1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS 128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
38
f2fs_init_bioset(void)39 int __init f2fs_init_bioset(void)
40 {
41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 0, BIOSET_NEED_BVECS);
43 }
44
f2fs_destroy_bioset(void)45 void f2fs_destroy_bioset(void)
46 {
47 bioset_exit(&f2fs_bioset);
48 }
49
f2fs_is_cp_guaranteed(struct page * page)50 bool f2fs_is_cp_guaranteed(struct page *page)
51 {
52 struct address_space *mapping = page_folio(page)->mapping;
53 struct inode *inode;
54 struct f2fs_sb_info *sbi;
55
56 if (fscrypt_is_bounce_page(page))
57 return page_private_gcing(fscrypt_pagecache_page(page));
58
59 inode = mapping->host;
60 sbi = F2FS_I_SB(inode);
61
62 if (inode->i_ino == F2FS_META_INO(sbi) ||
63 inode->i_ino == F2FS_NODE_INO(sbi) ||
64 S_ISDIR(inode->i_mode))
65 return true;
66
67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 page_private_gcing(page))
69 return true;
70 return false;
71 }
72
__read_io_type(struct folio * folio)73 static enum count_type __read_io_type(struct folio *folio)
74 {
75 struct address_space *mapping = folio->mapping;
76
77 if (mapping) {
78 struct inode *inode = mapping->host;
79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80
81 if (inode->i_ino == F2FS_META_INO(sbi))
82 return F2FS_RD_META;
83
84 if (inode->i_ino == F2FS_NODE_INO(sbi))
85 return F2FS_RD_NODE;
86 }
87 return F2FS_RD_DATA;
88 }
89
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 STEP_DECRYPT = BIT(0),
94 #else
95 STEP_DECRYPT = 0, /* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 STEP_DECOMPRESS = BIT(1),
99 #else
100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 STEP_VERITY = BIT(2),
104 #else
105 STEP_VERITY = 0, /* compile out the verity-related code */
106 #endif
107 };
108
109 struct bio_post_read_ctx {
110 struct bio *bio;
111 struct f2fs_sb_info *sbi;
112 struct work_struct work;
113 unsigned int enabled_steps;
114 /*
115 * decompression_attempted keeps track of whether
116 * f2fs_end_read_compressed_page() has been called on the pages in the
117 * bio that belong to a compressed cluster yet.
118 */
119 bool decompression_attempted;
120 block_t fs_blkaddr;
121 };
122
123 /*
124 * Update and unlock a bio's pages, and free the bio.
125 *
126 * This marks pages up-to-date only if there was no error in the bio (I/O error,
127 * decryption error, or verity error), as indicated by bio->bi_status.
128 *
129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130 * aren't marked up-to-date here, as decompression is done on a per-compression-
131 * cluster basis rather than a per-bio basis. Instead, we only must do two
132 * things for each compressed page here: call f2fs_end_read_compressed_page()
133 * with failed=true if an error occurred before it would have normally gotten
134 * called (i.e., I/O error or decryption error, but *not* verity error), and
135 * release the bio's reference to the decompress_io_ctx of the page's cluster.
136 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 struct folio_iter fi;
140 struct bio_post_read_ctx *ctx = bio->bi_private;
141
142 bio_for_each_folio_all(fi, bio) {
143 struct folio *folio = fi.folio;
144
145 if (f2fs_is_compressed_page(&folio->page)) {
146 if (ctx && !ctx->decompression_attempted)
147 f2fs_end_read_compressed_page(&folio->page, true, 0,
148 in_task);
149 f2fs_put_folio_dic(folio, in_task);
150 continue;
151 }
152
153 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
154 folio_end_read(folio, bio->bi_status == BLK_STS_OK);
155 }
156
157 if (ctx)
158 mempool_free(ctx, bio_post_read_ctx_pool);
159 bio_put(bio);
160 }
161
f2fs_verify_bio(struct work_struct * work)162 static void f2fs_verify_bio(struct work_struct *work)
163 {
164 struct bio_post_read_ctx *ctx =
165 container_of(work, struct bio_post_read_ctx, work);
166 struct bio *bio = ctx->bio;
167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
168
169 /*
170 * fsverity_verify_bio() may call readahead() again, and while verity
171 * will be disabled for this, decryption and/or decompression may still
172 * be needed, resulting in another bio_post_read_ctx being allocated.
173 * So to prevent deadlocks we need to release the current ctx to the
174 * mempool first. This assumes that verity is the last post-read step.
175 */
176 mempool_free(ctx, bio_post_read_ctx_pool);
177 bio->bi_private = NULL;
178
179 /*
180 * Verify the bio's pages with fs-verity. Exclude compressed pages,
181 * as those were handled separately by f2fs_end_read_compressed_page().
182 */
183 if (may_have_compressed_pages) {
184 struct bio_vec *bv;
185 struct bvec_iter_all iter_all;
186
187 bio_for_each_segment_all(bv, bio, iter_all) {
188 struct page *page = bv->bv_page;
189
190 if (!f2fs_is_compressed_page(page) &&
191 !fsverity_verify_page(page)) {
192 bio->bi_status = BLK_STS_IOERR;
193 break;
194 }
195 }
196 } else {
197 fsverity_verify_bio(bio);
198 }
199
200 f2fs_finish_read_bio(bio, true);
201 }
202
203 /*
204 * If the bio's data needs to be verified with fs-verity, then enqueue the
205 * verity work for the bio. Otherwise finish the bio now.
206 *
207 * Note that to avoid deadlocks, the verity work can't be done on the
208 * decryption/decompression workqueue. This is because verifying the data pages
209 * can involve reading verity metadata pages from the file, and these verity
210 * metadata pages may be encrypted and/or compressed.
211 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)212 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
213 {
214 struct bio_post_read_ctx *ctx = bio->bi_private;
215
216 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
217 INIT_WORK(&ctx->work, f2fs_verify_bio);
218 fsverity_enqueue_verify_work(&ctx->work);
219 } else {
220 f2fs_finish_read_bio(bio, in_task);
221 }
222 }
223
224 /*
225 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
226 * remaining page was read by @ctx->bio.
227 *
228 * Note that a bio may span clusters (even a mix of compressed and uncompressed
229 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
230 * that the bio includes at least one compressed page. The actual decompression
231 * is done on a per-cluster basis, not a per-bio basis.
232 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)233 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
234 bool in_task)
235 {
236 struct bio_vec *bv;
237 struct bvec_iter_all iter_all;
238 bool all_compressed = true;
239 block_t blkaddr = ctx->fs_blkaddr;
240
241 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
242 struct page *page = bv->bv_page;
243
244 if (f2fs_is_compressed_page(page))
245 f2fs_end_read_compressed_page(page, false, blkaddr,
246 in_task);
247 else
248 all_compressed = false;
249
250 blkaddr++;
251 }
252
253 ctx->decompression_attempted = true;
254
255 /*
256 * Optimization: if all the bio's pages are compressed, then scheduling
257 * the per-bio verity work is unnecessary, as verity will be fully
258 * handled at the compression cluster level.
259 */
260 if (all_compressed)
261 ctx->enabled_steps &= ~STEP_VERITY;
262 }
263
f2fs_post_read_work(struct work_struct * work)264 static void f2fs_post_read_work(struct work_struct *work)
265 {
266 struct bio_post_read_ctx *ctx =
267 container_of(work, struct bio_post_read_ctx, work);
268 struct bio *bio = ctx->bio;
269
270 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
271 f2fs_finish_read_bio(bio, true);
272 return;
273 }
274
275 if (ctx->enabled_steps & STEP_DECOMPRESS)
276 f2fs_handle_step_decompress(ctx, true);
277
278 f2fs_verify_and_finish_bio(bio, true);
279 }
280
f2fs_read_end_io(struct bio * bio)281 static void f2fs_read_end_io(struct bio *bio)
282 {
283 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
284 struct bio_post_read_ctx *ctx;
285 bool intask = in_task();
286
287 iostat_update_and_unbind_ctx(bio);
288 ctx = bio->bi_private;
289
290 if (time_to_inject(sbi, FAULT_READ_IO))
291 bio->bi_status = BLK_STS_IOERR;
292
293 if (bio->bi_status != BLK_STS_OK) {
294 f2fs_finish_read_bio(bio, intask);
295 return;
296 }
297
298 if (ctx) {
299 unsigned int enabled_steps = ctx->enabled_steps &
300 (STEP_DECRYPT | STEP_DECOMPRESS);
301
302 /*
303 * If we have only decompression step between decompression and
304 * decrypt, we don't need post processing for this.
305 */
306 if (enabled_steps == STEP_DECOMPRESS &&
307 !f2fs_low_mem_mode(sbi)) {
308 f2fs_handle_step_decompress(ctx, intask);
309 } else if (enabled_steps) {
310 INIT_WORK(&ctx->work, f2fs_post_read_work);
311 queue_work(ctx->sbi->post_read_wq, &ctx->work);
312 return;
313 }
314 }
315
316 f2fs_verify_and_finish_bio(bio, intask);
317 }
318
f2fs_write_end_io(struct bio * bio)319 static void f2fs_write_end_io(struct bio *bio)
320 {
321 struct f2fs_sb_info *sbi;
322 struct folio_iter fi;
323
324 iostat_update_and_unbind_ctx(bio);
325 sbi = bio->bi_private;
326
327 if (time_to_inject(sbi, FAULT_WRITE_IO))
328 bio->bi_status = BLK_STS_IOERR;
329
330 bio_for_each_folio_all(fi, bio) {
331 struct folio *folio = fi.folio;
332 enum count_type type;
333
334 if (fscrypt_is_bounce_folio(folio)) {
335 struct folio *io_folio = folio;
336
337 folio = fscrypt_pagecache_folio(io_folio);
338 fscrypt_free_bounce_page(&io_folio->page);
339 }
340
341 #ifdef CONFIG_F2FS_FS_COMPRESSION
342 if (f2fs_is_compressed_page(&folio->page)) {
343 f2fs_compress_write_end_io(bio, &folio->page);
344 continue;
345 }
346 #endif
347
348 type = WB_DATA_TYPE(&folio->page, false);
349
350 if (unlikely(bio->bi_status != BLK_STS_OK)) {
351 mapping_set_error(folio->mapping, -EIO);
352 if (type == F2FS_WB_CP_DATA)
353 f2fs_stop_checkpoint(sbi, true,
354 STOP_CP_REASON_WRITE_FAIL);
355 }
356
357 f2fs_bug_on(sbi, is_node_folio(folio) &&
358 folio->index != nid_of_node(&folio->page));
359
360 dec_page_count(sbi, type);
361 if (f2fs_in_warm_node_list(sbi, folio))
362 f2fs_del_fsync_node_entry(sbi, folio);
363 clear_page_private_gcing(&folio->page);
364 folio_end_writeback(folio);
365 }
366 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 wq_has_sleeper(&sbi->cp_wait))
368 wake_up(&sbi->cp_wait);
369
370 bio_put(bio);
371 }
372
373 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377
378 bio->bi_private = io->bi_private;
379 complete(&io->zone_wait);
380 f2fs_write_end_io(bio);
381 }
382 #endif
383
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 block_t blk_addr, sector_t *sector)
386 {
387 struct block_device *bdev = sbi->sb->s_bdev;
388 int i;
389
390 if (f2fs_is_multi_device(sbi)) {
391 for (i = 0; i < sbi->s_ndevs; i++) {
392 if (FDEV(i).start_blk <= blk_addr &&
393 FDEV(i).end_blk >= blk_addr) {
394 blk_addr -= FDEV(i).start_blk;
395 bdev = FDEV(i).bdev;
396 break;
397 }
398 }
399 }
400
401 if (sector)
402 *sector = SECTOR_FROM_BLOCK(blk_addr);
403 return bdev;
404 }
405
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 int i;
409
410 if (!f2fs_is_multi_device(sbi))
411 return 0;
412
413 for (i = 0; i < sbi->s_ndevs; i++)
414 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 return i;
416 return 0;
417 }
418
f2fs_io_flags(struct f2fs_io_info * fio)419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 struct folio *fio_folio = page_folio(fio->page);
423 unsigned int fua_flag, meta_flag, io_flag;
424 blk_opf_t op_flags = 0;
425
426 if (fio->op != REQ_OP_WRITE)
427 return 0;
428 if (fio->type == DATA)
429 io_flag = fio->sbi->data_io_flag;
430 else if (fio->type == NODE)
431 io_flag = fio->sbi->node_io_flag;
432 else
433 return 0;
434
435 fua_flag = io_flag & temp_mask;
436 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
437
438 /*
439 * data/node io flag bits per temp:
440 * REQ_META | REQ_FUA |
441 * 5 | 4 | 3 | 2 | 1 | 0 |
442 * Cold | Warm | Hot | Cold | Warm | Hot |
443 */
444 if (BIT(fio->temp) & meta_flag)
445 op_flags |= REQ_META;
446 if (BIT(fio->temp) & fua_flag)
447 op_flags |= REQ_FUA;
448
449 if (fio->type == DATA &&
450 F2FS_I(fio_folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE)
451 op_flags |= REQ_PRIO;
452
453 return op_flags;
454 }
455
__bio_alloc(struct f2fs_io_info * fio,int npages)456 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
457 {
458 struct f2fs_sb_info *sbi = fio->sbi;
459 struct block_device *bdev;
460 sector_t sector;
461 struct bio *bio;
462
463 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
464 bio = bio_alloc_bioset(bdev, npages,
465 fio->op | fio->op_flags | f2fs_io_flags(fio),
466 GFP_NOIO, &f2fs_bioset);
467 bio->bi_iter.bi_sector = sector;
468 if (is_read_io(fio->op)) {
469 bio->bi_end_io = f2fs_read_end_io;
470 bio->bi_private = NULL;
471 } else {
472 bio->bi_end_io = f2fs_write_end_io;
473 bio->bi_private = sbi;
474 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
475 fio->type, fio->temp);
476 }
477 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
478
479 if (fio->io_wbc)
480 wbc_init_bio(fio->io_wbc, bio);
481
482 return bio;
483 }
484
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)485 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
486 pgoff_t first_idx,
487 const struct f2fs_io_info *fio,
488 gfp_t gfp_mask)
489 {
490 /*
491 * The f2fs garbage collector sets ->encrypted_page when it wants to
492 * read/write raw data without encryption.
493 */
494 if (!fio || !fio->encrypted_page)
495 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
496 }
497
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)498 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
499 pgoff_t next_idx,
500 const struct f2fs_io_info *fio)
501 {
502 /*
503 * The f2fs garbage collector sets ->encrypted_page when it wants to
504 * read/write raw data without encryption.
