &pino)) {
270 		f2fs_i_pino_write(inode, pino);
271 		file_got_pino(inode);
272 	}
273 	f2fs_up_write(&fi->i_sem);
274 }
275 
276 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
277 						int datasync, bool atomic)
278 {
279 	struct inode *inode = file->f_mapping->host;
280 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
281 	nid_t ino = inode->i_ino;
282 	int ret = 0;
283 	enum cp_reason_type cp_reason = 0;
284 	struct writeback_control wbc = {
285 		.sync_mode = WB_SYNC_ALL,
286 		.nr_to_write = LONG_MAX,
287 	};
288 	unsigned int seq_id = 0;
289 
290 	if (unlikely(f2fs_readonly(inode->i_sb)))
291 		return 0;
292 
293 	trace_f2fs_sync_file_enter(inode);
294 
295 	if (S_ISDIR(inode->i_mode))
296 		goto go_write;
297 
298 	/* if fdatasync is triggered, let's do in-place-update */
299 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
300 		set_inode_flag(inode, FI_NEED_IPU);
301 	ret = file_write_and_wait_range(file, start, end);
302 	clear_inode_flag(inode, FI_NEED_IPU);
303 
304 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
305 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
306 		return ret;
307 	}
308 
309 	/* if the inode is dirty, let's recover all the time */
310 	if (!f2fs_skip_inode_update(inode, datasync)) {
311 		f2fs_write_inode(inode, NULL);
312 		goto go_write;
313 	}
314 
315 	/*
316 	 * if there is no written data, don't waste time to write recovery info.
317 	 */
318 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
319 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
320 
321 		/* it may call write_inode just prior to fsync */
322 		if (need_inode_page_update(sbi, ino))
323 			goto go_write;
324 
325 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
326 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
327 			goto flush_out;
328 		goto out;
329 	} else {
330 		/*
331 		 * for OPU case, during fsync(), node can be persisted before
332 		 * data when lower device doesn't support write barrier, result
333 		 * in data corruption after SPO.
334 		 * So for strict fsync mode, force to use atomic write semantics
335 		 * to keep write order in between data/node and last node to
336 		 * avoid potential data corruption.
337 		 */
338 		if (F2FS_OPTION(sbi).fsync_mode ==
339 				FSYNC_MODE_STRICT && !atomic)
340 			atomic = true;
341 	}
342 go_write:
343 	/*
344 	 * Both of fdatasync() and fsync() are able to be recovered from
345 	 * sudden-power-off.
346 	 */
347 	f2fs_down_read(&F2FS_I(inode)->i_sem);
348 	cp_reason = need_do_checkpoint(inode);
349 	f2fs_up_read(&F2FS_I(inode)->i_sem);
350 
351 	if (cp_reason) {
352 		/* all the dirty node pages should be flushed for POR */
353 		ret = f2fs_sync_fs(inode->i_sb, 1);
354 
355 		/*
356 		 * We've secured consistency through sync_fs. Following pino
357 		 * will be used only for fsynced inodes after checkpoint.
358 		 */
359 		try_to_fix_pino(inode);
360 		clear_inode_flag(inode, FI_APPEND_WRITE);
361 		clear_inode_flag(inode, FI_UPDATE_WRITE);
362 		goto out;
363 	}
364 sync_nodes:
365 	atomic_inc(&sbi->wb_sync_req[NODE]);
366 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
367 	atomic_dec(&sbi->wb_sync_req[NODE]);
368 	if (ret)
369 		goto out;
370 
371 	/* if cp_error was enabled, we should avoid infinite loop */
372 	if (unlikely(f2fs_cp_error(sbi))) {
373 		ret = -EIO;
374 		goto out;
375 	}
376 
377 	if (f2fs_need_inode_block_update(sbi, ino)) {
378 		f2fs_mark_inode_dirty_sync(inode, true);
379 		f2fs_write_inode(inode, NULL);
380 		goto sync_nodes;
381 	}
382 
383 	/*
384 	 * If it's atomic_write, it's just fine to keep write ordering. So
385 	 * here we don't need to wait for node write completion, since we use
386 	 * node chain which serializes node blocks. If one of node writes are
387 	 * reordered, we can see simply broken chain, resulting in stopping
388 	 * roll-forward recovery. It means we'll recover all or none node blocks
389 	 * given fsync mark.
390 	 */
391 	if (!atomic) {
392 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
393 		if (ret)
394 			goto out;
395 	}
396 
397 	/* once recovery info is written, don't need to tack this */
398 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
399 	clear_inode_flag(inode, FI_APPEND_WRITE);
400 flush_out:
401 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
402 		ret = f2fs_issue_flush(sbi, inode->i_ino);
403 	if (!ret) {
404 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
405 		clear_inode_flag(inode, FI_UPDATE_WRITE);
406 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
407 	}
408 	f2fs_update_time(sbi, REQ_TIME);
409 out:
410 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
411 	return ret;
412 }
413 
414 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
415 {
416 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
417 		return -EIO;
418 	return f2fs_do_sync_file(file, start, end, datasync, false);
419 }
420 
421 static bool __found_offset(struct address_space *mapping,
422 		struct dnode_of_data *dn, pgoff_t index, int whence)
423 {
424 	block_t blkaddr = f2fs_data_blkaddr(dn);
425 	struct inode *inode = mapping->host;
426 	bool compressed_cluster = false;
427 
428 	if (f2fs_compressed_file(inode)) {
429 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_folio,
430 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
431 
432 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
433 	}
434 
435 	switch (whence) {
436 	case SEEK_DATA:
437 		if (__is_valid_data_blkaddr(blkaddr))
438 			return true;
439 		if (blkaddr == NEW_ADDR &&
440 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
441 			return true;
442 		if (compressed_cluster)
443 			return true;
444 		break;
445 	case SEEK_HOLE:
446 		if (compressed_cluster)
447 			return false;
448 		if (blkaddr == NULL_ADDR)
449 			return true;
450 		break;
451 	}
452 	return false;
453 }
454 
455 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
456 {
457 	struct inode *inode = file->f_mapping->host;
458 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
459 	struct dnode_of_data dn;
460 	pgoff_t pgofs, end_offset;
461 	loff_t data_ofs = offset;
462 	loff_t isize;
463 	int err = 0;
464 
465 	inode_lock_shared(inode);
466 
467 	isize = i_size_read(inode);
468 	if (offset >= isize)
469 		goto fail;
470 
471 	/* handle inline data case */
472 	if (f2fs_has_inline_data(inode)) {
473 		if (whence == SEEK_HOLE) {
474 			data_ofs = isize;
475 			goto found;
476 		} else if (whence == SEEK_DATA) {
477 			data_ofs = offset;
478 			goto found;
479 		}
480 	}
481 
482 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
483 
484 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
485 		set_new_dnode(&dn, inode, NULL, NULL, 0);
486 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
487 		if (err && err != -ENOENT) {
488 			goto fail;
489 		} else if (err == -ENOENT) {
490 			/* direct node does not exists */
491 			if (whence == SEEK_DATA) {
492 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
493 				continue;
494 			} else {
495 				goto found;
496 			}
497 		}
498 
499 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
500 
501 		/* find data/hole in dnode block */
502 		for (; dn.ofs_in_node < end_offset;
503 				dn.ofs_in_node++, pgofs++,
504 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
505 			block_t blkaddr;
506 
507 			blkaddr = f2fs_data_blkaddr(&dn);
508 
509 			if (__is_valid_data_blkaddr(blkaddr) &&
510 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
511 					blkaddr, DATA_GENERIC_ENHANCE)) {
512 				f2fs_put_dnode(&dn);
513 				goto fail;
514 			}
515 
516 			if (__found_offset(file->f_mapping, &dn,
517 							pgofs, whence)) {
518 				f2fs_put_dnode(&dn);
519 				goto found;
520 			}
521 		}
522 		f2fs_put_dnode(&dn);
523 	}
524 
525 	if (whence == SEEK_DATA)
526 		goto fail;
527 found:
528 	if (whence == SEEK_HOLE && data_ofs > isize)
529 		data_ofs = isize;
530 	inode_unlock_shared(inode);
531 	return vfs_setpos(file, data_ofs, maxbytes);
532 fail:
533 	inode_unlock_shared(inode);
534 	return -ENXIO;
535 }
536 
537 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
538 {
539 	struct inode *inode = file->f_mapping->host;
540 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
541 
542 	switch (whence) {
543 	case SEEK_SET:
544 	case SEEK_CUR:
545 	case SEEK_END:
546 		return generic_file_llseek_size(file, offset, whence,
547 						maxbytes, i_size_read(inode));
548 	case SEEK_DATA:
549 	case SEEK_HOLE:
550 		if (offset < 0)
551 			return -ENXIO;
552 		return f2fs_seek_block(file, offset, whence);
553 	}
554 
555 	return -EINVAL;
556 }
557 
558 static int f2fs_file_mmap_prepare(struct vm_area_desc *desc)
559 {
560 	struct file *file = desc->file;
561 	struct inode *inode = file_inode(file);
562 
563 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
564 		return -EIO;
565 
566 	if (!f2fs_is_compress_backend_ready(inode))
567 		return -EOPNOTSUPP;
568 
569 	file_accessed(file);
570 	desc->vm_ops = &f2fs_file_vm_ops;
571 
572 	f2fs_down_read(&F2FS_I(inode)->i_sem);
573 	set_inode_flag(inode, FI_MMAP_FILE);
574 	f2fs_up_read(&F2FS_I(inode)->i_sem);
575 
576 	return 0;
577 }
578 
579 static int finish_preallocate_blocks(struct inode *inode)
580 {
581 	int ret = 0;
582 	bool opened;
583 
584 	f2fs_down_read(&F2FS_I(inode)->i_sem);
585 	opened = is_inode_flag_set(inode, FI_OPENED_FILE);
586 	f2fs_up_read(&F2FS_I(inode)->i_sem);
587 	if (opened)
588 		return 0;
589 
590 	inode_lock(inode);
591 	if (is_inode_flag_set(inode, FI_OPENED_FILE))
592 		goto out_unlock;
593 
594 	if (!file_should_truncate(inode))
595 		goto out_update;
596 
597 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
598 	filemap_invalidate_lock(inode->i_mapping);
599 
600 	truncate_setsize(inode, i_size_read(inode));
601 	ret = f2fs_truncate(inode);
602 
603 	filemap_invalidate_unlock(inode->i_mapping);
604 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
605 	if (ret)
606 		goto out_unlock;
607 
608 	file_dont_truncate(inode);
609 out_update:
610 	f2fs_down_write(&F2FS_I(inode)->i_sem);
611 	set_inode_flag(inode, FI_OPENED_FILE);
612 	f2fs_up_write(&F2FS_I(inode)->i_sem);
613 out_unlock:
614 	inode_unlock(inode);
615 	return ret;
616 }
617 
618 static int f2fs_file_open(struct inode *inode, struct file *filp)
619 {
620 	int err = fscrypt_file_open(inode, filp);
621 
622 	if (err)
623 		return err;
624 
625 	if (!f2fs_is_compress_backend_ready(inode))
626 		return -EOPNOTSUPP;
627 
628 	err = fsverity_file_open(inode, filp);
629 	if (err)
630 		return err;
631 
632 	filp->f_mode |= FMODE_NOWAIT;
633 	filp->f_mode |= FMODE_CAN_ODIRECT;
634 
635 	err = dquot_file_open(inode, filp);
636 	if (err)
637 		return err;
638 
639 	err = finish_preallocate_blocks(inode);
640 	if (!err)
641 		atomic_inc(&F2FS_I(inode)->open_count);
642 	return err;
643 }
644 
645 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
646 {
647 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
648 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
649 	__le32 *addr;
650 	bool compressed_cluster = false;
651 	int cluster_index = 0, valid_blocks = 0;
652 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
653 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
654 	block_t blkstart;
655 	int blklen = 0;
656 
657 	addr = get_dnode_addr(dn->inode, dn->node_folio) + ofs;
658 	blkstart = le32_to_cpu(*addr);
659 
660 	/* Assumption: truncation starts with cluster */
661 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
662 		block_t blkaddr = le32_to_cpu(*addr);
663 
664 		if (f2fs_compressed_file(dn->inode) &&
665 					!(cluster_index & (cluster_size - 1))) {
666 			if (compressed_cluster)
667 				f2fs_i_compr_blocks_update(dn->inode,
668 							valid_blocks, false);
669 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
670 			valid_blocks = 0;
671 		}
672 
673 		if (blkaddr == NULL_ADDR)
674 			goto next;
675 
676 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
677 
678 		if (__is_valid_data_blkaddr(blkaddr)) {
679 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
680 				goto next;
681 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
682 						DATA_GENERIC_ENHANCE))
683 				goto next;
684 			if (compressed_cluster)
685 				valid_blocks++;
686 		}
687 
688 		if (blkstart + blklen == blkaddr) {
689 			blklen++;
690 		} else {
691 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
692 			blkstart = blkaddr;
693 			blklen = 1;
694 		}
695 
696 		if (!released || blkaddr != COMPRESS_ADDR)
697 			nr_free++;
698 
699 		continue;
700 
701 next:
702 		if (blklen)
703 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
704 
705 		blkstart = le32_to_cpu(*(addr + 1));
706 		blklen = 0;
707 	}
708 
709 	if (blklen)
710 		f2fs_invalidate_blocks(sbi, blkstart, blklen);
711 
712 	if (compressed_cluster)
713 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
714 
715 	if (nr_free) {
716 		pgoff_t fofs;
717 		/*
718 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
719 		 * we will invalidate all blkaddr in the whole range.
720 		 */
721 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_folio),
722 							dn->inode) + ofs;
723 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
724 		f2fs_update_age_extent_cache_range(dn, fofs, len);
725 		dec_valid_block_count(sbi, dn->inode, nr_free);
726 	}
727 	dn->ofs_in_node = ofs;
728 
729 	f2fs_update_time(sbi, REQ_TIME);
730 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
731 					 dn->ofs_in_node, nr_free);
732 }
733 
734 static int truncate_partial_data_page(struct inode *inode, u64 from,
735 								bool cache_only)
736 {
737 	loff_t offset = from & (PAGE_SIZE - 1);
738 	pgoff_t index = from >> PAGE_SHIFT;
739 	struct address_space *mapping = inode->i_mapping;
740 	struct folio *folio;
741 
742 	if (!offset && !cache_only)
743 		return 0;
744 
745 	if (cache_only) {
746 		folio = filemap_lock_folio(mapping, index);
747 		if (IS_ERR(folio))
748 		       return 0;
749 		if (folio_test_uptodate(folio))
750 			goto truncate_out;
751 		f2fs_folio_put(folio, true);
752 		return 0;
753 	}
754 
755 	folio = f2fs_get_lock_data_folio(inode, index, true);
756 	if (IS_ERR(folio))
757 		return PTR_ERR(folio) == -ENOENT ? 0 : PTR_ERR(folio);
758 truncate_out:
759 	f2fs_folio_wait_writeback(folio, DATA, true, true);
760 	folio_zero_segment(folio, offset, folio_size(folio));
761 
762 	/* An encrypted inode should have a key and truncate the last page. */
763 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
764 	if (!cache_only)
765 		folio_mark_dirty(folio);
766 	f2fs_folio_put(folio, true);
767 	return 0;
768 }
769 
770 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
771 {
772 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
773 	struct dnode_of_data dn;
774 	pgoff_t free_from;
775 	int count = 0, err = 0;
776 	struct folio *ifolio;
777 	bool truncate_page = false;
778 
779 	trace_f2fs_truncate_blocks_enter(inode, from);
780 
781 	if (IS_DEVICE_ALIASING(inode) && from) {
782 		err = -EINVAL;
783 		goto out_err;
784 	}
785 
786 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
787 
788 	if (free_from >= max_file_blocks(inode))
789 		goto free_partial;
790 
791 	if (lock)
792 		f2fs_lock_op(sbi);
793 
794 	ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
795 	if (IS_ERR(ifolio)) {
796 		err = PTR_ERR(ifolio);
797 		goto out;
798 	}
799 
800 	if (IS_DEVICE_ALIASING(inode)) {
801 		struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
802 		struct extent_info ei = et->largest;
803 
804 		f2fs_invalidate_blocks(sbi, ei.blk, ei.len);
805 
806 		dec_valid_block_count(sbi, inode, ei.len);
807 		f2fs_update_time(sbi, REQ_TIME);
808 
809 		f2fs_folio_put(ifolio, true);
810 		goto out;
811 	}
812 
813 	if (f2fs_has_inline_data(inode)) {
814 		f2fs_truncate_inline_inode(inode, ifolio, from);
815 		f2fs_folio_put(ifolio, true);
816 		truncate_page = true;
817 		goto out;
818 	}
819 
820 	set_new_dnode(&dn, inode, ifolio, NULL, 0);
821 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
822 	if (err) {
823 		if (err == -ENOENT)
824 			goto free_next;
825 		goto out;
826 	}
827 
828 	count = ADDRS_PER_PAGE(dn.node_folio, inode);
829 
830 	count -= dn.ofs_in_node;
831 	f2fs_bug_on(sbi, count < 0);
832 
833 	if (dn.ofs_in_node || IS_INODE(dn.node_folio)) {
834 		f2fs_truncate_data_blocks_range(&dn, count);
835 		free_from += count;
836 	}
837 
838 	f2fs_put_dnode(&dn);
839 free_next:
840 	err = f2fs_truncate_inode_blocks(inode, free_from);
841 out:
842 	if (lock)
843 		f2fs_unlock_op(sbi);
844 free_partial:
845 	/* lastly zero out the first data page */
846 	if (!err)
847 		err = truncate_partial_data_page(inode, from, truncate_page);
848 out_err:
849 	trace_f2fs_truncate_blocks_exit(inode, err);
850 	return err;
851 }
852 
853 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
854 {
855 	u64 free_from = from;
856 	int err;
857 
858 #ifdef CONFIG_F2FS_FS_COMPRESSION
859 	/*
860 	 * for compressed file, only support cluster size
861 	 * aligned truncation.
862 	 */
863 	if (f2fs_compressed_file(inode))
864 		free_from = round_up(from,
865 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
866 #endif
867 
868 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
869 	if (err)
870 		return err;
871 
872 #ifdef CONFIG_F2FS_FS_COMPRESSION
873 	/*
874 	 * For compressed file, after release compress blocks, don't allow write
875 	 * direct, but we should allow write direct after truncate to zero.
876 	 */
877 	if (f2fs_compressed_file(inode) && !free_from
878 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
879 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
880 
881 	if (from != free_from) {
882 		err = f2fs_truncate_partial_cluster(inode, from, lock);
883 		if (err)
884 			return err;
885 	}
886 #endif
887 
888 	return 0;
889 }
890 
891 int f2fs_truncate(struct inode *inode)
892 {
893 	int err;
894 
895 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
896 		return -EIO;
897 
898 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
899 				S_ISLNK(inode->i_mode)))
900 		return 0;
901 
902 	trace_f2fs_truncate(inode);
903 
904 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
905 		return -EIO;
906 
907 	err = f2fs_dquot_initialize(inode);
908 	if (err)
909 		return err;
910 
911 	/* we should check inline_data size */
912 	if (!f2fs_may_inline_data(inode)) {
913 		err = f2fs_convert_inline_inode(inode);
914 		if (err) {
915 			/*
916 			 * Always truncate page #0 to avoid page cache
917 			 * leak in evict() path.
