1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/types.h>
15 #include <linux/compat.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/pagevec.h>
19 #include <linux/uio.h>
20 #include <linux/uuid.h>
21 #include <linux/file.h>
22 #include <linux/nls.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fileattr.h>
25 #include <linux/fadvise.h>
26 #include <linux/iomap.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37
f2fs_zero_post_eof_page(struct inode * inode,loff_t new_size,bool lock)38 static void f2fs_zero_post_eof_page(struct inode *inode,
39 loff_t new_size, bool lock)
40 {
41 loff_t old_size = i_size_read(inode);
42
43 if (old_size >= new_size)
44 return;
45
46 if (mapping_empty(inode->i_mapping))
47 return;
48
49 if (lock)
50 filemap_invalidate_lock(inode->i_mapping);
51 /* zero or drop pages only in range of [old_size, new_size] */
52 truncate_inode_pages_range(inode->i_mapping, old_size, new_size);
53 if (lock)
54 filemap_invalidate_unlock(inode->i_mapping);
55 }
56
f2fs_filemap_fault(struct vm_fault * vmf)57 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
58 {
59 struct inode *inode = file_inode(vmf->vma->vm_file);
60 vm_flags_t flags = vmf->vma->vm_flags;
61 vm_fault_t ret;
62
63 ret = filemap_fault(vmf);
64 if (ret & VM_FAULT_LOCKED)
65 f2fs_update_iostat(F2FS_I_SB(inode), inode,
66 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
67
68 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
69
70 return ret;
71 }
72
f2fs_vm_page_mkwrite(struct vm_fault * vmf)73 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
74 {
75 struct folio *folio = page_folio(vmf->page);
76 struct inode *inode = file_inode(vmf->vma->vm_file);
77 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
78 struct dnode_of_data dn;
79 bool need_alloc = !f2fs_is_pinned_file(inode);
80 int err = 0;
81 vm_fault_t ret;
82
83 if (unlikely(IS_IMMUTABLE(inode)))
84 return VM_FAULT_SIGBUS;
85
86 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
87 err = -EIO;
88 goto out;
89 }
90
91 if (unlikely(f2fs_cp_error(sbi))) {
92 err = -EIO;
93 goto out;
94 }
95
96 if (!f2fs_is_checkpoint_ready(sbi)) {
97 err = -ENOSPC;
98 goto out;
99 }
100
101 err = f2fs_convert_inline_inode(inode);
102 if (err)
103 goto out;
104
105 #ifdef CONFIG_F2FS_FS_COMPRESSION
106 if (f2fs_compressed_file(inode)) {
107 int ret = f2fs_is_compressed_cluster(inode, folio->index);
108
109 if (ret < 0) {
110 err = ret;
111 goto out;
112 } else if (ret) {
113 need_alloc = false;
114 }
115 }
116 #endif
117 /* should do out of any locked page */
118 if (need_alloc)
119 f2fs_balance_fs(sbi, true);
120
121 sb_start_pagefault(inode->i_sb);
122
123 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
124
125 f2fs_zero_post_eof_page(inode, (folio->index + 1) << PAGE_SHIFT, true);
126
127 file_update_time(vmf->vma->vm_file);
128 filemap_invalidate_lock_shared(inode->i_mapping);
129
130 folio_lock(folio);
131 if (unlikely(folio->mapping != inode->i_mapping ||
132 folio_pos(folio) > i_size_read(inode) ||
133 !folio_test_uptodate(folio))) {
134 folio_unlock(folio);
135 err = -EFAULT;
136 goto out_sem;
137 }
138
139 set_new_dnode(&dn, inode, NULL, NULL, 0);
140 if (need_alloc) {
141 /* block allocation */
142 err = f2fs_get_block_locked(&dn, folio->index);
143 } else {
144 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
145 f2fs_put_dnode(&dn);
146 if (f2fs_is_pinned_file(inode) &&
147 !__is_valid_data_blkaddr(dn.data_blkaddr))
148 err = -EIO;
149 }
150
151 if (err) {
152 folio_unlock(folio);
153 goto out_sem;
154 }
155
156 f2fs_folio_wait_writeback(folio, DATA, false, true);
157
158 /* wait for GCed page writeback via META_MAPPING */
159 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
160
161 /*
162 * check to see if the page is mapped already (no holes)
163 */
164 if (folio_test_mappedtodisk(folio))
165 goto out_sem;
166
167 /* page is wholly or partially inside EOF */
168 if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
169 i_size_read(inode)) {
170 loff_t offset;
171
172 offset = i_size_read(inode) & ~PAGE_MASK;
173 folio_zero_segment(folio, offset, folio_size(folio));
174 }
175 folio_mark_dirty(folio);
176
177 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
178 f2fs_update_time(sbi, REQ_TIME);
179
180 out_sem:
181 filemap_invalidate_unlock_shared(inode->i_mapping);
182
183 sb_end_pagefault(inode->i_sb);
184 out:
185 ret = vmf_fs_error(err);
186
187 trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
188 return ret;
189 }
190
191 static const struct vm_operations_struct f2fs_file_vm_ops = {
192 .fault = f2fs_filemap_fault,
193 .map_pages = filemap_map_pages,
194 .page_mkwrite = f2fs_vm_page_mkwrite,
195 };
196
get_parent_ino(struct inode * inode,nid_t * pino)197 static int get_parent_ino(struct inode *inode, nid_t *pino)
198 {
199 struct dentry *dentry;
200
201 /*
202 * Make sure to get the non-deleted alias. The alias associated with
203 * the open file descriptor being fsync()'ed may be deleted already.
204 */
205 dentry = d_find_alias(inode);
206 if (!dentry)
207 return 0;
208
209 *pino = d_parent_ino(dentry);
210 dput(dentry);
211 return 1;
212 }
213
need_do_checkpoint(struct inode * inode)214 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
215 {
216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
217 enum cp_reason_type cp_reason = CP_NO_NEEDED;
218
219 if (!S_ISREG(inode->i_mode))
220 cp_reason = CP_NON_REGULAR;
221 else if (f2fs_compressed_file(inode))
222 cp_reason = CP_COMPRESSED;
223 else if (inode->i_nlink != 1)
224 cp_reason = CP_HARDLINK;
225 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
226 cp_reason = CP_SB_NEED_CP;
227 else if (file_wrong_pino(inode))
228 cp_reason = CP_WRONG_PINO;
229 else if (!f2fs_space_for_roll_forward(sbi))
230 cp_reason = CP_NO_SPC_ROLL;
231 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
232 cp_reason = CP_NODE_NEED_CP;
233 else if (test_opt(sbi, FASTBOOT))
234 cp_reason = CP_FASTBOOT_MODE;
235 else if (F2FS_OPTION(sbi).active_logs == 2)
236 cp_reason = CP_SPEC_LOG_NUM;
237 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
238 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
239 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
240 TRANS_DIR_INO))
241 cp_reason = CP_RECOVER_DIR;
242 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
243 XATTR_DIR_INO))
244 cp_reason = CP_XATTR_DIR;
245
246 return cp_reason;
247 }
248
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)249 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
250 {
251 struct folio *i = filemap_get_folio(NODE_MAPPING(sbi), ino);
252 bool ret = false;
253 /* But we need to avoid that there are some inode updates */
254 if ((!IS_ERR(i) && folio_test_dirty(i)) ||
255 f2fs_need_inode_block_update(sbi, ino))
256 ret = true;
257 f2fs_folio_put(i, false);
258 return ret;
259 }
260
try_to_fix_pino(struct inode * inode)261 static void try_to_fix_pino(struct inode *inode)
262 {
263 struct f2fs_inode_info *fi = F2FS_I(inode);
264 nid_t pino;
265
266 f2fs_down_write(&fi->i_sem);
267 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
268 get_parent_ino(inode, &pino)) {
269 f2fs_i_pino_write(inode, pino);
270 file_got_pino(inode);
271 }
272 f2fs_up_write(&fi->i_sem);
273 }
274
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)275 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
276 int datasync, bool atomic)
277 {
278 struct inode *inode = file->f_mapping->host;
279 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
280 nid_t ino = inode->i_ino;
281 int ret = 0;
282 enum cp_reason_type cp_reason = 0;
283 struct writeback_control wbc = {
284 .sync_mode = WB_SYNC_ALL,
285 .nr_to_write = LONG_MAX,
286 };
287 unsigned int seq_id = 0;
288
289 if (unlikely(f2fs_readonly(inode->i_sb)))
290 return 0;
291
292 trace_f2fs_sync_file_enter(inode);
293
294 if (S_ISDIR(inode->i_mode))
295 goto go_write;
296
297 /* if fdatasync is triggered, let's do in-place-update */
298 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
299 set_inode_flag(inode, FI_NEED_IPU);
300 ret = file_write_and_wait_range(file, start, end);
301 clear_inode_flag(inode, FI_NEED_IPU);
302
303 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
304 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
305 return ret;
306 }
307
308 /* if the inode is dirty, let's recover all the time */
309 if (!f2fs_skip_inode_update(inode, datasync)) {
310 f2fs_write_inode(inode, NULL);
311 goto go_write;
312 }
313
314 /*
315 * if there is no written data, don't waste time to write recovery info.
316 */
317 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
318 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
319
320 /* it may call write_inode just prior to fsync */
321 if (need_inode_page_update(sbi, ino))
322 goto go_write;
323
324 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
325 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
326 goto flush_out;
327 goto out;
328 } else {
329 /*
330 * for OPU case, during fsync(), node can be persisted before
331 * data when lower device doesn't support write barrier, result
332 * in data corruption after SPO.
333 * So for strict fsync mode, force to use atomic write semantics
334 * to keep write order in between data/node and last node to
335 * avoid potential data corruption.
336 */
337 if (F2FS_OPTION(sbi).fsync_mode ==
338 FSYNC_MODE_STRICT && !atomic)
339 atomic = true;
340 }
341 go_write:
342 /*
343 * Both of fdatasync() and fsync() are able to be recovered from
344 * sudden-power-off.
345 */
346 f2fs_down_read(&F2FS_I(inode)->i_sem);
347 cp_reason = need_do_checkpoint(inode);
348 f2fs_up_read(&F2FS_I(inode)->i_sem);
349
350 if (cp_reason) {
351 /* all the dirty node pages should be flushed for POR */
352 ret = f2fs_sync_fs(inode->i_sb, 1);
353
354 /*
355 * We've secured consistency through sync_fs. Following pino
356 * will be used only for fsynced inodes after checkpoint.
357 */
358 try_to_fix_pino(inode);
359 clear_inode_flag(inode, FI_APPEND_WRITE);
360 clear_inode_flag(inode, FI_UPDATE_WRITE);
361 goto out;
362 }
363 sync_nodes:
364 atomic_inc(&sbi->wb_sync_req[NODE]);
365 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
366 atomic_dec(&sbi->wb_sync_req[NODE]);
367 if (ret)
368 goto out;
369
370 /* if cp_error was enabled, we should avoid infinite loop */
371 if (unlikely(f2fs_cp_error(sbi))) {
372 ret = -EIO;
373 goto out;
374 }
375
376 if (f2fs_need_inode_block_update(sbi, ino)) {
377 f2fs_mark_inode_dirty_sync(inode, true);
378 f2fs_write_inode(inode, NULL);
379 goto sync_nodes;
380 }
381
382 /*
383 * If it's atomic_write, it's just fine to keep write ordering. So
384 * here we don't need to wait for node write completion, since we use
385 * node chain which serializes node blocks. If one of node writes are
386 * reordered, we can see simply broken chain, resulting in stopping
387 * roll-forward recovery. It means we'll recover all or none node blocks
388 * given fsync mark.
389 */
390 if (!atomic) {
391 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
392 if (ret)
393 goto out;
394 }
395
396 /* once recovery info is written, don't need to tack this */
397 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
398 clear_inode_flag(inode, FI_APPEND_WRITE);
399 flush_out:
400 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
401 ret = f2fs_issue_flush(sbi, inode->i_ino);
402 if (!ret) {
403 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
404 clear_inode_flag(inode, FI_UPDATE_WRITE);
405 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
406 }
407 f2fs_update_time(sbi, REQ_TIME);
408 out:
409 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
410 return ret;
411 }
412
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)413 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
414 {
415 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
416 return -EIO;
417 return f2fs_do_sync_file(file, start, end, datasync, false);
418 }
419
__found_offset(struct address_space * mapping,struct dnode_of_data * dn,pgoff_t index,int whence)420 static bool __found_offset(struct address_space *mapping,
421 struct dnode_of_data *dn, pgoff_t index, int whence)
422 {
423 block_t blkaddr = f2fs_data_blkaddr(dn);
424 struct inode *inode = mapping->host;
425 bool compressed_cluster = false;
426
427 if (f2fs_compressed_file(inode)) {
428 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_folio,
429 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
430
431 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
432 }
433
434 switch (whence) {
435 case SEEK_DATA:
436 if (__is_valid_data_blkaddr(blkaddr))
437 return true;
438 if (blkaddr == NEW_ADDR &&
439 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
440 return true;
441 if (compressed_cluster)
442 return true;
443 break;
444 case SEEK_HOLE:
445 if (compressed_cluster)
446 return false;
447 if (blkaddr == NULL_ADDR)
448 return true;
449 break;
450 }
451 return false;
452 }
453
f2fs_seek_block(struct file * file,loff_t offset,int whence)454 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
455 {
456 struct inode *inode = file->f_mapping->host;
457 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
458 struct dnode_of_data dn;
459 pgoff_t pgofs, end_offset;
460 loff_t data_ofs = offset;
461 loff_t isize;
462 int err = 0;
463
464 inode_lock_shared(inode);
465
466 isize = i_size_read(inode);
467 if (offset >= isize)
468 goto fail;
469
470 /* handle inline data case */
471 if (f2fs_has_inline_data(inode)) {
472 if (whence == SEEK_HOLE) {
473 data_ofs = isize;
474 goto found;
475 } else if (whence == SEEK_DATA) {
476 data_ofs = offset;
477 goto found;
478 }
479 }
480
481 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
482
483 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
484 set_new_dnode(&dn, inode, NULL, NULL, 0);
485 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
486 if (err && err != -ENOENT) {
487 goto fail;
488 } else if (err == -ENOENT) {
489 /* direct node does not exists */
490 if (whence == SEEK_DATA) {
491 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
492 continue;
493 } else {
494 goto found;
495 }
496 }
497
498 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
499
500 /* find data/hole in dnode block */
501 for (; dn.ofs_in_node < end_offset;
502 dn.ofs_in_node++, pgofs++,
503 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
504 block_t blkaddr;
505
506 blkaddr = f2fs_data_blkaddr(&dn);
507
508 if (__is_valid_data_blkaddr(blkaddr) &&
509 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
510 blkaddr, DATA_GENERIC_ENHANCE)) {
511 f2fs_put_dnode(&dn);
512 goto fail;
513 }
514
515 if (__found_offset(file->f_mapping, &dn,
516 pgofs, whence)) {
517 f2fs_put_dnode(&dn);
518 goto found;
519 }
520 }
521 f2fs_put_dnode(&dn);
522 }
523
524 if (whence == SEEK_DATA)
525 goto fail;
526 found:
527 if (whence == SEEK_HOLE && data_ofs > isize)
528 data_ofs = isize;
529 inode_unlock_shared(inode);
530 return vfs_setpos(file, data_ofs, maxbytes);
531 fail:
532 inode_unlock_shared(inode);
533 return -ENXIO;
534 }
535
f2fs_llseek(struct file * file,loff_t offset,int whence)536 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
537 {
538 struct inode *inode = file->f_mapping->host;
539 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
540
541 switch (whence) {
542 case SEEK_SET:
543 case SEEK_CUR:
544 case SEEK_END:
545 return generic_file_llseek_size(file, offset, whence,
546 maxbytes, i_size_read(inode));
547 case SEEK_DATA:
548 case SEEK_HOLE:
549 if (offset < 0)
550 return -ENXIO;
551 return f2fs_seek_block(file, offset, whence);
552 }
553
554 return -EINVAL;
555 }
556
f2fs_file_mmap_prepare(struct vm_area_desc * desc)557 static int f2fs_file_mmap_prepare(struct vm_area_desc *desc)
558 {
559 struct file *file = desc->file;
560 struct inode *inode = file_inode(file);
561
562 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
563 return -EIO;
564
565 if (!f2fs_is_compress_backend_ready(inode))
566 return -EOPNOTSUPP;
567
568 file_accessed(file);
569 desc->vm_ops = &f2fs_file_vm_ops;
570
571 f2fs_down_read(&F2FS_I(inode)->i_sem);
572 set_inode_flag(inode, FI_MMAP_FILE);
573 f2fs_up_read(&F2FS_I(inode)->i_sem);
574
575 return 0;
576 }
577
finish_preallocate_blocks(struct inode * inode)578 static int finish_preallocate_blocks(struct inode *inode)
579 {
580 int ret = 0;
581 bool opened;
582
583 f2fs_down_read(&F2FS_I(inode)->i_sem);
584 opened = is_inode_flag_set(inode, FI_OPENED_FILE);
585 f2fs_up_read(&F2FS_I(inode)->i_sem);
586 if (opened)
587 return 0;
588
589 inode_lock(inode);
590 if (is_inode_flag_set(inode, FI_OPENED_FILE))
591 goto out_unlock;
592
593 if (!file_should_truncate(inode))
594 goto out_update;
595
596 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
597 filemap_invalidate_lock(inode->i_mapping);
598
599 truncate_setsize(inode, i_size_read(inode));
600 ret = f2fs_truncate(inode);
601
602 filemap_invalidate_unlock(inode->i_mapping);
603 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
604 if (ret)
605 goto out_unlock;
606
607 file_dont_truncate(inode);
608 out_update:
609 f2fs_down_write(&F2FS_I(inode)->i_sem);
610 set_inode_flag(inode, FI_OPENED_FILE);
611 f2fs_up_write(&F2FS_I(inode)->i_sem);
612 out_unlock:
613 inode_unlock(inode);
614 return ret;
615 }
616
f2fs_file_open(struct inode * inode,struct file * filp)617 static int f2fs_file_open(struct inode *inode, struct file *filp)
618 {
619 int err = fscrypt_file_open(inode, filp);
620
621 if (err)
622 return err;
623
624 if (!f2fs_is_compress_backend_ready(inode))
625 return -EOPNOTSUPP;
626
627 err = fsverity_file_open(inode, filp);
628 if (err)
629 return err;
630
631 filp->f_mode |= FMODE_NOWAIT;
632 filp->f_mode |= FMODE_CAN_ODIRECT;
633
634 err = dquot_file_open(inode, filp);
635 if (err)
636 return err;
637
638 err = finish_preallocate_blocks(inode);
639 if (!err)
640 atomic_inc(&F2FS_I(inode)->open_count);
641 return err;
642 }
643
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)644 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
645 {
646 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
647 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
648 __le32 *addr;
649 bool compressed_cluster = false;
650 int cluster_index = 0, valid_blocks = 0;
651 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
652 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
653 block_t blkstart;
654 int blklen = 0;
655
656 addr = get_dnode_addr(dn->inode, dn->node_folio) + ofs;
657 blkstart = le32_to_cpu(*addr);
658
659 /* Assumption: truncation starts with cluster */
660 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
661 block_t blkaddr = le32_to_cpu(*addr);
662
663 if (f2fs_compressed_file(dn->inode) &&
664 !(cluster_index & (cluster_size - 1))) {
665 if (compressed_cluster)
666 f2fs_i_compr_blocks_update(dn->inode,
667 valid_blocks, false);
668 compressed_cluster = (blkaddr == COMPRESS_ADDR);
669 valid_blocks = 0;
670 }
671
672 if (blkaddr == NULL_ADDR)
673 goto next;
674
675 f2fs_set_data_blkaddr(dn, NULL_ADDR);
676
677 if (__is_valid_data_blkaddr(blkaddr)) {
678 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
679 goto next;
680 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
681 DATA_GENERIC_ENHANCE))
682 goto next;
683 if (compressed_cluster)
684 valid_blocks++;
685 }
686
687 if (blkstart + blklen == blkaddr) {
688 blklen++;
689 } else {
690 f2fs_invalidate_blocks(sbi, blkstart, blklen);
691 blkstart = blkaddr;
692 blklen = 1;
693 }
694
695 if (!released || blkaddr != COMPRESS_ADDR)
696 nr_free++;
697
698 continue;
699
700 next:
701 if (blklen)
702 f2fs_invalidate_blocks(sbi, blkstart, blklen);
703
704 blkstart = le32_to_cpu(*(addr + 1));
705 blklen = 0;
706 }
707
708 if (blklen)
709 f2fs_invalidate_blocks(sbi, blkstart, blklen);
710
711 if (compressed_cluster)
712 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
713
714 if (nr_free) {
715 pgoff_t fofs;
716 /*
717 * once we invalidate valid blkaddr in range [ofs, ofs + count],
718 * we will invalidate all blkaddr in the whole range.