505 */
506 if (fio && fio->encrypted_page)
507 return !bio_has_crypt_ctx(bio);
508
509 return fscrypt_mergeable_bio(bio, inode, next_idx);
510 }
511
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)512 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
513 enum page_type type)
514 {
515 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
516 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
517
518 iostat_update_submit_ctx(bio, type);
519 submit_bio(bio);
520 }
521
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)522 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
523 enum page_type type)
524 {
525 WARN_ON_ONCE(is_read_io(bio_op(bio)));
526 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
527 iostat_update_submit_ctx(bio, type);
528 submit_bio(bio);
529 }
530
__submit_merged_bio(struct f2fs_bio_info * io)531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533 struct f2fs_io_info *fio = &io->fio;
534
535 if (!io->bio)
536 return;
537
538 if (is_read_io(fio->op)) {
539 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
540 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
541 } else {
542 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
543 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
544 }
545 io->bio = NULL;
546 }
547
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)548 static bool __has_merged_page(struct bio *bio, struct inode *inode,
549 struct page *page, nid_t ino)
550 {
551 struct folio_iter fi;
552
553 if (!bio)
554 return false;
555
556 if (!inode && !page && !ino)
557 return true;
558
559 bio_for_each_folio_all(fi, bio) {
560 struct folio *target = fi.folio;
561
562 if (fscrypt_is_bounce_folio(target)) {
563 target = fscrypt_pagecache_folio(target);
564 if (IS_ERR(target))
565 continue;
566 }
567 if (f2fs_is_compressed_page(&target->page)) {
568 target = f2fs_compress_control_folio(target);
569 if (IS_ERR(target))
570 continue;
571 }
572
573 if (inode && inode == target->mapping->host)
574 return true;
575 if (page && page == &target->page)
576 return true;
577 if (ino && ino == ino_of_node(&target->page))
578 return true;
579 }
580
581 return false;
582 }
583
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)584 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
585 {
586 int i;
587
588 for (i = 0; i < NR_PAGE_TYPE; i++) {
589 int n = (i == META) ? 1 : NR_TEMP_TYPE;
590 int j;
591
592 sbi->write_io[i] = f2fs_kmalloc(sbi,
593 array_size(n, sizeof(struct f2fs_bio_info)),
594 GFP_KERNEL);
595 if (!sbi->write_io[i])
596 return -ENOMEM;
597
598 for (j = HOT; j < n; j++) {
599 struct f2fs_bio_info *io = &sbi->write_io[i][j];
600
601 init_f2fs_rwsem(&io->io_rwsem);
602 io->sbi = sbi;
603 io->bio = NULL;
604 io->last_block_in_bio = 0;
605 spin_lock_init(&io->io_lock);
606 INIT_LIST_HEAD(&io->io_list);
607 INIT_LIST_HEAD(&io->bio_list);
608 init_f2fs_rwsem(&io->bio_list_lock);
609 #ifdef CONFIG_BLK_DEV_ZONED
610 init_completion(&io->zone_wait);
611 io->zone_pending_bio = NULL;
612 io->bi_private = NULL;
613 #endif
614 }
615 }
616
617 return 0;
618 }
619
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)620 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
621 enum page_type type, enum temp_type temp)
622 {
623 enum page_type btype = PAGE_TYPE_OF_BIO(type);
624 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
625
626 f2fs_down_write(&io->io_rwsem);
627
628 if (!io->bio)
629 goto unlock_out;
630
631 /* change META to META_FLUSH in the checkpoint procedure */
632 if (type >= META_FLUSH) {
633 io->fio.type = META_FLUSH;
634 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
635 if (!test_opt(sbi, NOBARRIER))
636 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
637 }
638 __submit_merged_bio(io);
639 unlock_out:
640 f2fs_up_write(&io->io_rwsem);
641 }
642
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)643 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
644 struct inode *inode, struct page *page,
645 nid_t ino, enum page_type type, bool force)
646 {
647 enum temp_type temp;
648 bool ret = true;
649
650 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
651 if (!force) {
652 enum page_type btype = PAGE_TYPE_OF_BIO(type);
653 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
654
655 f2fs_down_read(&io->io_rwsem);
656 ret = __has_merged_page(io->bio, inode, page, ino);
657 f2fs_up_read(&io->io_rwsem);
658 }
659 if (ret)
660 __f2fs_submit_merged_write(sbi, type, temp);
661
662 /* TODO: use HOT temp only for meta pages now. */
663 if (type >= META)
664 break;
665 }
666 }
667
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)668 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
669 {
670 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
671 }
672
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)673 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
674 struct inode *inode, struct page *page,
675 nid_t ino, enum page_type type)
676 {
677 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
678 }
679
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)680 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
681 {
682 f2fs_submit_merged_write(sbi, DATA);
683 f2fs_submit_merged_write(sbi, NODE);
684 f2fs_submit_merged_write(sbi, META);
685 }
686
687 /*
688 * Fill the locked page with data located in the block address.
689 * A caller needs to unlock the page on failure.
690 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)691 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
692 {
693 struct bio *bio;
694 struct folio *fio_folio = page_folio(fio->page);
695 struct folio *data_folio = fio->encrypted_page ?
696 page_folio(fio->encrypted_page) : fio_folio;
697
698 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
699 fio->is_por ? META_POR : (__is_meta_io(fio) ?
700 META_GENERIC : DATA_GENERIC_ENHANCE)))
701 return -EFSCORRUPTED;
702
703 trace_f2fs_submit_folio_bio(data_folio, fio);
704
705 /* Allocate a new bio */
706 bio = __bio_alloc(fio, 1);
707
708 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
709 fio_folio->index, fio, GFP_NOIO);
710 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
711
712 if (fio->io_wbc && !is_read_io(fio->op))
713 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
714
715 inc_page_count(fio->sbi, is_read_io(fio->op) ?
716 __read_io_type(data_folio) : WB_DATA_TYPE(fio->page, false));
717
718 if (is_read_io(bio_op(bio)))
719 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
720 else
721 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
722 return 0;
723 }
724
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)725 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
726 block_t last_blkaddr, block_t cur_blkaddr)
727 {
728 if (unlikely(sbi->max_io_bytes &&
729 bio->bi_iter.bi_size >= sbi->max_io_bytes))
730 return false;
731 if (last_blkaddr + 1 != cur_blkaddr)
732 return false;
733 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
734 }
735
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)736 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
737 struct f2fs_io_info *fio)
738 {
739 if (io->fio.op != fio->op)
740 return false;
741 return io->fio.op_flags == fio->op_flags;
742 }
743
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)744 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
745 struct f2fs_bio_info *io,
746 struct f2fs_io_info *fio,
747 block_t last_blkaddr,
748 block_t cur_blkaddr)
749 {
750 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
751 return false;
752 return io_type_is_mergeable(io, fio);
753 }
754
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)755 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
756 struct page *page, enum temp_type temp)
757 {
758 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
759 struct bio_entry *be;
760
761 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
762 be->bio = bio;
763 bio_get(bio);
764
765 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
766 f2fs_bug_on(sbi, 1);
767
768 f2fs_down_write(&io->bio_list_lock);
769 list_add_tail(&be->list, &io->bio_list);
770 f2fs_up_write(&io->bio_list_lock);
771 }
772
del_bio_entry(struct bio_entry * be)773 static void del_bio_entry(struct bio_entry *be)
774 {
775 list_del(&be->list);
776 kmem_cache_free(bio_entry_slab, be);
777 }
778
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)779 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
780 struct page *page)
781 {
782 struct folio *fio_folio = page_folio(fio->page);
783 struct f2fs_sb_info *sbi = fio->sbi;
784 enum temp_type temp;
785 bool found = false;
786 int ret = -EAGAIN;
787
788 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 struct list_head *head = &io->bio_list;
791 struct bio_entry *be;
792
793 f2fs_down_write(&io->bio_list_lock);
794 list_for_each_entry(be, head, list) {
795 if (be->bio != *bio)
796 continue;
797
798 found = true;
799
800 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801 *fio->last_block,
802 fio->new_blkaddr));
803 if (f2fs_crypt_mergeable_bio(*bio,
804 fio_folio->mapping->host,
805 fio_folio->index, fio) &&
806 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807 PAGE_SIZE) {
808 ret = 0;
809 break;
810 }
811
812 /* page can't be merged into bio; submit the bio */
813 del_bio_entry(be);
814 f2fs_submit_write_bio(sbi, *bio, DATA);
815 break;
816 }
817 f2fs_up_write(&io->bio_list_lock);
818 }
819
820 if (ret) {
821 bio_put(*bio);
822 *bio = NULL;
823 }
824
825 return ret;
826 }
827
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct folio * folio)828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829 struct bio **bio, struct folio *folio)
830 {
831 enum temp_type temp;
832 bool found = false;
833 struct bio *target = bio ? *bio : NULL;
834
835 f2fs_bug_on(sbi, !target && !folio);
836
837 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
838 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
839 struct list_head *head = &io->bio_list;
840 struct bio_entry *be;
841
842 if (list_empty(head))
843 continue;
844
845 f2fs_down_read(&io->bio_list_lock);
846 list_for_each_entry(be, head, list) {
847 if (target)
848 found = (target == be->bio);
849 else
850 found = __has_merged_page(be->bio, NULL,
851 &folio->page, 0);
852 if (found)
853 break;
854 }
855 f2fs_up_read(&io->bio_list_lock);
856
857 if (!found)
858 continue;
859
860 found = false;
861
862 f2fs_down_write(&io->bio_list_lock);
863 list_for_each_entry(be, head, list) {
864 if (target)
865 found = (target == be->bio);
866 else
867 found = __has_merged_page(be->bio, NULL,
868 &folio->page, 0);
869 if (found) {
870 target = be->bio;
871 del_bio_entry(be);
872 break;
873 }
874 }
875 f2fs_up_write(&io->bio_list_lock);
876 }
877
878 if (found)
879 f2fs_submit_write_bio(sbi, target, DATA);
880 if (bio && *bio) {
881 bio_put(*bio);
882 *bio = NULL;
883 }
884 }
885
f2fs_merge_page_bio(struct f2fs_io_info * fio)886 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
887 {
888 struct bio *bio = *fio->bio;
889 struct page *page = fio->encrypted_page ?
890 fio->encrypted_page : fio->page;
891 struct folio *folio = page_folio(fio->page);
892
893 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
894 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
895 return -EFSCORRUPTED;
896
897 trace_f2fs_submit_folio_bio(page_folio(page), fio);
898
899 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
900 fio->new_blkaddr))
901 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
902 alloc_new:
903 if (!bio) {
904 bio = __bio_alloc(fio, BIO_MAX_VECS);
905 f2fs_set_bio_crypt_ctx(bio, folio->mapping->host,
906 folio->index, fio, GFP_NOIO);
907
908 add_bio_entry(fio->sbi, bio, page, fio->temp);
909 } else {
910 if (add_ipu_page(fio, &bio, page))
911 goto alloc_new;
912 }
913
914 if (fio->io_wbc)
915 wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio));
916
917 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
918
919 *fio->last_block = fio->new_blkaddr;
920 *fio->bio = bio;
921
922 return 0;
923 }
924
925 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)926 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
927 {
928 struct block_device *bdev = sbi->sb->s_bdev;
929 int devi = 0;
930
931 if (f2fs_is_multi_device(sbi)) {
932 devi = f2fs_target_device_index(sbi, blkaddr);
933 if (blkaddr < FDEV(devi).start_blk ||
934 blkaddr > FDEV(devi).end_blk) {
935 f2fs_err(sbi, "Invalid block %x", blkaddr);
936 return false;
937 }
938 blkaddr -= FDEV(devi).start_blk;
939 bdev = FDEV(devi).bdev;
940 }
941 return bdev_is_zoned(bdev) &&
942 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
943 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
944 }
945 #endif
946
f2fs_submit_page_write(struct f2fs_io_info * fio)947 void f2fs_submit_page_write(struct f2fs_io_info *fio)
948 {
949 struct f2fs_sb_info *sbi = fio->sbi;
950 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
951 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
952 struct page *bio_page;
953 enum count_type type;
954
955 f2fs_bug_on(sbi, is_read_io(fio->op));
956
957 f2fs_down_write(&io->io_rwsem);
958 next:
959 #ifdef CONFIG_BLK_DEV_ZONED
960 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
961 wait_for_completion_io(&io->zone_wait);
962 bio_put(io->zone_pending_bio);
963 io->zone_pending_bio = NULL;
964 io->bi_private = NULL;
965 }
966 #endif
967
968 if (fio->in_list) {
969 spin_lock(&io->io_lock);
970 if (list_empty(&io->io_list)) {
971 spin_unlock(&io->io_lock);
972 goto out;
973 }
974 fio = list_first_entry(&io->io_list,
975 struct f2fs_io_info, list);
976 list_del(&fio->list);
977 spin_unlock(&io->io_lock);
978 }
979
980 verify_fio_blkaddr(fio);
981
982 if (fio->encrypted_page)
983 bio_page = fio->encrypted_page;
984 else if (fio->compressed_page)
985 bio_page = fio->compressed_page;
986 else
987 bio_page = fio->page;
988
989 /* set submitted = true as a return value */
990 fio->submitted = 1;
991
992 type = WB_DATA_TYPE(bio_page, fio->compressed_page);
993 inc_page_count(sbi, type);
994
995 if (io->bio &&
996 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
997 fio->new_blkaddr) ||
998 !f2fs_crypt_mergeable_bio(io->bio, fio_inode(fio),
999 page_folio(bio_page)->index, fio)))
1000 __submit_merged_bio(io);
1001 alloc_new:
1002 if (io->bio == NULL) {
1003 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1004 f2fs_set_bio_crypt_ctx(io->bio, fio_inode(fio),
1005 page_folio(bio_page)->index, fio, GFP_NOIO);
1006 io->fio = *fio;
1007 }
1008
1009 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1010 __submit_merged_bio(io);
1011 goto alloc_new;
1012 }
1013
1014 if (fio->io_wbc)
1015 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
1016 PAGE_SIZE);
1017
1018 io->last_block_in_bio = fio->new_blkaddr;
1019
1020 trace_f2fs_submit_folio_write(page_folio(fio->page), fio);
1021 #ifdef CONFIG_BLK_DEV_ZONED
1022 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1023 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1024 bio_get(io->bio);
1025 reinit_completion(&io->zone_wait);
1026 io->bi_private = io->bio->bi_private;
1027 io->bio->bi_private = io;
1028 io->bio->bi_end_io = f2fs_zone_write_end_io;
1029 io->zone_pending_bio = io->bio;
1030 __submit_merged_bio(io);
1031 }
1032 #endif
1033 if (fio->in_list)
1034 goto next;
1035 out:
1036 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1037 !f2fs_is_checkpoint_ready(sbi))
1038 __submit_merged_bio(io);
1039 f2fs_up_write(&io->io_rwsem);
1040 }
1041
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1042 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1043 unsigned nr_pages, blk_opf_t op_flag,
1044 pgoff_t first_idx, bool for_write)
1045 {
1046 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1047 struct bio *bio;
1048 struct bio_post_read_ctx *ctx = NULL;
1049 unsigned int post_read_steps = 0;
1050 sector_t sector;
1051 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1052
1053 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1054 REQ_OP_READ | op_flag,
1055 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1056 bio->bi_iter.bi_sector = sector;
1057 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 bio->bi_end_io = f2fs_read_end_io;
1059
1060 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 post_read_steps |= STEP_DECRYPT;
1062
1063 if (f2fs_need_verity(inode, first_idx))
1064 post_read_steps |= STEP_VERITY;
1065
1066 /*
1067 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 * contain both compressed and uncompressed clusters. We'll allocate a
1069 * bio_post_read_ctx if the file is compressed, but the caller is
1070 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071 */
1072
1073 if (post_read_steps || f2fs_compressed_file(inode)) {
1074 /* Due to the mempool, this never fails. */
1075 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076 ctx->bio = bio;
1077 ctx->sbi = sbi;
1078 ctx->enabled_steps = post_read_steps;
1079 ctx->fs_blkaddr = blkaddr;
1080 ctx->decompression_attempted = false;
1081 bio->bi_private = ctx;
1082 }
1083 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084
1085 return bio;
1086 }
1087
1088 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1089 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1090 block_t blkaddr, blk_opf_t op_flags,
1091 bool for_write)
1092 {
1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 struct bio *bio;
1095
1096 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097 folio->index, for_write);
1098 if (IS_ERR(bio))
1099 return PTR_ERR(bio);
1100
1101 /* wait for GCed page writeback via META_MAPPING */
1102 f2fs_wait_on_block_writeback(inode, blkaddr);
1103
1104 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1105 iostat_update_and_unbind_ctx(bio);
1106 if (bio->bi_private)
1107 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1108 bio_put(bio);
1109 return -EFAULT;
1110 }
1111 inc_page_count(sbi, F2FS_RD_DATA);
1112 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1113 f2fs_submit_read_bio(sbi, bio, DATA);
1114 return 0;
1115 }
1116
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1117 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1118 {
1119 __le32 *addr = get_dnode_addr(dn->inode, dn->node_folio);
1120
1121 dn->data_blkaddr = blkaddr;
1122 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1123 }
1124
1125 /*
1126 * Lock ordering for the change of data block address:
1127 * ->data_page
1128 * ->node_folio
1129 * update block addresses in the node page
1130 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1131 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1134 __set_data_blkaddr(dn, blkaddr);
1135 if (folio_mark_dirty(dn->node_folio))
1136 dn->node_changed = true;
1137 }
1138
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1139 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1140 {
1141 f2fs_set_data_blkaddr(dn, blkaddr);
1142 f2fs_update_read_extent_cache(dn);
1143 }
1144
1145 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1146 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1147 {
1148 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1149 int err;
1150
1151 if (!count)
1152 return 0;
1153
1154 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1155 return -EPERM;
1156 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1157 if (unlikely(err))
1158 return err;
1159
1160 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1161 dn->ofs_in_node, count);
1162
1163 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1164
1165 for (; count > 0; dn->ofs_in_node++) {
1166 block_t blkaddr = f2fs_data_blkaddr(dn);
1167
1168 if (blkaddr == NULL_ADDR) {
1169 __set_data_blkaddr(dn, NEW_ADDR);
1170 count--;
1171 }
1172 }
1173
1174 if (folio_mark_dirty(dn->node_folio))
1175 dn->node_changed = true;
1176 return 0;
1177 }
1178
1179 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1180 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1181 {
1182 unsigned int ofs_in_node = dn->ofs_in_node;
1183 int ret;
1184
1185 ret = f2fs_reserve_new_blocks(dn, 1);
1186 dn->ofs_in_node = ofs_in_node;
1187 return ret;
1188 }
1189
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1190 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1191 {
1192 bool need_put = dn->inode_folio ? false : true;
1193 int err;
1194
1195 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1196 if (err)
1197 return err;
1198
1199 if (dn->data_blkaddr == NULL_ADDR)
1200 err = f2fs_reserve_new_block(dn);
1201 if (err || need_put)
1202 f2fs_put_dnode(dn);
1203 return err;
1204 }
1205
f2fs_get_read_data_folio(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1206 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
1207 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs)
1208 {
1209 struct address_space *mapping = inode->i_mapping;
1210 struct dnode_of_data dn;
1211 struct folio *folio;
1212 int err;
1213
1214 folio = f2fs_grab_cache_folio(mapping, index, for_write);
1215 if (IS_ERR(folio))
1216 return folio;
1217
1218 if (f2fs_lookup_read_extent_cache_block(inode, index,
1219 &dn.data_blkaddr)) {
1220 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1221 DATA_GENERIC_ENHANCE_READ)) {
1222 err = -EFSCORRUPTED;
1223 goto put_err;
1224 }
1225 goto got_it;
1226 }
1227
1228 set_new_dnode(&dn, inode, NULL, NULL, 0);
1229 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1230 if (err) {
1231 if (err == -ENOENT && next_pgofs)
1232 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1233 goto put_err;
1234 }
1235 f2fs_put_dnode(&dn);
1236
1237 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1238 err = -ENOENT;
1239 if (next_pgofs)
1240 *next_pgofs = index + 1;
1241 goto put_err;
1242 }
1243 if (dn.data_blkaddr != NEW_ADDR &&
1244 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1245 dn.data_blkaddr,
1246 DATA_GENERIC_ENHANCE)) {
1247 err = -EFSCORRUPTED;
1248 goto put_err;
1249 }
1250 got_it:
1251 if (folio_test_uptodate(folio)) {
1252 folio_unlock(folio);
1253 return folio;
1254 }
1255
1256 /*
1257 * A new dentry page is allocated but not able to be written, since its
1258 * new inode page couldn't be allocated due to -ENOSPC.