918 			 */
919 			truncate_inode_pages_range(inode->i_mapping,
920 					F2FS_BLK_TO_BYTES(0),
921 					F2FS_BLK_END_BYTES(0));
922 			return err;
923 		}
924 	}
925 
926 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
927 	if (err)
928 		return err;
929 
930 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
931 	f2fs_mark_inode_dirty_sync(inode, false);
932 	return 0;
933 }
934 
935 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
936 {
937 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
938 
939 	if (!fscrypt_dio_supported(inode))
940 		return true;
941 	if (fsverity_active(inode))
942 		return true;
943 	if (f2fs_compressed_file(inode))
944 		return true;
945 	/*
946 	 * only force direct read to use buffered IO, for direct write,
947 	 * it expects inline data conversion before committing IO.
948 	 */
949 	if (f2fs_has_inline_data(inode) && rw == READ)
950 		return true;
951 
952 	/* disallow direct IO if any of devices has unaligned blksize */
953 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
954 		return true;
955 	/*
956 	 * for blkzoned device, fallback direct IO to buffered IO, so
957 	 * all IOs can be serialized by log-structured write.
958 	 */
959 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
960 	    !f2fs_is_pinned_file(inode))
961 		return true;
962 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
963 		return true;
964 
965 	return false;
966 }
967 
968 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
969 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
970 {
971 	struct inode *inode = d_inode(path->dentry);
972 	struct f2fs_inode_info *fi = F2FS_I(inode);
973 	struct f2fs_inode *ri = NULL;
974 	unsigned int flags;
975 
976 	if (f2fs_has_extra_attr(inode) &&
977 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
978 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
979 		stat->result_mask |= STATX_BTIME;
980 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
981 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
982 	}
983 
984 	/*
985 	 * Return the DIO alignment restrictions if requested.  We only return
986 	 * this information when requested, since on encrypted files it might
987 	 * take a fair bit of work to get if the file wasn't opened recently.
988 	 *
989 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
990 	 * cannot represent that, so in that case we report no DIO support.
991 	 */
992 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
993 		unsigned int bsize = i_blocksize(inode);
994 
995 		stat->result_mask |= STATX_DIOALIGN;
996 		if (!f2fs_force_buffered_io(inode, WRITE)) {
997 			stat->dio_mem_align = bsize;
998 			stat->dio_offset_align = bsize;
999 		}
1000 	}
1001 
1002 	flags = fi->i_flags;
1003 	if (flags & F2FS_COMPR_FL)
1004 		stat->attributes |= STATX_ATTR_COMPRESSED;
1005 	if (flags & F2FS_APPEND_FL)
1006 		stat->attributes |= STATX_ATTR_APPEND;
1007 	if (IS_ENCRYPTED(inode))
1008 		stat->attributes |= STATX_ATTR_ENCRYPTED;
1009 	if (flags & F2FS_IMMUTABLE_FL)
1010 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1011 	if (flags & F2FS_NODUMP_FL)
1012 		stat->attributes |= STATX_ATTR_NODUMP;
1013 	if (IS_VERITY(inode))
1014 		stat->attributes |= STATX_ATTR_VERITY;
1015 
1016 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
1017 				  STATX_ATTR_APPEND |
1018 				  STATX_ATTR_ENCRYPTED |
1019 				  STATX_ATTR_IMMUTABLE |
1020 				  STATX_ATTR_NODUMP |
1021 				  STATX_ATTR_VERITY);
1022 
1023 	generic_fillattr(idmap, request_mask, inode, stat);
1024 
1025 	/* we need to show initial sectors used for inline_data/dentries */
1026 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
1027 					f2fs_has_inline_dentry(inode))
1028 		stat->blocks += (stat->size + 511) >> 9;
1029 
1030 	return 0;
1031 }
1032 
1033 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1034 static void __setattr_copy(struct mnt_idmap *idmap,
1035 			   struct inode *inode, const struct iattr *attr)
1036 {
1037 	unsigned int ia_valid = attr->ia_valid;
1038 
1039 	i_uid_update(idmap, attr, inode);
1040 	i_gid_update(idmap, attr, inode);
1041 	if (ia_valid & ATTR_ATIME)
1042 		inode_set_atime_to_ts(inode, attr->ia_atime);
1043 	if (ia_valid & ATTR_MTIME)
1044 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
1045 	if (ia_valid & ATTR_CTIME)
1046 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1047 	if (ia_valid & ATTR_MODE) {
1048 		umode_t mode = attr->ia_mode;
1049 
1050 		if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
1051 			mode &= ~S_ISGID;
1052 		set_acl_inode(inode, mode);
1053 	}
1054 }
1055 #else
1056 #define __setattr_copy setattr_copy
1057 #endif
1058 
1059 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1060 		 struct iattr *attr)
1061 {
1062 	struct inode *inode = d_inode(dentry);
1063 	struct f2fs_inode_info *fi = F2FS_I(inode);
1064 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1065 	int err;
1066 
1067 	if (unlikely(f2fs_cp_error(sbi)))
1068 		return -EIO;
1069 
1070 	err = setattr_prepare(idmap, dentry, attr);
1071 	if (err)
1072 		return err;
1073 
1074 	err = fscrypt_prepare_setattr(dentry, attr);
1075 	if (err)
1076 		return err;
1077 
1078 	err = fsverity_prepare_setattr(dentry, attr);
1079 	if (err)
1080 		return err;
1081 
1082 	if (unlikely(IS_IMMUTABLE(inode)))
1083 		return -EPERM;
1084 
1085 	if (unlikely(IS_APPEND(inode) &&
1086 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
1087 				  ATTR_GID | ATTR_TIMES_SET))))
1088 		return -EPERM;
1089 
1090 	if ((attr->ia_valid & ATTR_SIZE)) {
1091 		if (!f2fs_is_compress_backend_ready(inode) ||
1092 				IS_DEVICE_ALIASING(inode))
1093 			return -EOPNOTSUPP;
1094 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1095 			!IS_ALIGNED(attr->ia_size,
1096 			F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1097 			return -EINVAL;
1098 		/*
1099 		 * To prevent scattered pin block generation, we don't allow
1100 		 * smaller/equal size unaligned truncation for pinned file.
1101 		 * We only support overwrite IO to pinned file, so don't
1102 		 * care about larger size truncation.
1103 		 */
1104 		if (f2fs_is_pinned_file(inode) &&
1105 			attr->ia_size <= i_size_read(inode) &&
1106 			!IS_ALIGNED(attr->ia_size,
1107 			F2FS_BLK_TO_BYTES(CAP_BLKS_PER_SEC(sbi))))
1108 			return -EINVAL;
1109 	}
1110 
1111 	if (is_quota_modification(idmap, inode, attr)) {
1112 		err = f2fs_dquot_initialize(inode);
1113 		if (err)
1114 			return err;
1115 	}
1116 	if (i_uid_needs_update(idmap, attr, inode) ||
1117 	    i_gid_needs_update(idmap, attr, inode)) {
1118 		f2fs_lock_op(sbi);
1119 		err = dquot_transfer(idmap, inode, attr);
1120 		if (err) {
1121 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
1122 			f2fs_unlock_op(sbi);
1123 			return err;
1124 		}
1125 		/*
1126 		 * update uid/gid under lock_op(), so that dquot and inode can
1127 		 * be updated atomically.
1128 		 */
1129 		i_uid_update(idmap, attr, inode);
1130 		i_gid_update(idmap, attr, inode);
1131 		f2fs_mark_inode_dirty_sync(inode, true);
1132 		f2fs_unlock_op(sbi);
1133 	}
1134 
1135 	if (attr->ia_valid & ATTR_SIZE) {
1136 		loff_t old_size = i_size_read(inode);
1137 
1138 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1139 			/*
1140 			 * should convert inline inode before i_size_write to
1141 			 * keep smaller than inline_data size with inline flag.
1142 			 */
1143 			err = f2fs_convert_inline_inode(inode);
1144 			if (err)
1145 				return err;
1146 		}
1147 
1148 		/*
1149 		 * wait for inflight dio, blocks should be removed after
1150 		 * IO completion.
1151 		 */
1152 		if (attr->ia_size < old_size)
1153 			inode_dio_wait(inode);
1154 
1155 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1156 		filemap_invalidate_lock(inode->i_mapping);
1157 
1158 		if (attr->ia_size > old_size)
1159 			f2fs_zero_post_eof_page(inode, attr->ia_size, false);
1160 		truncate_setsize(inode, attr->ia_size);
1161 
1162 		if (attr->ia_size <= old_size)
1163 			err = f2fs_truncate(inode);
1164 		/*
1165 		 * do not trim all blocks after i_size if target size is
1166 		 * larger than i_size.
1167 		 */
1168 		filemap_invalidate_unlock(inode->i_mapping);
1169 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1170 		if (err)
1171 			return err;
1172 
1173 		spin_lock(&fi->i_size_lock);
1174 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1175 		fi->last_disk_size = i_size_read(inode);
1176 		spin_unlock(&fi->i_size_lock);
1177 	}
1178 
1179 	__setattr_copy(idmap, inode, attr);
1180 
1181 	if (attr->ia_valid & ATTR_MODE) {
1182 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1183 
1184 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1185 			if (!err)
1186 				inode->i_mode = fi->i_acl_mode;
1187 			clear_inode_flag(inode, FI_ACL_MODE);
1188 		}
1189 	}
1190 
1191 	/* file size may changed here */
1192 	f2fs_mark_inode_dirty_sync(inode, true);
1193 
1194 	/* inode change will produce dirty node pages flushed by checkpoint */
1195 	f2fs_balance_fs(sbi, true);
1196 
1197 	return err;
1198 }
1199 
1200 const struct inode_operations f2fs_file_inode_operations = {
1201 	.getattr	= f2fs_getattr,
1202 	.setattr	= f2fs_setattr,
1203 	.get_inode_acl	= f2fs_get_acl,
1204 	.set_acl	= f2fs_set_acl,
1205 	.listxattr	= f2fs_listxattr,
1206 	.fiemap		= f2fs_fiemap,
1207 	.fileattr_get	= f2fs_fileattr_get,
1208 	.fileattr_set	= f2fs_fileattr_set,
1209 };
1210 
1211 static int fill_zero(struct inode *inode, pgoff_t index,
1212 					loff_t start, loff_t len)
1213 {
1214 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215 	struct folio *folio;
1216 
1217 	if (!len)
1218 		return 0;
1219 
1220 	f2fs_balance_fs(sbi, true);
1221 
1222 	f2fs_lock_op(sbi);
1223 	folio = f2fs_get_new_data_folio(inode, NULL, index, false);
1224 	f2fs_unlock_op(sbi);
1225 
1226 	if (IS_ERR(folio))
1227 		return PTR_ERR(folio);
1228 
1229 	f2fs_folio_wait_writeback(folio, DATA, true, true);
1230 	folio_zero_range(folio, start, len);
1231 	folio_mark_dirty(folio);
1232 	f2fs_folio_put(folio, true);
1233 	return 0;
1234 }
1235 
1236 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1237 {
1238 	int err;
1239 
1240 	while (pg_start < pg_end) {
1241 		struct dnode_of_data dn;
1242 		pgoff_t end_offset, count;
1243 
1244 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1245 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1246 		if (err) {
1247 			if (err == -ENOENT) {
1248 				pg_start = f2fs_get_next_page_offset(&dn,
1249 								pg_start);
1250 				continue;
1251 			}
1252 			return err;
1253 		}
1254 
1255 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1256 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1257 
1258 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1259 
1260 		f2fs_truncate_data_blocks_range(&dn, count);
1261 		f2fs_put_dnode(&dn);
1262 
1263 		pg_start += count;
1264 	}
1265 	return 0;
1266 }
1267 
1268 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1269 {
1270 	pgoff_t pg_start, pg_end;
1271 	loff_t off_start, off_end;
1272 	int ret;
1273 
1274 	ret = f2fs_convert_inline_inode(inode);
1275 	if (ret)
1276 		return ret;
1277 
1278 	f2fs_zero_post_eof_page(inode, offset + len, true);
1279 
1280 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1281 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1282 
1283 	off_start = offset & (PAGE_SIZE - 1);
1284 	off_end = (offset + len) & (PAGE_SIZE - 1);
1285 
1286 	if (pg_start == pg_end) {
1287 		ret = fill_zero(inode, pg_start, off_start,
1288 						off_end - off_start);
1289 		if (ret)
1290 			return ret;
1291 	} else {
1292 		if (off_start) {
1293 			ret = fill_zero(inode, pg_start++, off_start,
1294 						PAGE_SIZE - off_start);
1295 			if (ret)
1296 				return ret;
1297 		}
1298 		if (off_end) {
1299 			ret = fill_zero(inode, pg_end, 0, off_end);
1300 			if (ret)
1301 				return ret;
1302 		}
1303 
1304 		if (pg_start < pg_end) {
1305 			loff_t blk_start, blk_end;
1306 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1307 
1308 			f2fs_balance_fs(sbi, true);
1309 
1310 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1311 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1312 
1313 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1314 			filemap_invalidate_lock(inode->i_mapping);
1315 
1316 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1317 
1318 			f2fs_lock_op(sbi);
1319 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1320 			f2fs_unlock_op(sbi);
1321 
1322 			filemap_invalidate_unlock(inode->i_mapping);
1323 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1324 		}
1325 	}
1326 
1327 	return ret;
1328 }
1329 
1330 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1331 				int *do_replace, pgoff_t off, pgoff_t len)
1332 {
1333 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1334 	struct dnode_of_data dn;
1335 	int ret, done, i;
1336 
1337 next_dnode:
1338 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1339 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1340 	if (ret && ret != -ENOENT) {
1341 		return ret;
1342 	} else if (ret == -ENOENT) {
1343 		if (dn.max_level == 0)
1344 			return -ENOENT;
1345 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1346 						dn.ofs_in_node, len);
1347 		blkaddr += done;
1348 		do_replace += done;
1349 		goto next;
1350 	}
1351 
1352 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, inode) -
1353 							dn.ofs_in_node, len);
1354 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1355 		*blkaddr = f2fs_data_blkaddr(&dn);
1356 
1357 		if (__is_valid_data_blkaddr(*blkaddr) &&
1358 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1359 					DATA_GENERIC_ENHANCE)) {
1360 			f2fs_put_dnode(&dn);
1361 			return -EFSCORRUPTED;
1362 		}
1363 
1364 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1365 
1366 			if (f2fs_lfs_mode(sbi)) {
1367 				f2fs_put_dnode(&dn);
1368 				return -EOPNOTSUPP;
1369 			}
1370 
1371 			/* do not invalidate this block address */
1372 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1373 			*do_replace = 1;
1374 		}
1375 	}
1376 	f2fs_put_dnode(&dn);
1377 next:
1378 	len -= done;
1379 	off += done;
1380 	if (len)
1381 		goto next_dnode;
1382 	return 0;
1383 }
1384 
1385 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1386 				int *do_replace, pgoff_t off, int len)
1387 {
1388 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1389 	struct dnode_of_data dn;
1390 	int ret, i;
1391 
1392 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1393 		if (*do_replace == 0)
1394 			continue;
1395 
1396 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1397 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1398 		if (ret) {
1399 			dec_valid_block_count(sbi, inode, 1);
1400 			f2fs_invalidate_blocks(sbi, *blkaddr, 1);
1401 		} else {
1402 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1403 		}
1404 		f2fs_put_dnode(&dn);
1405 	}
1406 	return 0;
1407 }
1408 
1409 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1410 			block_t *blkaddr, int *do_replace,
1411 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1412 {
1413 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1414 	pgoff_t i = 0;
1415 	int ret;
1416 
1417 	while (i < len) {
1418 		if (blkaddr[i] == NULL_ADDR && !full) {
1419 			i++;
1420 			continue;
1421 		}
1422 
1423 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1424 			struct dnode_of_data dn;
1425 			struct node_info ni;
1426 			size_t new_size;
1427 			pgoff_t ilen;
1428 
1429 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1430 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1431 			if (ret)
1432 				return ret;
1433 
1434 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1435 			if (ret) {
1436 				f2fs_put_dnode(&dn);
1437 				return ret;
1438 			}
1439 
1440 			ilen = min((pgoff_t)
1441 				ADDRS_PER_PAGE(dn.node_folio, dst_inode) -
1442 						dn.ofs_in_node, len - i);
1443 			do {
1444 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1445 				f2fs_truncate_data_blocks_range(&dn, 1);
1446 
1447 				if (do_replace[i]) {
1448 					f2fs_i_blocks_write(src_inode,
1449 							1, false, false);
1450 					f2fs_i_blocks_write(dst_inode,
1451 							1, true, false);
1452 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1453 					blkaddr[i], ni.version, true, false);
1454 
1455 					do_replace[i] = 0;
1456 				}
1457 				dn.ofs_in_node++;
1458 				i++;
1459 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1460 				if (dst_inode->i_size < new_size)
1461 					f2fs_i_size_write(dst_inode, new_size);
1462 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1463 
1464 			f2fs_put_dnode(&dn);
1465 		} else {
1466 			struct folio *fsrc, *fdst;
1467 
1468 			fsrc = f2fs_get_lock_data_folio(src_inode,
1469 							src + i, true);
1470 			if (IS_ERR(fsrc))
1471 				return PTR_ERR(fsrc);
1472 			fdst = f2fs_get_new_data_folio(dst_inode, NULL, dst + i,
1473 								true);
1474 			if (IS_ERR(fdst)) {
1475 				f2fs_folio_put(fsrc, true);
1476 				return PTR_ERR(fdst);
1477 			}
1478 
1479 			f2fs_folio_wait_writeback(fdst, DATA, true, true);
1480 
1481 			memcpy_folio(fdst, 0, fsrc, 0, PAGE_SIZE);
1482 			folio_mark_dirty(fdst);
1483 			folio_set_f2fs_gcing(fdst);
1484 			f2fs_folio_put(fdst, true);
1485 			f2fs_folio_put(fsrc, true);
1486 
1487 			ret = f2fs_truncate_hole(src_inode,
1488 						src + i, src + i + 1);
1489 			if (ret)
1490 				return ret;
1491 			i++;
1492 		}
1493 	}
1494 	return 0;
1495 }
1496 
1497 static int __exchange_data_block(struct inode *src_inode,
1498 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1499 			pgoff_t len, bool full)
1500 {
1501 	block_t *src_blkaddr;
1502 	int *do_replace;
1503 	pgoff_t olen;
1504 	int ret;
1505 
1506 	while (len) {
1507 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1508 
1509 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1510 					array_size(olen, sizeof(block_t)),
1511 					GFP_NOFS);
1512 		if (!src_blkaddr)
1513 			return -ENOMEM;
1514 
1515 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1516 					array_size(olen, sizeof(int)),
1517 					GFP_NOFS);
1518 		if (!do_replace) {
1519 			kvfree(src_blkaddr);
1520 			return -ENOMEM;
1521 		}
1522 
1523 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1524 					do_replace, src, olen);
1525 		if (ret)
1526 			goto roll_back;
1527 
1528 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1529 					do_replace, src, dst, olen, full);
1530 		if (ret)
1531 			goto roll_back;
1532 
1533 		src += olen;
1534 		dst += olen;
1535 		len -= olen;
1536 
1537 		kvfree(src_blkaddr);
1538 		kvfree(do_replace);
1539 	}
1540 	return 0;
1541 
1542 roll_back:
1543 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1544 	kvfree(src_blkaddr);
1545 	kvfree(do_replace);
1546 	return ret;
1547 }
1548 
1549 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1550 {
1551 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1552 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1553 	pgoff_t start = offset >> PAGE_SHIFT;
1554 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1555 	int ret;
1556 
1557 	f2fs_balance_fs(sbi, true);
1558 
1559 	/* avoid gc operation during block exchange */
1560 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1561 	filemap_invalidate_lock(inode->i_mapping);
1562 
1563 	f2fs_zero_post_eof_page(inode, offset + len, false);
1564 
1565 	f2fs_lock_op(sbi);
1566 	f2fs_drop_extent_tree(inode);
1567 	truncate_pagecache(inode, offset);
1568 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1569 	f2fs_unlock_op(sbi);
1570 
1571 	filemap_invalidate_unlock(inode->i_mapping);
1572 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1573 	return ret;
1574 }
1575 
1576 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1577 {
1578 	loff_t new_size;
1579 	int ret;
1580 
1581 	if (offset + len >= i_size_read(inode))
1582 		return -EINVAL;
1583 
1584 	/* collapse range should be aligned to block size of f2fs. */
1585 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1586 		return -EINVAL;
1587 
1588 	ret = f2fs_convert_inline_inode(inode);
1589 	if (ret)
1590 		return ret;
1591 
1592 	/* write out all dirty pages from offset */
1593 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1594 	if (ret)
1595 		return ret;
1596 
1597 	ret = f2fs_do_collapse(inode, offset, len);
1598 	if (ret)
1599 		return ret;
1600 
1601 	/* write out all moved pages, if possible */
1602 	filemap_invalidate_lock(inode->i_mapping);
1603 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1604 	truncate_pagecache(inode, offset);
1605 
1606 	new_size = i_size_read(inode) - len;
1607 	ret = f2fs_truncate_blocks(inode, new_size, true);
1608 	filemap_invalidate_unlock(inode->i_mapping);
1609 	if (!ret)
1610 		f2fs_i_size_write(inode, new_size);
1611 	return ret;
1612 }
1613 
1614 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1615 								pgoff_t end)
1616 {
1617 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1618 	pgoff_t index = start;
1619 	unsigned int ofs_in_node = dn->ofs_in_node;
1620 	blkcnt_t count = 0;
1621 	int ret;
1622 
1623 	for (; index < end; index++, dn->ofs_in_node++) {
1624 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1625 			count++;
1626 	}
1627 
1628 	dn->ofs_in_node = ofs_in_node;
1629 	ret = f2fs_reserve_new_blocks(dn, count);
1630 	if (ret)
1631 		return ret;
1632 
1633 	dn->ofs_in_node = ofs_in_node;
1634 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1635 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1636 		/*
1637 		 * f2fs_reserve_new_blocks will not guarantee entire block
1638 		 * allocation.
