xref: /linux/fs/f2fs/data.c (revision 997f9640c9238b991b6c8abf5420b37bbba5d867)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
39 int __init f2fs_init_bioset(void)
40 {
41 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS);
43 }
44 
45 void f2fs_destroy_bioset(void)
46 {
47 	bioset_exit(&f2fs_bioset);
48 }
49 
50 bool f2fs_is_cp_guaranteed(const struct folio *folio)
51 {
52 	struct address_space *mapping = folio->mapping;
53 	struct inode *inode;
54 	struct f2fs_sb_info *sbi;
55 
56 	if (fscrypt_is_bounce_folio(folio))
57 		return folio_test_f2fs_gcing(fscrypt_pagecache_folio(folio));
58 
59 	inode = mapping->host;
60 	sbi = F2FS_I_SB(inode);
61 
62 	if (inode->i_ino == F2FS_META_INO(sbi) ||
63 			inode->i_ino == F2FS_NODE_INO(sbi) ||
64 			S_ISDIR(inode->i_mode))
65 		return true;
66 
67 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 			folio_test_f2fs_gcing(folio))
69 		return true;
70 	return false;
71 }
72 
73 static enum count_type __read_io_type(struct folio *folio)
74 {
75 	struct address_space *mapping = folio->mapping;
76 
77 	if (mapping) {
78 		struct inode *inode = mapping->host;
79 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80 
81 		if (inode->i_ino == F2FS_META_INO(sbi))
82 			return F2FS_RD_META;
83 
84 		if (inode->i_ino == F2FS_NODE_INO(sbi))
85 			return F2FS_RD_NODE;
86 	}
87 	return F2FS_RD_DATA;
88 }
89 
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 	STEP_DECRYPT	= BIT(0),
94 #else
95 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 	STEP_DECOMPRESS	= BIT(1),
99 #else
100 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 	STEP_VERITY	= BIT(2),
104 #else
105 	STEP_VERITY	= 0,	/* compile out the verity-related code */
106 #endif
107 };
108 
109 struct bio_post_read_ctx {
110 	struct bio *bio;
111 	struct f2fs_sb_info *sbi;
112 	struct fsverity_info *vi;
113 	struct work_struct work;
114 	unsigned int enabled_steps;
115 	/*
116 	 * decompression_attempted keeps track of whether
117 	 * f2fs_end_read_compressed_page() has been called on the pages in the
118 	 * bio that belong to a compressed cluster yet.
119 	 */
120 	bool decompression_attempted;
121 	block_t fs_blkaddr;
122 };
123 
124 /*
125  * Update and unlock a bio's pages, and free the bio.
126  *
127  * This marks pages up-to-date only if there was no error in the bio (I/O error,
128  * decryption error, or verity error), as indicated by bio->bi_status.
129  *
130  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131  * aren't marked up-to-date here, as decompression is done on a per-compression-
132  * cluster basis rather than a per-bio basis.  Instead, we only must do two
133  * things for each compressed page here: call f2fs_end_read_compressed_page()
134  * with failed=true if an error occurred before it would have normally gotten
135  * called (i.e., I/O error or decryption error, but *not* verity error), and
136  * release the bio's reference to the decompress_io_ctx of the page's cluster.
137  */
138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139 {
140 	struct folio_iter fi;
141 	struct bio_post_read_ctx *ctx = bio->bi_private;
142 
143 	bio_for_each_folio_all(fi, bio) {
144 		struct folio *folio = fi.folio;
145 
146 		if (f2fs_is_compressed_page(folio)) {
147 			if (ctx && !ctx->decompression_attempted)
148 				f2fs_end_read_compressed_page(folio, true, 0,
149 							in_task);
150 			f2fs_put_folio_dic(folio, in_task);
151 			continue;
152 		}
153 
154 		dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
155 		folio_end_read(folio, bio->bi_status == BLK_STS_OK);
156 	}
157 
158 	if (ctx)
159 		mempool_free(ctx, bio_post_read_ctx_pool);
160 	bio_put(bio);
161 }
162 
163 static void f2fs_verify_bio(struct work_struct *work)
164 {
165 	struct bio_post_read_ctx *ctx =
166 		container_of(work, struct bio_post_read_ctx, work);
167 	struct bio *bio = ctx->bio;
168 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
169 	struct fsverity_info *vi = ctx->vi;
170 
171 	/*
172 	 * fsverity_verify_bio() may call readahead() again, and while verity
173 	 * will be disabled for this, decryption and/or decompression may still
174 	 * be needed, resulting in another bio_post_read_ctx being allocated.
175 	 * So to prevent deadlocks we need to release the current ctx to the
176 	 * mempool first.  This assumes that verity is the last post-read step.
177 	 */
178 	mempool_free(ctx, bio_post_read_ctx_pool);
179 	bio->bi_private = NULL;
180 
181 	/*
182 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
183 	 * as those were handled separately by f2fs_end_read_compressed_page().
184 	 */
185 	if (may_have_compressed_pages) {
186 		struct folio_iter fi;
187 
188 		bio_for_each_folio_all(fi, bio) {
189 			struct folio *folio = fi.folio;
190 
191 			if (!f2fs_is_compressed_page(folio) &&
192 			    !fsverity_verify_page(vi, &folio->page)) {
193 				bio->bi_status = BLK_STS_IOERR;
194 				break;
195 			}
196 		}
197 	} else {
198 		fsverity_verify_bio(vi, bio);
199 	}
200 
201 	f2fs_finish_read_bio(bio, true);
202 }
203 
204 /*
205  * If the bio's data needs to be verified with fs-verity, then enqueue the
206  * verity work for the bio.  Otherwise finish the bio now.
207  *
208  * Note that to avoid deadlocks, the verity work can't be done on the
209  * decryption/decompression workqueue.  This is because verifying the data pages
210  * can involve reading verity metadata pages from the file, and these verity
211  * metadata pages may be encrypted and/or compressed.
212  */
213 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
214 {
215 	struct bio_post_read_ctx *ctx = bio->bi_private;
216 
217 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
218 		INIT_WORK(&ctx->work, f2fs_verify_bio);
219 		fsverity_enqueue_verify_work(&ctx->work);
220 	} else {
221 		f2fs_finish_read_bio(bio, in_task);
222 	}
223 }
224 
225 /*
226  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
227  * remaining page was read by @ctx->bio.
228  *
229  * Note that a bio may span clusters (even a mix of compressed and uncompressed
230  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
231  * that the bio includes at least one compressed page.  The actual decompression
232  * is done on a per-cluster basis, not a per-bio basis.
233  */
234 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
235 		bool in_task)
236 {
237 	struct folio_iter fi;
238 	bool all_compressed = true;
239 	block_t blkaddr = ctx->fs_blkaddr;
240 
241 	bio_for_each_folio_all(fi, ctx->bio) {
242 		struct folio *folio = fi.folio;
243 
244 		if (f2fs_is_compressed_page(folio))
245 			f2fs_end_read_compressed_page(folio, false, blkaddr,
246 						      in_task);
247 		else
248 			all_compressed = false;
249 
250 		blkaddr++;
251 	}
252 
253 	ctx->decompression_attempted = true;
254 
255 	/*
256 	 * Optimization: if all the bio's pages are compressed, then scheduling
257 	 * the per-bio verity work is unnecessary, as verity will be fully
258 	 * handled at the compression cluster level.
259 	 */
260 	if (all_compressed)
261 		ctx->enabled_steps &= ~STEP_VERITY;
262 }
263 
264 static void f2fs_post_read_work(struct work_struct *work)
265 {
266 	struct bio_post_read_ctx *ctx =
267 		container_of(work, struct bio_post_read_ctx, work);
268 	struct bio *bio = ctx->bio;
269 
270 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
271 		f2fs_finish_read_bio(bio, true);
272 		return;
273 	}
274 
275 	if (ctx->enabled_steps & STEP_DECOMPRESS)
276 		f2fs_handle_step_decompress(ctx, true);
277 
278 	f2fs_verify_and_finish_bio(bio, true);
279 }
280 
281 static void f2fs_read_end_io(struct bio *bio)
282 {
283 	struct f2fs_sb_info *sbi = F2FS_F_SB(bio_first_folio_all(bio));
284 	struct bio_post_read_ctx *ctx;
285 	bool intask = in_task() && !irqs_disabled();
286 
287 	iostat_update_and_unbind_ctx(bio);
288 	ctx = bio->bi_private;
289 
290 	if (time_to_inject(sbi, FAULT_READ_IO))
291 		bio->bi_status = BLK_STS_IOERR;
292 
293 	if (bio->bi_status != BLK_STS_OK) {
294 		f2fs_finish_read_bio(bio, intask);
295 		return;
296 	}
297 
298 	if (ctx) {
299 		unsigned int enabled_steps = ctx->enabled_steps &
300 					(STEP_DECRYPT | STEP_DECOMPRESS);
301 
302 		/*
303 		 * If we have only decompression step between decompression and
304 		 * decrypt, we don't need post processing for this.
305 		 */
306 		if (enabled_steps == STEP_DECOMPRESS &&
307 				!f2fs_low_mem_mode(sbi)) {
308 			f2fs_handle_step_decompress(ctx, intask);
309 		} else if (enabled_steps) {
310 			INIT_WORK(&ctx->work, f2fs_post_read_work);
311 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
312 			return;
313 		}
314 	}
315 
316 	f2fs_verify_and_finish_bio(bio, intask);
317 }
318 
319 static void f2fs_write_end_io(struct bio *bio)
320 {
321 	struct f2fs_sb_info *sbi;
322 	struct folio_iter fi;
323 
324 	iostat_update_and_unbind_ctx(bio);
325 	sbi = bio->bi_private;
326 
327 	if (time_to_inject(sbi, FAULT_WRITE_IO))
328 		bio->bi_status = BLK_STS_IOERR;
329 
330 	bio_for_each_folio_all(fi, bio) {
331 		struct folio *folio = fi.folio;
332 		enum count_type type;
333 
334 		if (fscrypt_is_bounce_folio(folio)) {
335 			struct folio *io_folio = folio;
336 
337 			folio = fscrypt_pagecache_folio(io_folio);
338 			fscrypt_free_bounce_page(&io_folio->page);
339 		}
340 
341 #ifdef CONFIG_F2FS_FS_COMPRESSION
342 		if (f2fs_is_compressed_page(folio)) {
343 			f2fs_compress_write_end_io(bio, folio);
344 			continue;
345 		}
346 #endif
347 
348 		type = WB_DATA_TYPE(folio, false);
349 
350 		if (unlikely(bio->bi_status != BLK_STS_OK)) {
351 			mapping_set_error(folio->mapping, -EIO);
352 			if (type == F2FS_WB_CP_DATA)
353 				f2fs_stop_checkpoint(sbi, true,
354 						STOP_CP_REASON_WRITE_FAIL);
355 		}
356 
357 		f2fs_bug_on(sbi, is_node_folio(folio) &&
358 				folio->index != nid_of_node(folio));
359 
360 		dec_page_count(sbi, type);
361 		if (f2fs_in_warm_node_list(sbi, folio))
362 			f2fs_del_fsync_node_entry(sbi, folio);
363 		folio_clear_f2fs_gcing(folio);
364 		folio_end_writeback(folio);
365 	}
366 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 				wq_has_sleeper(&sbi->cp_wait))
368 		wake_up(&sbi->cp_wait);
369 
370 	bio_put(bio);
371 }
372 
373 #ifdef CONFIG_BLK_DEV_ZONED
374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377 
378 	bio->bi_private = io->bi_private;
379 	complete(&io->zone_wait);
380 	f2fs_write_end_io(bio);
381 }
382 #endif
383 
384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 		block_t blk_addr, sector_t *sector)
386 {
387 	struct block_device *bdev = sbi->sb->s_bdev;
388 	int i;
389 
390 	if (f2fs_is_multi_device(sbi)) {
391 		for (i = 0; i < sbi->s_ndevs; i++) {
392 			if (FDEV(i).start_blk <= blk_addr &&
393 			    FDEV(i).end_blk >= blk_addr) {
394 				blk_addr -= FDEV(i).start_blk;
395 				bdev = FDEV(i).bdev;
396 				break;
397 			}
398 		}
399 	}
400 
401 	if (sector)
402 		*sector = SECTOR_FROM_BLOCK(blk_addr);
403 	return bdev;
404 }
405 
406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 	int i;
409 
410 	if (!f2fs_is_multi_device(sbi))
411 		return 0;
412 
413 	for (i = 0; i < sbi->s_ndevs; i++)
414 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 			return i;
416 	return 0;
417 }
418 
419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 	unsigned int fua_flag, meta_flag, io_flag;
423 	blk_opf_t op_flags = 0;
424 
425 	if (fio->op != REQ_OP_WRITE)
426 		return 0;
427 	if (fio->type == DATA)
428 		io_flag = fio->sbi->data_io_flag;
429 	else if (fio->type == NODE)
430 		io_flag = fio->sbi->node_io_flag;
431 	else
432 		return 0;
433 
434 	fua_flag = io_flag & temp_mask;
435 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436 
437 	/*
438 	 * data/node io flag bits per temp:
439 	 *      REQ_META     |      REQ_FUA      |
440 	 *    5 |    4 |   3 |    2 |    1 |   0 |
441 	 * Cold | Warm | Hot | Cold | Warm | Hot |
442 	 */
443 	if (BIT(fio->temp) & meta_flag)
444 		op_flags |= REQ_META;
445 	if (BIT(fio->temp) & fua_flag)
446 		op_flags |= REQ_FUA;
447 
448 	if (fio->type == DATA &&
449 	    F2FS_I(fio->folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE)
450 		op_flags |= REQ_PRIO;
451 
452 	return op_flags;
453 }
454 
455 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
456 {
457 	struct f2fs_sb_info *sbi = fio->sbi;
458 	struct block_device *bdev;
459 	sector_t sector;
460 	struct bio *bio;
461 
462 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
463 	bio = bio_alloc_bioset(bdev, npages,
464 				fio->op | fio->op_flags | f2fs_io_flags(fio),
465 				GFP_NOIO, &f2fs_bioset);
466 	bio->bi_iter.bi_sector = sector;
467 	if (is_read_io(fio->op)) {
468 		bio->bi_end_io = f2fs_read_end_io;
469 		bio->bi_private = NULL;
470 	} else {
471 		bio->bi_end_io = f2fs_write_end_io;
472 		bio->bi_private = sbi;
473 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
474 						fio->type, fio->temp);
475 	}
476 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
477 
478 	if (fio->io_wbc)
479 		wbc_init_bio(fio->io_wbc, bio);
480 
481 	return bio;
482 }
483 
484 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
485 				  pgoff_t first_idx,
486 				  const struct f2fs_io_info *fio,
487 				  gfp_t gfp_mask)
488 {
489 	/*
490 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
491 	 * read/write raw data without encryption.
492 	 */
493 	if (!fio || !fio->encrypted_page)
494 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
495 }
496 
497 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
498 				     pgoff_t next_idx,
499 				     const struct f2fs_io_info *fio)
500 {
501 	/*
502 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
503 	 * read/write raw data without encryption.
