1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 /*
205 * The vfs inode keeps clean during commit, but the f2fs inode
206 * doesn't. So clear the dirty state after commit and let
207 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 */
209 f2fs_inode_synced(inode);
210 f2fs_mark_inode_dirty_sync(inode, true);
211 }
212 stat_dec_atomic_inode(inode);
213
214 F2FS_I(inode)->atomic_write_task = NULL;
215
216 if (clean) {
217 f2fs_i_size_write(inode, fi->original_i_size);
218 fi->original_i_size = 0;
219 }
220 /* avoid stale dirty inode during eviction */
221 sync_inode_metadata(inode, 0);
222 }
223
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 block_t new_addr, block_t *old_addr, bool recover)
226 {
227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 struct dnode_of_data dn;
229 struct node_info ni;
230 int err;
231
232 retry:
233 set_new_dnode(&dn, inode, NULL, NULL, 0);
234 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 if (err) {
236 if (err == -ENOMEM) {
237 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
238 goto retry;
239 }
240 return err;
241 }
242
243 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 if (err) {
245 f2fs_put_dnode(&dn);
246 return err;
247 }
248
249 if (recover) {
250 /* dn.data_blkaddr is always valid */
251 if (!__is_valid_data_blkaddr(new_addr)) {
252 if (new_addr == NULL_ADDR)
253 dec_valid_block_count(sbi, inode, 1);
254 f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 f2fs_update_data_blkaddr(&dn, new_addr);
256 } else {
257 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 new_addr, ni.version, true, true);
259 }
260 } else {
261 blkcnt_t count = 1;
262
263 err = inc_valid_block_count(sbi, inode, &count, true);
264 if (err) {
265 f2fs_put_dnode(&dn);
266 return err;
267 }
268
269 *old_addr = dn.data_blkaddr;
270 f2fs_truncate_data_blocks_range(&dn, 1);
271 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272
273 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 ni.version, true, false);
275 }
276
277 f2fs_put_dnode(&dn);
278
279 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 index, old_addr ? *old_addr : 0, new_addr, recover);
281 return 0;
282 }
283
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 bool revoke)
286 {
287 struct revoke_entry *cur, *tmp;
288 pgoff_t start_index = 0;
289 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290
291 list_for_each_entry_safe(cur, tmp, head, list) {
292 if (revoke) {
293 __replace_atomic_write_block(inode, cur->index,
294 cur->old_addr, NULL, true);
295 } else if (truncate) {
296 f2fs_truncate_hole(inode, start_index, cur->index);
297 start_index = cur->index + 1;
298 }
299
300 list_del(&cur->list);
301 kmem_cache_free(revoke_entry_slab, cur);
302 }
303
304 if (!revoke && truncate)
305 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 struct inode *cow_inode = fi->cow_inode;
313 struct revoke_entry *new;
314 struct list_head revoke_list;
315 block_t blkaddr;
316 struct dnode_of_data dn;
317 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 pgoff_t off = 0, blen, index;
319 int ret = 0, i;
320
321 INIT_LIST_HEAD(&revoke_list);
322
323 while (len) {
324 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325
326 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 if (ret && ret != -ENOENT) {
329 goto out;
330 } else if (ret == -ENOENT) {
331 ret = 0;
332 if (dn.max_level == 0)
333 goto out;
334 goto next;
335 }
336
337 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
338 len);
339 index = off;
340 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 blkaddr = f2fs_data_blkaddr(&dn);
342
343 if (!__is_valid_data_blkaddr(blkaddr)) {
344 continue;
345 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 DATA_GENERIC_ENHANCE)) {
347 f2fs_put_dnode(&dn);
348 ret = -EFSCORRUPTED;
349 goto out;
350 }
351
352 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 true, NULL);
354
355 ret = __replace_atomic_write_block(inode, index, blkaddr,
356 &new->old_addr, false);
357 if (ret) {
358 f2fs_put_dnode(&dn);
359 kmem_cache_free(revoke_entry_slab, new);
360 goto out;
361 }
362
363 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 new->index = index;
365 list_add_tail(&new->list, &revoke_list);
366 }
367 f2fs_put_dnode(&dn);
368 next:
369 off += blen;
370 len -= blen;
371 }
372
373 out:
374 if (ret) {
375 sbi->revoked_atomic_block += fi->atomic_write_cnt;
376 } else {
377 sbi->committed_atomic_block += fi->atomic_write_cnt;
378 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
379 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
380 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
381 f2fs_mark_inode_dirty_sync(inode, true);
382 }
383 }
384
385 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
386
387 return ret;
388 }
389
f2fs_commit_atomic_write(struct inode * inode)390 int f2fs_commit_atomic_write(struct inode *inode)
391 {
392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
393 struct f2fs_inode_info *fi = F2FS_I(inode);
394 int err;
395
396 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
397 if (err)
398 return err;
399
400 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
401 f2fs_lock_op(sbi);
402
403 err = __f2fs_commit_atomic_write(inode);
404
405 f2fs_unlock_op(sbi);
406 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
407
408 return err;
409 }
410
411 /*
412 * This function balances dirty node and dentry pages.
413 * In addition, it controls garbage collection.
414 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)415 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
416 {
417 if (f2fs_cp_error(sbi))
418 return;
419
420 if (time_to_inject(sbi, FAULT_CHECKPOINT))
421 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
422
423 /* balance_fs_bg is able to be pending */
424 if (need && excess_cached_nats(sbi))
425 f2fs_balance_fs_bg(sbi, false);
426
427 if (!f2fs_is_checkpoint_ready(sbi))
428 return;
429
430 /*
431 * We should do GC or end up with checkpoint, if there are so many dirty
432 * dir/node pages without enough free segments.
433 */
434 if (has_enough_free_secs(sbi, 0, 0))
435 return;
436
437 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
438 sbi->gc_thread->f2fs_gc_task) {
439 DEFINE_WAIT(wait);
440
441 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
442 TASK_UNINTERRUPTIBLE);
443 wake_up(&sbi->gc_thread->gc_wait_queue_head);
444 io_schedule();
445 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
446 } else {
447 struct f2fs_gc_control gc_control = {
448 .victim_segno = NULL_SEGNO,
449 .init_gc_type = BG_GC,
450 .no_bg_gc = true,
451 .should_migrate_blocks = false,
452 .err_gc_skipped = false,
453 .nr_free_secs = 1 };
454 f2fs_down_write(&sbi->gc_lock);
455 stat_inc_gc_call_count(sbi, FOREGROUND);
456 f2fs_gc(sbi, &gc_control);
457 }
458 }
459
excess_dirty_threshold(struct f2fs_sb_info * sbi)460 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
461 {
462 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
463 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
464 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
465 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
466 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
467 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
468 unsigned int threshold =
469 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
470 unsigned int global_threshold = threshold * 3 / 2;
471
472 if (dents >= threshold || qdata >= threshold ||
473 nodes >= threshold || meta >= threshold ||
474 imeta >= threshold)
475 return true;
476 return dents + qdata + nodes + meta + imeta > global_threshold;
477 }
478
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
480 {
481 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
482 return;
483
484 /* try to shrink extent cache when there is no enough memory */
485 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
486 f2fs_shrink_read_extent_tree(sbi,
487 READ_EXTENT_CACHE_SHRINK_NUMBER);
488
489 /* try to shrink age extent cache when there is no enough memory */
490 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
491 f2fs_shrink_age_extent_tree(sbi,
492 AGE_EXTENT_CACHE_SHRINK_NUMBER);
493
494 /* check the # of cached NAT entries */
495 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
496 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
497
498 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
499 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
500 else
501 f2fs_build_free_nids(sbi, false, false);
502
503 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
504 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
505 goto do_sync;
506
507 /* there is background inflight IO or foreground operation recently */
508 if (is_inflight_io(sbi, REQ_TIME) ||
509 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
510 return;
511
512 /* exceed periodical checkpoint timeout threshold */
513 if (f2fs_time_over(sbi, CP_TIME))
514 goto do_sync;
515
516 /* checkpoint is the only way to shrink partial cached entries */
517 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
518 f2fs_available_free_memory(sbi, INO_ENTRIES))
519 return;
520
521 do_sync:
522 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
523 struct blk_plug plug;
524
525 mutex_lock(&sbi->flush_lock);
526
527 blk_start_plug(&plug);
528 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
529 blk_finish_plug(&plug);
530
531 mutex_unlock(&sbi->flush_lock);
532 }
533 stat_inc_cp_call_count(sbi, BACKGROUND);
534 f2fs_sync_fs(sbi->sb, 1);
535 }
536
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)537 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
538 struct block_device *bdev)
539 {
540 int ret = blkdev_issue_flush(bdev);
541
542 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
543 test_opt(sbi, FLUSH_MERGE), ret);
544 if (!ret)
545 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
546 return ret;
547 }
548
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)549 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
550 {
551 int ret = 0;
552 int i;
553
554 if (!f2fs_is_multi_device(sbi))
555 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
556
557 for (i = 0; i < sbi->s_ndevs; i++) {
558 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
559 continue;
560 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
561 if (ret)
562 break;
563 }
564 return ret;
565 }
566
issue_flush_thread(void * data)567 static int issue_flush_thread(void *data)
568 {
569 struct f2fs_sb_info *sbi = data;
570 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
571 wait_queue_head_t *q = &fcc->flush_wait_queue;
572 repeat:
573 if (kthread_should_stop())
574 return 0;
575
576 if (!llist_empty(&fcc->issue_list)) {
577 struct flush_cmd *cmd, *next;
578 int ret;
579
580 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
581 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
582
583 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
584
585 ret = submit_flush_wait(sbi, cmd->ino);
586 atomic_inc(&fcc->issued_flush);
587
588 llist_for_each_entry_safe(cmd, next,
589 fcc->dispatch_list, llnode) {
590 cmd->ret = ret;
591 complete(&cmd->wait);
592 }
593 fcc->dispatch_list = NULL;
594 }
595
596 wait_event_interruptible(*q,
597 kthread_should_stop() || !llist_empty(&fcc->issue_list));
598 goto repeat;
599 }
600
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)601 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
602 {
603 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
604 struct flush_cmd cmd;
605 int ret;
606
607 if (test_opt(sbi, NOBARRIER))
608 return 0;
609
610 if (!test_opt(sbi, FLUSH_MERGE)) {
611 atomic_inc(&fcc->queued_flush);
612 ret = submit_flush_wait(sbi, ino);
613 atomic_dec(&fcc->queued_flush);
614 atomic_inc(&fcc->issued_flush);
615 return ret;
616 }
617
618 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
619 f2fs_is_multi_device(sbi)) {
620 ret = submit_flush_wait(sbi, ino);
621 atomic_dec(&fcc->queued_flush);
622
623 atomic_inc(&fcc->issued_flush);
624 return ret;
625 }
626
627 cmd.ino = ino;
628 init_completion(&cmd.wait);
629
630 llist_add(&cmd.llnode, &fcc->issue_list);
631
632 /*
633 * update issue_list before we wake up issue_flush thread, this
634 * smp_mb() pairs with another barrier in ___wait_event(), see
635 * more details in comments of waitqueue_active().
636 */
637 smp_mb();
638
639 if (waitqueue_active(&fcc->flush_wait_queue))
640 wake_up(&fcc->flush_wait_queue);
641
642 if (fcc->f2fs_issue_flush) {
643 wait_for_completion(&cmd.wait);
644 atomic_dec(&fcc->queued_flush);
645 } else {
646 struct llist_node *list;
647
648 list = llist_del_all(&fcc->issue_list);
649 if (!list) {
650 wait_for_completion(&cmd.wait);
651 atomic_dec(&fcc->queued_flush);
652 } else {
653 struct flush_cmd *tmp, *next;
654
655 ret = submit_flush_wait(sbi, ino);
656
657 llist_for_each_entry_safe(tmp, next, list, llnode) {
658 if (tmp == &cmd) {
659 cmd.ret = ret;
660 atomic_dec(&fcc->queued_flush);
661 continue;
662 }
663 tmp->ret = ret;
664 complete(&tmp->wait);
665 }
666 }
667 }
668
669 return cmd.ret;
670 }
671
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)672 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
673 {
674 dev_t dev = sbi->sb->s_bdev->bd_dev;
675 struct flush_cmd_control *fcc;
676
677 if (SM_I(sbi)->fcc_info) {
678 fcc = SM_I(sbi)->fcc_info;
679 if (fcc->f2fs_issue_flush)
680 return 0;
681 goto init_thread;
682 }
683
684 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
685 if (!fcc)
686 return -ENOMEM;
687 atomic_set(&fcc->issued_flush, 0);
688 atomic_set(&fcc->queued_flush, 0);
689 init_waitqueue_head(&fcc->flush_wait_queue);
690 init_llist_head(&fcc->issue_list);
691 SM_I(sbi)->fcc_info = fcc;
692 if (!test_opt(sbi, FLUSH_MERGE))
693 return 0;
694
695 init_thread:
696 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
697 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
698 if (IS_ERR(fcc->f2fs_issue_flush)) {
699 int err = PTR_ERR(fcc->f2fs_issue_flush);
700
701 fcc->f2fs_issue_flush = NULL;
702 return err;
703 }
704
705 return 0;
706 }
707
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)708 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
709 {
710 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
711
712 if (fcc && fcc->f2fs_issue_flush) {
713 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
714
715 fcc->f2fs_issue_flush = NULL;
716 kthread_stop(flush_thread);
717 }
718 if (free) {
719 kfree(fcc);
720 SM_I(sbi)->fcc_info = NULL;
721 }
722 }
723
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)724 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
725 {
726 int ret = 0, i;
727
728 if (!f2fs_is_multi_device(sbi))
729 return 0;
730
731 if (test_opt(sbi, NOBARRIER))
732 return 0;
733
734 for (i = 1; i < sbi->s_ndevs; i++) {
735 int count = DEFAULT_RETRY_IO_COUNT;
736
737 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
738 continue;
739
740 do {
741 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
742 if (ret)
743 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
744 } while (ret && --count);
745
746 if (ret) {
747 f2fs_stop_checkpoint(sbi, false,
748 STOP_CP_REASON_FLUSH_FAIL);
749 break;
750 }
751
752 spin_lock(&sbi->dev_lock);
753 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
754 spin_unlock(&sbi->dev_lock);
755 }
756
757 return ret;
758 }
759
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)760 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
761 enum dirty_type dirty_type)
762 {
763 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
764
765 /* need not be added */
766 if (IS_CURSEG(sbi, segno))
767 return;
768
769 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
770 dirty_i->nr_dirty[dirty_type]++;
771
772 if (dirty_type == DIRTY) {
773 struct seg_entry *sentry = get_seg_entry(sbi, segno);
774 enum dirty_type t = sentry->type;
775
776 if (unlikely(t >= DIRTY)) {
777 f2fs_bug_on(sbi, 1);
778 return;
779 }
780 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
781 dirty_i->nr_dirty[t]++;
782
783 if (__is_large_section(sbi)) {
784 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
785 block_t valid_blocks =
786 get_valid_blocks(sbi, segno, true);
787
788 f2fs_bug_on(sbi,
789 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
790 !valid_blocks) ||
791 valid_blocks == CAP_BLKS_PER_SEC(sbi));
792
793 if (!IS_CURSEC(sbi, secno))
794 set_bit(secno, dirty_i->dirty_secmap);
795 }
796 }
797 }
798
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)799 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
800 enum dirty_type dirty_type)
801 {
802 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
803 block_t valid_blocks;
804
805 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
806 dirty_i->nr_dirty[dirty_type]--;
807
808 if (dirty_type == DIRTY) {
809 struct seg_entry *sentry = get_seg_entry(sbi, segno);
810 enum dirty_type t = sentry->type;
811
812 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
813 dirty_i->nr_dirty[t]--;
814
815 valid_blocks = get_valid_blocks(sbi, segno, true);
816 if (valid_blocks == 0) {
817 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
818 dirty_i->victim_secmap);
819 #ifdef CONFIG_F2FS_CHECK_FS
820 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
821 #endif
822 }
823 if (__is_large_section(sbi)) {
824 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
825
826 if (!valid_blocks ||
827 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
828 clear_bit(secno, dirty_i->dirty_secmap);
829 return;
830 }
831
832 if (!IS_CURSEC(sbi, secno))
833 set_bit(secno, dirty_i->dirty_secmap);
834 }
835 }
836 }
837
838 /*
839 * Should not occur error such as -ENOMEM.
840 * Adding dirty entry into seglist is not critical operation.
841 * If a given segment is one of current working segments, it won't be added.