1259 * In such the case, its blkaddr can be remained as NEW_ADDR.
1260 * see, f2fs_add_link -> f2fs_get_new_data_folio ->
1261 * f2fs_init_inode_metadata.
1262 */
1263 if (dn.data_blkaddr == NEW_ADDR) {
1264 folio_zero_segment(folio, 0, folio_size(folio));
1265 if (!folio_test_uptodate(folio))
1266 folio_mark_uptodate(folio);
1267 folio_unlock(folio);
1268 return folio;
1269 }
1270
1271 err = f2fs_submit_page_read(inode, folio, dn.data_blkaddr,
1272 op_flags, for_write);
1273 if (err)
1274 goto put_err;
1275 return folio;
1276
1277 put_err:
1278 f2fs_folio_put(folio, true);
1279 return ERR_PTR(err);
1280 }
1281
f2fs_find_data_folio(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1282 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
1283 pgoff_t *next_pgofs)
1284 {
1285 struct address_space *mapping = inode->i_mapping;
1286 struct folio *folio;
1287
1288 folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0);
1289 if (IS_ERR(folio))
1290 goto read;
1291 if (folio_test_uptodate(folio))
1292 return folio;
1293 f2fs_folio_put(folio, false);
1294
1295 read:
1296 folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs);
1297 if (IS_ERR(folio))
1298 return folio;
1299
1300 if (folio_test_uptodate(folio))
1301 return folio;
1302
1303 folio_wait_locked(folio);
1304 if (unlikely(!folio_test_uptodate(folio))) {
1305 f2fs_folio_put(folio, false);
1306 return ERR_PTR(-EIO);
1307 }
1308 return folio;
1309 }
1310
1311 /*
1312 * If it tries to access a hole, return an error.
1313 * Because, the callers, functions in dir.c and GC, should be able to know
1314 * whether this page exists or not.
1315 */
f2fs_get_lock_data_folio(struct inode * inode,pgoff_t index,bool for_write)1316 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
1317 bool for_write)
1318 {
1319 struct address_space *mapping = inode->i_mapping;
1320 struct folio *folio;
1321
1322 folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL);
1323 if (IS_ERR(folio))
1324 return folio;
1325
1326 /* wait for read completion */
1327 folio_lock(folio);
1328 if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) {
1329 f2fs_folio_put(folio, true);
1330 return ERR_PTR(-EIO);
1331 }
1332 return folio;
1333 }
1334
1335 /*
1336 * Caller ensures that this data page is never allocated.
1337 * A new zero-filled data page is allocated in the page cache.
1338 *
1339 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1340 * f2fs_unlock_op().
1341 * Note that, ifolio is set only by make_empty_dir, and if any error occur,
1342 * ifolio should be released by this function.
1343 */
f2fs_get_new_data_folio(struct inode * inode,struct folio * ifolio,pgoff_t index,bool new_i_size)1344 struct folio *f2fs_get_new_data_folio(struct inode *inode,
1345 struct folio *ifolio, pgoff_t index, bool new_i_size)
1346 {
1347 struct address_space *mapping = inode->i_mapping;
1348 struct folio *folio;
1349 struct dnode_of_data dn;
1350 int err;
1351
1352 folio = f2fs_grab_cache_folio(mapping, index, true);
1353 if (IS_ERR(folio)) {
1354 /*
1355 * before exiting, we should make sure ifolio will be released
1356 * if any error occur.
1357 */
1358 f2fs_folio_put(ifolio, true);
1359 return ERR_PTR(-ENOMEM);
1360 }
1361
1362 set_new_dnode(&dn, inode, ifolio, NULL, 0);
1363 err = f2fs_reserve_block(&dn, index);
1364 if (err) {
1365 f2fs_folio_put(folio, true);
1366 return ERR_PTR(err);
1367 }
1368 if (!ifolio)
1369 f2fs_put_dnode(&dn);
1370
1371 if (folio_test_uptodate(folio))
1372 goto got_it;
1373
1374 if (dn.data_blkaddr == NEW_ADDR) {
1375 folio_zero_segment(folio, 0, folio_size(folio));
1376 if (!folio_test_uptodate(folio))
1377 folio_mark_uptodate(folio);
1378 } else {
1379 f2fs_folio_put(folio, true);
1380
1381 /* if ifolio exists, blkaddr should be NEW_ADDR */
1382 f2fs_bug_on(F2FS_I_SB(inode), ifolio);
1383 folio = f2fs_get_lock_data_folio(inode, index, true);
1384 if (IS_ERR(folio))
1385 return folio;
1386 }
1387 got_it:
1388 if (new_i_size && i_size_read(inode) <
1389 ((loff_t)(index + 1) << PAGE_SHIFT))
1390 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1391 return folio;
1392 }
1393
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1394 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1395 {
1396 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 struct f2fs_summary sum;
1398 struct node_info ni;
1399 block_t old_blkaddr;
1400 blkcnt_t count = 1;
1401 int err;
1402
1403 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1404 return -EPERM;
1405
1406 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1407 if (err)
1408 return err;
1409
1410 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1411 if (dn->data_blkaddr == NULL_ADDR) {
1412 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1413 if (unlikely(err))
1414 return err;
1415 }
1416
1417 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1418 old_blkaddr = dn->data_blkaddr;
1419 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1420 &dn->data_blkaddr, &sum, seg_type, NULL);
1421 if (err)
1422 return err;
1423
1424 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1425 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1426
1427 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1428 return 0;
1429 }
1430
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1431 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1432 {
1433 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1434 f2fs_down_read(&sbi->node_change);
1435 else
1436 f2fs_lock_op(sbi);
1437 }
1438
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1439 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1440 {
1441 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1442 f2fs_up_read(&sbi->node_change);
1443 else
1444 f2fs_unlock_op(sbi);
1445 }
1446
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1447 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1448 {
1449 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1450 int err = 0;
1451
1452 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1453 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1454 &dn->data_blkaddr))
1455 err = f2fs_reserve_block(dn, index);
1456 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1457
1458 return err;
1459 }
1460
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1461 static int f2fs_map_no_dnode(struct inode *inode,
1462 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1463 pgoff_t pgoff)
1464 {
1465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1466
1467 /*
1468 * There is one exceptional case that read_node_page() may return
1469 * -ENOENT due to filesystem has been shutdown or cp_error, return
1470 * -EIO in that case.
1471 */
1472 if (map->m_may_create &&
1473 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1474 return -EIO;
1475
1476 if (map->m_next_pgofs)
1477 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1478 if (map->m_next_extent)
1479 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1480 return 0;
1481 }
1482
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1483 static bool f2fs_map_blocks_cached(struct inode *inode,
1484 struct f2fs_map_blocks *map, int flag)
1485 {
1486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 unsigned int maxblocks = map->m_len;
1488 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1489 struct extent_info ei = {};
1490
1491 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1492 return false;
1493
1494 map->m_pblk = ei.blk + pgoff - ei.fofs;
1495 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1496 map->m_flags = F2FS_MAP_MAPPED;
1497 if (map->m_next_extent)
1498 *map->m_next_extent = pgoff + map->m_len;
1499
1500 /* for hardware encryption, but to avoid potential issue in future */
1501 if (flag == F2FS_GET_BLOCK_DIO)
1502 f2fs_wait_on_block_writeback_range(inode,
1503 map->m_pblk, map->m_len);
1504
1505 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1506 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1507 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1508
1509 map->m_bdev = dev->bdev;
1510 map->m_pblk -= dev->start_blk;
1511 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1512 } else {
1513 map->m_bdev = inode->i_sb->s_bdev;
1514 }
1515 return true;
1516 }
1517
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1518 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1519 struct f2fs_map_blocks *map,
1520 block_t blkaddr, int flag, int bidx,
1521 int ofs)
1522 {
1523 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1524 return false;
1525 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1526 return true;
1527 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1528 return true;
1529 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1530 return true;
1531 if (flag == F2FS_GET_BLOCK_DIO &&
1532 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1533 return true;
1534 return false;
1535 }
1536
1537 /*
1538 * f2fs_map_blocks() tries to find or build mapping relationship which
1539 * maps continuous logical blocks to physical blocks, and return such
1540 * info via f2fs_map_blocks structure.