1639 		 */
1640 		if (dn->data_blkaddr == NULL_ADDR) {
1641 			ret = -ENOSPC;
1642 			break;
1643 		}
1644 
1645 		if (dn->data_blkaddr == NEW_ADDR)
1646 			continue;
1647 
1648 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1649 					DATA_GENERIC_ENHANCE)) {
1650 			ret = -EFSCORRUPTED;
1651 			break;
1652 		}
1653 
1654 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr, 1);
1655 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1656 	}
1657 
1658 	if (index > start) {
1659 		f2fs_update_read_extent_cache_range(dn, start, 0,
1660 							index - start);
1661 		f2fs_update_age_extent_cache_range(dn, start, index - start);
1662 	}
1663 
1664 	return ret;
1665 }
1666 
1667 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1668 								int mode)
1669 {
1670 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1671 	struct address_space *mapping = inode->i_mapping;
1672 	pgoff_t index, pg_start, pg_end;
1673 	loff_t new_size = i_size_read(inode);
1674 	loff_t off_start, off_end;
1675 	int ret = 0;
1676 
1677 	ret = inode_newsize_ok(inode, (len + offset));
1678 	if (ret)
1679 		return ret;
1680 
1681 	ret = f2fs_convert_inline_inode(inode);
1682 	if (ret)
1683 		return ret;
1684 
1685 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1686 	if (ret)
1687 		return ret;
1688 
1689 	f2fs_zero_post_eof_page(inode, offset + len, true);
1690 
1691 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1692 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1693 
1694 	off_start = offset & (PAGE_SIZE - 1);
1695 	off_end = (offset + len) & (PAGE_SIZE - 1);
1696 
1697 	if (pg_start == pg_end) {
1698 		ret = fill_zero(inode, pg_start, off_start,
1699 						off_end - off_start);
1700 		if (ret)
1701 			return ret;
1702 
1703 		new_size = max_t(loff_t, new_size, offset + len);
1704 	} else {
1705 		if (off_start) {
1706 			ret = fill_zero(inode, pg_start++, off_start,
1707 						PAGE_SIZE - off_start);
1708 			if (ret)
1709 				return ret;
1710 
1711 			new_size = max_t(loff_t, new_size,
1712 					(loff_t)pg_start << PAGE_SHIFT);
1713 		}
1714 
1715 		for (index = pg_start; index < pg_end;) {
1716 			struct dnode_of_data dn;
1717 			unsigned int end_offset;
1718 			pgoff_t end;
1719 
1720 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1721 			filemap_invalidate_lock(mapping);
1722 
1723 			truncate_pagecache_range(inode,
1724 				(loff_t)index << PAGE_SHIFT,
1725 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1726 
1727 			f2fs_lock_op(sbi);
1728 
1729 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1730 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1731 			if (ret) {
1732 				f2fs_unlock_op(sbi);
1733 				filemap_invalidate_unlock(mapping);
1734 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1735 				goto out;
1736 			}
1737 
1738 			end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1739 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1740 
1741 			ret = f2fs_do_zero_range(&dn, index, end);
1742 			f2fs_put_dnode(&dn);
1743 
1744 			f2fs_unlock_op(sbi);
1745 			filemap_invalidate_unlock(mapping);
1746 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1747 
1748 			f2fs_balance_fs(sbi, dn.node_changed);
1749 
1750 			if (ret)
1751 				goto out;
1752 
1753 			index = end;
1754 			new_size = max_t(loff_t, new_size,
1755 					(loff_t)index << PAGE_SHIFT);
1756 		}
1757 
1758 		if (off_end) {
1759 			ret = fill_zero(inode, pg_end, 0, off_end);
1760 			if (ret)
1761 				goto out;
1762 
1763 			new_size = max_t(loff_t, new_size, offset + len);
1764 		}
1765 	}
1766 
1767 out:
1768 	if (new_size > i_size_read(inode)) {
1769 		if (mode & FALLOC_FL_KEEP_SIZE)
1770 			file_set_keep_isize(inode);
1771 		else
1772 			f2fs_i_size_write(inode, new_size);
1773 	}
1774 	return ret;
1775 }
1776 
1777 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1778 {
1779 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1780 	struct address_space *mapping = inode->i_mapping;
1781 	pgoff_t nr, pg_start, pg_end, delta, idx;
1782 	loff_t new_size;
1783 	int ret = 0;
1784 
1785 	new_size = i_size_read(inode) + len;
1786 	ret = inode_newsize_ok(inode, new_size);
1787 	if (ret)
1788 		return ret;
1789 
1790 	if (offset >= i_size_read(inode))
1791 		return -EINVAL;
1792 
1793 	/* insert range should be aligned to block size of f2fs. */
1794 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1795 		return -EINVAL;
1796 
1797 	ret = f2fs_convert_inline_inode(inode);
1798 	if (ret)
1799 		return ret;
1800 
1801 	f2fs_balance_fs(sbi, true);
1802 
1803 	filemap_invalidate_lock(mapping);
1804 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1805 	filemap_invalidate_unlock(mapping);
1806 	if (ret)
1807 		return ret;
1808 
1809 	/* write out all dirty pages from offset */
1810 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1811 	if (ret)
1812 		return ret;
1813 
1814 	pg_start = offset >> PAGE_SHIFT;
1815 	pg_end = (offset + len) >> PAGE_SHIFT;
1816 	delta = pg_end - pg_start;
1817 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1818 
1819 	/* avoid gc operation during block exchange */
1820 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1821 	filemap_invalidate_lock(mapping);
1822 
1823 	f2fs_zero_post_eof_page(inode, offset + len, false);
1824 	truncate_pagecache(inode, offset);
1825 
1826 	while (!ret && idx > pg_start) {
1827 		nr = idx - pg_start;
1828 		if (nr > delta)
1829 			nr = delta;
1830 		idx -= nr;
1831 
1832 		f2fs_lock_op(sbi);
1833 		f2fs_drop_extent_tree(inode);
1834 
1835 		ret = __exchange_data_block(inode, inode, idx,
1836 					idx + delta, nr, false);
1837 		f2fs_unlock_op(sbi);
1838 	}
1839 	filemap_invalidate_unlock(mapping);
1840 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1841 	if (ret)
1842 		return ret;
1843 
1844 	/* write out all moved pages, if possible */
1845 	filemap_invalidate_lock(mapping);
1846 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1847 	truncate_pagecache(inode, offset);
1848 	filemap_invalidate_unlock(mapping);
1849 
1850 	if (!ret)
1851 		f2fs_i_size_write(inode, new_size);
1852 	return ret;
1853 }
1854 
1855 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1856 					loff_t len, int mode)
1857 {
1858 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1859 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1860 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1861 			.m_may_create = true };
1862 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1863 			.init_gc_type = FG_GC,
1864 			.should_migrate_blocks = false,
1865 			.err_gc_skipped = true,
1866 			.nr_free_secs = 0 };
1867 	pgoff_t pg_start, pg_end;
1868 	loff_t new_size;
1869 	loff_t off_end;
1870 	block_t expanded = 0;
1871 	int err;
1872 
1873 	err = inode_newsize_ok(inode, (len + offset));
1874 	if (err)
1875 		return err;
1876 
1877 	err = f2fs_convert_inline_inode(inode);
1878 	if (err)
1879 		return err;
1880 
1881 	f2fs_zero_post_eof_page(inode, offset + len, true);
1882 
1883 	f2fs_balance_fs(sbi, true);
1884 
1885 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1886 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1887 	off_end = (offset + len) & (PAGE_SIZE - 1);
1888 
1889 	map.m_lblk = pg_start;
1890 	map.m_len = pg_end - pg_start;
1891 	if (off_end)
1892 		map.m_len++;
1893 
1894 	if (!map.m_len)
1895 		return 0;
1896 
1897 	if (f2fs_is_pinned_file(inode)) {
1898 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1899 		block_t sec_len = roundup(map.m_len, sec_blks);
1900 
1901 		map.m_len = sec_blks;
1902 next_alloc:
1903 		f2fs_down_write(&sbi->pin_sem);
1904 
1905 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1906 			if (has_not_enough_free_secs(sbi, 0, 0)) {
1907 				f2fs_up_write(&sbi->pin_sem);
1908 				err = -ENOSPC;
1909 				f2fs_warn_ratelimited(sbi,
1910 					"ino:%lu, start:%lu, end:%lu, need to trigger GC to "
1911 					"reclaim enough free segment when checkpoint is enabled",
1912 					inode->i_ino, pg_start, pg_end);
1913 				goto out_err;
1914 			}
1915 		}
1916 
1917 		if (has_not_enough_free_secs(sbi, 0,
1918 				sbi->reserved_pin_section)) {
1919 			f2fs_down_write(&sbi->gc_lock);
1920 			stat_inc_gc_call_count(sbi, FOREGROUND);
1921 			err = f2fs_gc(sbi, &gc_control);
1922 			if (err && err != -ENODATA) {
1923 				f2fs_up_write(&sbi->pin_sem);
1924 				goto out_err;
1925 			}
1926 		}
1927 
1928 		err = f2fs_allocate_pinning_section(sbi);
1929 		if (err) {
1930 			f2fs_up_write(&sbi->pin_sem);
1931 			goto out_err;
1932 		}
1933 
1934 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1935 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1936 		file_dont_truncate(inode);
1937 
1938 		f2fs_up_write(&sbi->pin_sem);
1939 
1940 		expanded += map.m_len;
1941 		sec_len -= map.m_len;
1942 		map.m_lblk += map.m_len;
1943 		if (!err && sec_len)
1944 			goto next_alloc;
1945 
1946 		map.m_len = expanded;
1947 	} else {
1948 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1949 		expanded = map.m_len;
1950 	}
1951 out_err:
1952 	if (err) {
1953 		pgoff_t last_off;
1954 
1955 		if (!expanded)
1956 			return err;
1957 
1958 		last_off = pg_start + expanded - 1;
1959 
1960 		/* update new size to the failed position */
1961 		new_size = (last_off == pg_end) ? offset + len :
1962 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1963 	} else {
1964 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1965 	}
1966 
1967 	if (new_size > i_size_read(inode)) {
1968 		if (mode & FALLOC_FL_KEEP_SIZE)
1969 			file_set_keep_isize(inode);
1970 		else
1971 			f2fs_i_size_write(inode, new_size);
1972 	}
1973 
1974 	return err;
1975 }
1976 
1977 static long f2fs_fallocate(struct file *file, int mode,
1978 				loff_t offset, loff_t len)
1979 {
1980 	struct inode *inode = file_inode(file);
1981 	long ret = 0;
1982 
1983 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1984 		return -EIO;
1985 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1986 		return -ENOSPC;
1987 	if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1988 		return -EOPNOTSUPP;
1989 
1990 	/* f2fs only support ->fallocate for regular file */
1991 	if (!S_ISREG(inode->i_mode))
1992 		return -EINVAL;
1993 
1994 	if (IS_ENCRYPTED(inode) &&
1995 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1996 		return -EOPNOTSUPP;
1997 
1998 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1999 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
2000 			FALLOC_FL_INSERT_RANGE))
2001 		return -EOPNOTSUPP;
2002 
2003 	inode_lock(inode);
2004 
2005 	/*
2006 	 * Pinned file should not support partial truncation since the block
2007 	 * can be used by applications.
2008 	 */
2009 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
2010 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
2011 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
2012 		ret = -EOPNOTSUPP;
2013 		goto out;
2014 	}
2015 
2016 	ret = file_modified(file);
2017 	if (ret)
2018 		goto out;
2019 
2020 	/*
2021 	 * wait for inflight dio, blocks should be removed after IO
2022 	 * completion.
2023 	 */
2024 	inode_dio_wait(inode);
2025 
2026 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2027 		if (offset >= inode->i_size)
2028 			goto out;
2029 
2030 		ret = f2fs_punch_hole(inode, offset, len);
2031 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
2032 		ret = f2fs_collapse_range(inode, offset, len);
2033 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
2034 		ret = f2fs_zero_range(inode, offset, len, mode);
2035 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
2036 		ret = f2fs_insert_range(inode, offset, len);
2037 	} else {
2038 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
2039 	}
2040 
2041 	if (!ret) {
2042 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2043 		f2fs_mark_inode_dirty_sync(inode, false);
2044 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2045 	}
2046 
2047 out:
2048 	inode_unlock(inode);
2049 
2050 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
2051 	return ret;
2052 }
2053 
2054 static int f2fs_release_file(struct inode *inode, struct file *filp)
2055 {
2056 	if (atomic_dec_and_test(&F2FS_I(inode)->open_count))
2057 		f2fs_remove_donate_inode(inode);
2058 
2059 	/*
2060 	 * f2fs_release_file is called at every close calls. So we should
2061 	 * not drop any inmemory pages by close called by other process.
2062 	 */
2063 	if (!(filp->f_mode & FMODE_WRITE) ||
2064 			atomic_read(&inode->i_writecount) != 1)
2065 		return 0;
2066 
2067 	inode_lock(inode);
2068 	f2fs_abort_atomic_write(inode, true);
2069 	inode_unlock(inode);
2070 
2071 	return 0;
2072 }
2073 
2074 static int f2fs_file_flush(struct file *file, fl_owner_t id)
2075 {
2076 	struct inode *inode = file_inode(file);
2077 
2078 	/*
2079 	 * If the process doing a transaction is crashed, we should do
2080 	 * roll-back. Otherwise, other reader/write can see corrupted database
2081 	 * until all the writers close its file. Since this should be done
2082 	 * before dropping file lock, it needs to do in ->flush.
2083 	 */
2084 	if (F2FS_I(inode)->atomic_write_task == current &&
2085 				(current->flags & PF_EXITING)) {
2086 		inode_lock(inode);
2087 		f2fs_abort_atomic_write(inode, true);
2088 		inode_unlock(inode);
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
2095 {
2096 	struct f2fs_inode_info *fi = F2FS_I(inode);
2097 	u32 masked_flags = fi->i_flags & mask;
2098 
2099 	/* mask can be shrunk by flags_valid selector */
2100 	iflags &= mask;
2101 
2102 	/* Is it quota file? Do not allow user to mess with it */
2103 	if (IS_NOQUOTA(inode))
2104 		return -EPERM;
2105 
2106 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2107 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2108 			return -EOPNOTSUPP;
2109 		if (!f2fs_empty_dir(inode))
2110 			return -ENOTEMPTY;
2111 	}
2112 
2113 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2114 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2115 			return -EOPNOTSUPP;
2116 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2117 			return -EINVAL;
2118 	}
2119 
2120 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2121 		if (masked_flags & F2FS_COMPR_FL) {
2122 			if (!f2fs_disable_compressed_file(inode))
2123 				return -EINVAL;
2124 		} else {
2125 			/* try to convert inline_data to support compression */
2126 			int err = f2fs_convert_inline_inode(inode);
2127 			if (err)
2128 				return err;
2129 
2130 			f2fs_down_write(&fi->i_sem);
2131 			if (!f2fs_may_compress(inode) ||
2132 				atomic_read(&fi->writeback) ||
2133 				(S_ISREG(inode->i_mode) &&
2134 				F2FS_HAS_BLOCKS(inode))) {
2135 				f2fs_up_write(&fi->i_sem);
2136 				return -EINVAL;
2137 			}
2138 			err = set_compress_context(inode);
2139 			f2fs_up_write(&fi->i_sem);
2140 
2141 			if (err)
2142 				return err;
2143 		}
2144 	}
2145 
2146 	fi->i_flags = iflags | (fi->i_flags & ~mask);
2147 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2148 					(fi->i_flags & F2FS_NOCOMP_FL));
2149 
2150 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2151 		set_inode_flag(inode, FI_PROJ_INHERIT);
2152 	else
2153 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2154 
2155 	inode_set_ctime_current(inode);
2156 	f2fs_set_inode_flags(inode);
2157 	f2fs_mark_inode_dirty_sync(inode, true);
2158 	return 0;
2159 }
2160 
2161 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2162 
2163 /*
2164  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2165  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2166  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2167  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2168  *
2169  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2170  * FS_IOC_FSSETXATTR is done by the VFS.