842 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)843 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
844 {
845 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
846 unsigned short valid_blocks, ckpt_valid_blocks;
847 unsigned int usable_blocks;
848
849 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
850 return;
851
852 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
853 mutex_lock(&dirty_i->seglist_lock);
854
855 valid_blocks = get_valid_blocks(sbi, segno, false);
856 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
857
858 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
859 ckpt_valid_blocks == usable_blocks)) {
860 __locate_dirty_segment(sbi, segno, PRE);
861 __remove_dirty_segment(sbi, segno, DIRTY);
862 } else if (valid_blocks < usable_blocks) {
863 __locate_dirty_segment(sbi, segno, DIRTY);
864 } else {
865 /* Recovery routine with SSR needs this */
866 __remove_dirty_segment(sbi, segno, DIRTY);
867 }
868
869 mutex_unlock(&dirty_i->seglist_lock);
870 }
871
872 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)873 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
874 {
875 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
876 unsigned int segno;
877
878 mutex_lock(&dirty_i->seglist_lock);
879 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
880 if (get_valid_blocks(sbi, segno, false))
881 continue;
882 if (IS_CURSEG(sbi, segno))
883 continue;
884 __locate_dirty_segment(sbi, segno, PRE);
885 __remove_dirty_segment(sbi, segno, DIRTY);
886 }
887 mutex_unlock(&dirty_i->seglist_lock);
888 }
889
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)890 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
891 {
892 int ovp_hole_segs =
893 (overprovision_segments(sbi) - reserved_segments(sbi));
894 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896 block_t holes[2] = {0, 0}; /* DATA and NODE */
897 block_t unusable;
898 struct seg_entry *se;
899 unsigned int segno;
900
901 mutex_lock(&dirty_i->seglist_lock);
902 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
903 se = get_seg_entry(sbi, segno);
904 if (IS_NODESEG(se->type))
905 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
906 se->valid_blocks;
907 else
908 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
909 se->valid_blocks;
910 }
911 mutex_unlock(&dirty_i->seglist_lock);
912
913 unusable = max(holes[DATA], holes[NODE]);
914 if (unusable > ovp_holes)
915 return unusable - ovp_holes;
916 return 0;
917 }
918
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)919 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
920 {
921 int ovp_hole_segs =
922 (overprovision_segments(sbi) - reserved_segments(sbi));
923
924 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
925 return 0;
926 if (unusable > F2FS_OPTION(sbi).unusable_cap)
927 return -EAGAIN;
928 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
929 dirty_segments(sbi) > ovp_hole_segs)
930 return -EAGAIN;
931 if (has_not_enough_free_secs(sbi, 0, 0))
932 return -EAGAIN;
933 return 0;
934 }
935
936 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)937 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
938 {
939 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
940 unsigned int segno = 0;
941
942 mutex_lock(&dirty_i->seglist_lock);
943 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
944 if (get_valid_blocks(sbi, segno, false))
945 continue;
946 if (get_ckpt_valid_blocks(sbi, segno, false))
947 continue;
948 mutex_unlock(&dirty_i->seglist_lock);
949 return segno;
950 }
951 mutex_unlock(&dirty_i->seglist_lock);
952 return NULL_SEGNO;
953 }
954
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)955 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
956 struct block_device *bdev, block_t lstart,
957 block_t start, block_t len)
958 {
959 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
960 struct list_head *pend_list;
961 struct discard_cmd *dc;
962
963 f2fs_bug_on(sbi, !len);
964
965 pend_list = &dcc->pend_list[plist_idx(len)];
966
967 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
968 INIT_LIST_HEAD(&dc->list);
969 dc->bdev = bdev;
970 dc->di.lstart = lstart;
971 dc->di.start = start;
972 dc->di.len = len;
973 dc->ref = 0;
974 dc->state = D_PREP;
975 dc->queued = 0;
976 dc->error = 0;
977 init_completion(&dc->wait);
978 list_add_tail(&dc->list, pend_list);
979 spin_lock_init(&dc->lock);
980 dc->bio_ref = 0;
981 atomic_inc(&dcc->discard_cmd_cnt);
982 dcc->undiscard_blks += len;
983
984 return dc;
985 }
986
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)987 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
988 {
989 #ifdef CONFIG_F2FS_CHECK_FS
990 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
991 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
992 struct discard_cmd *cur_dc, *next_dc;
993
994 while (cur) {
995 next = rb_next(cur);
996 if (!next)
997 return true;
998
999 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1000 next_dc = rb_entry(next, struct discard_cmd, rb_node);
1001
1002 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1003 f2fs_info(sbi, "broken discard_rbtree, "
1004 "cur(%u, %u) next(%u, %u)",
1005 cur_dc->di.lstart, cur_dc->di.len,
1006 next_dc->di.lstart, next_dc->di.len);
1007 return false;
1008 }
1009 cur = next;
1010 }
1011 #endif
1012 return true;
1013 }
1014
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1015 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1016 block_t blkaddr)
1017 {
1018 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1019 struct rb_node *node = dcc->root.rb_root.rb_node;
1020 struct discard_cmd *dc;
1021
1022 while (node) {
1023 dc = rb_entry(node, struct discard_cmd, rb_node);
1024
1025 if (blkaddr < dc->di.lstart)
1026 node = node->rb_left;
1027 else if (blkaddr >= dc->di.lstart + dc->di.len)
1028 node = node->rb_right;
1029 else
1030 return dc;
1031 }
1032 return NULL;
1033 }
1034
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1035 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1036 block_t blkaddr,
1037 struct discard_cmd **prev_entry,
1038 struct discard_cmd **next_entry,
1039 struct rb_node ***insert_p,
1040 struct rb_node **insert_parent)
1041 {
1042 struct rb_node **pnode = &root->rb_root.rb_node;
1043 struct rb_node *parent = NULL, *tmp_node;
1044 struct discard_cmd *dc;
1045
1046 *insert_p = NULL;
1047 *insert_parent = NULL;
1048 *prev_entry = NULL;
1049 *next_entry = NULL;
1050
1051 if (RB_EMPTY_ROOT(&root->rb_root))
1052 return NULL;
1053
1054 while (*pnode) {
1055 parent = *pnode;
1056 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1057
1058 if (blkaddr < dc->di.lstart)
1059 pnode = &(*pnode)->rb_left;
1060 else if (blkaddr >= dc->di.lstart + dc->di.len)
1061 pnode = &(*pnode)->rb_right;
1062 else
1063 goto lookup_neighbors;
1064 }
1065
1066 *insert_p = pnode;
1067 *insert_parent = parent;
1068
1069 dc = rb_entry(parent, struct discard_cmd, rb_node);
1070 tmp_node = parent;
1071 if (parent && blkaddr > dc->di.lstart)
1072 tmp_node = rb_next(parent);
1073 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1074
1075 tmp_node = parent;
1076 if (parent && blkaddr < dc->di.lstart)
1077 tmp_node = rb_prev(parent);
1078 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1079 return NULL;
1080
1081 lookup_neighbors:
1082 /* lookup prev node for merging backward later */
1083 tmp_node = rb_prev(&dc->rb_node);
1084 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1085
1086 /* lookup next node for merging frontward later */
1087 tmp_node = rb_next(&dc->rb_node);
1088 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1089 return dc;
1090 }
1091
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1092 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1093 struct discard_cmd *dc)
1094 {
1095 if (dc->state == D_DONE)
1096 atomic_sub(dc->queued, &dcc->queued_discard);
1097
1098 list_del(&dc->list);
1099 rb_erase_cached(&dc->rb_node, &dcc->root);
1100 dcc->undiscard_blks -= dc->di.len;
1101
1102 kmem_cache_free(discard_cmd_slab, dc);
1103
1104 atomic_dec(&dcc->discard_cmd_cnt);
1105 }
1106
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1107 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1108 struct discard_cmd *dc)
1109 {
1110 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1111 unsigned long flags;
1112
1113 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1114
1115 spin_lock_irqsave(&dc->lock, flags);
1116 if (dc->bio_ref) {
1117 spin_unlock_irqrestore(&dc->lock, flags);
1118 return;
1119 }
1120 spin_unlock_irqrestore(&dc->lock, flags);
1121
1122 f2fs_bug_on(sbi, dc->ref);
1123
1124 if (dc->error == -EOPNOTSUPP)
1125 dc->error = 0;
1126
1127 if (dc->error)
1128 f2fs_info_ratelimited(sbi,
1129 "Issue discard(%u, %u, %u) failed, ret: %d",
1130 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1131 __detach_discard_cmd(dcc, dc);
1132 }
1133
f2fs_submit_discard_endio(struct bio * bio)1134 static void f2fs_submit_discard_endio(struct bio *bio)
1135 {
1136 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1137 unsigned long flags;
1138
1139 spin_lock_irqsave(&dc->lock, flags);
1140 if (!dc->error)
1141 dc->error = blk_status_to_errno(bio->bi_status);
1142 dc->bio_ref--;
1143 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1144 dc->state = D_DONE;
1145 complete_all(&dc->wait);
1146 }
1147 spin_unlock_irqrestore(&dc->lock, flags);
1148 bio_put(bio);
1149 }
1150
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1151 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1152 block_t start, block_t end)
1153 {
1154 #ifdef CONFIG_F2FS_CHECK_FS
1155 struct seg_entry *sentry;
1156 unsigned int segno;
1157 block_t blk = start;
1158 unsigned long offset, size, *map;
1159
1160 while (blk < end) {
1161 segno = GET_SEGNO(sbi, blk);
1162 sentry = get_seg_entry(sbi, segno);
1163 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1164
1165 if (end < START_BLOCK(sbi, segno + 1))
1166 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1167 else
1168 size = BLKS_PER_SEG(sbi);
1169 map = (unsigned long *)(sentry->cur_valid_map);
1170 offset = __find_rev_next_bit(map, size, offset);
1171 f2fs_bug_on(sbi, offset != size);
1172 blk = START_BLOCK(sbi, segno + 1);
1173 }
1174 #endif
1175 }
1176
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1177 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1178 struct discard_policy *dpolicy,
1179 int discard_type, unsigned int granularity)
1180 {
1181 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1182
1183 /* common policy */
1184 dpolicy->type = discard_type;
1185 dpolicy->sync = true;
1186 dpolicy->ordered = false;
1187 dpolicy->granularity = granularity;
1188
1189 dpolicy->max_requests = dcc->max_discard_request;
1190 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1191 dpolicy->timeout = false;
1192
1193 if (discard_type == DPOLICY_BG) {
1194 dpolicy->min_interval = dcc->min_discard_issue_time;
1195 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1196 dpolicy->max_interval = dcc->max_discard_issue_time;
1197 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1198 dpolicy->io_aware = true;
1199 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1200 dpolicy->io_aware = false;
1201 dpolicy->sync = false;
1202 dpolicy->ordered = true;
1203 if (utilization(sbi) > dcc->discard_urgent_util) {
1204 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1205 if (atomic_read(&dcc->discard_cmd_cnt))
1206 dpolicy->max_interval =
1207 dcc->min_discard_issue_time;
1208 }
1209 } else if (discard_type == DPOLICY_FORCE) {
1210 dpolicy->min_interval = dcc->min_discard_issue_time;
1211 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1212 dpolicy->max_interval = dcc->max_discard_issue_time;
1213 dpolicy->io_aware = false;
1214 } else if (discard_type == DPOLICY_FSTRIM) {
1215 dpolicy->io_aware = false;
1216 } else if (discard_type == DPOLICY_UMOUNT) {
1217 dpolicy->io_aware = false;
1218 /* we need to issue all to keep CP_TRIMMED_FLAG */
1219 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1220 dpolicy->timeout = true;
1221 }
1222 }
1223
1224 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1225 struct block_device *bdev, block_t lstart,
1226 block_t start, block_t len);
1227
1228 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1229 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1230 struct discard_cmd *dc, blk_opf_t flag,
1231 struct list_head *wait_list,
1232 unsigned int *issued)
1233 {
1234 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1235 struct block_device *bdev = dc->bdev;
1236 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1237 unsigned long flags;
1238
1239 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1240
1241 spin_lock_irqsave(&dc->lock, flags);
1242 dc->state = D_SUBMIT;
1243 dc->bio_ref++;
1244 spin_unlock_irqrestore(&dc->lock, flags);
1245
1246 if (issued)
1247 (*issued)++;
1248
1249 atomic_inc(&dcc->queued_discard);
1250 dc->queued++;
1251 list_move_tail(&dc->list, wait_list);
1252
1253 /* sanity check on discard range */
1254 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1255
1256 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1257 bio->bi_private = dc;
1258 bio->bi_end_io = f2fs_submit_discard_endio;
1259 submit_bio(bio);
1260
1261 atomic_inc(&dcc->issued_discard);
1262 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1263 }
1264 #endif
1265
1266 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1267 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1268 struct discard_policy *dpolicy,
1269 struct discard_cmd *dc, int *issued)
1270 {
1271 struct block_device *bdev = dc->bdev;
1272 unsigned int max_discard_blocks =
1273 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1274 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1275 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1276 &(dcc->fstrim_list) : &(dcc->wait_list);
1277 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1278 block_t lstart, start, len, total_len;
1279 int err = 0;
1280
1281 if (dc->state != D_PREP)
1282 return 0;
1283
1284 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1285 return 0;
1286
1287 #ifdef CONFIG_BLK_DEV_ZONED
1288 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1289 int devi = f2fs_bdev_index(sbi, bdev);
1290
1291 if (devi < 0)
1292 return -EINVAL;
1293
1294 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1295 __submit_zone_reset_cmd(sbi, dc, flag,
1296 wait_list, issued);
1297 return 0;
1298 }
1299 }
1300 #endif
1301
1302 /*
1303 * stop issuing discard for any of below cases:
1304 * 1. device is conventional zone, but it doesn't support discard.
1305 * 2. device is regulare device, after snapshot it doesn't support
1306 * discard.
1307 */
1308 if (!bdev_max_discard_sectors(bdev))
1309 return -EOPNOTSUPP;
1310
1311 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1312
1313 lstart = dc->di.lstart;
1314 start = dc->di.start;
1315 len = dc->di.len;
1316 total_len = len;
1317
1318 dc->di.len = 0;
1319
1320 while (total_len && *issued < dpolicy->max_requests && !err) {
1321 struct bio *bio = NULL;
1322 unsigned long flags;
1323 bool last = true;
1324
1325 if (len > max_discard_blocks) {
1326 len = max_discard_blocks;
1327 last = false;
1328 }
1329
1330 (*issued)++;
1331 if (*issued == dpolicy->max_requests)
1332 last = true;
1333
1334 dc->di.len += len;
1335
1336 if (time_to_inject(sbi, FAULT_DISCARD)) {
1337 err = -EIO;
1338 } else {
1339 err = __blkdev_issue_discard(bdev,
1340 SECTOR_FROM_BLOCK(start),
1341 SECTOR_FROM_BLOCK(len),
1342 GFP_NOFS, &bio);
1343 }
1344 if (err) {
1345 spin_lock_irqsave(&dc->lock, flags);
1346 if (dc->state == D_PARTIAL)
1347 dc->state = D_SUBMIT;
1348 spin_unlock_irqrestore(&dc->lock, flags);
1349
1350 break;
1351 }
1352
1353 f2fs_bug_on(sbi, !bio);
1354
1355 /*
1356 * should keep before submission to avoid D_DONE
1357 * right away
1358 */
1359 spin_lock_irqsave(&dc->lock, flags);
1360 if (last)
1361 dc->state = D_SUBMIT;
1362 else
1363 dc->state = D_PARTIAL;
1364 dc->bio_ref++;
1365 spin_unlock_irqrestore(&dc->lock, flags);
1366
1367 atomic_inc(&dcc->queued_discard);
1368 dc->queued++;
1369 list_move_tail(&dc->list, wait_list);
1370
1371 /* sanity check on discard range */
1372 __check_sit_bitmap(sbi, lstart, lstart + len);
1373
1374 bio->bi_private = dc;
1375 bio->bi_end_io = f2fs_submit_discard_endio;
1376 bio->bi_opf |= flag;
1377 submit_bio(bio);
1378
1379 atomic_inc(&dcc->issued_discard);
1380
1381 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1382
1383 lstart += len;
1384 start += len;
1385 total_len -= len;
1386 len = total_len;
1387 }
1388
1389 if (!err && len) {
1390 dcc->undiscard_blks -= len;
1391 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1392 }
1393 return err;
1394 }
1395
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1396 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1397 struct block_device *bdev, block_t lstart,
1398 block_t start, block_t len)
1399 {
1400 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1401 struct rb_node **p = &dcc->root.rb_root.rb_node;
1402 struct rb_node *parent = NULL;
1403 struct discard_cmd *dc;
1404 bool leftmost = true;
1405
1406 /* look up rb tree to find parent node */
1407 while (*p) {
1408 parent = *p;
1409 dc = rb_entry(parent, struct discard_cmd, rb_node);
1410
1411 if (lstart < dc->di.lstart) {
1412 p = &(*p)->rb_left;
1413 } else if (lstart >= dc->di.lstart + dc->di.len) {
1414 p = &(*p)->rb_right;
1415 leftmost = false;
1416 } else {
1417 /* Let's skip to add, if exists */
1418 return;
1419 }
1420 }
1421
1422 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1423
1424 rb_link_node(&dc->rb_node, parent, p);
1425 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1426 }
1427
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1428 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1429 struct discard_cmd *dc)
1430 {
1431 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1432 }
1433
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1434 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1435 struct discard_cmd *dc, block_t blkaddr)
1436 {
1437 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1438 struct discard_info di = dc->di;
1439 bool modified = false;
1440
1441 if (dc->state == D_DONE || dc->di.len == 1) {
1442 __remove_discard_cmd(sbi, dc);
1443 return;
1444 }
1445
1446 dcc->undiscard_blks -= di.len;
1447
1448 if (blkaddr > di.lstart) {
1449 dc->di.len = blkaddr - dc->di.lstart;
1450 dcc->undiscard_blks += dc->di.len;
1451 __relocate_discard_cmd(dcc, dc);
1452 modified = true;
1453 }
1454
1455 if (blkaddr < di.lstart + di.len - 1) {
1456 if (modified) {
1457 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1458 di.start + blkaddr + 1 - di.lstart,
1459 di.lstart + di.len - 1 - blkaddr);
1460 } else {
1461 dc->di.lstart++;
1462 dc->di.len--;
1463 dc->di.start++;
1464 dcc->undiscard_blks += dc->di.len;
1465 __relocate_discard_cmd(dcc, dc);
1466 }
1467 }
1468 }
1469
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1470 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1471 struct block_device *bdev, block_t lstart,
1472 block_t start, block_t len)
1473 {
1474 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1475 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1476 struct discard_cmd *dc;
1477 struct discard_info di = {0};
1478 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1479 unsigned int max_discard_blocks =
1480 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1481 block_t end = lstart + len;
1482
1483 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1484 &prev_dc, &next_dc, &insert_p, &insert_parent);
1485 if (dc)
1486 prev_dc = dc;
1487
1488 if (!prev_dc) {
1489 di.lstart = lstart;
1490 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1491 di.len = min(di.len, len);
1492 di.start = start;
1493 }
1494
1495 while (1) {
1496 struct rb_node *node;
1497 bool merged = false;
1498 struct discard_cmd *tdc = NULL;
1499
1500 if (prev_dc) {
1501 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1502 if (di.lstart < lstart)
1503 di.lstart = lstart;
1504 if (di.lstart >= end)
1505 break;
1506
1507 if (!next_dc || next_dc->di.lstart > end)
1508 di.len = end - di.lstart;
1509 else
1510 di.len = next_dc->di.lstart - di.lstart;
1511 di.start = start + di.lstart - lstart;
1512 }
1513
1514 if (!di.len)
1515 goto next;
1516
1517 if (prev_dc && prev_dc->state == D_PREP &&
1518 prev_dc->bdev == bdev &&
1519 __is_discard_back_mergeable(&di, &prev_dc->di,
1520 max_discard_blocks)) {
1521 prev_dc->di.len += di.len;
1522 dcc->undiscard_blks += di.len;
1523 __relocate_discard_cmd(dcc, prev_dc);
1524 di = prev_dc->di;
1525 tdc = prev_dc;
1526 merged = true;
1527 }
1528
1529 if (next_dc && next_dc->state == D_PREP &&
1530 next_dc->bdev == bdev &&
1531 __is_discard_front_mergeable(&di, &next_dc->di,
1532 max_discard_blocks)) {
1533 next_dc->di.lstart = di.lstart;
1534 next_dc->di.len += di.len;
1535 next_dc->di.start = di.start;
1536 dcc->undiscard_blks += di.len;
1537 __relocate_discard_cmd(dcc, next_dc);
1538 if (tdc)
1539 __remove_discard_cmd(sbi, tdc);
1540 merged = true;
1541 }
1542
1543 if (!merged)
1544 __insert_discard_cmd(sbi, bdev,
1545 di.lstart, di.start, di.len);
1546 next:
1547 prev_dc = next_dc;
1548 if (!prev_dc)
1549 break;
1550
1551 node = rb_next(&prev_dc->rb_node);
1552 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1553 }
1554 }
1555
1556 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1557 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1558 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1559 block_t blklen)
1560 {
1561 trace_f2fs_queue_reset_zone(bdev, blkstart);
1562
1563 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1564 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1565 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1566 }
1567 #endif
1568
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1569 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1570 struct block_device *bdev, block_t blkstart, block_t blklen)
1571 {
1572 block_t lblkstart = blkstart;
1573
1574 if (!f2fs_bdev_support_discard(bdev))
1575 return;
1576
1577 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1578
1579 if (f2fs_is_multi_device(sbi)) {
1580 int devi = f2fs_target_device_index(sbi, blkstart);
1581
1582 blkstart -= FDEV(devi).start_blk;
1583 }
1584 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1585 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1586 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1587 }
1588
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1589 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1590 struct discard_policy *dpolicy, int *issued)
1591 {
1592 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1593 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1594 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1595 struct discard_cmd *dc;
1596 struct blk_plug plug;
1597 bool io_interrupted = false;
1598
1599 mutex_lock(&dcc->cmd_lock);
