1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false, 42 .one_time = false }; 43 44 wait_ms = gc_th->min_sleep_time; 45 46 set_freezable(); 47 do { 48 bool sync_mode, foreground = false, gc_boost = false; 49 50 wait_event_freezable_timeout(*wq, 51 kthread_should_stop() || 52 waitqueue_active(fggc_wq) || 53 gc_th->gc_wake, 54 msecs_to_jiffies(wait_ms)); 55 56 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) { 57 foreground = true; 58 gc_control.one_time = false; 59 } else if (f2fs_sb_has_blkzoned(sbi)) { 60 gc_control.one_time = true; 61 } 62 63 /* give it a try one time */ 64 if (gc_th->gc_wake) 65 gc_th->gc_wake = false; 66 67 if (f2fs_readonly(sbi->sb)) { 68 stat_other_skip_bggc_count(sbi); 69 continue; 70 } 71 if (kthread_should_stop()) 72 break; 73 74 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 75 increase_sleep_time(gc_th, &wait_ms); 76 stat_other_skip_bggc_count(sbi); 77 continue; 78 } 79 80 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 81 f2fs_stop_checkpoint(sbi, false, 82 STOP_CP_REASON_FAULT_INJECT); 83 84 if (!sb_start_write_trylock(sbi->sb)) { 85 stat_other_skip_bggc_count(sbi); 86 continue; 87 } 88 89 /* 90 * [GC triggering condition] 91 * 0. GC is not conducted currently. 92 * 1. There are enough dirty segments. 93 * 2. IO subsystem is idle by checking the # of writeback pages. 94 * 3. IO subsystem is idle by checking the # of requests in 95 * bdev's request list. 96 * 97 * Note) We have to avoid triggering GCs frequently. 98 * Because it is possible that some segments can be 99 * invalidated soon after by user update or deletion. 100 * So, I'd like to wait some time to collect dirty segments. 101 */ 102 if (sbi->gc_mode == GC_URGENT_HIGH || 103 sbi->gc_mode == GC_URGENT_MID) { 104 wait_ms = gc_th->urgent_sleep_time; 105 f2fs_down_write_trace(&sbi->gc_lock, &gc_control.lc); 106 goto do_gc; 107 } 108 109 if (foreground) { 110 f2fs_down_write_trace(&sbi->gc_lock, &gc_control.lc); 111 goto do_gc; 112 } else if (!f2fs_down_write_trylock_trace(&sbi->gc_lock, 113 &gc_control.lc)) { 114 stat_other_skip_bggc_count(sbi); 115 goto next; 116 } 117 118 if (!is_idle(sbi, GC_TIME)) { 119 increase_sleep_time(gc_th, &wait_ms); 120 f2fs_up_write_trace(&sbi->gc_lock, &gc_control.lc); 121 stat_io_skip_bggc_count(sbi); 122 goto next; 123 } 124 125 if (f2fs_sb_has_blkzoned(sbi)) { 126 if (has_enough_free_blocks(sbi, 127 gc_th->no_zoned_gc_percent)) { 128 wait_ms = gc_th->no_gc_sleep_time; 129 f2fs_up_write_trace(&sbi->gc_lock, 130 &gc_control.lc); 131 goto next; 132 } 133 if (wait_ms == gc_th->no_gc_sleep_time) 134 wait_ms = gc_th->max_sleep_time; 135 } 136 137 if (need_to_boost_gc(sbi)) { 138 decrease_sleep_time(gc_th, &wait_ms); 139 if (f2fs_sb_has_blkzoned(sbi)) 140 gc_boost = true; 141 } else { 142 increase_sleep_time(gc_th, &wait_ms); 143 } 144 do_gc: 145 stat_inc_gc_call_count(sbi, foreground ? 146 FOREGROUND : BACKGROUND); 147 148 sync_mode = (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) || 149 (gc_boost && gc_th->boost_gc_greedy); 150 151 /* foreground GC was been triggered via f2fs_balance_fs() */ 152 if (foreground && !f2fs_sb_has_blkzoned(sbi)) 153 sync_mode = false; 154 155 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 156 gc_control.no_bg_gc = foreground; 157 gc_control.nr_free_secs = foreground ? 1 : 0; 158 159 /* if return value is not zero, no victim was selected */ 160 if (f2fs_gc(sbi, &gc_control)) { 161 /* don't bother wait_ms by foreground gc */ 162 if (!foreground) 163 wait_ms = gc_th->no_gc_sleep_time; 164 } else { 165 /* reset wait_ms to default sleep time */ 166 if (wait_ms == gc_th->no_gc_sleep_time) 167 wait_ms = gc_th->min_sleep_time; 168 } 169 170 if (foreground) 171 wake_up_all(&gc_th->fggc_wq); 172 173 trace_f2fs_background_gc(sbi->sb, wait_ms, 174 prefree_segments(sbi), free_segments(sbi)); 175 176 /* balancing f2fs's metadata periodically */ 177 f2fs_balance_fs_bg(sbi, true); 178 next: 179 if (sbi->gc_mode != GC_NORMAL) { 180 spin_lock(&sbi->gc_remaining_trials_lock); 181 if (sbi->gc_remaining_trials) { 182 sbi->gc_remaining_trials--; 183 if (!sbi->gc_remaining_trials) 184 sbi->gc_mode = GC_NORMAL; 185 } 186 spin_unlock(&sbi->gc_remaining_trials_lock); 187 } 188 sb_end_write(sbi->sb); 189 190 } while (!kthread_should_stop()); 191 return 0; 192 } 193 194 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 195 { 196 struct f2fs_gc_kthread *gc_th; 197 dev_t dev = sbi->sb->s_bdev->bd_dev; 198 199 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 200 if (!gc_th) 201 return -ENOMEM; 202 203 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 204 gc_th->valid_thresh_ratio = DEF_GC_THREAD_VALID_THRESH_RATIO; 205 gc_th->boost_gc_multiple = BOOST_GC_MULTIPLE; 206 gc_th->boost_gc_greedy = GC_GREEDY; 207 208 if (f2fs_sb_has_blkzoned(sbi)) { 209 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME_ZONED; 210 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME_ZONED; 211 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME_ZONED; 212 gc_th->no_zoned_gc_percent = LIMIT_NO_ZONED_GC; 213 gc_th->boost_zoned_gc_percent = LIMIT_BOOST_ZONED_GC; 214 } else { 215 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 216 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 217 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 218 gc_th->no_zoned_gc_percent = 0; 219 gc_th->boost_zoned_gc_percent = 0; 220 } 221 222 gc_th->gc_wake = false; 223 224 sbi->gc_thread = gc_th; 225 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 226 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 227 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 228 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 229 if (IS_ERR(gc_th->f2fs_gc_task)) { 230 int err = PTR_ERR(gc_th->f2fs_gc_task); 231 232 kfree(gc_th); 233 sbi->gc_thread = NULL; 234 return err; 235 } 236 237 set_user_nice(gc_th->f2fs_gc_task, 238 PRIO_TO_NICE(sbi->critical_task_priority)); 239 return 0; 240 } 241 242 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 243 { 244 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 245 246 if (!gc_th) 247 return; 248 kthread_stop(gc_th->f2fs_gc_task); 249 wake_up_all(&gc_th->fggc_wq); 250 kfree(gc_th); 251 sbi->gc_thread = NULL; 252 } 253 254 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 255 { 256 int gc_mode; 257 258 if (gc_type == BG_GC) { 259 if (sbi->am.atgc_enabled) 260 gc_mode = GC_AT; 261 else 262 gc_mode = GC_CB; 263 } else { 264 gc_mode = GC_GREEDY; 265 } 266 267 switch (sbi->gc_mode) { 268 case GC_IDLE_CB: 269 case GC_URGENT_LOW: 270 case GC_URGENT_MID: 271 gc_mode = GC_CB; 272 break; 273 case GC_IDLE_GREEDY: 274 case GC_URGENT_HIGH: 275 gc_mode = GC_GREEDY; 276 break; 277 case GC_IDLE_AT: 278 gc_mode = GC_AT; 279 break; 280 } 281 282 return gc_mode; 283 } 284 285 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 286 int type, struct victim_sel_policy *p) 287 { 288 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 289 290 if (p->alloc_mode == SSR || p->alloc_mode == AT_SSR) { 291 p->gc_mode = GC_GREEDY; 292 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 293 p->max_search = dirty_i->nr_dirty[type]; 294 p->ofs_unit = 1; 295 } else { 296 p->gc_mode = select_gc_type(sbi, gc_type); 297 p->ofs_unit = SEGS_PER_SEC(sbi); 298 if (__is_large_section(sbi)) { 299 p->dirty_bitmap = dirty_i->dirty_secmap; 300 p->max_search = count_bits(p->dirty_bitmap, 301 0, MAIN_SECS(sbi)); 302 } else { 303 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 304 p->max_search = dirty_i->nr_dirty[DIRTY]; 305 } 306 } 307 308 /* 309 * adjust candidates range, should select all dirty segments for 310 * foreground GC and urgent GC cases. 311 */ 312 if (gc_type != FG_GC && 313 (sbi->gc_mode != GC_URGENT_HIGH) && 314 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 315 p->max_search > sbi->max_victim_search) 316 p->max_search = sbi->max_victim_search; 317 318 /* let's select beginning hot/small space first. */ 319 if (f2fs_need_rand_seg(sbi)) 320 p->offset = get_random_u32_below(MAIN_SECS(sbi) * 321 SEGS_PER_SEC(sbi)); 322 else if (type == CURSEG_HOT_DATA || IS_NODESEG(type)) 323 p->offset = 0; 324 else 325 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 326 } 327 328 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 329 struct victim_sel_policy *p) 330 { 331 /* SSR allocates in a segment unit */ 332 if (p->alloc_mode == SSR) 333 return BLKS_PER_SEG(sbi); 334 else if (p->alloc_mode == AT_SSR) 335 return UINT_MAX; 336 337 /* LFS */ 338 if (p->gc_mode == GC_GREEDY) 339 return SEGS_TO_BLKS(sbi, 2 * p->ofs_unit); 340 else if (p->gc_mode == GC_CB) 341 return UINT_MAX; 342 else if (p->gc_mode == GC_AT) 343 return UINT_MAX; 344 else /* No other gc_mode */ 345 return 0; 346 } 347 348 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 349 { 350 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 351 unsigned int secno; 352 353 /* 354 * If the gc_type is FG_GC, we can select victim segments 355 * selected by background GC before. 