1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/sched/mm.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/blkdev.h> 15 #include <linux/bio.h> 16 #include <linux/blk-crypto.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/sched/signal.h> 21 #include <linux/fiemap.h> 22 #include <linux/iomap.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "iostat.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static struct kmem_cache *ffs_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 struct f2fs_folio_state { 39 spinlock_t state_lock; 40 unsigned int read_pages_pending; 41 }; 42 43 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 44 45 int __init f2fs_init_bioset(void) 46 { 47 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 48 0, BIOSET_NEED_BVECS); 49 } 50 51 void f2fs_destroy_bioset(void) 52 { 53 bioset_exit(&f2fs_bioset); 54 } 55 56 bool f2fs_is_cp_guaranteed(const struct folio *folio) 57 { 58 struct address_space *mapping = folio->mapping; 59 struct inode *inode; 60 struct f2fs_sb_info *sbi; 61 62 if (fscrypt_is_bounce_folio(folio)) 63 return folio_test_f2fs_gcing(fscrypt_pagecache_folio(folio)); 64 65 inode = mapping->host; 66 sbi = F2FS_I_SB(inode); 67 68 if (inode->i_ino == F2FS_META_INO(sbi) || 69 inode->i_ino == F2FS_NODE_INO(sbi) || 70 S_ISDIR(inode->i_mode)) 71 return true; 72 73 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 74 folio_test_f2fs_gcing(folio)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct folio *folio) 80 { 81 struct address_space *mapping = folio->mapping; 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = BIT(0), 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = BIT(1), 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = BIT(2), 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct fsverity_info *vi; 119 struct work_struct work; 120 unsigned int enabled_steps; 121 /* 122 * decompression_attempted keeps track of whether 123 * f2fs_end_read_compressed_page() has been called on the pages in the 124 * bio that belong to a compressed cluster yet. 125 */ 126 bool decompression_attempted; 127 block_t fs_blkaddr; 128 }; 129 130 /* 131 * Update and unlock a bio's pages, and free the bio. 132 * 133 * This marks pages up-to-date only if there was no error in the bio (I/O error, 134 * decryption error, or verity error), as indicated by bio->bi_status. 135 * 136 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 137 * aren't marked up-to-date here, as decompression is done on a per-compression- 138 * cluster basis rather than a per-bio basis. Instead, we only must do two 139 * things for each compressed page here: call f2fs_end_read_compressed_page() 140 * with failed=true if an error occurred before it would have normally gotten 141 * called (i.e., I/O error or decryption error, but *not* verity error), and 142 * release the bio's reference to the decompress_io_ctx of the page's cluster. 143 */ 144 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 145 { 146 struct folio_iter fi; 147 struct bio_post_read_ctx *ctx = bio->bi_private; 148 unsigned long flags; 149 150 bio_for_each_folio_all(fi, bio) { 151 struct folio *folio = fi.folio; 152 unsigned nr_pages = fi.length >> PAGE_SHIFT; 153 bool finished = true; 154 155 if (!folio_test_large(folio) && 156 f2fs_is_compressed_page(folio)) { 157 if (ctx && !ctx->decompression_attempted) 158 f2fs_end_read_compressed_page(folio, true, 0, 159 in_task); 160 f2fs_put_folio_dic(folio, in_task); 161 continue; 162 } 163 164 if (folio_test_large(folio)) { 165 struct f2fs_folio_state *ffs = folio->private; 166 167 spin_lock_irqsave(&ffs->state_lock, flags); 168 ffs->read_pages_pending -= nr_pages; 169 finished = !ffs->read_pages_pending; 170 spin_unlock_irqrestore(&ffs->state_lock, flags); 171 } 172 173 while (nr_pages--) 174 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio)); 175 176 if (F2FS_F_SB(folio)->node_inode && is_node_folio(folio) && 177 f2fs_sanity_check_node_footer(F2FS_F_SB(folio), 178 folio, folio->index, NODE_TYPE_REGULAR, true)) 179 bio->bi_status = BLK_STS_IOERR; 180 181 if (finished) 182 folio_end_read(folio, bio->bi_status == BLK_STS_OK); 183 } 184 185 if (ctx) 186 mempool_free(ctx, bio_post_read_ctx_pool); 187 bio_put(bio); 188 } 189 190 static void f2fs_verify_bio(struct work_struct *work) 191 { 192 struct bio_post_read_ctx *ctx = 193 container_of(work, struct bio_post_read_ctx, work); 194 struct bio *bio = ctx->bio; 195 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 196 struct fsverity_info *vi = ctx->vi; 197 198 /* 199 * fsverity_verify_bio() may call readahead() again, and while verity 200 * will be disabled for this, decryption and/or decompression may still 201 * be needed, resulting in another bio_post_read_ctx being allocated. 202 * So to prevent deadlocks we need to release the current ctx to the 203 * mempool first. This assumes that verity is the last post-read step. 204 */ 205 mempool_free(ctx, bio_post_read_ctx_pool); 206 bio->bi_private = NULL; 207 208 /* 209 * Verify the bio's pages with fs-verity. Exclude compressed pages, 210 * as those were handled separately by f2fs_end_read_compressed_page(). 211 */ 212 if (may_have_compressed_pages) { 213 struct folio_iter fi; 214 215 bio_for_each_folio_all(fi, bio) { 216 struct folio *folio = fi.folio; 217 218 if (!f2fs_is_compressed_page(folio) && 219 !fsverity_verify_folio(vi, folio)) { 220 bio->bi_status = BLK_STS_IOERR; 221 break; 222 } 223 } 224 } else { 225 fsverity_verify_bio(vi, bio); 226 } 227 228 f2fs_finish_read_bio(bio, true); 229 } 230 231 /* 232 * If the bio's data needs to be verified with fs-verity, then enqueue the 233 * verity work for the bio. Otherwise finish the bio now. 234 * 235 * Note that to avoid deadlocks, the verity work can't be done on the 236 * decryption/decompression workqueue. This is because verifying the data pages 237 * can involve reading verity metadata pages from the file, and these verity 238 * metadata pages may be encrypted and/or compressed. 239 */ 240 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 241 { 242 struct bio_post_read_ctx *ctx = bio->bi_private; 243 244 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 245 INIT_WORK(&ctx->work, f2fs_verify_bio); 246 fsverity_enqueue_verify_work(&ctx->work); 247 } else { 248 f2fs_finish_read_bio(bio, in_task); 249 } 250 } 251 252 /* 253 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 254 * remaining page was read by @ctx->bio. 255 * 256 * Note that a bio may span clusters (even a mix of compressed and uncompressed 257 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 258 * that the bio includes at least one compressed page. The actual decompression 259 * is done on a per-cluster basis, not a per-bio basis. 260 */ 261 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 262 bool in_task) 263 { 264 struct folio_iter fi; 265 bool all_compressed = true; 266 block_t blkaddr = ctx->fs_blkaddr; 267 268 bio_for_each_folio_all(fi, ctx->bio) { 269 struct folio *folio = fi.folio; 270 271 if (f2fs_is_compressed_page(folio)) 272 f2fs_end_read_compressed_page(folio, false, blkaddr, 273 in_task); 274 else 275 all_compressed = false; 276 277 blkaddr++; 278 } 279 280 ctx->decompression_attempted = true; 281 282 /* 283 * Optimization: if all the bio's pages are compressed, then scheduling 284 * the per-bio verity work is unnecessary, as verity will be fully 285 * handled at the compression cluster level. 