1541 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1542 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1543 {
1544 unsigned int maxblocks = map->m_len;
1545 struct dnode_of_data dn;
1546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1547 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1548 pgoff_t pgofs, end_offset, end;
1549 int err = 0, ofs = 1;
1550 unsigned int ofs_in_node, last_ofs_in_node;
1551 blkcnt_t prealloc;
1552 block_t blkaddr;
1553 unsigned int start_pgofs;
1554 int bidx = 0;
1555 bool is_hole;
1556
1557 if (!maxblocks)
1558 return 0;
1559
1560 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1561 goto out;
1562
1563 map->m_bdev = inode->i_sb->s_bdev;
1564 map->m_multidev_dio =
1565 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1566
1567 map->m_len = 0;
1568 map->m_flags = 0;
1569
1570 /* it only supports block size == page size */
1571 pgofs = (pgoff_t)map->m_lblk;
1572 end = pgofs + maxblocks;
1573
1574 next_dnode:
1575 if (map->m_may_create)
1576 f2fs_map_lock(sbi, flag);
1577
1578 /* When reading holes, we need its node page */
1579 set_new_dnode(&dn, inode, NULL, NULL, 0);
1580 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1581 if (err) {
1582 if (flag == F2FS_GET_BLOCK_BMAP)
1583 map->m_pblk = 0;
1584 if (err == -ENOENT)
1585 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1586 goto unlock_out;
1587 }
1588
1589 start_pgofs = pgofs;
1590 prealloc = 0;
1591 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1592 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
1593
1594 next_block:
1595 blkaddr = f2fs_data_blkaddr(&dn);
1596 is_hole = !__is_valid_data_blkaddr(blkaddr);
1597 if (!is_hole &&
1598 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1599 err = -EFSCORRUPTED;
1600 goto sync_out;
1601 }
1602
1603 /* use out-place-update for direct IO under LFS mode */
1604 if (map->m_may_create && (is_hole ||
1605 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1606 !f2fs_is_pinned_file(inode)))) {
1607 if (unlikely(f2fs_cp_error(sbi))) {
1608 err = -EIO;
1609 goto sync_out;
1610 }
1611
1612 switch (flag) {
1613 case F2FS_GET_BLOCK_PRE_AIO:
1614 if (blkaddr == NULL_ADDR) {
1615 prealloc++;
1616 last_ofs_in_node = dn.ofs_in_node;
1617 }
1618 break;
1619 case F2FS_GET_BLOCK_PRE_DIO:
1620 case F2FS_GET_BLOCK_DIO:
1621 err = __allocate_data_block(&dn, map->m_seg_type);
1622 if (err)
1623 goto sync_out;
1624 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1625 file_need_truncate(inode);
1626 set_inode_flag(inode, FI_APPEND_WRITE);
1627 break;
1628 default:
1629 WARN_ON_ONCE(1);
1630 err = -EIO;
1631 goto sync_out;
1632 }
1633
1634 blkaddr = dn.data_blkaddr;
1635 if (is_hole)
1636 map->m_flags |= F2FS_MAP_NEW;
1637 } else if (is_hole) {
1638 if (f2fs_compressed_file(inode) &&
1639 f2fs_sanity_check_cluster(&dn)) {
1640 err = -EFSCORRUPTED;
1641 f2fs_handle_error(sbi,
1642 ERROR_CORRUPTED_CLUSTER);
1643 goto sync_out;
1644 }
1645
1646 switch (flag) {
1647 case F2FS_GET_BLOCK_PRECACHE:
1648 goto sync_out;
1649 case F2FS_GET_BLOCK_BMAP:
1650 map->m_pblk = 0;
1651 goto sync_out;
1652 case F2FS_GET_BLOCK_FIEMAP:
1653 if (blkaddr == NULL_ADDR) {
1654 if (map->m_next_pgofs)
1655 *map->m_next_pgofs = pgofs + 1;
1656 goto sync_out;
1657 }
1658 break;
1659 case F2FS_GET_BLOCK_DIO:
1660 if (map->m_next_pgofs)
1661 *map->m_next_pgofs = pgofs + 1;
1662 break;
1663 default:
1664 /* for defragment case */
1665 if (map->m_next_pgofs)
1666 *map->m_next_pgofs = pgofs + 1;
1667 goto sync_out;
1668 }
1669 }
1670
1671 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1672 goto skip;
1673
1674 if (map->m_multidev_dio)
1675 bidx = f2fs_target_device_index(sbi, blkaddr);
1676
1677 if (map->m_len == 0) {
1678 /* reserved delalloc block should be mapped for fiemap. */
1679 if (blkaddr == NEW_ADDR)
1680 map->m_flags |= F2FS_MAP_DELALLOC;
1681 /* DIO READ and hole case, should not map the blocks. */
1682 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1683 map->m_flags |= F2FS_MAP_MAPPED;
1684
1685 map->m_pblk = blkaddr;
1686 map->m_len = 1;
1687
1688 if (map->m_multidev_dio)
1689 map->m_bdev = FDEV(bidx).bdev;
1690 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1691 ofs++;
1692 map->m_len++;
1693 } else {
1694 goto sync_out;
1695 }
1696
1697 skip:
1698 dn.ofs_in_node++;
1699 pgofs++;
1700
1701 /* preallocate blocks in batch for one dnode page */
1702 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1703 (pgofs == end || dn.ofs_in_node == end_offset)) {
1704
1705 dn.ofs_in_node = ofs_in_node;
1706 err = f2fs_reserve_new_blocks(&dn, prealloc);
1707 if (err)
1708 goto sync_out;
1709
1710 map->m_len += dn.ofs_in_node - ofs_in_node;
1711 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1712 err = -ENOSPC;
1713 goto sync_out;
1714 }
1715 dn.ofs_in_node = end_offset;
1716 }
1717
1718 if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1719 map->m_may_create) {
1720 /* the next block to be allocated may not be contiguous. */
1721 if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1722 CAP_BLKS_PER_SEC(sbi) - 1)
1723 goto sync_out;
1724 }
1725
1726 if (pgofs >= end)
1727 goto sync_out;
1728 else if (dn.ofs_in_node < end_offset)
1729 goto next_block;
1730
1731 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1732 if (map->m_flags & F2FS_MAP_MAPPED) {
1733 unsigned int ofs = start_pgofs - map->m_lblk;
1734
1735 f2fs_update_read_extent_cache_range(&dn,
1736 start_pgofs, map->m_pblk + ofs,
1737 map->m_len - ofs);
1738 }
1739 }
1740
1741 f2fs_put_dnode(&dn);
1742
1743 if (map->m_may_create) {
1744 f2fs_map_unlock(sbi, flag);
1745 f2fs_balance_fs(sbi, dn.node_changed);
1746 }
1747 goto next_dnode;
1748
1749 sync_out:
1750
1751 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1752 /*
1753 * for hardware encryption, but to avoid potential issue
1754 * in future
1755 */
1756 f2fs_wait_on_block_writeback_range(inode,
1757 map->m_pblk, map->m_len);
1758
1759 if (map->m_multidev_dio) {
1760 block_t blk_addr = map->m_pblk;
1761
1762 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1763
1764 map->m_bdev = FDEV(bidx).bdev;
1765 map->m_pblk -= FDEV(bidx).start_blk;
1766
1767 if (map->m_may_create)
1768 f2fs_update_device_state(sbi, inode->i_ino,
1769 blk_addr, map->m_len);
1770
1771 f2fs_bug_on(sbi, blk_addr + map->m_len >
1772 FDEV(bidx).end_blk + 1);
1773 }
1774 }
1775
1776 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1777 if (map->m_flags & F2FS_MAP_MAPPED) {
1778 unsigned int ofs = start_pgofs - map->m_lblk;
1779
1780 f2fs_update_read_extent_cache_range(&dn,
1781 start_pgofs, map->m_pblk + ofs,
1782 map->m_len - ofs);
1783 }
1784 if (map->m_next_extent)
1785 *map->m_next_extent = pgofs + 1;
1786 }
1787 f2fs_put_dnode(&dn);
1788 unlock_out:
1789 if (map->m_may_create) {
1790 f2fs_map_unlock(sbi, flag);
1791 f2fs_balance_fs(sbi, dn.node_changed);
1792 }
1793 out:
1794 trace_f2fs_map_blocks(inode, map, flag, err);
1795 return err;
1796 }
1797
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1798 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1799 {
1800 struct f2fs_map_blocks map;
1801 block_t last_lblk;
1802 int err;
1803
1804 if (pos + len > i_size_read(inode))
1805 return false;
1806
1807 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1808 map.m_next_pgofs = NULL;
1809 map.m_next_extent = NULL;
1810 map.m_seg_type = NO_CHECK_TYPE;
1811 map.m_may_create = false;
1812 last_lblk = F2FS_BLK_ALIGN(pos + len);
1813
1814 while (map.m_lblk < last_lblk) {
1815 map.m_len = last_lblk - map.m_lblk;
1816 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1817 if (err || map.m_len == 0)
1818 return false;
1819 map.m_lblk += map.m_len;
1820 }
1821 return true;
1822 }
1823
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1824 static int f2fs_xattr_fiemap(struct inode *inode,
1825 struct fiemap_extent_info *fieinfo)
1826 {
1827 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1828 struct node_info ni;
1829 __u64 phys = 0, len;
1830 __u32 flags;
1831 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1832 int err = 0;
1833
1834 if (f2fs_has_inline_xattr(inode)) {
1835 int offset;
1836 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1837 inode->i_ino, false);
1838
1839 if (IS_ERR(folio))
1840 return PTR_ERR(folio);
1841
1842 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1843 if (err) {
1844 f2fs_folio_put(folio, true);
1845 return err;
1846 }
1847
1848 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1849 offset = offsetof(struct f2fs_inode, i_addr) +
1850 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1851 get_inline_xattr_addrs(inode));
1852
1853 phys += offset;
1854 len = inline_xattr_size(inode);
1855
1856 f2fs_folio_put(folio, true);
1857
1858 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1859
1860 if (!xnid)
1861 flags |= FIEMAP_EXTENT_LAST;
1862
1863 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1864 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1865 if (err)
1866 return err;
1867 }
1868
1869 if (xnid) {
1870 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1871 xnid, false);
1872
1873 if (IS_ERR(folio))
1874 return PTR_ERR(folio);
1875
1876 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1877 if (err) {
1878 f2fs_folio_put(folio, true);
1879 return err;
1880 }
1881
1882 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1883 len = inode->i_sb->s_blocksize;
1884
1885 f2fs_folio_put(folio, true);
1886
1887 flags = FIEMAP_EXTENT_LAST;
1888 }
1889
1890 if (phys) {
1891 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1892 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1893 }
1894
1895 return (err < 0 ? err : 0);
1896 }
1897
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1898 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1899 u64 start, u64 len)
1900 {
1901 struct f2fs_map_blocks map;
1902 sector_t start_blk, last_blk, blk_len, max_len;
1903 pgoff_t next_pgofs;
1904 u64 logical = 0, phys = 0, size = 0;
1905 u32 flags = 0;
1906 int ret = 0;
1907 bool compr_cluster = false, compr_appended;
1908 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1909 unsigned int count_in_cluster = 0;
1910 loff_t maxbytes;
1911
1912 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1913 ret = f2fs_precache_extents(inode);
1914 if (ret)
1915 return ret;
1916 }
1917
1918 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1919 if (ret)
1920 return ret;
1921
1922 inode_lock_shared(inode);
1923
1924 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1925 if (start > maxbytes) {
1926 ret = -EFBIG;
1927 goto out;
1928 }
1929
1930 if (len > maxbytes || (maxbytes - len) < start)
1931 len = maxbytes - start;
1932
1933 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1934 ret = f2fs_xattr_fiemap(inode, fieinfo);
1935 goto out;
1936 }
1937
1938 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1939 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1940 if (ret != -EAGAIN)
1941 goto out;
1942 }
1943
1944 start_blk = F2FS_BYTES_TO_BLK(start);
1945 last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1946 blk_len = last_blk - start_blk + 1;
1947 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1948
1949 next:
1950 memset(&map, 0, sizeof(map));
1951 map.m_lblk = start_blk;
1952 map.m_len = blk_len;
1953 map.m_next_pgofs = &next_pgofs;
1954 map.m_seg_type = NO_CHECK_TYPE;
1955
1956 if (compr_cluster) {
1957 map.m_lblk += 1;
1958 map.m_len = cluster_size - count_in_cluster;
1959 }
1960
1961 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1962 if (ret)
1963 goto out;
1964
1965 /* HOLE */
1966 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1967 start_blk = next_pgofs;
1968
1969 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1970 goto prep_next;
1971
1972 flags |= FIEMAP_EXTENT_LAST;
1973 }
1974
1975 /*
1976 * current extent may cross boundary of inquiry, increase len to
1977 * requery.
1978 */
1979 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1980 map.m_lblk + map.m_len - 1 == last_blk &&
1981 blk_len != max_len) {
1982 blk_len = max_len;
1983 goto next;
1984 }
1985
1986 compr_appended = false;
1987 /* In a case of compressed cluster, append this to the last extent */
1988 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1989 !(map.m_flags & F2FS_MAP_FLAGS))) {
1990 compr_appended = true;
1991 goto skip_fill;
1992 }
1993
1994 if (size) {
1995 flags |= FIEMAP_EXTENT_MERGED;
1996 if (IS_ENCRYPTED(inode))
1997 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1998
1999 ret = fiemap_fill_next_extent(fieinfo, logical,
2000 phys, size, flags);
2001 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2002 if (ret)
2003 goto out;
2004 size = 0;
2005 }
2006
2007 if (start_blk > last_blk)
2008 goto out;
2009
2010 skip_fill:
2011 if (map.m_pblk == COMPRESS_ADDR) {
2012 compr_cluster = true;
2013 count_in_cluster = 1;
2014 } else if (compr_appended) {
2015 unsigned int appended_blks = cluster_size -
2016 count_in_cluster + 1;
2017 size += F2FS_BLK_TO_BYTES(appended_blks);
2018 start_blk += appended_blks;
2019 compr_cluster = false;
2020 } else {
2021 logical = F2FS_BLK_TO_BYTES(start_blk);
2022 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2023 F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2024 size = F2FS_BLK_TO_BYTES(map.m_len);
2025 flags = 0;
2026
2027 if (compr_cluster) {
2028 flags = FIEMAP_EXTENT_ENCODED;
2029 count_in_cluster += map.m_len;
2030 if (count_in_cluster == cluster_size) {
2031 compr_cluster = false;
2032 size += F2FS_BLKSIZE;
2033 }
2034 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2035 flags = FIEMAP_EXTENT_UNWRITTEN;
2036 }
2037
2038 start_blk += F2FS_BYTES_TO_BLK(size);
2039 }
2040
2041 prep_next:
2042 cond_resched();
2043 if (fatal_signal_pending(current))
2044 ret = -EINTR;
2045 else
2046 goto next;
2047 out:
2048 if (ret == 1)
2049 ret = 0;
2050
2051 inode_unlock_shared(inode);
2052 return ret;
2053 }
2054
f2fs_readpage_limit(struct inode * inode)2055 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2056 {
2057 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2058 return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2059
2060 return i_size_read(inode);
2061 }
2062
f2fs_ra_op_flags(struct readahead_control * rac)2063 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2064 {
2065 return rac ? REQ_RAHEAD : 0;
2066 }
2067
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2068 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2069 unsigned nr_pages,
2070 struct f2fs_map_blocks *map,
2071 struct bio **bio_ret,
2072 sector_t *last_block_in_bio,
2073 struct readahead_control *rac)
2074 {
2075 struct bio *bio = *bio_ret;
2076 const unsigned int blocksize = F2FS_BLKSIZE;
2077 sector_t block_in_file;
2078 sector_t last_block;
2079 sector_t last_block_in_file;
2080 sector_t block_nr;
2081 pgoff_t index = folio->index;
2082 int ret = 0;
2083
2084 block_in_file = (sector_t)index;
2085 last_block = block_in_file + nr_pages;
2086 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2087 blocksize - 1);
2088 if (last_block > last_block_in_file)
2089 last_block = last_block_in_file;
2090
2091 /* just zeroing out page which is beyond EOF */
2092 if (block_in_file >= last_block)
2093 goto zero_out;
2094 /*
2095 * Map blocks using the previous result first.
2096 */
2097 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2098 block_in_file > map->m_lblk &&
2099 block_in_file < (map->m_lblk + map->m_len))
2100 goto got_it;
2101
2102 /*
2103 * Then do more f2fs_map_blocks() calls until we are
2104 * done with this page.
2105 */
2106 map->m_lblk = block_in_file;
2107 map->m_len = last_block - block_in_file;
2108
2109 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2110 if (ret)
2111 goto out;
2112 got_it:
2113 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2114 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2115 folio_set_mappedtodisk(folio);
2116
2117 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2118 DATA_GENERIC_ENHANCE_READ)) {
2119 ret = -EFSCORRUPTED;
2120 goto out;
2121 }
2122 } else {
2123 zero_out:
2124 folio_zero_segment(folio, 0, folio_size(folio));
2125 if (f2fs_need_verity(inode, index) &&
2126 !fsverity_verify_folio(folio)) {
2127 ret = -EIO;
2128 goto out;
2129 }
2130 if (!folio_test_uptodate(folio))
2131 folio_mark_uptodate(folio);
2132 folio_unlock(folio);
2133 goto out;
2134 }
2135
2136 /*
2137 * This page will go to BIO. Do we need to send this
2138 * BIO off first?
2139 */
2140 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2141 *last_block_in_bio, block_nr) ||
2142 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2143 submit_and_realloc:
2144 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2145 bio = NULL;
2146 }
2147 if (bio == NULL) {
2148 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2149 f2fs_ra_op_flags(rac), index,
2150 false);
2151 if (IS_ERR(bio)) {
2152 ret = PTR_ERR(bio);
2153 bio = NULL;
2154 goto out;
2155 }
2156 }
2157
2158 /*
2159 * If the page is under writeback, we need to wait for
2160 * its completion to see the correct decrypted data.