504 	 */
505 	if (fio && fio->encrypted_page)
506 		return !bio_has_crypt_ctx(bio);
507 
508 	return fscrypt_mergeable_bio(bio, inode, next_idx);
509 }
510 
511 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
512 				 enum page_type type)
513 {
514 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
515 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
516 
517 	iostat_update_submit_ctx(bio, type);
518 	blk_crypto_submit_bio(bio);
519 }
520 
521 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
522 				  enum page_type type)
523 {
524 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
525 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
526 	iostat_update_submit_ctx(bio, type);
527 	blk_crypto_submit_bio(bio);
528 }
529 
530 static void __submit_merged_bio(struct f2fs_bio_info *io)
531 {
532 	struct f2fs_io_info *fio = &io->fio;
533 
534 	if (!io->bio)
535 		return;
536 
537 	if (is_read_io(fio->op)) {
538 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
539 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
540 	} else {
541 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
542 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
543 	}
544 	io->bio = NULL;
545 }
546 
547 static bool __has_merged_page(struct bio *bio, struct inode *inode,
548 						struct folio *folio, nid_t ino)
549 {
550 	struct folio_iter fi;
551 
552 	if (!bio)
553 		return false;
554 
555 	if (!inode && !folio && !ino)
556 		return true;
557 
558 	bio_for_each_folio_all(fi, bio) {
559 		struct folio *target = fi.folio;
560 
561 		if (fscrypt_is_bounce_folio(target)) {
562 			target = fscrypt_pagecache_folio(target);
563 			if (IS_ERR(target))
564 				continue;
565 		}
566 		if (f2fs_is_compressed_page(target)) {
567 			target = f2fs_compress_control_folio(target);
568 			if (IS_ERR(target))
569 				continue;
570 		}
571 
572 		if (inode && inode == target->mapping->host)
573 			return true;
574 		if (folio && folio == target)
575 			return true;
576 		if (ino && ino == ino_of_node(target))
577 			return true;
578 	}
579 
580 	return false;
581 }
582 
583 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
584 {
585 	int i;
586 
587 	for (i = 0; i < NR_PAGE_TYPE; i++) {
588 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
589 		int j;
590 
591 		sbi->write_io[i] = f2fs_kmalloc(sbi,
592 				array_size(n, sizeof(struct f2fs_bio_info)),
593 				GFP_KERNEL);
594 		if (!sbi->write_io[i])
595 			return -ENOMEM;
596 
597 		for (j = HOT; j < n; j++) {
598 			struct f2fs_bio_info *io = &sbi->write_io[i][j];
599 
600 			init_f2fs_rwsem(&io->io_rwsem);
601 			io->sbi = sbi;
602 			io->bio = NULL;
603 			io->last_block_in_bio = 0;
604 			spin_lock_init(&io->io_lock);
605 			INIT_LIST_HEAD(&io->io_list);
606 			INIT_LIST_HEAD(&io->bio_list);
607 			init_f2fs_rwsem(&io->bio_list_lock);
608 #ifdef CONFIG_BLK_DEV_ZONED
609 			init_completion(&io->zone_wait);
610 			io->zone_pending_bio = NULL;
611 			io->bi_private = NULL;
612 #endif
613 		}
614 	}
615 
616 	return 0;
617 }
618 
619 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
620 				enum page_type type, enum temp_type temp)
621 {
622 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
623 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
624 
625 	f2fs_down_write(&io->io_rwsem);
626 
627 	if (!io->bio)
628 		goto unlock_out;
629 
630 	/* change META to META_FLUSH in the checkpoint procedure */
631 	if (type >= META_FLUSH) {
632 		io->fio.type = META_FLUSH;
633 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
634 		if (!test_opt(sbi, NOBARRIER))
635 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
636 	}
637 	__submit_merged_bio(io);
638 unlock_out:
639 	f2fs_up_write(&io->io_rwsem);
640 }
641 
642 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
643 				struct inode *inode, struct folio *folio,
644 				nid_t ino, enum page_type type, bool force)
645 {
646 	enum temp_type temp;
647 	bool ret = true;
648 
649 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
650 		if (!force)	{
651 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
652 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
653 
654 			f2fs_down_read(&io->io_rwsem);
655 			ret = __has_merged_page(io->bio, inode, folio, ino);
656 			f2fs_up_read(&io->io_rwsem);
657 		}
658 		if (ret)
659 			__f2fs_submit_merged_write(sbi, type, temp);
660 
661 		/* TODO: use HOT temp only for meta pages now. */
662 		if (type >= META)
663 			break;
664 	}
665 }
666 
667 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
668 {
669 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
670 }
671 
672 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
673 				struct inode *inode, struct folio *folio,
674 				nid_t ino, enum page_type type)
675 {
676 	__submit_merged_write_cond(sbi, inode, folio, ino, type, false);
677 }
678 
679 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
680 {
681 	f2fs_submit_merged_write(sbi, DATA);
682 	f2fs_submit_merged_write(sbi, NODE);
683 	f2fs_submit_merged_write(sbi, META);
684 }
685 
686 /*
687  * Fill the locked page with data located in the block address.
688  * A caller needs to unlock the page on failure.
689  */
690 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
691 {
692 	struct bio *bio;
693 	struct folio *fio_folio = fio->folio;
694 	struct folio *data_folio = fio->encrypted_page ?
695 			page_folio(fio->encrypted_page) : fio_folio;
696 
697 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
698 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
699 			META_GENERIC : DATA_GENERIC_ENHANCE)))
700 		return -EFSCORRUPTED;
701 
702 	trace_f2fs_submit_folio_bio(data_folio, fio);
703 
704 	/* Allocate a new bio */
705 	bio = __bio_alloc(fio, 1);
706 
707 	f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
708 			fio_folio->index, fio, GFP_NOIO);
709 	bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
710 
711 	if (fio->io_wbc && !is_read_io(fio->op))
712 		wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
713 
714 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
715 			__read_io_type(data_folio) : WB_DATA_TYPE(fio->folio, false));
716 
717 	if (is_read_io(bio_op(bio)))
718 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
719 	else
720 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
721 	return 0;
722 }
723 
724 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
725 				block_t last_blkaddr, block_t cur_blkaddr)
726 {
727 	if (unlikely(sbi->max_io_bytes &&
728 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
729 		return false;
730 	if (last_blkaddr + 1 != cur_blkaddr)
731 		return false;
732 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
733 }
734 
735 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
736 						struct f2fs_io_info *fio)
737 {
738 	blk_opf_t mask = ~(REQ_PREFLUSH | REQ_FUA);
739 
740 	if (io->fio.op != fio->op)
741 		return false;
742 	return (io->fio.op_flags & mask) == (fio->op_flags & mask);
743 }
744 
745 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
746 					struct f2fs_bio_info *io,
747 					struct f2fs_io_info *fio,
748 					block_t last_blkaddr,
749 					block_t cur_blkaddr)
750 {
751 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752 		return false;
753 	return io_type_is_mergeable(io, fio);
754 }
755 
756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757 				struct folio *folio, enum temp_type temp)
758 {
759 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760 	struct bio_entry *be;
761 
762 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763 	be->bio = bio;
764 	bio_get(bio);
765 
766 	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
767 
768 	f2fs_down_write(&io->bio_list_lock);
769 	list_add_tail(&be->list, &io->bio_list);
770 	f2fs_up_write(&io->bio_list_lock);
771 }
772 
773 static void del_bio_entry(struct bio_entry *be)
774 {
775 	list_del(&be->list);
776 	kmem_cache_free(bio_entry_slab, be);
777 }
778 
779 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
780 							struct folio *folio)
781 {
782 	struct folio *fio_folio = fio->folio;
783 	struct f2fs_sb_info *sbi = fio->sbi;
784 	enum temp_type temp;
785 	bool found = false;
786 	int ret = -EAGAIN;
787 
788 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 		struct list_head *head = &io->bio_list;
791 		struct bio_entry *be;
792 
793 		f2fs_down_write(&io->bio_list_lock);
794 		list_for_each_entry(be, head, list) {
795 			if (be->bio != *bio)
796 				continue;
797 
798 			found = true;
799 
800 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801 							    *fio->last_block,
802 							    fio->new_blkaddr));
803 			if (f2fs_crypt_mergeable_bio(*bio,
804 					fio_folio->mapping->host,
805 					fio_folio->index, fio) &&
806 			    bio_add_folio(*bio, folio, folio_size(folio), 0)) {
807 				ret = 0;
808 				break;
809 			}
810 
811 			/* page can't be merged into bio; submit the bio */
812 			del_bio_entry(be);
813 			f2fs_submit_write_bio(sbi, *bio, DATA);
814 			break;
815 		}
816 		f2fs_up_write(&io->bio_list_lock);
817 	}
818 
819 	if (ret) {
820 		bio_put(*bio);
821 		*bio = NULL;
822 	}
823 
824 	return ret;
825 }
826 
827 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
828 					struct bio **bio, struct folio *folio)
829 {
830 	enum temp_type temp;
831 	bool found = false;
832 	struct bio *target = bio ? *bio : NULL;
833 
834 	f2fs_bug_on(sbi, !target && !folio);
835 
836 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
837 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
838 		struct list_head *head = &io->bio_list;
839 		struct bio_entry *be;
840 
841 		if (list_empty(head))
842 			continue;
843 
844 		f2fs_down_read(&io->bio_list_lock);
845 		list_for_each_entry(be, head, list) {
846 			if (target)
847 				found = (target == be->bio);
848 			else
849 				found = __has_merged_page(be->bio, NULL,
850 							folio, 0);
851 			if (found)
852 				break;
853 		}
854 		f2fs_up_read(&io->bio_list_lock);
855 
856 		if (!found)
857 			continue;
858 
859 		found = false;
860 
861 		f2fs_down_write(&io->bio_list_lock);
862 		list_for_each_entry(be, head, list) {
863 			if (target)
864 				found = (target == be->bio);
865 			else
866 				found = __has_merged_page(be->bio, NULL,
867 							folio, 0);
868 			if (found) {
869 				target = be->bio;
870 				del_bio_entry(be);
871 				break;
872 			}
873 		}
874 		f2fs_up_write(&io->bio_list_lock);
875 	}
876 
877 	if (found)
878 		f2fs_submit_write_bio(sbi, target, DATA);
879 	if (bio && *bio) {
880 		bio_put(*bio);
881 		*bio = NULL;
882 	}
883 }
884 
885 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
886 {
887 	struct bio *bio = *fio->bio;
888 	struct folio *data_folio = fio->encrypted_page ?
889 			page_folio(fio->encrypted_page) : fio->folio;
890 	struct folio *folio = fio->folio;
891 
892 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
893 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
894 		return -EFSCORRUPTED;
895 
896 	trace_f2fs_submit_folio_bio(data_folio, fio);
897 
898 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899 						fio->new_blkaddr))
900 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 alloc_new:
902 	if (!bio) {
903 		bio = __bio_alloc(fio, BIO_MAX_VECS);
904 		f2fs_set_bio_crypt_ctx(bio, folio->mapping->host,
905 				folio->index, fio, GFP_NOIO);
906 
907 		add_bio_entry(fio->sbi, bio, data_folio, fio->temp);
908 	} else {
909 		if (add_ipu_page(fio, &bio, data_folio))
910 			goto alloc_new;
911 	}
912 
913 	if (fio->io_wbc)
914 		wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio));
915 
916 	inc_page_count(fio->sbi, WB_DATA_TYPE(folio, false));
917 
918 	*fio->last_block = fio->new_blkaddr;
919 	*fio->bio = bio;
920 
921 	return 0;
922 }
923 
924 #ifdef CONFIG_BLK_DEV_ZONED
925 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927 	struct block_device *bdev = sbi->sb->s_bdev;
928 	int devi = 0;
929 
930 	if (f2fs_is_multi_device(sbi)) {
931 		devi = f2fs_target_device_index(sbi, blkaddr);
932 		if (blkaddr < FDEV(devi).start_blk ||
933 		    blkaddr > FDEV(devi).end_blk) {
934 			f2fs_err(sbi, "Invalid block %x", blkaddr);
935 			return false;
936 		}
937 		blkaddr -= FDEV(devi).start_blk;
938 		bdev = FDEV(devi).bdev;
939 	}
940 	return bdev_is_zoned(bdev) &&
941 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
942 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
943 }
944 #endif
945 
946 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 {
948 	struct f2fs_sb_info *sbi = fio->sbi;
949 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951 	struct folio *bio_folio;
952 	enum count_type type;
953 
954 	f2fs_bug_on(sbi, is_read_io(fio->op));
955 
956 	f2fs_down_write(&io->io_rwsem);
957 next:
958 #ifdef CONFIG_BLK_DEV_ZONED
959 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
960 		wait_for_completion_io(&io->zone_wait);
961 		bio_put(io->zone_pending_bio);
962 		io->zone_pending_bio = NULL;
963 		io->bi_private = NULL;
964 	}
965 #endif
966 
967 	if (fio->in_list) {
968 		spin_lock(&io->io_lock);
969 		if (list_empty(&io->io_list)) {
970 			spin_unlock(&io->io_lock);
971 			goto out;
972 		}
973 		fio = list_first_entry(&io->io_list,
974 						struct f2fs_io_info, list);
975 		list_del(&fio->list);
976 		spin_unlock(&io->io_lock);
977 	}
978 
979 	verify_fio_blkaddr(fio);
980 
981 	if (fio->encrypted_page)
982 		bio_folio = page_folio(fio->encrypted_page);
983 	else if (fio->compressed_page)
984 		bio_folio = page_folio(fio->compressed_page);
985 	else
986 		bio_folio = fio->folio;
987 
988 	/* set submitted = true as a return value */
989 	fio->submitted = 1;
990 
991 	type = WB_DATA_TYPE(bio_folio, fio->compressed_page);
992 	inc_page_count(sbi, type);
993 
994 	if (io->bio &&
995 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
996 			      fio->new_blkaddr) ||
997 	     !f2fs_crypt_mergeable_bio(io->bio, fio_inode(fio),
998 				bio_folio->index, fio)))
999 		__submit_merged_bio(io);
1000 alloc_new:
1001 	if (io->bio == NULL) {
1002 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1003 		f2fs_set_bio_crypt_ctx(io->bio, fio_inode(fio),
1004 				bio_folio->index, fio, GFP_NOIO);
1005 		io->fio = *fio;
1006 	}
1007 
1008 	if (!bio_add_folio(io->bio, bio_folio, folio_size(bio_folio), 0)) {
1009 		__submit_merged_bio(io);
1010 		goto alloc_new;
1011 	}
1012 
1013 	if (fio->io_wbc)
1014 		wbc_account_cgroup_owner(fio->io_wbc, fio->folio,
1015 				folio_size(fio->folio));
1016 
1017 	io->last_block_in_bio = fio->new_blkaddr;
1018 
1019 	trace_f2fs_submit_folio_write(fio->folio, fio);
1020 #ifdef CONFIG_BLK_DEV_ZONED
1021 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1022 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1023 		bio_get(io->bio);
1024 		reinit_completion(&io->zone_wait);
1025 		io->bi_private = io->bio->bi_private;
1026 		io->bio->bi_private = io;
1027 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1028 		io->zone_pending_bio = io->bio;
1029 		__submit_merged_bio(io);
1030 	}
1031 #endif
1032 	if (fio->in_list)
1033 		goto next;
1034 out:
1035 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1036 				!f2fs_is_checkpoint_ready(sbi))
1037 		__submit_merged_bio(io);
1038 	f2fs_up_write(&io->io_rwsem);
1039 }
1040 
1041 static struct bio *f2fs_grab_read_bio(struct inode *inode,
1042 				      struct fsverity_info *vi, block_t blkaddr,
1043 				      unsigned nr_pages, blk_opf_t op_flag,
1044 				      pgoff_t first_idx, bool for_write)
1045 {
1046 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1047 	struct bio *bio;
1048 	struct bio_post_read_ctx *ctx = NULL;
1049 	unsigned int post_read_steps = 0;
1050 	sector_t sector;
1051 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1052 
1053 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1054 			       REQ_OP_READ | op_flag,
1055 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1056 	bio->bi_iter.bi_sector = sector;
1057 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 	bio->bi_end_io = f2fs_read_end_io;
1059 
1060 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 		post_read_steps |= STEP_DECRYPT;
1062 
1063 	if (vi)
1064 		post_read_steps |= STEP_VERITY;
1065 
1066 	/*
1067 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1069 	 * bio_post_read_ctx if the file is compressed, but the caller is
1070 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071 	 */
1072 
1073 	if (post_read_steps || f2fs_compressed_file(inode)) {
1074 		/* Due to the mempool, this never fails. */
1075 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076 		ctx->bio = bio;
1077 		ctx->sbi = sbi;
1078 		ctx->vi = vi;
1079 		ctx->enabled_steps = post_read_steps;
1080 		ctx->fs_blkaddr = blkaddr;
1081 		ctx->decompression_attempted = false;
1082 		bio->bi_private = ctx;
1083 	}
1084 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1085 
1086 	return bio;
1087 }
1088 
1089 /* This can handle encryption stuffs */
1090 static void f2fs_submit_page_read(struct inode *inode, struct fsverity_info *vi,
1091 				  struct folio *folio, block_t blkaddr,
1092 				  blk_opf_t op_flags, bool for_write)
1093 {
1094 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1095 	struct bio *bio;
1096 
1097 	bio = f2fs_grab_read_bio(inode, vi, blkaddr, 1, op_flags, folio->index,
1098 				 for_write);
1099 
1100 	/* wait for GCed page writeback via META_MAPPING */
1101 	f2fs_wait_on_block_writeback(inode, blkaddr);
1102 
1103 	if (!bio_add_folio(bio, folio, PAGE_SIZE, 0))
1104 		f2fs_bug_on(sbi, 1);
1105 
1106 	inc_page_count(sbi, F2FS_RD_DATA);
1107 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1108 	f2fs_submit_read_bio(sbi, bio, DATA);
1109 }
1110 
1111 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1112 {
1113 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_folio);
1114 
1115 	dn->data_blkaddr = blkaddr;
1116 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1117 }
1118 
1119 /*
1120  * Lock ordering for the change of data block address:
1121  * ->data_page
1122  *  ->node_folio
1123  *    update block addresses in the node page
1124  */
1125 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1126 {
1127 	f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1128 	__set_data_blkaddr(dn, blkaddr);
1129 	if (folio_mark_dirty(dn->node_folio))
1130 		dn->node_changed = true;
1131 }
1132 
1133 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1134 {
1135 	f2fs_set_data_blkaddr(dn, blkaddr);
1136 	f2fs_update_read_extent_cache(dn);
1137 }
1138 
1139 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1140 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1141 {
1142 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1143 	int err;
1144 
1145 	if (!count)
1146 		return 0;
1147 
1148 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1149 		return -EPERM;
1150 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1151 	if (unlikely(err))
1152 		return err;
1153 
1154 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1155 						dn->ofs_in_node, count);
1156 
1157 	f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1158 
1159 	for (; count > 0; dn->ofs_in_node++) {
1160 		block_t blkaddr = f2fs_data_blkaddr(dn);
1161 
1162 		if (blkaddr == NULL_ADDR) {
1163 			__set_data_blkaddr(dn, NEW_ADDR);
1164 			count--;
1165 		}
1166 	}
1167 
1168 	if (folio_mark_dirty(dn->node_folio))
1169 		dn->node_changed = true;
1170 	return 0;
1171 }
1172 
1173 /* Should keep dn->ofs_in_node unchanged */
1174 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1175 {
1176 	unsigned int ofs_in_node = dn->ofs_in_node;
1177 	int ret;
1178 
1179 	ret = f2fs_reserve_new_blocks(dn, 1);
1180 	dn->ofs_in_node = ofs_in_node;
1181 	return ret;
1182 }
1183 
1184 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1185 {
1186 	bool need_put = dn->inode_folio ? false : true;
1187 	int err;
1188 
1189 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1190 	if (err)
1191 		return err;
1192 
1193 	if (dn->data_blkaddr == NULL_ADDR)
1194 		err = f2fs_reserve_new_block(dn);
1195 	if (err || need_put)
1196 		f2fs_put_dnode(dn);
1197 	return err;
1198 }
1199 
1200 static inline struct fsverity_info *f2fs_need_verity(const struct inode *inode,
1201 						     pgoff_t idx)
1202 {
1203 	if (idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE))
1204 		return fsverity_get_info(inode);
1205 	return NULL;
1206 }
1207 
1208 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
1209 		blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs)
1210 {
1211 	struct address_space *mapping = inode->i_mapping;
1212 	struct dnode_of_data dn;
1213 	struct folio *folio;
1214 	int err;
1215 
1216 	folio = f2fs_grab_cache_folio(mapping, index, for_write);
1217 	if (IS_ERR(folio))
1218 		return folio;
1219 
1220 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1221 						&dn.data_blkaddr)) {
1222 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1223 						DATA_GENERIC_ENHANCE_READ)) {
1224 			err = -EFSCORRUPTED;
1225 			goto put_err;
1226 		}
1227 		goto got_it;
1228 	}
1229 
1230 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1231 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1232 	if (err) {
1233 		if (err == -ENOENT && next_pgofs)
1234 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1235 		goto put_err;
1236 	}
1237 	f2fs_put_dnode(&dn);
1238 
1239 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1240 		err = -ENOENT;
1241 		if (next_pgofs)
1242 			*next_pgofs = index + 1;
1243 		goto put_err;
1244 	}
1245 	if (dn.data_blkaddr != NEW_ADDR &&
1246 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1247 						dn.data_blkaddr,
1248 						DATA_GENERIC_ENHANCE)) {
1249 		err = -EFSCORRUPTED;
1250 		goto put_err;
1251 	}
1252 got_it:
1253 	if (folio_test_uptodate(folio)) {
1254 		folio_unlock(folio);
1255 		return folio;
1256 	}
1257 
1258 	/*
1259 	 * A new dentry page is allocated but not able to be written, since its
1260 	 * new inode page couldn't be allocated due to -ENOSPC.