719 */
720 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_folio),
721 dn->inode) + ofs;
722 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
723 f2fs_update_age_extent_cache_range(dn, fofs, len);
724 dec_valid_block_count(sbi, dn->inode, nr_free);
725 }
726 dn->ofs_in_node = ofs;
727
728 f2fs_update_time(sbi, REQ_TIME);
729 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
730 dn->ofs_in_node, nr_free);
731 }
732
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)733 static int truncate_partial_data_page(struct inode *inode, u64 from,
734 bool cache_only)
735 {
736 loff_t offset = from & (PAGE_SIZE - 1);
737 pgoff_t index = from >> PAGE_SHIFT;
738 struct address_space *mapping = inode->i_mapping;
739 struct folio *folio;
740
741 if (!offset && !cache_only)
742 return 0;
743
744 if (cache_only) {
745 folio = filemap_lock_folio(mapping, index);
746 if (IS_ERR(folio))
747 return 0;
748 if (folio_test_uptodate(folio))
749 goto truncate_out;
750 f2fs_folio_put(folio, true);
751 return 0;
752 }
753
754 folio = f2fs_get_lock_data_folio(inode, index, true);
755 if (IS_ERR(folio))
756 return PTR_ERR(folio) == -ENOENT ? 0 : PTR_ERR(folio);
757 truncate_out:
758 f2fs_folio_wait_writeback(folio, DATA, true, true);
759 folio_zero_segment(folio, offset, folio_size(folio));
760
761 /* An encrypted inode should have a key and truncate the last page. */
762 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
763 if (!cache_only)
764 folio_mark_dirty(folio);
765 f2fs_folio_put(folio, true);
766 return 0;
767 }
768
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)769 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
770 {
771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
772 struct dnode_of_data dn;
773 pgoff_t free_from;
774 int count = 0, err = 0;
775 struct folio *ifolio;
776 bool truncate_page = false;
777
778 trace_f2fs_truncate_blocks_enter(inode, from);
779
780 if (IS_DEVICE_ALIASING(inode) && from) {
781 err = -EINVAL;
782 goto out_err;
783 }
784
785 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
786
787 if (free_from >= max_file_blocks(inode))
788 goto free_partial;
789
790 if (lock)
791 f2fs_lock_op(sbi);
792
793 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
794 if (IS_ERR(ifolio)) {
795 err = PTR_ERR(ifolio);
796 goto out;
797 }
798
799 if (IS_DEVICE_ALIASING(inode)) {
800 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
801 struct extent_info ei = et->largest;
802
803 f2fs_invalidate_blocks(sbi, ei.blk, ei.len);
804
805 dec_valid_block_count(sbi, inode, ei.len);
806 f2fs_update_time(sbi, REQ_TIME);
807
808 f2fs_folio_put(ifolio, true);
809 goto out;
810 }
811
812 if (f2fs_has_inline_data(inode)) {
813 f2fs_truncate_inline_inode(inode, ifolio, from);
814 f2fs_folio_put(ifolio, true);
815 truncate_page = true;
816 goto out;
817 }
818
819 set_new_dnode(&dn, inode, ifolio, NULL, 0);
820 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
821 if (err) {
822 if (err == -ENOENT)
823 goto free_next;
824 goto out;
825 }
826
827 count = ADDRS_PER_PAGE(dn.node_folio, inode);
828
829 count -= dn.ofs_in_node;
830 f2fs_bug_on(sbi, count < 0);
831
832 if (dn.ofs_in_node || IS_INODE(dn.node_folio)) {
833 f2fs_truncate_data_blocks_range(&dn, count);
834 free_from += count;
835 }
836
837 f2fs_put_dnode(&dn);
838 free_next:
839 err = f2fs_truncate_inode_blocks(inode, free_from);
840 out:
841 if (lock)
842 f2fs_unlock_op(sbi);
843 free_partial:
844 /* lastly zero out the first data page */
845 if (!err)
846 err = truncate_partial_data_page(inode, from, truncate_page);
847 out_err:
848 trace_f2fs_truncate_blocks_exit(inode, err);
849 return err;
850 }
851
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)852 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
853 {
854 u64 free_from = from;
855 int err;
856
857 #ifdef CONFIG_F2FS_FS_COMPRESSION
858 /*
859 * for compressed file, only support cluster size
860 * aligned truncation.
861 */
862 if (f2fs_compressed_file(inode))
863 free_from = round_up(from,
864 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
865 #endif
866
867 err = f2fs_do_truncate_blocks(inode, free_from, lock);
868 if (err)
869 return err;
870
871 #ifdef CONFIG_F2FS_FS_COMPRESSION
872 /*
873 * For compressed file, after release compress blocks, don't allow write
874 * direct, but we should allow write direct after truncate to zero.
875 */
876 if (f2fs_compressed_file(inode) && !free_from
877 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
878 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
879
880 if (from != free_from) {
881 err = f2fs_truncate_partial_cluster(inode, from, lock);
882 if (err)
883 return err;
884 }
885 #endif
886
887 return 0;
888 }
889
f2fs_truncate(struct inode * inode)890 int f2fs_truncate(struct inode *inode)
891 {
892 int err;
893
894 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
895 return -EIO;
896
897 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
898 S_ISLNK(inode->i_mode)))
899 return 0;
900
901 trace_f2fs_truncate(inode);
902
903 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
904 return -EIO;
905
906 err = f2fs_dquot_initialize(inode);
907 if (err)
908 return err;
909
910 /* we should check inline_data size */
911 if (!f2fs_may_inline_data(inode)) {
912 err = f2fs_convert_inline_inode(inode);
913 if (err) {
914 /*
915 * Always truncate page #0 to avoid page cache
916 * leak in evict() path.
917 */
918 truncate_inode_pages_range(inode->i_mapping,
919 F2FS_BLK_TO_BYTES(0),
920 F2FS_BLK_END_BYTES(0));
921 return err;
922 }
923 }
924
925 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
926 if (err)
927 return err;
928
929 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
930 f2fs_mark_inode_dirty_sync(inode, false);
931 return 0;
932 }
933
f2fs_force_buffered_io(struct inode * inode,int rw)934 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
935 {
936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937
938 if (!fscrypt_dio_supported(inode))
939 return true;
940 if (fsverity_active(inode))
941 return true;
942 if (f2fs_compressed_file(inode))
943 return true;
944 /*
945 * only force direct read to use buffered IO, for direct write,
946 * it expects inline data conversion before committing IO.
947 */
948 if (f2fs_has_inline_data(inode) && rw == READ)
949 return true;
950
951 /* disallow direct IO if any of devices has unaligned blksize */
952 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
953 return true;
954 /*
955 * for blkzoned device, fallback direct IO to buffered IO, so
956 * all IOs can be serialized by log-structured write.
957 */
958 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
959 !f2fs_is_pinned_file(inode))
960 return true;
961 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
962 return true;
963
964 return false;
965 }
966
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)967 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
968 struct kstat *stat, u32 request_mask, unsigned int query_flags)
969 {
970 struct inode *inode = d_inode(path->dentry);
971 struct f2fs_inode_info *fi = F2FS_I(inode);
972 struct f2fs_inode *ri = NULL;
973 unsigned int flags;
974
975 if (f2fs_has_extra_attr(inode) &&
976 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
977 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
978 stat->result_mask |= STATX_BTIME;
979 stat->btime.tv_sec = fi->i_crtime.tv_sec;
980 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
981 }
982
983 /*
984 * Return the DIO alignment restrictions if requested. We only return
985 * this information when requested, since on encrypted files it might
986 * take a fair bit of work to get if the file wasn't opened recently.
987 *
988 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
989 * cannot represent that, so in that case we report no DIO support.
990 */
991 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
992 unsigned int bsize = i_blocksize(inode);
993
994 stat->result_mask |= STATX_DIOALIGN;
995 if (!f2fs_force_buffered_io(inode, WRITE)) {
996 stat->dio_mem_align = bsize;
997 stat->dio_offset_align = bsize;
998 }
999 }
1000
1001 flags = fi->i_flags;
1002 if (flags & F2FS_COMPR_FL)
1003 stat->attributes |= STATX_ATTR_COMPRESSED;
1004 if (flags & F2FS_APPEND_FL)
1005 stat->attributes |= STATX_ATTR_APPEND;
1006 if (IS_ENCRYPTED(inode))
1007 stat->attributes |= STATX_ATTR_ENCRYPTED;
1008 if (flags & F2FS_IMMUTABLE_FL)
1009 stat->attributes |= STATX_ATTR_IMMUTABLE;
1010 if (flags & F2FS_NODUMP_FL)
1011 stat->attributes |= STATX_ATTR_NODUMP;
1012 if (IS_VERITY(inode))
1013 stat->attributes |= STATX_ATTR_VERITY;
1014
1015 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
1016 STATX_ATTR_APPEND |
1017 STATX_ATTR_ENCRYPTED |
1018 STATX_ATTR_IMMUTABLE |
1019 STATX_ATTR_NODUMP |
1020 STATX_ATTR_VERITY);
1021
1022 generic_fillattr(idmap, request_mask, inode, stat);
1023
1024 /* we need to show initial sectors used for inline_data/dentries */
1025 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
1026 f2fs_has_inline_dentry(inode))
1027 stat->blocks += (stat->size + 511) >> 9;
1028
1029 return 0;
1030 }
1031
1032 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)1033 static void __setattr_copy(struct mnt_idmap *idmap,
1034 struct inode *inode, const struct iattr *attr)
1035 {
1036 unsigned int ia_valid = attr->ia_valid;
1037
1038 i_uid_update(idmap, attr, inode);
1039 i_gid_update(idmap, attr, inode);
1040 if (ia_valid & ATTR_ATIME)
1041 inode_set_atime_to_ts(inode, attr->ia_atime);
1042 if (ia_valid & ATTR_MTIME)
1043 inode_set_mtime_to_ts(inode, attr->ia_mtime);
1044 if (ia_valid & ATTR_CTIME)
1045 inode_set_ctime_to_ts(inode, attr->ia_ctime);
1046 if (ia_valid & ATTR_MODE) {
1047 umode_t mode = attr->ia_mode;
1048
1049 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
1050 mode &= ~S_ISGID;
1051 set_acl_inode(inode, mode);
1052 }
1053 }
1054 #else
1055 #define __setattr_copy setattr_copy
1056 #endif
1057
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1058 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1059 struct iattr *attr)
1060 {
1061 struct inode *inode = d_inode(dentry);
1062 struct f2fs_inode_info *fi = F2FS_I(inode);
1063 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064 int err;
1065
1066 if (unlikely(f2fs_cp_error(sbi)))
1067 return -EIO;
1068
1069 err = setattr_prepare(idmap, dentry, attr);
1070 if (err)
1071 return err;
1072
1073 err = fscrypt_prepare_setattr(dentry, attr);
1074 if (err)
1075 return err;
1076
1077 err = fsverity_prepare_setattr(dentry, attr);
1078 if (err)
1079 return err;
1080
1081 if (unlikely(IS_IMMUTABLE(inode)))
1082 return -EPERM;
1083
1084 if (unlikely(IS_APPEND(inode) &&
1085 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
1086 ATTR_GID | ATTR_TIMES_SET))))
1087 return -EPERM;
1088
1089 if ((attr->ia_valid & ATTR_SIZE)) {
1090 if (!f2fs_is_compress_backend_ready(inode) ||
1091 IS_DEVICE_ALIASING(inode))
1092 return -EOPNOTSUPP;
1093 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1094 !IS_ALIGNED(attr->ia_size,
1095 F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1096 return -EINVAL;
1097 /*
1098 * To prevent scattered pin block generation, we don't allow
1099 * smaller/equal size unaligned truncation for pinned file.
1100 * We only support overwrite IO to pinned file, so don't
1101 * care about larger size truncation.
1102 */
1103 if (f2fs_is_pinned_file(inode) &&
1104 attr->ia_size <= i_size_read(inode) &&
1105 !IS_ALIGNED(attr->ia_size,
1106 F2FS_BLK_TO_BYTES(CAP_BLKS_PER_SEC(sbi))))
1107 return -EINVAL;
1108 }
1109
1110 if (is_quota_modification(idmap, inode, attr)) {
1111 err = f2fs_dquot_initialize(inode);
1112 if (err)
1113 return err;
1114 }
1115 if (i_uid_needs_update(idmap, attr, inode) ||
1116 i_gid_needs_update(idmap, attr, inode)) {
1117 f2fs_lock_op(sbi);
1118 err = dquot_transfer(idmap, inode, attr);
1119 if (err) {
1120 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
1121 f2fs_unlock_op(sbi);
1122 return err;
1123 }
1124 /*
1125 * update uid/gid under lock_op(), so that dquot and inode can
1126 * be updated atomically.
1127 */
1128 i_uid_update(idmap, attr, inode);
1129 i_gid_update(idmap, attr, inode);
1130 f2fs_mark_inode_dirty_sync(inode, true);
1131 f2fs_unlock_op(sbi);
1132 }
1133
1134 if (attr->ia_valid & ATTR_SIZE) {
1135 loff_t old_size = i_size_read(inode);
1136
1137 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1138 /*
1139 * should convert inline inode before i_size_write to
1140 * keep smaller than inline_data size with inline flag.
1141 */
1142 err = f2fs_convert_inline_inode(inode);
1143 if (err)
1144 return err;
1145 }
1146
1147 /*
1148 * wait for inflight dio, blocks should be removed after
1149 * IO completion.
1150 */
1151 if (attr->ia_size < old_size)
1152 inode_dio_wait(inode);
1153
1154 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1155 filemap_invalidate_lock(inode->i_mapping);
1156
1157 if (attr->ia_size > old_size)
1158 f2fs_zero_post_eof_page(inode, attr->ia_size, false);
1159 truncate_setsize(inode, attr->ia_size);
1160
1161 if (attr->ia_size <= old_size)
1162 err = f2fs_truncate(inode);
1163 /*
1164 * do not trim all blocks after i_size if target size is
1165 * larger than i_size.