2161 */
2162 f2fs_wait_on_block_writeback(inode, block_nr);
2163
2164 if (!bio_add_folio(bio, folio, blocksize, 0))
2165 goto submit_and_realloc;
2166
2167 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2168 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2169 F2FS_BLKSIZE);
2170 *last_block_in_bio = block_nr;
2171 out:
2172 *bio_ret = bio;
2173 return ret;
2174 }
2175
2176 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2177 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2178 unsigned nr_pages, sector_t *last_block_in_bio,
2179 struct readahead_control *rac, bool for_write)
2180 {
2181 struct dnode_of_data dn;
2182 struct inode *inode = cc->inode;
2183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2184 struct bio *bio = *bio_ret;
2185 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2186 sector_t last_block_in_file;
2187 const unsigned int blocksize = F2FS_BLKSIZE;
2188 struct decompress_io_ctx *dic = NULL;
2189 struct extent_info ei = {};
2190 bool from_dnode = true;
2191 int i;
2192 int ret = 0;
2193
2194 if (unlikely(f2fs_cp_error(sbi))) {
2195 ret = -EIO;
2196 from_dnode = false;
2197 goto out_put_dnode;
2198 }
2199
2200 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2201
2202 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2203 blocksize - 1);
2204
2205 /* get rid of pages beyond EOF */
2206 for (i = 0; i < cc->cluster_size; i++) {
2207 struct page *page = cc->rpages[i];
2208 struct folio *folio;
2209
2210 if (!page)
2211 continue;
2212
2213 folio = page_folio(page);
2214 if ((sector_t)folio->index >= last_block_in_file) {
2215 folio_zero_segment(folio, 0, folio_size(folio));
2216 if (!folio_test_uptodate(folio))
2217 folio_mark_uptodate(folio);
2218 } else if (!folio_test_uptodate(folio)) {
2219 continue;
2220 }
2221 folio_unlock(folio);
2222 if (for_write)
2223 folio_put(folio);
2224 cc->rpages[i] = NULL;
2225 cc->nr_rpages--;
2226 }
2227
2228 /* we are done since all pages are beyond EOF */
2229 if (f2fs_cluster_is_empty(cc))
2230 goto out;
2231
2232 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2233 from_dnode = false;
2234
2235 if (!from_dnode)
2236 goto skip_reading_dnode;
2237
2238 set_new_dnode(&dn, inode, NULL, NULL, 0);
2239 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2240 if (ret)
2241 goto out;
2242
2243 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2244
2245 skip_reading_dnode:
2246 for (i = 1; i < cc->cluster_size; i++) {
2247 block_t blkaddr;
2248
2249 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2250 dn.ofs_in_node + i) :
2251 ei.blk + i - 1;
2252
2253 if (!__is_valid_data_blkaddr(blkaddr))
2254 break;
2255
2256 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2257 ret = -EFAULT;
2258 goto out_put_dnode;
2259 }
2260 cc->nr_cpages++;
2261
2262 if (!from_dnode && i >= ei.c_len)
2263 break;
2264 }
2265
2266 /* nothing to decompress */
2267 if (cc->nr_cpages == 0) {
2268 ret = 0;
2269 goto out_put_dnode;
2270 }
2271
2272 dic = f2fs_alloc_dic(cc);
2273 if (IS_ERR(dic)) {
2274 ret = PTR_ERR(dic);
2275 goto out_put_dnode;
2276 }
2277
2278 for (i = 0; i < cc->nr_cpages; i++) {
2279 struct folio *folio = page_folio(dic->cpages[i]);
2280 block_t blkaddr;
2281 struct bio_post_read_ctx *ctx;
2282
2283 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2284 dn.ofs_in_node + i + 1) :
2285 ei.blk + i;
2286
2287 f2fs_wait_on_block_writeback(inode, blkaddr);
2288
2289 if (f2fs_load_compressed_folio(sbi, folio, blkaddr)) {
2290 if (atomic_dec_and_test(&dic->remaining_pages)) {
2291 f2fs_decompress_cluster(dic, true);
2292 break;
2293 }
2294 continue;
2295 }
2296
2297 if (bio && (!page_is_mergeable(sbi, bio,
2298 *last_block_in_bio, blkaddr) ||
2299 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2300 submit_and_realloc:
2301 f2fs_submit_read_bio(sbi, bio, DATA);
2302 bio = NULL;
2303 }
2304
2305 if (!bio) {
2306 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2307 f2fs_ra_op_flags(rac),
2308 folio->index, for_write);
2309 if (IS_ERR(bio)) {
2310 ret = PTR_ERR(bio);
2311 f2fs_decompress_end_io(dic, ret, true);
2312 f2fs_put_dnode(&dn);
2313 *bio_ret = NULL;
2314 return ret;
2315 }
2316 }
2317
2318 if (!bio_add_folio(bio, folio, blocksize, 0))
2319 goto submit_and_realloc;
2320
2321 ctx = get_post_read_ctx(bio);
2322 ctx->enabled_steps |= STEP_DECOMPRESS;
2323 refcount_inc(&dic->refcnt);
2324
2325 inc_page_count(sbi, F2FS_RD_DATA);
2326 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2327 *last_block_in_bio = blkaddr;
2328 }
2329
2330 if (from_dnode)
2331 f2fs_put_dnode(&dn);
2332
2333 *bio_ret = bio;
2334 return 0;
2335
2336 out_put_dnode:
2337 if (from_dnode)
2338 f2fs_put_dnode(&dn);
2339 out:
2340 for (i = 0; i < cc->cluster_size; i++) {
2341 if (cc->rpages[i]) {
2342 ClearPageUptodate(cc->rpages[i]);
2343 unlock_page(cc->rpages[i]);
2344 }
2345 }
2346 *bio_ret = bio;
2347 return ret;
2348 }
2349 #endif
2350
2351 /*
2352 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2353 * Major change was from block_size == page_size in f2fs by default.
2354 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2355 static int f2fs_mpage_readpages(struct inode *inode,
2356 struct readahead_control *rac, struct folio *folio)
2357 {
2358 struct bio *bio = NULL;
2359 sector_t last_block_in_bio = 0;
2360 struct f2fs_map_blocks map;
2361 #ifdef CONFIG_F2FS_FS_COMPRESSION
2362 struct compress_ctx cc = {
2363 .inode = inode,
2364 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2365 .cluster_size = F2FS_I(inode)->i_cluster_size,
2366 .cluster_idx = NULL_CLUSTER,
2367 .rpages = NULL,
2368 .cpages = NULL,
2369 .nr_rpages = 0,
2370 .nr_cpages = 0,
2371 };
2372 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2373 pgoff_t index;
2374 #endif
2375 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2376 unsigned max_nr_pages = nr_pages;
2377 int ret = 0;
2378
2379 map.m_pblk = 0;
2380 map.m_lblk = 0;
2381 map.m_len = 0;
2382 map.m_flags = 0;
2383 map.m_next_pgofs = NULL;
2384 map.m_next_extent = NULL;
2385 map.m_seg_type = NO_CHECK_TYPE;
2386 map.m_may_create = false;
2387
2388 for (; nr_pages; nr_pages--) {
2389 if (rac) {
2390 folio = readahead_folio(rac);
2391 prefetchw(&folio->flags);
2392 }
2393
2394 #ifdef CONFIG_F2FS_FS_COMPRESSION
2395 index = folio->index;
2396
2397 if (!f2fs_compressed_file(inode))
2398 goto read_single_page;
2399
2400 /* there are remained compressed pages, submit them */
2401 if (!f2fs_cluster_can_merge_page(&cc, index)) {
2402 ret = f2fs_read_multi_pages(&cc, &bio,
2403 max_nr_pages,
2404 &last_block_in_bio,
2405 rac, false);
2406 f2fs_destroy_compress_ctx(&cc, false);
2407 if (ret)
2408 goto set_error_page;
2409 }
2410 if (cc.cluster_idx == NULL_CLUSTER) {
2411 if (nc_cluster_idx == index >> cc.log_cluster_size)
2412 goto read_single_page;
2413
2414 ret = f2fs_is_compressed_cluster(inode, index);
2415 if (ret < 0)
2416 goto set_error_page;
2417 else if (!ret) {
2418 nc_cluster_idx =
2419 index >> cc.log_cluster_size;
2420 goto read_single_page;
2421 }
2422
2423 nc_cluster_idx = NULL_CLUSTER;
2424 }
2425 ret = f2fs_init_compress_ctx(&cc);
2426 if (ret)
2427 goto set_error_page;
2428
2429 f2fs_compress_ctx_add_page(&cc, folio);
2430
2431 goto next_page;
2432 read_single_page:
2433 #endif
2434
2435 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2436 &bio, &last_block_in_bio, rac);
2437 if (ret) {
2438 #ifdef CONFIG_F2FS_FS_COMPRESSION
2439 set_error_page:
2440 #endif
2441 folio_zero_segment(folio, 0, folio_size(folio));
2442 folio_unlock(folio);
2443 }
2444 #ifdef CONFIG_F2FS_FS_COMPRESSION
2445 next_page:
2446 #endif
2447
2448 #ifdef CONFIG_F2FS_FS_COMPRESSION
2449 if (f2fs_compressed_file(inode)) {
2450 /* last page */
2451 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2452 ret = f2fs_read_multi_pages(&cc, &bio,
2453 max_nr_pages,
2454 &last_block_in_bio,
2455 rac, false);
2456 f2fs_destroy_compress_ctx(&cc, false);
2457 }
2458 }
2459 #endif
2460 }
2461 if (bio)
2462 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2463 return ret;
2464 }
2465
f2fs_read_data_folio(struct file * file,struct folio * folio)2466 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2467 {
2468 struct inode *inode = folio->mapping->host;
2469 int ret = -EAGAIN;
2470
2471 trace_f2fs_readpage(folio, DATA);
2472
2473 if (!f2fs_is_compress_backend_ready(inode)) {
2474 folio_unlock(folio);
2475 return -EOPNOTSUPP;
2476 }
2477
2478 /* If the file has inline data, try to read it directly */
2479 if (f2fs_has_inline_data(inode))
2480 ret = f2fs_read_inline_data(inode, folio);
2481 if (ret == -EAGAIN)
2482 ret = f2fs_mpage_readpages(inode, NULL, folio);
2483 return ret;
2484 }
2485
f2fs_readahead(struct readahead_control * rac)2486 static void f2fs_readahead(struct readahead_control *rac)
2487 {
2488 struct inode *inode = rac->mapping->host;
2489
2490 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2491
2492 if (!f2fs_is_compress_backend_ready(inode))
2493 return;
2494
2495 /* If the file has inline data, skip readahead */
2496 if (f2fs_has_inline_data(inode))
2497 return;
2498
2499 f2fs_mpage_readpages(inode, rac, NULL);
2500 }
2501
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2503 {
2504 struct inode *inode = fio_inode(fio);
2505 struct folio *mfolio;
2506 struct page *page;
2507 gfp_t gfp_flags = GFP_NOFS;
2508
2509 if (!f2fs_encrypted_file(inode))
2510 return 0;
2511
2512 page = fio->compressed_page ? fio->compressed_page : fio->page;
2513
2514 if (fscrypt_inode_uses_inline_crypto(inode))
2515 return 0;
2516
2517 retry_encrypt:
2518 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page),
2519 PAGE_SIZE, 0, gfp_flags);
2520 if (IS_ERR(fio->encrypted_page)) {
2521 /* flush pending IOs and wait for a while in the ENOMEM case */
2522 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2523 f2fs_flush_merged_writes(fio->sbi);
2524 memalloc_retry_wait(GFP_NOFS);
2525 gfp_flags |= __GFP_NOFAIL;
2526 goto retry_encrypt;
2527 }
2528 return PTR_ERR(fio->encrypted_page);
2529 }
2530
2531 mfolio = filemap_lock_folio(META_MAPPING(fio->sbi), fio->old_blkaddr);
2532 if (!IS_ERR(mfolio)) {
2533 if (folio_test_uptodate(mfolio))
2534 memcpy(folio_address(mfolio),
2535 page_address(fio->encrypted_page), PAGE_SIZE);
2536 f2fs_folio_put(mfolio, true);
2537 }
2538 return 0;
2539 }
2540
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2541 static inline bool check_inplace_update_policy(struct inode *inode,
2542 struct f2fs_io_info *fio)
2543 {
2544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2545
2546 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2547 is_inode_flag_set(inode, FI_OPU_WRITE))
2548 return false;
2549 if (IS_F2FS_IPU_FORCE(sbi))
2550 return true;
2551 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2552 return true;
2553 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2554 return true;
2555 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2556 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2557 return true;
2558
2559 /*
2560 * IPU for rewrite async pages
2561 */
2562 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2563 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2564 return true;
2565
2566 /* this is only set during fdatasync */
2567 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2568 return true;
2569
2570 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2571 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2572 return true;
2573
2574 return false;
2575 }
2576
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2577 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2578 {
2579 /* swap file is migrating in aligned write mode */
2580 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2581 return false;
2582
2583 if (f2fs_is_pinned_file(inode))
2584 return true;
2585
2586 /* if this is cold file, we should overwrite to avoid fragmentation */
2587 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2588 return true;
2589
2590 return check_inplace_update_policy(inode, fio);
2591 }
2592
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2593 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2594 {
2595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2596
2597 /* The below cases were checked when setting it. */
2598 if (f2fs_is_pinned_file(inode))
2599 return false;
2600 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2601 return true;
2602 if (f2fs_lfs_mode(sbi))
2603 return true;
2604 if (S_ISDIR(inode->i_mode))
2605 return true;
2606 if (IS_NOQUOTA(inode))
2607 return true;
2608 if (f2fs_used_in_atomic_write(inode))
2609 return true;
2610 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2611 if (f2fs_compressed_file(inode) &&
2612 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2613 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2614 return true;
2615
2616 /* swap file is migrating in aligned write mode */
2617 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2618 return true;
2619
2620 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2621 return true;
2622
2623 if (fio) {
2624 if (page_private_gcing(fio->page))
2625 return true;
2626 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2627 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2628 return true;
2629 }
2630 return false;
2631 }
2632
need_inplace_update(struct f2fs_io_info * fio)2633 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2634 {
2635 struct inode *inode = fio_inode(fio);
2636
2637 if (f2fs_should_update_outplace(inode, fio))
2638 return false;
2639
2640 return f2fs_should_update_inplace(inode, fio);
2641 }
2642
f2fs_do_write_data_page(struct f2fs_io_info * fio)2643 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2644 {
2645 struct folio *folio = page_folio(fio->page);
2646 struct inode *inode = folio->mapping->host;
2647 struct dnode_of_data dn;
2648 struct node_info ni;
2649 bool ipu_force = false;
2650 bool atomic_commit;
2651 int err = 0;
2652
2653 /* Use COW inode to make dnode_of_data for atomic write */
2654 atomic_commit = f2fs_is_atomic_file(inode) &&
2655 page_private_atomic(folio_page(folio, 0));
2656 if (atomic_commit)
2657 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2658 else
2659 set_new_dnode(&dn, inode, NULL, NULL, 0);
2660
2661 if (need_inplace_update(fio) &&
2662 f2fs_lookup_read_extent_cache_block(inode, folio->index,
2663 &fio->old_blkaddr)) {
2664 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2665 DATA_GENERIC_ENHANCE))
2666 return -EFSCORRUPTED;
2667
2668 ipu_force = true;
2669 fio->need_lock = LOCK_DONE;
2670 goto got_it;
2671 }
2672
2673 /* Deadlock due to between page->lock and f2fs_lock_op */
2674 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2675 return -EAGAIN;
2676
2677 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2678 if (err)
2679 goto out;
2680
2681 fio->old_blkaddr = dn.data_blkaddr;
2682
2683 /* This page is already truncated */
2684 if (fio->old_blkaddr == NULL_ADDR) {
2685 folio_clear_uptodate(folio);
2686 clear_page_private_gcing(folio_page(folio, 0));
2687 goto out_writepage;
2688 }
2689 got_it:
2690 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2691 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2692 DATA_GENERIC_ENHANCE)) {
2693 err = -EFSCORRUPTED;
2694 goto out_writepage;
2695 }
2696
2697 /* wait for GCed page writeback via META_MAPPING */
2698 if (fio->meta_gc)
2699 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2700
2701 /*
2702 * If current allocation needs SSR,
2703 * it had better in-place writes for updated data.