1600 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1601 &prev_dc, &next_dc, &insert_p, &insert_parent);
1602 if (!dc)
1603 dc = next_dc;
1604
1605 blk_start_plug(&plug);
1606
1607 while (dc) {
1608 struct rb_node *node;
1609 int err = 0;
1610
1611 if (dc->state != D_PREP)
1612 goto next;
1613
1614 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1615 io_interrupted = true;
1616 break;
1617 }
1618
1619 dcc->next_pos = dc->di.lstart + dc->di.len;
1620 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1621
1622 if (*issued >= dpolicy->max_requests)
1623 break;
1624 next:
1625 node = rb_next(&dc->rb_node);
1626 if (err)
1627 __remove_discard_cmd(sbi, dc);
1628 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1629 }
1630
1631 blk_finish_plug(&plug);
1632
1633 if (!dc)
1634 dcc->next_pos = 0;
1635
1636 mutex_unlock(&dcc->cmd_lock);
1637
1638 if (!(*issued) && io_interrupted)
1639 *issued = -1;
1640 }
1641 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1642 struct discard_policy *dpolicy);
1643
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1644 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1645 struct discard_policy *dpolicy)
1646 {
1647 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1648 struct list_head *pend_list;
1649 struct discard_cmd *dc, *tmp;
1650 struct blk_plug plug;
1651 int i, issued;
1652 bool io_interrupted = false;
1653
1654 if (dpolicy->timeout)
1655 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1656
1657 retry:
1658 issued = 0;
1659 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1660 if (dpolicy->timeout &&
1661 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1662 break;
1663
1664 if (i + 1 < dpolicy->granularity)
1665 break;
1666
1667 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1668 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1669 return issued;
1670 }
1671
1672 pend_list = &dcc->pend_list[i];
1673
1674 mutex_lock(&dcc->cmd_lock);
1675 if (list_empty(pend_list))
1676 goto next;
1677 if (unlikely(dcc->rbtree_check))
1678 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1679 blk_start_plug(&plug);
1680 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1681 f2fs_bug_on(sbi, dc->state != D_PREP);
1682
1683 if (dpolicy->timeout &&
1684 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1685 break;
1686
1687 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1688 !is_idle(sbi, DISCARD_TIME)) {
1689 io_interrupted = true;
1690 break;
1691 }
1692
1693 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1694
1695 if (issued >= dpolicy->max_requests)
1696 break;
1697 }
1698 blk_finish_plug(&plug);
1699 next:
1700 mutex_unlock(&dcc->cmd_lock);
1701
1702 if (issued >= dpolicy->max_requests || io_interrupted)
1703 break;
1704 }
1705
1706 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1707 __wait_all_discard_cmd(sbi, dpolicy);
1708 goto retry;
1709 }
1710
1711 if (!issued && io_interrupted)
1712 issued = -1;
1713
1714 return issued;
1715 }
1716
__drop_discard_cmd(struct f2fs_sb_info * sbi)1717 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1718 {
1719 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720 struct list_head *pend_list;
1721 struct discard_cmd *dc, *tmp;
1722 int i;
1723 bool dropped = false;
1724
1725 mutex_lock(&dcc->cmd_lock);
1726 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1727 pend_list = &dcc->pend_list[i];
1728 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1729 f2fs_bug_on(sbi, dc->state != D_PREP);
1730 __remove_discard_cmd(sbi, dc);
1731 dropped = true;
1732 }
1733 }
1734 mutex_unlock(&dcc->cmd_lock);
1735
1736 return dropped;
1737 }
1738
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1739 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1740 {
1741 __drop_discard_cmd(sbi);
1742 }
1743
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1744 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1745 struct discard_cmd *dc)
1746 {
1747 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1748 unsigned int len = 0;
1749
1750 wait_for_completion_io(&dc->wait);
1751 mutex_lock(&dcc->cmd_lock);
1752 f2fs_bug_on(sbi, dc->state != D_DONE);
1753 dc->ref--;
1754 if (!dc->ref) {
1755 if (!dc->error)
1756 len = dc->di.len;
1757 __remove_discard_cmd(sbi, dc);
1758 }
1759 mutex_unlock(&dcc->cmd_lock);
1760
1761 return len;
1762 }
1763
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1764 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1765 struct discard_policy *dpolicy,
1766 block_t start, block_t end)
1767 {
1768 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1769 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1770 &(dcc->fstrim_list) : &(dcc->wait_list);
1771 struct discard_cmd *dc = NULL, *iter, *tmp;
1772 unsigned int trimmed = 0;
1773
1774 next:
1775 dc = NULL;
1776
1777 mutex_lock(&dcc->cmd_lock);
1778 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1779 if (iter->di.lstart + iter->di.len <= start ||
1780 end <= iter->di.lstart)
1781 continue;
1782 if (iter->di.len < dpolicy->granularity)
1783 continue;
1784 if (iter->state == D_DONE && !iter->ref) {
1785 wait_for_completion_io(&iter->wait);
1786 if (!iter->error)
1787 trimmed += iter->di.len;
1788 __remove_discard_cmd(sbi, iter);
1789 } else {
1790 iter->ref++;
1791 dc = iter;
1792 break;
1793 }
1794 }
1795 mutex_unlock(&dcc->cmd_lock);
1796
1797 if (dc) {
1798 trimmed += __wait_one_discard_bio(sbi, dc);
1799 goto next;
1800 }
1801
1802 return trimmed;
1803 }
1804
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1805 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1806 struct discard_policy *dpolicy)
1807 {
1808 struct discard_policy dp;
1809 unsigned int discard_blks;
1810
1811 if (dpolicy)
1812 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1813
1814 /* wait all */
1815 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1816 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1817 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1818 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1819
1820 return discard_blks;
1821 }
1822
1823 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1824 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1825 {
1826 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1827 struct discard_cmd *dc;
1828 bool need_wait = false;
1829
1830 mutex_lock(&dcc->cmd_lock);
1831 dc = __lookup_discard_cmd(sbi, blkaddr);
1832 #ifdef CONFIG_BLK_DEV_ZONED
1833 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1834 int devi = f2fs_bdev_index(sbi, dc->bdev);
1835
1836 if (devi < 0) {
1837 mutex_unlock(&dcc->cmd_lock);
1838 return;
1839 }
1840
1841 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1842 /* force submit zone reset */
1843 if (dc->state == D_PREP)
1844 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1845 &dcc->wait_list, NULL);
1846 dc->ref++;
1847 mutex_unlock(&dcc->cmd_lock);
1848 /* wait zone reset */
1849 __wait_one_discard_bio(sbi, dc);
1850 return;
1851 }
1852 }
1853 #endif
1854 if (dc) {
1855 if (dc->state == D_PREP) {
1856 __punch_discard_cmd(sbi, dc, blkaddr);
1857 } else {
1858 dc->ref++;
1859 need_wait = true;
1860 }
1861 }
1862 mutex_unlock(&dcc->cmd_lock);
1863
1864 if (need_wait)
1865 __wait_one_discard_bio(sbi, dc);
1866 }
1867
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1868 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1869 {
1870 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1871
1872 if (dcc && dcc->f2fs_issue_discard) {
1873 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1874
1875 dcc->f2fs_issue_discard = NULL;
1876 kthread_stop(discard_thread);
1877 }
1878 }
1879
1880 /**
1881 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1882 * @sbi: the f2fs_sb_info data for discard cmd to issue
1883 *
1884 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1885 *
1886 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1887 */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1888 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1889 {
1890 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1891 struct discard_policy dpolicy;
1892 bool dropped;
1893
1894 if (!atomic_read(&dcc->discard_cmd_cnt))
1895 return true;
1896
1897 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1898 dcc->discard_granularity);
1899 __issue_discard_cmd(sbi, &dpolicy);
1900 dropped = __drop_discard_cmd(sbi);
1901
1902 /* just to make sure there is no pending discard commands */
1903 __wait_all_discard_cmd(sbi, NULL);
1904
1905 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1906 return !dropped;
1907 }
1908
issue_discard_thread(void * data)1909 static int issue_discard_thread(void *data)
1910 {
1911 struct f2fs_sb_info *sbi = data;
1912 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1913 wait_queue_head_t *q = &dcc->discard_wait_queue;
1914 struct discard_policy dpolicy;
1915 unsigned int wait_ms = dcc->min_discard_issue_time;
1916 int issued;
1917
1918 set_freezable();
1919
1920 do {
1921 wait_event_freezable_timeout(*q,
1922 kthread_should_stop() || dcc->discard_wake,
1923 msecs_to_jiffies(wait_ms));
1924
1925 if (sbi->gc_mode == GC_URGENT_HIGH ||
1926 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1927 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1928 MIN_DISCARD_GRANULARITY);
1929 else
1930 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1931 dcc->discard_granularity);
1932
1933 if (dcc->discard_wake)
1934 dcc->discard_wake = false;
1935
1936 /* clean up pending candidates before going to sleep */
1937 if (atomic_read(&dcc->queued_discard))
1938 __wait_all_discard_cmd(sbi, NULL);
1939
1940 if (f2fs_readonly(sbi->sb))
1941 continue;
1942 if (kthread_should_stop())
1943 return 0;
1944 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1945 !atomic_read(&dcc->discard_cmd_cnt)) {
1946 wait_ms = dpolicy.max_interval;
1947 continue;
1948 }
1949
1950 sb_start_intwrite(sbi->sb);
1951
1952 issued = __issue_discard_cmd(sbi, &dpolicy);
1953 if (issued > 0) {
1954 __wait_all_discard_cmd(sbi, &dpolicy);
1955 wait_ms = dpolicy.min_interval;
1956 } else if (issued == -1) {
1957 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1958 if (!wait_ms)
1959 wait_ms = dpolicy.mid_interval;
1960 } else {
1961 wait_ms = dpolicy.max_interval;
1962 }
1963 if (!atomic_read(&dcc->discard_cmd_cnt))
1964 wait_ms = dpolicy.max_interval;
1965
1966 sb_end_intwrite(sbi->sb);
1967
1968 } while (!kthread_should_stop());
1969 return 0;
1970 }
1971
1972 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1973 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1974 struct block_device *bdev, block_t blkstart, block_t blklen)
1975 {
1976 sector_t sector, nr_sects;
1977 block_t lblkstart = blkstart;
1978 int devi = 0;
1979 u64 remainder = 0;
1980
1981 if (f2fs_is_multi_device(sbi)) {
1982 devi = f2fs_target_device_index(sbi, blkstart);
1983 if (blkstart < FDEV(devi).start_blk ||
1984 blkstart > FDEV(devi).end_blk) {
1985 f2fs_err(sbi, "Invalid block %x", blkstart);
1986 return -EIO;
1987 }
1988 blkstart -= FDEV(devi).start_blk;
1989 }
1990
1991 /* For sequential zones, reset the zone write pointer */
1992 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1993 sector = SECTOR_FROM_BLOCK(blkstart);
1994 nr_sects = SECTOR_FROM_BLOCK(blklen);
1995 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1996
1997 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1998 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1999 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2000 blkstart, blklen);
2001 return -EIO;
2002 }
2003
2004 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2005 unsigned int nofs_flags;
2006 int ret;
2007
2008 trace_f2fs_issue_reset_zone(bdev, blkstart);
2009 nofs_flags = memalloc_nofs_save();
2010 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2011 sector, nr_sects);
2012 memalloc_nofs_restore(nofs_flags);
2013 return ret;
2014 }
2015
2016 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2017 return 0;
2018 }
2019
2020 /* For conventional zones, use regular discard if supported */
2021 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2022 return 0;
2023 }
2024 #endif
2025
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2026 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2027 struct block_device *bdev, block_t blkstart, block_t blklen)
2028 {
2029 #ifdef CONFIG_BLK_DEV_ZONED
2030 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2031 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2032 #endif
2033 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2034 return 0;
2035 }
2036
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2037 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2038 block_t blkstart, block_t blklen)
2039 {
2040 sector_t start = blkstart, len = 0;
2041 struct block_device *bdev;
2042 struct seg_entry *se;
2043 unsigned int offset;
2044 block_t i;
2045 int err = 0;
2046
2047 bdev = f2fs_target_device(sbi, blkstart, NULL);
2048
2049 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2050 if (i != start) {
2051 struct block_device *bdev2 =
2052 f2fs_target_device(sbi, i, NULL);
2053
2054 if (bdev2 != bdev) {
2055 err = __issue_discard_async(sbi, bdev,
2056 start, len);
2057 if (err)
2058 return err;
2059 bdev = bdev2;
2060 start = i;
2061 len = 0;
2062 }
2063 }
2064
2065 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2066 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2067
2068 if (f2fs_block_unit_discard(sbi) &&
2069 !f2fs_test_and_set_bit(offset, se->discard_map))
2070 sbi->discard_blks--;
2071 }
2072
2073 if (len)
2074 err = __issue_discard_async(sbi, bdev, start, len);
2075 return err;
2076 }
2077
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2078 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2079 bool check_only)
2080 {
2081 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2082 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2083 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2084 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2085 unsigned long *discard_map = (unsigned long *)se->discard_map;
2086 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2087 unsigned int start = 0, end = -1;
2088 bool force = (cpc->reason & CP_DISCARD);
2089 struct discard_entry *de = NULL;
2090 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2091 int i;
2092
2093 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2094 !f2fs_hw_support_discard(sbi) ||
2095 !f2fs_block_unit_discard(sbi))
2096 return false;
2097
2098 if (!force) {
2099 if (!f2fs_realtime_discard_enable(sbi) ||
2100 (!se->valid_blocks &&
2101 !IS_CURSEG(sbi, cpc->trim_start)) ||
2102 SM_I(sbi)->dcc_info->nr_discards >=
2103 SM_I(sbi)->dcc_info->max_discards)
2104 return false;
2105 }
2106
2107 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2108 for (i = 0; i < entries; i++)
2109 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2110 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2111
2112 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2113 SM_I(sbi)->dcc_info->max_discards) {
2114 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2115 if (start >= BLKS_PER_SEG(sbi))
2116 break;
2117
2118 end = __find_rev_next_zero_bit(dmap,
2119 BLKS_PER_SEG(sbi), start + 1);
2120 if (force && start && end != BLKS_PER_SEG(sbi) &&
2121 (end - start) < cpc->trim_minlen)
2122 continue;
2123
2124 if (check_only)
2125 return true;
2126
2127 if (!de) {
2128 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2129 GFP_F2FS_ZERO, true, NULL);
2130 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2131 list_add_tail(&de->list, head);
2132 }
2133
2134 for (i = start; i < end; i++)
2135 __set_bit_le(i, (void *)de->discard_map);
2136
2137 SM_I(sbi)->dcc_info->nr_discards += end - start;
2138 }
2139 return false;
2140 }
2141
release_discard_addr(struct discard_entry * entry)2142 static void release_discard_addr(struct discard_entry *entry)
2143 {
2144 list_del(&entry->list);
2145 kmem_cache_free(discard_entry_slab, entry);
2146 }
2147
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2148 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2149 {
2150 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2151 struct discard_entry *entry, *this;
2152
2153 /* drop caches */
2154 list_for_each_entry_safe(entry, this, head, list)
2155 release_discard_addr(entry);
2156 }
2157
2158 /*
2159 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2160 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2161 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2162 {
2163 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2164 unsigned int segno;
2165
2166 mutex_lock(&dirty_i->seglist_lock);
2167 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2168 __set_test_and_free(sbi, segno, false);
2169 mutex_unlock(&dirty_i->seglist_lock);
2170 }
2171
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2172 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2173 struct cp_control *cpc)
2174 {
2175 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2176 struct list_head *head = &dcc->entry_list;
2177 struct discard_entry *entry, *this;
2178 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2179 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2180 unsigned int start = 0, end = -1;
2181 unsigned int secno, start_segno;
2182 bool force = (cpc->reason & CP_DISCARD);
2183 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2184 DISCARD_UNIT_SECTION;
2185
2186 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2187 section_alignment = true;
2188
2189 mutex_lock(&dirty_i->seglist_lock);
2190
2191 while (1) {
2192 int i;
2193
2194 if (section_alignment && end != -1)
2195 end--;
2196 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2197 if (start >= MAIN_SEGS(sbi))
2198 break;
2199 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2200 start + 1);
2201
2202 if (section_alignment) {
2203 start = rounddown(start, SEGS_PER_SEC(sbi));
2204 end = roundup(end, SEGS_PER_SEC(sbi));
2205 }
2206
2207 for (i = start; i < end; i++) {
2208 if (test_and_clear_bit(i, prefree_map))
2209 dirty_i->nr_dirty[PRE]--;
2210 }
2211
2212 if (!f2fs_realtime_discard_enable(sbi))
2213 continue;
2214
2215 if (force && start >= cpc->trim_start &&
2216 (end - 1) <= cpc->trim_end)
2217 continue;
2218
2219 /* Should cover 2MB zoned device for zone-based reset */
2220 if (!f2fs_sb_has_blkzoned(sbi) &&
2221 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2222 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2223 SEGS_TO_BLKS(sbi, end - start));
2224 continue;
2225 }
2226 next:
2227 secno = GET_SEC_FROM_SEG(sbi, start);
2228 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2229 if (!IS_CURSEC(sbi, secno) &&
2230 !get_valid_blocks(sbi, start, true))
2231 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2232 BLKS_PER_SEC(sbi));
2233
2234 start = start_segno + SEGS_PER_SEC(sbi);
2235 if (start < end)
2236 goto next;
2237 else
2238 end = start - 1;
2239 }
2240 mutex_unlock(&dirty_i->seglist_lock);
2241
2242 if (!f2fs_block_unit_discard(sbi))
2243 goto wakeup;
2244
2245 /* send small discards */
2246 list_for_each_entry_safe(entry, this, head, list) {
2247 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2248 bool is_valid = test_bit_le(0, entry->discard_map);
2249
2250 find_next:
2251 if (is_valid) {
2252 next_pos = find_next_zero_bit_le(entry->discard_map,
2253 BLKS_PER_SEG(sbi), cur_pos);
2254 len = next_pos - cur_pos;
2255
2256 if (f2fs_sb_has_blkzoned(sbi) ||
2257 (force && len < cpc->trim_minlen))
2258 goto skip;
2259
2260 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2261 len);
2262 total_len += len;
2263 } else {
2264 next_pos = find_next_bit_le(entry->discard_map,
2265 BLKS_PER_SEG(sbi), cur_pos);
2266 }
2267 skip:
2268 cur_pos = next_pos;
2269 is_valid = !is_valid;
2270
2271 if (cur_pos < BLKS_PER_SEG(sbi))
2272 goto find_next;
2273
2274 release_discard_addr(entry);
2275 dcc->nr_discards -= total_len;
2276 }
2277
2278 wakeup:
2279 wake_up_discard_thread(sbi, false);
2280 }
2281
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2282 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2283 {
2284 dev_t dev = sbi->sb->s_bdev->bd_dev;
2285 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2286 int err = 0;
2287
2288 if (f2fs_sb_has_readonly(sbi)) {
2289 f2fs_info(sbi,
2290 "Skip to start discard thread for readonly image");
2291 return 0;
2292 }
2293
2294 if (!f2fs_realtime_discard_enable(sbi))
2295 return 0;
2296
2297 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2298 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2299 if (IS_ERR(dcc->f2fs_issue_discard)) {
2300 err = PTR_ERR(dcc->f2fs_issue_discard);
2301 dcc->f2fs_issue_discard = NULL;
2302 }
2303
2304 return err;
2305 }
2306
create_discard_cmd_control(struct f2fs_sb_info * sbi)2307 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2308 {
2309 struct discard_cmd_control *dcc;
2310 int err = 0, i;
2311
2312 if (SM_I(sbi)->dcc_info) {
2313 dcc = SM_I(sbi)->dcc_info;
2314 goto init_thread;
2315 }
2316
2317 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2318 if (!dcc)
2319 return -ENOMEM;
2320
2321 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2322 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2323 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2324 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2325 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2326 F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2327 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2328
2329 INIT_LIST_HEAD(&dcc->entry_list);
2330 for (i = 0; i < MAX_PLIST_NUM; i++)
2331 INIT_LIST_HEAD(&dcc->pend_list[i]);
2332 INIT_LIST_HEAD(&dcc->wait_list);
2333 INIT_LIST_HEAD(&dcc->fstrim_list);
2334 mutex_init(&dcc->cmd_lock);
2335 atomic_set(&dcc->issued_discard, 0);
2336 atomic_set(&dcc->queued_discard, 0);
2337 atomic_set(&dcc->discard_cmd_cnt, 0);
2338 dcc->nr_discards = 0;
2339 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2340 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2341 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2342 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2343 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2344 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2345 dcc->undiscard_blks = 0;
2346 dcc->next_pos = 0;
2347 dcc->root = RB_ROOT_CACHED;
2348 dcc->rbtree_check = false;
2349
2350 init_waitqueue_head(&dcc->discard_wait_queue);
2351 SM_I(sbi)->dcc_info = dcc;
2352 init_thread:
2353 err = f2fs_start_discard_thread(sbi);
2354 if (err) {
2355 kfree(dcc);
2356 SM_I(sbi)->dcc_info = NULL;
2357 }
2358
2359 return err;
2360 }
2361
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2362 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2363 {
2364 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2365
2366 if (!dcc)
2367 return;
2368
2369 f2fs_stop_discard_thread(sbi);
2370
2371 /*
2372 * Recovery can cache discard commands, so in error path of
2373 * fill_super(), it needs to give a chance to handle them.