2171  */
2172 
2173 static const struct {
2174 	u32 iflag;
2175 	u32 fsflag;
2176 } f2fs_fsflags_map[] = {
2177 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2178 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2179 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2180 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2181 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2182 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2183 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2184 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2185 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2186 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2187 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2188 };
2189 
2190 #define F2FS_GETTABLE_FS_FL (		\
2191 		FS_COMPR_FL |		\
2192 		FS_SYNC_FL |		\
2193 		FS_IMMUTABLE_FL |	\
2194 		FS_APPEND_FL |		\
2195 		FS_NODUMP_FL |		\
2196 		FS_NOATIME_FL |		\
2197 		FS_NOCOMP_FL |		\
2198 		FS_INDEX_FL |		\
2199 		FS_DIRSYNC_FL |		\
2200 		FS_PROJINHERIT_FL |	\
2201 		FS_ENCRYPT_FL |		\
2202 		FS_INLINE_DATA_FL |	\
2203 		FS_NOCOW_FL |		\
2204 		FS_VERITY_FL |		\
2205 		FS_CASEFOLD_FL)
2206 
2207 #define F2FS_SETTABLE_FS_FL (		\
2208 		FS_COMPR_FL |		\
2209 		FS_SYNC_FL |		\
2210 		FS_IMMUTABLE_FL |	\
2211 		FS_APPEND_FL |		\
2212 		FS_NODUMP_FL |		\
2213 		FS_NOATIME_FL |		\
2214 		FS_NOCOMP_FL |		\
2215 		FS_DIRSYNC_FL |		\
2216 		FS_PROJINHERIT_FL |	\
2217 		FS_CASEFOLD_FL)
2218 
2219 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2220 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2221 {
2222 	u32 fsflags = 0;
2223 	int i;
2224 
2225 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2226 		if (iflags & f2fs_fsflags_map[i].iflag)
2227 			fsflags |= f2fs_fsflags_map[i].fsflag;
2228 
2229 	return fsflags;
2230 }
2231 
2232 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2233 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2234 {
2235 	u32 iflags = 0;
2236 	int i;
2237 
2238 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2239 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2240 			iflags |= f2fs_fsflags_map[i].iflag;
2241 
2242 	return iflags;
2243 }
2244 
2245 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2246 {
2247 	struct inode *inode = file_inode(filp);
2248 
2249 	return put_user(inode->i_generation, (int __user *)arg);
2250 }
2251 
2252 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2253 {
2254 	struct inode *inode = file_inode(filp);
2255 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2256 	struct f2fs_inode_info *fi = F2FS_I(inode);
2257 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2258 	loff_t isize;
2259 	int ret;
2260 
2261 	if (!(filp->f_mode & FMODE_WRITE))
2262 		return -EBADF;
2263 
2264 	if (!inode_owner_or_capable(idmap, inode))
2265 		return -EACCES;
2266 
2267 	if (!S_ISREG(inode->i_mode))
2268 		return -EINVAL;
2269 
2270 	if (filp->f_flags & O_DIRECT)
2271 		return -EINVAL;
2272 
2273 	ret = mnt_want_write_file(filp);
2274 	if (ret)
2275 		return ret;
2276 
2277 	inode_lock(inode);
2278 
2279 	if (!f2fs_disable_compressed_file(inode) ||
2280 			f2fs_is_pinned_file(inode)) {
2281 		ret = -EINVAL;
2282 		goto out;
2283 	}
2284 
2285 	if (f2fs_is_atomic_file(inode))
2286 		goto out;
2287 
2288 	ret = f2fs_convert_inline_inode(inode);
2289 	if (ret)
2290 		goto out;
2291 
2292 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2293 	f2fs_down_write(&fi->i_gc_rwsem[READ]);
2294 
2295 	/*
2296 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2297 	 * f2fs_is_atomic_file.
2298 	 */
2299 	if (get_dirty_pages(inode))
2300 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2301 			  inode->i_ino, get_dirty_pages(inode));
2302 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2303 	if (ret)
2304 		goto out_unlock;
2305 
2306 	/* Check if the inode already has a COW inode */
2307 	if (fi->cow_inode == NULL) {
2308 		/* Create a COW inode for atomic write */
2309 		struct dentry *dentry = file_dentry(filp);
2310 		struct inode *dir = d_inode(dentry->d_parent);
2311 
2312 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2313 		if (ret)
2314 			goto out_unlock;
2315 
2316 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2317 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2318 
2319 		/* Set the COW inode's atomic_inode to the atomic inode */
2320 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2321 	} else {
2322 		/* Reuse the already created COW inode */
2323 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2324 
2325 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2326 
2327 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2328 		if (ret)
2329 			goto out_unlock;
2330 	}
2331 
2332 	f2fs_write_inode(inode, NULL);
2333 
2334 	stat_inc_atomic_inode(inode);
2335 
2336 	set_inode_flag(inode, FI_ATOMIC_FILE);
2337 
2338 	isize = i_size_read(inode);
2339 	fi->original_i_size = isize;
2340 	if (truncate) {
2341 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2342 		truncate_inode_pages_final(inode->i_mapping);
2343 		f2fs_i_size_write(inode, 0);
2344 		isize = 0;
2345 	}
2346 	f2fs_i_size_write(fi->cow_inode, isize);
2347 
2348 out_unlock:
2349 	f2fs_up_write(&fi->i_gc_rwsem[READ]);
2350 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2351 	if (ret)
2352 		goto out;
2353 
2354 	f2fs_update_time(sbi, REQ_TIME);
2355 	fi->atomic_write_task = current;
2356 	stat_update_max_atomic_write(inode);
2357 	fi->atomic_write_cnt = 0;
2358 out:
2359 	inode_unlock(inode);
2360 	mnt_drop_write_file(filp);
2361 	return ret;
2362 }
2363 
2364 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2365 {
2366 	struct inode *inode = file_inode(filp);
2367 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2368 	int ret;
2369 
2370 	if (!(filp->f_mode & FMODE_WRITE))
2371 		return -EBADF;
2372 
2373 	if (!inode_owner_or_capable(idmap, inode))
2374 		return -EACCES;
2375 
2376 	ret = mnt_want_write_file(filp);
2377 	if (ret)
2378 		return ret;
2379 
2380 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2381 
2382 	inode_lock(inode);
2383 
2384 	if (f2fs_is_atomic_file(inode)) {
2385 		ret = f2fs_commit_atomic_write(inode);
2386 		if (!ret)
2387 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2388 
2389 		f2fs_abort_atomic_write(inode, ret);
2390 	} else {
2391 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2392 	}
2393 
2394 	inode_unlock(inode);
2395 	mnt_drop_write_file(filp);
2396 	return ret;
2397 }
2398 
2399 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2400 {
2401 	struct inode *inode = file_inode(filp);
2402 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2403 	int ret;
2404 
2405 	if (!(filp->f_mode & FMODE_WRITE))
2406 		return -EBADF;
2407 
2408 	if (!inode_owner_or_capable(idmap, inode))
2409 		return -EACCES;
2410 
2411 	ret = mnt_want_write_file(filp);
2412 	if (ret)
2413 		return ret;
2414 
2415 	inode_lock(inode);
2416 
2417 	f2fs_abort_atomic_write(inode, true);
2418 
2419 	inode_unlock(inode);
2420 
2421 	mnt_drop_write_file(filp);
2422 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2423 	return ret;
2424 }
2425 
2426 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2427 						bool readonly, bool need_lock)
2428 {
2429 	struct super_block *sb = sbi->sb;
2430 	int ret = 0;
2431 
2432 	switch (flag) {
2433 	case F2FS_GOING_DOWN_FULLSYNC:
2434 		ret = bdev_freeze(sb->s_bdev);
2435 		if (ret)
2436 			goto out;
2437 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2438 		bdev_thaw(sb->s_bdev);
2439 		break;
2440 	case F2FS_GOING_DOWN_METASYNC:
2441 		/* do checkpoint only */
2442 		ret = f2fs_sync_fs(sb, 1);
2443 		if (ret) {
2444 			if (ret == -EIO)
2445 				ret = 0;
2446 			goto out;
2447 		}
2448 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2449 		break;
2450 	case F2FS_GOING_DOWN_NOSYNC:
2451 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2452 		break;
2453 	case F2FS_GOING_DOWN_METAFLUSH:
2454 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2455 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2456 		break;
2457 	case F2FS_GOING_DOWN_NEED_FSCK:
2458 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2459 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2460 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2461 		/* do checkpoint only */
2462 		ret = f2fs_sync_fs(sb, 1);
2463 		if (ret == -EIO)
2464 			ret = 0;
2465 		goto out;
2466 	default:
2467 		ret = -EINVAL;
2468 		goto out;
2469 	}
2470 
2471 	if (readonly)
2472 		goto out;
2473 
2474 	/*
2475 	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2476 	 * paths.
2477 	 */
2478 	if (need_lock)
2479 		down_write(&sbi->sb->s_umount);
2480 
2481 	f2fs_stop_gc_thread(sbi);
2482 	f2fs_stop_discard_thread(sbi);
2483 
2484 	f2fs_drop_discard_cmd(sbi);
2485 	clear_opt(sbi, DISCARD);
2486 
2487 	if (need_lock)
2488 		up_write(&sbi->sb->s_umount);
2489 
2490 	f2fs_update_time(sbi, REQ_TIME);
2491 out:
2492 
2493 	trace_f2fs_shutdown(sbi, flag, ret);
2494 
2495 	return ret;
2496 }
2497 
2498 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2499 {
2500 	struct inode *inode = file_inode(filp);
2501 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2502 	__u32 in;
2503 	int ret;
2504 	bool need_drop = false, readonly = false;
2505 
2506 	if (!capable(CAP_SYS_ADMIN))
2507 		return -EPERM;
2508 
2509 	if (get_user(in, (__u32 __user *)arg))
2510 		return -EFAULT;
2511 
2512 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2513 		ret = mnt_want_write_file(filp);
2514 		if (ret) {
2515 			if (ret != -EROFS)
2516 				return ret;
2517 
2518 			/* fallback to nosync shutdown for readonly fs */
2519 			in = F2FS_GOING_DOWN_NOSYNC;
2520 			readonly = true;
2521 		} else {
2522 			need_drop = true;
2523 		}
2524 	}
2525 
2526 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2527 
2528 	if (need_drop)
2529 		mnt_drop_write_file(filp);
2530 
2531 	return ret;
2532 }
2533 
2534 static int f2fs_keep_noreuse_range(struct inode *inode,
2535 				loff_t offset, loff_t len)
2536 {
2537 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2538 	u64 max_bytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2539 	u64 start, end;
2540 	int ret = 0;
2541 
2542 	if (!S_ISREG(inode->i_mode))
2543 		return 0;
2544 
2545 	if (offset >= max_bytes || len > max_bytes ||
2546 	    (offset + len) > max_bytes)
2547 		return 0;
2548 
2549 	start = offset >> PAGE_SHIFT;
2550 	end = DIV_ROUND_UP(offset + len, PAGE_SIZE);
2551 
2552 	inode_lock(inode);
2553 	if (f2fs_is_atomic_file(inode)) {
2554 		inode_unlock(inode);
2555 		return 0;
2556 	}
2557 
2558 	spin_lock(&sbi->inode_lock[DONATE_INODE]);
2559 	/* let's remove the range, if len = 0 */
2560 	if (!len) {
2561 		if (!list_empty(&F2FS_I(inode)->gdonate_list)) {
2562 			list_del_init(&F2FS_I(inode)->gdonate_list);
2563 			sbi->donate_files--;
2564 			if (is_inode_flag_set(inode, FI_DONATE_FINISHED))
2565 				ret = -EALREADY;
2566 			else
2567 				set_inode_flag(inode, FI_DONATE_FINISHED);
2568 		} else
2569 			ret = -ENOENT;
2570 	} else {
2571 		if (list_empty(&F2FS_I(inode)->gdonate_list)) {
2572 			list_add_tail(&F2FS_I(inode)->gdonate_list,
2573 					&sbi->inode_list[DONATE_INODE]);
2574 			sbi->donate_files++;
2575 		} else {
2576 			list_move_tail(&F2FS_I(inode)->gdonate_list,
2577 					&sbi->inode_list[DONATE_INODE]);
2578 		}
2579 		F2FS_I(inode)->donate_start = start;
2580 		F2FS_I(inode)->donate_end = end - 1;
2581 		clear_inode_flag(inode, FI_DONATE_FINISHED);
2582 	}
2583 	spin_unlock(&sbi->inode_lock[DONATE_INODE]);
2584 	inode_unlock(inode);
2585 
2586 	return ret;
2587 }
2588 
2589 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2590 {
2591 	struct inode *inode = file_inode(filp);
2592 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2593 	struct fstrim_range range;
2594 	int ret;
2595 
2596 	if (!capable(CAP_SYS_ADMIN))
2597 		return -EPERM;
2598 
2599 	if (!f2fs_hw_support_discard(sbi))
2600 		return -EOPNOTSUPP;
2601 
2602 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2603 				sizeof(range)))
2604 		return -EFAULT;
2605 
2606 	ret = mnt_want_write_file(filp);
2607 	if (ret)
2608 		return ret;
2609 
2610 	range.minlen = max_t(unsigned int, range.minlen,
2611 			f2fs_hw_discard_granularity(sbi));
2612 	ret = f2fs_trim_fs(sbi, &range);
2613 	mnt_drop_write_file(filp);
2614 	if (ret < 0)
2615 		return ret;
2616 
2617 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2618 				sizeof(range)))
2619 		return -EFAULT;
2620 	f2fs_update_time(sbi, REQ_TIME);
2621 	return 0;
2622 }
2623 
2624 static bool uuid_is_nonzero(__u8 u[16])
2625 {
2626 	int i;
2627 
2628 	for (i = 0; i < 16; i++)
2629 		if (u[i])
2630 			return true;
2631 	return false;
2632 }
2633 
2634 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2635 {
2636 	struct inode *inode = file_inode(filp);
2637 	int ret;
2638 
2639 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2640 		return -EOPNOTSUPP;
2641 
2642 	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2643 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2644 	return ret;
2645 }
2646 
2647 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2648 {
2649 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2650 		return -EOPNOTSUPP;
2651 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2652 }
2653 
2654 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2655 {
2656 	struct inode *inode = file_inode(filp);
2657 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2658 	u8 encrypt_pw_salt[16];
2659 	int err;
2660 
2661 	if (!f2fs_sb_has_encrypt(sbi))
2662 		return -EOPNOTSUPP;
2663 
2664 	err = mnt_want_write_file(filp);
2665 	if (err)
2666 		return err;
2667 
2668 	f2fs_down_write(&sbi->sb_lock);
2669 
2670 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2671 		goto got_it;
2672 
2673 	/* update superblock with uuid */
2674 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2675 
2676 	err = f2fs_commit_super(sbi, false);
2677 	if (err) {
2678 		/* undo new data */
2679 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2680 		goto out_err;
2681 	}
2682 got_it:
2683 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2684 out_err:
2685 	f2fs_up_write(&sbi->sb_lock);
2686 	mnt_drop_write_file(filp);
2687 
2688 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2689 		err = -EFAULT;
2690 
2691 	return err;
2692 }
2693 
2694 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2695 					     unsigned long arg)
2696 {
2697 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2698 		return -EOPNOTSUPP;
2699 
2700 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2701 }
2702 
2703 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2704 {
2705 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2706 		return -EOPNOTSUPP;
2707 
2708 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2709 }
2710 
2711 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2712 {
2713 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2714 		return -EOPNOTSUPP;
2715 
2716 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2717 }
2718 
2719 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2720 						    unsigned long arg)
2721 {
2722 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2723 		return -EOPNOTSUPP;
2724 
2725 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2726 }
2727 
2728 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2729 					      unsigned long arg)
2730 {
2731 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2732 		return -EOPNOTSUPP;
2733 
2734 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2735 }
2736 
2737 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2738 {
2739 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2740 		return -EOPNOTSUPP;
2741 
2742 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2743 }
2744 
2745 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2746 {
2747 	struct inode *inode = file_inode(filp);
2748 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2749 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2750 			.no_bg_gc = false,
2751 			.should_migrate_blocks = false,
2752 			.nr_free_secs = 0 };
2753 	__u32 sync;
2754 	int ret;
2755 
2756 	if (!capable(CAP_SYS_ADMIN))
2757 		return -EPERM;
2758 
2759 	if (get_user(sync, (__u32 __user *)arg))
2760 		return -EFAULT;
2761 
2762 	if (f2fs_readonly(sbi->sb))
2763 		return -EROFS;
2764 
2765 	ret = mnt_want_write_file(filp);
2766 	if (ret)
2767 		return ret;
2768 
2769 	if (!sync) {
2770 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2771 			ret = -EBUSY;
2772 			goto out;
2773 		}
2774 	} else {
2775 		f2fs_down_write(&sbi->gc_lock);
2776 	}
2777 
2778 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2779 	gc_control.err_gc_skipped = sync;
2780 	stat_inc_gc_call_count(sbi, FOREGROUND);
2781 	ret = f2fs_gc(sbi, &gc_control);
2782 out:
2783 	mnt_drop_write_file(filp);
2784 	return ret;
2785 }
2786 
2787 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2788 {
2789 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2790 	struct f2fs_gc_control gc_control = {
2791 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2792 			.no_bg_gc = false,
2793 			.should_migrate_blocks = false,
2794 			.err_gc_skipped = range->sync,
2795 			.nr_free_secs = 0 };
2796 	u64 end;
2797 	int ret;
2798 
2799 	if (!capable(CAP_SYS_ADMIN))
2800 		return -EPERM;
2801 	if (f2fs_readonly(sbi->sb))
2802 		return -EROFS;
2803 
2804 	end = range->start + range->len;
2805 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2806 					end >= MAX_BLKADDR(sbi))
2807 		return -EINVAL;
2808 
2809 	ret = mnt_want_write_file(filp);
2810 	if (ret)
2811 		return ret;
2812 
2813 do_more:
2814 	if (!range->sync) {
2815 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2816 			ret = -EBUSY;
2817 			goto out;
2818 		}
2819 	} else {
2820 		f2fs_down_write(&sbi->gc_lock);
2821 	}
2822 
2823 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2824 	stat_inc_gc_call_count(sbi, FOREGROUND);
2825 	ret = f2fs_gc(sbi, &gc_control);
2826 	if (ret) {
2827 		if (ret == -EBUSY)
2828 			ret = -EAGAIN;
2829 		goto out;
2830 	}
2831 	range->start += CAP_BLKS_PER_SEC(sbi);
2832 	if (range->start <= end)
2833 		goto do_more;
2834 out:
2835 	mnt_drop_write_file(filp);
2836 	return ret;
2837 }
2838 
2839 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2840 {
2841 	struct f2fs_gc_range range;
2842 
2843 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2844 							sizeof(range)))
2845 		return -EFAULT;
2846 	return __f2fs_ioc_gc_range(filp, &range);
2847 }
2848 
2849 static int f2fs_ioc_write_checkpoint(struct file *filp)
2850 {
2851 	struct inode *inode = file_inode(filp);
2852 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2853 	int ret;
2854 
2855 	if (!capable(CAP_SYS_ADMIN))
2856 		return -EPERM;
2857 
2858 	if (f2fs_readonly(sbi->sb))
2859 		return -EROFS;
2860 
2861 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2862 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2863 		return -EINVAL;
2864 	}
2865 
2866 	ret = mnt_want_write_file(filp);
2867 	if (ret)
2868 		return ret;
2869 
2870 	ret = f2fs_sync_fs(sbi->sb, 1);
2871 
2872 	mnt_drop_write_file(filp);
2873 	return ret;
2874 }
2875 
2876 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2877 					struct file *filp,
2878 					struct f2fs_defragment *range)
2879 {
2880 	struct inode *inode = file_inode(filp);
2881 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2882 					.m_seg_type = NO_CHECK_TYPE,
2883 					.m_may_create = false };
2884 	struct extent_info ei = {};
2885 	pgoff_t pg_start, pg_end, next_pgofs;
2886 	unsigned int total = 0, sec_num;
2887 	block_t blk_end = 0;
2888 	bool fragmented = false;
2889 	int err;
2890 
2891 	f2fs_balance_fs(sbi, true);
2892 
2893 	inode_lock(inode);
2894 	pg_start = range->start >> PAGE_SHIFT;
2895 	pg_end = min_t(pgoff_t,
2896 				(range->start + range->len) >> PAGE_SHIFT,
2897 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2898 
2899 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2900 		f2fs_is_atomic_file(inode)) {
2901 		err = -EINVAL;
2902 		goto unlock_out;
2903 	}
2904 
2905 	/* if in-place-update policy is enabled, don't waste time here */
2906 	set_inode_flag(inode, FI_OPU_WRITE);
2907 	if (f2fs_should_update_inplace(inode, NULL)) {
2908 		err = -EINVAL;
2909 		goto out;
2910 	}
2911 
2912 	/* writeback all dirty pages in the range */
2913 	err = filemap_write_and_wait_range(inode->i_mapping,
2914 						pg_start << PAGE_SHIFT,
2915 						(pg_end << PAGE_SHIFT) - 1);
2916 	if (err)
2917 		goto out;
2918 
2919 	/*
2920 	 * lookup mapping info in extent cache, skip defragmenting if physical
2921 	 * block addresses are continuous.