356 * Those segments guarantee they have small valid blocks. 357 */ 358 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 359 if (sec_usage_check(sbi, secno)) 360 continue; 361 clear_bit(secno, dirty_i->victim_secmap); 362 return GET_SEG_FROM_SEC(sbi, secno); 363 } 364 return NULL_SEGNO; 365 } 366 367 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 368 { 369 struct sit_info *sit_i = SIT_I(sbi); 370 unsigned long long mtime = 0; 371 unsigned int vblocks; 372 unsigned char age = 0; 373 unsigned char u; 374 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi); 375 376 mtime = f2fs_get_section_mtime(sbi, segno); 377 f2fs_bug_on(sbi, mtime == INVALID_MTIME); 378 vblocks = get_valid_blocks(sbi, segno, true); 379 vblocks = div_u64(vblocks, usable_segs_per_sec); 380 381 u = BLKS_TO_SEGS(sbi, vblocks * 100); 382 383 /* Handle if the system time has changed by the user */ 384 if (mtime < sit_i->min_mtime) 385 sit_i->min_mtime = mtime; 386 if (mtime > sit_i->max_mtime) 387 sit_i->max_mtime = mtime; 388 if (sit_i->max_mtime != sit_i->min_mtime) 389 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 390 sit_i->max_mtime - sit_i->min_mtime); 391 392 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 393 } 394 395 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 396 unsigned int segno, struct victim_sel_policy *p, 397 unsigned int valid_thresh_ratio) 398 { 399 if (p->alloc_mode == SSR) 400 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 401 402 if (p->one_time_gc && (valid_thresh_ratio < 100) && 403 (get_valid_blocks(sbi, segno, true) >= 404 CAP_BLKS_PER_SEC(sbi) * valid_thresh_ratio / 100)) 405 return UINT_MAX; 406 407 /* alloc_mode == LFS */ 408 if (p->gc_mode == GC_GREEDY) 409 return get_valid_blocks(sbi, segno, true); 410 else if (p->gc_mode == GC_CB) 411 return get_cb_cost(sbi, segno); 412 413 f2fs_bug_on(sbi, 1); 414 return 0; 415 } 416 417 static unsigned int count_bits(const unsigned long *addr, 418 unsigned int offset, unsigned int len) 419 { 420 unsigned int end = offset + len, sum = 0; 421 422 while (offset < end) { 423 if (test_bit(offset++, addr)) 424 ++sum; 425 } 426 return sum; 427 } 428 429 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi, 430 struct rb_root_cached *root) 431 { 432 #ifdef CONFIG_F2FS_CHECK_FS 433 struct rb_node *cur = rb_first_cached(root), *next; 434 struct victim_entry *cur_ve, *next_ve; 435 436 while (cur) { 437 next = rb_next(cur); 438 if (!next) 439 return true; 440 441 cur_ve = rb_entry(cur, struct victim_entry, rb_node); 442 next_ve = rb_entry(next, struct victim_entry, rb_node); 443 444 if (cur_ve->mtime > next_ve->mtime) { 445 f2fs_info(sbi, "broken victim_rbtree, " 446 "cur_mtime(%llu) next_mtime(%llu)", 447 cur_ve->mtime, next_ve->mtime); 448 return false; 449 } 450 cur = next; 451 } 452 #endif 453 return true; 454 } 455 456 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi, 457 unsigned long long mtime) 458 { 459 struct atgc_management *am = &sbi->am; 460 struct rb_node *node = am->root.rb_root.rb_node; 461 struct victim_entry *ve = NULL; 462 463 while (node) { 464 ve = rb_entry(node, struct victim_entry, rb_node); 465 466 if (mtime < ve->mtime) 467 node = node->rb_left; 468 else 469 node = node->rb_right; 470 } 471 return ve; 472 } 473 474 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi, 475 unsigned long long mtime, unsigned int segno) 476 { 477 struct atgc_management *am = &sbi->am; 478 struct victim_entry *ve; 479 480 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL); 481 482 ve->mtime = mtime; 483 ve->segno = segno; 484 485 list_add_tail(&ve->list, &am->victim_list); 486 am->victim_count++; 487 488 return ve; 489 } 490 491 static void __insert_victim_entry(struct f2fs_sb_info *sbi, 492 unsigned long long mtime, unsigned int segno) 493 { 494 struct atgc_management *am = &sbi->am; 495 struct rb_root_cached *root = &am->root; 496 struct rb_node **p = &root->rb_root.rb_node; 497 struct rb_node *parent = NULL; 498 struct victim_entry *ve; 499 bool left_most = true; 500 501 /* look up rb tree to find parent node */ 502 while (*p) { 503 parent = *p; 504 ve = rb_entry(parent, struct victim_entry, rb_node); 505 506 if (mtime < ve->mtime) { 507 p = &(*p)->rb_left; 508 } else { 509 p = &(*p)->rb_right; 510 left_most = false; 511 } 512 } 513 514 ve = __create_victim_entry(sbi, mtime, segno); 515 516 rb_link_node(&ve->rb_node, parent, p); 517 rb_insert_color_cached(&ve->rb_node, root, left_most); 518 } 519 520 static void add_victim_entry(struct f2fs_sb_info *sbi, 521 struct victim_sel_policy *p, unsigned int segno) 522 { 523 struct sit_info *sit_i = SIT_I(sbi); 524 unsigned long long mtime = 0; 525 526 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 527 if (p->gc_mode == GC_AT && 528 get_valid_blocks(sbi, segno, true) == 0) 529 return; 530 } 531 532 mtime = f2fs_get_section_mtime(sbi, segno); 533 f2fs_bug_on(sbi, mtime == INVALID_MTIME); 534 535 /* Handle if the system time has changed by the user */ 536 if (mtime < sit_i->min_mtime) 537 sit_i->min_mtime = mtime; 538 if (mtime > sit_i->max_mtime) 539 sit_i->max_mtime = mtime; 540 if (mtime < sit_i->dirty_min_mtime) 541 sit_i->dirty_min_mtime = mtime; 542 if (mtime > sit_i->dirty_max_mtime) 543 sit_i->dirty_max_mtime = mtime; 544 545 /* don't choose young section as candidate */ 546 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 547 return; 548 549 __insert_victim_entry(sbi, mtime, segno); 550 } 551 552 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 553 struct victim_sel_policy *p) 554 { 555 struct sit_info *sit_i = SIT_I(sbi); 556 struct atgc_management *am = &sbi->am; 557 struct rb_root_cached *root = &am->root; 558 struct rb_node *node; 559 struct victim_entry *ve; 560 unsigned long long total_time; 561 unsigned long long age, u, accu; 562 unsigned long long max_mtime = sit_i->dirty_max_mtime; 563 unsigned long long min_mtime = sit_i->dirty_min_mtime; 564 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 565 unsigned int vblocks; 566 unsigned int dirty_threshold = max(am->max_candidate_count, 567 am->candidate_ratio * 568 am->victim_count / 100); 569 unsigned int age_weight = am->age_weight; 570 unsigned int cost; 571 unsigned int iter = 0; 572 573 if (max_mtime < min_mtime) 574 return; 575 576 max_mtime += 1; 577 total_time = max_mtime - min_mtime; 578 579 accu = div64_u64(ULLONG_MAX, total_time); 580 accu = min_t(unsigned long long, div_u64(accu, 100), 581 DEFAULT_ACCURACY_CLASS); 582 583 node = rb_first_cached(root); 584 next: 585 ve = rb_entry_safe(node, struct victim_entry, rb_node); 586 if (!ve) 587 return; 588 589 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 590 goto skip; 591 592 /* age = 10000 * x% * 60 */ 593 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 594 age_weight; 595 596 vblocks = get_valid_blocks(sbi, ve->segno, true); 597 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 598 599 /* u = 10000 * x% * 40 */ 600 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 601 (100 - age_weight); 602 603 f2fs_bug_on(sbi, age + u >= UINT_MAX); 604 605 cost = UINT_MAX - (age + u); 606 iter++; 607 608 if (cost < p->min_cost || 609 (cost == p->min_cost && age > p->oldest_age)) { 610 p->min_cost = cost; 611 p->oldest_age = age; 612 p->min_segno = ve->segno; 613 } 614 skip: 615 if (iter < dirty_threshold) { 616 node = rb_next(node); 617 goto next; 618 } 619 } 620 621 /* 622 * select candidates around source section in range of 623 * [target - dirty_threshold, target + dirty_threshold] 624 */ 625 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 626 struct victim_sel_policy *p) 627 { 628 struct sit_info *sit_i = SIT_I(sbi); 629 struct atgc_management *am = &sbi->am; 630 struct victim_entry *ve; 631 unsigned long long age; 632 unsigned long long max_mtime = sit_i->dirty_max_mtime; 