1166 */
1167 filemap_invalidate_unlock(inode->i_mapping);
1168 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1169 if (err)
1170 return err;
1171
1172 spin_lock(&fi->i_size_lock);
1173 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1174 fi->last_disk_size = i_size_read(inode);
1175 spin_unlock(&fi->i_size_lock);
1176 }
1177
1178 __setattr_copy(idmap, inode, attr);
1179
1180 if (attr->ia_valid & ATTR_MODE) {
1181 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1182
1183 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1184 if (!err)
1185 inode->i_mode = fi->i_acl_mode;
1186 clear_inode_flag(inode, FI_ACL_MODE);
1187 }
1188 }
1189
1190 /* file size may changed here */
1191 f2fs_mark_inode_dirty_sync(inode, true);
1192
1193 /* inode change will produce dirty node pages flushed by checkpoint */
1194 f2fs_balance_fs(sbi, true);
1195
1196 return err;
1197 }
1198
1199 const struct inode_operations f2fs_file_inode_operations = {
1200 .getattr = f2fs_getattr,
1201 .setattr = f2fs_setattr,
1202 .get_inode_acl = f2fs_get_acl,
1203 .set_acl = f2fs_set_acl,
1204 .listxattr = f2fs_listxattr,
1205 .fiemap = f2fs_fiemap,
1206 .fileattr_get = f2fs_fileattr_get,
1207 .fileattr_set = f2fs_fileattr_set,
1208 };
1209
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1210 static int fill_zero(struct inode *inode, pgoff_t index,
1211 loff_t start, loff_t len)
1212 {
1213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1214 struct folio *folio;
1215
1216 if (!len)
1217 return 0;
1218
1219 f2fs_balance_fs(sbi, true);
1220
1221 f2fs_lock_op(sbi);
1222 folio = f2fs_get_new_data_folio(inode, NULL, index, false);
1223 f2fs_unlock_op(sbi);
1224
1225 if (IS_ERR(folio))
1226 return PTR_ERR(folio);
1227
1228 f2fs_folio_wait_writeback(folio, DATA, true, true);
1229 folio_zero_range(folio, start, len);
1230 folio_mark_dirty(folio);
1231 f2fs_folio_put(folio, true);
1232 return 0;
1233 }
1234
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1235 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1236 {
1237 int err;
1238
1239 while (pg_start < pg_end) {
1240 struct dnode_of_data dn;
1241 pgoff_t end_offset, count;
1242
1243 set_new_dnode(&dn, inode, NULL, NULL, 0);
1244 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1245 if (err) {
1246 if (err == -ENOENT) {
1247 pg_start = f2fs_get_next_page_offset(&dn,
1248 pg_start);
1249 continue;
1250 }
1251 return err;
1252 }
1253
1254 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1255 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1256
1257 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1258
1259 f2fs_truncate_data_blocks_range(&dn, count);
1260 f2fs_put_dnode(&dn);
1261
1262 pg_start += count;
1263 }
1264 return 0;
1265 }
1266
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1267 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1268 {
1269 pgoff_t pg_start, pg_end;
1270 loff_t off_start, off_end;
1271 int ret;
1272
1273 ret = f2fs_convert_inline_inode(inode);
1274 if (ret)
1275 return ret;
1276
1277 f2fs_zero_post_eof_page(inode, offset + len, true);
1278
1279 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1280 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1281
1282 off_start = offset & (PAGE_SIZE - 1);
1283 off_end = (offset + len) & (PAGE_SIZE - 1);
1284
1285 if (pg_start == pg_end) {
1286 ret = fill_zero(inode, pg_start, off_start,
1287 off_end - off_start);
1288 if (ret)
1289 return ret;
1290 } else {
1291 if (off_start) {
1292 ret = fill_zero(inode, pg_start++, off_start,
1293 PAGE_SIZE - off_start);
1294 if (ret)
1295 return ret;
1296 }
1297 if (off_end) {
1298 ret = fill_zero(inode, pg_end, 0, off_end);
1299 if (ret)
1300 return ret;
1301 }
1302
1303 if (pg_start < pg_end) {
1304 loff_t blk_start, blk_end;
1305 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1306
1307 f2fs_balance_fs(sbi, true);
1308
1309 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1310 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1311
1312 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1313 filemap_invalidate_lock(inode->i_mapping);
1314
1315 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1316
1317 f2fs_lock_op(sbi);
1318 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1319 f2fs_unlock_op(sbi);
1320
1321 filemap_invalidate_unlock(inode->i_mapping);
1322 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1323 }
1324 }
1325
1326 return ret;
1327 }
1328
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1329 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1330 int *do_replace, pgoff_t off, pgoff_t len)
1331 {
1332 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1333 struct dnode_of_data dn;
1334 int ret, done, i;
1335
1336 next_dnode:
1337 set_new_dnode(&dn, inode, NULL, NULL, 0);
1338 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1339 if (ret && ret != -ENOENT) {
1340 return ret;
1341 } else if (ret == -ENOENT) {
1342 if (dn.max_level == 0)
1343 return -ENOENT;
1344 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1345 dn.ofs_in_node, len);
1346 blkaddr += done;
1347 do_replace += done;
1348 goto next;
1349 }
1350
1351 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, inode) -
1352 dn.ofs_in_node, len);
1353 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1354 *blkaddr = f2fs_data_blkaddr(&dn);
1355
1356 if (__is_valid_data_blkaddr(*blkaddr) &&
1357 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1358 DATA_GENERIC_ENHANCE)) {
1359 f2fs_put_dnode(&dn);
1360 return -EFSCORRUPTED;
1361 }
1362
1363 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1364
1365 if (f2fs_lfs_mode(sbi)) {
1366 f2fs_put_dnode(&dn);
1367 return -EOPNOTSUPP;
1368 }
1369
1370 /* do not invalidate this block address */
1371 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1372 *do_replace = 1;
1373 }
1374 }
1375 f2fs_put_dnode(&dn);
1376 next:
1377 len -= done;
1378 off += done;
1379 if (len)
1380 goto next_dnode;
1381 return 0;
1382 }
1383
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1384 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1385 int *do_replace, pgoff_t off, int len)
1386 {
1387 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1388 struct dnode_of_data dn;
1389 int ret, i;
1390
1391 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1392 if (*do_replace == 0)
1393 continue;
1394
1395 set_new_dnode(&dn, inode, NULL, NULL, 0);
1396 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1397 if (ret) {
1398 dec_valid_block_count(sbi, inode, 1);
1399 f2fs_invalidate_blocks(sbi, *blkaddr, 1);
1400 } else {
1401 f2fs_update_data_blkaddr(&dn, *blkaddr);
1402 }
1403 f2fs_put_dnode(&dn);
1404 }
1405 return 0;
1406 }
1407
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1408 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1409 block_t *blkaddr, int *do_replace,
1410 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1411 {
1412 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1413 pgoff_t i = 0;
1414 int ret;
1415
1416 while (i < len) {
1417 if (blkaddr[i] == NULL_ADDR && !full) {
1418 i++;
1419 continue;
1420 }
1421
1422 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1423 struct dnode_of_data dn;
1424 struct node_info ni;
1425 size_t new_size;
1426 pgoff_t ilen;
1427
1428 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1429 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1430 if (ret)
1431 return ret;
1432
1433 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1434 if (ret) {
1435 f2fs_put_dnode(&dn);
1436 return ret;
1437 }
1438
1439 ilen = min((pgoff_t)
1440 ADDRS_PER_PAGE(dn.node_folio, dst_inode) -
1441 dn.ofs_in_node, len - i);
1442 do {
1443 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1444 f2fs_truncate_data_blocks_range(&dn, 1);
1445
1446 if (do_replace[i]) {
1447 f2fs_i_blocks_write(src_inode,
1448 1, false, false);
1449 f2fs_i_blocks_write(dst_inode,
1450 1, true, false);
1451 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1452 blkaddr[i], ni.version, true, false);
1453
1454 do_replace[i] = 0;
1455 }
1456 dn.ofs_in_node++;
1457 i++;
1458 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1459 if (dst_inode->i_size < new_size)
1460 f2fs_i_size_write(dst_inode, new_size);
1461 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1462
1463 f2fs_put_dnode(&dn);
1464 } else {
1465 struct folio *fsrc, *fdst;
1466
1467 fsrc = f2fs_get_lock_data_folio(src_inode,
1468 src + i, true);
1469 if (IS_ERR(fsrc))
1470 return PTR_ERR(fsrc);
1471 fdst = f2fs_get_new_data_folio(dst_inode, NULL, dst + i,
1472 true);
1473 if (IS_ERR(fdst)) {
1474 f2fs_folio_put(fsrc, true);
1475 return PTR_ERR(fdst);
1476 }
1477
1478 f2fs_folio_wait_writeback(fdst, DATA, true, true);
1479
1480 memcpy_folio(fdst, 0, fsrc, 0, PAGE_SIZE);
1481 folio_mark_dirty(fdst);
1482 folio_set_f2fs_gcing(fdst);
1483 f2fs_folio_put(fdst, true);
1484 f2fs_folio_put(fsrc, true);
1485
1486 ret = f2fs_truncate_hole(src_inode,
1487 src + i, src + i + 1);
1488 if (ret)
1489 return ret;
1490 i++;
1491 }
1492 }
1493 return 0;
1494 }
1495
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1496 static int __exchange_data_block(struct inode *src_inode,
1497 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1498 pgoff_t len, bool full)
1499 {
1500 block_t *src_blkaddr;
1501 int *do_replace;
1502 pgoff_t olen;
1503 int ret;
1504
1505 while (len) {
1506 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1507
1508 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1509 array_size(olen, sizeof(block_t)),
1510 GFP_NOFS);
1511 if (!src_blkaddr)
1512 return -ENOMEM;
1513
1514 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1515 array_size(olen, sizeof(int)),
1516 GFP_NOFS);
1517 if (!do_replace) {
1518 kvfree(src_blkaddr);
1519 return -ENOMEM;
1520 }
1521
1522 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1523 do_replace, src, olen);
1524 if (ret)
1525 goto roll_back;
1526
1527 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1528 do_replace, src, dst, olen, full);
1529 if (ret)
1530 goto roll_back;
1531
1532 src += olen;
1533 dst += olen;
1534 len -= olen;
1535
1536 kvfree(src_blkaddr);
1537 kvfree(do_replace);
1538 }
1539 return 0;
1540
1541 roll_back:
1542 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1543 kvfree(src_blkaddr);
1544 kvfree(do_replace);
1545 return ret;
1546 }
1547
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1548 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1549 {
1550 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1551 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1552 pgoff_t start = offset >> PAGE_SHIFT;
1553 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1554 int ret;
1555
1556 f2fs_balance_fs(sbi, true);
1557
1558 /* avoid gc operation during block exchange */
1559 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1560 filemap_invalidate_lock(inode->i_mapping);
1561
1562 f2fs_zero_post_eof_page(inode, offset + len, false);
1563
1564 f2fs_lock_op(sbi);
1565 f2fs_drop_extent_tree(inode);
1566 truncate_pagecache(inode, offset);
1567 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1568 f2fs_unlock_op(sbi);
1569
1570 filemap_invalidate_unlock(inode->i_mapping);
1571 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1572 return ret;
1573 }
1574
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1575 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1576 {
1577 loff_t new_size;
1578 int ret;
1579
1580 if (offset + len >= i_size_read(inode))
1581 return -EINVAL;
1582
1583 /* collapse range should be aligned to block size of f2fs. */
1584 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1585 return -EINVAL;
1586
1587 ret = f2fs_convert_inline_inode(inode);
1588 if (ret)
1589 return ret;
1590
1591 /* write out all dirty pages from offset */
1592 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1593 if (ret)
1594 return ret;
1595
1596 ret = f2fs_do_collapse(inode, offset, len);
1597 if (ret)
1598 return ret;
1599
1600 /* write out all moved pages, if possible */
1601 filemap_invalidate_lock(inode->i_mapping);
1602 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1603 truncate_pagecache(inode, offset);
1604
1605 new_size = i_size_read(inode) - len;
1606 ret = f2fs_truncate_blocks(inode, new_size, true);
1607 filemap_invalidate_unlock(inode->i_mapping);
1608 if (!ret)
1609 f2fs_i_size_write(inode, new_size);
1610 return ret;
1611 }
1612
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1613 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1614 pgoff_t end)
1615 {
1616 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1617 pgoff_t index = start;
1618 unsigned int ofs_in_node = dn->ofs_in_node;
1619 blkcnt_t count = 0;
1620 int ret;
1621
1622 for (; index < end; index++, dn->ofs_in_node++) {
1623 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1624 count++;
1625 }
1626
1627 dn->ofs_in_node = ofs_in_node;
1628 ret = f2fs_reserve_new_blocks(dn, count);
1629 if (ret)
1630 return ret;
1631
1632 dn->ofs_in_node = ofs_in_node;
1633 for (index = start; index < end; index++, dn->ofs_in_node++) {
1634 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1635 /*
1636 * f2fs_reserve_new_blocks will not guarantee entire block
1637 * allocation.
1638 */
1639 if (dn->data_blkaddr == NULL_ADDR) {
1640 ret = -ENOSPC;
1641 break;
1642 }
1643
1644 if (dn->data_blkaddr == NEW_ADDR)
1645 continue;
1646
1647 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1648 DATA_GENERIC_ENHANCE)) {
1649 ret = -EFSCORRUPTED;
1650 break;
1651 }
1652
1653 f2fs_invalidate_blocks(sbi, dn->data_blkaddr, 1);
1654 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1655 }
1656
1657 if (index > start) {
1658 f2fs_update_read_extent_cache_range(dn, start, 0,
1659 index - start);
1660 f2fs_update_age_extent_cache_range(dn, start, index - start);
1661 }
1662
1663 return ret;
1664 }
1665
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1666 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1667 int mode)
1668 {
1669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1670 struct address_space *mapping = inode->i_mapping;
1671 pgoff_t index, pg_start, pg_end;
1672 loff_t new_size = i_size_read(inode);
1673 loff_t off_start, off_end;
1674 int ret = 0;
1675
1676 ret = inode_newsize_ok(inode, (len + offset));
1677 if (ret)
1678 return ret;
1679
1680 ret = f2fs_convert_inline_inode(inode);
1681 if (ret)
1682 return ret;
1683
1684 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1685 if (ret)
1686 return ret;
1687
1688 f2fs_zero_post_eof_page(inode, offset + len, true);
1689
1690 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1691 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1692
1693 off_start = offset & (PAGE_SIZE - 1);
1694 off_end = (offset + len) & (PAGE_SIZE - 1);
1695
1696 if (pg_start == pg_end) {
1697 ret = fill_zero(inode, pg_start, off_start,
1698 off_end - off_start);
1699 if (ret)
1700 return ret;
1701
1702 new_size = max_t(loff_t, new_size, offset + len);
1703 } else {
1704 if (off_start) {
1705 ret = fill_zero(inode, pg_start++, off_start,
1706 PAGE_SIZE - off_start);
1707 if (ret)
1708 return ret;
1709
1710 new_size = max_t(loff_t, new_size,
1711 (loff_t)pg_start << PAGE_SHIFT);
1712 }
1713
1714 for (index = pg_start; index < pg_end;) {
1715 struct dnode_of_data dn;
1716 unsigned int end_offset;
1717 pgoff_t end;
1718
1719 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1720 filemap_invalidate_lock(mapping);
1721
1722 truncate_pagecache_range(inode,
1723 (loff_t)index << PAGE_SHIFT,
1724 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1725
1726 f2fs_lock_op(sbi);
1727
1728 set_new_dnode(&dn, inode, NULL, NULL, 0);
1729 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1730 if (ret) {
1731 f2fs_unlock_op(sbi);
1732 filemap_invalidate_unlock(mapping);
1733 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1734 goto out;
1735 }
1736
1737 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1738 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1739
1740 ret = f2fs_do_zero_range(&dn, index, end);
1741 f2fs_put_dnode(&dn);
1742
1743 f2fs_unlock_op(sbi);
1744 filemap_invalidate_unlock(mapping);
1745 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1746
1747 f2fs_balance_fs(sbi, dn.node_changed);
1748
1749 if (ret)
1750 goto out;
1751
1752 index = end;
1753 new_size = max_t(loff_t, new_size,
1754 (loff_t)index << PAGE_SHIFT);
1755 }
1756
1757 if (off_end) {
1758 ret = fill_zero(inode, pg_end, 0, off_end);
1759 if (ret)
1760 goto out;
1761
1762 new_size = max_t(loff_t, new_size, offset + len);
1763 }
1764 }
1765
1766 out:
1767 if (new_size > i_size_read(inode)) {
1768 if (mode & FALLOC_FL_KEEP_SIZE)
1769 file_set_keep_isize(inode);
1770 else
1771 f2fs_i_size_write(inode, new_size);
1772 }
1773 return ret;
1774 }
1775
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1776 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1777 {
1778 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1779 struct address_space *mapping = inode->i_mapping;
1780 pgoff_t nr, pg_start, pg_end, delta, idx;
1781 loff_t new_size;
1782 int ret = 0;
1783
1784 new_size = i_size_read(inode) + len;
1785 ret = inode_newsize_ok(inode, new_size);
1786 if (ret)
1787 return ret;
1788
1789 if (offset >= i_size_read(inode))
1790 return -EINVAL;
1791
1792 /* insert range should be aligned to block size of f2fs. */
1793 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1794 return -EINVAL;
1795
1796 ret = f2fs_convert_inline_inode(inode);
1797 if (ret)
1798 return ret;
1799
1800 f2fs_balance_fs(sbi, true);
1801
1802 filemap_invalidate_lock(mapping);
1803 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1804 filemap_invalidate_unlock(mapping);
1805 if (ret)
1806 return ret;
1807
1808 /* write out all dirty pages from offset */
1809 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1810 if (ret)
1811 return ret;
1812
1813 pg_start = offset >> PAGE_SHIFT;
1814 pg_end = (offset + len) >> PAGE_SHIFT;
1815 delta = pg_end - pg_start;
1816 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1817
1818 /* avoid gc operation during block exchange */
1819 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1820 filemap_invalidate_lock(mapping);
1821
1822 f2fs_zero_post_eof_page(inode, offset + len, false);
1823 truncate_pagecache(inode, offset);
1824
1825 while (!ret && idx > pg_start) {
1826 nr = idx - pg_start;
1827 if (nr > delta)
1828 nr = delta;
1829 idx -= nr;
1830
1831 f2fs_lock_op(sbi);
1832 f2fs_drop_extent_tree(inode);
1833
1834 ret = __exchange_data_block(inode, inode, idx,
1835 idx + delta, nr, false);
1836 f2fs_unlock_op(sbi);
1837 }
1838 filemap_invalidate_unlock(mapping);
1839 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1840 if (ret)
1841 return ret;
1842
1843 /* write out all moved pages, if possible */
1844 filemap_invalidate_lock(mapping);
1845 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1846 truncate_pagecache(inode, offset);
1847 filemap_invalidate_unlock(mapping);
1848
1849 if (!ret)
1850 f2fs_i_size_write(inode, new_size);
1851 return ret;
1852 }
1853
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1854 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1855 loff_t len, int mode)
1856 {
1857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1858 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1859 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1860 .m_may_create = true };
1861 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1862 .init_gc_type = FG_GC,
1863 .should_migrate_blocks = false,
1864 .err_gc_skipped = true,
1865 .nr_free_secs = 0 };
1866 pgoff_t pg_start, pg_end;
1867 loff_t new_size;
1868 loff_t off_end;
1869 block_t expanded = 0;
1870 int err;
1871
1872 err = inode_newsize_ok(inode, (len + offset));
1873 if (err)
1874 return err;
1875
1876 err = f2fs_convert_inline_inode(inode);
1877 if (err)
1878 return err;
1879
1880 f2fs_zero_post_eof_page(inode, offset + len, true);
1881
1882 f2fs_balance_fs(sbi, true);
1883
1884 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1885 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1886 off_end = (offset + len) & (PAGE_SIZE - 1);
1887
1888 map.m_lblk = pg_start;
1889 map.m_len = pg_end - pg_start;
1890 if (off_end)
1891 map.m_len++;
1892
1893 if (!map.m_len)
1894 return 0;
1895
1896 if (f2fs_is_pinned_file(inode)) {
1897 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1898 block_t sec_len = roundup(map.m_len, sec_blks);
1899
1900 map.m_len = sec_blks;
1901 next_alloc:
1902 f2fs_down_write(&sbi->pin_sem);
1903
1904 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1905 if (has_not_enough_free_secs(sbi, 0, 0)) {
1906 f2fs_up_write(&sbi->pin_sem);
1907 err = -ENOSPC;
1908 f2fs_warn_ratelimited(sbi,
1909 "ino:%lu, start:%lu, end:%lu, need to trigger GC to "
1910 "reclaim enough free segment when checkpoint is enabled",
1911 inode->i_ino, pg_start, pg_end);
1912 goto out_err;
1913 }
1914 }
1915
1916 if (has_not_enough_free_secs(sbi, 0,
1917 sbi->reserved_pin_section)) {
1918 f2fs_down_write(&sbi->gc_lock);
1919 stat_inc_gc_call_count(sbi, FOREGROUND);
1920 err = f2fs_gc(sbi, &gc_control);
1921 if (err && err != -ENODATA) {
1922 f2fs_up_write(&sbi->pin_sem);
1923 goto out_err;
1924 }
1925 }
1926
1927 err = f2fs_allocate_pinning_section(sbi);
1928 if (err) {
1929 f2fs_up_write(&sbi->pin_sem);
1930 goto out_err;
1931 }
1932
1933 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1934 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1935 file_dont_truncate(inode);
1936
1937 f2fs_up_write(&sbi->pin_sem);
1938
1939 expanded += map.m_len;
1940 sec_len -= map.m_len;
1941 map.m_lblk += map.m_len;
1942 if (!err && sec_len)
1943 goto next_alloc;
1944
1945 map.m_len = expanded;
1946 } else {
1947 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1948 expanded = map.m_len;
1949 }
1950 out_err:
1951 if (err) {
1952 pgoff_t last_off;
1953
1954 if (!expanded)
1955 return err;
1956
1957 last_off = pg_start + expanded - 1;
1958
1959 /* update new size to the failed position */
1960 new_size = (last_off == pg_end) ? offset + len :
1961 (loff_t)(last_off + 1) << PAGE_SHIFT;
1962 } else {
1963 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1964 }
1965
1966 if (new_size > i_size_read(inode)) {
1967 if (mode & FALLOC_FL_KEEP_SIZE)
1968 file_set_keep_isize(inode);
1969 else
1970 f2fs_i_size_write(inode, new_size);
1971 }
1972
1973 return err;
1974 }
1975
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1976 static long f2fs_fallocate(struct file *file, int mode,
1977 loff_t offset, loff_t len)
1978 {
1979 struct inode *inode = file_inode(file);
1980 long ret = 0;
1981
1982 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1983 return -EIO;
1984 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1985 return -ENOSPC;
1986 if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1987 return -EOPNOTSUPP;
1988
1989 /* f2fs only support ->fallocate for regular file */
1990 if (!S_ISREG(inode->i_mode))
1991 return -EINVAL;
1992
1993 if (IS_ENCRYPTED(inode) &&
1994 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1995 return -EOPNOTSUPP;
1996
1997 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1998 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1999 FALLOC_FL_INSERT_RANGE))
2000 return -EOPNOTSUPP;
2001
2002 inode_lock(inode);
2003
2004 /*
2005 * Pinned file should not support partial truncation since the block
2006 * can be used by applications.
2007 */
2008 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
2009 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
2010 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
2011 ret = -EOPNOTSUPP;
2012 goto out;
2013 }
2014
2015 ret = file_modified(file);
2016 if (ret)
2017 goto out;
2018
2019 /*
2020 * wait for inflight dio, blocks should be removed after IO
2021 * completion.
2022 */
2023 inode_dio_wait(inode);
2024
2025 if (mode & FALLOC_FL_PUNCH_HOLE) {
2026 if (offset >= inode->i_size)
2027 goto out;
2028
2029 ret = f2fs_punch_hole(inode, offset, len);
2030 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
2031 ret = f2fs_collapse_range(inode, offset, len);
2032 } else if (mode & FALLOC_FL_ZERO_RANGE) {
2033 ret = f2fs_zero_range(inode, offset, len, mode);
2034 } else if (mode & FALLOC_FL_INSERT_RANGE) {
2035 ret = f2fs_insert_range(inode, offset, len);
2036 } else {
2037 ret = f2fs_expand_inode_data(inode, offset, len, mode);
2038 }
2039
2040 if (!ret) {
2041 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2042 f2fs_mark_inode_dirty_sync(inode, false);
2043 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2044 }
2045
2046 out:
2047 inode_unlock(inode);
2048
2049 trace_f2fs_fallocate(inode, mode, offset, len, ret);
2050 return ret;
2051 }
2052
f2fs_release_file(struct inode * inode,struct file * filp)2053 static int f2fs_release_file(struct inode *inode, struct file *filp)
2054 {
2055 if (atomic_dec_and_test(&F2FS_I(inode)->open_count))
2056 f2fs_remove_donate_inode(inode);
2057
2058 /*
2059 * f2fs_release_file is called at every close calls. So we should
2060 * not drop any inmemory pages by close called by other process.