2704 */
2705 if (ipu_force ||
2706 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2707 need_inplace_update(fio))) {
2708 err = f2fs_encrypt_one_page(fio);
2709 if (err)
2710 goto out_writepage;
2711
2712 folio_start_writeback(folio);
2713 f2fs_put_dnode(&dn);
2714 if (fio->need_lock == LOCK_REQ)
2715 f2fs_unlock_op(fio->sbi);
2716 err = f2fs_inplace_write_data(fio);
2717 if (err) {
2718 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2719 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2720 folio_end_writeback(folio);
2721 } else {
2722 set_inode_flag(inode, FI_UPDATE_WRITE);
2723 }
2724 trace_f2fs_do_write_data_page(folio, IPU);
2725 return err;
2726 }
2727
2728 if (fio->need_lock == LOCK_RETRY) {
2729 if (!f2fs_trylock_op(fio->sbi)) {
2730 err = -EAGAIN;
2731 goto out_writepage;
2732 }
2733 fio->need_lock = LOCK_REQ;
2734 }
2735
2736 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2737 if (err)
2738 goto out_writepage;
2739
2740 fio->version = ni.version;
2741
2742 err = f2fs_encrypt_one_page(fio);
2743 if (err)
2744 goto out_writepage;
2745
2746 folio_start_writeback(folio);
2747
2748 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2749 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2750
2751 /* LFS mode write path */
2752 f2fs_outplace_write_data(&dn, fio);
2753 trace_f2fs_do_write_data_page(folio, OPU);
2754 set_inode_flag(inode, FI_APPEND_WRITE);
2755 if (atomic_commit)
2756 clear_page_private_atomic(folio_page(folio, 0));
2757 out_writepage:
2758 f2fs_put_dnode(&dn);
2759 out:
2760 if (fio->need_lock == LOCK_REQ)
2761 f2fs_unlock_op(fio->sbi);
2762 return err;
2763 }
2764
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2765 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2766 struct bio **bio,
2767 sector_t *last_block,
2768 struct writeback_control *wbc,
2769 enum iostat_type io_type,
2770 int compr_blocks,
2771 bool allow_balance)
2772 {
2773 struct inode *inode = folio->mapping->host;
2774 struct page *page = folio_page(folio, 0);
2775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2776 loff_t i_size = i_size_read(inode);
2777 const pgoff_t end_index = ((unsigned long long)i_size)
2778 >> PAGE_SHIFT;
2779 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2780 unsigned offset = 0;
2781 bool need_balance_fs = false;
2782 bool quota_inode = IS_NOQUOTA(inode);
2783 int err = 0;
2784 struct f2fs_io_info fio = {
2785 .sbi = sbi,
2786 .ino = inode->i_ino,
2787 .type = DATA,
2788 .op = REQ_OP_WRITE,
2789 .op_flags = wbc_to_write_flags(wbc),
2790 .old_blkaddr = NULL_ADDR,
2791 .page = page,
2792 .encrypted_page = NULL,
2793 .submitted = 0,
2794 .compr_blocks = compr_blocks,
2795 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2796 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2797 .io_type = io_type,
2798 .io_wbc = wbc,
2799 .bio = bio,
2800 .last_block = last_block,
2801 };
2802
2803 trace_f2fs_writepage(folio, DATA);
2804
2805 /* we should bypass data pages to proceed the kworker jobs */
2806 if (unlikely(f2fs_cp_error(sbi))) {
2807 mapping_set_error(folio->mapping, -EIO);
2808 /*
2809 * don't drop any dirty dentry pages for keeping lastest
2810 * directory structure.
2811 */
2812 if (S_ISDIR(inode->i_mode) &&
2813 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2814 goto redirty_out;
2815
2816 /* keep data pages in remount-ro mode */
2817 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2818 goto redirty_out;
2819 goto out;
2820 }
2821
2822 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2823 goto redirty_out;
2824
2825 if (folio->index < end_index ||
2826 f2fs_verity_in_progress(inode) ||
2827 compr_blocks)
2828 goto write;
2829
2830 /*
2831 * If the offset is out-of-range of file size,
2832 * this page does not have to be written to disk.
2833 */
2834 offset = i_size & (PAGE_SIZE - 1);
2835 if ((folio->index >= end_index + 1) || !offset)
2836 goto out;
2837
2838 folio_zero_segment(folio, offset, folio_size(folio));
2839 write:
2840 /* Dentry/quota blocks are controlled by checkpoint */
2841 if (S_ISDIR(inode->i_mode) || quota_inode) {
2842 /*
2843 * We need to wait for node_write to avoid block allocation during
2844 * checkpoint. This can only happen to quota writes which can cause
2845 * the below discard race condition.
2846 */
2847 if (quota_inode)
2848 f2fs_down_read(&sbi->node_write);
2849
2850 fio.need_lock = LOCK_DONE;
2851 err = f2fs_do_write_data_page(&fio);
2852
2853 if (quota_inode)
2854 f2fs_up_read(&sbi->node_write);
2855
2856 goto done;
2857 }
2858
2859 need_balance_fs = true;
2860 err = -EAGAIN;
2861 if (f2fs_has_inline_data(inode)) {
2862 err = f2fs_write_inline_data(inode, folio);
2863 if (!err)
2864 goto out;
2865 }
2866
2867 if (err == -EAGAIN) {
2868 err = f2fs_do_write_data_page(&fio);
2869 if (err == -EAGAIN) {
2870 f2fs_bug_on(sbi, compr_blocks);
2871 fio.need_lock = LOCK_REQ;
2872 err = f2fs_do_write_data_page(&fio);
2873 }
2874 }
2875
2876 if (err) {
2877 file_set_keep_isize(inode);
2878 } else {
2879 spin_lock(&F2FS_I(inode)->i_size_lock);
2880 if (F2FS_I(inode)->last_disk_size < psize)
2881 F2FS_I(inode)->last_disk_size = psize;
2882 spin_unlock(&F2FS_I(inode)->i_size_lock);
2883 }
2884
2885 done:
2886 if (err && err != -ENOENT)
2887 goto redirty_out;
2888
2889 out:
2890 inode_dec_dirty_pages(inode);
2891 if (err) {
2892 folio_clear_uptodate(folio);
2893 clear_page_private_gcing(page);
2894 }
2895 folio_unlock(folio);
2896 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2897 !F2FS_I(inode)->wb_task && allow_balance)
2898 f2fs_balance_fs(sbi, need_balance_fs);
2899
2900 if (unlikely(f2fs_cp_error(sbi))) {
2901 f2fs_submit_merged_write(sbi, DATA);
2902 if (bio && *bio)
2903 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2904 submitted = NULL;
2905 }
2906
2907 if (submitted)
2908 *submitted = fio.submitted;
2909
2910 return 0;
2911
2912 redirty_out:
2913 folio_redirty_for_writepage(wbc, folio);
2914 /*
2915 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2916 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2917 * file_write_and_wait_range() will see EIO error, which is critical
2918 * to return value of fsync() followed by atomic_write failure to user.
2919 */
2920 folio_unlock(folio);
2921 if (!err)
2922 return 1;
2923 return err;
2924 }
2925
2926 /*
2927 * This function was copied from write_cache_pages from mm/page-writeback.c.
2928 * The major change is making write step of cold data page separately from
2929 * warm/hot data page.
2930 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2931 static int f2fs_write_cache_pages(struct address_space *mapping,
2932 struct writeback_control *wbc,
2933 enum iostat_type io_type)
2934 {
2935 int ret = 0;
2936 int done = 0, retry = 0;
2937 struct page *pages_local[F2FS_ONSTACK_PAGES];
2938 struct page **pages = pages_local;
2939 struct folio_batch fbatch;
2940 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2941 struct bio *bio = NULL;
2942 sector_t last_block;
2943 #ifdef CONFIG_F2FS_FS_COMPRESSION
2944 struct inode *inode = mapping->host;
2945 struct compress_ctx cc = {
2946 .inode = inode,
2947 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2948 .cluster_size = F2FS_I(inode)->i_cluster_size,
2949 .cluster_idx = NULL_CLUSTER,
2950 .rpages = NULL,
2951 .nr_rpages = 0,
2952 .cpages = NULL,
2953 .valid_nr_cpages = 0,
2954 .rbuf = NULL,
2955 .cbuf = NULL,
2956 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2957 .private = NULL,
2958 };
2959 #endif
2960 int nr_folios, p, idx;
2961 int nr_pages;
2962 unsigned int max_pages = F2FS_ONSTACK_PAGES;
2963 pgoff_t index;
2964 pgoff_t end; /* Inclusive */
2965 pgoff_t done_index;
2966 int range_whole = 0;
2967 xa_mark_t tag;
2968 int nwritten = 0;
2969 int submitted = 0;
2970 int i;
2971
2972 #ifdef CONFIG_F2FS_FS_COMPRESSION
2973 if (f2fs_compressed_file(inode) &&
2974 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2975 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2976 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2977 max_pages = 1 << cc.log_cluster_size;
2978 }
2979 #endif
2980
2981 folio_batch_init(&fbatch);
2982
2983 if (get_dirty_pages(mapping->host) <=
2984 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2985 set_inode_flag(mapping->host, FI_HOT_DATA);
2986 else
2987 clear_inode_flag(mapping->host, FI_HOT_DATA);
2988
2989 if (wbc->range_cyclic) {
2990 index = mapping->writeback_index; /* prev offset */
2991 end = -1;
2992 } else {
2993 index = wbc->range_start >> PAGE_SHIFT;
2994 end = wbc->range_end >> PAGE_SHIFT;
2995 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2996 range_whole = 1;
2997 }
2998 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2999 tag = PAGECACHE_TAG_TOWRITE;
3000 else
3001 tag = PAGECACHE_TAG_DIRTY;
3002 retry:
3003 retry = 0;
3004 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3005 tag_pages_for_writeback(mapping, index, end);
3006 done_index = index;
3007 while (!done && !retry && (index <= end)) {
3008 nr_pages = 0;
3009 again:
3010 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3011 tag, &fbatch);
3012 if (nr_folios == 0) {
3013 if (nr_pages)
3014 goto write;
3015 break;
3016 }
3017
3018 for (i = 0; i < nr_folios; i++) {
3019 struct folio *folio = fbatch.folios[i];
3020
3021 idx = 0;
3022 p = folio_nr_pages(folio);
3023 add_more:
3024 pages[nr_pages] = folio_page(folio, idx);
3025 folio_get(folio);
3026 if (++nr_pages == max_pages) {
3027 index = folio->index + idx + 1;
3028 folio_batch_release(&fbatch);
3029 goto write;
3030 }
3031 if (++idx < p)
3032 goto add_more;
3033 }
3034 folio_batch_release(&fbatch);
3035 goto again;
3036 write:
3037 for (i = 0; i < nr_pages; i++) {
3038 struct page *page = pages[i];
3039 struct folio *folio = page_folio(page);
3040 bool need_readd;
3041 readd:
3042 need_readd = false;
3043 #ifdef CONFIG_F2FS_FS_COMPRESSION
3044 if (f2fs_compressed_file(inode)) {
3045 void *fsdata = NULL;
3046 struct page *pagep;
3047 int ret2;
3048
3049 ret = f2fs_init_compress_ctx(&cc);
3050 if (ret) {
3051 done = 1;
3052 break;
3053 }
3054
3055 if (!f2fs_cluster_can_merge_page(&cc,
3056 folio->index)) {
3057 ret = f2fs_write_multi_pages(&cc,
3058 &submitted, wbc, io_type);
3059 if (!ret)
3060 need_readd = true;
3061 goto result;
3062 }
3063
3064 if (unlikely(f2fs_cp_error(sbi)))
3065 goto lock_folio;
3066
3067 if (!f2fs_cluster_is_empty(&cc))
3068 goto lock_folio;
3069
3070 if (f2fs_all_cluster_page_ready(&cc,
3071 pages, i, nr_pages, true))
3072 goto lock_folio;
3073
3074 ret2 = f2fs_prepare_compress_overwrite(
3075 inode, &pagep,
3076 folio->index, &fsdata);
3077 if (ret2 < 0) {
3078 ret = ret2;
3079 done = 1;
3080 break;
3081 } else if (ret2 &&
3082 (!f2fs_compress_write_end(inode,
3083 fsdata, folio->index, 1) ||
3084 !f2fs_all_cluster_page_ready(&cc,
3085 pages, i, nr_pages,
3086 false))) {
3087 retry = 1;
3088 break;
3089 }
3090 }
3091 #endif
3092 /* give a priority to WB_SYNC threads */
3093 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3094 wbc->sync_mode == WB_SYNC_NONE) {
3095 done = 1;
3096 break;
3097 }
3098 #ifdef CONFIG_F2FS_FS_COMPRESSION
3099 lock_folio:
3100 #endif
3101 done_index = folio->index;
3102 retry_write:
3103 folio_lock(folio);
3104
3105 if (unlikely(folio->mapping != mapping)) {
3106 continue_unlock:
3107 folio_unlock(folio);
3108 continue;
3109 }
3110
3111 if (!folio_test_dirty(folio)) {
3112 /* someone wrote it for us */
3113 goto continue_unlock;
3114 }
3115
3116 if (folio_test_writeback(folio)) {
3117 if (wbc->sync_mode == WB_SYNC_NONE)
3118 goto continue_unlock;
3119 f2fs_folio_wait_writeback(folio, DATA, true, true);
3120 }
3121
3122 if (!folio_clear_dirty_for_io(folio))
3123 goto continue_unlock;
3124
3125 #ifdef CONFIG_F2FS_FS_COMPRESSION
3126 if (f2fs_compressed_file(inode)) {
3127 folio_get(folio);
3128 f2fs_compress_ctx_add_page(&cc, folio);
3129 continue;
3130 }
3131 #endif
3132 submitted = 0;
3133 ret = f2fs_write_single_data_page(folio,
3134 &submitted, &bio, &last_block,
3135 wbc, io_type, 0, true);
3136 #ifdef CONFIG_F2FS_FS_COMPRESSION
3137 result:
3138 #endif
3139 nwritten += submitted;
3140 wbc->nr_to_write -= submitted;
3141
3142 if (unlikely(ret)) {
3143 /*
3144 * keep nr_to_write, since vfs uses this to
3145 * get # of written pages.