2374 */
2375 f2fs_issue_discard_timeout(sbi);
2376
2377 kfree(dcc);
2378 SM_I(sbi)->dcc_info = NULL;
2379 }
2380
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2381 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2382 {
2383 struct sit_info *sit_i = SIT_I(sbi);
2384
2385 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2386 sit_i->dirty_sentries++;
2387 return false;
2388 }
2389
2390 return true;
2391 }
2392
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2393 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2394 unsigned int segno, int modified)
2395 {
2396 struct seg_entry *se = get_seg_entry(sbi, segno);
2397
2398 se->type = type;
2399 if (modified)
2400 __mark_sit_entry_dirty(sbi, segno);
2401 }
2402
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2403 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2404 block_t blkaddr)
2405 {
2406 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2407
2408 if (segno == NULL_SEGNO)
2409 return 0;
2410 return get_seg_entry(sbi, segno)->mtime;
2411 }
2412
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2413 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2414 unsigned long long old_mtime)
2415 {
2416 struct seg_entry *se;
2417 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2418 unsigned long long ctime = get_mtime(sbi, false);
2419 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2420
2421 if (segno == NULL_SEGNO)
2422 return;
2423
2424 se = get_seg_entry(sbi, segno);
2425
2426 if (!se->mtime)
2427 se->mtime = mtime;
2428 else
2429 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2430 se->valid_blocks + 1);
2431
2432 if (ctime > SIT_I(sbi)->max_mtime)
2433 SIT_I(sbi)->max_mtime = ctime;
2434 }
2435
2436 /*
2437 * NOTE: when updating multiple blocks at the same time, please ensure
2438 * that the consecutive input blocks belong to the same segment.
2439 */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,block_t blkaddr,unsigned int offset,int del)2440 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2441 block_t blkaddr, unsigned int offset, int del)
2442 {
2443 bool exist;
2444 #ifdef CONFIG_F2FS_CHECK_FS
2445 bool mir_exist;
2446 #endif
2447 int i;
2448 int del_count = -del;
2449
2450 f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2451
2452 for (i = 0; i < del_count; i++) {
2453 exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2454 #ifdef CONFIG_F2FS_CHECK_FS
2455 mir_exist = f2fs_test_and_clear_bit(offset + i,
2456 se->cur_valid_map_mir);
2457 if (unlikely(exist != mir_exist)) {
2458 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2459 blkaddr + i, exist);
2460 f2fs_bug_on(sbi, 1);
2461 }
2462 #endif
2463 if (unlikely(!exist)) {
2464 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2465 f2fs_bug_on(sbi, 1);
2466 se->valid_blocks++;
2467 del += 1;
2468 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2469 /*
2470 * If checkpoints are off, we must not reuse data that
2471 * was used in the previous checkpoint. If it was used
2472 * before, we must track that to know how much space we
2473 * really have.
2474 */
2475 if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2476 spin_lock(&sbi->stat_lock);
2477 sbi->unusable_block_count++;
2478 spin_unlock(&sbi->stat_lock);
2479 }
2480 }
2481
2482 if (f2fs_block_unit_discard(sbi) &&
2483 f2fs_test_and_clear_bit(offset + i, se->discard_map))
2484 sbi->discard_blks++;
2485
2486 if (!f2fs_test_bit(offset + i, se->ckpt_valid_map))
2487 se->ckpt_valid_blocks -= 1;
2488 }
2489
2490 return del;
2491 }
2492
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,block_t blkaddr,unsigned int offset,int del)2493 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2494 block_t blkaddr, unsigned int offset, int del)
2495 {
2496 bool exist;
2497 #ifdef CONFIG_F2FS_CHECK_FS
2498 bool mir_exist;
2499 #endif
2500
2501 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2502 #ifdef CONFIG_F2FS_CHECK_FS
2503 mir_exist = f2fs_test_and_set_bit(offset,
2504 se->cur_valid_map_mir);
2505 if (unlikely(exist != mir_exist)) {
2506 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2507 blkaddr, exist);
2508 f2fs_bug_on(sbi, 1);
2509 }
2510 #endif
2511 if (unlikely(exist)) {
2512 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2513 f2fs_bug_on(sbi, 1);
2514 se->valid_blocks--;
2515 del = 0;
2516 }
2517
2518 if (f2fs_block_unit_discard(sbi) &&
2519 !f2fs_test_and_set_bit(offset, se->discard_map))
2520 sbi->discard_blks--;
2521
2522 /*
2523 * SSR should never reuse block which is checkpointed
2524 * or newly invalidated.
2525 */
2526 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2527 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2528 se->ckpt_valid_blocks++;
2529 }
2530
2531 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2532 se->ckpt_valid_blocks += del;
2533
2534 return del;
2535 }
2536
2537 /*
2538 * If releasing blocks, this function supports updating multiple consecutive blocks
2539 * at one time, but please note that these consecutive blocks need to belong to the
2540 * same segment.
2541 */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2542 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2543 {
2544 struct seg_entry *se;
2545 unsigned int segno, offset;
2546 long int new_vblocks;
2547
2548 segno = GET_SEGNO(sbi, blkaddr);
2549 if (segno == NULL_SEGNO)
2550 return;
2551
2552 se = get_seg_entry(sbi, segno);
2553 new_vblocks = se->valid_blocks + del;
2554 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2555
2556 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2557 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2558
2559 se->valid_blocks = new_vblocks;
2560
2561 /* Update valid block bitmap */
2562 if (del > 0) {
2563 del = update_sit_entry_for_alloc(sbi, se, blkaddr, offset, del);
2564 } else {
2565 del = update_sit_entry_for_release(sbi, se, blkaddr, offset, del);
2566 }
2567
2568 __mark_sit_entry_dirty(sbi, segno);
2569
2570 /* update total number of valid blocks to be written in ckpt area */
2571 SIT_I(sbi)->written_valid_blocks += del;
2572
2573 if (__is_large_section(sbi))
2574 get_sec_entry(sbi, segno)->valid_blocks += del;
2575 }
2576
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2577 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2578 unsigned int len)
2579 {
2580 unsigned int segno = GET_SEGNO(sbi, addr);
2581 struct sit_info *sit_i = SIT_I(sbi);
2582 block_t addr_start = addr, addr_end = addr + len - 1;
2583 unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2584 unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2585
2586 f2fs_bug_on(sbi, addr == NULL_ADDR);
2587 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2588 return;
2589
2590 f2fs_invalidate_internal_cache(sbi, addr, len);
2591
2592 /* add it into sit main buffer */
2593 down_write(&sit_i->sentry_lock);
2594
2595 if (seg_num == 1)
2596 cnt = len;
2597 else
2598 cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2599
2600 do {
2601 update_segment_mtime(sbi, addr_start, 0);
2602 update_sit_entry(sbi, addr_start, -cnt);
2603
2604 /* add it into dirty seglist */
2605 locate_dirty_segment(sbi, segno);
2606
2607 /* update @addr_start and @cnt and @segno */
2608 addr_start = START_BLOCK(sbi, ++segno);
2609 if (++i == seg_num)
2610 cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2611 else
2612 cnt = max_blocks;
2613 } while (i <= seg_num);
2614
2615 up_write(&sit_i->sentry_lock);
2616 }
2617
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2618 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2619 {
2620 struct sit_info *sit_i = SIT_I(sbi);
2621 unsigned int segno, offset;
2622 struct seg_entry *se;
2623 bool is_cp = false;
2624
2625 if (!__is_valid_data_blkaddr(blkaddr))
2626 return true;
2627
2628 down_read(&sit_i->sentry_lock);
2629
2630 segno = GET_SEGNO(sbi, blkaddr);
2631 se = get_seg_entry(sbi, segno);
2632 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2633
2634 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2635 is_cp = true;
2636
2637 up_read(&sit_i->sentry_lock);
2638
2639 return is_cp;
2640 }
2641
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2642 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2643 {
2644 struct curseg_info *curseg = CURSEG_I(sbi, type);
2645
2646 if (sbi->ckpt->alloc_type[type] == SSR)
2647 return BLKS_PER_SEG(sbi);
2648 return curseg->next_blkoff;
2649 }
2650
2651 /*
2652 * Calculate the number of current summary pages for writing
2653 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2654 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2655 {
2656 int valid_sum_count = 0;
2657 int i, sum_in_page;
2658
2659 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2660 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2661 valid_sum_count +=
2662 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2663 else
2664 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2665 }
2666
2667 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2668 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2669 if (valid_sum_count <= sum_in_page)
2670 return 1;
2671 else if ((valid_sum_count - sum_in_page) <=
2672 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2673 return 2;
2674 return 3;
2675 }
2676
2677 /*
2678 * Caller should put this summary page
2679 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2680 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2681 {
2682 if (unlikely(f2fs_cp_error(sbi)))
2683 return ERR_PTR(-EIO);
2684 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2685 }
2686
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2687 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2688 void *src, block_t blk_addr)
2689 {
2690 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2691
2692 memcpy(page_address(page), src, PAGE_SIZE);
2693 set_page_dirty(page);
2694 f2fs_put_page(page, 1);
2695 }
2696
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2697 static void write_sum_page(struct f2fs_sb_info *sbi,
2698 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2699 {
2700 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2701 }
2702
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2703 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2704 int type, block_t blk_addr)
2705 {
2706 struct curseg_info *curseg = CURSEG_I(sbi, type);
2707 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2708 struct f2fs_summary_block *src = curseg->sum_blk;
2709 struct f2fs_summary_block *dst;
2710
2711 dst = (struct f2fs_summary_block *)page_address(page);
2712 memset(dst, 0, PAGE_SIZE);
2713
2714 mutex_lock(&curseg->curseg_mutex);
2715
2716 down_read(&curseg->journal_rwsem);
2717 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2718 up_read(&curseg->journal_rwsem);
2719
2720 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2721 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2722
2723 mutex_unlock(&curseg->curseg_mutex);
2724
2725 set_page_dirty(page);
2726 f2fs_put_page(page, 1);
2727 }
2728
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2729 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2730 struct curseg_info *curseg)
2731 {
2732 unsigned int segno = curseg->segno + 1;
2733 struct free_segmap_info *free_i = FREE_I(sbi);
2734
2735 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2736 return !test_bit(segno, free_i->free_segmap);
2737 return 0;
2738 }
2739
2740 /*
2741 * Find a new segment from the free segments bitmap to right order
2742 * This function should be returned with success, otherwise BUG
2743 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2744 static int get_new_segment(struct f2fs_sb_info *sbi,
2745 unsigned int *newseg, bool new_sec, bool pinning)
2746 {
2747 struct free_segmap_info *free_i = FREE_I(sbi);
2748 unsigned int segno, secno, zoneno;
2749 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2750 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2751 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2752 bool init = true;
2753 int i;
2754 int ret = 0;
2755
2756 spin_lock(&free_i->segmap_lock);
2757
2758 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2759 ret = -ENOSPC;
2760 goto out_unlock;
2761 }
2762
2763 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2764 segno = find_next_zero_bit(free_i->free_segmap,
2765 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2766 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2767 goto got_it;
2768 }
2769
2770 #ifdef CONFIG_BLK_DEV_ZONED
2771 /*
2772 * If we format f2fs on zoned storage, let's try to get pinned sections
2773 * from beginning of the storage, which should be a conventional one.
2774 */
2775 if (f2fs_sb_has_blkzoned(sbi)) {
2776 /* Prioritize writing to conventional zones */
2777 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2778 segno = 0;
2779 else
2780 segno = max(sbi->first_zoned_segno, *newseg);
2781 hint = GET_SEC_FROM_SEG(sbi, segno);
2782 }
2783 #endif
2784
2785 find_other_zone:
2786 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2787
2788 #ifdef CONFIG_BLK_DEV_ZONED
2789 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2790 /* Write only to sequential zones */
2791 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2792 hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno);
2793 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2794 } else
2795 secno = find_first_zero_bit(free_i->free_secmap,
2796 MAIN_SECS(sbi));
2797 if (secno >= MAIN_SECS(sbi)) {
2798 ret = -ENOSPC;
2799 f2fs_bug_on(sbi, 1);
2800 goto out_unlock;
2801 }
2802 }
2803 #endif
2804
2805 if (secno >= MAIN_SECS(sbi)) {
2806 secno = find_first_zero_bit(free_i->free_secmap,
2807 MAIN_SECS(sbi));
2808 if (secno >= MAIN_SECS(sbi)) {
2809 ret = -ENOSPC;
2810 f2fs_bug_on(sbi, !pinning);
2811 goto out_unlock;
2812 }
2813 }
2814 segno = GET_SEG_FROM_SEC(sbi, secno);
2815 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2816
2817 /* give up on finding another zone */
2818 if (!init)
2819 goto got_it;
2820 if (sbi->secs_per_zone == 1)
2821 goto got_it;
2822 if (zoneno == old_zoneno)
2823 goto got_it;
2824 for (i = 0; i < NR_CURSEG_TYPE; i++)
2825 if (CURSEG_I(sbi, i)->zone == zoneno)
2826 break;
2827
2828 if (i < NR_CURSEG_TYPE) {
2829 /* zone is in user, try another */
2830 if (zoneno + 1 >= total_zones)
2831 hint = 0;
2832 else
2833 hint = (zoneno + 1) * sbi->secs_per_zone;
2834 init = false;
2835 goto find_other_zone;
2836 }
2837 got_it:
2838 /* set it as dirty segment in free segmap */
2839 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2840
2841 /* no free section in conventional zone */
2842 if (new_sec && pinning &&
2843 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2844 ret = -EAGAIN;
2845 goto out_unlock;
2846 }
2847 __set_inuse(sbi, segno);
2848 *newseg = segno;
2849 out_unlock:
2850 spin_unlock(&free_i->segmap_lock);
2851
2852 if (ret == -ENOSPC && !pinning)
2853 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2854 return ret;
2855 }
2856
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2857 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2858 {
2859 struct curseg_info *curseg = CURSEG_I(sbi, type);
2860 struct summary_footer *sum_footer;
2861 unsigned short seg_type = curseg->seg_type;
2862
2863 /* only happen when get_new_segment() fails */
2864 if (curseg->next_segno == NULL_SEGNO)
2865 return;
2866
2867 curseg->inited = true;
2868 curseg->segno = curseg->next_segno;
2869 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2870 curseg->next_blkoff = 0;
2871 curseg->next_segno = NULL_SEGNO;
2872
2873 sum_footer = &(curseg->sum_blk->footer);
2874 memset(sum_footer, 0, sizeof(struct summary_footer));
2875
2876 sanity_check_seg_type(sbi, seg_type);
2877
2878 if (IS_DATASEG(seg_type))
2879 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2880 if (IS_NODESEG(seg_type))
2881 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2882 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2883 }
2884
__get_next_segno(struct f2fs_sb_info * sbi,int type)2885 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2886 {
2887 struct curseg_info *curseg = CURSEG_I(sbi, type);
2888 unsigned short seg_type = curseg->seg_type;
2889
2890 sanity_check_seg_type(sbi, seg_type);
2891 if (__is_large_section(sbi)) {
2892 if (f2fs_need_rand_seg(sbi)) {
2893 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2894
2895 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2896 return curseg->segno;
2897 return get_random_u32_inclusive(curseg->segno + 1,
2898 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2899 }
2900 return curseg->segno;
2901 } else if (f2fs_need_rand_seg(sbi)) {
2902 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2903 }
2904
2905 /* inmem log may not locate on any segment after mount */
2906 if (!curseg->inited)
2907 return 0;
2908
2909 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2910 return 0;
2911
2912 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2913 return 0;
2914
2915 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2916 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2917
2918 /* find segments from 0 to reuse freed segments */
2919 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2920 return 0;
2921
2922 return curseg->segno;
2923 }
2924
reset_curseg_fields(struct curseg_info * curseg)2925 static void reset_curseg_fields(struct curseg_info *curseg)
2926 {
2927 curseg->inited = false;
2928 curseg->segno = NULL_SEGNO;
2929 curseg->next_segno = 0;
2930 }
2931
2932 /*
2933 * Allocate a current working segment.
2934 * This function always allocates a free segment in LFS manner.