2061 */
2062 if (!(filp->f_mode & FMODE_WRITE) ||
2063 atomic_read(&inode->i_writecount) != 1)
2064 return 0;
2065
2066 inode_lock(inode);
2067 f2fs_abort_atomic_write(inode, true);
2068 inode_unlock(inode);
2069
2070 return 0;
2071 }
2072
f2fs_file_flush(struct file * file,fl_owner_t id)2073 static int f2fs_file_flush(struct file *file, fl_owner_t id)
2074 {
2075 struct inode *inode = file_inode(file);
2076
2077 /*
2078 * If the process doing a transaction is crashed, we should do
2079 * roll-back. Otherwise, other reader/write can see corrupted database
2080 * until all the writers close its file. Since this should be done
2081 * before dropping file lock, it needs to do in ->flush.
2082 */
2083 if (F2FS_I(inode)->atomic_write_task == current &&
2084 (current->flags & PF_EXITING)) {
2085 inode_lock(inode);
2086 f2fs_abort_atomic_write(inode, true);
2087 inode_unlock(inode);
2088 }
2089
2090 return 0;
2091 }
2092
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)2093 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
2094 {
2095 struct f2fs_inode_info *fi = F2FS_I(inode);
2096 u32 masked_flags = fi->i_flags & mask;
2097
2098 /* mask can be shrunk by flags_valid selector */
2099 iflags &= mask;
2100
2101 /* Is it quota file? Do not allow user to mess with it */
2102 if (IS_NOQUOTA(inode))
2103 return -EPERM;
2104
2105 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2106 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2107 return -EOPNOTSUPP;
2108 if (!f2fs_empty_dir(inode))
2109 return -ENOTEMPTY;
2110 }
2111
2112 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2113 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2114 return -EOPNOTSUPP;
2115 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2116 return -EINVAL;
2117 }
2118
2119 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2120 if (masked_flags & F2FS_COMPR_FL) {
2121 if (!f2fs_disable_compressed_file(inode))
2122 return -EINVAL;
2123 } else {
2124 /* try to convert inline_data to support compression */
2125 int err = f2fs_convert_inline_inode(inode);
2126 if (err)
2127 return err;
2128
2129 f2fs_down_write(&fi->i_sem);
2130 if (!f2fs_may_compress(inode) ||
2131 atomic_read(&fi->writeback) ||
2132 (S_ISREG(inode->i_mode) &&
2133 F2FS_HAS_BLOCKS(inode))) {
2134 f2fs_up_write(&fi->i_sem);
2135 return -EINVAL;
2136 }
2137 err = set_compress_context(inode);
2138 f2fs_up_write(&fi->i_sem);
2139
2140 if (err)
2141 return err;
2142 }
2143 }
2144
2145 fi->i_flags = iflags | (fi->i_flags & ~mask);
2146 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2147 (fi->i_flags & F2FS_NOCOMP_FL));
2148
2149 if (fi->i_flags & F2FS_PROJINHERIT_FL)
2150 set_inode_flag(inode, FI_PROJ_INHERIT);
2151 else
2152 clear_inode_flag(inode, FI_PROJ_INHERIT);
2153
2154 inode_set_ctime_current(inode);
2155 f2fs_set_inode_flags(inode);
2156 f2fs_mark_inode_dirty_sync(inode, true);
2157 return 0;
2158 }
2159
2160 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2161
2162 /*
2163 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2164 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2165 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
2166 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2167 *
2168 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2169 * FS_IOC_FSSETXATTR is done by the VFS.
2170 */
2171
2172 static const struct {
2173 u32 iflag;
2174 u32 fsflag;
2175 } f2fs_fsflags_map[] = {
2176 { F2FS_COMPR_FL, FS_COMPR_FL },
2177 { F2FS_SYNC_FL, FS_SYNC_FL },
2178 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2179 { F2FS_APPEND_FL, FS_APPEND_FL },
2180 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2181 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2182 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2183 { F2FS_INDEX_FL, FS_INDEX_FL },
2184 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2185 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2186 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2187 };
2188
2189 #define F2FS_GETTABLE_FS_FL ( \
2190 FS_COMPR_FL | \
2191 FS_SYNC_FL | \
2192 FS_IMMUTABLE_FL | \
2193 FS_APPEND_FL | \
2194 FS_NODUMP_FL | \
2195 FS_NOATIME_FL | \
2196 FS_NOCOMP_FL | \
2197 FS_INDEX_FL | \
2198 FS_DIRSYNC_FL | \
2199 FS_PROJINHERIT_FL | \
2200 FS_ENCRYPT_FL | \
2201 FS_INLINE_DATA_FL | \
2202 FS_NOCOW_FL | \
2203 FS_VERITY_FL | \
2204 FS_CASEFOLD_FL)
2205
2206 #define F2FS_SETTABLE_FS_FL ( \
2207 FS_COMPR_FL | \
2208 FS_SYNC_FL | \
2209 FS_IMMUTABLE_FL | \
2210 FS_APPEND_FL | \
2211 FS_NODUMP_FL | \
2212 FS_NOATIME_FL | \
2213 FS_NOCOMP_FL | \
2214 FS_DIRSYNC_FL | \
2215 FS_PROJINHERIT_FL | \
2216 FS_CASEFOLD_FL)
2217
2218 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2219 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2220 {
2221 u32 fsflags = 0;
2222 int i;
2223
2224 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2225 if (iflags & f2fs_fsflags_map[i].iflag)
2226 fsflags |= f2fs_fsflags_map[i].fsflag;
2227
2228 return fsflags;
2229 }
2230
2231 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2232 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2233 {
2234 u32 iflags = 0;
2235 int i;
2236
2237 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2238 if (fsflags & f2fs_fsflags_map[i].fsflag)
2239 iflags |= f2fs_fsflags_map[i].iflag;
2240
2241 return iflags;
2242 }
2243
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2244 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2245 {
2246 struct inode *inode = file_inode(filp);
2247
2248 return put_user(inode->i_generation, (int __user *)arg);
2249 }
2250
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2251 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2252 {
2253 struct inode *inode = file_inode(filp);
2254 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2255 struct f2fs_inode_info *fi = F2FS_I(inode);
2256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2257 loff_t isize;
2258 int ret;
2259
2260 if (!(filp->f_mode & FMODE_WRITE))
2261 return -EBADF;
2262
2263 if (!inode_owner_or_capable(idmap, inode))
2264 return -EACCES;
2265
2266 if (!S_ISREG(inode->i_mode))
2267 return -EINVAL;
2268
2269 if (filp->f_flags & O_DIRECT)
2270 return -EINVAL;
2271
2272 ret = mnt_want_write_file(filp);
2273 if (ret)
2274 return ret;
2275
2276 inode_lock(inode);
2277
2278 if (!f2fs_disable_compressed_file(inode) ||
2279 f2fs_is_pinned_file(inode)) {
2280 ret = -EINVAL;
2281 goto out;
2282 }
2283
2284 if (f2fs_is_atomic_file(inode))
2285 goto out;
2286
2287 ret = f2fs_convert_inline_inode(inode);
2288 if (ret)
2289 goto out;
2290
2291 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2292 f2fs_down_write(&fi->i_gc_rwsem[READ]);
2293
2294 /*
2295 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2296 * f2fs_is_atomic_file.
2297 */
2298 if (get_dirty_pages(inode))
2299 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2300 inode->i_ino, get_dirty_pages(inode));
2301 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2302 if (ret)
2303 goto out_unlock;
2304
2305 /* Check if the inode already has a COW inode */
2306 if (fi->cow_inode == NULL) {
2307 /* Create a COW inode for atomic write */
2308 struct dentry *dentry = file_dentry(filp);
2309 struct inode *dir = d_inode(dentry->d_parent);
2310
2311 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2312 if (ret)
2313 goto out_unlock;
2314
2315 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2316 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2317
2318 /* Set the COW inode's atomic_inode to the atomic inode */
2319 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2320 } else {
2321 /* Reuse the already created COW inode */
2322 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2323
2324 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2325
2326 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2327 if (ret)
2328 goto out_unlock;
2329 }
2330
2331 f2fs_write_inode(inode, NULL);
2332
2333 stat_inc_atomic_inode(inode);
2334
2335 set_inode_flag(inode, FI_ATOMIC_FILE);
2336
2337 isize = i_size_read(inode);
2338 fi->original_i_size = isize;
2339 if (truncate) {
2340 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2341 truncate_inode_pages_final(inode->i_mapping);
2342 f2fs_i_size_write(inode, 0);
2343 isize = 0;
2344 }
2345 f2fs_i_size_write(fi->cow_inode, isize);
2346
2347 out_unlock:
2348 f2fs_up_write(&fi->i_gc_rwsem[READ]);
2349 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2350 if (ret)
2351 goto out;
2352
2353 f2fs_update_time(sbi, REQ_TIME);
2354 fi->atomic_write_task = current;
2355 stat_update_max_atomic_write(inode);
2356 fi->atomic_write_cnt = 0;
2357 out:
2358 inode_unlock(inode);
2359 mnt_drop_write_file(filp);
2360 return ret;
2361 }
2362
f2fs_ioc_commit_atomic_write(struct file * filp)2363 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2364 {
2365 struct inode *inode = file_inode(filp);
2366 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2367 int ret;
2368
2369 if (!(filp->f_mode & FMODE_WRITE))
2370 return -EBADF;
2371
2372 if (!inode_owner_or_capable(idmap, inode))
2373 return -EACCES;
2374
2375 ret = mnt_want_write_file(filp);
2376 if (ret)
2377 return ret;
2378
2379 f2fs_balance_fs(F2FS_I_SB(inode), true);
2380
2381 inode_lock(inode);
2382
2383 if (f2fs_is_atomic_file(inode)) {
2384 ret = f2fs_commit_atomic_write(inode);
2385 if (!ret)
2386 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2387
2388 f2fs_abort_atomic_write(inode, ret);
2389 } else {
2390 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2391 }
2392
2393 inode_unlock(inode);
2394 mnt_drop_write_file(filp);
2395 return ret;
2396 }
2397
f2fs_ioc_abort_atomic_write(struct file * filp)2398 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2399 {
2400 struct inode *inode = file_inode(filp);
2401 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2402 int ret;
2403
2404 if (!(filp->f_mode & FMODE_WRITE))
2405 return -EBADF;
2406
2407 if (!inode_owner_or_capable(idmap, inode))
2408 return -EACCES;
2409
2410 ret = mnt_want_write_file(filp);
2411 if (ret)
2412 return ret;
2413
2414 inode_lock(inode);
2415
2416 f2fs_abort_atomic_write(inode, true);
2417
2418 inode_unlock(inode);
2419
2420 mnt_drop_write_file(filp);
2421 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2422 return ret;
2423 }
2424
f2fs_do_shutdown(struct f2fs_sb_info * sbi,unsigned int flag,bool readonly,bool need_lock)2425 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2426 bool readonly, bool need_lock)
2427 {
2428 struct super_block *sb = sbi->sb;
2429 int ret = 0;
2430
2431 switch (flag) {
2432 case F2FS_GOING_DOWN_FULLSYNC:
2433 ret = bdev_freeze(sb->s_bdev);
2434 if (ret)
2435 goto out;
2436 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2437 bdev_thaw(sb->s_bdev);
2438 break;
2439 case F2FS_GOING_DOWN_METASYNC:
2440 /* do checkpoint only */
2441 ret = f2fs_sync_fs(sb, 1);
2442 if (ret) {
2443 if (ret == -EIO)
2444 ret = 0;
2445 goto out;
2446 }
2447 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2448 break;
2449 case F2FS_GOING_DOWN_NOSYNC:
2450 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2451 break;
2452 case F2FS_GOING_DOWN_METAFLUSH:
2453 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2454 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2455 break;
2456 case F2FS_GOING_DOWN_NEED_FSCK:
2457 set_sbi_flag(sbi, SBI_NEED_FSCK);
2458 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2459 set_sbi_flag(sbi, SBI_IS_DIRTY);
2460 /* do checkpoint only */
2461 ret = f2fs_sync_fs(sb, 1);
2462 if (ret == -EIO)
2463 ret = 0;
2464 goto out;
2465 default:
2466 ret = -EINVAL;
2467 goto out;
2468 }
2469
2470 if (readonly)
2471 goto out;
2472
2473 /*
2474 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2475 * paths.
2476 */
2477 if (need_lock)
2478 down_write(&sbi->sb->s_umount);
2479
2480 f2fs_stop_gc_thread(sbi);
2481 f2fs_stop_discard_thread(sbi);
2482
2483 f2fs_drop_discard_cmd(sbi);
2484 clear_opt(sbi, DISCARD);
2485
2486 if (need_lock)
2487 up_write(&sbi->sb->s_umount);
2488
2489 f2fs_update_time(sbi, REQ_TIME);
2490 out:
2491
2492 trace_f2fs_shutdown(sbi, flag, ret);
2493
2494 return ret;
2495 }
2496
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2497 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2498 {
2499 struct inode *inode = file_inode(filp);
2500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501 __u32 in;
2502 int ret;
2503 bool need_drop = false, readonly = false;
2504
2505 if (!capable(CAP_SYS_ADMIN))
2506 return -EPERM;
2507
2508 if (get_user(in, (__u32 __user *)arg))
2509 return -EFAULT;
2510
2511 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2512 ret = mnt_want_write_file(filp);
2513 if (ret) {
2514 if (ret != -EROFS)
2515 return ret;
2516
2517 /* fallback to nosync shutdown for readonly fs */
2518 in = F2FS_GOING_DOWN_NOSYNC;
2519 readonly = true;
2520 } else {
2521 need_drop = true;
2522 }
2523 }
2524
2525 ret = f2fs_do_shutdown(sbi, in, readonly, true);
2526
2527 if (need_drop)
2528 mnt_drop_write_file(filp);
2529
2530 return ret;
2531 }
2532
f2fs_keep_noreuse_range(struct inode * inode,loff_t offset,loff_t len)2533 static int f2fs_keep_noreuse_range(struct inode *inode,
2534 loff_t offset, loff_t len)
2535 {
2536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2537 u64 max_bytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2538 u64 start, end;
2539 int ret = 0;
2540
2541 if (!S_ISREG(inode->i_mode))
2542 return 0;
2543
2544 if (offset >= max_bytes || len > max_bytes ||
2545 (offset + len) > max_bytes)
2546 return 0;
2547
2548 start = offset >> PAGE_SHIFT;
2549 end = DIV_ROUND_UP(offset + len, PAGE_SIZE);
2550
2551 inode_lock(inode);
2552 if (f2fs_is_atomic_file(inode)) {
2553 inode_unlock(inode);
2554 return 0;
2555 }
2556
2557 spin_lock(&sbi->inode_lock[DONATE_INODE]);
2558 /* let's remove the range, if len = 0 */
2559 if (!len) {
2560 if (!list_empty(&F2FS_I(inode)->gdonate_list)) {
2561 list_del_init(&F2FS_I(inode)->gdonate_list);
2562 sbi->donate_files--;
2563 if (is_inode_flag_set(inode, FI_DONATE_FINISHED))
2564 ret = -EALREADY;
2565 else
2566 set_inode_flag(inode, FI_DONATE_FINISHED);
2567 } else
2568 ret = -ENOENT;
2569 } else {
2570 if (list_empty(&F2FS_I(inode)->gdonate_list)) {
2571 list_add_tail(&F2FS_I(inode)->gdonate_list,
2572 &sbi->inode_list[DONATE_INODE]);
2573 sbi->donate_files++;
2574 } else {
2575 list_move_tail(&F2FS_I(inode)->gdonate_list,
2576 &sbi->inode_list[DONATE_INODE]);
2577 }
2578 F2FS_I(inode)->donate_start = start;
2579 F2FS_I(inode)->donate_end = end - 1;
2580 clear_inode_flag(inode, FI_DONATE_FINISHED);
2581 }
2582 spin_unlock(&sbi->inode_lock[DONATE_INODE]);
2583 inode_unlock(inode);
2584
2585 return ret;
2586 }
2587
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2588 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2589 {
2590 struct inode *inode = file_inode(filp);
2591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2592 struct fstrim_range range;
2593 int ret;
2594
2595 if (!capable(CAP_SYS_ADMIN))
2596 return -EPERM;
2597
2598 if (!f2fs_hw_support_discard(sbi))
2599 return -EOPNOTSUPP;
2600
2601 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2602 sizeof(range)))
2603 return -EFAULT;
2604
2605 ret = mnt_want_write_file(filp);
2606 if (ret)
2607 return ret;
2608
2609 range.minlen = max_t(unsigned int, range.minlen,
2610 f2fs_hw_discard_granularity(sbi));
2611 ret = f2fs_trim_fs(sbi, &range);
2612 mnt_drop_write_file(filp);
2613 if (ret < 0)
2614 return ret;
2615
2616 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2617 sizeof(range)))
2618 return -EFAULT;
2619 f2fs_update_time(sbi, REQ_TIME);
2620 return 0;
2621 }
2622
uuid_is_nonzero(__u8 u[16])2623 static bool uuid_is_nonzero(__u8 u[16])
2624 {
2625 int i;
2626
2627 for (i = 0; i < 16; i++)
2628 if (u[i])
2629 return true;
2630 return false;
2631 }
2632
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2633 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2634 {
2635 struct inode *inode = file_inode(filp);
2636 int ret;
2637
2638 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2639 return -EOPNOTSUPP;
2640
2641 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2642 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2643 return ret;
2644 }
2645
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2646 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2647 {
2648 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2649 return -EOPNOTSUPP;
2650 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2651 }
2652
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2653 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2654 {
2655 struct inode *inode = file_inode(filp);
2656 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2657 u8 encrypt_pw_salt[16];
2658 int err;
2659
2660 if (!f2fs_sb_has_encrypt(sbi))
2661 return -EOPNOTSUPP;
2662
2663 err = mnt_want_write_file(filp);
2664 if (err)
2665 return err;
2666
2667 f2fs_down_write(&sbi->sb_lock);
2668
2669 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2670 goto got_it;
2671
2672 /* update superblock with uuid */
2673 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2674
2675 err = f2fs_commit_super(sbi, false);
2676 if (err) {
2677 /* undo new data */
2678 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2679 goto out_err;
2680 }
2681 got_it:
2682 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2683 out_err:
2684 f2fs_up_write(&sbi->sb_lock);
2685 mnt_drop_write_file(filp);
2686
2687 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2688 err = -EFAULT;
2689
2690 return err;
2691 }
2692
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2693 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2694 unsigned long arg)
2695 {
2696 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2697 return -EOPNOTSUPP;
2698
2699 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2700 }
2701
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2702 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2703 {
2704 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2705 return -EOPNOTSUPP;
2706
2707 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2708 }
2709
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2710 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2711 {
2712 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2713 return -EOPNOTSUPP;
2714
2715 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2716 }
2717
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2718 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2719 unsigned long arg)
2720 {
2721 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2722 return -EOPNOTSUPP;
2723
2724 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2725 }
2726
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2727 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2728 unsigned long arg)
2729 {
2730 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2731 return -EOPNOTSUPP;
2732
2733 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2734 }
2735
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2736 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2737 {
2738 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2739 return -EOPNOTSUPP;
2740
2741 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2742 }
2743
f2fs_ioc_gc(struct file * filp,unsigned long arg)2744 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2745 {
2746 struct inode *inode = file_inode(filp);
2747 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2748 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2749 .no_bg_gc = false,
2750 .should_migrate_blocks = false,
2751 .nr_free_secs = 0 };
2752 __u32 sync;
2753 int ret;
2754
2755 if (!capable(CAP_SYS_ADMIN))
2756 return -EPERM;
2757
2758 if (get_user(sync, (__u32 __user *)arg))
2759 return -EFAULT;
2760
2761 if (f2fs_readonly(sbi->sb))
2762 return -EROFS;
2763
2764 ret = mnt_want_write_file(filp);
2765 if (ret)
2766 return ret;
2767
2768 if (!sync) {
2769 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2770 ret = -EBUSY;
2771 goto out;
2772 }
2773 } else {
2774 f2fs_down_write(&sbi->gc_lock);
2775 }
2776
2777 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2778 gc_control.err_gc_skipped = sync;
2779 stat_inc_gc_call_count(sbi, FOREGROUND);
2780 ret = f2fs_gc(sbi, &gc_control);
2781 out:
2782 mnt_drop_write_file(filp);
2783 return ret;
2784 }
2785
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2786 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2787 {
2788 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2789 struct f2fs_gc_control gc_control = {
2790 .init_gc_type = range->sync ? FG_GC : BG_GC,
2791 .no_bg_gc = false,
2792 .should_migrate_blocks = false,
2793 .err_gc_skipped = range->sync,
2794 .nr_free_secs = 0 };
2795 u64 end;
2796 int ret;
2797
2798 if (!capable(CAP_SYS_ADMIN))
2799 return -EPERM;
2800 if (f2fs_readonly(sbi->sb))
2801 return -EROFS;
2802
2803 end = range->start + range->len;
2804 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2805 end >= MAX_BLKADDR(sbi))
2806 return -EINVAL;
2807
2808 ret = mnt_want_write_file(filp);
2809 if (ret)
2810 return ret;
2811
2812 do_more:
2813 if (!range->sync) {
2814 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2815 ret = -EBUSY;
2816 goto out;
2817 }
2818 } else {
2819 f2fs_down_write(&sbi->gc_lock);
2820 }
2821
2822 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2823 stat_inc_gc_call_count(sbi, FOREGROUND);
2824 ret = f2fs_gc(sbi, &gc_control);
2825 if (ret) {
2826 if (ret == -EBUSY)
2827 ret = -EAGAIN;
2828 goto out;
2829 }
2830 range->start += CAP_BLKS_PER_SEC(sbi);
2831 if (range->start <= end)
2832 goto do_more;
2833 out:
2834 mnt_drop_write_file(filp);
2835 return ret;
2836 }
2837
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2838 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2839 {
2840 struct f2fs_gc_range range;
2841
2842 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2843 sizeof(range)))
2844 return -EFAULT;
2845 return __f2fs_ioc_gc_range(filp, &range);
2846 }
2847
f2fs_ioc_write_checkpoint(struct file * filp)2848 static int f2fs_ioc_write_checkpoint(struct file *filp)
2849 {
2850 struct inode *inode = file_inode(filp);
2851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2852 int ret;
2853
2854 if (!capable(CAP_SYS_ADMIN))
2855 return -EPERM;
2856
2857 if (f2fs_readonly(sbi->sb))
2858 return -EROFS;
2859
2860 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2861 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2862 return -EINVAL;
2863 }
2864
2865 ret = mnt_want_write_file(filp);
2866 if (ret)
2867 return ret;
2868
2869 ret = f2fs_sync_fs(sbi->sb, 1);
2870
2871 mnt_drop_write_file(filp);
2872 return ret;
2873 }
2874
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2875 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2876 struct file *filp,
2877 struct f2fs_defragment *range)
2878 {
2879 struct inode *inode = file_inode(filp);
2880 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2881 .m_seg_type = NO_CHECK_TYPE,
2882 .m_may_create = false };
2883 struct extent_info ei = {};
2884 pgoff_t pg_start, pg_end, next_pgofs;
2885 unsigned int total = 0, sec_num;
2886 block_t blk_end = 0;
2887 bool fragmented = false;
2888 int err;
2889
2890 f2fs_balance_fs(sbi, true);
2891
2892 inode_lock(inode);
2893 pg_start = range->start >> PAGE_SHIFT;
2894 pg_end = min_t(pgoff_t,
2895 (range->start + range->len) >> PAGE_SHIFT,
2896 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2897
2898 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2899 f2fs_is_atomic_file(inode)) {
2900 err = -EINVAL;
2901 goto unlock_out;
2902 }
2903
2904 /* if in-place-update policy is enabled, don't waste time here */
2905 set_inode_flag(inode, FI_OPU_WRITE);
2906 if (f2fs_should_update_inplace(inode, NULL)) {
2907 err = -EINVAL;
2908 goto out;
2909 }
2910
2911 /* writeback all dirty pages in the range */
2912 err = filemap_write_and_wait_range(inode->i_mapping,
2913 pg_start << PAGE_SHIFT,
2914 (pg_end << PAGE_SHIFT) - 1);
2915 if (err)
2916 goto out;
2917
2918 /*
2919 * lookup mapping info in extent cache, skip defragmenting if physical
2920 * block addresses are continuous.