2922 	 */
2923 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2924 		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2925 			goto out;
2926 	}
2927 
2928 	map.m_lblk = pg_start;
2929 	map.m_next_pgofs = &next_pgofs;
2930 
2931 	/*
2932 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2933 	 * physical block addresses are continuous even if there are hole(s)
2934 	 * in logical blocks.
2935 	 */
2936 	while (map.m_lblk < pg_end) {
2937 		map.m_len = pg_end - map.m_lblk;
2938 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2939 		if (err)
2940 			goto out;
2941 
2942 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2943 			map.m_lblk = next_pgofs;
2944 			continue;
2945 		}
2946 
2947 		if (blk_end && blk_end != map.m_pblk)
2948 			fragmented = true;
2949 
2950 		/* record total count of block that we're going to move */
2951 		total += map.m_len;
2952 
2953 		blk_end = map.m_pblk + map.m_len;
2954 
2955 		map.m_lblk += map.m_len;
2956 	}
2957 
2958 	if (!fragmented) {
2959 		total = 0;
2960 		goto out;
2961 	}
2962 
2963 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2964 
2965 	/*
2966 	 * make sure there are enough free section for LFS allocation, this can
2967 	 * avoid defragment running in SSR mode when free section are allocated
2968 	 * intensively
2969 	 */
2970 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2971 		err = -EAGAIN;
2972 		goto out;
2973 	}
2974 
2975 	map.m_lblk = pg_start;
2976 	map.m_len = pg_end - pg_start;
2977 	total = 0;
2978 
2979 	while (map.m_lblk < pg_end) {
2980 		pgoff_t idx;
2981 		int cnt = 0;
2982 
2983 do_map:
2984 		map.m_len = pg_end - map.m_lblk;
2985 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2986 		if (err)
2987 			goto clear_out;
2988 
2989 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2990 			map.m_lblk = next_pgofs;
2991 			goto check;
2992 		}
2993 
2994 		set_inode_flag(inode, FI_SKIP_WRITES);
2995 
2996 		idx = map.m_lblk;
2997 		while (idx < map.m_lblk + map.m_len &&
2998 						cnt < BLKS_PER_SEG(sbi)) {
2999 			struct folio *folio;
3000 
3001 			folio = f2fs_get_lock_data_folio(inode, idx, true);
3002 			if (IS_ERR(folio)) {
3003 				err = PTR_ERR(folio);
3004 				goto clear_out;
3005 			}
3006 
3007 			f2fs_folio_wait_writeback(folio, DATA, true, true);
3008 
3009 			folio_mark_dirty(folio);
3010 			folio_set_f2fs_gcing(folio);
3011 			f2fs_folio_put(folio, true);
3012 
3013 			idx++;
3014 			cnt++;
3015 			total++;
3016 		}
3017 
3018 		map.m_lblk = idx;
3019 check:
3020 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
3021 			goto do_map;
3022 
3023 		clear_inode_flag(inode, FI_SKIP_WRITES);
3024 
3025 		err = filemap_fdatawrite(inode->i_mapping);
3026 		if (err)
3027 			goto out;
3028 	}
3029 clear_out:
3030 	clear_inode_flag(inode, FI_SKIP_WRITES);
3031 out:
3032 	clear_inode_flag(inode, FI_OPU_WRITE);
3033 unlock_out:
3034 	inode_unlock(inode);
3035 	if (!err)
3036 		range->len = (u64)total << PAGE_SHIFT;
3037 	return err;
3038 }
3039 
3040 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
3041 {
3042 	struct inode *inode = file_inode(filp);
3043 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3044 	struct f2fs_defragment range;
3045 	int err;
3046 
3047 	if (!capable(CAP_SYS_ADMIN))
3048 		return -EPERM;
3049 
3050 	if (!S_ISREG(inode->i_mode))
3051 		return -EINVAL;
3052 
3053 	if (f2fs_readonly(sbi->sb))
3054 		return -EROFS;
3055 
3056 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
3057 							sizeof(range)))
3058 		return -EFAULT;
3059 
3060 	/* verify alignment of offset & size */
3061 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
3062 		return -EINVAL;
3063 
3064 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
3065 					max_file_blocks(inode)))
3066 		return -EINVAL;
3067 
3068 	err = mnt_want_write_file(filp);
3069 	if (err)
3070 		return err;
3071 
3072 	err = f2fs_defragment_range(sbi, filp, &range);
3073 	mnt_drop_write_file(filp);
3074 
3075 	if (range.len)
3076 		f2fs_update_time(sbi, REQ_TIME);
3077 	if (err < 0)
3078 		return err;
3079 
3080 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
3081 							sizeof(range)))
3082 		return -EFAULT;
3083 
3084 	return 0;
3085 }
3086 
3087 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
3088 			struct file *file_out, loff_t pos_out, size_t len)
3089 {
3090 	struct inode *src = file_inode(file_in);
3091 	struct inode *dst = file_inode(file_out);
3092 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
3093 	size_t olen = len, dst_max_i_size = 0;
3094 	size_t dst_osize;
3095 	int ret;
3096 
3097 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
3098 				src->i_sb != dst->i_sb)
3099 		return -EXDEV;
3100 
3101 	if (unlikely(f2fs_readonly(src->i_sb)))
3102 		return -EROFS;
3103 
3104 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
3105 		return -EINVAL;
3106 
3107 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
3108 		return -EOPNOTSUPP;
3109 
3110 	if (pos_out < 0 || pos_in < 0)
3111 		return -EINVAL;
3112 
3113 	if (src == dst) {
3114 		if (pos_in == pos_out)
3115 			return 0;
3116 		if (pos_out > pos_in && pos_out < pos_in + len)
3117 			return -EINVAL;
3118 	}
3119 
3120 	inode_lock(src);
3121 	if (src != dst) {
3122 		ret = -EBUSY;
3123 		if (!inode_trylock(dst))
3124 			goto out;
3125 	}
3126 
3127 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
3128 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
3129 		ret = -EOPNOTSUPP;
3130 		goto out_unlock;
3131 	}
3132 
3133 	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
3134 		ret = -EINVAL;
3135 		goto out_unlock;
3136 	}
3137 
3138 	ret = -EINVAL;
3139 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
3140 		goto out_unlock;
3141 	if (len == 0)
3142 		olen = len = src->i_size - pos_in;
3143 	if (pos_in + len == src->i_size)
3144 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
3145 	if (len == 0) {
3146 		ret = 0;
3147 		goto out_unlock;
3148 	}
3149 
3150 	dst_osize = dst->i_size;
3151 	if (pos_out + olen > dst->i_size)
3152 		dst_max_i_size = pos_out + olen;
3153 
3154 	/* verify the end result is block aligned */
3155 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
3156 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3157 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3158 		goto out_unlock;
3159 
3160 	ret = f2fs_convert_inline_inode(src);
3161 	if (ret)
3162 		goto out_unlock;
3163 
3164 	ret = f2fs_convert_inline_inode(dst);
3165 	if (ret)
3166 		goto out_unlock;
3167 
3168 	/* write out all dirty pages from offset */
3169 	ret = filemap_write_and_wait_range(src->i_mapping,
3170 					pos_in, pos_in + len);
3171 	if (ret)
3172 		goto out_unlock;
3173 
3174 	ret = filemap_write_and_wait_range(dst->i_mapping,
3175 					pos_out, pos_out + len);
3176 	if (ret)
3177 		goto out_unlock;
3178 
3179 	f2fs_balance_fs(sbi, true);
3180 
3181 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3182 	if (src != dst) {
3183 		ret = -EBUSY;
3184 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3185 			goto out_src;
3186 	}
3187 
3188 	f2fs_lock_op(sbi);
3189 	ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3190 				F2FS_BYTES_TO_BLK(pos_out),
3191 				F2FS_BYTES_TO_BLK(len), false);
3192 
3193 	if (!ret) {
3194 		if (dst_max_i_size)
3195 			f2fs_i_size_write(dst, dst_max_i_size);
3196 		else if (dst_osize != dst->i_size)
3197 			f2fs_i_size_write(dst, dst_osize);
3198 	}
3199 	f2fs_unlock_op(sbi);
3200 
3201 	if (src != dst)
3202 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3203 out_src:
3204 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3205 	if (ret)
3206 		goto out_unlock;
3207 
3208 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3209 	f2fs_mark_inode_dirty_sync(src, false);
3210 	if (src != dst) {
3211 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3212 		f2fs_mark_inode_dirty_sync(dst, false);
3213 	}
3214 	f2fs_update_time(sbi, REQ_TIME);
3215 
3216 out_unlock:
3217 	if (src != dst)
3218 		inode_unlock(dst);
3219 out:
3220 	inode_unlock(src);
3221 	return ret;
3222 }
3223 
3224 static int __f2fs_ioc_move_range(struct file *filp,
3225 				struct f2fs_move_range *range)
3226 {
3227 	int err;
3228 
3229 	if (!(filp->f_mode & FMODE_READ) ||
3230 			!(filp->f_mode & FMODE_WRITE))
3231 		return -EBADF;
3232 
3233 	CLASS(fd, dst)(range->dst_fd);
3234 	if (fd_empty(dst))
3235 		return -EBADF;
3236 
3237 	if (!(fd_file(dst)->f_mode & FMODE_WRITE))
3238 		return -EBADF;
3239 
3240 	err = mnt_want_write_file(filp);
3241 	if (err)
3242 		return err;
3243 
3244 	err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3245 					range->pos_out, range->len);
3246 
3247 	mnt_drop_write_file(filp);
3248 	return err;
3249 }
3250 
3251 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3252 {
3253 	struct f2fs_move_range range;
3254 
3255 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3256 							sizeof(range)))
3257 		return -EFAULT;
3258 	return __f2fs_ioc_move_range(filp, &range);
3259 }
3260 
3261 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3262 {
3263 	struct inode *inode = file_inode(filp);
3264 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3265 	struct sit_info *sm = SIT_I(sbi);
3266 	unsigned int start_segno = 0, end_segno = 0;
3267 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3268 	struct f2fs_flush_device range;
3269 	struct f2fs_gc_control gc_control = {
3270 			.init_gc_type = FG_GC,
3271 			.should_migrate_blocks = true,
3272 			.err_gc_skipped = true,
3273 			.nr_free_secs = 0 };
3274 	int ret;
3275 
3276 	if (!capable(CAP_SYS_ADMIN))
3277 		return -EPERM;
3278 
3279 	if (f2fs_readonly(sbi->sb))
3280 		return -EROFS;
3281 
3282 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3283 		return -EINVAL;
3284 
3285 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3286 							sizeof(range)))
3287 		return -EFAULT;
3288 
3289 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3290 			__is_large_section(sbi)) {
3291 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3292 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3293 		return -EINVAL;
3294 	}
3295 
3296 	ret = mnt_want_write_file(filp);
3297 	if (ret)
3298 		return ret;
3299 
3300 	if (range.dev_num != 0)
3301 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3302 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3303 
3304 	start_segno = sm->last_victim[FLUSH_DEVICE];
3305 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3306 		start_segno = dev_start_segno;
3307 	end_segno = min(start_segno + range.segments, dev_end_segno);
3308 
3309 	while (start_segno < end_segno) {
3310 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3311 			ret = -EBUSY;
3312 			goto out;
3313 		}
3314 		sm->last_victim[GC_CB] = end_segno + 1;
3315 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3316 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3317 
3318 		gc_control.victim_segno = start_segno;
3319 		stat_inc_gc_call_count(sbi, FOREGROUND);
3320 		ret = f2fs_gc(sbi, &gc_control);
3321 		if (ret == -EAGAIN)
3322 			ret = 0;
3323 		else if (ret < 0)
3324 			break;
3325 		start_segno++;
3326 	}
3327 out:
3328 	mnt_drop_write_file(filp);
3329 	return ret;
3330 }
3331 
3332 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3333 {
3334 	struct inode *inode = file_inode(filp);
3335 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3336 
3337 	/* Must validate to set it with SQLite behavior in Android. */
3338 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3339 
3340 	return put_user(sb_feature, (u32 __user *)arg);
3341 }
3342 
3343 #ifdef CONFIG_QUOTA
3344 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3345 {
3346 	struct dquot *transfer_to[MAXQUOTAS] = {};
3347 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3348 	struct super_block *sb = sbi->sb;
3349 	int err;
3350 
3351 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3352 	if (IS_ERR(transfer_to[PRJQUOTA]))
3353 		return PTR_ERR(transfer_to[PRJQUOTA]);
3354 
3355 	err = __dquot_transfer(inode, transfer_to);
3356 	if (err)
3357 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3358 	dqput(transfer_to[PRJQUOTA]);
3359 	return err;
3360 }
3361 
3362 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3363 {
3364 	struct f2fs_inode_info *fi = F2FS_I(inode);
3365 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3366 	struct f2fs_inode *ri = NULL;
3367 	kprojid_t kprojid;
3368 	int err;
3369 
3370 	if (!f2fs_sb_has_project_quota(sbi)) {
3371 		if (projid != F2FS_DEF_PROJID)
3372 			return -EOPNOTSUPP;
3373 		else
3374 			return 0;
3375 	}
3376 
3377 	if (!f2fs_has_extra_attr(inode))
3378 		return -EOPNOTSUPP;
3379 
3380 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3381 
3382 	if (projid_eq(kprojid, fi->i_projid))
3383 		return 0;
3384 
3385 	err = -EPERM;
3386 	/* Is it quota file? Do not allow user to mess with it */
3387 	if (IS_NOQUOTA(inode))
3388 		return err;
3389 
3390 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3391 		return -EOVERFLOW;
3392 
3393 	err = f2fs_dquot_initialize(inode);
3394 	if (err)
3395 		return err;
3396 
3397 	f2fs_lock_op(sbi);
3398 	err = f2fs_transfer_project_quota(inode, kprojid);
3399 	if (err)
3400 		goto out_unlock;
3401 
3402 	fi->i_projid = kprojid;
3403 	inode_set_ctime_current(inode);
3404 	f2fs_mark_inode_dirty_sync(inode, true);
3405 out_unlock:
3406 	f2fs_unlock_op(sbi);
3407 	return err;
3408 }
3409 #else
3410 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3411 {
3412 	return 0;
3413 }
3414 
3415 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3416 {
3417 	if (projid != F2FS_DEF_PROJID)
3418 		return -EOPNOTSUPP;
3419 	return 0;
3420 }
3421 #endif
3422 
3423 int f2fs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
3424 {
3425 	struct inode *inode = d_inode(dentry);
3426 	struct f2fs_inode_info *fi = F2FS_I(inode);
3427 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3428 
3429 	if (IS_ENCRYPTED(inode))
3430 		fsflags |= FS_ENCRYPT_FL;
3431 	if (IS_VERITY(inode))
3432 		fsflags |= FS_VERITY_FL;
3433 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3434 		fsflags |= FS_INLINE_DATA_FL;
3435 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3436 		fsflags |= FS_NOCOW_FL;
3437 
3438 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3439 
3440 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3441 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3442 
3443 	return 0;
3444 }
3445 
3446 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3447 		      struct dentry *dentry, struct file_kattr *fa)
3448 {
3449 	struct inode *inode = d_inode(dentry);
3450 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3451 	u32 iflags;
3452 	int err;
3453 
3454 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3455 		return -EIO;
3456 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3457 		return -ENOSPC;
3458 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3459 		return -EOPNOTSUPP;
3460 	fsflags &= F2FS_SETTABLE_FS_FL;
3461 	if (!fa->flags_valid)
3462 		mask &= FS_COMMON_FL;
3463 
3464 	iflags = f2fs_fsflags_to_iflags(fsflags);
3465 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3466 		return -EOPNOTSUPP;
3467 
3468 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3469 	if (!err)
3470 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3471 
3472 	return err;
3473 }
3474 
3475 int f2fs_pin_file_control(struct inode *inode, bool inc)
3476 {
3477 	struct f2fs_inode_info *fi = F2FS_I(inode);
3478 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3479 
3480 	if (IS_DEVICE_ALIASING(inode))
3481 		return -EINVAL;
3482 
3483 	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3484 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3485 			  __func__, inode->i_ino, fi->i_gc_failures);
3486 		clear_inode_flag(inode, FI_PIN_FILE);
3487 		return -EAGAIN;
3488 	}
3489 
3490 	/* Use i_gc_failures for normal file as a risk signal. */
3491 	if (inc)
3492 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3493 
3494 	return 0;
3495 }
3496 
3497 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3498 {
3499 	struct inode *inode = file_inode(filp);
3500 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3501 	__u32 pin;
3502 	int ret = 0;
3503 
3504 	if (get_user(pin, (__u32 __user *)arg))
3505 		return -EFAULT;
3506 
3507 	if (!S_ISREG(inode->i_mode))
3508 		return -EINVAL;
3509 
3510 	if (f2fs_readonly(sbi->sb))
3511 		return -EROFS;
3512 
3513 	if (!pin && IS_DEVICE_ALIASING(inode))
3514 		return -EOPNOTSUPP;
3515 
3516 	ret = mnt_want_write_file(filp);
3517 	if (ret)
3518 		return ret;
3519 
3520 	inode_lock(inode);
3521 
3522 	if (f2fs_is_atomic_file(inode)) {
3523 		ret = -EINVAL;
3524 		goto out;
3525 	}
3526 
3527 	if (!pin) {
3528 		clear_inode_flag(inode, FI_PIN_FILE);
3529 		f2fs_i_gc_failures_write(inode, 0);
3530 		goto done;
3531 	} else if (f2fs_is_pinned_file(inode)) {
3532 		goto done;
3533 	}
3534 
3535 	if (F2FS_HAS_BLOCKS(inode)) {
3536 		ret = -EFBIG;
3537 		goto out;
3538 	}
3539 
3540 	/* Let's allow file pinning on zoned device. */
3541 	if (!f2fs_sb_has_blkzoned(sbi) &&
3542 	    f2fs_should_update_outplace(inode, NULL)) {
3543 		ret = -EINVAL;
3544 		goto out;
3545 	}
3546 
3547 	if (f2fs_pin_file_control(inode, false)) {
3548 		ret = -EAGAIN;
3549 		goto out;
3550 	}
3551 
3552 	ret = f2fs_convert_inline_inode(inode);
3553 	if (ret)
3554 		goto out;
3555 
3556 	if (!f2fs_disable_compressed_file(inode)) {
3557 		ret = -EOPNOTSUPP;
3558 		goto out;
3559 	}
3560 
3561 	set_inode_flag(inode, FI_PIN_FILE);
3562 	ret = F2FS_I(inode)->i_gc_failures;
3563 done:
3564 	f2fs_update_time(sbi, REQ_TIME);
3565 out:
3566 	inode_unlock(inode);