633 unsigned long long min_mtime = sit_i->dirty_min_mtime; 634 unsigned int vblocks; 635 unsigned int dirty_threshold = max(am->max_candidate_count, 636 am->candidate_ratio * 637 am->victim_count / 100); 638 unsigned int cost, iter; 639 int stage = 0; 640 641 if (max_mtime < min_mtime) 642 return; 643 max_mtime += 1; 644 next_stage: 645 iter = 0; 646 ve = __lookup_victim_entry(sbi, p->age); 647 next_node: 648 if (!ve) { 649 if (stage++ == 0) 650 goto next_stage; 651 return; 652 } 653 654 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 655 goto skip_node; 656 657 age = max_mtime - ve->mtime; 658 659 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 660 f2fs_bug_on(sbi, !vblocks); 661 662 /* rare case */ 663 if (vblocks == BLKS_PER_SEG(sbi)) 664 goto skip_node; 665 666 iter++; 667 668 age = max_mtime - abs(p->age - age); 669 cost = UINT_MAX - vblocks; 670 671 if (cost < p->min_cost || 672 (cost == p->min_cost && age > p->oldest_age)) { 673 p->min_cost = cost; 674 p->oldest_age = age; 675 p->min_segno = ve->segno; 676 } 677 skip_node: 678 if (iter < dirty_threshold) { 679 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) : 680 rb_next(&ve->rb_node), 681 struct victim_entry, rb_node); 682 goto next_node; 683 } 684 685 if (stage++ == 0) 686 goto next_stage; 687 } 688 689 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 690 struct victim_sel_policy *p) 691 { 692 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root)); 693 694 if (p->gc_mode == GC_AT) 695 atgc_lookup_victim(sbi, p); 696 else if (p->alloc_mode == AT_SSR) 697 atssr_lookup_victim(sbi, p); 698 else 699 f2fs_bug_on(sbi, 1); 700 } 701 702 static void release_victim_entry(struct f2fs_sb_info *sbi) 703 { 704 struct atgc_management *am = &sbi->am; 705 struct victim_entry *ve, *tmp; 706 707 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 708 list_del(&ve->list); 709 kmem_cache_free(victim_entry_slab, ve); 710 am->victim_count--; 711 } 712 713 am->root = RB_ROOT_CACHED; 714 715 f2fs_bug_on(sbi, am->victim_count); 716 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 717 } 718 719 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 720 { 721 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 722 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 723 724 if (!dirty_i->enable_pin_section) 725 return false; 726 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 727 dirty_i->pinned_secmap_cnt++; 728 return true; 729 } 730 731 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 732 { 733 return dirty_i->pinned_secmap_cnt; 734 } 735 736 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 737 unsigned int secno) 738 { 739 return dirty_i->enable_pin_section && 740 f2fs_pinned_section_exists(dirty_i) && 741 test_bit(secno, dirty_i->pinned_secmap); 742 } 743 744 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 745 { 746 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 747 748 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 749 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 750 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 751 } 752 DIRTY_I(sbi)->enable_pin_section = enable; 753 } 754 755 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 756 unsigned int segno) 757 { 758 if (!f2fs_is_pinned_file(inode)) 759 return 0; 760 if (gc_type != FG_GC) 761 return -EBUSY; 762 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 763 f2fs_pin_file_control(inode, true); 764 return -EAGAIN; 765 } 766 767 /* 768 * This function is called from two paths. 769 * One is garbage collection and the other is SSR segment selection. 770 * When it is called during GC, it just gets a victim segment 771 * and it does not remove it from dirty seglist. 772 * When it is called from SSR segment selection, it finds a segment 773 * which has minimum valid blocks and removes it from dirty seglist. 774 */ 775 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 776 int gc_type, int type, char alloc_mode, 777 unsigned long long age, bool one_time) 778 { 779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 780 struct sit_info *sm = SIT_I(sbi); 781 struct victim_sel_policy p = {0}; 782 unsigned int secno, last_victim; 783 unsigned int last_segment; 784 unsigned int nsearched; 785 unsigned int valid_thresh_ratio = 100; 786 bool is_atgc; 787 int ret = 0; 788 789 mutex_lock(&dirty_i->seglist_lock); 790 last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi); 791 792 p.alloc_mode = alloc_mode; 793 p.age = age; 794 p.age_threshold = sbi->am.age_threshold; 795 if (one_time) { 796 p.one_time_gc = one_time; 797 if (has_enough_free_secs(sbi, 0, NR_PERSISTENT_LOG)) 798 valid_thresh_ratio = sbi->gc_thread->valid_thresh_ratio; 799 } 800 801 retry: 802 select_policy(sbi, gc_type, type, &p); 803 p.min_segno = NULL_SEGNO; 804 p.oldest_age = 0; 805 p.min_cost = get_max_cost(sbi, &p); 806 807 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 808 nsearched = 0; 809 810 if (is_atgc) 811 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 812 813 if (*result != NULL_SEGNO) { 814 if (!get_valid_blocks(sbi, *result, false)) { 815 ret = -ENODATA; 816 goto out; 817 } 818 819 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) { 820 ret = -EBUSY; 821 goto out; 822 } 823 if (gc_type == FG_GC) 824 clear_bit(GET_SEC_FROM_SEG(sbi, *result), dirty_i->victim_secmap); 825 p.min_segno = *result; 826 goto got_result; 827 } 828 829 ret = -ENODATA; 830 if (p.max_search == 0) 831 goto out; 832 833 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 834 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 835 p.min_segno = sbi->next_victim_seg[BG_GC]; 836 *result = p.min_segno; 837 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 838 goto got_result; 839 } 840 if (gc_type == FG_GC && 841 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 842 p.min_segno = sbi->next_victim_seg[FG_GC]; 843 *result = p.min_segno; 844 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 845 goto got_result; 846 } 847 } 848 849 last_victim = sm->last_victim[p.gc_mode]; 850 if (p.alloc_mode == LFS && gc_type == FG_GC) { 851 p.min_segno = check_bg_victims(sbi); 852 if (p.min_segno != NULL_SEGNO) 853 goto got_it; 854 } 855 856 while (1) { 857 unsigned long cost, *dirty_bitmap; 858 unsigned int unit_no, segno; 859 860 dirty_bitmap = p.dirty_bitmap; 861 unit_no = find_next_bit(dirty_bitmap, 862 last_segment / p.ofs_unit, 863 p.offset / p.ofs_unit); 864 segno = unit_no * p.ofs_unit; 865 if (segno >= last_segment) { 866 if (sm->last_victim[p.gc_mode]) { 867 last_segment = 868 sm->last_victim[p.gc_mode]; 869 sm->last_victim[p.gc_mode] = 0; 870 p.offset = 0; 871 continue; 872 } 873 break; 874 } 875 876 p.offset = segno + p.ofs_unit; 877 nsearched++; 878 879 #ifdef CONFIG_F2FS_CHECK_FS 880 /* 881 * skip selecting the invalid segno (that is failed due to block 882 * validity check failure during GC) to avoid endless GC loop in 883 * such cases. 884 */ 885 if (test_bit(segno, sm->invalid_segmap)) 886 goto next; 887 #endif 888 889 secno = GET_SEC_FROM_SEG(sbi, segno); 890 891 if (sec_usage_check(sbi, secno)) 892 goto next; 893 894 /* Don't touch checkpointed data */ 895 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 896 if (p.alloc_mode == LFS) { 897 /* 898 * LFS is set to find source section during GC. 899 * The victim should have no checkpointed data. 900 */ 901 if (get_ckpt_valid_blocks(sbi, segno, true)) 902 goto next; 903 } else { 904 /* 905 * SSR | AT_SSR are set to find target segment 906 * for writes which can be full by checkpointed 907 * and newly written blocks. 