2921 */
2922 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2923 if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2924 goto out;
2925 }
2926
2927 map.m_lblk = pg_start;
2928 map.m_next_pgofs = &next_pgofs;
2929
2930 /*
2931 * lookup mapping info in dnode page cache, skip defragmenting if all
2932 * physical block addresses are continuous even if there are hole(s)
2933 * in logical blocks.
2934 */
2935 while (map.m_lblk < pg_end) {
2936 map.m_len = pg_end - map.m_lblk;
2937 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2938 if (err)
2939 goto out;
2940
2941 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2942 map.m_lblk = next_pgofs;
2943 continue;
2944 }
2945
2946 if (blk_end && blk_end != map.m_pblk)
2947 fragmented = true;
2948
2949 /* record total count of block that we're going to move */
2950 total += map.m_len;
2951
2952 blk_end = map.m_pblk + map.m_len;
2953
2954 map.m_lblk += map.m_len;
2955 }
2956
2957 if (!fragmented) {
2958 total = 0;
2959 goto out;
2960 }
2961
2962 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2963
2964 /*
2965 * make sure there are enough free section for LFS allocation, this can
2966 * avoid defragment running in SSR mode when free section are allocated
2967 * intensively
2968 */
2969 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2970 err = -EAGAIN;
2971 goto out;
2972 }
2973
2974 map.m_lblk = pg_start;
2975 map.m_len = pg_end - pg_start;
2976 total = 0;
2977
2978 while (map.m_lblk < pg_end) {
2979 pgoff_t idx;
2980 int cnt = 0;
2981
2982 do_map:
2983 map.m_len = pg_end - map.m_lblk;
2984 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2985 if (err)
2986 goto clear_out;
2987
2988 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2989 map.m_lblk = next_pgofs;
2990 goto check;
2991 }
2992
2993 set_inode_flag(inode, FI_SKIP_WRITES);
2994
2995 idx = map.m_lblk;
2996 while (idx < map.m_lblk + map.m_len &&
2997 cnt < BLKS_PER_SEG(sbi)) {
2998 struct folio *folio;
2999
3000 folio = f2fs_get_lock_data_folio(inode, idx, true);
3001 if (IS_ERR(folio)) {
3002 err = PTR_ERR(folio);
3003 goto clear_out;
3004 }
3005
3006 f2fs_folio_wait_writeback(folio, DATA, true, true);
3007
3008 folio_mark_dirty(folio);
3009 folio_set_f2fs_gcing(folio);
3010 f2fs_folio_put(folio, true);
3011
3012 idx++;
3013 cnt++;
3014 total++;
3015 }
3016
3017 map.m_lblk = idx;
3018 check:
3019 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
3020 goto do_map;
3021
3022 clear_inode_flag(inode, FI_SKIP_WRITES);
3023
3024 err = filemap_fdatawrite(inode->i_mapping);
3025 if (err)
3026 goto out;
3027 }
3028 clear_out:
3029 clear_inode_flag(inode, FI_SKIP_WRITES);
3030 out:
3031 clear_inode_flag(inode, FI_OPU_WRITE);
3032 unlock_out:
3033 inode_unlock(inode);
3034 if (!err)
3035 range->len = (u64)total << PAGE_SHIFT;
3036 return err;
3037 }
3038
f2fs_ioc_defragment(struct file * filp,unsigned long arg)3039 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
3040 {
3041 struct inode *inode = file_inode(filp);
3042 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3043 struct f2fs_defragment range;
3044 int err;
3045
3046 if (!capable(CAP_SYS_ADMIN))
3047 return -EPERM;
3048
3049 if (!S_ISREG(inode->i_mode))
3050 return -EINVAL;
3051
3052 if (f2fs_readonly(sbi->sb))
3053 return -EROFS;
3054
3055 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
3056 sizeof(range)))
3057 return -EFAULT;
3058
3059 /* verify alignment of offset & size */
3060 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
3061 return -EINVAL;
3062
3063 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
3064 max_file_blocks(inode)))
3065 return -EINVAL;
3066
3067 err = mnt_want_write_file(filp);
3068 if (err)
3069 return err;
3070
3071 err = f2fs_defragment_range(sbi, filp, &range);
3072 mnt_drop_write_file(filp);
3073
3074 if (range.len)
3075 f2fs_update_time(sbi, REQ_TIME);
3076 if (err < 0)
3077 return err;
3078
3079 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
3080 sizeof(range)))
3081 return -EFAULT;
3082
3083 return 0;
3084 }
3085
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)3086 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
3087 struct file *file_out, loff_t pos_out, size_t len)
3088 {
3089 struct inode *src = file_inode(file_in);
3090 struct inode *dst = file_inode(file_out);
3091 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
3092 size_t olen = len, dst_max_i_size = 0;
3093 size_t dst_osize;
3094 int ret;
3095
3096 if (file_in->f_path.mnt != file_out->f_path.mnt ||
3097 src->i_sb != dst->i_sb)
3098 return -EXDEV;
3099
3100 if (unlikely(f2fs_readonly(src->i_sb)))
3101 return -EROFS;
3102
3103 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
3104 return -EINVAL;
3105
3106 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
3107 return -EOPNOTSUPP;
3108
3109 if (pos_out < 0 || pos_in < 0)
3110 return -EINVAL;
3111
3112 if (src == dst) {
3113 if (pos_in == pos_out)
3114 return 0;
3115 if (pos_out > pos_in && pos_out < pos_in + len)
3116 return -EINVAL;
3117 }
3118
3119 inode_lock(src);
3120 if (src != dst) {
3121 ret = -EBUSY;
3122 if (!inode_trylock(dst))
3123 goto out;
3124 }
3125
3126 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
3127 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
3128 ret = -EOPNOTSUPP;
3129 goto out_unlock;
3130 }
3131
3132 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
3133 ret = -EINVAL;
3134 goto out_unlock;
3135 }
3136
3137 ret = -EINVAL;
3138 if (pos_in + len > src->i_size || pos_in + len < pos_in)
3139 goto out_unlock;
3140 if (len == 0)
3141 olen = len = src->i_size - pos_in;
3142 if (pos_in + len == src->i_size)
3143 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
3144 if (len == 0) {
3145 ret = 0;
3146 goto out_unlock;
3147 }
3148
3149 dst_osize = dst->i_size;
3150 if (pos_out + olen > dst->i_size)
3151 dst_max_i_size = pos_out + olen;
3152
3153 /* verify the end result is block aligned */
3154 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
3155 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3156 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3157 goto out_unlock;
3158
3159 ret = f2fs_convert_inline_inode(src);
3160 if (ret)
3161 goto out_unlock;
3162
3163 ret = f2fs_convert_inline_inode(dst);
3164 if (ret)
3165 goto out_unlock;
3166
3167 /* write out all dirty pages from offset */
3168 ret = filemap_write_and_wait_range(src->i_mapping,
3169 pos_in, pos_in + len);
3170 if (ret)
3171 goto out_unlock;
3172
3173 ret = filemap_write_and_wait_range(dst->i_mapping,
3174 pos_out, pos_out + len);
3175 if (ret)
3176 goto out_unlock;
3177
3178 f2fs_balance_fs(sbi, true);
3179
3180 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3181 if (src != dst) {
3182 ret = -EBUSY;
3183 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3184 goto out_src;
3185 }
3186
3187 f2fs_lock_op(sbi);
3188 ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3189 F2FS_BYTES_TO_BLK(pos_out),
3190 F2FS_BYTES_TO_BLK(len), false);
3191
3192 if (!ret) {
3193 if (dst_max_i_size)
3194 f2fs_i_size_write(dst, dst_max_i_size);
3195 else if (dst_osize != dst->i_size)
3196 f2fs_i_size_write(dst, dst_osize);
3197 }
3198 f2fs_unlock_op(sbi);
3199
3200 if (src != dst)
3201 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3202 out_src:
3203 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3204 if (ret)
3205 goto out_unlock;
3206
3207 inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3208 f2fs_mark_inode_dirty_sync(src, false);
3209 if (src != dst) {
3210 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3211 f2fs_mark_inode_dirty_sync(dst, false);
3212 }
3213 f2fs_update_time(sbi, REQ_TIME);
3214
3215 out_unlock:
3216 if (src != dst)
3217 inode_unlock(dst);
3218 out:
3219 inode_unlock(src);
3220 return ret;
3221 }
3222
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)3223 static int __f2fs_ioc_move_range(struct file *filp,
3224 struct f2fs_move_range *range)
3225 {
3226 int err;
3227
3228 if (!(filp->f_mode & FMODE_READ) ||
3229 !(filp->f_mode & FMODE_WRITE))
3230 return -EBADF;
3231
3232 CLASS(fd, dst)(range->dst_fd);
3233 if (fd_empty(dst))
3234 return -EBADF;
3235
3236 if (!(fd_file(dst)->f_mode & FMODE_WRITE))
3237 return -EBADF;
3238
3239 err = mnt_want_write_file(filp);
3240 if (err)
3241 return err;
3242
3243 err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3244 range->pos_out, range->len);
3245
3246 mnt_drop_write_file(filp);
3247 return err;
3248 }
3249
f2fs_ioc_move_range(struct file * filp,unsigned long arg)3250 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3251 {
3252 struct f2fs_move_range range;
3253
3254 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3255 sizeof(range)))
3256 return -EFAULT;
3257 return __f2fs_ioc_move_range(filp, &range);
3258 }
3259
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)3260 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3261 {
3262 struct inode *inode = file_inode(filp);
3263 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3264 struct sit_info *sm = SIT_I(sbi);
3265 unsigned int start_segno = 0, end_segno = 0;
3266 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3267 struct f2fs_flush_device range;
3268 struct f2fs_gc_control gc_control = {
3269 .init_gc_type = FG_GC,
3270 .should_migrate_blocks = true,
3271 .err_gc_skipped = true,
3272 .nr_free_secs = 0 };
3273 int ret;
3274
3275 if (!capable(CAP_SYS_ADMIN))
3276 return -EPERM;
3277
3278 if (f2fs_readonly(sbi->sb))
3279 return -EROFS;
3280
3281 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3282 return -EINVAL;
3283
3284 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3285 sizeof(range)))
3286 return -EFAULT;
3287
3288 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3289 __is_large_section(sbi)) {
3290 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3291 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3292 return -EINVAL;
3293 }
3294
3295 ret = mnt_want_write_file(filp);
3296 if (ret)
3297 return ret;
3298
3299 if (range.dev_num != 0)
3300 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3301 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3302
3303 start_segno = sm->last_victim[FLUSH_DEVICE];
3304 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3305 start_segno = dev_start_segno;
3306 end_segno = min(start_segno + range.segments, dev_end_segno);
3307
3308 while (start_segno < end_segno) {
3309 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3310 ret = -EBUSY;
3311 goto out;
3312 }
3313 sm->last_victim[GC_CB] = end_segno + 1;
3314 sm->last_victim[GC_GREEDY] = end_segno + 1;
3315 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3316
3317 gc_control.victim_segno = start_segno;
3318 stat_inc_gc_call_count(sbi, FOREGROUND);
3319 ret = f2fs_gc(sbi, &gc_control);
3320 if (ret == -EAGAIN)
3321 ret = 0;
3322 else if (ret < 0)
3323 break;
3324 start_segno++;
3325 }
3326 out:
3327 mnt_drop_write_file(filp);
3328 return ret;
3329 }
3330
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3331 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3332 {
3333 struct inode *inode = file_inode(filp);
3334 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3335
3336 /* Must validate to set it with SQLite behavior in Android. */
3337 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3338
3339 return put_user(sb_feature, (u32 __user *)arg);
3340 }
3341
3342 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3343 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3344 {
3345 struct dquot *transfer_to[MAXQUOTAS] = {};
3346 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3347 struct super_block *sb = sbi->sb;
3348 int err;
3349
3350 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3351 if (IS_ERR(transfer_to[PRJQUOTA]))
3352 return PTR_ERR(transfer_to[PRJQUOTA]);
3353
3354 err = __dquot_transfer(inode, transfer_to);
3355 if (err)
3356 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3357 dqput(transfer_to[PRJQUOTA]);
3358 return err;
3359 }
3360
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3361 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3362 {
3363 struct f2fs_inode_info *fi = F2FS_I(inode);
3364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3365 struct f2fs_inode *ri = NULL;
3366 kprojid_t kprojid;
3367 int err;
3368
3369 if (!f2fs_sb_has_project_quota(sbi)) {
3370 if (projid != F2FS_DEF_PROJID)
3371 return -EOPNOTSUPP;
3372 else
3373 return 0;
3374 }
3375
3376 if (!f2fs_has_extra_attr(inode))
3377 return -EOPNOTSUPP;
3378
3379 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3380
3381 if (projid_eq(kprojid, fi->i_projid))
3382 return 0;
3383
3384 err = -EPERM;
3385 /* Is it quota file? Do not allow user to mess with it */
3386 if (IS_NOQUOTA(inode))
3387 return err;
3388
3389 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3390 return -EOVERFLOW;
3391
3392 err = f2fs_dquot_initialize(inode);
3393 if (err)
3394 return err;
3395
3396 f2fs_lock_op(sbi);
3397 err = f2fs_transfer_project_quota(inode, kprojid);
3398 if (err)
3399 goto out_unlock;
3400
3401 fi->i_projid = kprojid;
3402 inode_set_ctime_current(inode);
3403 f2fs_mark_inode_dirty_sync(inode, true);
3404 out_unlock:
3405 f2fs_unlock_op(sbi);
3406 return err;
3407 }
3408 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3409 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3410 {
3411 return 0;
3412 }
3413
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3414 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3415 {
3416 if (projid != F2FS_DEF_PROJID)
3417 return -EOPNOTSUPP;
3418 return 0;
3419 }
3420 #endif
3421
f2fs_fileattr_get(struct dentry * dentry,struct file_kattr * fa)3422 int f2fs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
3423 {
3424 struct inode *inode = d_inode(dentry);
3425 struct f2fs_inode_info *fi = F2FS_I(inode);
3426 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3427
3428 if (IS_ENCRYPTED(inode))
3429 fsflags |= FS_ENCRYPT_FL;
3430 if (IS_VERITY(inode))
3431 fsflags |= FS_VERITY_FL;
3432 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3433 fsflags |= FS_INLINE_DATA_FL;
3434 if (is_inode_flag_set(inode, FI_PIN_FILE))
3435 fsflags |= FS_NOCOW_FL;
3436
3437 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3438
3439 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3440 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3441
3442 return 0;
3443 }
3444
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)3445 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3446 struct dentry *dentry, struct file_kattr *fa)
3447 {
3448 struct inode *inode = d_inode(dentry);
3449 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3450 u32 iflags;
3451 int err;
3452
3453 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3454 return -EIO;
3455 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3456 return -ENOSPC;
3457 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3458 return -EOPNOTSUPP;
3459 fsflags &= F2FS_SETTABLE_FS_FL;
3460 if (!fa->flags_valid)
3461 mask &= FS_COMMON_FL;
3462
3463 iflags = f2fs_fsflags_to_iflags(fsflags);
3464 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3465 return -EOPNOTSUPP;
3466
3467 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3468 if (!err)
3469 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3470
3471 return err;
3472 }
3473
f2fs_pin_file_control(struct inode * inode,bool inc)3474 int f2fs_pin_file_control(struct inode *inode, bool inc)
3475 {
3476 struct f2fs_inode_info *fi = F2FS_I(inode);
3477 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3478
3479 if (IS_DEVICE_ALIASING(inode))
3480 return -EINVAL;
3481
3482 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3483 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3484 __func__, inode->i_ino, fi->i_gc_failures);
3485 clear_inode_flag(inode, FI_PIN_FILE);
3486 return -EAGAIN;
3487 }
3488
3489 /* Use i_gc_failures for normal file as a risk signal. */
3490 if (inc)
3491 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3492
3493 return 0;
3494 }
3495
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3496 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3497 {
3498 struct inode *inode = file_inode(filp);
3499 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3500 __u32 pin;
3501 int ret = 0;
3502
3503 if (get_user(pin, (__u32 __user *)arg))
3504 return -EFAULT;
3505
3506 if (!S_ISREG(inode->i_mode))
3507 return -EINVAL;
3508
3509 if (f2fs_readonly(sbi->sb))
3510 return -EROFS;
3511
3512 if (!pin && IS_DEVICE_ALIASING(inode))
3513 return -EOPNOTSUPP;
3514
3515 ret = mnt_want_write_file(filp);
3516 if (ret)
3517 return ret;
3518
3519 inode_lock(inode);
3520
3521 if (f2fs_is_atomic_file(inode)) {
3522 ret = -EINVAL;
3523 goto out;
3524 }
3525
3526 if (!pin) {
3527 clear_inode_flag(inode, FI_PIN_FILE);
3528 f2fs_i_gc_failures_write(inode, 0);
3529 goto done;
3530 } else if (f2fs_is_pinned_file(inode)) {
3531 goto done;
3532 }
3533
3534 if (F2FS_HAS_BLOCKS(inode)) {
3535 ret = -EFBIG;
3536 goto out;
3537 }
3538
3539 /* Let's allow file pinning on zoned device. */
3540 if (!f2fs_sb_has_blkzoned(sbi) &&
3541 f2fs_should_update_outplace(inode, NULL)) {
3542 ret = -EINVAL;
3543 goto out;
3544 }
3545
3546 if (f2fs_pin_file_control(inode, false)) {
3547 ret = -EAGAIN;
3548 goto out;
3549 }
3550
3551 ret = f2fs_convert_inline_inode(inode);
3552 if (ret)
3553 goto out;
3554
3555 if (!f2fs_disable_compressed_file(inode)) {
3556 ret = -EOPNOTSUPP;
3557 goto out;
3558 }
3559
3560 set_inode_flag(inode, FI_PIN_FILE);
3561 ret = F2FS_I(inode)->i_gc_failures;
3562 done:
3563 f2fs_update_time(sbi, REQ_TIME);
3564 out:
3565 inode_unlock(inode);
3566 mnt_drop_write_file(filp);
3567 return ret;
3568 }
3569