1261 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1262 	 * see, f2fs_add_link -> f2fs_get_new_data_folio ->
1263 	 * f2fs_init_inode_metadata.
1264 	 */
1265 	if (dn.data_blkaddr == NEW_ADDR) {
1266 		folio_zero_segment(folio, 0, folio_size(folio));
1267 		if (!folio_test_uptodate(folio))
1268 			folio_mark_uptodate(folio);
1269 		folio_unlock(folio);
1270 		return folio;
1271 	}
1272 
1273 	f2fs_submit_page_read(inode, f2fs_need_verity(inode, folio->index),
1274 			      folio, dn.data_blkaddr, op_flags, for_write);
1275 	return folio;
1276 
1277 put_err:
1278 	f2fs_folio_put(folio, true);
1279 	return ERR_PTR(err);
1280 }
1281 
1282 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
1283 					pgoff_t *next_pgofs)
1284 {
1285 	struct address_space *mapping = inode->i_mapping;
1286 	struct folio *folio;
1287 
1288 	folio = f2fs_filemap_get_folio(mapping, index, FGP_ACCESSED, 0);
1289 	if (IS_ERR(folio))
1290 		goto read;
1291 	if (folio_test_uptodate(folio))
1292 		return folio;
1293 	f2fs_folio_put(folio, false);
1294 
1295 read:
1296 	folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs);
1297 	if (IS_ERR(folio))
1298 		return folio;
1299 
1300 	if (folio_test_uptodate(folio))
1301 		return folio;
1302 
1303 	folio_wait_locked(folio);
1304 	if (unlikely(!folio_test_uptodate(folio))) {
1305 		f2fs_folio_put(folio, false);
1306 		return ERR_PTR(-EIO);
1307 	}
1308 	return folio;
1309 }
1310 
1311 /*
1312  * If it tries to access a hole, return an error.
1313  * Because, the callers, functions in dir.c and GC, should be able to know
1314  * whether this page exists or not.
1315  */
1316 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
1317 							bool for_write)
1318 {
1319 	struct address_space *mapping = inode->i_mapping;
1320 	struct folio *folio;
1321 
1322 	folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL);
1323 	if (IS_ERR(folio))
1324 		return folio;
1325 
1326 	/* wait for read completion */
1327 	folio_lock(folio);
1328 	if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) {
1329 		f2fs_folio_put(folio, true);
1330 		return ERR_PTR(-EIO);
1331 	}
1332 	return folio;
1333 }
1334 
1335 /*
1336  * Caller ensures that this data page is never allocated.
1337  * A new zero-filled data page is allocated in the page cache.
1338  *
1339  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1340  * f2fs_unlock_op().
1341  * Note that, ifolio is set only by make_empty_dir, and if any error occur,
1342  * ifolio should be released by this function.
1343  */
1344 struct folio *f2fs_get_new_data_folio(struct inode *inode,
1345 		struct folio *ifolio, pgoff_t index, bool new_i_size)
1346 {
1347 	struct address_space *mapping = inode->i_mapping;
1348 	struct folio *folio;
1349 	struct dnode_of_data dn;
1350 	int err;
1351 
1352 	folio = f2fs_grab_cache_folio(mapping, index, true);
1353 	if (IS_ERR(folio)) {
1354 		/*
1355 		 * before exiting, we should make sure ifolio will be released
1356 		 * if any error occur.
1357 		 */
1358 		f2fs_folio_put(ifolio, true);
1359 		return ERR_PTR(-ENOMEM);
1360 	}
1361 
1362 	set_new_dnode(&dn, inode, ifolio, NULL, 0);
1363 	err = f2fs_reserve_block(&dn, index);
1364 	if (err) {
1365 		f2fs_folio_put(folio, true);
1366 		return ERR_PTR(err);
1367 	}
1368 	if (!ifolio)
1369 		f2fs_put_dnode(&dn);
1370 
1371 	if (folio_test_uptodate(folio))
1372 		goto got_it;
1373 
1374 	if (dn.data_blkaddr == NEW_ADDR) {
1375 		folio_zero_segment(folio, 0, folio_size(folio));
1376 		if (!folio_test_uptodate(folio))
1377 			folio_mark_uptodate(folio);
1378 	} else {
1379 		f2fs_folio_put(folio, true);
1380 
1381 		/* if ifolio exists, blkaddr should be NEW_ADDR */
1382 		f2fs_bug_on(F2FS_I_SB(inode), ifolio);
1383 		folio = f2fs_get_lock_data_folio(inode, index, true);
1384 		if (IS_ERR(folio))
1385 			return folio;
1386 	}
1387 got_it:
1388 	if (new_i_size && i_size_read(inode) <
1389 				((loff_t)(index + 1) << PAGE_SHIFT))
1390 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1391 	return folio;
1392 }
1393 
1394 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 	struct f2fs_summary sum;
1398 	struct node_info ni;
1399 	block_t old_blkaddr;
1400 	blkcnt_t count = 1;
1401 	int err;
1402 
1403 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1404 		return -EPERM;
1405 
1406 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1407 	if (err)
1408 		return err;
1409 
1410 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1411 	if (dn->data_blkaddr == NULL_ADDR) {
1412 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1413 		if (unlikely(err))
1414 			return err;
1415 	}
1416 
1417 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1418 	old_blkaddr = dn->data_blkaddr;
1419 	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1420 				&dn->data_blkaddr, &sum, seg_type, NULL);
1421 	if (err)
1422 		return err;
1423 
1424 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1425 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1426 
1427 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1428 	return 0;
1429 }
1430 
1431 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1432 {
1433 	f2fs_down_read(&sbi->cp_enable_rwsem);
1434 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1435 		f2fs_down_read(&sbi->node_change);
1436 	else
1437 		f2fs_lock_op(sbi);
1438 }
1439 
1440 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1441 {
1442 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1443 		f2fs_up_read(&sbi->node_change);
1444 	else
1445 		f2fs_unlock_op(sbi);
1446 	f2fs_up_read(&sbi->cp_enable_rwsem);
1447 }
1448 
1449 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1450 {
1451 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1452 	int err = 0;
1453 
1454 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1455 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1456 						&dn->data_blkaddr))
1457 		err = f2fs_reserve_block(dn, index);
1458 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1459 
1460 	return err;
1461 }
1462 
1463 static int f2fs_map_no_dnode(struct inode *inode,
1464 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1465 		pgoff_t pgoff)
1466 {
1467 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1468 
1469 	/*
1470 	 * There is one exceptional case that read_node_page() may return
1471 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1472 	 * -EIO in that case.
1473 	 */
1474 	if (map->m_may_create &&
1475 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1476 		return -EIO;
1477 
1478 	if (map->m_next_pgofs)
1479 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1480 	if (map->m_next_extent)
1481 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1482 	return 0;
1483 }
1484 
1485 static bool f2fs_map_blocks_cached(struct inode *inode,
1486 		struct f2fs_map_blocks *map, int flag)
1487 {
1488 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1489 	unsigned int maxblocks = map->m_len;
1490 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1491 	struct extent_info ei = {};
1492 
1493 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1494 		return false;
1495 
1496 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1497 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1498 	map->m_flags = F2FS_MAP_MAPPED;
1499 	if (map->m_next_extent)
1500 		*map->m_next_extent = pgoff + map->m_len;
1501 
1502 	/* for hardware encryption, but to avoid potential issue in future */
1503 	if (flag == F2FS_GET_BLOCK_DIO)
1504 		f2fs_wait_on_block_writeback_range(inode,
1505 					map->m_pblk, map->m_len);
1506 
1507 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1508 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1509 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1510 
1511 		map->m_bdev = dev->bdev;
1512 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1513 		map->m_pblk -= dev->start_blk;
1514 	} else {
1515 		map->m_bdev = inode->i_sb->s_bdev;
1516 	}
1517 	return true;
1518 }
1519 
1520 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1521 				struct f2fs_map_blocks *map,
1522 				block_t blkaddr, int flag, int bidx,
1523 				int ofs)
1524 {
1525 	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1526 		return false;
1527 	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1528 		return true;
1529 	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1530 		return true;
1531 	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1532 		return true;
1533 	if (flag == F2FS_GET_BLOCK_DIO &&
1534 		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1535 		return true;
1536 	return false;
1537 }
1538 
1539 /*
1540  * f2fs_map_blocks() tries to find or build mapping relationship which
1541  * maps continuous logical blocks to physical blocks, and return such
1542  * info via f2fs_map_blocks structure.