3146 */
3147 if (ret == 1) {
3148 ret = 0;
3149 goto next;
3150 } else if (ret == -EAGAIN) {
3151 ret = 0;
3152 if (wbc->sync_mode == WB_SYNC_ALL) {
3153 f2fs_io_schedule_timeout(
3154 DEFAULT_IO_TIMEOUT);
3155 goto retry_write;
3156 }
3157 goto next;
3158 }
3159 done_index = folio_next_index(folio);
3160 done = 1;
3161 break;
3162 }
3163
3164 if (wbc->nr_to_write <= 0 &&
3165 wbc->sync_mode == WB_SYNC_NONE) {
3166 done = 1;
3167 break;
3168 }
3169 next:
3170 if (need_readd)
3171 goto readd;
3172 }
3173 release_pages(pages, nr_pages);
3174 cond_resched();
3175 }
3176 #ifdef CONFIG_F2FS_FS_COMPRESSION
3177 /* flush remained pages in compress cluster */
3178 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3179 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3180 nwritten += submitted;
3181 wbc->nr_to_write -= submitted;
3182 if (ret) {
3183 done = 1;
3184 retry = 0;
3185 }
3186 }
3187 if (f2fs_compressed_file(inode))
3188 f2fs_destroy_compress_ctx(&cc, false);
3189 #endif
3190 if (retry) {
3191 index = 0;
3192 end = -1;
3193 goto retry;
3194 }
3195 if (wbc->range_cyclic && !done)
3196 done_index = 0;
3197 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3198 mapping->writeback_index = done_index;
3199
3200 if (nwritten)
3201 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3202 NULL, 0, DATA);
3203 /* submit cached bio of IPU write */
3204 if (bio)
3205 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3206
3207 #ifdef CONFIG_F2FS_FS_COMPRESSION
3208 if (pages != pages_local)
3209 kfree(pages);
3210 #endif
3211
3212 return ret;
3213 }
3214
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3215 static inline bool __should_serialize_io(struct inode *inode,
3216 struct writeback_control *wbc)
3217 {
3218 /* to avoid deadlock in path of data flush */
3219 if (F2FS_I(inode)->wb_task)
3220 return false;
3221
3222 if (!S_ISREG(inode->i_mode))
3223 return false;
3224 if (IS_NOQUOTA(inode))
3225 return false;
3226
3227 if (f2fs_need_compress_data(inode))
3228 return true;
3229 if (wbc->sync_mode != WB_SYNC_ALL)
3230 return true;
3231 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3232 return true;
3233 return false;
3234 }
3235
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3236 static int __f2fs_write_data_pages(struct address_space *mapping,
3237 struct writeback_control *wbc,
3238 enum iostat_type io_type)
3239 {
3240 struct inode *inode = mapping->host;
3241 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3242 struct blk_plug plug;
3243 int ret;
3244 bool locked = false;
3245
3246 /* skip writing if there is no dirty page in this inode */
3247 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3248 return 0;
3249
3250 /* during POR, we don't need to trigger writepage at all. */
3251 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3252 goto skip_write;
3253
3254 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3255 wbc->sync_mode == WB_SYNC_NONE &&
3256 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3257 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3258 goto skip_write;
3259
3260 /* skip writing in file defragment preparing stage */
3261 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3262 goto skip_write;
3263
3264 trace_f2fs_writepages(mapping->host, wbc, DATA);
3265
3266 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3267 if (wbc->sync_mode == WB_SYNC_ALL)
3268 atomic_inc(&sbi->wb_sync_req[DATA]);
3269 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3270 /* to avoid potential deadlock */
3271 if (current->plug)
3272 blk_finish_plug(current->plug);
3273 goto skip_write;
3274 }
3275
3276 if (__should_serialize_io(inode, wbc)) {
3277 mutex_lock(&sbi->writepages);
3278 locked = true;
3279 }
3280
3281 blk_start_plug(&plug);
3282 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3283 blk_finish_plug(&plug);
3284
3285 if (locked)
3286 mutex_unlock(&sbi->writepages);
3287
3288 if (wbc->sync_mode == WB_SYNC_ALL)
3289 atomic_dec(&sbi->wb_sync_req[DATA]);
3290 /*
3291 * if some pages were truncated, we cannot guarantee its mapping->host
3292 * to detect pending bios.
3293 */
3294
3295 f2fs_remove_dirty_inode(inode);
3296 return ret;
3297
3298 skip_write:
3299 wbc->pages_skipped += get_dirty_pages(inode);
3300 trace_f2fs_writepages(mapping->host, wbc, DATA);
3301 return 0;
3302 }
3303
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3304 static int f2fs_write_data_pages(struct address_space *mapping,
3305 struct writeback_control *wbc)
3306 {
3307 struct inode *inode = mapping->host;
3308
3309 return __f2fs_write_data_pages(mapping, wbc,
3310 F2FS_I(inode)->cp_task == current ?
3311 FS_CP_DATA_IO : FS_DATA_IO);
3312 }
3313
f2fs_write_failed(struct inode * inode,loff_t to)3314 void f2fs_write_failed(struct inode *inode, loff_t to)
3315 {
3316 loff_t i_size = i_size_read(inode);
3317
3318 if (IS_NOQUOTA(inode))
3319 return;
3320
3321 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3322 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3323 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3324 filemap_invalidate_lock(inode->i_mapping);
3325
3326 truncate_pagecache(inode, i_size);
3327 f2fs_truncate_blocks(inode, i_size, true);
3328
3329 filemap_invalidate_unlock(inode->i_mapping);
3330 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3331 }
3332 }
3333
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3334 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3335 struct folio *folio, loff_t pos, unsigned int len,
3336 block_t *blk_addr, bool *node_changed)
3337 {
3338 struct inode *inode = folio->mapping->host;
3339 pgoff_t index = folio->index;
3340 struct dnode_of_data dn;
3341 struct folio *ifolio;
3342 bool locked = false;
3343 int flag = F2FS_GET_BLOCK_PRE_AIO;
3344 int err = 0;
3345
3346 /*
3347 * If a whole page is being written and we already preallocated all the
3348 * blocks, then there is no need to get a block address now.
3349 */
3350 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3351 return 0;
3352
3353 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3354 if (f2fs_has_inline_data(inode)) {
3355 if (pos + len > MAX_INLINE_DATA(inode))
3356 flag = F2FS_GET_BLOCK_DEFAULT;
3357 f2fs_map_lock(sbi, flag);
3358 locked = true;
3359 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3360 f2fs_map_lock(sbi, flag);
3361 locked = true;
3362 }
3363
3364 restart:
3365 /* check inline_data */
3366 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3367 if (IS_ERR(ifolio)) {
3368 err = PTR_ERR(ifolio);
3369 goto unlock_out;
3370 }
3371
3372 set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3373
3374 if (f2fs_has_inline_data(inode)) {
3375 if (pos + len <= MAX_INLINE_DATA(inode)) {
3376 f2fs_do_read_inline_data(folio, ifolio);
3377 set_inode_flag(inode, FI_DATA_EXIST);
3378 if (inode->i_nlink)
3379 set_page_private_inline(&ifolio->page);
3380 goto out;
3381 }
3382 err = f2fs_convert_inline_folio(&dn, folio);
3383 if (err || dn.data_blkaddr != NULL_ADDR)
3384 goto out;
3385 }
3386
3387 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3388 &dn.data_blkaddr)) {
3389 if (IS_DEVICE_ALIASING(inode)) {
3390 err = -ENODATA;
3391 goto out;
3392 }
3393
3394 if (locked) {
3395 err = f2fs_reserve_block(&dn, index);
3396 goto out;
3397 }
3398
3399 /* hole case */
3400 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3401 if (!err && dn.data_blkaddr != NULL_ADDR)
3402 goto out;
3403 f2fs_put_dnode(&dn);
3404 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3405 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3406 locked = true;
3407 goto restart;
3408 }
3409 out:
3410 if (!err) {
3411 /* convert_inline_page can make node_changed */
3412 *blk_addr = dn.data_blkaddr;
3413 *node_changed = dn.node_changed;
3414 }
3415 f2fs_put_dnode(&dn);
3416 unlock_out:
3417 if (locked)
3418 f2fs_map_unlock(sbi, flag);
3419 return err;
3420 }
3421
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3422 static int __find_data_block(struct inode *inode, pgoff_t index,
3423 block_t *blk_addr)
3424 {
3425 struct dnode_of_data dn;
3426 struct folio *ifolio;
3427 int err = 0;
3428
3429 ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino);
3430 if (IS_ERR(ifolio))
3431 return PTR_ERR(ifolio);
3432
3433 set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3434
3435 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3436 &dn.data_blkaddr)) {
3437 /* hole case */
3438 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3439 if (err) {
3440 dn.data_blkaddr = NULL_ADDR;
3441 err = 0;
3442 }
3443 }
3444 *blk_addr = dn.data_blkaddr;
3445 f2fs_put_dnode(&dn);
3446 return err;
3447 }
3448
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3449 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3450 block_t *blk_addr, bool *node_changed)
3451 {
3452 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3453 struct dnode_of_data dn;
3454 struct folio *ifolio;
3455 int err = 0;
3456
3457 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3458
3459 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3460 if (IS_ERR(ifolio)) {
3461 err = PTR_ERR(ifolio);
3462 goto unlock_out;
3463 }
3464 set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3465
3466 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3467 &dn.data_blkaddr))
3468 err = f2fs_reserve_block(&dn, index);
3469
3470 *blk_addr = dn.data_blkaddr;
3471 *node_changed = dn.node_changed;
3472 f2fs_put_dnode(&dn);
3473
3474 unlock_out:
3475 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3476 return err;
3477 }
3478
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3479 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3480 struct folio *folio, loff_t pos, unsigned int len,
3481 block_t *blk_addr, bool *node_changed, bool *use_cow)
3482 {
3483 struct inode *inode = folio->mapping->host;
3484 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3485 pgoff_t index = folio->index;
3486 int err = 0;
3487 block_t ori_blk_addr = NULL_ADDR;
3488
3489 /* If pos is beyond the end of file, reserve a new block in COW inode */
3490 if ((pos & PAGE_MASK) >= i_size_read(inode))
3491 goto reserve_block;
3492
3493 /* Look for the block in COW inode first */
3494 err = __find_data_block(cow_inode, index, blk_addr);
3495 if (err) {
3496 return err;
3497 } else if (*blk_addr != NULL_ADDR) {
3498 *use_cow = true;
3499 return 0;
3500 }
3501
3502 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3503 goto reserve_block;
3504
3505 /* Look for the block in the original inode */
3506 err = __find_data_block(inode, index, &ori_blk_addr);
3507 if (err)
3508 return err;
3509
3510 reserve_block:
3511 /* Finally, we should reserve a new block in COW inode for the update */
3512 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3513 if (err)
3514 return err;
3515 inc_atomic_write_cnt(inode);
3516
3517 if (ori_blk_addr != NULL_ADDR)
3518 *blk_addr = ori_blk_addr;
3519 return 0;
3520 }
3521
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3522 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3523 loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3524 {
3525 struct inode *inode = mapping->host;
3526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3527 struct folio *folio;
3528 pgoff_t index = pos >> PAGE_SHIFT;
3529 bool need_balance = false;
3530 bool use_cow = false;
3531 block_t blkaddr = NULL_ADDR;
3532 int err = 0;
3533
3534 trace_f2fs_write_begin(inode, pos, len);
3535
3536 if (!f2fs_is_checkpoint_ready(sbi)) {
3537 err = -ENOSPC;
3538 goto fail;
3539 }
3540
3541 /*
3542 * We should check this at this moment to avoid deadlock on inode page
3543 * and #0 page. The locking rule for inline_data conversion should be:
3544 * folio_lock(folio #0) -> folio_lock(inode_page)
3545 */
3546 if (index != 0) {
3547 err = f2fs_convert_inline_inode(inode);
3548 if (err)
3549 goto fail;
3550 }
3551
3552 #ifdef CONFIG_F2FS_FS_COMPRESSION
3553 if (f2fs_compressed_file(inode)) {
3554 int ret;
3555 struct page *page;
3556
3557 *fsdata = NULL;
3558
3559 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3560 goto repeat;
3561
3562 ret = f2fs_prepare_compress_overwrite(inode, &page,
3563 index, fsdata);
3564 if (ret < 0) {
3565 err = ret;
3566 goto fail;
3567 } else if (ret) {
3568 *foliop = page_folio(page);
3569 return 0;
3570 }
3571 }
3572 #endif
3573
3574 repeat:
3575 /*
3576 * Do not use FGP_STABLE to avoid deadlock.
3577 * Will wait that below with our IO control.
3578 */
3579 folio = __filemap_get_folio(mapping, index,
3580 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3581 if (IS_ERR(folio)) {
3582 err = PTR_ERR(folio);
3583 goto fail;
3584 }
3585
3586 /* TODO: cluster can be compressed due to race with .writepage */
3587
3588 *foliop = folio;
3589
3590 if (f2fs_is_atomic_file(inode))
3591 err = prepare_atomic_write_begin(sbi, folio, pos, len,
3592 &blkaddr, &need_balance, &use_cow);
3593 else
3594 err = prepare_write_begin(sbi, folio, pos, len,
3595 &blkaddr, &need_balance);
3596 if (err)
3597 goto put_folio;
3598
3599 if (need_balance && !IS_NOQUOTA(inode) &&
3600 has_not_enough_free_secs(sbi, 0, 0)) {
3601 folio_unlock(folio);
3602 f2fs_balance_fs(sbi, true);
3603 folio_lock(folio);
3604 if (folio->mapping != mapping) {
3605 /* The folio got truncated from under us */
3606 folio_unlock(folio);
3607 folio_put(folio);
3608 goto repeat;
3609 }
3610 }
3611
3612 f2fs_folio_wait_writeback(folio, DATA, false, true);
3613
3614 if (len == folio_size(folio) || folio_test_uptodate(folio))
3615 return 0;
3616
3617 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3618 !f2fs_verity_in_progress(inode)) {
3619 folio_zero_segment(folio, len, folio_size(folio));
3620 return 0;
3621 }
3622
3623 if (blkaddr == NEW_ADDR) {
3624 folio_zero_segment(folio, 0, folio_size(folio));
3625 folio_mark_uptodate(folio);
3626 } else {
3627 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3628 DATA_GENERIC_ENHANCE_READ)) {
3629 err = -EFSCORRUPTED;
3630 goto put_folio;
3631 }
3632 err = f2fs_submit_page_read(use_cow ?
3633 F2FS_I(inode)->cow_inode : inode,
3634 folio, blkaddr, 0, true);
3635 if (err)
3636 goto put_folio;
3637
3638 folio_lock(folio);
3639 if (unlikely(folio->mapping != mapping)) {
3640 folio_unlock(folio);
3641 folio_put(folio);
3642 goto repeat;
3643 }
3644 if (unlikely(!folio_test_uptodate(folio))) {
3645 err = -EIO;
3646 goto put_folio;
3647 }
3648 }
3649 return 0;
3650
3651 put_folio:
3652 folio_unlock(folio);
3653 folio_put(folio);
3654 fail:
3655 f2fs_write_failed(inode, pos + len);
3656 return err;
3657 }
3658
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3659 static int f2fs_write_end(struct file *file,
3660 struct address_space *mapping,
3661 loff_t pos, unsigned len, unsigned copied,
3662 struct folio *folio, void *fsdata)
3663 {
3664 struct inode *inode = folio->mapping->host;
3665
3666 trace_f2fs_write_end(inode, pos, len, copied);
3667
3668 /*
3669 * This should be come from len == PAGE_SIZE, and we expect copied
3670 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3671 * let generic_perform_write() try to copy data again through copied=0.