908 */ 909 if (!f2fs_segment_has_free_slot(sbi, segno)) 910 goto next; 911 } 912 } 913 914 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 915 goto next; 916 917 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 918 goto next; 919 920 if (is_atgc) { 921 add_victim_entry(sbi, &p, segno); 922 goto next; 923 } 924 925 cost = get_gc_cost(sbi, segno, &p, valid_thresh_ratio); 926 927 if (p.min_cost > cost) { 928 p.min_segno = segno; 929 p.min_cost = cost; 930 } 931 next: 932 if (nsearched >= p.max_search) { 933 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 934 sm->last_victim[p.gc_mode] = 935 last_victim + p.ofs_unit; 936 else 937 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 938 sm->last_victim[p.gc_mode] %= 939 (MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 940 break; 941 } 942 } 943 944 /* get victim for GC_AT/AT_SSR */ 945 if (is_atgc) { 946 lookup_victim_by_age(sbi, &p); 947 release_victim_entry(sbi); 948 } 949 950 if (is_atgc && p.min_segno == NULL_SEGNO && 951 sm->elapsed_time < p.age_threshold) { 952 p.age_threshold = 0; 953 goto retry; 954 } 955 956 if (p.min_segno != NULL_SEGNO) { 957 got_it: 958 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 959 got_result: 960 if (p.alloc_mode == LFS) { 961 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 962 if (gc_type == FG_GC) 963 sbi->cur_victim_sec = secno; 964 else 965 set_bit(secno, dirty_i->victim_secmap); 966 } 967 ret = 0; 968 969 } 970 out: 971 if (p.min_segno != NULL_SEGNO) 972 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 973 sbi->cur_victim_sec, 974 prefree_segments(sbi), free_segments(sbi)); 975 mutex_unlock(&dirty_i->seglist_lock); 976 977 return ret; 978 } 979 980 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 981 { 982 struct inode_entry *ie; 983 984 ie = radix_tree_lookup(&gc_list->iroot, ino); 985 if (ie) 986 return ie->inode; 987 return NULL; 988 } 989 990 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 991 { 992 struct inode_entry *new_ie; 993 994 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 995 iput(inode); 996 return; 997 } 998 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 999 GFP_NOFS, true, NULL); 1000 new_ie->inode = inode; 1001 1002 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 1003 list_add_tail(&new_ie->list, &gc_list->ilist); 1004 } 1005 1006 static void put_gc_inode(struct gc_inode_list *gc_list) 1007 { 1008 struct inode_entry *ie, *next_ie; 1009 1010 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 1011 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 1012 iput(ie->inode); 1013 list_del(&ie->list); 1014 kmem_cache_free(f2fs_inode_entry_slab, ie); 1015 } 1016 } 1017 1018 static int check_valid_map(struct f2fs_sb_info *sbi, 1019 unsigned int segno, int offset) 1020 { 1021 struct sit_info *sit_i = SIT_I(sbi); 1022 struct seg_entry *sentry; 1023 int ret; 1024 1025 down_read(&sit_i->sentry_lock); 1026 sentry = get_seg_entry(sbi, segno); 1027 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 1028 up_read(&sit_i->sentry_lock); 1029 return ret; 1030 } 1031 1032 /* 1033 * This function compares node address got in summary with that in NAT. 1034 * On validity, copy that node with cold status, otherwise (invalid node) 1035 * ignore that. 1036 */ 1037 static int gc_node_segment(struct f2fs_sb_info *sbi, 1038 struct f2fs_summary *sum, unsigned int segno, int gc_type, 1039 struct blk_plug *plug) 1040 { 1041 struct f2fs_summary *entry; 1042 block_t start_addr; 1043 int off; 1044 int phase = 0; 1045 bool fggc = (gc_type == FG_GC); 1046 int submitted = 0; 1047 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1048 1049 start_addr = START_BLOCK(sbi, segno); 1050 1051 next_step: 1052 entry = sum; 1053 1054 if (fggc && phase == 2) 1055 atomic_inc(&sbi->wb_sync_req[NODE]); 1056 1057 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1058 nid_t nid = le32_to_cpu(entry->nid); 1059 struct folio *node_folio; 1060 struct node_info ni; 1061 int err; 1062 1063 /* stop BG_GC if there is not enough free sections. */ 1064 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 1065 return submitted; 1066 1067 if (check_valid_map(sbi, segno, off) == 0) 1068 continue; 1069 1070 if (phase == 0) { 1071 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1072 META_NAT, true); 1073 continue; 1074 } 1075 1076 if (phase == 1) { 1077 f2fs_ra_node_page(sbi, nid); 1078 continue; 1079 } 1080 1081 /* phase == 2 */ 1082 node_folio = f2fs_get_node_folio(sbi, nid, NODE_TYPE_REGULAR); 1083 if (IS_ERR(node_folio)) 1084 continue; 1085 1086 /* block may become invalid during f2fs_get_node_folio */ 1087 if (check_valid_map(sbi, segno, off) == 0) { 1088 f2fs_folio_put(node_folio, true); 1089 continue; 1090 } 1091 1092 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1093 f2fs_folio_put(node_folio, true); 1094 continue; 1095 } 1096 1097 if (ni.blk_addr != start_addr + off) { 1098 f2fs_folio_put(node_folio, true); 1099 continue; 1100 } 1101 1102 err = f2fs_move_node_folio(node_folio, gc_type); 1103 if (!err && gc_type == FG_GC) 1104 submitted++; 1105 stat_inc_node_blk_count(sbi, 1, gc_type); 1106 } 1107 1108 if (++phase < 3) { 1109 blk_finish_plug(plug); 1110 blk_start_plug(plug); 1111 goto next_step; 1112 } 1113 1114 if (fggc) 1115 atomic_dec(&sbi->wb_sync_req[NODE]); 1116 return submitted; 1117 } 1118 1119 /* 1120 * Calculate start block index indicating the given node offset. 1121 * Be careful, caller should give this node offset only indicating direct node 1122 * blocks. If any node offsets, which point the other types of node blocks such 1123 * as indirect or double indirect node blocks, are given, it must be a caller's 1124 * bug. 1125 */ 1126 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1127 { 1128 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1129 unsigned int bidx; 1130 1131 if (node_ofs == 0) 1132 return 0; 1133 1134 if (node_ofs <= 2) { 1135 bidx = node_ofs - 1; 1136 } else if (node_ofs <= indirect_blks) { 1137 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1138 1139 bidx = node_ofs - 2 - dec; 1140 } else { 1141 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1142 1143 bidx = node_ofs - 5 - dec; 1144 } 1145 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1146 } 1147 1148 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1149 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1150 { 1151 struct folio *node_folio; 1152 nid_t nid; 1153 unsigned int ofs_in_node, max_addrs, base; 1154 block_t source_blkaddr; 1155 1156 nid = le32_to_cpu(sum->nid); 1157 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1158 1159 node_folio = f2fs_get_node_folio(sbi, nid, NODE_TYPE_REGULAR); 1160 if (IS_ERR(node_folio)) 1161 return false; 1162 1163 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1164 f2fs_folio_put(node_folio, true); 1165 return false; 1166 } 1167 1168 if (sum->version != dni->version) { 1169 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1170 __func__); 1171 set_sbi_flag(sbi, SBI_NEED_FSCK); 1172 } 1173 1174 if (f2fs_check_nid_range(sbi, dni->ino)) { 1175 f2fs_folio_put(node_folio, true); 1176 return false; 1177 } 1178 1179 if (IS_INODE(node_folio)) { 1180 base = offset_in_addr(F2FS_INODE(node_folio)); 1181 max_addrs = DEF_ADDRS_PER_INODE; 1182 } else { 1183 base = 0; 1184 max_addrs = DEF_ADDRS_PER_BLOCK; 1185 } 1186 1187 if (base + ofs_in_node >= max_addrs) { 1188 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u", 1189 base, ofs_in_node, max_addrs, dni->ino, dni->nid); 1190 f2fs_folio_put(node_folio, true); 1191 return false; 1192 } 1193 1194 *nofs = ofs_of_node(node_folio); 1195 source_blkaddr = data_blkaddr(NULL, node_folio, ofs_in_node); 1196 f2fs_folio_put(node_folio, true); 1197 1198 if (source_blkaddr != blkaddr) { 1199 #ifdef CONFIG_F2FS_CHECK_FS 1200 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1201 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1202 1203 if (unlikely(check_valid_map(sbi, segno, offset))) { 1204 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1205 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1206 blkaddr, source_blkaddr, segno); 1207 set_sbi_flag(sbi, SBI_NEED_FSCK); 1208 } 1209 } 1210 #endif 1211 return false; 1212 } 1213 return true; 1214 } 1215 1216 static int ra_data_block(struct inode *inode, pgoff_t index) 1217 { 1218 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1219 struct address_space *mapping = f2fs_is_cow_file(inode) ? 1220 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping; 1221 struct dnode_of_data dn; 1222 struct folio *folio, *efolio; 1223 struct f2fs_io_info fio = { 1224 .sbi = sbi, 1225 .ino = inode->i_ino, 1226 .type = DATA, 1227 .temp = COLD, 1228 .op = REQ_OP_READ, 1229 .op_flags = 0, 1230 .encrypted_page = NULL, 1231 .in_list = 0, 1232 }; 1233 int err; 1234 1235 folio = f2fs_grab_cache_folio(mapping, index, true); 1236 if (IS_ERR(folio)) 1237 return PTR_ERR(folio); 1238 1239 if (f2fs_lookup_read_extent_cache_block(inode, index, 1240 &dn.data_blkaddr)) { 1241 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1242 DATA_GENERIC_ENHANCE_READ))) { 1243 err = -EFSCORRUPTED; 1244 goto put_folio; 1245 } 1246 goto got_it; 1247 } 1248 1249 set_new_dnode(&dn, inode, NULL, NULL, 0); 1250 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1251 if (err) 1252 goto put_folio; 1253 f2fs_put_dnode(&dn); 1254 1255 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1256 err = -ENOENT; 1257 goto put_folio; 1258 } 1259 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1260 DATA_GENERIC_ENHANCE))) { 1261 err = -EFSCORRUPTED; 1262 goto put_folio; 1263 } 1264 got_it: 1265 /* read folio */ 1266 fio.folio = folio; 1267 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1268 1269 /* 1270 * don't cache encrypted data into meta inode until previous dirty 1271 * data were writebacked to avoid racing between GC and flush. 