1543  */
1544 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1545 {
1546 	unsigned int maxblocks = map->m_len;
1547 	struct dnode_of_data dn;
1548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1549 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1550 	pgoff_t pgofs, end_offset, end;
1551 	int err = 0, ofs = 1;
1552 	unsigned int ofs_in_node, last_ofs_in_node;
1553 	blkcnt_t prealloc;
1554 	block_t blkaddr;
1555 	unsigned int start_pgofs;
1556 	int bidx = 0;
1557 	bool is_hole;
1558 	bool lfs_dio_write;
1559 
1560 	if (!maxblocks)
1561 		return 0;
1562 
1563 	lfs_dio_write = (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1564 				map->m_may_create);
1565 
1566 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1567 		goto out;
1568 
1569 	map->m_bdev = inode->i_sb->s_bdev;
1570 	map->m_multidev_dio =
1571 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1572 
1573 	map->m_len = 0;
1574 	map->m_flags = 0;
1575 
1576 	/* it only supports block size == page size */
1577 	pgofs =	(pgoff_t)map->m_lblk;
1578 	end = pgofs + maxblocks;
1579 
1580 	if (flag == F2FS_GET_BLOCK_PRECACHE)
1581 		mode = LOOKUP_NODE_RA;
1582 
1583 next_dnode:
1584 	if (map->m_may_create) {
1585 		if (f2fs_lfs_mode(sbi))
1586 			f2fs_balance_fs(sbi, true);
1587 		f2fs_map_lock(sbi, flag);
1588 	}
1589 
1590 	/* When reading holes, we need its node page */
1591 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1592 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1593 	if (err) {
1594 		if (flag == F2FS_GET_BLOCK_BMAP)
1595 			map->m_pblk = 0;
1596 		if (err == -ENOENT)
1597 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1598 		goto unlock_out;
1599 	}
1600 
1601 	start_pgofs = pgofs;
1602 	prealloc = 0;
1603 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1604 	end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1605 
1606 next_block:
1607 	blkaddr = f2fs_data_blkaddr(&dn);
1608 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1609 	if (!is_hole &&
1610 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1611 		err = -EFSCORRUPTED;
1612 		goto sync_out;
1613 	}
1614 
1615 	/* use out-place-update for direct IO under LFS mode */
1616 	if (map->m_may_create && (is_hole ||
1617 		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1618 		!f2fs_is_pinned_file(inode) && map->m_last_pblk != blkaddr))) {
1619 		if (unlikely(f2fs_cp_error(sbi))) {
1620 			err = -EIO;
1621 			goto sync_out;
1622 		}
1623 
1624 		switch (flag) {
1625 		case F2FS_GET_BLOCK_PRE_AIO:
1626 			if (blkaddr == NULL_ADDR) {
1627 				prealloc++;
1628 				last_ofs_in_node = dn.ofs_in_node;
1629 			}
1630 			break;
1631 		case F2FS_GET_BLOCK_PRE_DIO:
1632 		case F2FS_GET_BLOCK_DIO:
1633 			err = __allocate_data_block(&dn, map->m_seg_type);
1634 			if (err)
1635 				goto sync_out;
1636 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1637 				file_need_truncate(inode);
1638 			set_inode_flag(inode, FI_APPEND_WRITE);
1639 			break;
1640 		default:
1641 			WARN_ON_ONCE(1);
1642 			err = -EIO;
1643 			goto sync_out;
1644 		}
1645 
1646 		blkaddr = dn.data_blkaddr;
1647 		if (is_hole)
1648 			map->m_flags |= F2FS_MAP_NEW;
1649 	} else if (is_hole) {
1650 		if (f2fs_compressed_file(inode) &&
1651 		    f2fs_sanity_check_cluster(&dn)) {
1652 			err = -EFSCORRUPTED;
1653 			f2fs_handle_error(sbi,
1654 					ERROR_CORRUPTED_CLUSTER);
1655 			goto sync_out;
1656 		}
1657 
1658 		switch (flag) {
1659 		case F2FS_GET_BLOCK_PRECACHE:
1660 			goto sync_out;
1661 		case F2FS_GET_BLOCK_BMAP:
1662 			map->m_pblk = 0;
1663 			goto sync_out;
1664 		case F2FS_GET_BLOCK_FIEMAP:
1665 			if (blkaddr == NULL_ADDR) {
1666 				if (map->m_next_pgofs)
1667 					*map->m_next_pgofs = pgofs + 1;
1668 				goto sync_out;
1669 			}
1670 			break;
1671 		case F2FS_GET_BLOCK_DIO:
1672 			if (map->m_next_pgofs)
1673 				*map->m_next_pgofs = pgofs + 1;
1674 			break;
1675 		default:
1676 			/* for defragment case */
1677 			if (map->m_next_pgofs)
1678 				*map->m_next_pgofs = pgofs + 1;
1679 			goto sync_out;
1680 		}
1681 	}
1682 
1683 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1684 		goto skip;
1685 
1686 	if (map->m_multidev_dio)
1687 		bidx = f2fs_target_device_index(sbi, blkaddr);
1688 
1689 	if (map->m_len == 0) {
1690 		/* reserved delalloc block should be mapped for fiemap. */
1691 		if (blkaddr == NEW_ADDR)
1692 			map->m_flags |= F2FS_MAP_DELALLOC;
1693 		/* DIO READ and hole case, should not map the blocks. */
1694 		if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1695 			map->m_flags |= F2FS_MAP_MAPPED;
1696 
1697 		map->m_pblk = blkaddr;
1698 		map->m_len = 1;
1699 
1700 		if (map->m_multidev_dio)
1701 			map->m_bdev = FDEV(bidx).bdev;
1702 
1703 		if (lfs_dio_write)
1704 			map->m_last_pblk = NULL_ADDR;
1705 	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1706 		ofs++;
1707 		map->m_len++;
1708 	} else {
1709 		if (lfs_dio_write && !f2fs_is_pinned_file(inode))
1710 			map->m_last_pblk = blkaddr;
1711 		goto sync_out;
1712 	}
1713 
1714 skip:
1715 	dn.ofs_in_node++;
1716 	pgofs++;
1717 
1718 	/* preallocate blocks in batch for one dnode page */
1719 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1720 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1721 
1722 		dn.ofs_in_node = ofs_in_node;
1723 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1724 		if (err)
1725 			goto sync_out;
1726 
1727 		map->m_len += dn.ofs_in_node - ofs_in_node;
1728 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1729 			err = -ENOSPC;
1730 			goto sync_out;
1731 		}
1732 		dn.ofs_in_node = end_offset;
1733 	}
1734 
1735 	if (pgofs >= end)
1736 		goto sync_out;
1737 	else if (dn.ofs_in_node < end_offset)
1738 		goto next_block;
1739 
1740 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1741 		if (map->m_flags & F2FS_MAP_MAPPED) {
1742 			unsigned int ofs = start_pgofs - map->m_lblk;
1743 
1744 			f2fs_update_read_extent_cache_range(&dn,
1745 				start_pgofs, map->m_pblk + ofs,
1746 				map->m_len - ofs);
1747 		}
1748 	}
1749 
1750 	f2fs_put_dnode(&dn);
1751 
1752 	if (map->m_may_create) {
1753 		f2fs_map_unlock(sbi, flag);
1754 		f2fs_balance_fs(sbi, dn.node_changed);
1755 	}
1756 	goto next_dnode;
1757 
1758 sync_out:
1759 
1760 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1761 		/*
1762 		 * for hardware encryption, but to avoid potential issue
1763 		 * in future
1764 		 */
1765 		f2fs_wait_on_block_writeback_range(inode,
1766 						map->m_pblk, map->m_len);
1767 
1768 		if (map->m_multidev_dio) {
1769 			block_t blk_addr = map->m_pblk;
1770 
1771 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1772 
1773 			map->m_bdev = FDEV(bidx).bdev;
1774 			map->m_pblk -= FDEV(bidx).start_blk;
1775 
1776 			if (map->m_may_create)
1777 				f2fs_update_device_state(sbi, inode->i_ino,
1778 							blk_addr, map->m_len);
1779 
1780 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1781 						FDEV(bidx).end_blk + 1);
1782 		}
1783 	}
1784 
1785 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1786 		if (map->m_flags & F2FS_MAP_MAPPED) {
1787 			unsigned int ofs = start_pgofs - map->m_lblk;
1788 
1789 			if (map->m_len > ofs)
1790 				f2fs_update_read_extent_cache_range(&dn,
1791 					start_pgofs, map->m_pblk + ofs,
1792 					map->m_len - ofs);
1793 		}
1794 		if (map->m_next_extent)
1795 			*map->m_next_extent = is_hole ? pgofs + 1 : pgofs;
1796 	}
1797 	f2fs_put_dnode(&dn);
1798 unlock_out:
1799 	if (map->m_may_create) {
1800 		f2fs_map_unlock(sbi, flag);
1801 		f2fs_balance_fs(sbi, dn.node_changed);
1802 	}
1803 out:
1804 	trace_f2fs_map_blocks(inode, map, flag, err);
1805 	return err;
1806 }
1807 
1808 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1809 {
1810 	struct f2fs_map_blocks map;
1811 	block_t last_lblk;
1812 	int err;
1813 
1814 	if (pos + len > i_size_read(inode))
1815 		return false;
1816 
1817 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1818 	map.m_next_pgofs = NULL;
1819 	map.m_next_extent = NULL;
1820 	map.m_seg_type = NO_CHECK_TYPE;
1821 	map.m_may_create = false;
1822 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1823 
1824 	while (map.m_lblk < last_lblk) {
1825 		map.m_len = last_lblk - map.m_lblk;
1826 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1827 		if (err || map.m_len == 0)
1828 			return false;
1829 		map.m_lblk += map.m_len;
1830 	}
1831 	return true;
1832 }
1833 
1834 static int f2fs_xattr_fiemap(struct inode *inode,
1835 				struct fiemap_extent_info *fieinfo)
1836 {
1837 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 	struct node_info ni;
1839 	__u64 phys = 0, len;
1840 	__u32 flags;
1841 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1842 	int err = 0;
1843 
1844 	if (f2fs_has_inline_xattr(inode)) {
1845 		int offset;
1846 		struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1847 				inode->i_ino, false);
1848 
1849 		if (IS_ERR(folio))
1850 			return PTR_ERR(folio);
1851 
1852 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1853 		if (err) {
1854 			f2fs_folio_put(folio, true);
1855 			return err;
1856 		}
1857 
1858 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1859 		offset = offsetof(struct f2fs_inode, i_addr) +
1860 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1861 					get_inline_xattr_addrs(inode));
1862 
1863 		phys += offset;
1864 		len = inline_xattr_size(inode);
1865 
1866 		f2fs_folio_put(folio, true);
1867 
1868 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1869 
1870 		if (!xnid)
1871 			flags |= FIEMAP_EXTENT_LAST;
1872 
1873 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1874 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1875 		if (err)
1876 			return err;
1877 	}
1878 
1879 	if (xnid) {
1880 		struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1881 				xnid, false);
1882 
1883 		if (IS_ERR(folio))
1884 			return PTR_ERR(folio);
1885 
1886 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1887 		if (err) {
1888 			f2fs_folio_put(folio, true);
1889 			return err;
1890 		}
1891 
1892 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1893 		len = inode->i_sb->s_blocksize;
1894 
1895 		f2fs_folio_put(folio, true);
1896 
1897 		flags = FIEMAP_EXTENT_LAST;
1898 	}
1899 
1900 	if (phys) {
1901 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1902 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1903 	}
1904 
1905 	return (err < 0 ? err : 0);
1906 }
1907 
1908 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1909 		u64 start, u64 len)
1910 {
1911 	struct f2fs_map_blocks map;
1912 	sector_t start_blk, last_blk, blk_len, max_len;
1913 	pgoff_t next_pgofs;
1914 	u64 logical = 0, phys = 0, size = 0;
1915 	u32 flags = 0;
1916 	int ret = 0;
1917 	bool compr_cluster = false, compr_appended;
1918 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1919 	unsigned int count_in_cluster = 0;
1920 	loff_t maxbytes;
1921 
1922 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1923 		ret = f2fs_precache_extents(inode);
1924 		if (ret)
1925 			return ret;
1926 	}
1927 
1928 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1929 	if (ret)
1930 		return ret;
1931 
1932 	inode_lock_shared(inode);
1933 
1934 	maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1935 	if (start > maxbytes) {
1936 		ret = -EFBIG;
1937 		goto out;
1938 	}
1939 
1940 	if (len > maxbytes || (maxbytes - len) < start)
1941 		len = maxbytes - start;
1942 
1943 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1944 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1945 		goto out;
1946 	}
1947 
1948 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1949 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1950 		if (ret != -EAGAIN)
1951 			goto out;
1952 	}
1953 
1954 	start_blk = F2FS_BYTES_TO_BLK(start);
1955 	last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1956 	blk_len = last_blk - start_blk + 1;
1957 	max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1958 
1959 next:
1960 	memset(&map, 0, sizeof(map));
1961 	map.m_lblk = start_blk;
1962 	map.m_len = blk_len;
1963 	map.m_next_pgofs = &next_pgofs;
1964 	map.m_seg_type = NO_CHECK_TYPE;
1965 
1966 	if (compr_cluster) {
1967 		map.m_lblk += 1;
1968 		map.m_len = cluster_size - count_in_cluster;
1969 	}
1970 
1971 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1972 	if (ret)
1973 		goto out;
1974 
1975 	/* HOLE */
1976 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1977 		start_blk = next_pgofs;
1978 
1979 		if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1980 			goto prep_next;
1981 
1982 		flags |= FIEMAP_EXTENT_LAST;
1983 	}
1984 
1985 	/*
1986 	 * current extent may cross boundary of inquiry, increase len to
1987 	 * requery.
1988 	 */
1989 	if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1990 				map.m_lblk + map.m_len - 1 == last_blk &&
1991 				blk_len != max_len) {
1992 		blk_len = max_len;
1993 		goto next;
1994 	}
1995 
1996 	compr_appended = false;
1997 	/* In a case of compressed cluster, append this to the last extent */
1998 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1999 			!(map.m_flags & F2FS_MAP_FLAGS))) {
2000 		compr_appended = true;
2001 		goto skip_fill;
2002 	}
2003 
2004 	if (size) {
2005 		flags |= FIEMAP_EXTENT_MERGED;
2006 		if (IS_ENCRYPTED(inode))
2007 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2008 
2009 		ret = fiemap_fill_next_extent(fieinfo, logical,
2010 				phys, size, flags);
2011 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2012 		if (ret)
2013 			goto out;
2014 		size = 0;
2015 	}
2016 
2017 	if (start_blk > last_blk)
2018 		goto out;
2019 
2020 skip_fill:
2021 	if (map.m_pblk == COMPRESS_ADDR) {
2022 		compr_cluster = true;
2023 		count_in_cluster = 1;
2024 	} else if (compr_appended) {
2025 		unsigned int appended_blks = cluster_size -
2026 						count_in_cluster + 1;
2027 		size += F2FS_BLK_TO_BYTES(appended_blks);
2028 		start_blk += appended_blks;
2029 		compr_cluster = false;
2030 	} else {
2031 		logical = F2FS_BLK_TO_BYTES(start_blk);
2032 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2033 			F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2034 		size = F2FS_BLK_TO_BYTES(map.m_len);
2035 		flags = 0;
2036 
2037 		if (compr_cluster) {
2038 			flags = FIEMAP_EXTENT_ENCODED;
2039 			count_in_cluster += map.m_len;
2040 			if (count_in_cluster == cluster_size) {
2041 				compr_cluster = false;
2042 				size += F2FS_BLKSIZE;
2043 			}
2044 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2045 			flags = FIEMAP_EXTENT_UNWRITTEN;
2046 		}
2047 
2048 		start_blk += F2FS_BYTES_TO_BLK(size);
2049 	}
2050 
2051 prep_next:
2052 	cond_resched();
2053 	if (fatal_signal_pending(current))
2054 		ret = -EINTR;
2055 	else
2056 		goto next;
2057 out:
2058 	if (ret == 1)
2059 		ret = 0;
2060 
2061 	inode_unlock_shared(inode);
2062 	return ret;
2063 }
2064 
2065 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2066 {
2067 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2068 		return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2069 
2070 	return i_size_read(inode);
2071 }
2072 
2073 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2074 {
2075 	return rac ? REQ_RAHEAD : 0;
2076 }
2077 
2078 static int f2fs_read_single_page(struct inode *inode, struct fsverity_info *vi,
2079 				 struct folio *folio, unsigned int nr_pages,
2080 				 struct f2fs_map_blocks *map,
2081 				 struct bio **bio_ret,
2082 				 sector_t *last_block_in_bio,
2083 				 struct readahead_control *rac)
2084 {
2085 	struct bio *bio = *bio_ret;
2086 	const unsigned int blocksize = F2FS_BLKSIZE;
2087 	sector_t block_in_file;
2088 	sector_t last_block;
2089 	sector_t last_block_in_file;
2090 	sector_t block_nr;
2091 	pgoff_t index = folio->index;
2092 	int ret = 0;
2093 
2094 	block_in_file = (sector_t)index;
2095 	last_block = block_in_file + nr_pages;
2096 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2097 							blocksize - 1);
2098 	if (last_block > last_block_in_file)
2099 		last_block = last_block_in_file;
2100 
2101 	/* just zeroing out page which is beyond EOF */
2102 	if (block_in_file >= last_block)
2103 		goto zero_out;
2104 	/*
2105 	 * Map blocks using the previous result first.
2106 	 */
2107 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2108 			block_in_file > map->m_lblk &&
2109 			block_in_file < (map->m_lblk + map->m_len))
2110 		goto got_it;
2111 
2112 	/*
2113 	 * Then do more f2fs_map_blocks() calls until we are
2114 	 * done with this page.
2115 	 */
2116 	map->m_lblk = block_in_file;
2117 	map->m_len = last_block - block_in_file;
2118 
2119 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2120 	if (ret)
2121 		goto out;
2122 got_it:
2123 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2124 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2125 		folio_set_mappedtodisk(folio);
2126 
2127 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2128 						DATA_GENERIC_ENHANCE_READ)) {
2129 			ret = -EFSCORRUPTED;
2130 			goto out;
2131 		}
2132 	} else {
2133 zero_out:
2134 		folio_zero_segment(folio, 0, folio_size(folio));
2135 		if (vi && !fsverity_verify_folio(vi, folio)) {
2136 			ret = -EIO;
2137 			goto out;
2138 		}
2139 		if (!folio_test_uptodate(folio))
2140 			folio_mark_uptodate(folio);
2141 		folio_unlock(folio);
2142 		goto out;
2143 	}
2144 
2145 	/*
2146 	 * This page will go to BIO.  Do we need to send this
2147 	 * BIO off first?
2148 	 */
2149 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2150 				       *last_block_in_bio, block_nr) ||
2151 		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2152 submit_and_realloc:
2153 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2154 		bio = NULL;
2155 	}
2156 	if (bio == NULL)
2157 		bio = f2fs_grab_read_bio(inode, vi, block_nr, nr_pages,
2158 					 f2fs_ra_op_flags(rac), index, false);
2159 
2160 	/*
2161 	 * If the page is under writeback, we need to wait for
2162 	 * its completion to see the correct decrypted data.