2935 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2936 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2937 {
2938 struct curseg_info *curseg = CURSEG_I(sbi, type);
2939 unsigned int segno = curseg->segno;
2940 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2941 int ret;
2942
2943 if (curseg->inited)
2944 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2945
2946 segno = __get_next_segno(sbi, type);
2947 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2948 if (ret) {
2949 if (ret == -ENOSPC)
2950 reset_curseg_fields(curseg);
2951 return ret;
2952 }
2953
2954 curseg->next_segno = segno;
2955 reset_curseg(sbi, type, 1);
2956 curseg->alloc_type = LFS;
2957 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2958 curseg->fragment_remained_chunk =
2959 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2960 return 0;
2961 }
2962
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2963 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2964 int segno, block_t start)
2965 {
2966 struct seg_entry *se = get_seg_entry(sbi, segno);
2967 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2968 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2969 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2970 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2971 int i;
2972
2973 for (i = 0; i < entries; i++)
2974 target_map[i] = ckpt_map[i] | cur_map[i];
2975
2976 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2977 }
2978
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)2979 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2980 struct curseg_info *seg)
2981 {
2982 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2983 }
2984
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2985 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2986 {
2987 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2988 }
2989
2990 /*
2991 * This function always allocates a used segment(from dirty seglist) by SSR
2992 * manner, so it should recover the existing segment information of valid blocks
2993 */
change_curseg(struct f2fs_sb_info * sbi,int type)2994 static int change_curseg(struct f2fs_sb_info *sbi, int type)
2995 {
2996 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2997 struct curseg_info *curseg = CURSEG_I(sbi, type);
2998 unsigned int new_segno = curseg->next_segno;
2999 struct f2fs_summary_block *sum_node;
3000 struct page *sum_page;
3001
3002 if (curseg->inited)
3003 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
3004
3005 __set_test_and_inuse(sbi, new_segno);
3006
3007 mutex_lock(&dirty_i->seglist_lock);
3008 __remove_dirty_segment(sbi, new_segno, PRE);
3009 __remove_dirty_segment(sbi, new_segno, DIRTY);
3010 mutex_unlock(&dirty_i->seglist_lock);
3011
3012 reset_curseg(sbi, type, 1);
3013 curseg->alloc_type = SSR;
3014 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3015
3016 sum_page = f2fs_get_sum_page(sbi, new_segno);
3017 if (IS_ERR(sum_page)) {
3018 /* GC won't be able to use stale summary pages by cp_error */
3019 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3020 return PTR_ERR(sum_page);
3021 }
3022 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
3023 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3024 f2fs_put_page(sum_page, 1);
3025 return 0;
3026 }
3027
3028 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3029 int alloc_mode, unsigned long long age);
3030
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3031 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3032 int target_type, int alloc_mode,
3033 unsigned long long age)
3034 {
3035 struct curseg_info *curseg = CURSEG_I(sbi, type);
3036 int ret = 0;
3037
3038 curseg->seg_type = target_type;
3039
3040 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3041 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3042
3043 curseg->seg_type = se->type;
3044 ret = change_curseg(sbi, type);
3045 } else {
3046 /* allocate cold segment by default */
3047 curseg->seg_type = CURSEG_COLD_DATA;
3048 ret = new_curseg(sbi, type, true);
3049 }
3050 stat_inc_seg_type(sbi, curseg);
3051 return ret;
3052 }
3053
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3054 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3055 {
3056 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3057 int ret = 0;
3058
3059 if (!sbi->am.atgc_enabled && !force)
3060 return 0;
3061
3062 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3063
3064 mutex_lock(&curseg->curseg_mutex);
3065 down_write(&SIT_I(sbi)->sentry_lock);
3066
3067 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3068 CURSEG_COLD_DATA, SSR, 0);
3069
3070 up_write(&SIT_I(sbi)->sentry_lock);
3071 mutex_unlock(&curseg->curseg_mutex);
3072
3073 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3074 return ret;
3075 }
3076
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3077 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3078 {
3079 return __f2fs_init_atgc_curseg(sbi, false);
3080 }
3081
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3082 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3083 {
3084 int ret;
3085
3086 if (!test_opt(sbi, ATGC))
3087 return 0;
3088 if (sbi->am.atgc_enabled)
3089 return 0;
3090 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3091 sbi->am.age_threshold)
3092 return 0;
3093
3094 ret = __f2fs_init_atgc_curseg(sbi, true);
3095 if (!ret) {
3096 sbi->am.atgc_enabled = true;
3097 f2fs_info(sbi, "reenabled age threshold GC");
3098 }
3099 return ret;
3100 }
3101
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3102 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3103 {
3104 struct curseg_info *curseg = CURSEG_I(sbi, type);
3105
3106 mutex_lock(&curseg->curseg_mutex);
3107 if (!curseg->inited)
3108 goto out;
3109
3110 if (get_valid_blocks(sbi, curseg->segno, false)) {
3111 write_sum_page(sbi, curseg->sum_blk,
3112 GET_SUM_BLOCK(sbi, curseg->segno));
3113 } else {
3114 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3115 __set_test_and_free(sbi, curseg->segno, true);
3116 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3117 }
3118 out:
3119 mutex_unlock(&curseg->curseg_mutex);
3120 }
3121
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3122 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3123 {
3124 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3125
3126 if (sbi->am.atgc_enabled)
3127 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3128 }
3129
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3130 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3131 {
3132 struct curseg_info *curseg = CURSEG_I(sbi, type);
3133
3134 mutex_lock(&curseg->curseg_mutex);
3135 if (!curseg->inited)
3136 goto out;
3137 if (get_valid_blocks(sbi, curseg->segno, false))
3138 goto out;
3139
3140 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3141 __set_test_and_inuse(sbi, curseg->segno);
3142 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3143 out:
3144 mutex_unlock(&curseg->curseg_mutex);
3145 }
3146
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3147 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3148 {
3149 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3150
3151 if (sbi->am.atgc_enabled)
3152 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3153 }
3154
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3155 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3156 int alloc_mode, unsigned long long age)
3157 {
3158 struct curseg_info *curseg = CURSEG_I(sbi, type);
3159 unsigned segno = NULL_SEGNO;
3160 unsigned short seg_type = curseg->seg_type;
3161 int i, cnt;
3162 bool reversed = false;
3163
3164 sanity_check_seg_type(sbi, seg_type);
3165
3166 /* f2fs_need_SSR() already forces to do this */
3167 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3168 alloc_mode, age, false)) {
3169 curseg->next_segno = segno;
3170 return 1;
3171 }
3172
3173 /* For node segments, let's do SSR more intensively */
3174 if (IS_NODESEG(seg_type)) {
3175 if (seg_type >= CURSEG_WARM_NODE) {
3176 reversed = true;
3177 i = CURSEG_COLD_NODE;
3178 } else {
3179 i = CURSEG_HOT_NODE;
3180 }
3181 cnt = NR_CURSEG_NODE_TYPE;
3182 } else {
3183 if (seg_type >= CURSEG_WARM_DATA) {
3184 reversed = true;
3185 i = CURSEG_COLD_DATA;
3186 } else {
3187 i = CURSEG_HOT_DATA;
3188 }
3189 cnt = NR_CURSEG_DATA_TYPE;
3190 }
3191
3192 for (; cnt-- > 0; reversed ? i-- : i++) {
3193 if (i == seg_type)
3194 continue;
3195 if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3196 alloc_mode, age, false)) {
3197 curseg->next_segno = segno;
3198 return 1;
3199 }
3200 }
3201
3202 /* find valid_blocks=0 in dirty list */
3203 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3204 segno = get_free_segment(sbi);
3205 if (segno != NULL_SEGNO) {
3206 curseg->next_segno = segno;
3207 return 1;
3208 }
3209 }
3210 return 0;
3211 }
3212
need_new_seg(struct f2fs_sb_info * sbi,int type)3213 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3214 {
3215 struct curseg_info *curseg = CURSEG_I(sbi, type);
3216
3217 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3218 curseg->seg_type == CURSEG_WARM_NODE)
3219 return true;
3220 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3221 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3222 return true;
3223 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3224 return true;
3225 return false;
3226 }
3227
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3228 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3229 unsigned int start, unsigned int end)
3230 {
3231 struct curseg_info *curseg = CURSEG_I(sbi, type);
3232 unsigned int segno;
3233 int ret = 0;
3234
3235 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3236 mutex_lock(&curseg->curseg_mutex);
3237 down_write(&SIT_I(sbi)->sentry_lock);
3238
3239 segno = CURSEG_I(sbi, type)->segno;
3240 if (segno < start || segno > end)
3241 goto unlock;
3242
3243 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3244 ret = change_curseg(sbi, type);
3245 else
3246 ret = new_curseg(sbi, type, true);
3247
3248 stat_inc_seg_type(sbi, curseg);
3249
3250 locate_dirty_segment(sbi, segno);
3251 unlock:
3252 up_write(&SIT_I(sbi)->sentry_lock);
3253
3254 if (segno != curseg->segno)
3255 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3256 type, segno, curseg->segno);
3257
3258 mutex_unlock(&curseg->curseg_mutex);
3259 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3260 return ret;
3261 }
3262
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3263 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3264 bool new_sec, bool force)
3265 {
3266 struct curseg_info *curseg = CURSEG_I(sbi, type);
3267 unsigned int old_segno;
3268 int err = 0;
3269
3270 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3271 goto allocate;
3272
3273 if (!force && curseg->inited &&
3274 !curseg->next_blkoff &&
3275 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3276 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3277 return 0;
3278
3279 allocate:
3280 old_segno = curseg->segno;
3281 err = new_curseg(sbi, type, true);
3282 if (err)
3283 return err;
3284 stat_inc_seg_type(sbi, curseg);
3285 locate_dirty_segment(sbi, old_segno);
3286 return 0;
3287 }
3288
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3289 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3290 {
3291 int ret;
3292
3293 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3294 down_write(&SIT_I(sbi)->sentry_lock);
3295 ret = __allocate_new_segment(sbi, type, true, force);
3296 up_write(&SIT_I(sbi)->sentry_lock);
3297 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3298
3299 return ret;
3300 }
3301
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3302 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3303 {
3304 int err;
3305 bool gc_required = true;
3306
3307 retry:
3308 f2fs_lock_op(sbi);
3309 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3310 f2fs_unlock_op(sbi);
3311
3312 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3313 f2fs_down_write(&sbi->gc_lock);
3314 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk),
3315 true, ZONED_PIN_SEC_REQUIRED_COUNT);
3316 f2fs_up_write(&sbi->gc_lock);
3317
3318 gc_required = false;
3319 if (!err)
3320 goto retry;
3321 }
3322
3323 return err;
3324 }
3325
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3326 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3327 {
3328 int i;
3329 int err = 0;
3330
3331 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3332 down_write(&SIT_I(sbi)->sentry_lock);
3333 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3334 err += __allocate_new_segment(sbi, i, false, false);
3335 up_write(&SIT_I(sbi)->sentry_lock);
3336 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3337
3338 return err;
3339 }
3340
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3341 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3342 struct cp_control *cpc)
3343 {
3344 __u64 trim_start = cpc->trim_start;
3345 bool has_candidate = false;
3346
3347 down_write(&SIT_I(sbi)->sentry_lock);
3348 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3349 if (add_discard_addrs(sbi, cpc, true)) {
3350 has_candidate = true;
3351 break;
3352 }
3353 }
3354 up_write(&SIT_I(sbi)->sentry_lock);
3355
3356 cpc->trim_start = trim_start;
3357 return has_candidate;
3358 }
3359
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3360 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3361 struct discard_policy *dpolicy,
3362 unsigned int start, unsigned int end)
3363 {
3364 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3365 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3366 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3367 struct discard_cmd *dc;
3368 struct blk_plug plug;
3369 int issued;
3370 unsigned int trimmed = 0;
3371
3372 next:
3373 issued = 0;
3374
3375 mutex_lock(&dcc->cmd_lock);
3376 if (unlikely(dcc->rbtree_check))
3377 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3378
3379 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3380 &prev_dc, &next_dc, &insert_p, &insert_parent);
3381 if (!dc)
3382 dc = next_dc;
3383
3384 blk_start_plug(&plug);
3385
3386 while (dc && dc->di.lstart <= end) {
3387 struct rb_node *node;
3388 int err = 0;
3389
3390 if (dc->di.len < dpolicy->granularity)
3391 goto skip;
3392
3393 if (dc->state != D_PREP) {
3394 list_move_tail(&dc->list, &dcc->fstrim_list);
3395 goto skip;
3396 }
3397
3398 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3399
3400 if (issued >= dpolicy->max_requests) {
3401 start = dc->di.lstart + dc->di.len;
3402
3403 if (err)
3404 __remove_discard_cmd(sbi, dc);
3405
3406 blk_finish_plug(&plug);
3407 mutex_unlock(&dcc->cmd_lock);
3408 trimmed += __wait_all_discard_cmd(sbi, NULL);
3409 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3410 goto next;
3411 }
3412 skip:
3413 node = rb_next(&dc->rb_node);
3414 if (err)
3415 __remove_discard_cmd(sbi, dc);
3416 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3417
3418 if (fatal_signal_pending(current))
3419 break;
3420 }
3421
3422 blk_finish_plug(&plug);
3423 mutex_unlock(&dcc->cmd_lock);
3424
3425 return trimmed;
3426 }
3427
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3428 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3429 {
3430 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3431 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3432 unsigned int start_segno, end_segno;
3433 block_t start_block, end_block;
3434 struct cp_control cpc;
3435 struct discard_policy dpolicy;
3436 unsigned long long trimmed = 0;
3437 int err = 0;
3438 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3439
3440 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3441 return -EINVAL;
3442
3443 if (end < MAIN_BLKADDR(sbi))
3444 goto out;
3445
3446 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3447 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3448 return -EFSCORRUPTED;
3449 }
3450
3451 /* start/end segment number in main_area */
3452 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3453 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3454 GET_SEGNO(sbi, end);
3455 if (need_align) {
3456 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3457 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3458 }
3459
3460 cpc.reason = CP_DISCARD;
3461 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3462 cpc.trim_start = start_segno;
3463 cpc.trim_end = end_segno;
3464
3465 if (sbi->discard_blks == 0)
3466 goto out;
3467
3468 f2fs_down_write(&sbi->gc_lock);
3469 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3470 err = f2fs_write_checkpoint(sbi, &cpc);
3471 f2fs_up_write(&sbi->gc_lock);
3472 if (err)
3473 goto out;
3474
3475 /*
3476 * We filed discard candidates, but actually we don't need to wait for
3477 * all of them, since they'll be issued in idle time along with runtime
3478 * discard option. User configuration looks like using runtime discard
3479 * or periodic fstrim instead of it.
3480 */
3481 if (f2fs_realtime_discard_enable(sbi))
3482 goto out;
3483
3484 start_block = START_BLOCK(sbi, start_segno);
3485 end_block = START_BLOCK(sbi, end_segno + 1);
3486
3487 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3488 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3489 start_block, end_block);
3490
3491 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3492 start_block, end_block);
3493 out:
3494 if (!err)
3495 range->len = F2FS_BLK_TO_BYTES(trimmed);
3496 return err;
3497 }
3498
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3499 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3500 {
3501 if (F2FS_OPTION(sbi).active_logs == 2)
3502 return CURSEG_HOT_DATA;
3503 else if (F2FS_OPTION(sbi).active_logs == 4)
3504 return CURSEG_COLD_DATA;
3505
3506 /* active_log == 6 */
3507 switch (hint) {
3508 case WRITE_LIFE_SHORT:
3509 return CURSEG_HOT_DATA;
3510 case WRITE_LIFE_EXTREME:
3511 return CURSEG_COLD_DATA;
3512 default:
3513 return CURSEG_WARM_DATA;
3514 }
3515 }
3516
3517 /*
3518 * This returns write hints for each segment type. This hints will be
3519 * passed down to block layer as below by default.
3520 *
3521 * User F2FS Block
3522 * ---- ---- -----
3523 * META WRITE_LIFE_NONE|REQ_META
3524 * HOT_NODE WRITE_LIFE_NONE
3525 * WARM_NODE WRITE_LIFE_MEDIUM
3526 * COLD_NODE WRITE_LIFE_LONG
3527 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3528 * extension list " "
3529 *
3530 * -- buffered io
3531 * COLD_DATA WRITE_LIFE_EXTREME
3532 * HOT_DATA WRITE_LIFE_SHORT
3533 * WARM_DATA WRITE_LIFE_NOT_SET
3534 *
3535 * -- direct io
3536 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3537 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3538 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3539 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3540 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3541 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3542 */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3543 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3544 enum page_type type, enum temp_type temp)
3545 {
3546 switch (type) {
3547 case DATA:
3548 switch (temp) {
3549 case WARM:
3550 return WRITE_LIFE_NOT_SET;
3551 case HOT:
3552 return WRITE_LIFE_SHORT;
3553 case COLD:
3554 return WRITE_LIFE_EXTREME;
3555 default:
3556 return WRITE_LIFE_NONE;
3557 }
3558 case NODE:
3559 switch (temp) {
3560 case WARM:
3561 return WRITE_LIFE_MEDIUM;
3562 case HOT:
3563 return WRITE_LIFE_NONE;
3564 case COLD:
3565 return WRITE_LIFE_LONG;
3566 default:
3567 return WRITE_LIFE_NONE;
3568 }
3569 case META:
3570 return WRITE_LIFE_NONE;
3571 default:
3572 return WRITE_LIFE_NONE;
3573 }
3574 }
3575
__get_segment_type_2(struct f2fs_io_info * fio)3576 static int __get_segment_type_2(struct f2fs_io_info *fio)
3577 {
3578 if (fio->type == DATA)
3579 return CURSEG_HOT_DATA;
3580 else
3581 return CURSEG_HOT_NODE;
3582 }
3583
__get_segment_type_4(struct f2fs_io_info * fio)3584 static int __get_segment_type_4(struct f2fs_io_info *fio)
3585 {
3586 if (fio->type == DATA) {
3587 struct inode *inode = fio->page->mapping->host;
3588
3589 if (S_ISDIR(inode->i_mode))
3590 return CURSEG_HOT_DATA;
3591 else
3592 return CURSEG_COLD_DATA;
3593 } else {
3594 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3595 return CURSEG_WARM_NODE;
3596 else
3597 return CURSEG_COLD_NODE;
3598 }
3599 }
3600
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3601 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3602 {
3603 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3604 struct extent_info ei = {};
3605
3606 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3607 if (!ei.age)
3608 return NO_CHECK_TYPE;
3609 if (ei.age <= sbi->hot_data_age_threshold)
3610 return CURSEG_HOT_DATA;
3611 if (ei.age <= sbi->warm_data_age_threshold)
3612 return CURSEG_WARM_DATA;
3613 return CURSEG_COLD_DATA;
3614 }
3615 return NO_CHECK_TYPE;
3616 }
3617
__get_segment_type_6(struct f2fs_io_info * fio)3618 static int __get_segment_type_6(struct f2fs_io_info *fio)
3619 {
3620 if (fio->type == DATA) {
3621 struct inode *inode = fio->page->mapping->host;
3622 int type;
3623
3624 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3625 return CURSEG_COLD_DATA_PINNED;
3626
3627 if (page_private_gcing(fio->page)) {
3628 if (fio->sbi->am.atgc_enabled &&
3629 (fio->io_type == FS_DATA_IO) &&
3630 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3631 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3632 !is_inode_flag_set(inode, FI_OPU_WRITE))
3633 return CURSEG_ALL_DATA_ATGC;
3634 else
3635 return CURSEG_COLD_DATA;
3636 }
3637 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3638 return CURSEG_COLD_DATA;
3639
3640 type = __get_age_segment_type(inode,
3641 page_folio(fio->page)->index);
3642 if (type != NO_CHECK_TYPE)
3643 return type;
3644
3645 if (file_is_hot(inode) ||
3646 is_inode_flag_set(inode, FI_HOT_DATA) ||
3647 f2fs_is_cow_file(inode))
3648 return CURSEG_HOT_DATA;
3649 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3650 inode->i_write_hint);
3651 } else {
3652 if (IS_DNODE(fio->page))
3653 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3654 CURSEG_HOT_NODE;
3655 return CURSEG_COLD_NODE;
3656 }
3657 }
3658
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3659 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3660 enum log_type type)
3661 {
3662 struct curseg_info *curseg = CURSEG_I(sbi, type);
3663 enum temp_type temp = COLD;
3664
3665 switch (curseg->seg_type) {
3666 case CURSEG_HOT_NODE:
3667 case CURSEG_HOT_DATA:
3668 temp = HOT;
3669 break;
3670 case CURSEG_WARM_NODE:
3671 case CURSEG_WARM_DATA:
3672 temp = WARM;
3673 break;
3674 case CURSEG_COLD_NODE:
3675 case CURSEG_COLD_DATA:
3676 temp = COLD;
3677 break;
3678 default:
3679 f2fs_bug_on(sbi, 1);
3680 }
3681
3682 return temp;
3683 }
3684
__get_segment_type(struct f2fs_io_info * fio)3685 static int __get_segment_type(struct f2fs_io_info *fio)
3686 {
3687 enum log_type type = CURSEG_HOT_DATA;
3688
3689 switch (F2FS_OPTION(fio->sbi).active_logs) {
3690 case 2:
3691 type = __get_segment_type_2(fio);
3692 break;
3693 case 4:
3694 type = __get_segment_type_4(fio);
3695 break;
3696 case 6:
3697 type = __get_segment_type_6(fio);
3698 break;
3699 default:
3700 f2fs_bug_on(fio->sbi, true);
3701 }
3702
3703 fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3704
3705 return type;
3706 }
3707
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3708 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3709 struct curseg_info *seg)
3710 {
3711 /* To allocate block chunks in different sizes, use random number */
3712 if (--seg->fragment_remained_chunk > 0)
3713 return;
3714
3715 seg->fragment_remained_chunk =
3716 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3717 seg->next_blkoff +=
3718 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3719 }
3720
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3721 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3722 block_t old_blkaddr, block_t *new_blkaddr,
3723 struct f2fs_summary *sum, int type,
3724 struct f2fs_io_info *fio)
3725 {
3726 struct sit_info *sit_i = SIT_I(sbi);
3727 struct curseg_info *curseg = CURSEG_I(sbi, type);
3728 unsigned long long old_mtime;
3729 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3730 struct seg_entry *se = NULL;
3731 bool segment_full = false;
3732 int ret = 0;
3733
3734 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3735
3736 mutex_lock(&curseg->curseg_mutex);
3737 down_write(&sit_i->sentry_lock);
3738
3739 if (curseg->segno == NULL_SEGNO) {
3740 ret = -ENOSPC;
3741 goto out_err;
3742 }
3743
3744 if (from_gc) {
3745 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3746 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3747 sanity_check_seg_type(sbi, se->type);
3748 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3749 }
3750 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3751
3752 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3753
3754 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3755
3756 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3757 if (curseg->alloc_type == SSR) {
3758 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3759 } else {
3760 curseg->next_blkoff++;
3761 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3762 f2fs_randomize_chunk(sbi, curseg);
3763 }
3764 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3765 segment_full = true;
3766 stat_inc_block_count(sbi, curseg);
3767
3768 if (from_gc) {
3769 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3770 } else {
3771 update_segment_mtime(sbi, old_blkaddr, 0);
3772 old_mtime = 0;
3773 }
3774 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3775
3776 /*
3777 * SIT information should be updated before segment allocation,
3778 * since SSR needs latest valid block information.