1272 */ 1273 f2fs_folio_wait_writeback(folio, DATA, true, true); 1274 1275 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1276 1277 efolio = f2fs_filemap_get_folio(META_MAPPING(sbi), dn.data_blkaddr, 1278 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1279 if (IS_ERR(efolio)) { 1280 err = PTR_ERR(efolio); 1281 goto put_folio; 1282 } 1283 1284 fio.encrypted_page = &efolio->page; 1285 1286 err = f2fs_submit_page_bio(&fio); 1287 if (err) 1288 goto put_encrypted_page; 1289 f2fs_put_page(fio.encrypted_page, false); 1290 f2fs_folio_put(folio, true); 1291 1292 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 1293 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1294 1295 return 0; 1296 put_encrypted_page: 1297 f2fs_put_page(fio.encrypted_page, true); 1298 put_folio: 1299 f2fs_folio_put(folio, true); 1300 return err; 1301 } 1302 1303 /* 1304 * Move data block via META_MAPPING while keeping locked data page. 1305 * This can be used to move blocks, aka LBAs, directly on disk. 1306 */ 1307 static int move_data_block(struct inode *inode, block_t bidx, 1308 int gc_type, unsigned int segno, int off) 1309 { 1310 struct address_space *mapping = f2fs_is_cow_file(inode) ? 1311 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping; 1312 struct f2fs_io_info fio = { 1313 .sbi = F2FS_I_SB(inode), 1314 .ino = inode->i_ino, 1315 .type = DATA, 1316 .temp = COLD, 1317 .op = REQ_OP_READ, 1318 .op_flags = 0, 1319 .encrypted_page = NULL, 1320 .in_list = 0, 1321 }; 1322 struct dnode_of_data dn; 1323 struct f2fs_summary sum; 1324 struct node_info ni; 1325 struct folio *folio, *mfolio, *efolio; 1326 block_t newaddr; 1327 int err = 0; 1328 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1329 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1330 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1331 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1332 1333 /* do not read out */ 1334 folio = f2fs_grab_cache_folio(mapping, bidx, false); 1335 if (IS_ERR(folio)) 1336 return PTR_ERR(folio); 1337 1338 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1339 err = -ENOENT; 1340 goto out; 1341 } 1342 1343 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1344 if (err) 1345 goto out; 1346 1347 set_new_dnode(&dn, inode, NULL, NULL, 0); 1348 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1349 if (err) 1350 goto out; 1351 1352 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1353 folio_clear_uptodate(folio); 1354 err = -ENOENT; 1355 goto put_out; 1356 } 1357 1358 /* 1359 * don't cache encrypted data into meta inode until previous dirty 1360 * data were writebacked to avoid racing between GC and flush. 1361 */ 1362 f2fs_folio_wait_writeback(folio, DATA, true, true); 1363 1364 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1365 1366 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1367 if (err) 1368 goto put_out; 1369 1370 /* read page */ 1371 fio.folio = folio; 1372 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1373 1374 if (lfs_mode) 1375 f2fs_down_write(&fio.sbi->io_order_lock); 1376 1377 mfolio = f2fs_grab_cache_folio(META_MAPPING(fio.sbi), 1378 fio.old_blkaddr, false); 1379 if (IS_ERR(mfolio)) { 1380 err = PTR_ERR(mfolio); 1381 goto up_out; 1382 } 1383 1384 fio.encrypted_page = folio_file_page(mfolio, fio.old_blkaddr); 1385 1386 /* read source block in mfolio */ 1387 if (!folio_test_uptodate(mfolio)) { 1388 err = f2fs_submit_page_bio(&fio); 1389 if (err) { 1390 f2fs_folio_put(mfolio, true); 1391 goto up_out; 1392 } 1393 1394 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO, 1395 F2FS_BLKSIZE); 1396 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO, 1397 F2FS_BLKSIZE); 1398 1399 folio_lock(mfolio); 1400 if (unlikely(!is_meta_folio(mfolio) || 1401 !folio_test_uptodate(mfolio))) { 1402 err = -EIO; 1403 f2fs_folio_put(mfolio, true); 1404 goto up_out; 1405 } 1406 } 1407 1408 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1409 1410 /* allocate block address */ 1411 err = f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1412 &sum, type, NULL); 1413 if (err) { 1414 f2fs_folio_put(mfolio, true); 1415 /* filesystem should shutdown, no need to recovery block */ 1416 goto up_out; 1417 } 1418 1419 efolio = f2fs_filemap_get_folio(META_MAPPING(fio.sbi), newaddr, 1420 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1421 if (IS_ERR(efolio)) { 1422 err = PTR_ERR(efolio); 1423 f2fs_folio_put(mfolio, true); 1424 goto recover_block; 1425 } 1426 1427 fio.encrypted_page = &efolio->page; 1428 1429 /* write target block */ 1430 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1431 memcpy(page_address(fio.encrypted_page), 1432 folio_address(mfolio), PAGE_SIZE); 1433 f2fs_folio_put(mfolio, true); 1434 1435 f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr, 1); 1436 1437 set_page_dirty(fio.encrypted_page); 1438 if (clear_page_dirty_for_io(fio.encrypted_page)) 1439 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1440 1441 set_page_writeback(fio.encrypted_page); 1442 1443 fio.op = REQ_OP_WRITE; 1444 fio.op_flags = REQ_SYNC; 1445 fio.new_blkaddr = newaddr; 1446 f2fs_submit_page_write(&fio); 1447 1448 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE); 1449 1450 f2fs_update_data_blkaddr(&dn, newaddr); 1451 set_inode_flag(inode, FI_APPEND_WRITE); 1452 1453 f2fs_put_page(fio.encrypted_page, true); 1454 recover_block: 1455 if (err) 1456 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1457 true, true, true); 1458 up_out: 1459 if (lfs_mode) 1460 f2fs_up_write(&fio.sbi->io_order_lock); 1461 put_out: 1462 f2fs_put_dnode(&dn); 1463 out: 1464 if (!folio_test_uptodate(folio)) 1465 __folio_set_dropbehind(folio); 1466 folio_unlock(folio); 1467 folio_end_dropbehind(folio); 1468 folio_put(folio); 1469 return err; 1470 } 1471 1472 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1473 unsigned int segno, int off) 1474 { 1475 struct folio *folio; 1476 int err = 0; 1477 1478 folio = f2fs_get_lock_data_folio(inode, bidx, true); 1479 if (IS_ERR(folio)) 1480 return PTR_ERR(folio); 1481 1482 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1483 err = -ENOENT; 1484 goto out; 1485 } 1486 1487 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1488 if (err) 1489 goto out; 1490 1491 if (gc_type == BG_GC) { 1492 if (folio_test_writeback(folio)) { 1493 err = -EAGAIN; 1494 goto out; 1495 } 1496 folio_mark_dirty(folio); 1497 folio_set_f2fs_gcing(folio); 1498 } else { 1499 struct f2fs_io_info fio = { 1500 .sbi = F2FS_I_SB(inode), 1501 .ino = inode->i_ino, 1502 .type = DATA, 1503 .temp = COLD, 1504 .op = REQ_OP_WRITE, 1505 .op_flags = REQ_SYNC, 1506 .old_blkaddr = NULL_ADDR, 1507 .folio = folio, 1508 .encrypted_page = NULL, 1509 .need_lock = LOCK_REQ, 1510 .io_type = FS_GC_DATA_IO, 1511 }; 1512 bool is_dirty = folio_test_dirty(folio); 1513 1514 retry: 1515 f2fs_folio_wait_writeback(folio, DATA, true, true); 1516 1517 folio_mark_dirty(folio); 1518 if (folio_clear_dirty_for_io(folio)) { 1519 inode_dec_dirty_pages(inode); 1520 f2fs_remove_dirty_inode(inode); 1521 } 1522 1523 folio_set_f2fs_gcing(folio); 1524 1525 err = f2fs_do_write_data_page(&fio); 1526 if (err) { 1527 folio_clear_f2fs_gcing(folio); 1528 if (err == -ENOMEM) { 1529 memalloc_retry_wait(GFP_NOFS); 1530 goto retry; 1531 } 1532 if (is_dirty) 1533 folio_mark_dirty(folio); 1534 } 1535 } 1536 out: 1537 f2fs_folio_put(folio, true); 1538 return err; 1539 } 1540 1541 /* 1542 * This function tries to get parent node of victim data block, and identifies 1543 * data block validity. If the block is valid, copy that with cold status and 1544 * modify parent node. 1545 * If the parent node is not valid or the data block address is different, 1546 * the victim data block is ignored. 