2163 	 */
2164 	f2fs_wait_on_block_writeback(inode, block_nr);
2165 
2166 	if (!bio_add_folio(bio, folio, blocksize, 0))
2167 		goto submit_and_realloc;
2168 
2169 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2170 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2171 							F2FS_BLKSIZE);
2172 	*last_block_in_bio = block_nr;
2173 out:
2174 	*bio_ret = bio;
2175 	return ret;
2176 }
2177 
2178 #ifdef CONFIG_F2FS_FS_COMPRESSION
2179 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2180 				unsigned nr_pages, sector_t *last_block_in_bio,
2181 				struct readahead_control *rac, bool for_write)
2182 {
2183 	struct dnode_of_data dn;
2184 	struct inode *inode = cc->inode;
2185 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2186 	struct bio *bio = *bio_ret;
2187 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2188 	sector_t last_block_in_file;
2189 	const unsigned int blocksize = F2FS_BLKSIZE;
2190 	struct decompress_io_ctx *dic = NULL;
2191 	struct extent_info ei = {};
2192 	bool from_dnode = true;
2193 	int i;
2194 	int ret = 0;
2195 
2196 	if (unlikely(f2fs_cp_error(sbi))) {
2197 		ret = -EIO;
2198 		from_dnode = false;
2199 		goto out_put_dnode;
2200 	}
2201 
2202 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2203 
2204 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2205 							blocksize - 1);
2206 
2207 	/* get rid of pages beyond EOF */
2208 	for (i = 0; i < cc->cluster_size; i++) {
2209 		struct page *page = cc->rpages[i];
2210 		struct folio *folio;
2211 
2212 		if (!page)
2213 			continue;
2214 
2215 		folio = page_folio(page);
2216 		if ((sector_t)folio->index >= last_block_in_file) {
2217 			folio_zero_segment(folio, 0, folio_size(folio));
2218 			if (!folio_test_uptodate(folio))
2219 				folio_mark_uptodate(folio);
2220 		} else if (!folio_test_uptodate(folio)) {
2221 			continue;
2222 		}
2223 		folio_unlock(folio);
2224 		if (for_write)
2225 			folio_put(folio);
2226 		cc->rpages[i] = NULL;
2227 		cc->nr_rpages--;
2228 	}
2229 
2230 	/* we are done since all pages are beyond EOF */
2231 	if (f2fs_cluster_is_empty(cc))
2232 		goto out;
2233 
2234 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2235 		from_dnode = false;
2236 
2237 	if (!from_dnode)
2238 		goto skip_reading_dnode;
2239 
2240 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2241 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2242 	if (ret)
2243 		goto out;
2244 
2245 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2246 
2247 skip_reading_dnode:
2248 	for (i = 1; i < cc->cluster_size; i++) {
2249 		block_t blkaddr;
2250 
2251 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2252 					dn.ofs_in_node + i) :
2253 					ei.blk + i - 1;
2254 
2255 		if (!__is_valid_data_blkaddr(blkaddr))
2256 			break;
2257 
2258 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2259 			ret = -EFAULT;
2260 			goto out_put_dnode;
2261 		}
2262 		cc->nr_cpages++;
2263 
2264 		if (!from_dnode && i >= ei.c_len)
2265 			break;
2266 	}
2267 
2268 	/* nothing to decompress */
2269 	if (cc->nr_cpages == 0) {
2270 		ret = 0;
2271 		goto out_put_dnode;
2272 	}
2273 
2274 	dic = f2fs_alloc_dic(cc);
2275 	if (IS_ERR(dic)) {
2276 		ret = PTR_ERR(dic);
2277 		goto out_put_dnode;
2278 	}
2279 
2280 	for (i = 0; i < cc->nr_cpages; i++) {
2281 		struct folio *folio = page_folio(dic->cpages[i]);
2282 		block_t blkaddr;
2283 		struct bio_post_read_ctx *ctx;
2284 
2285 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2286 					dn.ofs_in_node + i + 1) :
2287 					ei.blk + i;
2288 
2289 		f2fs_wait_on_block_writeback(inode, blkaddr);
2290 
2291 		if (f2fs_load_compressed_folio(sbi, folio, blkaddr)) {
2292 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2293 				f2fs_decompress_cluster(dic, true);
2294 				break;
2295 			}
2296 			continue;
2297 		}
2298 
2299 		if (bio && (!page_is_mergeable(sbi, bio,
2300 					*last_block_in_bio, blkaddr) ||
2301 		    !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2302 submit_and_realloc:
2303 			f2fs_submit_read_bio(sbi, bio, DATA);
2304 			bio = NULL;
2305 		}
2306 
2307 		if (!bio)
2308 			bio = f2fs_grab_read_bio(inode, cc->vi, blkaddr,
2309 						 nr_pages - i,
2310 						 f2fs_ra_op_flags(rac),
2311 						 folio->index, for_write);
2312 
2313 		if (!bio_add_folio(bio, folio, blocksize, 0))
2314 			goto submit_and_realloc;
2315 
2316 		ctx = get_post_read_ctx(bio);
2317 		ctx->enabled_steps |= STEP_DECOMPRESS;
2318 		refcount_inc(&dic->refcnt);
2319 
2320 		inc_page_count(sbi, F2FS_RD_DATA);
2321 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2322 		*last_block_in_bio = blkaddr;
2323 	}
2324 
2325 	if (from_dnode)
2326 		f2fs_put_dnode(&dn);
2327 
2328 	*bio_ret = bio;
2329 	return 0;
2330 
2331 out_put_dnode:
2332 	if (from_dnode)
2333 		f2fs_put_dnode(&dn);
2334 out:
2335 	for (i = 0; i < cc->cluster_size; i++) {
2336 		if (cc->rpages[i]) {
2337 			ClearPageUptodate(cc->rpages[i]);
2338 			unlock_page(cc->rpages[i]);
2339 		}
2340 	}
2341 	*bio_ret = bio;
2342 	return ret;
2343 }
2344 #endif
2345 
2346 /*
2347  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2348  * Major change was from block_size == page_size in f2fs by default.
2349  */
2350 static int f2fs_mpage_readpages(struct inode *inode, struct fsverity_info *vi,
2351 		struct readahead_control *rac, struct folio *folio)
2352 {
2353 	struct bio *bio = NULL;
2354 	sector_t last_block_in_bio = 0;
2355 	struct f2fs_map_blocks map;
2356 #ifdef CONFIG_F2FS_FS_COMPRESSION
2357 	struct compress_ctx cc = {
2358 		.inode = inode,
2359 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2360 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2361 		.cluster_idx = NULL_CLUSTER,
2362 		.rpages = NULL,
2363 		.cpages = NULL,
2364 		.nr_rpages = 0,
2365 		.nr_cpages = 0,
2366 	};
2367 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2368 	pgoff_t index;
2369 #endif
2370 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2371 	unsigned max_nr_pages = nr_pages;
2372 	int ret = 0;
2373 
2374 #ifdef CONFIG_F2FS_FS_COMPRESSION
2375 	if (f2fs_compressed_file(inode)) {
2376 		index = rac ? readahead_index(rac) : folio->index;
2377 		max_nr_pages = round_up(index + nr_pages, cc.cluster_size) -
2378 				round_down(index, cc.cluster_size);
2379 	}
2380 #endif
2381 
2382 	map.m_pblk = 0;
2383 	map.m_lblk = 0;
2384 	map.m_len = 0;
2385 	map.m_flags = 0;
2386 	map.m_next_pgofs = NULL;
2387 	map.m_next_extent = NULL;
2388 	map.m_seg_type = NO_CHECK_TYPE;
2389 	map.m_may_create = false;
2390 
2391 	for (; nr_pages; nr_pages--) {
2392 		if (rac) {
2393 			folio = readahead_folio(rac);
2394 			prefetchw(&folio->flags);
2395 		}
2396 
2397 #ifdef CONFIG_F2FS_FS_COMPRESSION
2398 		index = folio->index;
2399 
2400 		if (!f2fs_compressed_file(inode))
2401 			goto read_single_page;
2402 
2403 		/* there are remained compressed pages, submit them */
2404 		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2405 			cc.vi = vi;
2406 			ret = f2fs_read_multi_pages(&cc, &bio,
2407 						max_nr_pages,
2408 						&last_block_in_bio,
2409 						rac, false);
2410 			f2fs_destroy_compress_ctx(&cc, false);
2411 			if (ret)
2412 				goto set_error_page;
2413 		}
2414 		if (cc.cluster_idx == NULL_CLUSTER) {
2415 			if (nc_cluster_idx == index >> cc.log_cluster_size)
2416 				goto read_single_page;
2417 
2418 			ret = f2fs_is_compressed_cluster(inode, index);
2419 			if (ret < 0)
2420 				goto set_error_page;
2421 			else if (!ret) {
2422 				nc_cluster_idx =
2423 					index >> cc.log_cluster_size;
2424 				goto read_single_page;
2425 			}
2426 
2427 			nc_cluster_idx = NULL_CLUSTER;
2428 		}
2429 		ret = f2fs_init_compress_ctx(&cc);
2430 		if (ret)
2431 			goto set_error_page;
2432 
2433 		f2fs_compress_ctx_add_page(&cc, folio);
2434 
2435 		goto next_page;
2436 read_single_page:
2437 #endif
2438 
2439 		ret = f2fs_read_single_page(inode, vi, folio, max_nr_pages,
2440 					    &map, &bio, &last_block_in_bio,
2441 					    rac);
2442 		if (ret) {
2443 #ifdef CONFIG_F2FS_FS_COMPRESSION
2444 set_error_page:
2445 #endif
2446 			folio_zero_segment(folio, 0, folio_size(folio));
2447 			folio_unlock(folio);
2448 		}
2449 #ifdef CONFIG_F2FS_FS_COMPRESSION
2450 next_page:
2451 #endif
2452 
2453 #ifdef CONFIG_F2FS_FS_COMPRESSION
2454 		if (f2fs_compressed_file(inode)) {
2455 			/* last page */
2456 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2457 				cc.vi = vi;
2458 				ret = f2fs_read_multi_pages(&cc, &bio,
2459 							max_nr_pages,
2460 							&last_block_in_bio,
2461 							rac, false);
2462 				f2fs_destroy_compress_ctx(&cc, false);
2463 			}
2464 		}
2465 #endif
2466 	}
2467 	if (bio)
2468 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2469 	return ret;
2470 }
2471 
2472 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2473 {
2474 	struct inode *inode = folio->mapping->host;
2475 	struct fsverity_info *vi = NULL;
2476 	int ret;
2477 
2478 	trace_f2fs_readpage(folio, DATA);
2479 
2480 	if (!f2fs_is_compress_backend_ready(inode)) {
2481 		folio_unlock(folio);
2482 		return -EOPNOTSUPP;
2483 	}
2484 
2485 	/* If the file has inline data, try to read it directly */
2486 	if (f2fs_has_inline_data(inode)) {
2487 		ret = f2fs_read_inline_data(inode, folio);
2488 		if (ret != -EAGAIN)
2489 			return ret;
2490 	}
2491 
2492 	vi = f2fs_need_verity(inode, folio->index);
2493 	if (vi)
2494 		fsverity_readahead(vi, folio->index, folio_nr_pages(folio));
2495 	return f2fs_mpage_readpages(inode, vi, NULL, folio);
2496 }
2497 
2498 static void f2fs_readahead(struct readahead_control *rac)
2499 {
2500 	struct inode *inode = rac->mapping->host;
2501 	struct fsverity_info *vi = NULL;
2502 
2503 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2504 
2505 	if (!f2fs_is_compress_backend_ready(inode))
2506 		return;
2507 
2508 	/* If the file has inline data, skip readahead */
2509 	if (f2fs_has_inline_data(inode))
2510 		return;
2511 
2512 	vi = f2fs_need_verity(inode, readahead_index(rac));
2513 	if (vi)
2514 		fsverity_readahead(vi, readahead_index(rac),
2515 				   readahead_count(rac));
2516 	f2fs_mpage_readpages(inode, vi, rac, NULL);
2517 }
2518 
2519 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2520 {
2521 	struct inode *inode = fio_inode(fio);
2522 	struct folio *mfolio;
2523 	struct page *page;
2524 	gfp_t gfp_flags = GFP_NOFS;
2525 
2526 	if (!f2fs_encrypted_file(inode))
2527 		return 0;
2528 
2529 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2530 
2531 	if (fscrypt_inode_uses_inline_crypto(inode))
2532 		return 0;
2533 
2534 retry_encrypt:
2535 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page),
2536 					PAGE_SIZE, 0, gfp_flags);
2537 	if (IS_ERR(fio->encrypted_page)) {
2538 		/* flush pending IOs and wait for a while in the ENOMEM case */
2539 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2540 			f2fs_flush_merged_writes(fio->sbi);
2541 			memalloc_retry_wait(GFP_NOFS);
2542 			gfp_flags |= __GFP_NOFAIL;
2543 			goto retry_encrypt;
2544 		}
2545 		return PTR_ERR(fio->encrypted_page);
2546 	}
2547 
2548 	mfolio = filemap_lock_folio(META_MAPPING(fio->sbi), fio->old_blkaddr);
2549 	if (!IS_ERR(mfolio)) {
2550 		if (folio_test_uptodate(mfolio))
2551 			memcpy(folio_address(mfolio),
2552 				page_address(fio->encrypted_page), PAGE_SIZE);
2553 		f2fs_folio_put(mfolio, true);
2554 	}
2555 	return 0;
2556 }
2557 
2558 static inline bool check_inplace_update_policy(struct inode *inode,
2559 				struct f2fs_io_info *fio)
2560 {
2561 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2562 
2563 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2564 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2565 		return false;
2566 	if (IS_F2FS_IPU_FORCE(sbi))
2567 		return true;
2568 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2569 		return true;
2570 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2571 		return true;
2572 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2573 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2574 		return true;
2575 
2576 	/*
2577 	 * IPU for rewrite async pages
2578 	 */
2579 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2580 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2581 		return true;
2582 
2583 	/* this is only set during fdatasync */
2584 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2585 		return true;
2586 
2587 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2588 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2589 		return true;
2590 
2591 	return false;
2592 }
2593 
2594 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2595 {
2596 	/* swap file is migrating in aligned write mode */
2597 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2598 		return false;
2599 
2600 	if (f2fs_is_pinned_file(inode))
2601 		return true;
2602 
2603 	/* if this is cold file, we should overwrite to avoid fragmentation */
2604 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2605 		return true;
2606 
2607 	return check_inplace_update_policy(inode, fio);
2608 }
2609 
2610 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2611 {
2612 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2613 
2614 	/* The below cases were checked when setting it. */
2615 	if (f2fs_is_pinned_file(inode))
2616 		return false;
2617 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2618 		return true;
2619 	if (f2fs_lfs_mode(sbi))
2620 		return true;
2621 	if (S_ISDIR(inode->i_mode))
2622 		return true;
2623 	if (IS_NOQUOTA(inode))
2624 		return true;
2625 	if (f2fs_used_in_atomic_write(inode))
2626 		return true;
2627 	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2628 	if (f2fs_compressed_file(inode) &&
2629 		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2630 		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2631 		return true;
2632 
2633 	/* swap file is migrating in aligned write mode */
2634 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2635 		return true;
2636 
2637 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2638 		return true;
2639 
2640 	if (fio) {
2641 		if (page_private_gcing(fio->page))
2642 			return true;
2643 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2644 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2645 			return true;
2646 	}
2647 	return false;
2648 }
2649 
2650 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2651 {
2652 	struct inode *inode = fio_inode(fio);
2653 
2654 	if (f2fs_should_update_outplace(inode, fio))
2655 		return false;
2656 
2657 	return f2fs_should_update_inplace(inode, fio);
2658 }
2659 
2660 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2661 {
2662 	struct folio *folio = fio->folio;
2663 	struct inode *inode = folio->mapping->host;
2664 	struct dnode_of_data dn;
2665 	struct node_info ni;
2666 	bool ipu_force = false;
2667 	bool atomic_commit;
2668 	int err = 0;
2669 
2670 	/* Use COW inode to make dnode_of_data for atomic write */
2671 	atomic_commit = f2fs_is_atomic_file(inode) &&
2672 				folio_test_f2fs_atomic(folio);
2673 	if (atomic_commit)
2674 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2675 	else
2676 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2677 
2678 	if (need_inplace_update(fio) &&
2679 	    f2fs_lookup_read_extent_cache_block(inode, folio->index,
2680 						&fio->old_blkaddr)) {
2681 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2682 						DATA_GENERIC_ENHANCE))
2683 			return -EFSCORRUPTED;
2684 
2685 		ipu_force = true;
2686 		fio->need_lock = LOCK_DONE;
2687 		goto got_it;
2688 	}
2689 
2690 	/* Deadlock due to between page->lock and f2fs_lock_op */
2691 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2692 		return -EAGAIN;
2693 
2694 	err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2695 	if (err)
2696 		goto out;
2697 
2698 	fio->old_blkaddr = dn.data_blkaddr;
2699 
2700 	/* This page is already truncated */
2701 	if (fio->old_blkaddr == NULL_ADDR) {
2702 		folio_clear_uptodate(folio);
2703 		folio_clear_f2fs_gcing(folio);
2704 		goto out_writepage;
2705 	}
2706 got_it:
2707 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2708 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2709 						DATA_GENERIC_ENHANCE)) {
2710 		err = -EFSCORRUPTED;
2711 		goto out_writepage;
2712 	}
2713 
2714 	/* wait for GCed page writeback via META_MAPPING */
2715 	if (fio->meta_gc)
2716 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2717 
2718 	/*
2719 	 * If current allocation needs SSR,
2720 	 * it had better in-place writes for updated data.