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3570 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3571 {
3572 struct inode *inode = file_inode(filp);
3573 __u32 pin = 0;
3574
3575 if (is_inode_flag_set(inode, FI_PIN_FILE))
3576 pin = F2FS_I(inode)->i_gc_failures;
3577 return put_user(pin, (u32 __user *)arg);
3578 }
3579
f2fs_ioc_get_dev_alias_file(struct file * filp,unsigned long arg)3580 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3581 {
3582 return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3583 (u32 __user *)arg);
3584 }
3585
f2fs_ioc_io_prio(struct file * filp,unsigned long arg)3586 static int f2fs_ioc_io_prio(struct file *filp, unsigned long arg)
3587 {
3588 struct inode *inode = file_inode(filp);
3589 __u32 level;
3590
3591 if (get_user(level, (__u32 __user *)arg))
3592 return -EFAULT;
3593
3594 if (!S_ISREG(inode->i_mode) || level >= F2FS_IOPRIO_MAX)
3595 return -EINVAL;
3596
3597 inode_lock(inode);
3598 F2FS_I(inode)->ioprio_hint = level;
3599 inode_unlock(inode);
3600 return 0;
3601 }
3602
f2fs_precache_extents(struct inode * inode)3603 int f2fs_precache_extents(struct inode *inode)
3604 {
3605 struct f2fs_inode_info *fi = F2FS_I(inode);
3606 struct f2fs_map_blocks map;
3607 pgoff_t m_next_extent;
3608 loff_t end;
3609 int err;
3610
3611 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3612 return -EOPNOTSUPP;
3613
3614 map.m_lblk = 0;
3615 map.m_pblk = 0;
3616 map.m_next_pgofs = NULL;
3617 map.m_next_extent = &m_next_extent;
3618 map.m_seg_type = NO_CHECK_TYPE;
3619 map.m_may_create = false;
3620 end = F2FS_BLK_ALIGN(i_size_read(inode));
3621
3622 while (map.m_lblk < end) {
3623 map.m_len = end - map.m_lblk;
3624
3625 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3626 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3627 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3628 if (err || !map.m_len)
3629 return err;
3630
3631 map.m_lblk = m_next_extent;
3632 }
3633
3634 return 0;
3635 }
3636
f2fs_ioc_precache_extents(struct file * filp)3637 static int f2fs_ioc_precache_extents(struct file *filp)
3638 {
3639 return f2fs_precache_extents(file_inode(filp));
3640 }
3641
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3642 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3643 {
3644 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3645 __u64 block_count;
3646
3647 if (!capable(CAP_SYS_ADMIN))
3648 return -EPERM;
3649
3650 if (f2fs_readonly(sbi->sb))
3651 return -EROFS;
3652
3653 if (copy_from_user(&block_count, (void __user *)arg,
3654 sizeof(block_count)))
3655 return -EFAULT;
3656
3657 return f2fs_resize_fs(filp, block_count);
3658 }
3659
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3660 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3661 {
3662 struct inode *inode = file_inode(filp);
3663
3664 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3665
3666 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3667 f2fs_warn(F2FS_I_SB(inode),
3668 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3669 inode->i_ino);
3670 return -EOPNOTSUPP;
3671 }
3672
3673 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3674 }
3675
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3676 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3677 {
3678 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3679 return -EOPNOTSUPP;
3680
3681 return fsverity_ioctl_measure(filp, (void __user *)arg);
3682 }
3683
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3684 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3685 {
3686 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3687 return -EOPNOTSUPP;
3688
3689 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3690 }
3691
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3692 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3693 {
3694 struct inode *inode = file_inode(filp);
3695 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3696 char *vbuf;
3697 int count;
3698 int err = 0;
3699
3700 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3701 if (!vbuf)
3702 return -ENOMEM;
3703
3704 f2fs_down_read(&sbi->sb_lock);
3705 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3706 ARRAY_SIZE(sbi->raw_super->volume_name),
3707 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3708 f2fs_up_read(&sbi->sb_lock);
3709
3710 if (copy_to_user((char __user *)arg, vbuf,
3711 min(FSLABEL_MAX, count)))
3712 err = -EFAULT;
3713
3714 kfree(vbuf);
3715 return err;
3716 }
3717
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3718 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3719 {
3720 struct inode *inode = file_inode(filp);
3721 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3722 char *vbuf;
3723 int err = 0;
3724
3725 if (!capable(CAP_SYS_ADMIN))
3726 return -EPERM;
3727
3728 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3729 if (IS_ERR(vbuf))
3730 return PTR_ERR(vbuf);
3731
3732 err = mnt_want_write_file(filp);
3733 if (err)
3734 goto out;
3735
3736 f2fs_down_write(&sbi->sb_lock);
3737
3738 memset(sbi->raw_super->volume_name, 0,
3739 sizeof(sbi->raw_super->volume_name));
3740 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3741 sbi->raw_super->volume_name,
3742 ARRAY_SIZE(sbi->raw_super->volume_name));
3743
3744 err = f2fs_commit_super(sbi, false);
3745
3746 f2fs_up_write(&sbi->sb_lock);
3747
3748 mnt_drop_write_file(filp);
3749 out:
3750 kfree(vbuf);
3751 return err;
3752 }
3753
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3754 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3755 {
3756 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3757 return -EOPNOTSUPP;
3758
3759 if (!f2fs_compressed_file(inode))
3760 return -EINVAL;
3761
3762 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3763
3764 return 0;
3765 }
3766
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3767 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3768 {
3769 struct inode *inode = file_inode(filp);
3770 __u64 blocks;
3771 int ret;
3772
3773 ret = f2fs_get_compress_blocks(inode, &blocks);
3774 if (ret < 0)
3775 return ret;
3776
3777 return put_user(blocks, (u64 __user *)arg);
3778 }
3779
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3780 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3781 {
3782 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3783 unsigned int released_blocks = 0;
3784 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3785 block_t blkaddr;
3786 int i;
3787
3788 for (i = 0; i < count; i++) {
3789 blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3790 dn->ofs_in_node + i);
3791
3792 if (!__is_valid_data_blkaddr(blkaddr))
3793 continue;
3794 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3795 DATA_GENERIC_ENHANCE)))
3796 return -EFSCORRUPTED;
3797 }
3798
3799 while (count) {
3800 int compr_blocks = 0;
3801
3802 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3803 blkaddr = f2fs_data_blkaddr(dn);
3804
3805 if (i == 0) {
3806 if (blkaddr == COMPRESS_ADDR)
3807 continue;
3808 dn->ofs_in_node += cluster_size;
3809 goto next;
3810 }
3811
3812 if (__is_valid_data_blkaddr(blkaddr))
3813 compr_blocks++;
3814
3815 if (blkaddr != NEW_ADDR)
3816 continue;
3817
3818 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3819 }
3820
3821 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3822 dec_valid_block_count(sbi, dn->inode,
3823 cluster_size - compr_blocks);
3824
3825 released_blocks += cluster_size - compr_blocks;
3826 next:
3827 count -= cluster_size;
3828 }
3829
3830 return released_blocks;
3831 }
3832
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3833 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3834 {
3835 struct inode *inode = file_inode(filp);
3836 struct f2fs_inode_info *fi = F2FS_I(inode);
3837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3838 pgoff_t page_idx = 0, last_idx;
3839 unsigned int released_blocks = 0;
3840 int ret;
3841 int writecount;
3842
3843 if (!f2fs_sb_has_compression(sbi))
3844 return -EOPNOTSUPP;
3845
3846 if (f2fs_readonly(sbi->sb))
3847 return -EROFS;
3848
3849 ret = mnt_want_write_file(filp);
3850 if (ret)
3851 return ret;
3852
3853 f2fs_balance_fs(sbi, true);
3854
3855 inode_lock(inode);
3856
3857 writecount = atomic_read(&inode->i_writecount);
3858 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3859 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3860 ret = -EBUSY;
3861 goto out;
3862 }
3863
3864 if (!f2fs_compressed_file(inode) ||
3865 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3866 ret = -EINVAL;
3867 goto out;
3868 }
3869
3870 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3871 if (ret)
3872 goto out;
3873
3874 if (!atomic_read(&fi->i_compr_blocks)) {
3875 ret = -EPERM;
3876 goto out;
3877 }
3878
3879 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3880 inode_set_ctime_current(inode);
3881 f2fs_mark_inode_dirty_sync(inode, true);
3882
3883 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3884 filemap_invalidate_lock(inode->i_mapping);
3885
3886 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3887
3888 while (page_idx < last_idx) {
3889 struct dnode_of_data dn;
3890 pgoff_t end_offset, count;
3891
3892 f2fs_lock_op(sbi);
3893
3894 set_new_dnode(&dn, inode, NULL, NULL, 0);
3895 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3896 if (ret) {
3897 f2fs_unlock_op(sbi);
3898 if (ret == -ENOENT) {
3899 page_idx = f2fs_get_next_page_offset(&dn,
3900 page_idx);
3901 ret = 0;
3902 continue;
3903 }
3904 break;
3905 }
3906
3907 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
3908 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3909 count = round_up(count, fi->i_cluster_size);
3910
3911 ret = release_compress_blocks(&dn, count);
3912
3913 f2fs_put_dnode(&dn);
3914
3915 f2fs_unlock_op(sbi);
3916
3917 if (ret < 0)
3918 break;
3919
3920 page_idx += count;
3921 released_blocks += ret;
3922 }
3923
3924 filemap_invalidate_unlock(inode->i_mapping);
3925 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3926 out:
3927 if (released_blocks)
3928 f2fs_update_time(sbi, REQ_TIME);
3929 inode_unlock(inode);
3930
3931 mnt_drop_write_file(filp);
3932
3933 if (ret >= 0) {
3934 ret = put_user(released_blocks, (u64 __user *)arg);
3935 } else if (released_blocks &&
3936 atomic_read(&fi->i_compr_blocks)) {
3937 set_sbi_flag(sbi, SBI_NEED_FSCK);
3938 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3939 "iblocks=%llu, released=%u, compr_blocks=%u, "
3940 "run fsck to fix.",
3941 __func__, inode->i_ino, inode->i_blocks,
3942 released_blocks,
3943 atomic_read(&fi->i_compr_blocks));
3944 }
3945
3946 return ret;
3947 }
3948
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3949 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3950 unsigned int *reserved_blocks)
3951 {
3952 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3953 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3954 block_t blkaddr;
3955 int i;
3956
3957 for (i = 0; i < count; i++) {
3958 blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3959 dn->ofs_in_node + i);
3960
3961 if (!__is_valid_data_blkaddr(blkaddr))
3962 continue;
3963 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3964 DATA_GENERIC_ENHANCE)))
3965 return -EFSCORRUPTED;
3966 }
3967
3968 while (count) {
3969 int compr_blocks = 0;
3970 blkcnt_t reserved = 0;
3971 blkcnt_t to_reserved;
3972 int ret;
3973
3974 for (i = 0; i < cluster_size; i++) {
3975 blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3976 dn->ofs_in_node + i);
3977
3978 if (i == 0) {
3979 if (blkaddr != COMPRESS_ADDR) {
3980 dn->ofs_in_node += cluster_size;
3981 goto next;
3982 }
3983 continue;
3984 }
3985
3986 /*
3987 * compressed cluster was not released due to it
3988 * fails in release_compress_blocks(), so NEW_ADDR
3989 * is a possible case.
3990 */
3991 if (blkaddr == NEW_ADDR) {
3992 reserved++;
3993 continue;
3994 }
3995 if (__is_valid_data_blkaddr(blkaddr)) {
3996 compr_blocks++;
3997 continue;
3998 }
3999 }
4000
4001 to_reserved = cluster_size - compr_blocks - reserved;
4002
4003 /* for the case all blocks in cluster were reserved */
4004 if (reserved && to_reserved == 1) {
4005 dn->ofs_in_node += cluster_size;
4006 goto next;
4007 }
4008
4009 ret = inc_valid_block_count(sbi, dn->inode,
4010 &to_reserved, false);
4011 if (unlikely(ret))
4012 return ret;
4013
4014 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
4015 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
4016 f2fs_set_data_blkaddr(dn, NEW_ADDR);
4017 }
4018
4019 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
4020
4021 *reserved_blocks += to_reserved;
4022 next:
4023 count -= cluster_size;
4024 }
4025
4026 return 0;
4027 }
4028
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)4029 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
4030 {
4031 struct inode *inode = file_inode(filp);
4032 struct f2fs_inode_info *fi = F2FS_I(inode);
4033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4034 pgoff_t page_idx = 0, last_idx;
4035 unsigned int reserved_blocks = 0;
4036 int ret;
4037
4038 if (!f2fs_sb_has_compression(sbi))
4039 return -EOPNOTSUPP;
4040
4041 if (f2fs_readonly(sbi->sb))
4042 return -EROFS;
4043
4044 ret = mnt_want_write_file(filp);
4045 if (ret)
4046 return ret;
4047
4048 f2fs_balance_fs(sbi, true);
4049
4050 inode_lock(inode);
4051
4052 if (!f2fs_compressed_file(inode) ||
4053 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4054 ret = -EINVAL;
4055 goto unlock_inode;
4056 }
4057
4058 if (atomic_read(&fi->i_compr_blocks))
4059 goto unlock_inode;
4060
4061 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
4062 filemap_invalidate_lock(inode->i_mapping);
4063
4064 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4065
4066 while (page_idx < last_idx) {
4067 struct dnode_of_data dn;
4068 pgoff_t end_offset, count;
4069
4070 f2fs_lock_op(sbi);
4071
4072 set_new_dnode(&dn, inode, NULL, NULL, 0);
4073 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
4074 if (ret) {
4075 f2fs_unlock_op(sbi);
4076 if (ret == -ENOENT) {
4077 page_idx = f2fs_get_next_page_offset(&dn,
4078 page_idx);
4079 ret = 0;
4080 continue;
4081 }
4082 break;
4083 }
4084
4085 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
4086 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
4087 count = round_up(count, fi->i_cluster_size);
4088
4089 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
4090
4091 f2fs_put_dnode(&dn);
4092
4093 f2fs_unlock_op(sbi);
4094
4095 if (ret < 0)
4096 break;
4097
4098 page_idx += count;
4099 }
4100
4101 filemap_invalidate_unlock(inode->i_mapping);
4102 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
4103
4104 if (!ret) {
4105 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
4106 inode_set_ctime_current(inode);
4107 f2fs_mark_inode_dirty_sync(inode, true);
4108 }
4109 unlock_inode:
4110 if (reserved_blocks)
4111 f2fs_update_time(sbi, REQ_TIME);
4112 inode_unlock(inode);
4113 mnt_drop_write_file(filp);
4114
4115 if (!ret) {
4116 ret = put_user(reserved_blocks, (u64 __user *)arg);
4117 } else if (reserved_blocks &&
4118 atomic_read(&fi->i_compr_blocks)) {
4119 set_sbi_flag(sbi, SBI_NEED_FSCK);
4120 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
4121 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
4122 "run fsck to fix.",
4123 __func__, inode->i_ino, inode->i_blocks,
4124 reserved_blocks,
4125 atomic_read(&fi->i_compr_blocks));
4126 }
4127
4128 return ret;
4129 }
4130
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)4131 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
4132 pgoff_t off, block_t block, block_t len, u32 flags)
4133 {
4134 sector_t sector = SECTOR_FROM_BLOCK(block);
4135 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
4136 int ret = 0;
4137
4138 if (flags & F2FS_TRIM_FILE_DISCARD) {
4139 if (bdev_max_secure_erase_sectors(bdev))
4140 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
4141 GFP_NOFS);
4142 else
4143 ret = blkdev_issue_discard(bdev, sector, nr_sects,
4144 GFP_NOFS);
4145 }
4146
4147 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
4148 if (IS_ENCRYPTED(inode))
4149 ret = fscrypt_zeroout_range(inode, off, block, len);
4150 else
4151 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
4152 GFP_NOFS, 0);
4153 }
4154
4155 return ret;
4156 }
4157
f2fs_sec_trim_file(struct file * filp,unsigned long arg)4158 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
4159 {
4160 struct inode *inode = file_inode(filp);
4161 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4162 struct address_space *mapping = inode->i_mapping;
4163 struct block_device *prev_bdev = NULL;
4164 struct f2fs_sectrim_range range;
4165 pgoff_t index, pg_end, prev_index = 0;
4166 block_t prev_block = 0, len = 0;
4167 loff_t end_addr;
4168 bool to_end = false;
4169 int ret = 0;
4170
4171 if (!(filp->f_mode & FMODE_WRITE))
4172 return -EBADF;
4173
4174 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4175 sizeof(range)))
4176 return -EFAULT;
4177
4178 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4179 !S_ISREG(inode->i_mode))
4180 return -EINVAL;
4181
4182 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4183 !f2fs_hw_support_discard(sbi)) ||
4184 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4185 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4186 return -EOPNOTSUPP;
4187
4188 ret = mnt_want_write_file(filp);
4189 if (ret)
4190 return ret;
4191 inode_lock(inode);
4192
4193 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4194 range.start >= inode->i_size) {
4195 ret = -EINVAL;
4196 goto err;
4197 }
4198
4199 if (range.len == 0)
4200 goto err;
4201
4202 if (inode->i_size - range.start > range.len) {
4203 end_addr = range.start + range.len;
4204 } else {
4205 end_addr = range.len == (u64)-1 ?