3567 	mnt_drop_write_file(filp);
3568 	return ret;
3569 }
3570 
3571 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3572 {
3573 	struct inode *inode = file_inode(filp);
3574 	__u32 pin = 0;
3575 
3576 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3577 		pin = F2FS_I(inode)->i_gc_failures;
3578 	return put_user(pin, (u32 __user *)arg);
3579 }
3580 
3581 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3582 {
3583 	return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3584 			(u32 __user *)arg);
3585 }
3586 
3587 static int f2fs_ioc_io_prio(struct file *filp, unsigned long arg)
3588 {
3589 	struct inode *inode = file_inode(filp);
3590 	__u32 level;
3591 
3592 	if (get_user(level, (__u32 __user *)arg))
3593 		return -EFAULT;
3594 
3595 	if (!S_ISREG(inode->i_mode) || level >= F2FS_IOPRIO_MAX)
3596 		return -EINVAL;
3597 
3598 	inode_lock(inode);
3599 	F2FS_I(inode)->ioprio_hint = level;
3600 	inode_unlock(inode);
3601 	return 0;
3602 }
3603 
3604 int f2fs_precache_extents(struct inode *inode)
3605 {
3606 	struct f2fs_inode_info *fi = F2FS_I(inode);
3607 	struct f2fs_map_blocks map;
3608 	pgoff_t m_next_extent;
3609 	loff_t end;
3610 	int err;
3611 
3612 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3613 		return -EOPNOTSUPP;
3614 
3615 	map.m_lblk = 0;
3616 	map.m_pblk = 0;
3617 	map.m_next_pgofs = NULL;
3618 	map.m_next_extent = &m_next_extent;
3619 	map.m_seg_type = NO_CHECK_TYPE;
3620 	map.m_may_create = false;
3621 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3622 
3623 	while (map.m_lblk < end) {
3624 		map.m_len = end - map.m_lblk;
3625 
3626 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3627 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3628 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3629 		if (err || !map.m_len)
3630 			return err;
3631 
3632 		map.m_lblk = m_next_extent;
3633 	}
3634 
3635 	return 0;
3636 }
3637 
3638 static int f2fs_ioc_precache_extents(struct file *filp)
3639 {
3640 	return f2fs_precache_extents(file_inode(filp));
3641 }
3642 
3643 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3644 {
3645 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3646 	__u64 block_count;
3647 
3648 	if (!capable(CAP_SYS_ADMIN))
3649 		return -EPERM;
3650 
3651 	if (f2fs_readonly(sbi->sb))
3652 		return -EROFS;
3653 
3654 	if (copy_from_user(&block_count, (void __user *)arg,
3655 			   sizeof(block_count)))
3656 		return -EFAULT;
3657 
3658 	return f2fs_resize_fs(filp, block_count);
3659 }
3660 
3661 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3662 {
3663 	struct inode *inode = file_inode(filp);
3664 
3665 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3666 
3667 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3668 		f2fs_warn(F2FS_I_SB(inode),
3669 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3670 			  inode->i_ino);
3671 		return -EOPNOTSUPP;
3672 	}
3673 
3674 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3675 }
3676 
3677 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3678 {
3679 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3680 		return -EOPNOTSUPP;
3681 
3682 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3683 }
3684 
3685 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3686 {
3687 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3688 		return -EOPNOTSUPP;
3689 
3690 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3691 }
3692 
3693 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3694 {
3695 	struct inode *inode = file_inode(filp);
3696 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3697 	char *vbuf;
3698 	int count;
3699 	int err = 0;
3700 
3701 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3702 	if (!vbuf)
3703 		return -ENOMEM;
3704 
3705 	f2fs_down_read(&sbi->sb_lock);
3706 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3707 			ARRAY_SIZE(sbi->raw_super->volume_name),
3708 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3709 	f2fs_up_read(&sbi->sb_lock);
3710 
3711 	if (copy_to_user((char __user *)arg, vbuf,
3712 				min(FSLABEL_MAX, count)))
3713 		err = -EFAULT;
3714 
3715 	kfree(vbuf);
3716 	return err;
3717 }
3718 
3719 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3720 {
3721 	struct inode *inode = file_inode(filp);
3722 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3723 	char *vbuf;
3724 	int err = 0;
3725 
3726 	if (!capable(CAP_SYS_ADMIN))
3727 		return -EPERM;
3728 
3729 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3730 	if (IS_ERR(vbuf))
3731 		return PTR_ERR(vbuf);
3732 
3733 	err = mnt_want_write_file(filp);
3734 	if (err)
3735 		goto out;
3736 
3737 	f2fs_down_write(&sbi->sb_lock);
3738 
3739 	memset(sbi->raw_super->volume_name, 0,
3740 			sizeof(sbi->raw_super->volume_name));
3741 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3742 			sbi->raw_super->volume_name,
3743 			ARRAY_SIZE(sbi->raw_super->volume_name));
3744 
3745 	err = f2fs_commit_super(sbi, false);
3746 
3747 	f2fs_up_write(&sbi->sb_lock);
3748 
3749 	mnt_drop_write_file(filp);
3750 out:
3751 	kfree(vbuf);
3752 	return err;
3753 }
3754 
3755 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3756 {
3757 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3758 		return -EOPNOTSUPP;
3759 
3760 	if (!f2fs_compressed_file(inode))
3761 		return -EINVAL;
3762 
3763 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3764 
3765 	return 0;
3766 }
3767 
3768 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3769 {
3770 	struct inode *inode = file_inode(filp);
3771 	__u64 blocks;
3772 	int ret;
3773 
3774 	ret = f2fs_get_compress_blocks(inode, &blocks);
3775 	if (ret < 0)
3776 		return ret;
3777 
3778 	return put_user(blocks, (u64 __user *)arg);
3779 }
3780 
3781 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3782 {
3783 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3784 	unsigned int released_blocks = 0;
3785 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3786 	block_t blkaddr;
3787 	int i;
3788 
3789 	for (i = 0; i < count; i++) {
3790 		blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3791 						dn->ofs_in_node + i);
3792 
3793 		if (!__is_valid_data_blkaddr(blkaddr))
3794 			continue;
3795 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3796 					DATA_GENERIC_ENHANCE)))
3797 			return -EFSCORRUPTED;
3798 	}
3799 
3800 	while (count) {
3801 		int compr_blocks = 0;
3802 
3803 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3804 			blkaddr = f2fs_data_blkaddr(dn);
3805 
3806 			if (i == 0) {
3807 				if (blkaddr == COMPRESS_ADDR)
3808 					continue;
3809 				dn->ofs_in_node += cluster_size;
3810 				goto next;
3811 			}
3812 
3813 			if (__is_valid_data_blkaddr(blkaddr))
3814 				compr_blocks++;
3815 
3816 			if (blkaddr != NEW_ADDR)
3817 				continue;
3818 
3819 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3820 		}
3821 
3822 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3823 		dec_valid_block_count(sbi, dn->inode,
3824 					cluster_size - compr_blocks);
3825 
3826 		released_blocks += cluster_size - compr_blocks;
3827 next:
3828 		count -= cluster_size;
3829 	}
3830 
3831 	return released_blocks;
3832 }
3833 
3834 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3835 {
3836 	struct inode *inode = file_inode(filp);
3837 	struct f2fs_inode_info *fi = F2FS_I(inode);
3838 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3839 	pgoff_t page_idx = 0, last_idx;
3840 	unsigned int released_blocks = 0;
3841 	int ret;
3842 	int writecount;
3843 
3844 	if (!f2fs_sb_has_compression(sbi))
3845 		return -EOPNOTSUPP;
3846 
3847 	if (f2fs_readonly(sbi->sb))
3848 		return -EROFS;
3849 
3850 	ret = mnt_want_write_file(filp);
3851 	if (ret)
3852 		return ret;
3853 
3854 	f2fs_balance_fs(sbi, true);
3855 
3856 	inode_lock(inode);
3857 
3858 	writecount = atomic_read(&inode->i_writecount);
3859 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3860 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3861 		ret = -EBUSY;
3862 		goto out;
3863 	}
3864 
3865 	if (!f2fs_compressed_file(inode) ||
3866 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3867 		ret = -EINVAL;
3868 		goto out;
3869 	}
3870 
3871 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3872 	if (ret)
3873 		goto out;
3874 
3875 	if (!atomic_read(&fi->i_compr_blocks)) {
3876 		ret = -EPERM;
3877 		goto out;
3878 	}
3879 
3880 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3881 	inode_set_ctime_current(inode);
3882 	f2fs_mark_inode_dirty_sync(inode, true);
3883 
3884 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3885 	filemap_invalidate_lock(inode->i_mapping);
3886 
3887 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3888 
3889 	while (page_idx < last_idx) {
3890 		struct dnode_of_data dn;
3891 		pgoff_t end_offset, count;
3892 
3893 		f2fs_lock_op(sbi);
3894 
3895 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3896 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3897 		if (ret) {
3898 			f2fs_unlock_op(sbi);
3899 			if (ret == -ENOENT) {
3900 				page_idx = f2fs_get_next_page_offset(&dn,
3901 								page_idx);
3902 				ret = 0;
3903 				continue;
3904 			}
3905 			break;
3906 		}
3907 
3908 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
3909 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3910 		count = round_up(count, fi->i_cluster_size);
3911 
3912 		ret = release_compress_blocks(&dn, count);
3913 
3914 		f2fs_put_dnode(&dn);
3915 
3916 		f2fs_unlock_op(sbi);
3917 
3918 		if (ret < 0)
3919 			break;
3920 
3921 		page_idx += count;
3922 		released_blocks += ret;
3923 	}
3924 
3925 	filemap_invalidate_unlock(inode->i_mapping);
3926 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3927 out:
3928 	if (released_blocks)
3929 		f2fs_update_time(sbi, REQ_TIME);
3930 	inode_unlock(inode);
3931 
3932 	mnt_drop_write_file(filp);
3933 
3934 	if (ret >= 0) {
3935 		ret = put_user(released_blocks, (u64 __user *)arg);
3936 	} else if (released_blocks &&
3937 			atomic_read(&fi->i_compr_blocks)) {
3938 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3939 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3940 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3941 			"run fsck to fix.",
3942 			__func__, inode->i_ino, inode->i_blocks,
3943 			released_blocks,
3944 			atomic_read(&fi->i_compr_blocks));
3945 	}
3946 
3947 	return ret;
3948 }
3949 
3950 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3951 		unsigned int *reserved_blocks)
3952 {
3953 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3954 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3955 	block_t blkaddr;
3956 	int i;
3957 
3958 	for (i = 0; i < count; i++) {
3959 		blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3960 						dn->ofs_in_node + i);
3961 
3962 		if (!__is_valid_data_blkaddr(blkaddr))
3963 			continue;
3964 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3965 					DATA_GENERIC_ENHANCE)))
3966 			return -EFSCORRUPTED;
3967 	}
3968 
3969 	while (count) {
3970 		int compr_blocks = 0;
3971 		blkcnt_t reserved = 0;
3972 		blkcnt_t to_reserved;
3973 		int ret;
3974 
3975 		for (i = 0; i < cluster_size; i++) {
3976 			blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3977 						dn->ofs_in_node + i);
3978 
3979 			if (i == 0) {
3980 				if (blkaddr != COMPRESS_ADDR) {
3981 					dn->ofs_in_node += cluster_size;
3982 					goto next;
3983 				}
3984 				continue;
3985 			}
3986 
3987 			/*
3988 			 * compressed cluster was not released due to it
3989 			 * fails in release_compress_blocks(), so NEW_ADDR
3990 			 * is a possible case.
3991 			 */
3992 			if (blkaddr == NEW_ADDR) {
3993 				reserved++;
3994 				continue;
3995 			}
3996 			if (__is_valid_data_blkaddr(blkaddr)) {
3997 				compr_blocks++;
3998 				continue;
3999 			}
4000 		}
4001 
4002 		to_reserved = cluster_size - compr_blocks - reserved;
4003 
4004 		/* for the case all blocks in cluster were reserved */
4005 		if (reserved && to_reserved == 1) {
4006 			dn->ofs_in_node += cluster_size;
4007 			goto next;
4008 		}
4009 
4010 		ret = inc_valid_block_count(sbi, dn->inode,
4011 						&to_reserved, false);
4012 		if (unlikely(ret))
4013 			return ret;
4014 
4015 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
4016 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
4017 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
4018 		}
4019 
4020 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
4021 
4022 		*reserved_blocks += to_reserved;
4023 next:
4024 		count -= cluster_size;
4025 	}
4026 
4027 	return 0;
4028 }
4029 
4030 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
4031 {
4032 	struct inode *inode = file_inode(filp);
4033 	struct f2fs_inode_info *fi = F2FS_I(inode);
4034 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4035 	pgoff_t page_idx = 0, last_idx;
4036 	unsigned int reserved_blocks = 0;
4037 	int ret;
4038 
4039 	if (!f2fs_sb_has_compression(sbi))
4040 		return -EOPNOTSUPP;
4041 
4042 	if (f2fs_readonly(sbi->sb))
4043 		return -EROFS;
4044 
4045 	ret = mnt_want_write_file(filp);
4046 	if (ret)
4047 		return ret;
4048 
4049 	f2fs_balance_fs(sbi, true);
4050 
4051 	inode_lock(inode);
4052 
4053 	if (!f2fs_compressed_file(inode) ||
4054 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4055 		ret = -EINVAL;
4056 		goto unlock_inode;
4057 	}
4058 
4059 	if (atomic_read(&fi->i_compr_blocks))
4060 		goto unlock_inode;
4061 
4062 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
4063 	filemap_invalidate_lock(inode->i_mapping);
4064 
4065 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4066 
4067 	while (page_idx < last_idx) {
4068 		struct dnode_of_data dn;
4069 		pgoff_t end_offset, count;
4070 
4071 		f2fs_lock_op(sbi);
4072 
4073 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4074 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
4075 		if (ret) {
4076 			f2fs_unlock_op(sbi);
4077 			if (ret == -ENOENT) {
4078 				page_idx = f2fs_get_next_page_offset(&dn,
4079 								page_idx);
4080 				ret = 0;
4081 				continue;
4082 			}
4083 			break;
4084 		}
4085 
4086 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
4087 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
4088 		count = round_up(count, fi->i_cluster_size);
4089 
4090 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
4091 
4092 		f2fs_put_dnode(&dn);
4093 
4094 		f2fs_unlock_op(sbi);
4095 
4096 		if (ret < 0)
4097 			break;
4098 
4099 		page_idx += count;
4100 	}
4101 
4102 	filemap_invalidate_unlock(inode->i_mapping);
4103 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
4104 
4105 	if (!ret) {
4106 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
4107 		inode_set_ctime_current(inode);
4108 		f2fs_mark_inode_dirty_sync(inode, true);
4109 	}
4110 unlock_inode:
4111 	if (reserved_blocks)
4112 		f2fs_update_time(sbi, REQ_TIME);
4113 	inode_unlock(inode);
4114 	mnt_drop_write_file(filp);
4115 
4116 	if (!ret) {
4117 		ret = put_user(reserved_blocks, (u64 __user *)arg);
4118 	} else if (reserved_blocks &&
4119 			atomic_read(&fi->i_compr_blocks)) {
4120 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4121 		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
4122 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
4123 			"run fsck to fix.",
4124 			__func__, inode->i_ino, inode->i_blocks,
4125 			reserved_blocks,
4126 			atomic_read(&fi->i_compr_blocks));
4127 	}
4128 
4129 	return ret;
4130 }
4131 
4132 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
4133 		pgoff_t off, block_t block, block_t len, u32 flags)
4134 {
4135 	sector_t sector = SECTOR_FROM_BLOCK(block);
4136 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
4137 	int ret = 0;
4138 
4139 	if (flags & F2FS_TRIM_FILE_DISCARD) {
4140 		if (bdev_max_secure_erase_sectors(bdev))
4141 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
4142 					GFP_NOFS);
4143 		else
4144 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
4145 					GFP_NOFS);
4146 	}
4147 
4148 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
4149 		if (IS_ENCRYPTED(inode))
4150 			ret = fscrypt_zeroout_range(inode, off, block, len);
4151 		else
4152 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
4153 					GFP_NOFS, 0);
4154 	}
4155 
4156 	return ret;
4157 }
4158 
4159 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
4160 {
4161 	struct inode *inode = file_inode(filp);
4162 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4163 	struct address_space *mapping = inode->i_mapping;
4164 	struct block_device *prev_bdev = NULL;
4165 	struct f2fs_sectrim_range range;
4166 	pgoff_t index, pg_end, prev_index = 0;
4167 	block_t prev_block = 0, len = 0;
4168 	loff_t end_addr;
4169 	bool to_end = false;
4170 	int ret = 0;
4171 
4172 	if (!(filp->f_mode & FMODE_WRITE))
4173 		return -EBADF;
4174 
4175 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4176 				sizeof(range)))
4177 		return -EFAULT;
4178 
4179 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4180 			!S_ISREG(inode->i_mode))
4181 		return -EINVAL;
4182 
4183 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4184 			!f2fs_hw_support_discard(sbi)) ||
4185 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4186 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4187 		return -EOPNOTSUPP;
4188 
4189 	ret = mnt_want_write_file(filp);
4190 	if (ret)
4191 		return ret;
4192 	inode_lock(inode);
4193 
4194 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4195 			range.start >= inode->i_size) {
4196 		ret = -EINVAL;
4197 		goto err;
4198 	}
4199 
4200 	if (range.len == 0)
4201 		goto err;
4202 
4203 	if (inode->i_size - range.start > range.len) {
4204 		end_addr = range.start + range.len;
4205 	} else {
4206 		end_addr = range.len == (u64)-1 ?