2721 	 */
2722 	if (ipu_force ||
2723 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2724 					need_inplace_update(fio))) {
2725 		err = f2fs_encrypt_one_page(fio);
2726 		if (err)
2727 			goto out_writepage;
2728 
2729 		folio_start_writeback(folio);
2730 		f2fs_put_dnode(&dn);
2731 		if (fio->need_lock == LOCK_REQ)
2732 			f2fs_unlock_op(fio->sbi);
2733 		err = f2fs_inplace_write_data(fio);
2734 		if (err) {
2735 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2736 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2737 			folio_end_writeback(folio);
2738 		} else {
2739 			set_inode_flag(inode, FI_UPDATE_WRITE);
2740 		}
2741 		trace_f2fs_do_write_data_page(folio, IPU);
2742 		return err;
2743 	}
2744 
2745 	if (fio->need_lock == LOCK_RETRY) {
2746 		if (!f2fs_trylock_op(fio->sbi)) {
2747 			err = -EAGAIN;
2748 			goto out_writepage;
2749 		}
2750 		fio->need_lock = LOCK_REQ;
2751 	}
2752 
2753 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2754 	if (err)
2755 		goto out_writepage;
2756 
2757 	fio->version = ni.version;
2758 
2759 	err = f2fs_encrypt_one_page(fio);
2760 	if (err)
2761 		goto out_writepage;
2762 
2763 	folio_start_writeback(folio);
2764 
2765 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2766 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2767 
2768 	/* LFS mode write path */
2769 	f2fs_outplace_write_data(&dn, fio);
2770 	trace_f2fs_do_write_data_page(folio, OPU);
2771 	set_inode_flag(inode, FI_APPEND_WRITE);
2772 	if (atomic_commit)
2773 		folio_clear_f2fs_atomic(folio);
2774 out_writepage:
2775 	f2fs_put_dnode(&dn);
2776 out:
2777 	if (fio->need_lock == LOCK_REQ)
2778 		f2fs_unlock_op(fio->sbi);
2779 	return err;
2780 }
2781 
2782 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2783 				struct bio **bio,
2784 				sector_t *last_block,
2785 				struct writeback_control *wbc,
2786 				enum iostat_type io_type,
2787 				int compr_blocks,
2788 				bool allow_balance)
2789 {
2790 	struct inode *inode = folio->mapping->host;
2791 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2792 	loff_t i_size = i_size_read(inode);
2793 	const pgoff_t end_index = ((unsigned long long)i_size)
2794 							>> PAGE_SHIFT;
2795 	loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2796 	unsigned offset = 0;
2797 	bool need_balance_fs = false;
2798 	bool quota_inode = IS_NOQUOTA(inode);
2799 	int err = 0;
2800 	struct f2fs_io_info fio = {
2801 		.sbi = sbi,
2802 		.ino = inode->i_ino,
2803 		.type = DATA,
2804 		.op = REQ_OP_WRITE,
2805 		.op_flags = wbc_to_write_flags(wbc),
2806 		.old_blkaddr = NULL_ADDR,
2807 		.folio = folio,
2808 		.encrypted_page = NULL,
2809 		.submitted = 0,
2810 		.compr_blocks = compr_blocks,
2811 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2812 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2813 		.io_type = io_type,
2814 		.io_wbc = wbc,
2815 		.bio = bio,
2816 		.last_block = last_block,
2817 	};
2818 
2819 	trace_f2fs_writepage(folio, DATA);
2820 
2821 	/* we should bypass data pages to proceed the kworker jobs */
2822 	if (unlikely(f2fs_cp_error(sbi))) {
2823 		mapping_set_error(folio->mapping, -EIO);
2824 		/*
2825 		 * don't drop any dirty dentry pages for keeping lastest
2826 		 * directory structure.
2827 		 */
2828 		if (S_ISDIR(inode->i_mode) &&
2829 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2830 			goto redirty_out;
2831 
2832 		/* keep data pages in remount-ro mode */
2833 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2834 			goto redirty_out;
2835 		goto out;
2836 	}
2837 
2838 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2839 		goto redirty_out;
2840 
2841 	if (folio->index < end_index ||
2842 			f2fs_verity_in_progress(inode) ||
2843 			compr_blocks)
2844 		goto write;
2845 
2846 	/*
2847 	 * If the offset is out-of-range of file size,
2848 	 * this page does not have to be written to disk.
2849 	 */
2850 	offset = i_size & (PAGE_SIZE - 1);
2851 	if ((folio->index >= end_index + 1) || !offset)
2852 		goto out;
2853 
2854 	folio_zero_segment(folio, offset, folio_size(folio));
2855 write:
2856 	/* Dentry/quota blocks are controlled by checkpoint */
2857 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2858 		/*
2859 		 * We need to wait for node_write to avoid block allocation during
2860 		 * checkpoint. This can only happen to quota writes which can cause
2861 		 * the below discard race condition.
2862 		 */
2863 		if (quota_inode)
2864 			f2fs_down_read(&sbi->node_write);
2865 
2866 		fio.need_lock = LOCK_DONE;
2867 		err = f2fs_do_write_data_page(&fio);
2868 
2869 		if (quota_inode)
2870 			f2fs_up_read(&sbi->node_write);
2871 
2872 		goto done;
2873 	}
2874 
2875 	need_balance_fs = true;
2876 	err = -EAGAIN;
2877 	if (f2fs_has_inline_data(inode)) {
2878 		err = f2fs_write_inline_data(inode, folio);
2879 		if (!err)
2880 			goto out;
2881 	}
2882 
2883 	if (err == -EAGAIN) {
2884 		err = f2fs_do_write_data_page(&fio);
2885 		if (err == -EAGAIN) {
2886 			f2fs_bug_on(sbi, compr_blocks);
2887 			fio.need_lock = LOCK_REQ;
2888 			err = f2fs_do_write_data_page(&fio);
2889 		}
2890 	}
2891 
2892 	if (err) {
2893 		file_set_keep_isize(inode);
2894 	} else {
2895 		spin_lock(&F2FS_I(inode)->i_size_lock);
2896 		if (F2FS_I(inode)->last_disk_size < psize)
2897 			F2FS_I(inode)->last_disk_size = psize;
2898 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2899 	}
2900 
2901 done:
2902 	if (err && err != -ENOENT)
2903 		goto redirty_out;
2904 
2905 out:
2906 	inode_dec_dirty_pages(inode);
2907 	if (err) {
2908 		folio_clear_uptodate(folio);
2909 		folio_clear_f2fs_gcing(folio);
2910 	}
2911 	folio_unlock(folio);
2912 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2913 			!F2FS_I(inode)->wb_task && allow_balance)
2914 		f2fs_balance_fs(sbi, need_balance_fs);
2915 
2916 	if (unlikely(f2fs_cp_error(sbi))) {
2917 		f2fs_submit_merged_write(sbi, DATA);
2918 		if (bio && *bio)
2919 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2920 		submitted = NULL;
2921 	}
2922 
2923 	if (submitted)
2924 		*submitted = fio.submitted;
2925 
2926 	return 0;
2927 
2928 redirty_out:
2929 	folio_redirty_for_writepage(wbc, folio);
2930 	/*
2931 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2932 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2933 	 * file_write_and_wait_range() will see EIO error, which is critical
2934 	 * to return value of fsync() followed by atomic_write failure to user.
2935 	 */
2936 	folio_unlock(folio);
2937 	if (!err)
2938 		return 1;
2939 	return err;
2940 }
2941 
2942 /*
2943  * This function was copied from write_cache_pages from mm/page-writeback.c.
2944  * The major change is making write step of cold data page separately from
2945  * warm/hot data page.
2946  */
2947 static int f2fs_write_cache_pages(struct address_space *mapping,
2948 					struct writeback_control *wbc,
2949 					enum iostat_type io_type)
2950 {
2951 	int ret = 0;
2952 	int done = 0, retry = 0;
2953 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2954 	struct page **pages = pages_local;
2955 	struct folio_batch fbatch;
2956 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2957 	struct bio *bio = NULL;
2958 	sector_t last_block;
2959 #ifdef CONFIG_F2FS_FS_COMPRESSION
2960 	struct inode *inode = mapping->host;
2961 	struct compress_ctx cc = {
2962 		.inode = inode,
2963 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2964 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2965 		.cluster_idx = NULL_CLUSTER,
2966 		.rpages = NULL,
2967 		.nr_rpages = 0,
2968 		.cpages = NULL,
2969 		.valid_nr_cpages = 0,
2970 		.rbuf = NULL,
2971 		.cbuf = NULL,
2972 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2973 		.private = NULL,
2974 	};
2975 #endif
2976 	int nr_folios, p, idx;
2977 	int nr_pages;
2978 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2979 	pgoff_t index;
2980 	pgoff_t end;		/* Inclusive */
2981 	pgoff_t done_index;
2982 	int range_whole = 0;
2983 	xa_mark_t tag;
2984 	int nwritten = 0;
2985 	int submitted = 0;
2986 	int i;
2987 
2988 #ifdef CONFIG_F2FS_FS_COMPRESSION
2989 	if (f2fs_compressed_file(inode) &&
2990 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2991 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2992 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2993 		max_pages = 1 << cc.log_cluster_size;
2994 	}
2995 #endif
2996 
2997 	folio_batch_init(&fbatch);
2998 
2999 	if (get_dirty_pages(mapping->host) <=
3000 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3001 		set_inode_flag(mapping->host, FI_HOT_DATA);
3002 	else
3003 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3004 
3005 	if (wbc->range_cyclic) {
3006 		index = mapping->writeback_index; /* prev offset */
3007 		end = -1;
3008 	} else {
3009 		index = wbc->range_start >> PAGE_SHIFT;
3010 		end = wbc->range_end >> PAGE_SHIFT;
3011 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3012 			range_whole = 1;
3013 	}
3014 	tag = wbc_to_tag(wbc);
3015 retry:
3016 	retry = 0;
3017 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3018 		tag_pages_for_writeback(mapping, index, end);
3019 	done_index = index;
3020 	while (!done && !retry && (index <= end)) {
3021 		nr_pages = 0;
3022 again:
3023 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3024 				tag, &fbatch);
3025 		if (nr_folios == 0) {
3026 			if (nr_pages)
3027 				goto write;
3028 			break;
3029 		}
3030 
3031 		for (i = 0; i < nr_folios; i++) {
3032 			struct folio *folio = fbatch.folios[i];
3033 
3034 			idx = 0;
3035 			p = folio_nr_pages(folio);
3036 add_more:
3037 			pages[nr_pages] = folio_page(folio, idx);
3038 			folio_get(folio);
3039 			if (++nr_pages == max_pages) {
3040 				index = folio->index + idx + 1;
3041 				folio_batch_release(&fbatch);
3042 				goto write;
3043 			}
3044 			if (++idx < p)
3045 				goto add_more;
3046 		}
3047 		folio_batch_release(&fbatch);
3048 		goto again;
3049 write:
3050 		for (i = 0; i < nr_pages; i++) {
3051 			struct page *page = pages[i];
3052 			struct folio *folio = page_folio(page);
3053 			bool need_readd;
3054 readd:
3055 			need_readd = false;
3056 #ifdef CONFIG_F2FS_FS_COMPRESSION
3057 			if (f2fs_compressed_file(inode)) {
3058 				void *fsdata = NULL;
3059 				struct page *pagep;
3060 				int ret2;
3061 
3062 				ret = f2fs_init_compress_ctx(&cc);
3063 				if (ret) {
3064 					done = 1;
3065 					break;
3066 				}
3067 
3068 				if (!f2fs_cluster_can_merge_page(&cc,
3069 								folio->index)) {
3070 					ret = f2fs_write_multi_pages(&cc,
3071 						&submitted, wbc, io_type);
3072 					if (!ret)
3073 						need_readd = true;
3074 					goto result;
3075 				}
3076 
3077 				if (unlikely(f2fs_cp_error(sbi)))
3078 					goto lock_folio;
3079 
3080 				if (!f2fs_cluster_is_empty(&cc))
3081 					goto lock_folio;
3082 
3083 				if (f2fs_all_cluster_page_ready(&cc,
3084 					pages, i, nr_pages, true))
3085 					goto lock_folio;
3086 
3087 				ret2 = f2fs_prepare_compress_overwrite(
3088 							inode, &pagep,
3089 							folio->index, &fsdata);
3090 				if (ret2 < 0) {
3091 					ret = ret2;
3092 					done = 1;
3093 					break;
3094 				} else if (ret2 &&
3095 					(!f2fs_compress_write_end(inode,
3096 						fsdata, folio->index, 1) ||
3097 					 !f2fs_all_cluster_page_ready(&cc,
3098 						pages, i, nr_pages,
3099 						false))) {
3100 					retry = 1;
3101 					break;
3102 				}
3103 			}
3104 #endif
3105 			/* give a priority to WB_SYNC threads */
3106 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3107 					wbc->sync_mode == WB_SYNC_NONE) {
3108 				done = 1;
3109 				break;
3110 			}
3111 #ifdef CONFIG_F2FS_FS_COMPRESSION
3112 lock_folio:
3113 #endif
3114 			done_index = folio->index;
3115 retry_write:
3116 			folio_lock(folio);
3117 
3118 			if (unlikely(folio->mapping != mapping)) {
3119 continue_unlock:
3120 				folio_unlock(folio);
3121 				continue;
3122 			}
3123 
3124 			if (!folio_test_dirty(folio)) {
3125 				/* someone wrote it for us */
3126 				goto continue_unlock;
3127 			}
3128 
3129 			if (folio_test_writeback(folio)) {
3130 				if (wbc->sync_mode == WB_SYNC_NONE)
3131 					goto continue_unlock;
3132 				f2fs_folio_wait_writeback(folio, DATA, true, true);
3133 			}
3134 
3135 			if (!folio_clear_dirty_for_io(folio))
3136 				goto continue_unlock;
3137 
3138 #ifdef CONFIG_F2FS_FS_COMPRESSION
3139 			if (f2fs_compressed_file(inode)) {
3140 				folio_get(folio);
3141 				f2fs_compress_ctx_add_page(&cc, folio);
3142 				continue;
3143 			}
3144 #endif
3145 			submitted = 0;
3146 			ret = f2fs_write_single_data_page(folio,
3147 					&submitted, &bio, &last_block,
3148 					wbc, io_type, 0, true);
3149 #ifdef CONFIG_F2FS_FS_COMPRESSION
3150 result:
3151 #endif
3152 			nwritten += submitted;
3153 			wbc->nr_to_write -= submitted;
3154 
3155 			if (unlikely(ret)) {
3156 				/*
3157 				 * keep nr_to_write, since vfs uses this to
3158 				 * get # of written pages.