4206 sbi->sb->s_maxbytes : inode->i_size;
4207 to_end = true;
4208 }
4209
4210 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4211 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4212 ret = -EINVAL;
4213 goto err;
4214 }
4215
4216 index = F2FS_BYTES_TO_BLK(range.start);
4217 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4218
4219 ret = f2fs_convert_inline_inode(inode);
4220 if (ret)
4221 goto err;
4222
4223 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4224 filemap_invalidate_lock(mapping);
4225
4226 ret = filemap_write_and_wait_range(mapping, range.start,
4227 to_end ? LLONG_MAX : end_addr - 1);
4228 if (ret)
4229 goto out;
4230
4231 truncate_inode_pages_range(mapping, range.start,
4232 to_end ? -1 : end_addr - 1);
4233
4234 while (index < pg_end) {
4235 struct dnode_of_data dn;
4236 pgoff_t end_offset, count;
4237 int i;
4238
4239 set_new_dnode(&dn, inode, NULL, NULL, 0);
4240 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4241 if (ret) {
4242 if (ret == -ENOENT) {
4243 index = f2fs_get_next_page_offset(&dn, index);
4244 continue;
4245 }
4246 goto out;
4247 }
4248
4249 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
4250 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4251 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4252 struct block_device *cur_bdev;
4253 block_t blkaddr = f2fs_data_blkaddr(&dn);
4254
4255 if (!__is_valid_data_blkaddr(blkaddr))
4256 continue;
4257
4258 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4259 DATA_GENERIC_ENHANCE)) {
4260 ret = -EFSCORRUPTED;
4261 f2fs_put_dnode(&dn);
4262 goto out;
4263 }
4264
4265 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4266 if (f2fs_is_multi_device(sbi)) {
4267 int di = f2fs_target_device_index(sbi, blkaddr);
4268
4269 blkaddr -= FDEV(di).start_blk;
4270 }
4271
4272 if (len) {
4273 if (prev_bdev == cur_bdev &&
4274 index == prev_index + len &&
4275 blkaddr == prev_block + len) {
4276 len++;
4277 } else {
4278 ret = f2fs_secure_erase(prev_bdev,
4279 inode, prev_index, prev_block,
4280 len, range.flags);
4281 if (ret) {
4282 f2fs_put_dnode(&dn);
4283 goto out;
4284 }
4285
4286 len = 0;
4287 }
4288 }
4289
4290 if (!len) {
4291 prev_bdev = cur_bdev;
4292 prev_index = index;
4293 prev_block = blkaddr;
4294 len = 1;
4295 }
4296 }
4297
4298 f2fs_put_dnode(&dn);
4299
4300 if (fatal_signal_pending(current)) {
4301 ret = -EINTR;
4302 goto out;
4303 }
4304 cond_resched();
4305 }
4306
4307 if (len)
4308 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4309 prev_block, len, range.flags);
4310 f2fs_update_time(sbi, REQ_TIME);
4311 out:
4312 filemap_invalidate_unlock(mapping);
4313 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4314 err:
4315 inode_unlock(inode);
4316 mnt_drop_write_file(filp);
4317
4318 return ret;
4319 }
4320
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4321 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4322 {
4323 struct inode *inode = file_inode(filp);
4324 struct f2fs_comp_option option;
4325
4326 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4327 return -EOPNOTSUPP;
4328
4329 inode_lock_shared(inode);
4330
4331 if (!f2fs_compressed_file(inode)) {
4332 inode_unlock_shared(inode);
4333 return -ENODATA;
4334 }
4335
4336 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4337 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4338
4339 inode_unlock_shared(inode);
4340
4341 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4342 sizeof(option)))
4343 return -EFAULT;
4344
4345 return 0;
4346 }
4347
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4348 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4349 {
4350 struct inode *inode = file_inode(filp);
4351 struct f2fs_inode_info *fi = F2FS_I(inode);
4352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4353 struct f2fs_comp_option option;
4354 int ret = 0;
4355
4356 if (!f2fs_sb_has_compression(sbi))
4357 return -EOPNOTSUPP;
4358
4359 if (!(filp->f_mode & FMODE_WRITE))
4360 return -EBADF;
4361
4362 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4363 sizeof(option)))
4364 return -EFAULT;
4365
4366 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4367 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4368 option.algorithm >= COMPRESS_MAX)
4369 return -EINVAL;
4370
4371 ret = mnt_want_write_file(filp);
4372 if (ret)
4373 return ret;
4374 inode_lock(inode);
4375
4376 f2fs_down_write(&F2FS_I(inode)->i_sem);
4377 if (!f2fs_compressed_file(inode)) {
4378 ret = -EINVAL;
4379 goto out;
4380 }
4381
4382 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4383 ret = -EBUSY;
4384 goto out;
4385 }
4386
4387 if (F2FS_HAS_BLOCKS(inode)) {
4388 ret = -EFBIG;
4389 goto out;
4390 }
4391
4392 fi->i_compress_algorithm = option.algorithm;
4393 fi->i_log_cluster_size = option.log_cluster_size;
4394 fi->i_cluster_size = BIT(option.log_cluster_size);
4395 /* Set default level */
4396 if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4397 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4398 else
4399 fi->i_compress_level = 0;
4400 /* Adjust mount option level */
4401 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4402 F2FS_OPTION(sbi).compress_level)
4403 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4404 f2fs_mark_inode_dirty_sync(inode, true);
4405
4406 if (!f2fs_is_compress_backend_ready(inode))
4407 f2fs_warn(sbi, "compression algorithm is successfully set, "
4408 "but current kernel doesn't support this algorithm.");
4409 out:
4410 f2fs_up_write(&fi->i_sem);
4411 inode_unlock(inode);
4412 mnt_drop_write_file(filp);
4413
4414 return ret;
4415 }
4416
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4417 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4418 {
4419 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4420 struct address_space *mapping = inode->i_mapping;
4421 struct folio *folio;
4422 pgoff_t redirty_idx = page_idx;
4423 int page_len = 0, ret = 0;
4424
4425 page_cache_ra_unbounded(&ractl, len, 0);
4426
4427 do {
4428 folio = read_cache_folio(mapping, page_idx, NULL, NULL);
4429 if (IS_ERR(folio)) {
4430 ret = PTR_ERR(folio);
4431 break;
4432 }
4433 page_len += folio_nr_pages(folio) - (page_idx - folio->index);
4434 page_idx = folio_next_index(folio);
4435 } while (page_len < len);
4436
4437 do {
4438 folio = filemap_lock_folio(mapping, redirty_idx);
4439
4440 /* It will never fail, when folio has pinned above */
4441 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(folio));
4442
4443 f2fs_folio_wait_writeback(folio, DATA, true, true);
4444
4445 folio_mark_dirty(folio);
4446 folio_set_f2fs_gcing(folio);
4447 redirty_idx = folio_next_index(folio);
4448 folio_unlock(folio);
4449 folio_put_refs(folio, 2);
4450 } while (redirty_idx < page_idx);
4451
4452 return ret;
4453 }
4454
f2fs_ioc_decompress_file(struct file * filp)4455 static int f2fs_ioc_decompress_file(struct file *filp)
4456 {
4457 struct inode *inode = file_inode(filp);
4458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4459 struct f2fs_inode_info *fi = F2FS_I(inode);
4460 pgoff_t page_idx = 0, last_idx, cluster_idx;
4461 int ret;
4462
4463 if (!f2fs_sb_has_compression(sbi) ||
4464 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4465 return -EOPNOTSUPP;
4466
4467 if (!(filp->f_mode & FMODE_WRITE))
4468 return -EBADF;
4469
4470 f2fs_balance_fs(sbi, true);
4471
4472 ret = mnt_want_write_file(filp);
4473 if (ret)
4474 return ret;
4475 inode_lock(inode);
4476
4477 if (!f2fs_is_compress_backend_ready(inode)) {
4478 ret = -EOPNOTSUPP;
4479 goto out;
4480 }
4481
4482 if (!f2fs_compressed_file(inode) ||
4483 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4484 ret = -EINVAL;
4485 goto out;
4486 }
4487
4488 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4489 if (ret)
4490 goto out;
4491
4492 if (!atomic_read(&fi->i_compr_blocks))
4493 goto out;
4494
4495 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4496 last_idx >>= fi->i_log_cluster_size;
4497
4498 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4499 page_idx = cluster_idx << fi->i_log_cluster_size;
4500
4501 if (!f2fs_is_compressed_cluster(inode, page_idx))
4502 continue;
4503
4504 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4505 if (ret < 0)
4506 break;
4507
4508 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4509 ret = filemap_fdatawrite(inode->i_mapping);
4510 if (ret < 0)
4511 break;
4512 }
4513
4514 cond_resched();
4515 if (fatal_signal_pending(current)) {
4516 ret = -EINTR;
4517 break;
4518 }
4519 }
4520
4521 if (!ret)
4522 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4523 LLONG_MAX);
4524
4525 if (ret)
4526 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4527 __func__, ret);
4528 f2fs_update_time(sbi, REQ_TIME);
4529 out:
4530 inode_unlock(inode);
4531 mnt_drop_write_file(filp);
4532
4533 return ret;
4534 }
4535
f2fs_ioc_compress_file(struct file * filp)4536 static int f2fs_ioc_compress_file(struct file *filp)
4537 {
4538 struct inode *inode = file_inode(filp);
4539 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4540 struct f2fs_inode_info *fi = F2FS_I(inode);
4541 pgoff_t page_idx = 0, last_idx, cluster_idx;
4542 int ret;
4543
4544 if (!f2fs_sb_has_compression(sbi) ||
4545 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4546 return -EOPNOTSUPP;
4547
4548 if (!(filp->f_mode & FMODE_WRITE))
4549 return -EBADF;
4550
4551 f2fs_balance_fs(sbi, true);
4552
4553 ret = mnt_want_write_file(filp);
4554 if (ret)
4555 return ret;
4556 inode_lock(inode);
4557
4558 if (!f2fs_is_compress_backend_ready(inode)) {
4559 ret = -EOPNOTSUPP;
4560 goto out;
4561 }
4562
4563 if (!f2fs_compressed_file(inode) ||
4564 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4565 ret = -EINVAL;
4566 goto out;
4567 }
4568
4569 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4570 if (ret)
4571 goto out;
4572
4573 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4574
4575 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4576 last_idx >>= fi->i_log_cluster_size;
4577
4578 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4579 page_idx = cluster_idx << fi->i_log_cluster_size;
4580
4581 if (f2fs_is_sparse_cluster(inode, page_idx))
4582 continue;
4583
4584 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4585 if (ret < 0)
4586 break;
4587
4588 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4589 ret = filemap_fdatawrite(inode->i_mapping);
4590 if (ret < 0)
4591 break;
4592 }
4593
4594 cond_resched();
4595 if (fatal_signal_pending(current)) {
4596 ret = -EINTR;
4597 break;
4598 }
4599 }
4600
4601 if (!ret)
4602 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4603 LLONG_MAX);
4604
4605 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4606
4607 if (ret)
4608 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4609 __func__, ret);
4610 f2fs_update_time(sbi, REQ_TIME);
4611 out:
4612 inode_unlock(inode);
4613 mnt_drop_write_file(filp);
4614
4615 return ret;
4616 }
4617
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4618 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4619 {
4620 switch (cmd) {
4621 case FS_IOC_GETVERSION:
4622 return f2fs_ioc_getversion(filp, arg);
4623 case F2FS_IOC_START_ATOMIC_WRITE:
4624 return f2fs_ioc_start_atomic_write(filp, false);
4625 case F2FS_IOC_START_ATOMIC_REPLACE:
4626 return f2fs_ioc_start_atomic_write(filp, true);
4627 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4628 return f2fs_ioc_commit_atomic_write(filp);
4629 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4630 return f2fs_ioc_abort_atomic_write(filp);
4631 case F2FS_IOC_START_VOLATILE_WRITE:
4632 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4633 return -EOPNOTSUPP;
4634 case F2FS_IOC_SHUTDOWN:
4635 return f2fs_ioc_shutdown(filp, arg);
4636 case FITRIM:
4637 return f2fs_ioc_fitrim(filp, arg);
4638 case FS_IOC_SET_ENCRYPTION_POLICY:
4639 return f2fs_ioc_set_encryption_policy(filp, arg);
4640 case FS_IOC_GET_ENCRYPTION_POLICY:
4641 return f2fs_ioc_get_encryption_policy(filp, arg);
4642 case FS_IOC_GET_ENCRYPTION_PWSALT:
4643 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4644 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4645 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4646 case FS_IOC_ADD_ENCRYPTION_KEY:
4647 return f2fs_ioc_add_encryption_key(filp, arg);
4648 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4649 return f2fs_ioc_remove_encryption_key(filp, arg);
4650 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4651 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4652 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4653 return f2fs_ioc_get_encryption_key_status(filp, arg);
4654 case FS_IOC_GET_ENCRYPTION_NONCE:
4655 return f2fs_ioc_get_encryption_nonce(filp, arg);
4656 case F2FS_IOC_GARBAGE_COLLECT:
4657 return f2fs_ioc_gc(filp, arg);
4658 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4659 return f2fs_ioc_gc_range(filp, arg);
4660 case F2FS_IOC_WRITE_CHECKPOINT:
4661 return f2fs_ioc_write_checkpoint(filp);
4662 case F2FS_IOC_DEFRAGMENT:
4663 return f2fs_ioc_defragment(filp, arg);
4664 case F2FS_IOC_MOVE_RANGE:
4665 return f2fs_ioc_move_range(filp, arg);
4666 case F2FS_IOC_FLUSH_DEVICE:
4667 return f2fs_ioc_flush_device(filp, arg);
4668 case F2FS_IOC_GET_FEATURES:
4669 return f2fs_ioc_get_features(filp, arg);
4670 case F2FS_IOC_GET_PIN_FILE:
4671 return f2fs_ioc_get_pin_file(filp, arg);
4672 case F2FS_IOC_SET_PIN_FILE:
4673 return f2fs_ioc_set_pin_file(filp, arg);
4674 case F2FS_IOC_PRECACHE_EXTENTS:
4675 return f2fs_ioc_precache_extents(filp);
4676 case F2FS_IOC_RESIZE_FS:
4677 return f2fs_ioc_resize_fs(filp, arg);
4678 case FS_IOC_ENABLE_VERITY:
4679 return f2fs_ioc_enable_verity(filp, arg);
4680 case FS_IOC_MEASURE_VERITY:
4681 return f2fs_ioc_measure_verity(filp, arg);
4682 case FS_IOC_READ_VERITY_METADATA:
4683 return f2fs_ioc_read_verity_metadata(filp, arg);
4684 case FS_IOC_GETFSLABEL:
4685 return f2fs_ioc_getfslabel(filp, arg);
4686 case FS_IOC_SETFSLABEL:
4687 return f2fs_ioc_setfslabel(filp, arg);
4688 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4689 return f2fs_ioc_get_compress_blocks(filp, arg);
4690 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4691 return f2fs_release_compress_blocks(filp, arg);
4692 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4693 return f2fs_reserve_compress_blocks(filp, arg);
4694 case F2FS_IOC_SEC_TRIM_FILE:
4695 return f2fs_sec_trim_file(filp, arg);
4696 case F2FS_IOC_GET_COMPRESS_OPTION:
4697 return f2fs_ioc_get_compress_option(filp, arg);
4698 case F2FS_IOC_SET_COMPRESS_OPTION:
4699 return f2fs_ioc_set_compress_option(filp, arg);
4700 case F2FS_IOC_DECOMPRESS_FILE:
4701 return f2fs_ioc_decompress_file(filp);
4702 case F2FS_IOC_COMPRESS_FILE:
4703 return f2fs_ioc_compress_file(filp);
4704 case F2FS_IOC_GET_DEV_ALIAS_FILE:
4705 return f2fs_ioc_get_dev_alias_file(filp, arg);
4706 case F2FS_IOC_IO_PRIO:
4707 return f2fs_ioc_io_prio(filp, arg);
4708 default:
4709 return -ENOTTY;
4710 }
4711 }
4712
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4713 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4714 {
4715 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4716 return -EIO;
4717 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4718 return -ENOSPC;
4719
4720 return __f2fs_ioctl(filp, cmd, arg);
4721 }
4722
4723 /*
4724 * Return %true if the given read or write request should use direct I/O, or
4725 * %false if it should use buffered I/O.
4726 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4727 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4728 struct iov_iter *iter)
4729 {
4730 unsigned int align;
4731
4732 if (!(iocb->ki_flags & IOCB_DIRECT))
4733 return false;
4734
4735 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4736 return false;
4737
4738 /*
4739 * Direct I/O not aligned to the disk's logical_block_size will be
4740 * attempted, but will fail with -EINVAL.
4741 *
4742 * f2fs additionally requires that direct I/O be aligned to the
4743 * filesystem block size, which is often a stricter requirement.
4744 * However, f2fs traditionally falls back to buffered I/O on requests
4745 * that are logical_block_size-aligned but not fs-block aligned.
4746 *
4747 * The below logic implements this behavior.
4748 */
4749 align = iocb->ki_pos | iov_iter_alignment(iter);
4750 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4751 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4752 return false;
4753
4754 return true;
4755 }
4756
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4757 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4758 unsigned int flags)
4759 {
4760 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4761
4762 dec_page_count(sbi, F2FS_DIO_READ);
4763 if (error)
4764 return error;
4765 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4766 return 0;
4767 }
4768
4769 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4770 .end_io = f2fs_dio_read_end_io,
4771 };
4772
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4773 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4774 {
4775 struct file *file = iocb->ki_filp;
4776 struct inode *inode = file_inode(file);
4777 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4778 struct f2fs_inode_info *fi = F2FS_I(inode);
4779 const loff_t pos = iocb->ki_pos;
4780 const size_t count = iov_iter_count(to);
4781 struct iomap_dio *dio;
4782 ssize_t ret;
4783
4784 if (count == 0)
4785 return 0; /* skip atime update */
4786
4787 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4788
4789 if (iocb->ki_flags & IOCB_NOWAIT) {
4790 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4791 ret = -EAGAIN;
4792 goto out;
4793 }
4794 } else {
4795 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4796 }
4797
4798 /* dio is not compatible w/ atomic file */
4799 if (f2fs_is_atomic_file(inode)) {
4800 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4801 ret = -EOPNOTSUPP;
4802 goto out;
4803 }
4804
4805 /*
4806 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4807 * the higher-level function iomap_dio_rw() in order to ensure that the
4808 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4809 */
4810 inc_page_count(sbi, F2FS_DIO_READ);
4811 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4812 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4813 if (IS_ERR_OR_NULL(dio)) {
4814 ret = PTR_ERR_OR_ZERO(dio);
4815 if (ret != -EIOCBQUEUED)
4816 dec_page_count(sbi, F2FS_DIO_READ);
4817 } else {
4818 ret = iomap_dio_complete(dio);
4819 }
4820
4821 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4822
4823 file_accessed(file);
4824 out:
4825 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4826 return ret;
4827 }
4828
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4829 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4830 int rw)
4831 {
4832 struct inode *inode = file_inode(file);
4833 char *buf, *path;
4834
4835 buf = f2fs_getname(F2FS_I_SB(inode));
4836 if (!buf)
4837 return;
4838 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4839 if (IS_ERR(path))
4840 goto free_buf;
4841 if (rw == WRITE)
4842 trace_f2fs_datawrite_start(inode, pos, count,
4843 current->pid, path, current->comm);
4844 else
4845 trace_f2fs_dataread_start(inode, pos, count,
4846 current->pid, path, current->comm);
4847 free_buf:
4848 f2fs_putname(buf);
4849 }
4850
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4851 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4852 {
4853 struct inode *inode = file_inode(iocb->ki_filp);
4854 const loff_t pos = iocb->ki_pos;
4855 ssize_t ret;
4856 bool dio;
4857
4858 if (!f2fs_is_compress_backend_ready(inode))
4859 return -EOPNOTSUPP;
4860
4861 if (trace_f2fs_dataread_start_enabled())
4862 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4863 iov_iter_count(to), READ);
4864
4865 dio = f2fs_should_use_dio(inode, iocb, to);
4866
4867 /* In LFS mode, if there is inflight dio, wait for its completion */
4868 if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4869 get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE) &&
4870 (!f2fs_is_pinned_file(inode) || !dio))
4871 inode_dio_wait(inode);
4872
4873 if (dio) {
4874 ret = f2fs_dio_read_iter(iocb, to);
4875 } else {
4876 ret = filemap_read(iocb, to, 0);
4877 if (ret > 0)
4878 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4879 APP_BUFFERED_READ_IO, ret);
4880 }
4881 trace_f2fs_dataread_end(inode, pos, ret);
4882 return ret;
4883 }
4884
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4885 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4886 struct pipe_inode_info *pipe,
4887 size_t len, unsigned int flags)
4888 {
4889 struct inode *inode = file_inode(in);
4890 const loff_t pos = *ppos;
4891 ssize_t ret;
4892
4893 if (!f2fs_is_compress_backend_ready(inode))
4894 return -EOPNOTSUPP;
4895
4896 if (trace_f2fs_dataread_start_enabled())
4897 f2fs_trace_rw_file_path(in, pos, len, READ);
4898
4899 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4900 if (ret > 0)
4901 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4902 APP_BUFFERED_READ_IO, ret);
4903
4904 trace_f2fs_dataread_end(inode, pos, ret);
4905 return ret;
4906 }
4907
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4908 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4909 {
4910 struct file *file = iocb->ki_filp;
4911 struct inode *inode = file_inode(file);
4912 ssize_t count;
4913 int err;
4914
4915 if (IS_IMMUTABLE(inode))
4916 return -EPERM;
4917
4918 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4919 return -EPERM;
4920
4921 count = generic_write_checks(iocb, from);
4922 if (count <= 0)
4923 return count;
4924
4925 err = file_modified(file);
4926 if (err)
4927 return err;
4928
4929 f2fs_zero_post_eof_page(inode,
4930 iocb->ki_pos + iov_iter_count(from), true);
4931 return count;
4932 }
4933
4934 /*
4935 * Preallocate blocks for a write request, if it is possible and helpful to do
4936 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4937 * blocks were preallocated, or a negative errno value if something went
4938 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4939 * requested blocks (not just some of them) have been allocated.