3779 */
3780 update_sit_entry(sbi, *new_blkaddr, 1);
3781 update_sit_entry(sbi, old_blkaddr, -1);
3782
3783 /*
3784 * If the current segment is full, flush it out and replace it with a
3785 * new segment.
3786 */
3787 if (segment_full) {
3788 if (type == CURSEG_COLD_DATA_PINNED &&
3789 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3790 write_sum_page(sbi, curseg->sum_blk,
3791 GET_SUM_BLOCK(sbi, curseg->segno));
3792 reset_curseg_fields(curseg);
3793 goto skip_new_segment;
3794 }
3795
3796 if (from_gc) {
3797 ret = get_atssr_segment(sbi, type, se->type,
3798 AT_SSR, se->mtime);
3799 } else {
3800 if (need_new_seg(sbi, type))
3801 ret = new_curseg(sbi, type, false);
3802 else
3803 ret = change_curseg(sbi, type);
3804 stat_inc_seg_type(sbi, curseg);
3805 }
3806
3807 if (ret)
3808 goto out_err;
3809 }
3810
3811 skip_new_segment:
3812 /*
3813 * segment dirty status should be updated after segment allocation,
3814 * so we just need to update status only one time after previous
3815 * segment being closed.
3816 */
3817 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3818 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3819
3820 if (IS_DATASEG(curseg->seg_type))
3821 atomic64_inc(&sbi->allocated_data_blocks);
3822
3823 up_write(&sit_i->sentry_lock);
3824
3825 if (page && IS_NODESEG(curseg->seg_type)) {
3826 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3827
3828 f2fs_inode_chksum_set(sbi, page);
3829 }
3830
3831 if (fio) {
3832 struct f2fs_bio_info *io;
3833
3834 INIT_LIST_HEAD(&fio->list);
3835 fio->in_list = 1;
3836 io = sbi->write_io[fio->type] + fio->temp;
3837 spin_lock(&io->io_lock);
3838 list_add_tail(&fio->list, &io->io_list);
3839 spin_unlock(&io->io_lock);
3840 }
3841
3842 mutex_unlock(&curseg->curseg_mutex);
3843 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3844 return 0;
3845
3846 out_err:
3847 *new_blkaddr = NULL_ADDR;
3848 up_write(&sit_i->sentry_lock);
3849 mutex_unlock(&curseg->curseg_mutex);
3850 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3851 return ret;
3852 }
3853
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3854 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3855 block_t blkaddr, unsigned int blkcnt)
3856 {
3857 if (!f2fs_is_multi_device(sbi))
3858 return;
3859
3860 while (1) {
3861 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3862 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3863
3864 /* update device state for fsync */
3865 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3866
3867 /* update device state for checkpoint */
3868 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3869 spin_lock(&sbi->dev_lock);
3870 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3871 spin_unlock(&sbi->dev_lock);
3872 }
3873
3874 if (blkcnt <= blks)
3875 break;
3876 blkcnt -= blks;
3877 blkaddr += blks;
3878 }
3879 }
3880
log_type_to_seg_type(enum log_type type)3881 static int log_type_to_seg_type(enum log_type type)
3882 {
3883 int seg_type = CURSEG_COLD_DATA;
3884
3885 switch (type) {
3886 case CURSEG_HOT_DATA:
3887 case CURSEG_WARM_DATA:
3888 case CURSEG_COLD_DATA:
3889 case CURSEG_HOT_NODE:
3890 case CURSEG_WARM_NODE:
3891 case CURSEG_COLD_NODE:
3892 seg_type = (int)type;
3893 break;
3894 case CURSEG_COLD_DATA_PINNED:
3895 case CURSEG_ALL_DATA_ATGC:
3896 seg_type = CURSEG_COLD_DATA;
3897 break;
3898 default:
3899 break;
3900 }
3901 return seg_type;
3902 }
3903
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3904 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3905 {
3906 struct folio *folio = page_folio(fio->page);
3907 enum log_type type = __get_segment_type(fio);
3908 int seg_type = log_type_to_seg_type(type);
3909 bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3910 seg_type == CURSEG_COLD_DATA);
3911
3912 if (keep_order)
3913 f2fs_down_read(&fio->sbi->io_order_lock);
3914
3915 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3916 &fio->new_blkaddr, sum, type, fio)) {
3917 if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3918 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3919 folio_end_writeback(folio);
3920 if (f2fs_in_warm_node_list(fio->sbi, folio))
3921 f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3922 goto out;
3923 }
3924 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3925 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3926
3927 /* writeout dirty page into bdev */
3928 f2fs_submit_page_write(fio);
3929
3930 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3931 out:
3932 if (keep_order)
3933 f2fs_up_read(&fio->sbi->io_order_lock);
3934 }
3935
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)3936 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3937 enum iostat_type io_type)
3938 {
3939 struct f2fs_io_info fio = {
3940 .sbi = sbi,
3941 .type = META,
3942 .temp = HOT,
3943 .op = REQ_OP_WRITE,
3944 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3945 .old_blkaddr = folio->index,
3946 .new_blkaddr = folio->index,
3947 .page = folio_page(folio, 0),
3948 .encrypted_page = NULL,
3949 .in_list = 0,
3950 };
3951
3952 if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3953 fio.op_flags &= ~REQ_META;
3954
3955 folio_start_writeback(folio);
3956 f2fs_submit_page_write(&fio);
3957
3958 stat_inc_meta_count(sbi, folio->index);
3959 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3960 }
3961
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3962 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3963 {
3964 struct f2fs_summary sum;
3965
3966 set_summary(&sum, nid, 0, 0);
3967 do_write_page(&sum, fio);
3968
3969 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3970 }
3971
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3972 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3973 struct f2fs_io_info *fio)
3974 {
3975 struct f2fs_sb_info *sbi = fio->sbi;
3976 struct f2fs_summary sum;
3977
3978 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3979 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3980 f2fs_update_age_extent_cache(dn);
3981 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3982 do_write_page(&sum, fio);
3983 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3984
3985 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3986 }
3987
f2fs_inplace_write_data(struct f2fs_io_info * fio)3988 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3989 {
3990 int err;
3991 struct f2fs_sb_info *sbi = fio->sbi;
3992 unsigned int segno;
3993
3994 fio->new_blkaddr = fio->old_blkaddr;
3995 /* i/o temperature is needed for passing down write hints */
3996 __get_segment_type(fio);
3997
3998 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3999
4000 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4001 set_sbi_flag(sbi, SBI_NEED_FSCK);
4002 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4003 __func__, segno);
4004 err = -EFSCORRUPTED;
4005 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4006 goto drop_bio;
4007 }
4008
4009 if (f2fs_cp_error(sbi)) {
4010 err = -EIO;
4011 goto drop_bio;
4012 }
4013
4014 if (fio->meta_gc)
4015 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4016
4017 stat_inc_inplace_blocks(fio->sbi);
4018
4019 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4020 err = f2fs_merge_page_bio(fio);
4021 else
4022 err = f2fs_submit_page_bio(fio);
4023 if (!err) {
4024 f2fs_update_device_state(fio->sbi, fio->ino,
4025 fio->new_blkaddr, 1);
4026 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
4027 fio->io_type, F2FS_BLKSIZE);
4028 }
4029
4030 return err;
4031 drop_bio:
4032 if (fio->bio && *(fio->bio)) {
4033 struct bio *bio = *(fio->bio);
4034
4035 bio->bi_status = BLK_STS_IOERR;
4036 bio_endio(bio);
4037 *(fio->bio) = NULL;
4038 }
4039 return err;
4040 }
4041
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4042 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4043 unsigned int segno)
4044 {
4045 int i;
4046
4047 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4048 if (CURSEG_I(sbi, i)->segno == segno)
4049 break;
4050 }
4051 return i;
4052 }
4053
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4054 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4055 block_t old_blkaddr, block_t new_blkaddr,
4056 bool recover_curseg, bool recover_newaddr,
4057 bool from_gc)
4058 {
4059 struct sit_info *sit_i = SIT_I(sbi);
4060 struct curseg_info *curseg;
4061 unsigned int segno, old_cursegno;
4062 struct seg_entry *se;
4063 int type;
4064 unsigned short old_blkoff;
4065 unsigned char old_alloc_type;
4066
4067 segno = GET_SEGNO(sbi, new_blkaddr);
4068 se = get_seg_entry(sbi, segno);
4069 type = se->type;
4070
4071 f2fs_down_write(&SM_I(sbi)->curseg_lock);
4072
4073 if (!recover_curseg) {
4074 /* for recovery flow */
4075 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4076 if (old_blkaddr == NULL_ADDR)
4077 type = CURSEG_COLD_DATA;
4078 else
4079 type = CURSEG_WARM_DATA;
4080 }
4081 } else {
4082 if (IS_CURSEG(sbi, segno)) {
4083 /* se->type is volatile as SSR allocation */
4084 type = __f2fs_get_curseg(sbi, segno);
4085 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4086 } else {
4087 type = CURSEG_WARM_DATA;
4088 }
4089 }
4090
4091 curseg = CURSEG_I(sbi, type);
4092 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4093
4094 mutex_lock(&curseg->curseg_mutex);
4095 down_write(&sit_i->sentry_lock);
4096
4097 old_cursegno = curseg->segno;
4098 old_blkoff = curseg->next_blkoff;
4099 old_alloc_type = curseg->alloc_type;
4100
4101 /* change the current segment */
4102 if (segno != curseg->segno) {
4103 curseg->next_segno = segno;
4104 if (change_curseg(sbi, type))
4105 goto out_unlock;
4106 }
4107
4108 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4109 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4110
4111 if (!recover_curseg || recover_newaddr) {
4112 if (!from_gc)
4113 update_segment_mtime(sbi, new_blkaddr, 0);
4114 update_sit_entry(sbi, new_blkaddr, 1);
4115 }
4116 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4117 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4118 if (!from_gc)
4119 update_segment_mtime(sbi, old_blkaddr, 0);
4120 update_sit_entry(sbi, old_blkaddr, -1);
4121 }
4122
4123 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4124 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4125
4126 locate_dirty_segment(sbi, old_cursegno);
4127
4128 if (recover_curseg) {
4129 if (old_cursegno != curseg->segno) {
4130 curseg->next_segno = old_cursegno;
4131 if (change_curseg(sbi, type))
4132 goto out_unlock;
4133 }
4134 curseg->next_blkoff = old_blkoff;
4135 curseg->alloc_type = old_alloc_type;
4136 }
4137
4138 out_unlock:
4139 up_write(&sit_i->sentry_lock);
4140 mutex_unlock(&curseg->curseg_mutex);
4141 f2fs_up_write(&SM_I(sbi)->curseg_lock);
4142 }
4143
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4144 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4145 block_t old_addr, block_t new_addr,
4146 unsigned char version, bool recover_curseg,
4147 bool recover_newaddr)
4148 {
4149 struct f2fs_summary sum;
4150
4151 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4152
4153 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4154 recover_curseg, recover_newaddr, false);
4155
4156 f2fs_update_data_blkaddr(dn, new_addr);
4157 }
4158
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4159 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4160 bool ordered, bool locked)
4161 {
4162 if (folio_test_writeback(folio)) {
4163 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4164
4165 /* submit cached LFS IO */
4166 f2fs_submit_merged_write_cond(sbi, NULL, &folio->page, 0, type);
4167 /* submit cached IPU IO */
4168 f2fs_submit_merged_ipu_write(sbi, NULL, &folio->page);
4169 if (ordered) {
4170 folio_wait_writeback(folio);
4171 f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4172 } else {
4173 folio_wait_stable(folio);
4174 }
4175 }
4176 }
4177
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4178 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4179 {
4180 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4181 struct page *cpage;
4182
4183 if (!f2fs_meta_inode_gc_required(inode))
4184 return;
4185
4186 if (!__is_valid_data_blkaddr(blkaddr))
4187 return;
4188
4189 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4190 if (cpage) {
4191 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4192 f2fs_put_page(cpage, 1);
4193 }
4194 }
4195
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4196 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4197 block_t len)
4198 {
4199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4200 block_t i;
4201
4202 if (!f2fs_meta_inode_gc_required(inode))
4203 return;
4204
4205 for (i = 0; i < len; i++)
4206 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4207
4208 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4209 }
4210
read_compacted_summaries(struct f2fs_sb_info * sbi)4211 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4212 {
4213 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4214 struct curseg_info *seg_i;
4215 unsigned char *kaddr;
4216 struct page *page;
4217 block_t start;
4218 int i, j, offset;
4219
4220 start = start_sum_block(sbi);
4221
4222 page = f2fs_get_meta_page(sbi, start++);
4223 if (IS_ERR(page))
4224 return PTR_ERR(page);
4225 kaddr = (unsigned char *)page_address(page);
4226
4227 /* Step 1: restore nat cache */
4228 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4229 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4230
4231 /* Step 2: restore sit cache */
4232 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4233 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4234 offset = 2 * SUM_JOURNAL_SIZE;
4235
4236 /* Step 3: restore summary entries */
4237 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4238 unsigned short blk_off;
4239 unsigned int segno;
4240
4241 seg_i = CURSEG_I(sbi, i);
4242 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4243 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4244 seg_i->next_segno = segno;
4245 reset_curseg(sbi, i, 0);
4246 seg_i->alloc_type = ckpt->alloc_type[i];
4247 seg_i->next_blkoff = blk_off;
4248
4249 if (seg_i->alloc_type == SSR)
4250 blk_off = BLKS_PER_SEG(sbi);
4251
4252 for (j = 0; j < blk_off; j++) {
4253 struct f2fs_summary *s;
4254
4255 s = (struct f2fs_summary *)(kaddr + offset);
4256 seg_i->sum_blk->entries[j] = *s;
4257 offset += SUMMARY_SIZE;
4258 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4259 SUM_FOOTER_SIZE)
4260 continue;
4261
4262 f2fs_put_page(page, 1);
4263 page = NULL;
4264
4265 page = f2fs_get_meta_page(sbi, start++);
4266 if (IS_ERR(page))
4267 return PTR_ERR(page);
4268 kaddr = (unsigned char *)page_address(page);
4269 offset = 0;
4270 }
4271 }
4272 f2fs_put_page(page, 1);
4273 return 0;
4274 }
4275
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4276 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4277 {
4278 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4279 struct f2fs_summary_block *sum;
4280 struct curseg_info *curseg;
4281 struct page *new;
4282 unsigned short blk_off;
4283 unsigned int segno = 0;
4284 block_t blk_addr = 0;
4285 int err = 0;
4286
4287 /* get segment number and block addr */
4288 if (IS_DATASEG(type)) {
4289 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4290 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4291 CURSEG_HOT_DATA]);
4292 if (__exist_node_summaries(sbi))
4293 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4294 else
4295 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4296 } else {
4297 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4298 CURSEG_HOT_NODE]);
4299 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4300 CURSEG_HOT_NODE]);
4301 if (__exist_node_summaries(sbi))
4302 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4303 type - CURSEG_HOT_NODE);
4304 else
4305 blk_addr = GET_SUM_BLOCK(sbi, segno);
4306 }
4307
4308 new = f2fs_get_meta_page(sbi, blk_addr);
4309 if (IS_ERR(new))
4310 return PTR_ERR(new);
4311 sum = (struct f2fs_summary_block *)page_address(new);
4312
4313 if (IS_NODESEG(type)) {
4314 if (__exist_node_summaries(sbi)) {
4315 struct f2fs_summary *ns = &sum->entries[0];
4316 int i;
4317
4318 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4319 ns->version = 0;
4320 ns->ofs_in_node = 0;
4321 }
4322 } else {
4323 err = f2fs_restore_node_summary(sbi, segno, sum);
4324 if (err)
4325 goto out;
4326 }
4327 }
4328
4329 /* set uncompleted segment to curseg */
4330 curseg = CURSEG_I(sbi, type);
4331 mutex_lock(&curseg->curseg_mutex);
4332
4333 /* update journal info */
4334 down_write(&curseg->journal_rwsem);
4335 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4336 up_write(&curseg->journal_rwsem);
4337
4338 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4339 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4340 curseg->next_segno = segno;
4341 reset_curseg(sbi, type, 0);
4342 curseg->alloc_type = ckpt->alloc_type[type];
4343 curseg->next_blkoff = blk_off;
4344 mutex_unlock(&curseg->curseg_mutex);
4345 out:
4346 f2fs_put_page(new, 1);
4347 return err;
4348 }
4349
restore_curseg_summaries(struct f2fs_sb_info * sbi)4350 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4351 {
4352 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4353 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4354 int type = CURSEG_HOT_DATA;
4355 int err;
4356
4357 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4358 int npages = f2fs_npages_for_summary_flush(sbi, true);
4359
4360 if (npages >= 2)
4361 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4362 META_CP, true);
4363
4364 /* restore for compacted data summary */
4365 err = read_compacted_summaries(sbi);
4366 if (err)
4367 return err;
4368 type = CURSEG_HOT_NODE;
4369 }
4370
4371 if (__exist_node_summaries(sbi))
4372 f2fs_ra_meta_pages(sbi,
4373 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4374 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4375
4376 for (; type <= CURSEG_COLD_NODE; type++) {
4377 err = read_normal_summaries(sbi, type);
4378 if (err)
4379 return err;
4380 }
4381
4382 /* sanity check for summary blocks */
4383 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4384 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4385 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4386 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4387 return -EINVAL;
4388 }
4389
4390 return 0;
4391 }
4392
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4393 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4394 {
4395 struct page *page;
4396 unsigned char *kaddr;
4397 struct f2fs_summary *summary;
4398 struct curseg_info *seg_i;
4399 int written_size = 0;
4400 int i, j;
4401
4402 page = f2fs_grab_meta_page(sbi, blkaddr++);
4403 kaddr = (unsigned char *)page_address(page);
4404 memset(kaddr, 0, PAGE_SIZE);
4405
4406 /* Step 1: write nat cache */
4407 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4408 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4409 written_size += SUM_JOURNAL_SIZE;
4410
4411 /* Step 2: write sit cache */
4412 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4413 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4414 written_size += SUM_JOURNAL_SIZE;
4415
4416 /* Step 3: write summary entries */
4417 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4418 seg_i = CURSEG_I(sbi, i);
4419 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4420 if (!page) {
4421 page = f2fs_grab_meta_page(sbi, blkaddr++);
4422 kaddr = (unsigned char *)page_address(page);
4423 memset(kaddr, 0, PAGE_SIZE);
4424 written_size = 0;
4425 }
4426 summary = (struct f2fs_summary *)(kaddr + written_size);
4427 *summary = seg_i->sum_blk->entries[j];
4428 written_size += SUMMARY_SIZE;
4429
4430 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4431 SUM_FOOTER_SIZE)
4432 continue;
4433
4434 set_page_dirty(page);
4435 f2fs_put_page(page, 1);
4436 page = NULL;
4437 }
4438 }
4439 if (page) {
4440 set_page_dirty(page);
4441 f2fs_put_page(page, 1);
4442 }
4443 }
4444
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4445 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4446 block_t blkaddr, int type)
4447 {
4448 int i, end;
4449
4450 if (IS_DATASEG(type))
4451 end = type + NR_CURSEG_DATA_TYPE;
4452 else
4453 end = type + NR_CURSEG_NODE_TYPE;
4454
4455 for (i = type; i < end; i++)
4456 write_current_sum_page(sbi, i, blkaddr + (i - type));
4457 }
4458
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4459 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4460 {
4461 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4462 write_compacted_summaries(sbi, start_blk);
4463 else
4464 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4465 }
4466
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4467 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4468 {
4469 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4470 }
4471
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4472 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4473 unsigned int val, int alloc)
4474 {
4475 int i;
4476
4477 if (type == NAT_JOURNAL) {
4478 for (i = 0; i < nats_in_cursum(journal); i++) {
4479 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4480 return i;
4481 }
4482 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4483 return update_nats_in_cursum(journal, 1);
4484 } else if (type == SIT_JOURNAL) {
4485 for (i = 0; i < sits_in_cursum(journal); i++)
4486 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4487 return i;
4488 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4489 return update_sits_in_cursum(journal, 1);
4490 }
4491 return -1;
4492 }
4493
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4494 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4495 unsigned int segno)
4496 {
4497 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4498 }
4499
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4500 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4501 unsigned int start)
4502 {
4503 struct sit_info *sit_i = SIT_I(sbi);
4504 struct page *page;
4505 pgoff_t src_off, dst_off;
4506
4507 src_off = current_sit_addr(sbi, start);
4508 dst_off = next_sit_addr(sbi, src_off);
4509
4510 page = f2fs_grab_meta_page(sbi, dst_off);
4511 seg_info_to_sit_page(sbi, page, start);
4512
4513 set_page_dirty(page);
4514 set_to_next_sit(sit_i, start);
4515
4516 return page;
4517 }
4518
grab_sit_entry_set(void)4519 static struct sit_entry_set *grab_sit_entry_set(void)
4520 {
4521 struct sit_entry_set *ses =
4522 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4523 GFP_NOFS, true, NULL);
4524
4525 ses->entry_cnt = 0;
4526 INIT_LIST_HEAD(&ses->set_list);
4527 return ses;
4528 }
4529
release_sit_entry_set(struct sit_entry_set * ses)4530 static void release_sit_entry_set(struct sit_entry_set *ses)
4531 {
4532 list_del(&ses->set_list);
4533 kmem_cache_free(sit_entry_set_slab, ses);
4534 }
4535
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4536 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4537 struct list_head *head)
4538 {
4539 struct sit_entry_set *next = ses;
4540
4541 if (list_is_last(&ses->set_list, head))
4542 return;
4543
4544 list_for_each_entry_continue(next, head, set_list)
4545 if (ses->entry_cnt <= next->entry_cnt) {
4546 list_move_tail(&ses->set_list, &next->set_list);
4547 return;
4548 }
4549
4550 list_move_tail(&ses->set_list, head);
4551 }
4552
add_sit_entry(unsigned int segno,struct list_head * head)4553 static void add_sit_entry(unsigned int segno, struct list_head *head)
4554 {
4555 struct sit_entry_set *ses;
4556 unsigned int start_segno = START_SEGNO(segno);
4557
4558 list_for_each_entry(ses, head, set_list) {
4559 if (ses->start_segno == start_segno) {
4560 ses->entry_cnt++;
4561 adjust_sit_entry_set(ses, head);
4562 return;
4563 }
4564 }
4565
4566 ses = grab_sit_entry_set();
4567
4568 ses->start_segno = start_segno;
4569 ses->entry_cnt++;
4570 list_add(&ses->set_list, head);
4571 }
4572
add_sits_in_set(struct f2fs_sb_info * sbi)4573 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4574 {
4575 struct f2fs_sm_info *sm_info = SM_I(sbi);
4576 struct list_head *set_list = &sm_info->sit_entry_set;
4577 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4578 unsigned int segno;
4579
4580 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4581 add_sit_entry(segno, set_list);
4582 }
4583
remove_sits_in_journal(struct f2fs_sb_info * sbi)4584 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4585 {
4586 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4587 struct f2fs_journal *journal = curseg->journal;
4588 int i;
4589
4590 down_write(&curseg->journal_rwsem);
4591 for (i = 0; i < sits_in_cursum(journal); i++) {
4592 unsigned int segno;
4593 bool dirtied;
4594
4595 segno = le32_to_cpu(segno_in_journal(journal, i));
4596 dirtied = __mark_sit_entry_dirty(sbi, segno);
4597
4598 if (!dirtied)
4599 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4600 }
4601 update_sits_in_cursum(journal, -i);
4602 up_write(&curseg->journal_rwsem);
4603 }
4604
4605 /*
4606 * CP calls this function, which flushes SIT entries including sit_journal,
4607 * and moves prefree segs to free segs.