3672 */
3673 if (!folio_test_uptodate(folio)) {
3674 if (unlikely(copied != len))
3675 copied = 0;
3676 else
3677 folio_mark_uptodate(folio);
3678 }
3679
3680 #ifdef CONFIG_F2FS_FS_COMPRESSION
3681 /* overwrite compressed file */
3682 if (f2fs_compressed_file(inode) && fsdata) {
3683 f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3684 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3685
3686 if (pos + copied > i_size_read(inode) &&
3687 !f2fs_verity_in_progress(inode))
3688 f2fs_i_size_write(inode, pos + copied);
3689 return copied;
3690 }
3691 #endif
3692
3693 if (!copied)
3694 goto unlock_out;
3695
3696 folio_mark_dirty(folio);
3697
3698 if (f2fs_is_atomic_file(inode))
3699 set_page_private_atomic(folio_page(folio, 0));
3700
3701 if (pos + copied > i_size_read(inode) &&
3702 !f2fs_verity_in_progress(inode)) {
3703 f2fs_i_size_write(inode, pos + copied);
3704 if (f2fs_is_atomic_file(inode))
3705 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3706 pos + copied);
3707 }
3708 unlock_out:
3709 folio_unlock(folio);
3710 folio_put(folio);
3711 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3712 return copied;
3713 }
3714
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3715 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3716 {
3717 struct inode *inode = folio->mapping->host;
3718 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3719
3720 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3721 (offset || length != folio_size(folio)))
3722 return;
3723
3724 if (folio_test_dirty(folio)) {
3725 if (inode->i_ino == F2FS_META_INO(sbi)) {
3726 dec_page_count(sbi, F2FS_DIRTY_META);
3727 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3728 dec_page_count(sbi, F2FS_DIRTY_NODES);
3729 } else {
3730 inode_dec_dirty_pages(inode);
3731 f2fs_remove_dirty_inode(inode);
3732 }
3733 }
3734 clear_page_private_all(&folio->page);
3735 }
3736
f2fs_release_folio(struct folio * folio,gfp_t wait)3737 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3738 {
3739 /* If this is dirty folio, keep private data */
3740 if (folio_test_dirty(folio))
3741 return false;
3742
3743 clear_page_private_all(&folio->page);
3744 return true;
3745 }
3746
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3747 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3748 struct folio *folio)
3749 {
3750 struct inode *inode = mapping->host;
3751
3752 trace_f2fs_set_page_dirty(folio, DATA);
3753
3754 if (!folio_test_uptodate(folio))
3755 folio_mark_uptodate(folio);
3756 BUG_ON(folio_test_swapcache(folio));
3757
3758 if (filemap_dirty_folio(mapping, folio)) {
3759 f2fs_update_dirty_folio(inode, folio);
3760 return true;
3761 }
3762 return false;
3763 }
3764
3765
f2fs_bmap_compress(struct inode * inode,sector_t block)3766 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3767 {
3768 #ifdef CONFIG_F2FS_FS_COMPRESSION
3769 struct dnode_of_data dn;
3770 sector_t start_idx, blknr = 0;
3771 int ret;
3772
3773 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3774
3775 set_new_dnode(&dn, inode, NULL, NULL, 0);
3776 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3777 if (ret)
3778 return 0;
3779
3780 if (dn.data_blkaddr != COMPRESS_ADDR) {
3781 dn.ofs_in_node += block - start_idx;
3782 blknr = f2fs_data_blkaddr(&dn);
3783 if (!__is_valid_data_blkaddr(blknr))
3784 blknr = 0;
3785 }
3786
3787 f2fs_put_dnode(&dn);
3788 return blknr;
3789 #else
3790 return 0;
3791 #endif
3792 }
3793
3794
f2fs_bmap(struct address_space * mapping,sector_t block)3795 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3796 {
3797 struct inode *inode = mapping->host;
3798 sector_t blknr = 0;
3799
3800 if (f2fs_has_inline_data(inode))
3801 goto out;
3802
3803 /* make sure allocating whole blocks */
3804 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3805 filemap_write_and_wait(mapping);
3806
3807 /* Block number less than F2FS MAX BLOCKS */
3808 if (unlikely(block >= max_file_blocks(inode)))
3809 goto out;
3810
3811 if (f2fs_compressed_file(inode)) {
3812 blknr = f2fs_bmap_compress(inode, block);
3813 } else {
3814 struct f2fs_map_blocks map;
3815
3816 memset(&map, 0, sizeof(map));
3817 map.m_lblk = block;
3818 map.m_len = 1;
3819 map.m_next_pgofs = NULL;
3820 map.m_seg_type = NO_CHECK_TYPE;
3821
3822 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3823 blknr = map.m_pblk;
3824 }
3825 out:
3826 trace_f2fs_bmap(inode, block, blknr);
3827 return blknr;
3828 }
3829
3830 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3831 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3832 unsigned int blkcnt)
3833 {
3834 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3835 unsigned int blkofs;
3836 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3837 unsigned int end_blk = start_blk + blkcnt - 1;
3838 unsigned int secidx = start_blk / blk_per_sec;
3839 unsigned int end_sec;
3840 int ret = 0;
3841
3842 if (!blkcnt)
3843 return 0;
3844 end_sec = end_blk / blk_per_sec;
3845
3846 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3847 filemap_invalidate_lock(inode->i_mapping);
3848
3849 set_inode_flag(inode, FI_ALIGNED_WRITE);
3850 set_inode_flag(inode, FI_OPU_WRITE);
3851
3852 for (; secidx <= end_sec; secidx++) {
3853 unsigned int blkofs_end = secidx == end_sec ?
3854 end_blk % blk_per_sec : blk_per_sec - 1;
3855
3856 f2fs_down_write(&sbi->pin_sem);
3857
3858 ret = f2fs_allocate_pinning_section(sbi);
3859 if (ret) {
3860 f2fs_up_write(&sbi->pin_sem);
3861 break;
3862 }
3863
3864 set_inode_flag(inode, FI_SKIP_WRITES);
3865
3866 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3867 struct folio *folio;
3868 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3869
3870 folio = f2fs_get_lock_data_folio(inode, blkidx, true);
3871 if (IS_ERR(folio)) {
3872 f2fs_up_write(&sbi->pin_sem);
3873 ret = PTR_ERR(folio);
3874 goto done;
3875 }
3876
3877 folio_mark_dirty(folio);
3878 f2fs_folio_put(folio, true);
3879 }
3880
3881 clear_inode_flag(inode, FI_SKIP_WRITES);
3882
3883 ret = filemap_fdatawrite(inode->i_mapping);
3884
3885 f2fs_up_write(&sbi->pin_sem);
3886
3887 if (ret)
3888 break;
3889 }
3890
3891 done:
3892 clear_inode_flag(inode, FI_SKIP_WRITES);
3893 clear_inode_flag(inode, FI_OPU_WRITE);
3894 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3895
3896 filemap_invalidate_unlock(inode->i_mapping);
3897 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3898
3899 return ret;
3900 }
3901
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3902 static int check_swap_activate(struct swap_info_struct *sis,
3903 struct file *swap_file, sector_t *span)
3904 {
3905 struct address_space *mapping = swap_file->f_mapping;
3906 struct inode *inode = mapping->host;
3907 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3908 block_t cur_lblock;
3909 block_t last_lblock;
3910 block_t pblock;
3911 block_t lowest_pblock = -1;
3912 block_t highest_pblock = 0;
3913 int nr_extents = 0;
3914 unsigned int nr_pblocks;
3915 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3916 unsigned int not_aligned = 0;
3917 int ret = 0;
3918
3919 /*
3920 * Map all the blocks into the extent list. This code doesn't try
3921 * to be very smart.
3922 */
3923 cur_lblock = 0;
3924 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3925
3926 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3927 struct f2fs_map_blocks map;
3928 retry:
3929 cond_resched();
3930
3931 memset(&map, 0, sizeof(map));
3932 map.m_lblk = cur_lblock;
3933 map.m_len = last_lblock - cur_lblock;
3934 map.m_next_pgofs = NULL;
3935 map.m_next_extent = NULL;
3936 map.m_seg_type = NO_CHECK_TYPE;
3937 map.m_may_create = false;
3938
3939 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3940 if (ret)
3941 goto out;
3942
3943 /* hole */
3944 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3945 f2fs_err(sbi, "Swapfile has holes");
3946 ret = -EINVAL;
3947 goto out;
3948 }
3949
3950 pblock = map.m_pblk;
3951 nr_pblocks = map.m_len;
3952
3953 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3954 nr_pblocks % blks_per_sec ||
3955 f2fs_is_sequential_zone_area(sbi, pblock)) {
3956 bool last_extent = false;
3957
3958 not_aligned++;
3959
3960 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3961 if (cur_lblock + nr_pblocks > sis->max)
3962 nr_pblocks -= blks_per_sec;
3963
3964 /* this extent is last one */
3965 if (!nr_pblocks) {
3966 nr_pblocks = last_lblock - cur_lblock;
3967 last_extent = true;
3968 }
3969
3970 ret = f2fs_migrate_blocks(inode, cur_lblock,
3971 nr_pblocks);
3972 if (ret) {
3973 if (ret == -ENOENT)
3974 ret = -EINVAL;
3975 goto out;
3976 }
3977
3978 if (!last_extent)
3979 goto retry;
3980 }
3981
3982 if (cur_lblock + nr_pblocks >= sis->max)
3983 nr_pblocks = sis->max - cur_lblock;
3984
3985 if (cur_lblock) { /* exclude the header page */
3986 if (pblock < lowest_pblock)
3987 lowest_pblock = pblock;
3988 if (pblock + nr_pblocks - 1 > highest_pblock)
3989 highest_pblock = pblock + nr_pblocks - 1;
3990 }
3991
3992 /*
3993 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3994 */
3995 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3996 if (ret < 0)
3997 goto out;
3998 nr_extents += ret;
3999 cur_lblock += nr_pblocks;
4000 }
4001 ret = nr_extents;
4002 *span = 1 + highest_pblock - lowest_pblock;
4003 if (cur_lblock == 0)
4004 cur_lblock = 1; /* force Empty message */
4005 sis->max = cur_lblock;
4006 sis->pages = cur_lblock - 1;
4007 out:
4008 if (not_aligned)
4009 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4010 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4011 return ret;
4012 }
4013
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4014 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4015 sector_t *span)
4016 {
4017 struct inode *inode = file_inode(file);
4018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4019 int ret;
4020
4021 if (!S_ISREG(inode->i_mode))
4022 return -EINVAL;
4023
4024 if (f2fs_readonly(sbi->sb))
4025 return -EROFS;
4026
4027 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4028 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4029 return -EINVAL;
4030 }
4031
4032 ret = f2fs_convert_inline_inode(inode);
4033 if (ret)
4034 return ret;
4035
4036 if (!f2fs_disable_compressed_file(inode))
4037 return -EINVAL;
4038
4039 ret = filemap_fdatawrite(inode->i_mapping);
4040 if (ret < 0)
4041 return ret;
4042
4043 f2fs_precache_extents(inode);
4044
4045 ret = check_swap_activate(sis, file, span);
4046 if (ret < 0)
4047 return ret;
4048
4049 stat_inc_swapfile_inode(inode);
4050 set_inode_flag(inode, FI_PIN_FILE);
4051 f2fs_update_time(sbi, REQ_TIME);
4052 return ret;
4053 }
4054
f2fs_swap_deactivate(struct file * file)4055 static void f2fs_swap_deactivate(struct file *file)
4056 {
4057 struct inode *inode = file_inode(file);
4058
4059 stat_dec_swapfile_inode(inode);
4060 clear_inode_flag(inode, FI_PIN_FILE);
4061 }
4062 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4063 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4064 sector_t *span)
4065 {
4066 return -EOPNOTSUPP;
4067 }
4068
f2fs_swap_deactivate(struct file * file)4069 static void f2fs_swap_deactivate(struct file *file)
4070 {
4071 }
4072 #endif
4073
4074 const struct address_space_operations f2fs_dblock_aops = {
4075 .read_folio = f2fs_read_data_folio,
4076 .readahead = f2fs_readahead,
4077 .writepages = f2fs_write_data_pages,
4078 .write_begin = f2fs_write_begin,
4079 .write_end = f2fs_write_end,
4080 .dirty_folio = f2fs_dirty_data_folio,
4081 .migrate_folio = filemap_migrate_folio,
4082 .invalidate_folio = f2fs_invalidate_folio,
4083 .release_folio = f2fs_release_folio,
4084 .bmap = f2fs_bmap,
4085 .swap_activate = f2fs_swap_activate,
4086 .swap_deactivate = f2fs_swap_deactivate,
4087 };
4088
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4089 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4090 {
4091 struct address_space *mapping = folio->mapping;
4092 unsigned long flags;
4093
4094 xa_lock_irqsave(&mapping->i_pages, flags);
4095 __xa_clear_mark(&mapping->i_pages, folio->index,
4096 PAGECACHE_TAG_DIRTY);
4097 xa_unlock_irqrestore(&mapping->i_pages, flags);
4098 }
4099
f2fs_init_post_read_processing(void)4100 int __init f2fs_init_post_read_processing(void)
4101 {
4102 bio_post_read_ctx_cache =
4103 kmem_cache_create("f2fs_bio_post_read_ctx",
4104 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4105 if (!bio_post_read_ctx_cache)
4106 goto fail;
4107 bio_post_read_ctx_pool =
4108 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4109 bio_post_read_ctx_cache);
4110 if (!bio_post_read_ctx_pool)
4111 goto fail_free_cache;
4112 return 0;
4113
4114 fail_free_cache:
4115 kmem_cache_destroy(bio_post_read_ctx_cache);
4116 fail:
4117 return -ENOMEM;
4118 }
4119
f2fs_destroy_post_read_processing(void)4120 void f2fs_destroy_post_read_processing(void)
4121 {
4122 mempool_destroy(bio_post_read_ctx_pool);
4123 kmem_cache_destroy(bio_post_read_ctx_cache);
4124 }
4125
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4126 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4127 {
4128 if (!f2fs_sb_has_encrypt(sbi) &&
4129 !f2fs_sb_has_verity(sbi) &&
4130 !f2fs_sb_has_compression(sbi))
4131 return 0;
4132
4133 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4134 WQ_UNBOUND | WQ_HIGHPRI,
4135 num_online_cpus());
4136 return sbi->post_read_wq ? 0 : -ENOMEM;
4137 }
4138
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4139 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4140 {
4141 if (sbi->post_read_wq)
4142 destroy_workqueue(sbi->post_read_wq);
4143 }
4144
f2fs_init_bio_entry_cache(void)4145 int __init f2fs_init_bio_entry_cache(void)
4146 {
4147 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4148 sizeof(struct bio_entry));
4149 return bio_entry_slab ? 0 : -ENOMEM;
4150 }
4151
f2fs_destroy_bio_entry_cache(void)4152 void f2fs_destroy_bio_entry_cache(void)
4153 {
4154 kmem_cache_destroy(bio_entry_slab);
4155 }
4156
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4157 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4158 unsigned int flags, struct iomap *iomap,
4159 struct iomap *srcmap)
4160 {
4161 struct f2fs_map_blocks map = {};
4162 pgoff_t next_pgofs = 0;
4163 int err;
4164
4165 map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4166 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4167 map.m_next_pgofs = &next_pgofs;
4168 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4169 inode->i_write_hint);
4170
4171 /*
4172 * If the blocks being overwritten are already allocated,
4173 * f2fs_map_lock and f2fs_balance_fs are not necessary.
4174 */
4175 if ((flags & IOMAP_WRITE) &&
4176 !f2fs_overwrite_io(inode, offset, length))
4177 map.m_may_create = true;
4178
4179 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4180 if (err)
4181 return err;
4182
4183 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4184
4185 /*
4186 * When inline encryption is enabled, sometimes I/O to an encrypted file
4187 * has to be broken up to guarantee DUN contiguity. Handle this by
4188 * limiting the length of the mapping returned.
4189 */
4190 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4191
4192 /*
4193 * We should never see delalloc or compressed extents here based on
4194 * prior flushing and checks.
4195 */
4196 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4197 return -EINVAL;
4198
4199 if (map.m_flags & F2FS_MAP_MAPPED) {
4200 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4201 return -EINVAL;
4202
4203 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4204 iomap->type = IOMAP_MAPPED;
4205 iomap->flags |= IOMAP_F_MERGED;
4206 iomap->bdev = map.m_bdev;
4207 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4208 } else {
4209 if (flags & IOMAP_WRITE)
4210 return -ENOTBLK;
4211
4212 if (map.m_pblk == NULL_ADDR) {
4213 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4214 iomap->offset;
4215 iomap->type = IOMAP_HOLE;
4216 } else if (map.m_pblk == NEW_ADDR) {
4217 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4218 iomap->type = IOMAP_UNWRITTEN;
4219 } else {
4220 f2fs_bug_on(F2FS_I_SB(inode), 1);
4221 }
4222 iomap->addr = IOMAP_NULL_ADDR;
4223 }
4224
4225 if (map.m_flags & F2FS_MAP_NEW)
4226 iomap->flags |= IOMAP_F_NEW;
4227 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4228 offset + length > i_size_read(inode))
4229 iomap->flags |= IOMAP_F_DIRTY;
4230
4231 return 0;
4232 }
4233
4234 const struct iomap_ops f2fs_iomap_ops = {
4235 .iomap_begin = f2fs_iomap_begin,
4236 };
4237