4940 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4941 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4942 bool dio)
4943 {
4944 struct inode *inode = file_inode(iocb->ki_filp);
4945 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4946 const loff_t pos = iocb->ki_pos;
4947 const size_t count = iov_iter_count(iter);
4948 struct f2fs_map_blocks map = {};
4949 int flag;
4950 int ret;
4951
4952 /* If it will be an out-of-place direct write, don't bother. */
4953 if (dio && f2fs_lfs_mode(sbi))
4954 return 0;
4955 /*
4956 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4957 * buffered IO, if DIO meets any holes.
4958 */
4959 if (dio && i_size_read(inode) &&
4960 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4961 return 0;
4962
4963 /* No-wait I/O can't allocate blocks. */
4964 if (iocb->ki_flags & IOCB_NOWAIT)
4965 return 0;
4966
4967 /* If it will be a short write, don't bother. */
4968 if (fault_in_iov_iter_readable(iter, count))
4969 return 0;
4970
4971 if (f2fs_has_inline_data(inode)) {
4972 /* If the data will fit inline, don't bother. */
4973 if (pos + count <= MAX_INLINE_DATA(inode))
4974 return 0;
4975 ret = f2fs_convert_inline_inode(inode);
4976 if (ret)
4977 return ret;
4978 }
4979
4980 /* Do not preallocate blocks that will be written partially in 4KB. */
4981 map.m_lblk = F2FS_BLK_ALIGN(pos);
4982 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4983 if (map.m_len > map.m_lblk)
4984 map.m_len -= map.m_lblk;
4985 else
4986 return 0;
4987
4988 if (!IS_DEVICE_ALIASING(inode))
4989 map.m_may_create = true;
4990 if (dio) {
4991 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4992 inode->i_write_hint);
4993 flag = F2FS_GET_BLOCK_PRE_DIO;
4994 } else {
4995 map.m_seg_type = NO_CHECK_TYPE;
4996 flag = F2FS_GET_BLOCK_PRE_AIO;
4997 }
4998
4999 ret = f2fs_map_blocks(inode, &map, flag);
5000 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
5001 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
5002 return ret;
5003 if (ret == 0)
5004 set_inode_flag(inode, FI_PREALLOCATED_ALL);
5005 return map.m_len;
5006 }
5007
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)5008 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
5009 struct iov_iter *from)
5010 {
5011 struct file *file = iocb->ki_filp;
5012 struct inode *inode = file_inode(file);
5013 ssize_t ret;
5014
5015 if (iocb->ki_flags & IOCB_NOWAIT)
5016 return -EOPNOTSUPP;
5017
5018 ret = generic_perform_write(iocb, from);
5019
5020 if (ret > 0) {
5021 f2fs_update_iostat(F2FS_I_SB(inode), inode,
5022 APP_BUFFERED_IO, ret);
5023 }
5024 return ret;
5025 }
5026
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)5027 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
5028 unsigned int flags)
5029 {
5030 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
5031
5032 dec_page_count(sbi, F2FS_DIO_WRITE);
5033 if (error)
5034 return error;
5035 f2fs_update_time(sbi, REQ_TIME);
5036 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
5037 return 0;
5038 }
5039
f2fs_dio_write_submit_io(const struct iomap_iter * iter,struct bio * bio,loff_t file_offset)5040 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
5041 struct bio *bio, loff_t file_offset)
5042 {
5043 struct inode *inode = iter->inode;
5044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5045 enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
5046 enum temp_type temp = f2fs_get_segment_temp(sbi, type);
5047
5048 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
5049 submit_bio(bio);
5050 }
5051
5052 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
5053 .end_io = f2fs_dio_write_end_io,
5054 .submit_io = f2fs_dio_write_submit_io,
5055 };
5056
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)5057 static void f2fs_flush_buffered_write(struct address_space *mapping,
5058 loff_t start_pos, loff_t end_pos)
5059 {
5060 int ret;
5061
5062 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
5063 if (ret < 0)
5064 return;
5065 invalidate_mapping_pages(mapping,
5066 start_pos >> PAGE_SHIFT,
5067 end_pos >> PAGE_SHIFT);
5068 }
5069
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)5070 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
5071 bool *may_need_sync)
5072 {
5073 struct file *file = iocb->ki_filp;
5074 struct inode *inode = file_inode(file);
5075 struct f2fs_inode_info *fi = F2FS_I(inode);
5076 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5077 const bool do_opu = f2fs_lfs_mode(sbi);
5078 const loff_t pos = iocb->ki_pos;
5079 const ssize_t count = iov_iter_count(from);
5080 unsigned int dio_flags;
5081 struct iomap_dio *dio;
5082 ssize_t ret;
5083
5084 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
5085
5086 if (iocb->ki_flags & IOCB_NOWAIT) {
5087 /* f2fs_convert_inline_inode() and block allocation can block */
5088 if (f2fs_has_inline_data(inode) ||
5089 !f2fs_overwrite_io(inode, pos, count)) {
5090 ret = -EAGAIN;
5091 goto out;
5092 }
5093
5094 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
5095 ret = -EAGAIN;
5096 goto out;
5097 }
5098 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
5099 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5100 ret = -EAGAIN;
5101 goto out;
5102 }
5103 } else {
5104 ret = f2fs_convert_inline_inode(inode);
5105 if (ret)
5106 goto out;
5107
5108 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
5109 if (do_opu)
5110 f2fs_down_read(&fi->i_gc_rwsem[READ]);
5111 }
5112
5113 /*
5114 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
5115 * the higher-level function iomap_dio_rw() in order to ensure that the
5116 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
5117 */
5118 inc_page_count(sbi, F2FS_DIO_WRITE);
5119 dio_flags = 0;
5120 if (pos + count > inode->i_size)
5121 dio_flags |= IOMAP_DIO_FORCE_WAIT;
5122 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
5123 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
5124 if (IS_ERR_OR_NULL(dio)) {
5125 ret = PTR_ERR_OR_ZERO(dio);
5126 if (ret == -ENOTBLK)
5127 ret = 0;
5128 if (ret != -EIOCBQUEUED)
5129 dec_page_count(sbi, F2FS_DIO_WRITE);
5130 } else {
5131 ret = iomap_dio_complete(dio);
5132 }
5133
5134 if (do_opu)
5135 f2fs_up_read(&fi->i_gc_rwsem[READ]);
5136 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5137
5138 if (ret < 0)
5139 goto out;
5140 if (pos + ret > inode->i_size)
5141 f2fs_i_size_write(inode, pos + ret);
5142 if (!do_opu)
5143 set_inode_flag(inode, FI_UPDATE_WRITE);
5144
5145 if (iov_iter_count(from)) {
5146 ssize_t ret2;
5147 loff_t bufio_start_pos = iocb->ki_pos;
5148
5149 /*
5150 * The direct write was partial, so we need to fall back to a
5151 * buffered write for the remainder.
5152 */
5153
5154 ret2 = f2fs_buffered_write_iter(iocb, from);
5155 if (iov_iter_count(from))
5156 f2fs_write_failed(inode, iocb->ki_pos);
5157 if (ret2 < 0)
5158 goto out;
5159
5160 /*
5161 * Ensure that the pagecache pages are written to disk and
5162 * invalidated to preserve the expected O_DIRECT semantics.
5163 */
5164 if (ret2 > 0) {
5165 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
5166
5167 ret += ret2;
5168
5169 f2fs_flush_buffered_write(file->f_mapping,
5170 bufio_start_pos,
5171 bufio_end_pos);
5172 }
5173 } else {
5174 /* iomap_dio_rw() already handled the generic_write_sync(). */
5175 *may_need_sync = false;
5176 }
5177 out:
5178 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
5179 return ret;
5180 }
5181
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)5182 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5183 {
5184 struct inode *inode = file_inode(iocb->ki_filp);
5185 const loff_t orig_pos = iocb->ki_pos;
5186 const size_t orig_count = iov_iter_count(from);
5187 loff_t target_size;
5188 bool dio;
5189 bool may_need_sync = true;
5190 int preallocated;
5191 const loff_t pos = iocb->ki_pos;
5192 const ssize_t count = iov_iter_count(from);
5193 ssize_t ret;
5194
5195 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5196 ret = -EIO;
5197 goto out;
5198 }
5199
5200 if (!f2fs_is_compress_backend_ready(inode)) {
5201 ret = -EOPNOTSUPP;
5202 goto out;
5203 }
5204
5205 if (iocb->ki_flags & IOCB_NOWAIT) {
5206 if (!inode_trylock(inode)) {
5207 ret = -EAGAIN;
5208 goto out;
5209 }
5210 } else {
5211 inode_lock(inode);
5212 }
5213
5214 if (f2fs_is_pinned_file(inode) &&
5215 !f2fs_overwrite_io(inode, pos, count)) {
5216 ret = -EIO;
5217 goto out_unlock;
5218 }
5219
5220 ret = f2fs_write_checks(iocb, from);
5221 if (ret <= 0)
5222 goto out_unlock;
5223
5224 /* Determine whether we will do a direct write or a buffered write. */
5225 dio = f2fs_should_use_dio(inode, iocb, from);
5226
5227 /* dio is not compatible w/ atomic write */
5228 if (dio && f2fs_is_atomic_file(inode)) {
5229 ret = -EOPNOTSUPP;
5230 goto out_unlock;
5231 }
5232
5233 /* Possibly preallocate the blocks for the write. */
5234 target_size = iocb->ki_pos + iov_iter_count(from);
5235 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5236 if (preallocated < 0) {
5237 ret = preallocated;
5238 } else {
5239 if (trace_f2fs_datawrite_start_enabled())
5240 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5241 orig_count, WRITE);
5242
5243 /* Do the actual write. */
5244 ret = dio ?
5245 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5246 f2fs_buffered_write_iter(iocb, from);
5247
5248 trace_f2fs_datawrite_end(inode, orig_pos, ret);
5249 }
5250
5251 /* Don't leave any preallocated blocks around past i_size. */
5252 if (preallocated && i_size_read(inode) < target_size) {
5253 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5254 filemap_invalidate_lock(inode->i_mapping);
5255 if (!f2fs_truncate(inode))
5256 file_dont_truncate(inode);
5257 filemap_invalidate_unlock(inode->i_mapping);
5258 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5259 } else {
5260 file_dont_truncate(inode);
5261 }
5262
5263 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5264 out_unlock:
5265 inode_unlock(inode);
5266 out:
5267 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5268
5269 if (ret > 0 && may_need_sync)
5270 ret = generic_write_sync(iocb, ret);
5271
5272 /* If buffered IO was forced, flush and drop the data from
5273 * the page cache to preserve O_DIRECT semantics
5274 */
5275 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5276 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5277 orig_pos,
5278 orig_pos + ret - 1);
5279
5280 return ret;
5281 }
5282
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)5283 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5284 int advice)
5285 {
5286 struct address_space *mapping;
5287 struct backing_dev_info *bdi;
5288 struct inode *inode = file_inode(filp);
5289 int err;
5290
5291 trace_f2fs_fadvise(inode, offset, len, advice);
5292
5293 if (advice == POSIX_FADV_SEQUENTIAL) {
5294 if (S_ISFIFO(inode->i_mode))
5295 return -ESPIPE;
5296
5297 mapping = filp->f_mapping;
5298 if (!mapping || len < 0)
5299 return -EINVAL;
5300
5301 bdi = inode_to_bdi(mapping->host);
5302 filp->f_ra.ra_pages = bdi->ra_pages *
5303 F2FS_I_SB(inode)->seq_file_ra_mul;
5304 spin_lock(&filp->f_lock);
5305 filp->f_mode &= ~FMODE_RANDOM;
5306 spin_unlock(&filp->f_lock);
5307 return 0;
5308 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5309 /* Load extent cache at the first readahead. */
5310 f2fs_precache_extents(inode);
5311 }
5312
5313 err = generic_fadvise(filp, offset, len, advice);
5314 if (err)
5315 return err;
5316
5317 if (advice == POSIX_FADV_DONTNEED &&
5318 (test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5319 f2fs_compressed_file(inode)))
5320 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5321 else if (advice == POSIX_FADV_NOREUSE)
5322 err = f2fs_keep_noreuse_range(inode, offset, len);
5323 return err;
5324 }
5325
5326 #ifdef CONFIG_COMPAT
5327 struct compat_f2fs_gc_range {
5328 u32 sync;
5329 compat_u64 start;
5330 compat_u64 len;
5331 };
5332 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
5333 struct compat_f2fs_gc_range)
5334
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)5335 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5336 {
5337 struct compat_f2fs_gc_range __user *urange;
5338 struct f2fs_gc_range range;
5339 int err;
5340
5341 urange = compat_ptr(arg);
5342 err = get_user(range.sync, &urange->sync);
5343 err |= get_user(range.start, &urange->start);
5344 err |= get_user(range.len, &urange->len);
5345 if (err)
5346 return -EFAULT;
5347
5348 return __f2fs_ioc_gc_range(file, &range);
5349 }
5350
5351 struct compat_f2fs_move_range {
5352 u32 dst_fd;
5353 compat_u64 pos_in;
5354 compat_u64 pos_out;
5355 compat_u64 len;
5356 };
5357 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5358 struct compat_f2fs_move_range)
5359
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)5360 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5361 {
5362 struct compat_f2fs_move_range __user *urange;
5363 struct f2fs_move_range range;
5364 int err;
5365
5366 urange = compat_ptr(arg);
5367 err = get_user(range.dst_fd, &urange->dst_fd);
5368 err |= get_user(range.pos_in, &urange->pos_in);
5369 err |= get_user(range.pos_out, &urange->pos_out);
5370 err |= get_user(range.len, &urange->len);
5371 if (err)
5372 return -EFAULT;
5373
5374 return __f2fs_ioc_move_range(file, &range);
5375 }
5376
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5377 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5378 {
5379 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5380 return -EIO;
5381 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5382 return -ENOSPC;
5383
5384 switch (cmd) {
5385 case FS_IOC32_GETVERSION:
5386 cmd = FS_IOC_GETVERSION;
5387 break;
5388 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5389 return f2fs_compat_ioc_gc_range(file, arg);
5390 case F2FS_IOC32_MOVE_RANGE:
5391 return f2fs_compat_ioc_move_range(file, arg);
5392 case F2FS_IOC_START_ATOMIC_WRITE:
5393 case F2FS_IOC_START_ATOMIC_REPLACE:
5394 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5395 case F2FS_IOC_START_VOLATILE_WRITE:
5396 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5397 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5398 case F2FS_IOC_SHUTDOWN:
5399 case FITRIM:
5400 case FS_IOC_SET_ENCRYPTION_POLICY:
5401 case FS_IOC_GET_ENCRYPTION_PWSALT:
5402 case FS_IOC_GET_ENCRYPTION_POLICY:
5403 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5404 case FS_IOC_ADD_ENCRYPTION_KEY:
5405 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5406 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5407 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5408 case FS_IOC_GET_ENCRYPTION_NONCE:
5409 case F2FS_IOC_GARBAGE_COLLECT:
5410 case F2FS_IOC_WRITE_CHECKPOINT:
5411 case F2FS_IOC_DEFRAGMENT:
5412 case F2FS_IOC_FLUSH_DEVICE:
5413 case F2FS_IOC_GET_FEATURES:
5414 case F2FS_IOC_GET_PIN_FILE:
5415 case F2FS_IOC_SET_PIN_FILE:
5416 case F2FS_IOC_PRECACHE_EXTENTS:
5417 case F2FS_IOC_RESIZE_FS:
5418 case FS_IOC_ENABLE_VERITY:
5419 case FS_IOC_MEASURE_VERITY:
5420 case FS_IOC_READ_VERITY_METADATA:
5421 case FS_IOC_GETFSLABEL:
5422 case FS_IOC_SETFSLABEL:
5423 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5424 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5425 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5426 case F2FS_IOC_SEC_TRIM_FILE:
5427 case F2FS_IOC_GET_COMPRESS_OPTION:
5428 case F2FS_IOC_SET_COMPRESS_OPTION:
5429 case F2FS_IOC_DECOMPRESS_FILE:
5430 case F2FS_IOC_COMPRESS_FILE:
5431 case F2FS_IOC_GET_DEV_ALIAS_FILE:
5432 case F2FS_IOC_IO_PRIO:
5433 break;
5434 default:
5435 return -ENOIOCTLCMD;
5436 }
5437 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5438 }
5439 #endif
5440
5441 const struct file_operations f2fs_file_operations = {
5442 .llseek = f2fs_llseek,
5443 .read_iter = f2fs_file_read_iter,
5444 .write_iter = f2fs_file_write_iter,
5445 .iopoll = iocb_bio_iopoll,
5446 .open = f2fs_file_open,
5447 .release = f2fs_release_file,
5448 .mmap_prepare = f2fs_file_mmap_prepare,
5449 .flush = f2fs_file_flush,
5450 .fsync = f2fs_sync_file,
5451 .fallocate = f2fs_fallocate,
5452 .unlocked_ioctl = f2fs_ioctl,
5453 #ifdef CONFIG_COMPAT
5454 .compat_ioctl = f2fs_compat_ioctl,
5455 #endif
5456 .splice_read = f2fs_file_splice_read,
5457 .splice_write = iter_file_splice_write,
5458 .fadvise = f2fs_file_fadvise,
5459 .fop_flags = FOP_BUFFER_RASYNC,
5460 };
5461