3159 				 */
3160 				if (ret == 1) {
3161 					ret = 0;
3162 					goto next;
3163 				} else if (ret == -EAGAIN) {
3164 					ret = 0;
3165 					if (wbc->sync_mode == WB_SYNC_ALL) {
3166 						f2fs_schedule_timeout(
3167 							DEFAULT_SCHEDULE_TIMEOUT);
3168 						goto retry_write;
3169 					}
3170 					goto next;
3171 				}
3172 				done_index = folio_next_index(folio);
3173 				done = 1;
3174 				break;
3175 			}
3176 
3177 			if (wbc->nr_to_write <= 0 &&
3178 					wbc->sync_mode == WB_SYNC_NONE) {
3179 				done = 1;
3180 				break;
3181 			}
3182 next:
3183 			if (need_readd)
3184 				goto readd;
3185 		}
3186 		release_pages(pages, nr_pages);
3187 		cond_resched();
3188 	}
3189 #ifdef CONFIG_F2FS_FS_COMPRESSION
3190 	/* flush remained pages in compress cluster */
3191 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3192 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3193 		nwritten += submitted;
3194 		wbc->nr_to_write -= submitted;
3195 		if (ret) {
3196 			done = 1;
3197 			retry = 0;
3198 		}
3199 	}
3200 	if (f2fs_compressed_file(inode))
3201 		f2fs_destroy_compress_ctx(&cc, false);
3202 #endif
3203 	if (retry) {
3204 		index = 0;
3205 		end = -1;
3206 		goto retry;
3207 	}
3208 	if (wbc->range_cyclic && !done)
3209 		done_index = 0;
3210 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3211 		mapping->writeback_index = done_index;
3212 
3213 	if (nwritten)
3214 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3215 								NULL, 0, DATA);
3216 	/* submit cached bio of IPU write */
3217 	if (bio)
3218 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3219 
3220 #ifdef CONFIG_F2FS_FS_COMPRESSION
3221 	if (pages != pages_local)
3222 		kfree(pages);
3223 #endif
3224 
3225 	return ret;
3226 }
3227 
3228 static inline bool __should_serialize_io(struct inode *inode,
3229 					struct writeback_control *wbc)
3230 {
3231 	/* to avoid deadlock in path of data flush */
3232 	if (F2FS_I(inode)->wb_task)
3233 		return false;
3234 
3235 	if (!S_ISREG(inode->i_mode))
3236 		return false;
3237 	if (IS_NOQUOTA(inode))
3238 		return false;
3239 
3240 	if (f2fs_need_compress_data(inode))
3241 		return true;
3242 	if (wbc->sync_mode != WB_SYNC_ALL)
3243 		return true;
3244 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3245 		return true;
3246 	return false;
3247 }
3248 
3249 static inline void account_writeback(struct inode *inode, bool inc)
3250 {
3251 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3252 		return;
3253 
3254 	f2fs_down_read(&F2FS_I(inode)->i_sem);
3255 	if (inc)
3256 		atomic_inc(&F2FS_I(inode)->writeback);
3257 	else
3258 		atomic_dec(&F2FS_I(inode)->writeback);
3259 	f2fs_up_read(&F2FS_I(inode)->i_sem);
3260 }
3261 
3262 static int __f2fs_write_data_pages(struct address_space *mapping,
3263 						struct writeback_control *wbc,
3264 						enum iostat_type io_type)
3265 {
3266 	struct inode *inode = mapping->host;
3267 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3268 	struct blk_plug plug;
3269 	int ret;
3270 	bool locked = false;
3271 
3272 	/* skip writing if there is no dirty page in this inode */
3273 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3274 		return 0;
3275 
3276 	/* during POR, we don't need to trigger writepage at all. */
3277 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3278 		goto skip_write;
3279 
3280 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3281 			wbc->sync_mode == WB_SYNC_NONE &&
3282 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3283 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3284 		goto skip_write;
3285 
3286 	/* skip writing in file defragment preparing stage */
3287 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3288 		goto skip_write;
3289 
3290 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3291 
3292 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3293 	if (wbc->sync_mode == WB_SYNC_ALL)
3294 		atomic_inc(&sbi->wb_sync_req[DATA]);
3295 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3296 		/* to avoid potential deadlock */
3297 		if (current->plug)
3298 			blk_finish_plug(current->plug);
3299 		goto skip_write;
3300 	}
3301 
3302 	if (__should_serialize_io(inode, wbc)) {
3303 		mutex_lock(&sbi->writepages);
3304 		locked = true;
3305 	}
3306 
3307 	account_writeback(inode, true);
3308 
3309 	blk_start_plug(&plug);
3310 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3311 	blk_finish_plug(&plug);
3312 
3313 	account_writeback(inode, false);
3314 
3315 	if (locked)
3316 		mutex_unlock(&sbi->writepages);
3317 
3318 	if (wbc->sync_mode == WB_SYNC_ALL)
3319 		atomic_dec(&sbi->wb_sync_req[DATA]);
3320 	/*
3321 	 * if some pages were truncated, we cannot guarantee its mapping->host
3322 	 * to detect pending bios.
3323 	 */
3324 
3325 	f2fs_remove_dirty_inode(inode);
3326 	return ret;
3327 
3328 skip_write:
3329 	wbc->pages_skipped += get_dirty_pages(inode);
3330 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3331 	return 0;
3332 }
3333 
3334 static int f2fs_write_data_pages(struct address_space *mapping,
3335 			    struct writeback_control *wbc)
3336 {
3337 	struct inode *inode = mapping->host;
3338 
3339 	return __f2fs_write_data_pages(mapping, wbc,
3340 			F2FS_I(inode)->cp_task == current ?
3341 			FS_CP_DATA_IO : FS_DATA_IO);
3342 }
3343 
3344 void f2fs_write_failed(struct inode *inode, loff_t to)
3345 {
3346 	loff_t i_size = i_size_read(inode);
3347 
3348 	if (IS_NOQUOTA(inode))
3349 		return;
3350 
3351 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3352 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3353 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3354 		filemap_invalidate_lock(inode->i_mapping);
3355 
3356 		truncate_pagecache(inode, i_size);
3357 		f2fs_truncate_blocks(inode, i_size, true);
3358 
3359 		filemap_invalidate_unlock(inode->i_mapping);
3360 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3361 	}
3362 }
3363 
3364 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3365 			struct folio *folio, loff_t pos, unsigned int len,
3366 			block_t *blk_addr, bool *node_changed)
3367 {
3368 	struct inode *inode = folio->mapping->host;
3369 	pgoff_t index = folio->index;
3370 	struct dnode_of_data dn;
3371 	struct folio *ifolio;
3372 	bool locked = false;
3373 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3374 	int err = 0;
3375 
3376 	/*
3377 	 * If a whole page is being written and we already preallocated all the
3378 	 * blocks, then there is no need to get a block address now.
3379 	 */
3380 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3381 		return 0;
3382 
3383 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3384 	if (f2fs_has_inline_data(inode)) {
3385 		if (pos + len > MAX_INLINE_DATA(inode))
3386 			flag = F2FS_GET_BLOCK_DEFAULT;
3387 		f2fs_map_lock(sbi, flag);
3388 		locked = true;
3389 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3390 		f2fs_map_lock(sbi, flag);
3391 		locked = true;
3392 	}
3393 
3394 restart:
3395 	/* check inline_data */
3396 	ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3397 	if (IS_ERR(ifolio)) {
3398 		err = PTR_ERR(ifolio);
3399 		goto unlock_out;
3400 	}
3401 
3402 	set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3403 
3404 	if (f2fs_has_inline_data(inode)) {
3405 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3406 			f2fs_do_read_inline_data(folio, ifolio);
3407 			set_inode_flag(inode, FI_DATA_EXIST);
3408 			if (inode->i_nlink)
3409 				folio_set_f2fs_inline(ifolio);
3410 			goto out;
3411 		}
3412 		err = f2fs_convert_inline_folio(&dn, folio);
3413 		if (err || dn.data_blkaddr != NULL_ADDR)
3414 			goto out;
3415 	}
3416 
3417 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3418 						 &dn.data_blkaddr)) {
3419 		if (IS_DEVICE_ALIASING(inode)) {
3420 			err = -ENODATA;
3421 			goto out;
3422 		}
3423 
3424 		if (locked) {
3425 			err = f2fs_reserve_block(&dn, index);
3426 			goto out;
3427 		}
3428 
3429 		/* hole case */
3430 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3431 		if (!err && dn.data_blkaddr != NULL_ADDR)
3432 			goto out;
3433 		f2fs_put_dnode(&dn);
3434 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3435 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3436 		locked = true;
3437 		goto restart;
3438 	}
3439 out:
3440 	if (!err) {
3441 		/* convert_inline_page can make node_changed */
3442 		*blk_addr = dn.data_blkaddr;
3443 		*node_changed = dn.node_changed;
3444 	}
3445 	f2fs_put_dnode(&dn);
3446 unlock_out:
3447 	if (locked)
3448 		f2fs_map_unlock(sbi, flag);
3449 	return err;
3450 }
3451 
3452 static int __find_data_block(struct inode *inode, pgoff_t index,
3453 				block_t *blk_addr)
3454 {
3455 	struct dnode_of_data dn;
3456 	struct folio *ifolio;
3457 	int err = 0;
3458 
3459 	ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino);
3460 	if (IS_ERR(ifolio))
3461 		return PTR_ERR(ifolio);
3462 
3463 	set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3464 
3465 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3466 						 &dn.data_blkaddr)) {
3467 		/* hole case */
3468 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3469 		if (err) {
3470 			dn.data_blkaddr = NULL_ADDR;
3471 			err = 0;
3472 		}
3473 	}
3474 	*blk_addr = dn.data_blkaddr;
3475 	f2fs_put_dnode(&dn);
3476 	return err;
3477 }
3478 
3479 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3480 				block_t *blk_addr, bool *node_changed)
3481 {
3482 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3483 	struct dnode_of_data dn;
3484 	struct folio *ifolio;
3485 	int err = 0;
3486 
3487 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3488 
3489 	ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3490 	if (IS_ERR(ifolio)) {
3491 		err = PTR_ERR(ifolio);
3492 		goto unlock_out;
3493 	}
3494 	set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3495 
3496 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3497 						&dn.data_blkaddr))
3498 		err = f2fs_reserve_block(&dn, index);
3499 
3500 	*blk_addr = dn.data_blkaddr;
3501 	*node_changed = dn.node_changed;
3502 	f2fs_put_dnode(&dn);
3503 
3504 unlock_out:
3505 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3506 	return err;
3507 }
3508 
3509 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3510 			struct folio *folio, loff_t pos, unsigned int len,
3511 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3512 {
3513 	struct inode *inode = folio->mapping->host;
3514 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3515 	pgoff_t index = folio->index;
3516 	int err = 0;
3517 	block_t ori_blk_addr = NULL_ADDR;
3518 
3519 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3520 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3521 		goto reserve_block;
3522 
3523 	/* Look for the block in COW inode first */
3524 	err = __find_data_block(cow_inode, index, blk_addr);
3525 	if (err) {
3526 		return err;
3527 	} else if (*blk_addr != NULL_ADDR) {
3528 		*use_cow = true;
3529 		return 0;
3530 	}
3531 
3532 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3533 		goto reserve_block;
3534 
3535 	/* Look for the block in the original inode */
3536 	err = __find_data_block(inode, index, &ori_blk_addr);
3537 	if (err)
3538 		return err;
3539 
3540 reserve_block:
3541 	/* Finally, we should reserve a new block in COW inode for the update */
3542 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3543 	if (err)
3544 		return err;
3545 	inc_atomic_write_cnt(inode);
3546 
3547 	if (ori_blk_addr != NULL_ADDR)
3548 		*blk_addr = ori_blk_addr;
3549 	return 0;
3550 }
3551 
3552 static int f2fs_write_begin(const struct kiocb *iocb,
3553 			    struct address_space *mapping,
3554 			    loff_t pos, unsigned len, struct folio **foliop,
3555 			    void **fsdata)
3556 {
3557 	struct inode *inode = mapping->host;
3558 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3559 	struct folio *folio;
3560 	pgoff_t index = pos >> PAGE_SHIFT;
3561 	bool need_balance = false;
3562 	bool use_cow = false;
3563 	block_t blkaddr = NULL_ADDR;
3564 	int err = 0;
3565 
3566 	trace_f2fs_write_begin(inode, pos, len);
3567 
3568 	if (!f2fs_is_checkpoint_ready(sbi)) {
3569 		err = -ENOSPC;
3570 		goto fail;
3571 	}
3572 
3573 	/*
3574 	 * We should check this at this moment to avoid deadlock on inode page
3575 	 * and #0 page. The locking rule for inline_data conversion should be:
3576 	 * folio_lock(folio #0) -> folio_lock(inode_page)
3577 	 */
3578 	if (index != 0) {
3579 		err = f2fs_convert_inline_inode(inode);
3580 		if (err)
3581 			goto fail;
3582 	}
3583 
3584 #ifdef CONFIG_F2FS_FS_COMPRESSION
3585 	if (f2fs_compressed_file(inode)) {
3586 		int ret;
3587 		struct page *page;
3588 
3589 		*fsdata = NULL;
3590 
3591 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3592 			goto repeat;
3593 
3594 		ret = f2fs_prepare_compress_overwrite(inode, &page,
3595 							index, fsdata);
3596 		if (ret < 0) {
3597 			err = ret;
3598 			goto fail;
3599 		} else if (ret) {
3600 			*foliop = page_folio(page);
3601 			return 0;
3602 		}
3603 	}
3604 #endif
3605 
3606 repeat:
3607 	/*
3608 	 * Do not use FGP_STABLE to avoid deadlock.
3609 	 * Will wait that below with our IO control.
3610 	 */
3611 	folio = f2fs_filemap_get_folio(mapping, index,
3612 				FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_NOFS,
3613 				mapping_gfp_mask(mapping));
3614 	if (IS_ERR(folio)) {
3615 		err = PTR_ERR(folio);
3616 		goto fail;
3617 	}
3618 
3619 	/* TODO: cluster can be compressed due to race with .writepage */
3620 
3621 	*foliop = folio;
3622 
3623 	if (f2fs_is_atomic_file(inode))
3624 		err = prepare_atomic_write_begin(sbi, folio, pos, len,
3625 					&blkaddr, &need_balance, &use_cow);
3626 	else
3627 		err = prepare_write_begin(sbi, folio, pos, len,
3628 					&blkaddr, &need_balance);
3629 	if (err)
3630 		goto put_folio;
3631 
3632 	if (need_balance && !IS_NOQUOTA(inode) &&
3633 			has_not_enough_free_secs(sbi, 0, 0)) {
3634 		folio_unlock(folio);
3635 		f2fs_balance_fs(sbi, true);
3636 		folio_lock(folio);
3637 		if (folio->mapping != mapping) {
3638 			/* The folio got truncated from under us */
3639 			folio_unlock(folio);
3640 			folio_put(folio);
3641 			goto repeat;
3642 		}
3643 	}
3644 
3645 	f2fs_folio_wait_writeback(folio, DATA, false, true);
3646 
3647 	if (len == folio_size(folio) || folio_test_uptodate(folio))
3648 		return 0;
3649 
3650 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3651 	    !f2fs_verity_in_progress(inode)) {
3652 		folio_zero_segment(folio, len, folio_size(folio));
3653 		return 0;
3654 	}
3655 
3656 	if (blkaddr == NEW_ADDR) {
3657 		folio_zero_segment(folio, 0, folio_size(folio));
3658 		folio_mark_uptodate(folio);
3659 	} else {
3660 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3661 				DATA_GENERIC_ENHANCE_READ)) {
3662 			err = -EFSCORRUPTED;
3663 			goto put_folio;
3664 		}
3665 		f2fs_submit_page_read(use_cow ? F2FS_I(inode)->cow_inode :
3666 						inode,
3667 				      NULL, /* can't write to fsverity files */
3668 				      folio, blkaddr, 0, true);
3669 
3670 		folio_lock(folio);
3671 		if (unlikely(folio->mapping != mapping)) {
3672 			folio_unlock(folio);
3673 			folio_put(folio);
3674 			goto repeat;
3675 		}
3676 		if (unlikely(!folio_test_uptodate(folio))) {
3677 			err = -EIO;
3678 			goto put_folio;
3679 		}
3680 	}
3681 	return 0;
3682 
3683 put_folio:
3684 	f2fs_folio_put(folio, true);
3685 fail:
3686 	f2fs_write_failed(inode, pos + len);
3687 	return err;
3688 }
3689 
3690 static int f2fs_write_end(const struct kiocb *iocb,
3691 			struct address_space *mapping,
3692 			loff_t pos, unsigned len, unsigned copied,
3693 			struct folio *folio, void *fsdata)
3694 {
3695 	struct inode *inode = folio->mapping->host;
3696 
3697 	trace_f2fs_write_end(inode, pos, len, copied);
3698 
3699 	/*
3700 	 * This should be come from len == PAGE_SIZE, and we expect copied
3701 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3702 	 * let generic_perform_write() try to copy data again through copied=0.