1547 */ 1548 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1549 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1550 bool force_migrate, struct blk_plug *plug) 1551 { 1552 struct super_block *sb = sbi->sb; 1553 struct f2fs_summary *entry; 1554 block_t start_addr; 1555 int off; 1556 int phase = 0; 1557 int submitted = 0; 1558 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1559 1560 start_addr = START_BLOCK(sbi, segno); 1561 1562 next_step: 1563 entry = sum; 1564 1565 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1566 struct inode *inode; 1567 struct node_info dni; /* dnode info for the data */ 1568 unsigned int ofs_in_node, nofs; 1569 block_t start_bidx; 1570 nid_t nid = le32_to_cpu(entry->nid); 1571 1572 /* 1573 * stop BG_GC if there is not enough free sections. 1574 * Or, stop GC if the segment becomes fully valid caused by 1575 * race condition along with SSR block allocation. 1576 */ 1577 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1578 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1579 CAP_BLKS_PER_SEC(sbi))) 1580 return submitted; 1581 1582 if (check_valid_map(sbi, segno, off) == 0) 1583 continue; 1584 1585 if (phase == 0) { 1586 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1587 META_NAT, true); 1588 continue; 1589 } 1590 1591 if (phase == 1) { 1592 f2fs_ra_node_page(sbi, nid); 1593 continue; 1594 } 1595 1596 /* Get an inode by ino with checking validity */ 1597 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1598 continue; 1599 1600 if (phase == 2) { 1601 f2fs_ra_node_page(sbi, dni.ino); 1602 continue; 1603 } 1604 1605 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1606 1607 if (phase == 3) { 1608 struct folio *data_folio; 1609 int err; 1610 1611 inode = f2fs_iget(sb, dni.ino); 1612 if (IS_ERR(inode)) 1613 continue; 1614 1615 if (is_bad_inode(inode) || 1616 special_file(inode->i_mode)) { 1617 iput(inode); 1618 continue; 1619 } 1620 1621 if (f2fs_has_inline_data(inode)) { 1622 iput(inode); 1623 set_sbi_flag(sbi, SBI_NEED_FSCK); 1624 f2fs_err_ratelimited(sbi, 1625 "inode %lx has both inline_data flag and " 1626 "data block, nid=%u, ofs_in_node=%u", 1627 inode->i_ino, dni.nid, ofs_in_node); 1628 continue; 1629 } 1630 1631 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1632 if (err == -EAGAIN) { 1633 iput(inode); 1634 return submitted; 1635 } 1636 1637 if (!f2fs_down_write_trylock( 1638 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1639 iput(inode); 1640 sbi->skipped_gc_rwsem++; 1641 continue; 1642 } 1643 1644 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1645 ofs_in_node; 1646 1647 if (f2fs_meta_inode_gc_required(inode)) { 1648 int err = ra_data_block(inode, start_bidx); 1649 1650 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1651 if (err) { 1652 iput(inode); 1653 continue; 1654 } 1655 add_gc_inode(gc_list, inode); 1656 continue; 1657 } 1658 1659 data_folio = f2fs_get_read_data_folio(inode, start_bidx, 1660 REQ_RAHEAD, true, NULL); 1661 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1662 if (IS_ERR(data_folio)) { 1663 iput(inode); 1664 continue; 1665 } 1666 1667 f2fs_folio_put(data_folio, false); 1668 add_gc_inode(gc_list, inode); 1669 continue; 1670 } 1671 1672 /* phase 4 */ 1673 inode = find_gc_inode(gc_list, dni.ino); 1674 if (inode) { 1675 struct f2fs_inode_info *fi = F2FS_I(inode); 1676 bool locked = false; 1677 int err; 1678 1679 if (S_ISREG(inode->i_mode)) { 1680 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) { 1681 sbi->skipped_gc_rwsem++; 1682 continue; 1683 } 1684 if (!f2fs_down_write_trylock( 1685 &fi->i_gc_rwsem[READ])) { 1686 sbi->skipped_gc_rwsem++; 1687 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1688 continue; 1689 } 1690 locked = true; 1691 1692 /* wait for all inflight aio data */ 1693 inode_dio_wait(inode); 1694 } 1695 1696 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1697 + ofs_in_node; 1698 if (f2fs_meta_inode_gc_required(inode)) 1699 err = move_data_block(inode, start_bidx, 1700 gc_type, segno, off); 1701 else 1702 err = move_data_page(inode, start_bidx, gc_type, 1703 segno, off); 1704 1705 if (!err && (gc_type == FG_GC || 1706 f2fs_meta_inode_gc_required(inode))) 1707 submitted++; 1708 1709 if (locked) { 1710 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1711 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1712 } 1713 1714 stat_inc_data_blk_count(sbi, 1, gc_type); 1715 } 1716 } 1717 1718 if (++phase < 5) { 1719 blk_finish_plug(plug); 1720 blk_start_plug(plug); 1721 goto next_step; 1722 } 1723 1724 return submitted; 1725 } 1726 1727 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1728 int gc_type, bool one_time) 1729 { 1730 struct sit_info *sit_i = SIT_I(sbi); 1731 int ret; 1732 1733 down_write(&sit_i->sentry_lock); 1734 ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE, 1735 LFS, 0, one_time); 1736 up_write(&sit_i->sentry_lock); 1737 return ret; 1738 } 1739 1740 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1741 unsigned int start_segno, 1742 struct gc_inode_list *gc_list, int gc_type, 1743 bool force_migrate, bool one_time) 1744 { 1745 struct blk_plug plug; 1746 unsigned int segno = start_segno; 1747 unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi); 1748 unsigned int sec_end_segno; 1749 int seg_freed = 0, migrated = 0; 1750 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1751 SUM_TYPE_DATA : SUM_TYPE_NODE; 1752 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE; 1753 int submitted = 0, sum_blk_cnt; 1754 1755 if (__is_large_section(sbi)) { 1756 sec_end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi)); 1757 1758 /* 1759 * zone-capacity can be less than zone-size in zoned devices, 1760 * resulting in less than expected usable segments in the zone, 1761 * calculate the end segno in the zone which can be garbage 1762 * collected 1763 */ 1764 if (f2fs_sb_has_blkzoned(sbi)) 1765 sec_end_segno -= SEGS_PER_SEC(sbi) - 1766 f2fs_usable_segs_in_sec(sbi); 1767 1768 if (gc_type == BG_GC || one_time) { 1769 unsigned int window_granularity = 1770 sbi->migration_window_granularity; 1771 1772 if (f2fs_sb_has_blkzoned(sbi) && 1773 !has_enough_free_blocks(sbi, 1774 sbi->gc_thread->boost_zoned_gc_percent)) 1775 window_granularity *= 1776 sbi->gc_thread->boost_gc_multiple; 1777 1778 end_segno = start_segno + window_granularity; 1779 } 1780 1781 if (end_segno > sec_end_segno) 1782 end_segno = sec_end_segno; 1783 } 1784 1785 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1786 1787 segno = rounddown(segno, sbi->sums_per_block); 1788 sum_blk_cnt = DIV_ROUND_UP(end_segno - segno, sbi->sums_per_block); 1789 /* readahead multi ssa blocks those have contiguous address */ 1790 if (__is_large_section(sbi)) 1791 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1792 sum_blk_cnt, META_SSA, true); 1793 1794 /* reference all summary page */ 1795 while (segno < end_segno) { 1796 struct folio *sum_folio = f2fs_get_sum_folio(sbi, segno); 1797 1798 segno += sbi->sums_per_block; 1799 if (IS_ERR(sum_folio)) { 1800 int err = PTR_ERR(sum_folio); 1801 1802 end_segno = segno - sbi->sums_per_block; 1803 segno = rounddown(start_segno, sbi->sums_per_block); 1804 while (segno < end_segno) { 1805 sum_folio = filemap_get_folio(META_MAPPING(sbi), 1806 GET_SUM_BLOCK(sbi, segno)); 1807 folio_put_refs(sum_folio, 2); 1808 segno += sbi->sums_per_block; 1809 } 1810 return err; 1811 } 1812 folio_unlock(sum_folio); 1813 } 1814 1815 blk_start_plug(&plug); 1816 1817 segno = start_segno; 1818 while (segno < end_segno) { 1819 unsigned int cur_segno; 1820 1821 /* find segment summary of victim */ 1822 struct folio *sum_folio = filemap_get_folio(META_MAPPING(sbi), 1823 GET_SUM_BLOCK(sbi, segno)); 1824 unsigned int block_end_segno = rounddown(segno, sbi->sums_per_block) 1825 + sbi->sums_per_block; 1826 1827 if (block_end_segno > end_segno) 1828 block_end_segno = end_segno; 1829 1830 if (is_cursec(sbi, GET_SEC_FROM_SEG(sbi, segno))) { 1831 f2fs_err(sbi, "%s: segment %u is used by log", 1832 __func__, segno); 1833 f2fs_bug_on(sbi, 1); 1834 goto next_block; 1835 } 1836 1837 if (!folio_test_uptodate(sum_folio) || 1838 unlikely(f2fs_cp_error(sbi))) 1839 goto next_block; 1840 1841 for (cur_segno = segno; cur_segno < block_end_segno; 1842 cur_segno++) { 1843 struct f2fs_summary_block *sum; 1844 1845 if (get_valid_blocks(sbi, cur_segno, false) == 0) 1846 goto freed; 1847 if (gc_type == BG_GC && __is_large_section(sbi) && 1848 migrated >= sbi->migration_granularity) 1849 continue; 1850 1851 sum = SUM_BLK_PAGE_ADDR(sbi, sum_folio, cur_segno); 1852 if (type != GET_SUM_TYPE(sum_footer(sbi, sum))) { 1853 f2fs_err(sbi, "Inconsistent segment (%u) type " 1854 "[%d, %d] in SSA and SIT", 1855 cur_segno, type, 1856 GET_SUM_TYPE( 1857 sum_footer(sbi, sum))); 1858 f2fs_stop_checkpoint(sbi, false, 1859 STOP_CP_REASON_CORRUPTED_SUMMARY); 1860 continue; 1861 } 1862 1863 /* 1864 * this is to avoid deadlock: 1865 * - lock_page(sum_page) - f2fs_replace_block 1866 * - check_valid_map() - down_write(sentry_lock) 1867 * - down_read(sentry_lock) - change_curseg() 1868 * - lock_page(sum_page) 1869 */ 1870 if (type == SUM_TYPE_NODE) 1871 submitted += gc_node_segment(sbi, sum->entries, 1872 cur_segno, gc_type, &plug); 1873 else 1874 submitted += gc_data_segment(sbi, sum->entries, 1875 gc_list, cur_segno, 1876 gc_type, force_migrate, &plug); 1877 1878 stat_inc_gc_seg_count(sbi, data_type, gc_type); 1879 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1880 migrated++; 1881 1882 freed: 1883 if (gc_type == FG_GC && 1884 get_valid_blocks(sbi, cur_segno, false) == 0) 1885 seg_freed++; 1886 1887 if (__is_large_section(sbi)) 1888 sbi->next_victim_seg[gc_type] = 1889 (cur_segno + 1 < sec_end_segno) ? 