4608 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4609 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4610 {
4611 struct sit_info *sit_i = SIT_I(sbi);
4612 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4613 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4614 struct f2fs_journal *journal = curseg->journal;
4615 struct sit_entry_set *ses, *tmp;
4616 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4617 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4618 struct seg_entry *se;
4619
4620 down_write(&sit_i->sentry_lock);
4621
4622 if (!sit_i->dirty_sentries)
4623 goto out;
4624
4625 /*
4626 * add and account sit entries of dirty bitmap in sit entry
4627 * set temporarily
4628 */
4629 add_sits_in_set(sbi);
4630
4631 /*
4632 * if there are no enough space in journal to store dirty sit
4633 * entries, remove all entries from journal and add and account
4634 * them in sit entry set.
4635 */
4636 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4637 !to_journal)
4638 remove_sits_in_journal(sbi);
4639
4640 /*
4641 * there are two steps to flush sit entries:
4642 * #1, flush sit entries to journal in current cold data summary block.
4643 * #2, flush sit entries to sit page.
4644 */
4645 list_for_each_entry_safe(ses, tmp, head, set_list) {
4646 struct page *page = NULL;
4647 struct f2fs_sit_block *raw_sit = NULL;
4648 unsigned int start_segno = ses->start_segno;
4649 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4650 (unsigned long)MAIN_SEGS(sbi));
4651 unsigned int segno = start_segno;
4652
4653 if (to_journal &&
4654 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4655 to_journal = false;
4656
4657 if (to_journal) {
4658 down_write(&curseg->journal_rwsem);
4659 } else {
4660 page = get_next_sit_page(sbi, start_segno);
4661 raw_sit = page_address(page);
4662 }
4663
4664 /* flush dirty sit entries in region of current sit set */
4665 for_each_set_bit_from(segno, bitmap, end) {
4666 int offset, sit_offset;
4667
4668 se = get_seg_entry(sbi, segno);
4669 #ifdef CONFIG_F2FS_CHECK_FS
4670 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4671 SIT_VBLOCK_MAP_SIZE))
4672 f2fs_bug_on(sbi, 1);
4673 #endif
4674
4675 /* add discard candidates */
4676 if (!(cpc->reason & CP_DISCARD)) {
4677 cpc->trim_start = segno;
4678 add_discard_addrs(sbi, cpc, false);
4679 }
4680
4681 if (to_journal) {
4682 offset = f2fs_lookup_journal_in_cursum(journal,
4683 SIT_JOURNAL, segno, 1);
4684 f2fs_bug_on(sbi, offset < 0);
4685 segno_in_journal(journal, offset) =
4686 cpu_to_le32(segno);
4687 seg_info_to_raw_sit(se,
4688 &sit_in_journal(journal, offset));
4689 check_block_count(sbi, segno,
4690 &sit_in_journal(journal, offset));
4691 } else {
4692 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4693 seg_info_to_raw_sit(se,
4694 &raw_sit->entries[sit_offset]);
4695 check_block_count(sbi, segno,
4696 &raw_sit->entries[sit_offset]);
4697 }
4698
4699 __clear_bit(segno, bitmap);
4700 sit_i->dirty_sentries--;
4701 ses->entry_cnt--;
4702 }
4703
4704 if (to_journal)
4705 up_write(&curseg->journal_rwsem);
4706 else
4707 f2fs_put_page(page, 1);
4708
4709 f2fs_bug_on(sbi, ses->entry_cnt);
4710 release_sit_entry_set(ses);
4711 }
4712
4713 f2fs_bug_on(sbi, !list_empty(head));
4714 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4715 out:
4716 if (cpc->reason & CP_DISCARD) {
4717 __u64 trim_start = cpc->trim_start;
4718
4719 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4720 add_discard_addrs(sbi, cpc, false);
4721
4722 cpc->trim_start = trim_start;
4723 }
4724 up_write(&sit_i->sentry_lock);
4725
4726 set_prefree_as_free_segments(sbi);
4727 }
4728
build_sit_info(struct f2fs_sb_info * sbi)4729 static int build_sit_info(struct f2fs_sb_info *sbi)
4730 {
4731 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4732 struct sit_info *sit_i;
4733 unsigned int sit_segs, start;
4734 char *src_bitmap, *bitmap;
4735 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4736 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4737
4738 /* allocate memory for SIT information */
4739 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4740 if (!sit_i)
4741 return -ENOMEM;
4742
4743 SM_I(sbi)->sit_info = sit_i;
4744
4745 sit_i->sentries =
4746 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4747 MAIN_SEGS(sbi)),
4748 GFP_KERNEL);
4749 if (!sit_i->sentries)
4750 return -ENOMEM;
4751
4752 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4753 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4754 GFP_KERNEL);
4755 if (!sit_i->dirty_sentries_bitmap)
4756 return -ENOMEM;
4757
4758 #ifdef CONFIG_F2FS_CHECK_FS
4759 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4760 #else
4761 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4762 #endif
4763 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4764 if (!sit_i->bitmap)
4765 return -ENOMEM;
4766
4767 bitmap = sit_i->bitmap;
4768
4769 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4770 sit_i->sentries[start].cur_valid_map = bitmap;
4771 bitmap += SIT_VBLOCK_MAP_SIZE;
4772
4773 sit_i->sentries[start].ckpt_valid_map = bitmap;
4774 bitmap += SIT_VBLOCK_MAP_SIZE;
4775
4776 #ifdef CONFIG_F2FS_CHECK_FS
4777 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4778 bitmap += SIT_VBLOCK_MAP_SIZE;
4779 #endif
4780
4781 if (discard_map) {
4782 sit_i->sentries[start].discard_map = bitmap;
4783 bitmap += SIT_VBLOCK_MAP_SIZE;
4784 }
4785 }
4786
4787 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4788 if (!sit_i->tmp_map)
4789 return -ENOMEM;
4790
4791 if (__is_large_section(sbi)) {
4792 sit_i->sec_entries =
4793 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4794 MAIN_SECS(sbi)),
4795 GFP_KERNEL);
4796 if (!sit_i->sec_entries)
4797 return -ENOMEM;
4798 }
4799
4800 /* get information related with SIT */
4801 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4802
4803 /* setup SIT bitmap from ckeckpoint pack */
4804 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4805 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4806
4807 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4808 if (!sit_i->sit_bitmap)
4809 return -ENOMEM;
4810
4811 #ifdef CONFIG_F2FS_CHECK_FS
4812 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4813 sit_bitmap_size, GFP_KERNEL);
4814 if (!sit_i->sit_bitmap_mir)
4815 return -ENOMEM;
4816
4817 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4818 main_bitmap_size, GFP_KERNEL);
4819 if (!sit_i->invalid_segmap)
4820 return -ENOMEM;
4821 #endif
4822
4823 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4824 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4825 sit_i->written_valid_blocks = 0;
4826 sit_i->bitmap_size = sit_bitmap_size;
4827 sit_i->dirty_sentries = 0;
4828 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4829 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4830 sit_i->mounted_time = ktime_get_boottime_seconds();
4831 init_rwsem(&sit_i->sentry_lock);
4832 return 0;
4833 }
4834
build_free_segmap(struct f2fs_sb_info * sbi)4835 static int build_free_segmap(struct f2fs_sb_info *sbi)
4836 {
4837 struct free_segmap_info *free_i;
4838 unsigned int bitmap_size, sec_bitmap_size;
4839
4840 /* allocate memory for free segmap information */
4841 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4842 if (!free_i)
4843 return -ENOMEM;
4844
4845 SM_I(sbi)->free_info = free_i;
4846
4847 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4848 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4849 if (!free_i->free_segmap)
4850 return -ENOMEM;
4851
4852 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4853 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4854 if (!free_i->free_secmap)
4855 return -ENOMEM;
4856
4857 /* set all segments as dirty temporarily */
4858 memset(free_i->free_segmap, 0xff, bitmap_size);
4859 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4860
4861 /* init free segmap information */
4862 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4863 free_i->free_segments = 0;
4864 free_i->free_sections = 0;
4865 spin_lock_init(&free_i->segmap_lock);
4866 return 0;
4867 }
4868
build_curseg(struct f2fs_sb_info * sbi)4869 static int build_curseg(struct f2fs_sb_info *sbi)
4870 {
4871 struct curseg_info *array;
4872 int i;
4873
4874 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4875 sizeof(*array)), GFP_KERNEL);
4876 if (!array)
4877 return -ENOMEM;
4878
4879 SM_I(sbi)->curseg_array = array;
4880
4881 for (i = 0; i < NO_CHECK_TYPE; i++) {
4882 mutex_init(&array[i].curseg_mutex);
4883 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4884 if (!array[i].sum_blk)
4885 return -ENOMEM;
4886 init_rwsem(&array[i].journal_rwsem);
4887 array[i].journal = f2fs_kzalloc(sbi,
4888 sizeof(struct f2fs_journal), GFP_KERNEL);
4889 if (!array[i].journal)
4890 return -ENOMEM;
4891 array[i].seg_type = log_type_to_seg_type(i);
4892 reset_curseg_fields(&array[i]);
4893 }
4894 return restore_curseg_summaries(sbi);
4895 }
4896
build_sit_entries(struct f2fs_sb_info * sbi)4897 static int build_sit_entries(struct f2fs_sb_info *sbi)
4898 {
4899 struct sit_info *sit_i = SIT_I(sbi);
4900 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4901 struct f2fs_journal *journal = curseg->journal;
4902 struct seg_entry *se;
4903 struct f2fs_sit_entry sit;
4904 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4905 unsigned int i, start, end;
4906 unsigned int readed, start_blk = 0;
4907 int err = 0;
4908 block_t sit_valid_blocks[2] = {0, 0};
4909
4910 do {
4911 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4912 META_SIT, true);
4913
4914 start = start_blk * sit_i->sents_per_block;
4915 end = (start_blk + readed) * sit_i->sents_per_block;
4916
4917 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4918 struct f2fs_sit_block *sit_blk;
4919 struct page *page;
4920
4921 se = &sit_i->sentries[start];
4922 page = get_current_sit_page(sbi, start);
4923 if (IS_ERR(page))
4924 return PTR_ERR(page);
4925 sit_blk = (struct f2fs_sit_block *)page_address(page);
4926 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4927 f2fs_put_page(page, 1);
4928
4929 err = check_block_count(sbi, start, &sit);
4930 if (err)
4931 return err;
4932 seg_info_from_raw_sit(se, &sit);
4933
4934 if (se->type >= NR_PERSISTENT_LOG) {
4935 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4936 se->type, start);
4937 f2fs_handle_error(sbi,
4938 ERROR_INCONSISTENT_SUM_TYPE);
4939 return -EFSCORRUPTED;
4940 }
4941
4942 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4943
4944 if (!f2fs_block_unit_discard(sbi))
4945 goto init_discard_map_done;
4946
4947 /* build discard map only one time */
4948 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4949 memset(se->discard_map, 0xff,
4950 SIT_VBLOCK_MAP_SIZE);
4951 goto init_discard_map_done;
4952 }
4953 memcpy(se->discard_map, se->cur_valid_map,
4954 SIT_VBLOCK_MAP_SIZE);
4955 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4956 se->valid_blocks;
4957 init_discard_map_done:
4958 if (__is_large_section(sbi))
4959 get_sec_entry(sbi, start)->valid_blocks +=
4960 se->valid_blocks;
4961 }
4962 start_blk += readed;
4963 } while (start_blk < sit_blk_cnt);
4964
4965 down_read(&curseg->journal_rwsem);
4966 for (i = 0; i < sits_in_cursum(journal); i++) {
4967 unsigned int old_valid_blocks;
4968
4969 start = le32_to_cpu(segno_in_journal(journal, i));
4970 if (start >= MAIN_SEGS(sbi)) {
4971 f2fs_err(sbi, "Wrong journal entry on segno %u",
4972 start);
4973 err = -EFSCORRUPTED;
4974 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4975 break;
4976 }
4977
4978 se = &sit_i->sentries[start];
4979 sit = sit_in_journal(journal, i);
4980
4981 old_valid_blocks = se->valid_blocks;
4982
4983 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4984
4985 err = check_block_count(sbi, start, &sit);
4986 if (err)
4987 break;
4988 seg_info_from_raw_sit(se, &sit);
4989
4990 if (se->type >= NR_PERSISTENT_LOG) {
4991 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4992 se->type, start);
4993 err = -EFSCORRUPTED;
4994 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4995 break;
4996 }
4997
4998 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4999
5000 if (f2fs_block_unit_discard(sbi)) {
5001 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5002 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5003 } else {
5004 memcpy(se->discard_map, se->cur_valid_map,
5005 SIT_VBLOCK_MAP_SIZE);
5006 sbi->discard_blks += old_valid_blocks;
5007 sbi->discard_blks -= se->valid_blocks;
5008 }
5009 }
5010
5011 if (__is_large_section(sbi)) {
5012 get_sec_entry(sbi, start)->valid_blocks +=
5013 se->valid_blocks;
5014 get_sec_entry(sbi, start)->valid_blocks -=
5015 old_valid_blocks;
5016 }
5017 }
5018 up_read(&curseg->journal_rwsem);
5019
5020 if (err)
5021 return err;
5022
5023 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5024 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5025 sit_valid_blocks[NODE], valid_node_count(sbi));
5026 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5027 return -EFSCORRUPTED;
5028 }
5029
5030 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5031 valid_user_blocks(sbi)) {
5032 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5033 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5034 valid_user_blocks(sbi));
5035 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5036 return -EFSCORRUPTED;
5037 }
5038
5039 return 0;
5040 }
5041
init_free_segmap(struct f2fs_sb_info * sbi)5042 static void init_free_segmap(struct f2fs_sb_info *sbi)
5043 {
5044 unsigned int start;
5045 int type;
5046 struct seg_entry *sentry;
5047
5048 for (start = 0; start < MAIN_SEGS(sbi); start++) {
5049 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5050 continue;
5051 sentry = get_seg_entry(sbi, start);
5052 if (!sentry->valid_blocks)
5053 __set_free(sbi, start);
5054 else
5055 SIT_I(sbi)->written_valid_blocks +=
5056 sentry->valid_blocks;
5057 }
5058
5059 /* set use the current segments */
5060 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5061 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5062
5063 __set_test_and_inuse(sbi, curseg_t->segno);
5064 }
5065 }
5066
init_dirty_segmap(struct f2fs_sb_info * sbi)5067 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5068 {
5069 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5070 struct free_segmap_info *free_i = FREE_I(sbi);
5071 unsigned int segno = 0, offset = 0, secno;
5072 block_t valid_blocks, usable_blks_in_seg;
5073
5074 while (1) {
5075 /* find dirty segment based on free segmap */
5076 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5077 if (segno >= MAIN_SEGS(sbi))
5078 break;
5079 offset = segno + 1;
5080 valid_blocks = get_valid_blocks(sbi, segno, false);
5081 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5082 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5083 continue;
5084 if (valid_blocks > usable_blks_in_seg) {
5085 f2fs_bug_on(sbi, 1);
5086 continue;
5087 }
5088 mutex_lock(&dirty_i->seglist_lock);
5089 __locate_dirty_segment(sbi, segno, DIRTY);
5090 mutex_unlock(&dirty_i->seglist_lock);
5091 }
5092
5093 if (!__is_large_section(sbi))
5094 return;
5095
5096 mutex_lock(&dirty_i->seglist_lock);
5097 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5098 valid_blocks = get_valid_blocks(sbi, segno, true);
5099 secno = GET_SEC_FROM_SEG(sbi, segno);
5100
5101 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5102 continue;
5103 if (IS_CURSEC(sbi, secno))
5104 continue;
5105 set_bit(secno, dirty_i->dirty_secmap);
5106 }
5107 mutex_unlock(&dirty_i->seglist_lock);
5108 }
5109
init_victim_secmap(struct f2fs_sb_info * sbi)5110 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5111 {
5112 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5113 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5114
5115 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5116 if (!dirty_i->victim_secmap)
5117 return -ENOMEM;
5118
5119 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5120 if (!dirty_i->pinned_secmap)
5121 return -ENOMEM;
5122
5123 dirty_i->pinned_secmap_cnt = 0;
5124 dirty_i->enable_pin_section = true;
5125 return 0;
5126 }
5127
build_dirty_segmap(struct f2fs_sb_info * sbi)5128 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5129 {
5130 struct dirty_seglist_info *dirty_i;
5131 unsigned int bitmap_size, i;
5132
5133 /* allocate memory for dirty segments list information */
5134 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5135 GFP_KERNEL);
5136 if (!dirty_i)
5137 return -ENOMEM;
5138
5139 SM_I(sbi)->dirty_info = dirty_i;
5140 mutex_init(&dirty_i->seglist_lock);
5141
5142 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5143
5144 for (i = 0; i < NR_DIRTY_TYPE; i++) {
5145 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5146 GFP_KERNEL);
5147 if (!dirty_i->dirty_segmap[i])
5148 return -ENOMEM;
5149 }
5150
5151 if (__is_large_section(sbi)) {
5152 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5153 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5154 bitmap_size, GFP_KERNEL);
5155 if (!dirty_i->dirty_secmap)
5156 return -ENOMEM;
5157 }
5158
5159 init_dirty_segmap(sbi);
5160 return init_victim_secmap(sbi);
5161 }
5162
sanity_check_curseg(struct f2fs_sb_info * sbi)5163 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5164 {
5165 int i;
5166
5167 /*
5168 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5169 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5170 */
5171 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5172 struct curseg_info *curseg = CURSEG_I(sbi, i);
5173 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5174 unsigned int blkofs = curseg->next_blkoff;
5175
5176 if (f2fs_sb_has_readonly(sbi) &&
5177 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5178 continue;
5179
5180 sanity_check_seg_type(sbi, curseg->seg_type);
5181
5182 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5183 f2fs_err(sbi,
5184 "Current segment has invalid alloc_type:%d",
5185 curseg->alloc_type);
5186 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5187 return -EFSCORRUPTED;
5188 }
5189
5190 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5191 goto out;
5192
5193 if (curseg->alloc_type == SSR)
5194 continue;
5195
5196 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5197 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5198 continue;
5199 out:
5200 f2fs_err(sbi,
5201 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5202 i, curseg->segno, curseg->alloc_type,
5203 curseg->next_blkoff, blkofs);
5204 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5205 return -EFSCORRUPTED;
5206 }
5207 }
5208 return 0;
5209 }
5210
5211 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5212 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5213 struct f2fs_dev_info *fdev,
5214 struct blk_zone *zone)
5215 {
5216 unsigned int zone_segno;
5217 block_t zone_block, valid_block_cnt;
5218 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5219 int ret;
5220 unsigned int nofs_flags;
5221
5222 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5223 return 0;
5224
5225 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5226 zone_segno = GET_SEGNO(sbi, zone_block);
5227
5228 /*
5229 * Skip check of zones cursegs point to, since
5230 * fix_curseg_write_pointer() checks them.