3703 	 */
3704 	if (!folio_test_uptodate(folio)) {
3705 		if (unlikely(copied != len))
3706 			copied = 0;
3707 		else
3708 			folio_mark_uptodate(folio);
3709 	}
3710 
3711 #ifdef CONFIG_F2FS_FS_COMPRESSION
3712 	/* overwrite compressed file */
3713 	if (f2fs_compressed_file(inode) && fsdata) {
3714 		f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3715 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3716 
3717 		if (pos + copied > i_size_read(inode) &&
3718 				!f2fs_verity_in_progress(inode))
3719 			f2fs_i_size_write(inode, pos + copied);
3720 		return copied;
3721 	}
3722 #endif
3723 
3724 	if (!copied)
3725 		goto unlock_out;
3726 
3727 	folio_mark_dirty(folio);
3728 
3729 	if (f2fs_is_atomic_file(inode))
3730 		folio_set_f2fs_atomic(folio);
3731 
3732 	if (pos + copied > i_size_read(inode) &&
3733 	    !f2fs_verity_in_progress(inode)) {
3734 		f2fs_i_size_write(inode, pos + copied);
3735 		if (f2fs_is_atomic_file(inode))
3736 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3737 					pos + copied);
3738 	}
3739 unlock_out:
3740 	f2fs_folio_put(folio, true);
3741 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3742 	return copied;
3743 }
3744 
3745 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3746 {
3747 	struct inode *inode = folio->mapping->host;
3748 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3749 
3750 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3751 				(offset || length != folio_size(folio)))
3752 		return;
3753 
3754 	if (folio_test_dirty(folio)) {
3755 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3756 			dec_page_count(sbi, F2FS_DIRTY_META);
3757 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3758 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3759 		} else {
3760 			inode_dec_dirty_pages(inode);
3761 			f2fs_remove_dirty_inode(inode);
3762 		}
3763 	}
3764 	folio_detach_private(folio);
3765 }
3766 
3767 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3768 {
3769 	/* If this is dirty folio, keep private data */
3770 	if (folio_test_dirty(folio))
3771 		return false;
3772 
3773 	folio_detach_private(folio);
3774 	return true;
3775 }
3776 
3777 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3778 		struct folio *folio)
3779 {
3780 	struct inode *inode = mapping->host;
3781 
3782 	trace_f2fs_set_page_dirty(folio, DATA);
3783 
3784 	if (!folio_test_uptodate(folio))
3785 		folio_mark_uptodate(folio);
3786 	BUG_ON(folio_test_swapcache(folio));
3787 
3788 	if (filemap_dirty_folio(mapping, folio)) {
3789 		f2fs_update_dirty_folio(inode, folio);
3790 		return true;
3791 	}
3792 	return false;
3793 }
3794 
3795 
3796 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3797 {
3798 #ifdef CONFIG_F2FS_FS_COMPRESSION
3799 	struct dnode_of_data dn;
3800 	sector_t start_idx, blknr = 0;
3801 	int ret;
3802 
3803 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3804 
3805 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3806 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3807 	if (ret)
3808 		return 0;
3809 
3810 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3811 		dn.ofs_in_node += block - start_idx;
3812 		blknr = f2fs_data_blkaddr(&dn);
3813 		if (!__is_valid_data_blkaddr(blknr))
3814 			blknr = 0;
3815 	}
3816 
3817 	f2fs_put_dnode(&dn);
3818 	return blknr;
3819 #else
3820 	return 0;
3821 #endif
3822 }
3823 
3824 
3825 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3826 {
3827 	struct inode *inode = mapping->host;
3828 	sector_t blknr = 0;
3829 
3830 	if (f2fs_has_inline_data(inode))
3831 		goto out;
3832 
3833 	/* make sure allocating whole blocks */
3834 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3835 		filemap_write_and_wait(mapping);
3836 
3837 	/* Block number less than F2FS MAX BLOCKS */
3838 	if (unlikely(block >= max_file_blocks(inode)))
3839 		goto out;
3840 
3841 	if (f2fs_compressed_file(inode)) {
3842 		blknr = f2fs_bmap_compress(inode, block);
3843 	} else {
3844 		struct f2fs_map_blocks map;
3845 
3846 		memset(&map, 0, sizeof(map));
3847 		map.m_lblk = block;
3848 		map.m_len = 1;
3849 		map.m_next_pgofs = NULL;
3850 		map.m_seg_type = NO_CHECK_TYPE;
3851 
3852 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3853 			blknr = map.m_pblk;
3854 	}
3855 out:
3856 	trace_f2fs_bmap(inode, block, blknr);
3857 	return blknr;
3858 }
3859 
3860 #ifdef CONFIG_SWAP
3861 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3862 							unsigned int blkcnt)
3863 {
3864 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3865 	unsigned int blkofs;
3866 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3867 	unsigned int end_blk = start_blk + blkcnt - 1;
3868 	unsigned int secidx = start_blk / blk_per_sec;
3869 	unsigned int end_sec;
3870 	int ret = 0;
3871 
3872 	if (!blkcnt)
3873 		return 0;
3874 	end_sec = end_blk / blk_per_sec;
3875 
3876 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3877 	filemap_invalidate_lock(inode->i_mapping);
3878 
3879 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3880 	set_inode_flag(inode, FI_OPU_WRITE);
3881 
3882 	for (; secidx <= end_sec; secidx++) {
3883 		unsigned int blkofs_end = secidx == end_sec ?
3884 				end_blk % blk_per_sec : blk_per_sec - 1;
3885 
3886 		f2fs_down_write(&sbi->pin_sem);
3887 
3888 		ret = f2fs_allocate_pinning_section(sbi);
3889 		if (ret) {
3890 			f2fs_up_write(&sbi->pin_sem);
3891 			break;
3892 		}
3893 
3894 		set_inode_flag(inode, FI_SKIP_WRITES);
3895 
3896 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3897 			struct folio *folio;
3898 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3899 
3900 			folio = f2fs_get_lock_data_folio(inode, blkidx, true);
3901 			if (IS_ERR(folio)) {
3902 				f2fs_up_write(&sbi->pin_sem);
3903 				ret = PTR_ERR(folio);
3904 				goto done;
3905 			}
3906 
3907 			folio_mark_dirty(folio);
3908 			f2fs_folio_put(folio, true);
3909 		}
3910 
3911 		clear_inode_flag(inode, FI_SKIP_WRITES);
3912 
3913 		ret = filemap_fdatawrite(inode->i_mapping);
3914 
3915 		f2fs_up_write(&sbi->pin_sem);
3916 
3917 		if (ret)
3918 			break;
3919 	}
3920 
3921 done:
3922 	clear_inode_flag(inode, FI_SKIP_WRITES);
3923 	clear_inode_flag(inode, FI_OPU_WRITE);
3924 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3925 
3926 	filemap_invalidate_unlock(inode->i_mapping);
3927 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3928 
3929 	return ret;
3930 }
3931 
3932 static int check_swap_activate(struct swap_info_struct *sis,
3933 				struct file *swap_file, sector_t *span)
3934 {
3935 	struct address_space *mapping = swap_file->f_mapping;
3936 	struct inode *inode = mapping->host;
3937 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3938 	block_t cur_lblock;
3939 	block_t last_lblock;
3940 	block_t pblock;
3941 	block_t lowest_pblock = -1;
3942 	block_t highest_pblock = 0;
3943 	int nr_extents = 0;
3944 	unsigned int nr_pblocks;
3945 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3946 	unsigned int not_aligned = 0;
3947 	int ret = 0;
3948 
3949 	/*
3950 	 * Map all the blocks into the extent list.  This code doesn't try
3951 	 * to be very smart.
3952 	 */
3953 	cur_lblock = 0;
3954 	last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3955 
3956 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3957 		struct f2fs_map_blocks map;
3958 retry:
3959 		cond_resched();
3960 
3961 		memset(&map, 0, sizeof(map));
3962 		map.m_lblk = cur_lblock;
3963 		map.m_len = last_lblock - cur_lblock;
3964 		map.m_next_pgofs = NULL;
3965 		map.m_next_extent = NULL;
3966 		map.m_seg_type = NO_CHECK_TYPE;
3967 		map.m_may_create = false;
3968 
3969 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3970 		if (ret)
3971 			goto out;
3972 
3973 		/* hole */
3974 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3975 			f2fs_err(sbi, "Swapfile has holes");
3976 			ret = -EINVAL;
3977 			goto out;
3978 		}
3979 
3980 		pblock = map.m_pblk;
3981 		nr_pblocks = map.m_len;
3982 
3983 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3984 				nr_pblocks % blks_per_sec ||
3985 				f2fs_is_sequential_zone_area(sbi, pblock)) {
3986 			bool last_extent = false;
3987 
3988 			not_aligned++;
3989 
3990 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3991 			if (cur_lblock + nr_pblocks > sis->max)
3992 				nr_pblocks -= blks_per_sec;
3993 
3994 			/* this extent is last one */
3995 			if (!nr_pblocks) {
3996 				nr_pblocks = last_lblock - cur_lblock;
3997 				last_extent = true;
3998 			}
3999 
4000 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4001 							nr_pblocks);
4002 			if (ret) {
4003 				if (ret == -ENOENT)
4004 					ret = -EINVAL;
4005 				goto out;
4006 			}
4007 
4008 			if (!last_extent)
4009 				goto retry;
4010 		}
4011 
4012 		if (cur_lblock + nr_pblocks >= sis->max)
4013 			nr_pblocks = sis->max - cur_lblock;
4014 
4015 		if (cur_lblock) {	/* exclude the header page */
4016 			if (pblock < lowest_pblock)
4017 				lowest_pblock = pblock;
4018 			if (pblock + nr_pblocks - 1 > highest_pblock)
4019 				highest_pblock = pblock + nr_pblocks - 1;
4020 		}
4021 
4022 		/*
4023 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4024 		 */
4025 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4026 		if (ret < 0)
4027 			goto out;
4028 		nr_extents += ret;
4029 		cur_lblock += nr_pblocks;
4030 	}
4031 	ret = nr_extents;
4032 	*span = 1 + highest_pblock - lowest_pblock;
4033 	if (cur_lblock == 0)
4034 		cur_lblock = 1;	/* force Empty message */
4035 	sis->max = cur_lblock;
4036 	sis->pages = cur_lblock - 1;
4037 out:
4038 	if (not_aligned)
4039 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4040 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4041 	return ret;
4042 }
4043 
4044 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4045 				sector_t *span)
4046 {
4047 	struct inode *inode = file_inode(file);
4048 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4049 	int ret;
4050 
4051 	if (!S_ISREG(inode->i_mode))
4052 		return -EINVAL;
4053 
4054 	if (f2fs_readonly(sbi->sb))
4055 		return -EROFS;
4056 
4057 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4058 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4059 		return -EINVAL;
4060 	}
4061 
4062 	ret = f2fs_convert_inline_inode(inode);
4063 	if (ret)
4064 		return ret;
4065 
4066 	if (!f2fs_disable_compressed_file(inode))
4067 		return -EINVAL;
4068 
4069 	ret = filemap_fdatawrite(inode->i_mapping);
4070 	if (ret < 0)
4071 		return ret;
4072 
4073 	f2fs_precache_extents(inode);
4074 
4075 	ret = check_swap_activate(sis, file, span);
4076 	if (ret < 0)
4077 		return ret;
4078 
4079 	stat_inc_swapfile_inode(inode);
4080 	set_inode_flag(inode, FI_PIN_FILE);
4081 	f2fs_update_time(sbi, REQ_TIME);
4082 	return ret;
4083 }
4084 
4085 static void f2fs_swap_deactivate(struct file *file)
4086 {
4087 	struct inode *inode = file_inode(file);
4088 
4089 	stat_dec_swapfile_inode(inode);
4090 	clear_inode_flag(inode, FI_PIN_FILE);
4091 }
4092 #else
4093 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4094 				sector_t *span)
4095 {
4096 	return -EOPNOTSUPP;
4097 }
4098 
4099 static void f2fs_swap_deactivate(struct file *file)
4100 {
4101 }
4102 #endif
4103 
4104 const struct address_space_operations f2fs_dblock_aops = {
4105 	.read_folio	= f2fs_read_data_folio,
4106 	.readahead	= f2fs_readahead,
4107 	.writepages	= f2fs_write_data_pages,
4108 	.write_begin	= f2fs_write_begin,
4109 	.write_end	= f2fs_write_end,
4110 	.dirty_folio	= f2fs_dirty_data_folio,
4111 	.migrate_folio	= filemap_migrate_folio,
4112 	.invalidate_folio = f2fs_invalidate_folio,
4113 	.release_folio	= f2fs_release_folio,
4114 	.bmap		= f2fs_bmap,
4115 	.swap_activate  = f2fs_swap_activate,
4116 	.swap_deactivate = f2fs_swap_deactivate,
4117 };
4118 
4119 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4120 {
4121 	struct address_space *mapping = folio->mapping;
4122 	unsigned long flags;
4123 
4124 	xa_lock_irqsave(&mapping->i_pages, flags);
4125 	__xa_clear_mark(&mapping->i_pages, folio->index,
4126 						PAGECACHE_TAG_DIRTY);
4127 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4128 }
4129 
4130 int __init f2fs_init_post_read_processing(void)
4131 {
4132 	bio_post_read_ctx_cache =
4133 		kmem_cache_create("f2fs_bio_post_read_ctx",
4134 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4135 	if (!bio_post_read_ctx_cache)
4136 		goto fail;
4137 	bio_post_read_ctx_pool =
4138 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4139 					 bio_post_read_ctx_cache);
4140 	if (!bio_post_read_ctx_pool)
4141 		goto fail_free_cache;
4142 	return 0;
4143 
4144 fail_free_cache:
4145 	kmem_cache_destroy(bio_post_read_ctx_cache);
4146 fail:
4147 	return -ENOMEM;
4148 }
4149 
4150 void f2fs_destroy_post_read_processing(void)
4151 {
4152 	mempool_destroy(bio_post_read_ctx_pool);
4153 	kmem_cache_destroy(bio_post_read_ctx_cache);
4154 }
4155 
4156 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4157 {
4158 	if (!f2fs_sb_has_encrypt(sbi) &&
4159 		!f2fs_sb_has_verity(sbi) &&
4160 		!f2fs_sb_has_compression(sbi))
4161 		return 0;
4162 
4163 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4164 						 WQ_UNBOUND | WQ_HIGHPRI,
4165 						 num_online_cpus());
4166 	return sbi->post_read_wq ? 0 : -ENOMEM;
4167 }
4168 
4169 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4170 {
4171 	if (sbi->post_read_wq)
4172 		destroy_workqueue(sbi->post_read_wq);
4173 }
4174 
4175 int __init f2fs_init_bio_entry_cache(void)
4176 {
4177 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4178 			sizeof(struct bio_entry));
4179 	return bio_entry_slab ? 0 : -ENOMEM;
4180 }
4181 
4182 void f2fs_destroy_bio_entry_cache(void)
4183 {
4184 	kmem_cache_destroy(bio_entry_slab);
4185 }
4186 
4187 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4188 			    unsigned int flags, struct iomap *iomap,
4189 			    struct iomap *srcmap)
4190 {
4191 	struct f2fs_map_blocks map = { NULL, };
4192 	pgoff_t next_pgofs = 0;
4193 	int err;
4194 
4195 	map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4196 	map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4197 	map.m_next_pgofs = &next_pgofs;
4198 	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4199 						inode->i_write_hint);
4200 	if (flags & IOMAP_WRITE && iomap->private) {
4201 		map.m_last_pblk = (unsigned long)iomap->private;
4202 		iomap->private = NULL;
4203 	}
4204 
4205 	/*
4206 	 * If the blocks being overwritten are already allocated,
4207 	 * f2fs_map_lock and f2fs_balance_fs are not necessary.
4208 	 */
4209 	if ((flags & IOMAP_WRITE) &&
4210 		!f2fs_overwrite_io(inode, offset, length))
4211 		map.m_may_create = true;
4212 
4213 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4214 	if (err)
4215 		return err;
4216 
4217 	iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4218 
4219 	/*
4220 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4221 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4222 	 * limiting the length of the mapping returned.
4223 	 */
4224 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4225 
4226 	/*
4227 	 * We should never see delalloc or compressed extents here based on
4228 	 * prior flushing and checks.
4229 	 */
4230 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4231 		return -EINVAL;
4232 
4233 	if (map.m_flags & F2FS_MAP_MAPPED) {
4234 		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4235 			return -EINVAL;
4236 
4237 		iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4238 		iomap->type = IOMAP_MAPPED;
4239 		iomap->flags |= IOMAP_F_MERGED;
4240 		iomap->bdev = map.m_bdev;
4241 		iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4242 
4243 		if (flags & IOMAP_WRITE && map.m_last_pblk)
4244 			iomap->private = (void *)map.m_last_pblk;
4245 	} else {
4246 		if (flags & IOMAP_WRITE)
4247 			return -ENOTBLK;
4248 
4249 		if (map.m_pblk == NULL_ADDR) {
4250 			iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4251 							iomap->offset;
4252 			iomap->type = IOMAP_HOLE;
4253 		} else if (map.m_pblk == NEW_ADDR) {
4254 			iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4255 			iomap->type = IOMAP_UNWRITTEN;
4256 		} else {
4257 			f2fs_bug_on(F2FS_I_SB(inode), 1);
4258 		}
4259 		iomap->addr = IOMAP_NULL_ADDR;
4260 	}
4261 
4262 	if (map.m_flags & F2FS_MAP_NEW)
4263 		iomap->flags |= IOMAP_F_NEW;
4264 	if ((inode_state_read_once(inode) & I_DIRTY_DATASYNC) ||
4265 	    offset + length > i_size_read(inode))
4266 		iomap->flags |= IOMAP_F_DIRTY;
4267 
4268 	return 0;
4269 }
4270 
4271 const struct iomap_ops f2fs_iomap_ops = {
4272 	.iomap_begin	= f2fs_iomap_begin,
4273 };
4274