4207 			sbi->sb->s_maxbytes : inode->i_size;
4208 		to_end = true;
4209 	}
4210 
4211 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4212 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4213 		ret = -EINVAL;
4214 		goto err;
4215 	}
4216 
4217 	index = F2FS_BYTES_TO_BLK(range.start);
4218 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4219 
4220 	ret = f2fs_convert_inline_inode(inode);
4221 	if (ret)
4222 		goto err;
4223 
4224 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4225 	filemap_invalidate_lock(mapping);
4226 
4227 	ret = filemap_write_and_wait_range(mapping, range.start,
4228 			to_end ? LLONG_MAX : end_addr - 1);
4229 	if (ret)
4230 		goto out;
4231 
4232 	truncate_inode_pages_range(mapping, range.start,
4233 			to_end ? -1 : end_addr - 1);
4234 
4235 	while (index < pg_end) {
4236 		struct dnode_of_data dn;
4237 		pgoff_t end_offset, count;
4238 		int i;
4239 
4240 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4241 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4242 		if (ret) {
4243 			if (ret == -ENOENT) {
4244 				index = f2fs_get_next_page_offset(&dn, index);
4245 				continue;
4246 			}
4247 			goto out;
4248 		}
4249 
4250 		end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
4251 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4252 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4253 			struct block_device *cur_bdev;
4254 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4255 
4256 			if (!__is_valid_data_blkaddr(blkaddr))
4257 				continue;
4258 
4259 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4260 						DATA_GENERIC_ENHANCE)) {
4261 				ret = -EFSCORRUPTED;
4262 				f2fs_put_dnode(&dn);
4263 				goto out;
4264 			}
4265 
4266 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4267 			if (f2fs_is_multi_device(sbi)) {
4268 				int di = f2fs_target_device_index(sbi, blkaddr);
4269 
4270 				blkaddr -= FDEV(di).start_blk;
4271 			}
4272 
4273 			if (len) {
4274 				if (prev_bdev == cur_bdev &&
4275 						index == prev_index + len &&
4276 						blkaddr == prev_block + len) {
4277 					len++;
4278 				} else {
4279 					ret = f2fs_secure_erase(prev_bdev,
4280 						inode, prev_index, prev_block,
4281 						len, range.flags);
4282 					if (ret) {
4283 						f2fs_put_dnode(&dn);
4284 						goto out;
4285 					}
4286 
4287 					len = 0;
4288 				}
4289 			}
4290 
4291 			if (!len) {
4292 				prev_bdev = cur_bdev;
4293 				prev_index = index;
4294 				prev_block = blkaddr;
4295 				len = 1;
4296 			}
4297 		}
4298 
4299 		f2fs_put_dnode(&dn);
4300 
4301 		if (fatal_signal_pending(current)) {
4302 			ret = -EINTR;
4303 			goto out;
4304 		}
4305 		cond_resched();
4306 	}
4307 
4308 	if (len)
4309 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4310 				prev_block, len, range.flags);
4311 	f2fs_update_time(sbi, REQ_TIME);
4312 out:
4313 	filemap_invalidate_unlock(mapping);
4314 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4315 err:
4316 	inode_unlock(inode);
4317 	mnt_drop_write_file(filp);
4318 
4319 	return ret;
4320 }
4321 
4322 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4323 {
4324 	struct inode *inode = file_inode(filp);
4325 	struct f2fs_comp_option option;
4326 
4327 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4328 		return -EOPNOTSUPP;
4329 
4330 	inode_lock_shared(inode);
4331 
4332 	if (!f2fs_compressed_file(inode)) {
4333 		inode_unlock_shared(inode);
4334 		return -ENODATA;
4335 	}
4336 
4337 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4338 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4339 
4340 	inode_unlock_shared(inode);
4341 
4342 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4343 				sizeof(option)))
4344 		return -EFAULT;
4345 
4346 	return 0;
4347 }
4348 
4349 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4350 {
4351 	struct inode *inode = file_inode(filp);
4352 	struct f2fs_inode_info *fi = F2FS_I(inode);
4353 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4354 	struct f2fs_comp_option option;
4355 	int ret = 0;
4356 
4357 	if (!f2fs_sb_has_compression(sbi))
4358 		return -EOPNOTSUPP;
4359 
4360 	if (!(filp->f_mode & FMODE_WRITE))
4361 		return -EBADF;
4362 
4363 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4364 				sizeof(option)))
4365 		return -EFAULT;
4366 
4367 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4368 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4369 		option.algorithm >= COMPRESS_MAX)
4370 		return -EINVAL;
4371 
4372 	ret = mnt_want_write_file(filp);
4373 	if (ret)
4374 		return ret;
4375 	inode_lock(inode);
4376 
4377 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4378 	if (!f2fs_compressed_file(inode)) {
4379 		ret = -EINVAL;
4380 		goto out;
4381 	}
4382 
4383 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4384 		ret = -EBUSY;
4385 		goto out;
4386 	}
4387 
4388 	if (F2FS_HAS_BLOCKS(inode)) {
4389 		ret = -EFBIG;
4390 		goto out;
4391 	}
4392 
4393 	fi->i_compress_algorithm = option.algorithm;
4394 	fi->i_log_cluster_size = option.log_cluster_size;
4395 	fi->i_cluster_size = BIT(option.log_cluster_size);
4396 	/* Set default level */
4397 	if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4398 		fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4399 	else
4400 		fi->i_compress_level = 0;
4401 	/* Adjust mount option level */
4402 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4403 	    F2FS_OPTION(sbi).compress_level)
4404 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4405 	f2fs_mark_inode_dirty_sync(inode, true);
4406 
4407 	if (!f2fs_is_compress_backend_ready(inode))
4408 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4409 			"but current kernel doesn't support this algorithm.");
4410 out:
4411 	f2fs_up_write(&fi->i_sem);
4412 	inode_unlock(inode);
4413 	mnt_drop_write_file(filp);
4414 
4415 	return ret;
4416 }
4417 
4418 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4419 {
4420 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4421 	struct address_space *mapping = inode->i_mapping;
4422 	struct folio *folio;
4423 	pgoff_t redirty_idx = page_idx;
4424 	int page_len = 0, ret = 0;
4425 
4426 	page_cache_ra_unbounded(&ractl, len, 0);
4427 
4428 	do {
4429 		folio = read_cache_folio(mapping, page_idx, NULL, NULL);
4430 		if (IS_ERR(folio)) {
4431 			ret = PTR_ERR(folio);
4432 			break;
4433 		}
4434 		page_len += folio_nr_pages(folio) - (page_idx - folio->index);
4435 		page_idx = folio_next_index(folio);
4436 	} while (page_len < len);
4437 
4438 	do {
4439 		folio = filemap_lock_folio(mapping, redirty_idx);
4440 
4441 		/* It will never fail, when folio has pinned above */
4442 		f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(folio));
4443 
4444 		f2fs_folio_wait_writeback(folio, DATA, true, true);
4445 
4446 		folio_mark_dirty(folio);
4447 		folio_set_f2fs_gcing(folio);
4448 		redirty_idx = folio_next_index(folio);
4449 		folio_unlock(folio);
4450 		folio_put_refs(folio, 2);
4451 	} while (redirty_idx < page_idx);
4452 
4453 	return ret;
4454 }
4455 
4456 static int f2fs_ioc_decompress_file(struct file *filp)
4457 {
4458 	struct inode *inode = file_inode(filp);
4459 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4460 	struct f2fs_inode_info *fi = F2FS_I(inode);
4461 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4462 	int ret;
4463 
4464 	if (!f2fs_sb_has_compression(sbi) ||
4465 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4466 		return -EOPNOTSUPP;
4467 
4468 	if (!(filp->f_mode & FMODE_WRITE))
4469 		return -EBADF;
4470 
4471 	f2fs_balance_fs(sbi, true);
4472 
4473 	ret = mnt_want_write_file(filp);
4474 	if (ret)
4475 		return ret;
4476 	inode_lock(inode);
4477 
4478 	if (!f2fs_is_compress_backend_ready(inode)) {
4479 		ret = -EOPNOTSUPP;
4480 		goto out;
4481 	}
4482 
4483 	if (!f2fs_compressed_file(inode) ||
4484 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4485 		ret = -EINVAL;
4486 		goto out;
4487 	}
4488 
4489 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4490 	if (ret)
4491 		goto out;
4492 
4493 	if (!atomic_read(&fi->i_compr_blocks))
4494 		goto out;
4495 
4496 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4497 	last_idx >>= fi->i_log_cluster_size;
4498 
4499 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4500 		page_idx = cluster_idx << fi->i_log_cluster_size;
4501 
4502 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4503 			continue;
4504 
4505 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4506 		if (ret < 0)
4507 			break;
4508 
4509 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4510 			ret = filemap_fdatawrite(inode->i_mapping);
4511 			if (ret < 0)
4512 				break;
4513 		}
4514 
4515 		cond_resched();
4516 		if (fatal_signal_pending(current)) {
4517 			ret = -EINTR;
4518 			break;
4519 		}
4520 	}
4521 
4522 	if (!ret)
4523 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4524 							LLONG_MAX);
4525 
4526 	if (ret)
4527 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4528 			  __func__, ret);
4529 	f2fs_update_time(sbi, REQ_TIME);
4530 out:
4531 	inode_unlock(inode);
4532 	mnt_drop_write_file(filp);
4533 
4534 	return ret;
4535 }
4536 
4537 static int f2fs_ioc_compress_file(struct file *filp)
4538 {
4539 	struct inode *inode = file_inode(filp);
4540 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4541 	struct f2fs_inode_info *fi = F2FS_I(inode);
4542 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4543 	int ret;
4544 
4545 	if (!f2fs_sb_has_compression(sbi) ||
4546 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4547 		return -EOPNOTSUPP;
4548 
4549 	if (!(filp->f_mode & FMODE_WRITE))
4550 		return -EBADF;
4551 
4552 	f2fs_balance_fs(sbi, true);
4553 
4554 	ret = mnt_want_write_file(filp);
4555 	if (ret)
4556 		return ret;
4557 	inode_lock(inode);
4558 
4559 	if (!f2fs_is_compress_backend_ready(inode)) {
4560 		ret = -EOPNOTSUPP;
4561 		goto out;
4562 	}
4563 
4564 	if (!f2fs_compressed_file(inode) ||
4565 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4566 		ret = -EINVAL;
4567 		goto out;
4568 	}
4569 
4570 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4571 	if (ret)
4572 		goto out;
4573 
4574 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4575 
4576 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4577 	last_idx >>= fi->i_log_cluster_size;
4578 
4579 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4580 		page_idx = cluster_idx << fi->i_log_cluster_size;
4581 
4582 		if (f2fs_is_sparse_cluster(inode, page_idx))
4583 			continue;
4584 
4585 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4586 		if (ret < 0)
4587 			break;
4588 
4589 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4590 			ret = filemap_fdatawrite(inode->i_mapping);
4591 			if (ret < 0)
4592 				break;
4593 		}
4594 
4595 		cond_resched();
4596 		if (fatal_signal_pending(current)) {
4597 			ret = -EINTR;
4598 			break;
4599 		}
4600 	}
4601 
4602 	if (!ret)
4603 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4604 							LLONG_MAX);
4605 
4606 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4607 
4608 	if (ret)
4609 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4610 			  __func__, ret);
4611 	f2fs_update_time(sbi, REQ_TIME);
4612 out:
4613 	inode_unlock(inode);
4614 	mnt_drop_write_file(filp);
4615 
4616 	return ret;
4617 }
4618 
4619 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4620 {
4621 	switch (cmd) {
4622 	case FS_IOC_GETVERSION:
4623 		return f2fs_ioc_getversion(filp, arg);
4624 	case F2FS_IOC_START_ATOMIC_WRITE:
4625 		return f2fs_ioc_start_atomic_write(filp, false);
4626 	case F2FS_IOC_START_ATOMIC_REPLACE:
4627 		return f2fs_ioc_start_atomic_write(filp, true);
4628 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4629 		return f2fs_ioc_commit_atomic_write(filp);
4630 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4631 		return f2fs_ioc_abort_atomic_write(filp);
4632 	case F2FS_IOC_START_VOLATILE_WRITE:
4633 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4634 		return -EOPNOTSUPP;
4635 	case F2FS_IOC_SHUTDOWN:
4636 		return f2fs_ioc_shutdown(filp, arg);
4637 	case FITRIM:
4638 		return f2fs_ioc_fitrim(filp, arg);
4639 	case FS_IOC_SET_ENCRYPTION_POLICY:
4640 		return f2fs_ioc_set_encryption_policy(filp, arg);
4641 	case FS_IOC_GET_ENCRYPTION_POLICY:
4642 		return f2fs_ioc_get_encryption_policy(filp, arg);
4643 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4644 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4645 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4646 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4647 	case FS_IOC_ADD_ENCRYPTION_KEY:
4648 		return f2fs_ioc_add_encryption_key(filp, arg);
4649 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4650 		return f2fs_ioc_remove_encryption_key(filp, arg);
4651 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4652 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4653 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4654 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4655 	case FS_IOC_GET_ENCRYPTION_NONCE:
4656 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4657 	case F2FS_IOC_GARBAGE_COLLECT:
4658 		return f2fs_ioc_gc(filp, arg);
4659 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4660 		return f2fs_ioc_gc_range(filp, arg);
4661 	case F2FS_IOC_WRITE_CHECKPOINT:
4662 		return f2fs_ioc_write_checkpoint(filp);
4663 	case F2FS_IOC_DEFRAGMENT:
4664 		return f2fs_ioc_defragment(filp, arg);
4665 	case F2FS_IOC_MOVE_RANGE:
4666 		return f2fs_ioc_move_range(filp, arg);
4667 	case F2FS_IOC_FLUSH_DEVICE:
4668 		return f2fs_ioc_flush_device(filp, arg);
4669 	case F2FS_IOC_GET_FEATURES:
4670 		return f2fs_ioc_get_features(filp, arg);
4671 	case F2FS_IOC_GET_PIN_FILE:
4672 		return f2fs_ioc_get_pin_file(filp, arg);
4673 	case F2FS_IOC_SET_PIN_FILE:
4674 		return f2fs_ioc_set_pin_file(filp, arg);
4675 	case F2FS_IOC_PRECACHE_EXTENTS:
4676 		return f2fs_ioc_precache_extents(filp);
4677 	case F2FS_IOC_RESIZE_FS:
4678 		return f2fs_ioc_resize_fs(filp, arg);
4679 	case FS_IOC_ENABLE_VERITY:
4680 		return f2fs_ioc_enable_verity(filp, arg);
4681 	case FS_IOC_MEASURE_VERITY:
4682 		return f2fs_ioc_measure_verity(filp, arg);
4683 	case FS_IOC_READ_VERITY_METADATA:
4684 		return f2fs_ioc_read_verity_metadata(filp, arg);
4685 	case FS_IOC_GETFSLABEL:
4686 		return f2fs_ioc_getfslabel(filp, arg);
4687 	case FS_IOC_SETFSLABEL:
4688 		return f2fs_ioc_setfslabel(filp, arg);
4689 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4690 		return f2fs_ioc_get_compress_blocks(filp, arg);
4691 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4692 		return f2fs_release_compress_blocks(filp, arg);
4693 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4694 		return f2fs_reserve_compress_blocks(filp, arg);
4695 	case F2FS_IOC_SEC_TRIM_FILE:
4696 		return f2fs_sec_trim_file(filp, arg);
4697 	case F2FS_IOC_GET_COMPRESS_OPTION:
4698 		return f2fs_ioc_get_compress_option(filp, arg);
4699 	case F2FS_IOC_SET_COMPRESS_OPTION:
4700 		return f2fs_ioc_set_compress_option(filp, arg);
4701 	case F2FS_IOC_DECOMPRESS_FILE:
4702 		return f2fs_ioc_decompress_file(filp);
4703 	case F2FS_IOC_COMPRESS_FILE:
4704 		return f2fs_ioc_compress_file(filp);
4705 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
4706 		return f2fs_ioc_get_dev_alias_file(filp, arg);
4707 	case F2FS_IOC_IO_PRIO:
4708 		return f2fs_ioc_io_prio(filp, arg);
4709 	default:
4710 		return -ENOTTY;
4711 	}
4712 }
4713 
4714 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4715 {
4716 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4717 		return -EIO;
4718 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4719 		return -ENOSPC;
4720 
4721 	return __f2fs_ioctl(filp, cmd, arg);
4722 }
4723 
4724 /*
4725  * Return %true if the given read or write request should use direct I/O, or
4726  * %false if it should use buffered I/O.
4727  */
4728 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4729 				struct iov_iter *iter)
4730 {
4731 	unsigned int align;
4732 
4733 	if (!(iocb->ki_flags & IOCB_DIRECT))
4734 		return false;
4735 
4736 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4737 		return false;
4738 
4739 	/*
4740 	 * Direct I/O not aligned to the disk's logical_block_size will be
4741 	 * attempted, but will fail with -EINVAL.
4742 	 *
4743 	 * f2fs additionally requires that direct I/O be aligned to the
4744 	 * filesystem block size, which is often a stricter requirement.
4745 	 * However, f2fs traditionally falls back to buffered I/O on requests
4746 	 * that are logical_block_size-aligned but not fs-block aligned.
4747 	 *
4748 	 * The below logic implements this behavior.
4749 	 */
4750 	align = iocb->ki_pos | iov_iter_alignment(iter);
4751 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4752 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4753 		return false;
4754 
4755 	return true;
4756 }
4757 
4758 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4759 				unsigned int flags)
4760 {
4761 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4762 
4763 	dec_page_count(sbi, F2FS_DIO_READ);
4764 	if (error)
4765 		return error;
4766 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4767 	return 0;
4768 }
4769 
4770 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4771 	.end_io = f2fs_dio_read_end_io,
4772 };
4773 
4774 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4775 {
4776 	struct file *file = iocb->ki_filp;
4777 	struct inode *inode = file_inode(file);
4778 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4779 	struct f2fs_inode_info *fi = F2FS_I(inode);
4780 	const loff_t pos = iocb->ki_pos;
4781 	const size_t count = iov_iter_count(to);
4782 	struct iomap_dio *dio;
4783 	ssize_t ret;
4784 
4785 	if (count == 0)
4786 		return 0; /* skip atime update */
4787 
4788 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4789 
4790 	if (iocb->ki_flags & IOCB_NOWAIT) {
4791 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4792 			ret = -EAGAIN;
4793 			goto out;
4794 		}
4795 	} else {
4796 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4797 	}
4798 
4799 	/* dio is not compatible w/ atomic file */
4800 	if (f2fs_is_atomic_file(inode)) {
4801 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4802 		ret = -EOPNOTSUPP;
4803 		goto out;
4804 	}
4805 
4806 	/*
4807 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4808 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4809 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4810 	 */
4811 	inc_page_count(sbi, F2FS_DIO_READ);
4812 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4813 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4814 	if (IS_ERR_OR_NULL(dio)) {
4815 		ret = PTR_ERR_OR_ZERO(dio);
4816 		if (ret != -EIOCBQUEUED)
4817 			dec_page_count(sbi, F2FS_DIO_READ);
4818 	} else {
4819 		ret = iomap_dio_complete(dio);
4820 	}
4821 
4822 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4823 
4824 	file_accessed(file);
4825 out:
4826 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4827 	return ret;
4828 }
4829 
4830 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4831 				    int rw)
4832 {
4833 	struct inode *inode = file_inode(file);
4834 	char *buf, *path;
4835 
4836 	buf = f2fs_getname(F2FS_I_SB(inode));
4837 	if (!buf)
4838 		return;
4839 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4840 	if (IS_ERR(path))
4841 		goto free_buf;
4842 	if (rw == WRITE)
4843 		trace_f2fs_datawrite_start(inode, pos, count,
4844 				current->pid, path, current->comm);
4845 	else
4846 		trace_f2fs_dataread_start(inode, pos, count,
4847 				current->pid, path, current->comm);
4848 free_buf:
4849 	f2fs_putname(buf);
4850 }
4851 
4852 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4853 {
4854 	struct inode *inode = file_inode(iocb->ki_filp);
4855 	const loff_t pos = iocb->ki_pos;
4856 	ssize_t ret;
4857 	bool dio;
4858 
4859 	if (!f2fs_is_compress_backend_ready(inode))
4860 		return -EOPNOTSUPP;
4861 
4862 	if (trace_f2fs_dataread_start_enabled())
4863 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4864 					iov_iter_count(to), READ);
4865 
4866 	dio = f2fs_should_use_dio(inode, iocb, to);
4867 
4868 	/* In LFS mode, if there is inflight dio, wait for its completion */
4869 	if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4870 	    get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE) &&
4871 		(!f2fs_is_pinned_file(inode) || !dio))
4872 		inode_dio_wait(inode);
4873 
4874 	if (dio) {
4875 		ret = f2fs_dio_read_iter(iocb, to);
4876 	} else {
4877 		ret = filemap_read(iocb, to, 0);
4878 		if (ret > 0)
4879 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4880 						APP_BUFFERED_READ_IO, ret);
4881 	}
4882 	trace_f2fs_dataread_end(inode, pos, ret);
4883 	return ret;
4884 }
4885 
4886 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4887 				     struct pipe_inode_info *pipe,
4888 				     size_t len, unsigned int flags)
4889 {
4890 	struct inode *inode = file_inode(in);
4891 	const loff_t pos = *ppos;
4892 	ssize_t ret;
4893 
4894 	if (!f2fs_is_compress_backend_ready(inode))
4895 		return -EOPNOTSUPP;
4896 
4897 	if (trace_f2fs_dataread_start_enabled())
4898 		f2fs_trace_rw_file_path(in, pos, len, READ);
4899 
4900 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4901 	if (ret > 0)
4902 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4903 				   APP_BUFFERED_READ_IO, ret);
4904 
4905 	trace_f2fs_dataread_end(inode, pos, ret);
4906 	return ret;
4907 }
4908 
4909 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4910 {
4911 	struct file *file = iocb->ki_filp;
4912 	struct inode *inode = file_inode(file);
4913 	ssize_t count;
4914 	int err;
4915 
4916 	if (IS_IMMUTABLE(inode))
4917 		return -EPERM;
4918 
4919 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4920 		return -EPERM;
4921 
4922 	count = generic_write_checks(iocb, from);
4923 	if (count <= 0)
4924 		return count;
4925 
4926 	err = file_modified(file);
4927 	if (err)
4928 		return err;
4929 
4930 	f2fs_zero_post_eof_page(inode,
4931 		iocb->ki_pos + iov_iter_count(from), true);
4932 	return count;
4933 }
4934 
4935 /*
4936  * Preallocate blocks for a write request, if it is possible and helpful to do
4937  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4938  * blocks were preallocated, or a negative errno value if something went
4939  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4940  * requested blocks (not just some of them) have been allocated.