1890 cur_segno + 1 : NULL_SEGNO; 1891 } 1892 next_block: 1893 folio_put_refs(sum_folio, 2); 1894 segno = block_end_segno; 1895 } 1896 1897 if (submitted) 1898 f2fs_submit_merged_write(sbi, data_type); 1899 1900 blk_finish_plug(&plug); 1901 1902 if (migrated) 1903 stat_inc_gc_sec_count(sbi, data_type, gc_type); 1904 1905 return seg_freed; 1906 } 1907 1908 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1909 { 1910 int gc_type = gc_control->init_gc_type; 1911 unsigned int segno = gc_control->victim_segno; 1912 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0; 1913 int ret = 0; 1914 struct cp_control cpc; 1915 struct gc_inode_list gc_list = { 1916 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1917 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1918 }; 1919 unsigned int skipped_round = 0, round = 0; 1920 unsigned int upper_secs; 1921 1922 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1923 gc_control->nr_free_secs, 1924 get_pages(sbi, F2FS_DIRTY_NODES), 1925 get_pages(sbi, F2FS_DIRTY_DENTS), 1926 get_pages(sbi, F2FS_DIRTY_IMETA), 1927 free_sections(sbi), 1928 free_segments(sbi), 1929 reserved_segments(sbi), 1930 prefree_segments(sbi)); 1931 1932 cpc.reason = __get_cp_reason(sbi); 1933 gc_more: 1934 sbi->skipped_gc_rwsem = 0; 1935 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1936 ret = -EINVAL; 1937 goto stop; 1938 } 1939 if (unlikely(f2fs_cp_error(sbi))) { 1940 ret = -EIO; 1941 goto stop; 1942 } 1943 1944 /* Let's run FG_GC, if we don't have enough space. */ 1945 if (has_not_enough_free_secs(sbi, 0, 0)) { 1946 gc_type = FG_GC; 1947 gc_control->one_time = false; 1948 1949 /* 1950 * For example, if there are many prefree_segments below given 1951 * threshold, we can make them free by checkpoint. Then, we 1952 * secure free segments which doesn't need fggc any more. 1953 */ 1954 if (prefree_segments(sbi)) { 1955 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1956 ret = f2fs_write_checkpoint(sbi, &cpc); 1957 if (ret) 1958 goto stop; 1959 /* Reset due to checkpoint */ 1960 sec_freed = 0; 1961 } 1962 } 1963 1964 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1965 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1966 ret = -EINVAL; 1967 goto stop; 1968 } 1969 retry: 1970 ret = __get_victim(sbi, &segno, gc_type, gc_control->one_time); 1971 if (ret) { 1972 /* allow to search victim from sections has pinned data */ 1973 if (ret == -ENODATA && gc_type == FG_GC && 1974 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1975 f2fs_unpin_all_sections(sbi, false); 1976 goto retry; 1977 } 1978 goto stop; 1979 } 1980 1981 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1982 gc_control->should_migrate_blocks, 1983 gc_control->one_time); 1984 if (seg_freed < 0) 1985 goto stop; 1986 1987 total_freed += seg_freed; 1988 1989 if (seg_freed == f2fs_usable_segs_in_sec(sbi)) { 1990 sec_freed++; 1991 total_sec_freed++; 1992 } 1993 1994 if (gc_control->one_time) 1995 goto stop; 1996 1997 if (gc_type == FG_GC) { 1998 sbi->cur_victim_sec = NULL_SEGNO; 1999 2000 if (has_enough_free_secs(sbi, sec_freed, 0)) { 2001 if (!gc_control->no_bg_gc && 2002 total_sec_freed < gc_control->nr_free_secs) 2003 goto go_gc_more; 2004 goto stop; 2005 } 2006 if (sbi->skipped_gc_rwsem) 2007 skipped_round++; 2008 round++; 2009 if (skipped_round > MAX_SKIP_GC_COUNT && 2010 skipped_round * 2 >= round) { 2011 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2012 ret = f2fs_write_checkpoint(sbi, &cpc); 2013 goto stop; 2014 } 2015 } else if (has_enough_free_secs(sbi, 0, 0)) { 2016 goto stop; 2017 } 2018 2019 upper_secs = __get_secs_required(sbi); 2020 2021 /* 2022 * Write checkpoint to reclaim prefree segments. 2023 * We need more three extra sections for writer's data/node/dentry. 2024 */ 2025 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS && 2026 prefree_segments(sbi)) { 2027 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2028 ret = f2fs_write_checkpoint(sbi, &cpc); 2029 if (ret) 2030 goto stop; 2031 /* Reset due to checkpoint */ 2032 sec_freed = 0; 2033 } 2034 go_gc_more: 2035 segno = NULL_SEGNO; 2036 goto gc_more; 2037 2038 stop: 2039 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 2040 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 2041 2042 if (gc_type == FG_GC) 2043 f2fs_unpin_all_sections(sbi, true); 2044 2045 trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed, 2046 get_pages(sbi, F2FS_DIRTY_NODES), 2047 get_pages(sbi, F2FS_DIRTY_DENTS), 2048 get_pages(sbi, F2FS_DIRTY_IMETA), 2049 free_sections(sbi), 2050 free_segments(sbi), 2051 reserved_segments(sbi), 2052 prefree_segments(sbi)); 2053 2054 f2fs_up_write_trace(&sbi->gc_lock, &gc_control->lc); 2055 2056 put_gc_inode(&gc_list); 2057 2058 if (gc_control->err_gc_skipped && !ret) 2059 ret = total_sec_freed ? 0 : -EAGAIN; 2060 return ret; 2061 } 2062 2063 int __init f2fs_create_garbage_collection_cache(void) 2064 { 2065 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 2066 sizeof(struct victim_entry)); 2067 return victim_entry_slab ? 0 : -ENOMEM; 2068 } 2069 2070 void f2fs_destroy_garbage_collection_cache(void) 2071 { 2072 kmem_cache_destroy(victim_entry_slab); 2073 } 2074 2075 static void init_atgc_management(struct f2fs_sb_info *sbi) 2076 { 2077 struct atgc_management *am = &sbi->am; 2078 2079 if (test_opt(sbi, ATGC) && 2080 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 2081 am->atgc_enabled = true; 2082 2083 am->root = RB_ROOT_CACHED; 2084 INIT_LIST_HEAD(&am->victim_list); 2085 am->victim_count = 0; 2086 2087 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 2088 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 2089 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 2090 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 2091 } 2092 2093 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 2094 { 2095 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 2096 2097 /* give warm/cold data area from slower device */ 2098 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 2099 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 2100 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 2101 2102 init_atgc_management(sbi); 2103 } 2104 2105 int f2fs_gc_range(struct f2fs_sb_info *sbi, 2106 unsigned int start_seg, unsigned int end_seg, 2107 bool dry_run, unsigned int dry_run_sections) 2108 { 2109 unsigned int segno; 2110 unsigned int gc_secs = dry_run_sections; 2111 2112 if (unlikely(f2fs_cp_error(sbi))) 2113 return -EIO; 2114 2115 stat_inc_gc_call_count(sbi, FOREGROUND); 2116 for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) { 2117 struct gc_inode_list gc_list = { 2118 .ilist = LIST_HEAD_INIT(gc_list.ilist), 2119 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 2120 }; 2121 2122 /* 2123 * avoid migrating empty section, as it can be allocated by 2124 * log in parallel. 