5231 */
5232 if (zone_segno >= MAIN_SEGS(sbi))
5233 return 0;
5234
5235 /*
5236 * Get # of valid block of the zone.
5237 */
5238 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5239 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5240 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5241 zone_segno, valid_block_cnt,
5242 blk_zone_cond_str(zone->cond));
5243 return 0;
5244 }
5245
5246 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5247 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5248 return 0;
5249
5250 if (!valid_block_cnt) {
5251 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5252 "pointer. Reset the write pointer: cond[%s]",
5253 blk_zone_cond_str(zone->cond));
5254 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5255 zone->len >> log_sectors_per_block);
5256 if (ret)
5257 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5258 fdev->path, ret);
5259 return ret;
5260 }
5261
5262 /*
5263 * If there are valid blocks and the write pointer doesn't match
5264 * with them, we need to report the inconsistency and fill
5265 * the zone till the end to close the zone. This inconsistency
5266 * does not cause write error because the zone will not be
5267 * selected for write operation until it get discarded.
5268 */
5269 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5270 "pointer: valid block[0x%x,0x%x] cond[%s]",
5271 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5272
5273 nofs_flags = memalloc_nofs_save();
5274 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5275 zone->start, zone->len);
5276 memalloc_nofs_restore(nofs_flags);
5277 if (ret == -EOPNOTSUPP) {
5278 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5279 zone->len - (zone->wp - zone->start),
5280 GFP_NOFS, 0);
5281 if (ret)
5282 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5283 fdev->path, ret);
5284 } else if (ret) {
5285 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5286 fdev->path, ret);
5287 }
5288
5289 return ret;
5290 }
5291
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5292 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5293 block_t zone_blkaddr)
5294 {
5295 int i;
5296
5297 for (i = 0; i < sbi->s_ndevs; i++) {
5298 if (!bdev_is_zoned(FDEV(i).bdev))
5299 continue;
5300 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5301 zone_blkaddr <= FDEV(i).end_blk))
5302 return &FDEV(i);
5303 }
5304
5305 return NULL;
5306 }
5307
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5308 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5309 void *data)
5310 {
5311 memcpy(data, zone, sizeof(struct blk_zone));
5312 return 0;
5313 }
5314
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5315 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5316 {
5317 struct curseg_info *cs = CURSEG_I(sbi, type);
5318 struct f2fs_dev_info *zbd;
5319 struct blk_zone zone;
5320 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5321 block_t cs_zone_block, wp_block;
5322 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5323 sector_t zone_sector;
5324 int err;
5325
5326 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5327 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5328
5329 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5330 if (!zbd)
5331 return 0;
5332
5333 /* report zone for the sector the curseg points to */
5334 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5335 << log_sectors_per_block;
5336 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5337 report_one_zone_cb, &zone);
5338 if (err != 1) {
5339 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5340 zbd->path, err);
5341 return err;
5342 }
5343
5344 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5345 return 0;
5346
5347 /*
5348 * When safely unmounted in the previous mount, we could use current
5349 * segments. Otherwise, allocate new sections.
5350 */
5351 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5352 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5353 wp_segno = GET_SEGNO(sbi, wp_block);
5354 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5355 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5356
5357 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5358 wp_sector_off == 0)
5359 return 0;
5360
5361 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5362 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5363 cs->next_blkoff, wp_segno, wp_blkoff);
5364 }
5365
5366 /* Allocate a new section if it's not new. */
5367 if (cs->next_blkoff ||
5368 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5369 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5370
5371 f2fs_allocate_new_section(sbi, type, true);
5372 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5373 "[0x%x,0x%x] -> [0x%x,0x%x]",
5374 type, old_segno, old_blkoff,
5375 cs->segno, cs->next_blkoff);
5376 }
5377
5378 /* check consistency of the zone curseg pointed to */
5379 if (check_zone_write_pointer(sbi, zbd, &zone))
5380 return -EIO;
5381
5382 /* check newly assigned zone */
5383 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5384 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5385
5386 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5387 if (!zbd)
5388 return 0;
5389
5390 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5391 << log_sectors_per_block;
5392 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5393 report_one_zone_cb, &zone);
5394 if (err != 1) {
5395 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5396 zbd->path, err);
5397 return err;
5398 }
5399
5400 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5401 return 0;
5402
5403 if (zone.wp != zone.start) {
5404 f2fs_notice(sbi,
5405 "New zone for curseg[%d] is not yet discarded. "
5406 "Reset the zone: curseg[0x%x,0x%x]",
5407 type, cs->segno, cs->next_blkoff);
5408 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5409 zone.len >> log_sectors_per_block);
5410 if (err) {
5411 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5412 zbd->path, err);
5413 return err;
5414 }
5415 }
5416
5417 return 0;
5418 }
5419
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5420 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5421 {
5422 int i, ret;
5423
5424 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5425 ret = do_fix_curseg_write_pointer(sbi, i);
5426 if (ret)
5427 return ret;
5428 }
5429
5430 return 0;
5431 }
5432
5433 struct check_zone_write_pointer_args {
5434 struct f2fs_sb_info *sbi;
5435 struct f2fs_dev_info *fdev;
5436 };
5437
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5438 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5439 void *data)
5440 {
5441 struct check_zone_write_pointer_args *args;
5442
5443 args = (struct check_zone_write_pointer_args *)data;
5444
5445 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5446 }
5447
check_write_pointer(struct f2fs_sb_info * sbi)5448 static int check_write_pointer(struct f2fs_sb_info *sbi)
5449 {
5450 int i, ret;
5451 struct check_zone_write_pointer_args args;
5452
5453 for (i = 0; i < sbi->s_ndevs; i++) {
5454 if (!bdev_is_zoned(FDEV(i).bdev))
5455 continue;
5456
5457 args.sbi = sbi;
5458 args.fdev = &FDEV(i);
5459 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5460 check_zone_write_pointer_cb, &args);
5461 if (ret < 0)
5462 return ret;
5463 }
5464
5465 return 0;
5466 }
5467
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5468 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5469 {
5470 int ret;
5471
5472 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5473 f2fs_hw_is_readonly(sbi))
5474 return 0;
5475
5476 f2fs_notice(sbi, "Checking entire write pointers");
5477 ret = fix_curseg_write_pointer(sbi);
5478 if (!ret)
5479 ret = check_write_pointer(sbi);
5480 return ret;
5481 }
5482
5483 /*
5484 * Return the number of usable blocks in a segment. The number of blocks
5485 * returned is always equal to the number of blocks in a segment for
5486 * segments fully contained within a sequential zone capacity or a
5487 * conventional zone. For segments partially contained in a sequential
5488 * zone capacity, the number of usable blocks up to the zone capacity
5489 * is returned. 0 is returned in all other cases.
5490 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5491 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5492 struct f2fs_sb_info *sbi, unsigned int segno)
5493 {
5494 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5495 unsigned int secno;
5496
5497 if (!sbi->unusable_blocks_per_sec)
5498 return BLKS_PER_SEG(sbi);
5499
5500 secno = GET_SEC_FROM_SEG(sbi, segno);
5501 seg_start = START_BLOCK(sbi, segno);
5502 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5503 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5504
5505 /*
5506 * If segment starts before zone capacity and spans beyond
5507 * zone capacity, then usable blocks are from seg start to
5508 * zone capacity. If the segment starts after the zone capacity,
5509 * then there are no usable blocks.
5510 */
5511 if (seg_start >= sec_cap_blkaddr)
5512 return 0;
5513 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5514 return sec_cap_blkaddr - seg_start;
5515
5516 return BLKS_PER_SEG(sbi);
5517 }
5518 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5519 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5520 {
5521 return 0;
5522 }
5523
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5524 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5525 unsigned int segno)
5526 {
5527 return 0;
5528 }
5529
5530 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5531 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5532 unsigned int segno)
5533 {
5534 if (f2fs_sb_has_blkzoned(sbi))
5535 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5536
5537 return BLKS_PER_SEG(sbi);
5538 }
5539
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5540 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5541 {
5542 if (f2fs_sb_has_blkzoned(sbi))
5543 return CAP_SEGS_PER_SEC(sbi);
5544
5545 return SEGS_PER_SEC(sbi);
5546 }
5547
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5548 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5549 unsigned int segno)
5550 {
5551 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5552 unsigned int secno = 0, start = 0;
5553 unsigned int total_valid_blocks = 0;
5554 unsigned long long mtime = 0;
5555 unsigned int i = 0;
5556
5557 secno = GET_SEC_FROM_SEG(sbi, segno);
5558 start = GET_SEG_FROM_SEC(sbi, secno);
5559
5560 if (!__is_large_section(sbi)) {
5561 mtime = get_seg_entry(sbi, start + i)->mtime;
5562 goto out;
5563 }
5564
5565 for (i = 0; i < usable_segs_per_sec; i++) {
5566 /* for large section, only check the mtime of valid segments */
5567 struct seg_entry *se = get_seg_entry(sbi, start+i);
5568
5569 mtime += se->mtime * se->valid_blocks;
5570 total_valid_blocks += se->valid_blocks;
5571 }
5572
5573 if (total_valid_blocks == 0)
5574 return INVALID_MTIME;
5575
5576 mtime = div_u64(mtime, total_valid_blocks);
5577 out:
5578 if (unlikely(mtime == INVALID_MTIME))
5579 mtime -= 1;
5580 return mtime;
5581 }
5582
5583 /*
5584 * Update min, max modified time for cost-benefit GC algorithm
5585 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5586 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5587 {
5588 struct sit_info *sit_i = SIT_I(sbi);
5589 unsigned int segno;
5590
5591 down_write(&sit_i->sentry_lock);
5592
5593 sit_i->min_mtime = ULLONG_MAX;
5594
5595 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5596 unsigned long long mtime = 0;
5597
5598 mtime = f2fs_get_section_mtime(sbi, segno);
5599
5600 if (sit_i->min_mtime > mtime)
5601 sit_i->min_mtime = mtime;
5602 }
5603 sit_i->max_mtime = get_mtime(sbi, false);
5604 sit_i->dirty_max_mtime = 0;
5605 up_write(&sit_i->sentry_lock);
5606 }
5607
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5608 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5609 {
5610 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5611 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5612 struct f2fs_sm_info *sm_info;
5613 int err;
5614
5615 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5616 if (!sm_info)
5617 return -ENOMEM;
5618
5619 /* init sm info */
5620 sbi->sm_info = sm_info;
5621 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5622 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5623 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5624 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5625 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5626 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5627 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5628 sm_info->rec_prefree_segments = sm_info->main_segments *
5629 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5630 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5631 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5632
5633 if (!f2fs_lfs_mode(sbi))
5634 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5635 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5636 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5637 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5638 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5639 sm_info->min_ssr_sections = reserved_sections(sbi);
5640
5641 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5642
5643 init_f2fs_rwsem(&sm_info->curseg_lock);
5644
5645 err = f2fs_create_flush_cmd_control(sbi);
5646 if (err)
5647 return err;
5648
5649 err = create_discard_cmd_control(sbi);
5650 if (err)
5651 return err;
5652
5653 err = build_sit_info(sbi);
5654 if (err)
5655 return err;
5656 err = build_free_segmap(sbi);
5657 if (err)
5658 return err;
5659 err = build_curseg(sbi);
5660 if (err)
5661 return err;
5662
5663 /* reinit free segmap based on SIT */
5664 err = build_sit_entries(sbi);
5665 if (err)
5666 return err;
5667
5668 init_free_segmap(sbi);
5669 err = build_dirty_segmap(sbi);
5670 if (err)
5671 return err;
5672
5673 err = sanity_check_curseg(sbi);
5674 if (err)
5675 return err;
5676
5677 init_min_max_mtime(sbi);
5678 return 0;
5679 }
5680
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5681 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5682 enum dirty_type dirty_type)
5683 {
5684 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5685
5686 mutex_lock(&dirty_i->seglist_lock);
5687 kvfree(dirty_i->dirty_segmap[dirty_type]);
5688 dirty_i->nr_dirty[dirty_type] = 0;
5689 mutex_unlock(&dirty_i->seglist_lock);
5690 }
5691
destroy_victim_secmap(struct f2fs_sb_info * sbi)5692 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5693 {
5694 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5695
5696 kvfree(dirty_i->pinned_secmap);
5697 kvfree(dirty_i->victim_secmap);
5698 }
5699
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5700 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5701 {
5702 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5703 int i;
5704
5705 if (!dirty_i)
5706 return;
5707
5708 /* discard pre-free/dirty segments list */
5709 for (i = 0; i < NR_DIRTY_TYPE; i++)
5710 discard_dirty_segmap(sbi, i);
5711
5712 if (__is_large_section(sbi)) {
5713 mutex_lock(&dirty_i->seglist_lock);
5714 kvfree(dirty_i->dirty_secmap);
5715 mutex_unlock(&dirty_i->seglist_lock);
5716 }
5717
5718 destroy_victim_secmap(sbi);
5719 SM_I(sbi)->dirty_info = NULL;
5720 kfree(dirty_i);
5721 }
5722
destroy_curseg(struct f2fs_sb_info * sbi)5723 static void destroy_curseg(struct f2fs_sb_info *sbi)
5724 {
5725 struct curseg_info *array = SM_I(sbi)->curseg_array;
5726 int i;
5727
5728 if (!array)
5729 return;
5730 SM_I(sbi)->curseg_array = NULL;
5731 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5732 kfree(array[i].sum_blk);
5733 kfree(array[i].journal);
5734 }
5735 kfree(array);
5736 }
5737
destroy_free_segmap(struct f2fs_sb_info * sbi)5738 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5739 {
5740 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5741
5742 if (!free_i)
5743 return;
5744 SM_I(sbi)->free_info = NULL;
5745 kvfree(free_i->free_segmap);
5746 kvfree(free_i->free_secmap);
5747 kfree(free_i);
5748 }
5749
destroy_sit_info(struct f2fs_sb_info * sbi)5750 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5751 {
5752 struct sit_info *sit_i = SIT_I(sbi);
5753
5754 if (!sit_i)
5755 return;
5756
5757 if (sit_i->sentries)
5758 kvfree(sit_i->bitmap);
5759 kfree(sit_i->tmp_map);
5760
5761 kvfree(sit_i->sentries);
5762 kvfree(sit_i->sec_entries);
5763 kvfree(sit_i->dirty_sentries_bitmap);
5764
5765 SM_I(sbi)->sit_info = NULL;
5766 kvfree(sit_i->sit_bitmap);
5767 #ifdef CONFIG_F2FS_CHECK_FS
5768 kvfree(sit_i->sit_bitmap_mir);
5769 kvfree(sit_i->invalid_segmap);
5770 #endif
5771 kfree(sit_i);
5772 }
5773
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5774 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5775 {
5776 struct f2fs_sm_info *sm_info = SM_I(sbi);
5777
5778 if (!sm_info)
5779 return;
5780 f2fs_destroy_flush_cmd_control(sbi, true);
5781 destroy_discard_cmd_control(sbi);
5782 destroy_dirty_segmap(sbi);
5783 destroy_curseg(sbi);
5784 destroy_free_segmap(sbi);
5785 destroy_sit_info(sbi);
5786 sbi->sm_info = NULL;
5787 kfree(sm_info);
5788 }
5789
f2fs_create_segment_manager_caches(void)5790 int __init f2fs_create_segment_manager_caches(void)
5791 {
5792 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5793 sizeof(struct discard_entry));
5794 if (!discard_entry_slab)
5795 goto fail;
5796
5797 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5798 sizeof(struct discard_cmd));
5799 if (!discard_cmd_slab)
5800 goto destroy_discard_entry;
5801
5802 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5803 sizeof(struct sit_entry_set));
5804 if (!sit_entry_set_slab)
5805 goto destroy_discard_cmd;
5806
5807 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5808 sizeof(struct revoke_entry));
5809 if (!revoke_entry_slab)
5810 goto destroy_sit_entry_set;
5811 return 0;
5812
5813 destroy_sit_entry_set:
5814 kmem_cache_destroy(sit_entry_set_slab);
5815 destroy_discard_cmd:
5816 kmem_cache_destroy(discard_cmd_slab);
5817 destroy_discard_entry:
5818 kmem_cache_destroy(discard_entry_slab);
5819 fail:
5820 return -ENOMEM;
5821 }
5822
f2fs_destroy_segment_manager_caches(void)5823 void f2fs_destroy_segment_manager_caches(void)
5824 {
5825 kmem_cache_destroy(sit_entry_set_slab);
5826 kmem_cache_destroy(discard_cmd_slab);
5827 kmem_cache_destroy(discard_entry_slab);
5828 kmem_cache_destroy(revoke_entry_slab);
5829 }
5830