4941  */
4942 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4943 				   bool dio)
4944 {
4945 	struct inode *inode = file_inode(iocb->ki_filp);
4946 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4947 	const loff_t pos = iocb->ki_pos;
4948 	const size_t count = iov_iter_count(iter);
4949 	struct f2fs_map_blocks map = {};
4950 	int flag;
4951 	int ret;
4952 
4953 	/* If it will be an out-of-place direct write, don't bother. */
4954 	if (dio && f2fs_lfs_mode(sbi))
4955 		return 0;
4956 	/*
4957 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4958 	 * buffered IO, if DIO meets any holes.
4959 	 */
4960 	if (dio && i_size_read(inode) &&
4961 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4962 		return 0;
4963 
4964 	/* No-wait I/O can't allocate blocks. */
4965 	if (iocb->ki_flags & IOCB_NOWAIT)
4966 		return 0;
4967 
4968 	/* If it will be a short write, don't bother. */
4969 	if (fault_in_iov_iter_readable(iter, count))
4970 		return 0;
4971 
4972 	if (f2fs_has_inline_data(inode)) {
4973 		/* If the data will fit inline, don't bother. */
4974 		if (pos + count <= MAX_INLINE_DATA(inode))
4975 			return 0;
4976 		ret = f2fs_convert_inline_inode(inode);
4977 		if (ret)
4978 			return ret;
4979 	}
4980 
4981 	/* Do not preallocate blocks that will be written partially in 4KB. */
4982 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4983 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4984 	if (map.m_len > map.m_lblk)
4985 		map.m_len -= map.m_lblk;
4986 	else
4987 		return 0;
4988 
4989 	if (!IS_DEVICE_ALIASING(inode))
4990 		map.m_may_create = true;
4991 	if (dio) {
4992 		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4993 						inode->i_write_hint);
4994 		flag = F2FS_GET_BLOCK_PRE_DIO;
4995 	} else {
4996 		map.m_seg_type = NO_CHECK_TYPE;
4997 		flag = F2FS_GET_BLOCK_PRE_AIO;
4998 	}
4999 
5000 	ret = f2fs_map_blocks(inode, &map, flag);
5001 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
5002 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
5003 		return ret;
5004 	if (ret == 0)
5005 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
5006 	return map.m_len;
5007 }
5008 
5009 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
5010 					struct iov_iter *from)
5011 {
5012 	struct file *file = iocb->ki_filp;
5013 	struct inode *inode = file_inode(file);
5014 	ssize_t ret;
5015 
5016 	if (iocb->ki_flags & IOCB_NOWAIT)
5017 		return -EOPNOTSUPP;
5018 
5019 	ret = generic_perform_write(iocb, from);
5020 
5021 	if (ret > 0) {
5022 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
5023 						APP_BUFFERED_IO, ret);
5024 	}
5025 	return ret;
5026 }
5027 
5028 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
5029 				 unsigned int flags)
5030 {
5031 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
5032 
5033 	dec_page_count(sbi, F2FS_DIO_WRITE);
5034 	if (error)
5035 		return error;
5036 	f2fs_update_time(sbi, REQ_TIME);
5037 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
5038 	return 0;
5039 }
5040 
5041 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
5042 					struct bio *bio, loff_t file_offset)
5043 {
5044 	struct inode *inode = iter->inode;
5045 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5046 	enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
5047 	enum temp_type temp = f2fs_get_segment_temp(sbi, type);
5048 
5049 	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
5050 	submit_bio(bio);
5051 }
5052 
5053 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
5054 	.end_io		= f2fs_dio_write_end_io,
5055 	.submit_io	= f2fs_dio_write_submit_io,
5056 };
5057 
5058 static void f2fs_flush_buffered_write(struct address_space *mapping,
5059 				      loff_t start_pos, loff_t end_pos)
5060 {
5061 	int ret;
5062 
5063 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
5064 	if (ret < 0)
5065 		return;
5066 	invalidate_mapping_pages(mapping,
5067 				 start_pos >> PAGE_SHIFT,
5068 				 end_pos >> PAGE_SHIFT);
5069 }
5070 
5071 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
5072 				   bool *may_need_sync)
5073 {
5074 	struct file *file = iocb->ki_filp;
5075 	struct inode *inode = file_inode(file);
5076 	struct f2fs_inode_info *fi = F2FS_I(inode);
5077 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5078 	const bool do_opu = f2fs_lfs_mode(sbi);
5079 	const loff_t pos = iocb->ki_pos;
5080 	const ssize_t count = iov_iter_count(from);
5081 	unsigned int dio_flags;
5082 	struct iomap_dio *dio;
5083 	ssize_t ret;
5084 
5085 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
5086 
5087 	if (iocb->ki_flags & IOCB_NOWAIT) {
5088 		/* f2fs_convert_inline_inode() and block allocation can block */
5089 		if (f2fs_has_inline_data(inode) ||
5090 		    !f2fs_overwrite_io(inode, pos, count)) {
5091 			ret = -EAGAIN;
5092 			goto out;
5093 		}
5094 
5095 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
5096 			ret = -EAGAIN;
5097 			goto out;
5098 		}
5099 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
5100 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5101 			ret = -EAGAIN;
5102 			goto out;
5103 		}
5104 	} else {
5105 		ret = f2fs_convert_inline_inode(inode);
5106 		if (ret)
5107 			goto out;
5108 
5109 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
5110 		if (do_opu)
5111 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
5112 	}
5113 
5114 	/*
5115 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
5116 	 * the higher-level function iomap_dio_rw() in order to ensure that the
5117 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
5118 	 */
5119 	inc_page_count(sbi, F2FS_DIO_WRITE);
5120 	dio_flags = 0;
5121 	if (pos + count > inode->i_size)
5122 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
5123 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
5124 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
5125 	if (IS_ERR_OR_NULL(dio)) {
5126 		ret = PTR_ERR_OR_ZERO(dio);
5127 		if (ret == -ENOTBLK)
5128 			ret = 0;
5129 		if (ret != -EIOCBQUEUED)
5130 			dec_page_count(sbi, F2FS_DIO_WRITE);
5131 	} else {
5132 		ret = iomap_dio_complete(dio);
5133 	}
5134 
5135 	if (do_opu)
5136 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
5137 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5138 
5139 	if (ret < 0)
5140 		goto out;
5141 	if (pos + ret > inode->i_size)
5142 		f2fs_i_size_write(inode, pos + ret);
5143 	if (!do_opu)
5144 		set_inode_flag(inode, FI_UPDATE_WRITE);
5145 
5146 	if (iov_iter_count(from)) {
5147 		ssize_t ret2;
5148 		loff_t bufio_start_pos = iocb->ki_pos;
5149 
5150 		/*
5151 		 * The direct write was partial, so we need to fall back to a
5152 		 * buffered write for the remainder.
5153 		 */
5154 
5155 		ret2 = f2fs_buffered_write_iter(iocb, from);
5156 		if (iov_iter_count(from))
5157 			f2fs_write_failed(inode, iocb->ki_pos);
5158 		if (ret2 < 0)
5159 			goto out;
5160 
5161 		/*
5162 		 * Ensure that the pagecache pages are written to disk and
5163 		 * invalidated to preserve the expected O_DIRECT semantics.
5164 		 */
5165 		if (ret2 > 0) {
5166 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
5167 
5168 			ret += ret2;
5169 
5170 			f2fs_flush_buffered_write(file->f_mapping,
5171 						  bufio_start_pos,
5172 						  bufio_end_pos);
5173 		}
5174 	} else {
5175 		/* iomap_dio_rw() already handled the generic_write_sync(). */
5176 		*may_need_sync = false;
5177 	}
5178 out:
5179 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
5180 	return ret;
5181 }
5182 
5183 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5184 {
5185 	struct inode *inode = file_inode(iocb->ki_filp);
5186 	const loff_t orig_pos = iocb->ki_pos;
5187 	const size_t orig_count = iov_iter_count(from);
5188 	loff_t target_size;
5189 	bool dio;
5190 	bool may_need_sync = true;
5191 	int preallocated;
5192 	const loff_t pos = iocb->ki_pos;
5193 	const ssize_t count = iov_iter_count(from);
5194 	ssize_t ret;
5195 
5196 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5197 		ret = -EIO;
5198 		goto out;
5199 	}
5200 
5201 	if (!f2fs_is_compress_backend_ready(inode)) {
5202 		ret = -EOPNOTSUPP;
5203 		goto out;
5204 	}
5205 
5206 	if (iocb->ki_flags & IOCB_NOWAIT) {
5207 		if (!inode_trylock(inode)) {
5208 			ret = -EAGAIN;
5209 			goto out;
5210 		}
5211 	} else {
5212 		inode_lock(inode);
5213 	}
5214 
5215 	if (f2fs_is_pinned_file(inode) &&
5216 	    !f2fs_overwrite_io(inode, pos, count)) {
5217 		ret = -EIO;
5218 		goto out_unlock;
5219 	}
5220 
5221 	ret = f2fs_write_checks(iocb, from);
5222 	if (ret <= 0)
5223 		goto out_unlock;
5224 
5225 	/* Determine whether we will do a direct write or a buffered write. */
5226 	dio = f2fs_should_use_dio(inode, iocb, from);
5227 
5228 	/* dio is not compatible w/ atomic write */
5229 	if (dio && f2fs_is_atomic_file(inode)) {
5230 		ret = -EOPNOTSUPP;
5231 		goto out_unlock;
5232 	}
5233 
5234 	/* Possibly preallocate the blocks for the write. */
5235 	target_size = iocb->ki_pos + iov_iter_count(from);
5236 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5237 	if (preallocated < 0) {
5238 		ret = preallocated;
5239 	} else {
5240 		if (trace_f2fs_datawrite_start_enabled())
5241 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5242 						orig_count, WRITE);
5243 
5244 		/* Do the actual write. */
5245 		ret = dio ?
5246 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5247 			f2fs_buffered_write_iter(iocb, from);
5248 
5249 		trace_f2fs_datawrite_end(inode, orig_pos, ret);
5250 	}
5251 
5252 	/* Don't leave any preallocated blocks around past i_size. */
5253 	if (preallocated && i_size_read(inode) < target_size) {
5254 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5255 		filemap_invalidate_lock(inode->i_mapping);
5256 		if (!f2fs_truncate(inode))
5257 			file_dont_truncate(inode);
5258 		filemap_invalidate_unlock(inode->i_mapping);
5259 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5260 	} else {
5261 		file_dont_truncate(inode);
5262 	}
5263 
5264 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5265 out_unlock:
5266 	inode_unlock(inode);
5267 out:
5268 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5269 
5270 	if (ret > 0 && may_need_sync)
5271 		ret = generic_write_sync(iocb, ret);
5272 
5273 	/* If buffered IO was forced, flush and drop the data from
5274 	 * the page cache to preserve O_DIRECT semantics
5275 	 */
5276 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5277 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5278 					  orig_pos,
5279 					  orig_pos + ret - 1);
5280 
5281 	return ret;
5282 }
5283 
5284 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5285 		int advice)
5286 {
5287 	struct address_space *mapping;
5288 	struct backing_dev_info *bdi;
5289 	struct inode *inode = file_inode(filp);
5290 	int err;
5291 
5292 	trace_f2fs_fadvise(inode, offset, len, advice);
5293 
5294 	if (advice == POSIX_FADV_SEQUENTIAL) {
5295 		if (S_ISFIFO(inode->i_mode))
5296 			return -ESPIPE;
5297 
5298 		mapping = filp->f_mapping;
5299 		if (!mapping || len < 0)
5300 			return -EINVAL;
5301 
5302 		bdi = inode_to_bdi(mapping->host);
5303 		filp->f_ra.ra_pages = bdi->ra_pages *
5304 			F2FS_I_SB(inode)->seq_file_ra_mul;
5305 		spin_lock(&filp->f_lock);
5306 		filp->f_mode &= ~FMODE_RANDOM;
5307 		spin_unlock(&filp->f_lock);
5308 		return 0;
5309 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5310 		/* Load extent cache at the first readahead. */
5311 		f2fs_precache_extents(inode);
5312 	}
5313 
5314 	err = generic_fadvise(filp, offset, len, advice);
5315 	if (err)
5316 		return err;
5317 
5318 	if (advice == POSIX_FADV_DONTNEED &&
5319 	    (test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5320 	     f2fs_compressed_file(inode)))
5321 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5322 	else if (advice == POSIX_FADV_NOREUSE)
5323 		err = f2fs_keep_noreuse_range(inode, offset, len);
5324 	return err;
5325 }
5326 
5327 #ifdef CONFIG_COMPAT
5328 struct compat_f2fs_gc_range {
5329 	u32 sync;
5330 	compat_u64 start;
5331 	compat_u64 len;
5332 };
5333 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5334 						struct compat_f2fs_gc_range)
5335 
5336 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5337 {
5338 	struct compat_f2fs_gc_range __user *urange;
5339 	struct f2fs_gc_range range;
5340 	int err;
5341 
5342 	urange = compat_ptr(arg);
5343 	err = get_user(range.sync, &urange->sync);
5344 	err |= get_user(range.start, &urange->start);
5345 	err |= get_user(range.len, &urange->len);
5346 	if (err)
5347 		return -EFAULT;
5348 
5349 	return __f2fs_ioc_gc_range(file, &range);
5350 }
5351 
5352 struct compat_f2fs_move_range {
5353 	u32 dst_fd;
5354 	compat_u64 pos_in;
5355 	compat_u64 pos_out;
5356 	compat_u64 len;
5357 };
5358 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5359 					struct compat_f2fs_move_range)
5360 
5361 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5362 {
5363 	struct compat_f2fs_move_range __user *urange;
5364 	struct f2fs_move_range range;
5365 	int err;
5366 
5367 	urange = compat_ptr(arg);
5368 	err = get_user(range.dst_fd, &urange->dst_fd);
5369 	err |= get_user(range.pos_in, &urange->pos_in);
5370 	err |= get_user(range.pos_out, &urange->pos_out);
5371 	err |= get_user(range.len, &urange->len);
5372 	if (err)
5373 		return -EFAULT;
5374 
5375 	return __f2fs_ioc_move_range(file, &range);
5376 }
5377 
5378 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5379 {
5380 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5381 		return -EIO;
5382 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5383 		return -ENOSPC;
5384 
5385 	switch (cmd) {
5386 	case FS_IOC32_GETVERSION:
5387 		cmd = FS_IOC_GETVERSION;
5388 		break;
5389 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5390 		return f2fs_compat_ioc_gc_range(file, arg);
5391 	case F2FS_IOC32_MOVE_RANGE:
5392 		return f2fs_compat_ioc_move_range(file, arg);
5393 	case F2FS_IOC_START_ATOMIC_WRITE:
5394 	case F2FS_IOC_START_ATOMIC_REPLACE:
5395 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5396 	case F2FS_IOC_START_VOLATILE_WRITE:
5397 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5398 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5399 	case F2FS_IOC_SHUTDOWN:
5400 	case FITRIM:
5401 	case FS_IOC_SET_ENCRYPTION_POLICY:
5402 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5403 	case FS_IOC_GET_ENCRYPTION_POLICY:
5404 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5405 	case FS_IOC_ADD_ENCRYPTION_KEY:
5406 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5407 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5408 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5409 	case FS_IOC_GET_ENCRYPTION_NONCE:
5410 	case F2FS_IOC_GARBAGE_COLLECT:
5411 	case F2FS_IOC_WRITE_CHECKPOINT:
5412 	case F2FS_IOC_DEFRAGMENT:
5413 	case F2FS_IOC_FLUSH_DEVICE:
5414 	case F2FS_IOC_GET_FEATURES:
5415 	case F2FS_IOC_GET_PIN_FILE:
5416 	case F2FS_IOC_SET_PIN_FILE:
5417 	case F2FS_IOC_PRECACHE_EXTENTS:
5418 	case F2FS_IOC_RESIZE_FS:
5419 	case FS_IOC_ENABLE_VERITY:
5420 	case FS_IOC_MEASURE_VERITY:
5421 	case FS_IOC_READ_VERITY_METADATA:
5422 	case FS_IOC_GETFSLABEL:
5423 	case FS_IOC_SETFSLABEL:
5424 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5425 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5426 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5427 	case F2FS_IOC_SEC_TRIM_FILE:
5428 	case F2FS_IOC_GET_COMPRESS_OPTION:
5429 	case F2FS_IOC_SET_COMPRESS_OPTION:
5430 	case F2FS_IOC_DECOMPRESS_FILE:
5431 	case F2FS_IOC_COMPRESS_FILE:
5432 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
5433 	case F2FS_IOC_IO_PRIO:
5434 		break;
5435 	default:
5436 		return -ENOIOCTLCMD;
5437 	}
5438 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5439 }
5440 #endif
5441 
5442 const struct file_operations f2fs_file_operations = {
5443 	.llseek		= f2fs_llseek,
5444 	.read_iter	= f2fs_file_read_iter,
5445 	.write_iter	= f2fs_file_write_iter,
5446 	.iopoll		= iocb_bio_iopoll,
5447 	.open		= f2fs_file_open,
5448 	.release	= f2fs_release_file,
5449 	.mmap_prepare	= f2fs_file_mmap_prepare,
5450 	.flush		= f2fs_file_flush,
5451 	.fsync		= f2fs_sync_file,
5452 	.fallocate	= f2fs_fallocate,
5453 	.unlocked_ioctl	= f2fs_ioctl,
5454 #ifdef CONFIG_COMPAT
5455 	.compat_ioctl	= f2fs_compat_ioctl,
5456 #endif
5457 	.splice_read	= f2fs_file_splice_read,
5458 	.splice_write	= iter_file_splice_write,
5459 	.fadvise	= f2fs_file_fadvise,
5460 	.fop_flags	= FOP_BUFFER_RASYNC,
5461 	.setlease	= generic_setlease,
5462 };
5463