2125 */ 2126 if (!get_valid_blocks(sbi, segno, true)) 2127 continue; 2128 2129 if (is_cursec(sbi, GET_SEC_FROM_SEG(sbi, segno))) 2130 continue; 2131 2132 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true, false); 2133 put_gc_inode(&gc_list); 2134 2135 if (!dry_run && get_valid_blocks(sbi, segno, true)) 2136 return -EAGAIN; 2137 if (dry_run && dry_run_sections && 2138 !get_valid_blocks(sbi, segno, true) && --gc_secs == 0) 2139 break; 2140 2141 if (fatal_signal_pending(current)) 2142 return -ERESTARTSYS; 2143 } 2144 2145 return 0; 2146 } 2147 2148 static int free_segment_range(struct f2fs_sb_info *sbi, 2149 unsigned int secs, bool dry_run) 2150 { 2151 unsigned int next_inuse, start, end; 2152 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2153 int gc_mode, gc_type; 2154 int err = 0; 2155 int type; 2156 2157 /* Force block allocation for GC */ 2158 MAIN_SECS(sbi) -= secs; 2159 start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi); 2160 end = MAIN_SEGS(sbi) - 1; 2161 2162 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2163 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 2164 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 2165 SIT_I(sbi)->last_victim[gc_mode] = 0; 2166 2167 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 2168 if (sbi->next_victim_seg[gc_type] >= start) 2169 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 2170 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2171 2172 /* Move out cursegs from the target range */ 2173 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) { 2174 err = f2fs_allocate_segment_for_resize(sbi, type, start, end); 2175 if (err) 2176 goto out; 2177 } 2178 2179 /* do GC to move out valid blocks in the range */ 2180 err = f2fs_gc_range(sbi, start, end, dry_run, 0); 2181 if (err || dry_run) 2182 goto out; 2183 2184 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2185 err = f2fs_write_checkpoint(sbi, &cpc); 2186 if (err) 2187 goto out; 2188 2189 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 2190 if (next_inuse <= end) { 2191 f2fs_err(sbi, "segno %u should be free but still inuse!", 2192 next_inuse); 2193 f2fs_bug_on(sbi, 1); 2194 } 2195 out: 2196 MAIN_SECS(sbi) += secs; 2197 return err; 2198 } 2199 2200 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 2201 { 2202 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2203 int section_count; 2204 int segment_count; 2205 int segment_count_main; 2206 long long block_count; 2207 int segs = secs * SEGS_PER_SEC(sbi); 2208 2209 f2fs_down_write(&sbi->sb_lock); 2210 2211 section_count = le32_to_cpu(raw_sb->section_count); 2212 segment_count = le32_to_cpu(raw_sb->segment_count); 2213 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2214 block_count = le64_to_cpu(raw_sb->block_count); 2215 2216 raw_sb->section_count = cpu_to_le32(section_count + secs); 2217 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2218 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2219 raw_sb->block_count = cpu_to_le64(block_count + 2220 (long long)SEGS_TO_BLKS(sbi, segs)); 2221 if (f2fs_is_multi_device(sbi)) { 2222 int last_dev = sbi->s_ndevs - 1; 2223 int dev_segs = 2224 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2225 2226 raw_sb->devs[last_dev].total_segments = 2227 cpu_to_le32(dev_segs + segs); 2228 } 2229 2230 f2fs_up_write(&sbi->sb_lock); 2231 } 2232 2233 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2234 { 2235 int segs = secs * SEGS_PER_SEC(sbi); 2236 long long blks = SEGS_TO_BLKS(sbi, segs); 2237 long long user_block_count = 2238 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2239 2240 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2241 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2242 MAIN_SECS(sbi) += secs; 2243 if (sbi->allocate_section_hint > MAIN_SECS(sbi)) 2244 sbi->allocate_section_hint = MAIN_SECS(sbi); 2245 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2246 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2247 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2248 2249 if (f2fs_is_multi_device(sbi)) { 2250 int last_dev = sbi->s_ndevs - 1; 2251 2252 sbi->allocate_section_hint = FDEV(0).total_segments / 2253 SEGS_PER_SEC(sbi); 2254 2255 FDEV(last_dev).total_segments = 2256 (int)FDEV(last_dev).total_segments + segs; 2257 FDEV(last_dev).end_blk = 2258 (long long)FDEV(last_dev).end_blk + blks; 2259 #ifdef CONFIG_BLK_DEV_ZONED 2260 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz + 2261 div_u64(blks, sbi->blocks_per_blkz); 2262 #endif 2263 } 2264 } 2265 2266 int f2fs_resize_fs(struct file *filp, __u64 block_count) 2267 { 2268 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2269 __u64 old_block_count, shrunk_blocks; 2270 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2271 struct f2fs_lock_context lc; 2272 struct f2fs_lock_context glc; 2273 struct f2fs_lock_context clc; 2274 unsigned int secs; 2275 int err = 0; 2276 __u32 rem; 2277 2278 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2279 if (block_count > old_block_count) 2280 return -EINVAL; 2281 2282 if (f2fs_is_multi_device(sbi)) { 2283 int last_dev = sbi->s_ndevs - 1; 2284 __u64 last_segs = FDEV(last_dev).total_segments; 2285 2286 if (block_count + SEGS_TO_BLKS(sbi, last_segs) <= 2287 old_block_count) 2288 return -EINVAL; 2289 } 2290 2291 /* new fs size should align to section size */ 2292 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2293 if (rem) 2294 return -EINVAL; 2295 2296 if (block_count == old_block_count) 2297 return 0; 2298 2299 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2300 f2fs_err(sbi, "Should run fsck to repair first."); 2301 return -EFSCORRUPTED; 2302 } 2303 2304 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2305 f2fs_err(sbi, "Checkpoint should be enabled."); 2306 return -EINVAL; 2307 } 2308 2309 err = mnt_want_write_file(filp); 2310 if (err) 2311 return err; 2312 2313 shrunk_blocks = old_block_count - block_count; 2314 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2315 2316 /* stop other GC */ 2317 if (!f2fs_down_write_trylock_trace(&sbi->gc_lock, &glc)) { 2318 err = -EAGAIN; 2319 goto out_drop_write; 2320 } 2321 2322 /* stop CP to protect MAIN_SEC in free_segment_range */ 2323 f2fs_lock_op(sbi, &lc); 2324 2325 spin_lock(&sbi->stat_lock); 2326 if (shrunk_blocks + valid_user_blocks(sbi) + 2327 sbi->current_reserved_blocks + sbi->unusable_block_count + 2328 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2329 err = -ENOSPC; 2330 spin_unlock(&sbi->stat_lock); 2331 2332 if (err) 2333 goto out_unlock; 2334 2335 err = free_segment_range(sbi, secs, true); 2336 2337 out_unlock: 2338 f2fs_unlock_op(sbi, &lc); 2339 f2fs_up_write_trace(&sbi->gc_lock, &glc); 2340 out_drop_write: 2341 mnt_drop_write_file(filp); 2342 if (err) 2343 return err; 2344 2345 err = freeze_super(sbi->sb, FREEZE_HOLDER_KERNEL, NULL); 2346 if (err) 2347 return err; 2348 2349 if (f2fs_readonly(sbi->sb)) { 2350 err = thaw_super(sbi->sb, FREEZE_HOLDER_KERNEL, NULL); 2351 if (err) 2352 return err; 2353 return -EROFS; 2354 } 2355 2356 f2fs_down_write_trace(&sbi->gc_lock, &glc); 2357 f2fs_down_write_trace(&sbi->cp_global_sem, &clc); 2358 2359 spin_lock(&sbi->stat_lock); 2360 if (shrunk_blocks + valid_user_blocks(sbi) + 2361 sbi->current_reserved_blocks + sbi->unusable_block_count + 2362 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2363 err = -ENOSPC; 2364 else 2365 sbi->user_block_count -= shrunk_blocks; 2366 spin_unlock(&sbi->stat_lock); 2367 if (err) 2368 goto out_err; 2369 2370 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2371 err = free_segment_range(sbi, secs, false); 2372 if (err) 2373 goto recover_out; 2374 2375 update_sb_metadata(sbi, -secs); 2376 2377 err = f2fs_commit_super(sbi, false); 2378 if (err) { 2379 update_sb_metadata(sbi, secs); 2380 goto recover_out; 2381 } 2382 2383 update_fs_metadata(sbi, -secs); 2384 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2385 set_sbi_flag(sbi, SBI_IS_DIRTY); 2386 2387 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2388 err = f2fs_write_checkpoint(sbi, &cpc); 2389 if (err) { 2390 update_fs_metadata(sbi, secs); 2391 update_sb_metadata(sbi, secs); 2392 f2fs_commit_super(sbi, false); 2393 } 2394 recover_out: 2395 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2396 if (err) { 2397 set_sbi_flag(sbi, SBI_NEED_FSCK); 2398 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2399 2400 spin_lock(&sbi->stat_lock); 2401 sbi->user_block_count += shrunk_blocks; 2402 spin_unlock(&sbi->stat_lock); 2403 } 2404 out_err: 2405 f2fs_up_write_trace(&sbi->cp_global_sem, &clc); 2406 f2fs_up_write_trace(&sbi->gc_lock, &glc); 2407 thaw_super(sbi->sb, FREEZE_HOLDER_KERNEL, NULL); 2408 return err; 2409 } 2410