286 */ 287 if (all_compressed) 288 ctx->enabled_steps &= ~STEP_VERITY; 289 } 290 291 static void f2fs_post_read_work(struct work_struct *work) 292 { 293 struct bio_post_read_ctx *ctx = 294 container_of(work, struct bio_post_read_ctx, work); 295 struct bio *bio = ctx->bio; 296 297 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 298 f2fs_finish_read_bio(bio, true); 299 return; 300 } 301 302 if (ctx->enabled_steps & STEP_DECOMPRESS) 303 f2fs_handle_step_decompress(ctx, true); 304 305 f2fs_verify_and_finish_bio(bio, true); 306 } 307 308 static void f2fs_read_end_io(struct bio *bio) 309 { 310 struct f2fs_sb_info *sbi = F2FS_F_SB(bio_first_folio_all(bio)); 311 struct bio_post_read_ctx *ctx; 312 bool intask = in_task() && !irqs_disabled(); 313 314 iostat_update_and_unbind_ctx(bio); 315 ctx = bio->bi_private; 316 317 if (time_to_inject(sbi, FAULT_READ_IO)) 318 bio->bi_status = BLK_STS_IOERR; 319 320 if (bio->bi_status != BLK_STS_OK) { 321 f2fs_finish_read_bio(bio, intask); 322 return; 323 } 324 325 if (ctx) { 326 unsigned int enabled_steps = ctx->enabled_steps & 327 (STEP_DECRYPT | STEP_DECOMPRESS); 328 329 /* 330 * If we have only decompression step between decompression and 331 * decrypt, we don't need post processing for this. 332 */ 333 if (enabled_steps == STEP_DECOMPRESS && 334 !f2fs_low_mem_mode(sbi)) { 335 f2fs_handle_step_decompress(ctx, intask); 336 } else if (enabled_steps) { 337 INIT_WORK(&ctx->work, f2fs_post_read_work); 338 queue_work(ctx->sbi->post_read_wq, &ctx->work); 339 return; 340 } 341 } 342 343 f2fs_verify_and_finish_bio(bio, intask); 344 } 345 346 static void f2fs_write_end_io(struct bio *bio) 347 { 348 struct f2fs_sb_info *sbi; 349 struct folio_iter fi; 350 351 iostat_update_and_unbind_ctx(bio); 352 sbi = bio->bi_private; 353 354 if (time_to_inject(sbi, FAULT_WRITE_IO)) 355 bio->bi_status = BLK_STS_IOERR; 356 357 bio_for_each_folio_all(fi, bio) { 358 struct folio *folio = fi.folio; 359 enum count_type type; 360 361 if (fscrypt_is_bounce_folio(folio)) { 362 struct folio *io_folio = folio; 363 364 folio = fscrypt_pagecache_folio(io_folio); 365 fscrypt_free_bounce_page(&io_folio->page); 366 } 367 368 #ifdef CONFIG_F2FS_FS_COMPRESSION 369 if (f2fs_is_compressed_page(folio)) { 370 f2fs_compress_write_end_io(bio, folio); 371 continue; 372 } 373 #endif 374 375 type = WB_DATA_TYPE(folio, false); 376 377 if (unlikely(bio->bi_status != BLK_STS_OK)) { 378 mapping_set_error(folio->mapping, -EIO); 379 if (type == F2FS_WB_CP_DATA) 380 f2fs_stop_checkpoint(sbi, true, 381 STOP_CP_REASON_WRITE_FAIL); 382 } 383 384 if (is_node_folio(folio)) { 385 f2fs_sanity_check_node_footer(sbi, folio, 386 folio->index, NODE_TYPE_REGULAR, true); 387 f2fs_bug_on(sbi, folio->index != nid_of_node(folio)); 388 } 389 390 dec_page_count(sbi, type); 391 392 /* 393 * we should access sbi before folio_end_writeback() to 394 * avoid racing w/ kill_f2fs_super() 395 */ 396 if (type == F2FS_WB_CP_DATA && !get_pages(sbi, type) && 397 wq_has_sleeper(&sbi->cp_wait)) 398 wake_up(&sbi->cp_wait); 399 400 if (f2fs_in_warm_node_list(sbi, folio)) 401 f2fs_del_fsync_node_entry(sbi, folio); 402 folio_clear_f2fs_gcing(folio); 403 folio_end_writeback(folio); 404 } 405 406 bio_put(bio); 407 } 408 409 #ifdef CONFIG_BLK_DEV_ZONED 410 static void f2fs_zone_write_end_io(struct bio *bio) 411 { 412 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 413 414 bio->bi_private = io->bi_private; 415 complete(&io->zone_wait); 416 f2fs_write_end_io(bio); 417 } 418 #endif 419 420 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 421 block_t blk_addr, sector_t *sector) 422 { 423 struct block_device *bdev = sbi->sb->s_bdev; 424 int i; 425 426 if (f2fs_is_multi_device(sbi)) { 427 for (i = 0; i < sbi->s_ndevs; i++) { 428 if (FDEV(i).start_blk <= blk_addr && 429 FDEV(i).end_blk >= blk_addr) { 430 blk_addr -= FDEV(i).start_blk; 431 bdev = FDEV(i).bdev; 432 break; 433 } 434 } 435 } 436 437 if (sector) 438 *sector = SECTOR_FROM_BLOCK(blk_addr); 439 return bdev; 440 } 441 442 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 443 { 444 int i; 445 446 if (!f2fs_is_multi_device(sbi)) 447 return 0; 448 449 for (i = 0; i < sbi->s_ndevs; i++) 450 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 451 return i; 452 return 0; 453 } 454 455 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 456 { 457 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 458 unsigned int fua_flag, meta_flag, io_flag; 459 blk_opf_t op_flags = 0; 460 461 if (fio->op != REQ_OP_WRITE) 462 return 0; 463 if (fio->type == DATA) 464 io_flag = fio->sbi->data_io_flag; 465 else if (fio->type == NODE) 466 io_flag = fio->sbi->node_io_flag; 467 else 468 return 0; 469 470 fua_flag = io_flag & temp_mask; 471 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 472 473 /* 474 * data/node io flag bits per temp: 475 * REQ_META | REQ_FUA | 476 * 5 | 4 | 3 | 2 | 1 | 0 | 477 * Cold | Warm | Hot | Cold | Warm | Hot | 478 */ 479 if (BIT(fio->temp) & meta_flag) 480 op_flags |= REQ_META; 481 if (BIT(fio->temp) & fua_flag) 482 op_flags |= REQ_FUA; 483 484 if (fio->type == DATA && 485 F2FS_I(fio->folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE) 486 op_flags |= REQ_PRIO; 487 488 return op_flags; 489 } 490 491 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 492 { 493 struct f2fs_sb_info *sbi = fio->sbi; 494 struct block_device *bdev; 495 sector_t sector; 496 struct bio *bio; 497 498 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 499 bio = bio_alloc_bioset(bdev, npages, 500 fio->op | fio->op_flags | f2fs_io_flags(fio), 501 GFP_NOIO, &f2fs_bioset); 502 bio->bi_iter.bi_sector = sector; 503 if (is_read_io(fio->op)) { 504 bio->bi_end_io = f2fs_read_end_io; 505 bio->bi_private = NULL; 506 } else { 507 bio->bi_end_io = f2fs_write_end_io; 508 bio->bi_private = sbi; 509 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 510 fio->type, fio->temp); 511 } 512 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 513 514 if (fio->io_wbc) 515 wbc_init_bio(fio->io_wbc, bio); 516 517 return bio; 518 } 519 520 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 521 pgoff_t first_idx, 522 const struct f2fs_io_info *fio, 523 gfp_t gfp_mask) 524 { 525 /* 526 * The f2fs garbage collector sets ->encrypted_page when it wants to 527 * read/write raw data without encryption. 528 */ 529 if (!fio || !fio->encrypted_page) 530 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 531 } 532 533 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 534 pgoff_t next_idx, 535 const struct f2fs_io_info *fio) 536 { 537 /* 538 * The f2fs garbage collector sets ->encrypted_page when it wants to 539 * read/write raw data without encryption. 540 */ 541 if (fio && fio->encrypted_page) 542 return !bio_has_crypt_ctx(bio); 543 544 return fscrypt_mergeable_bio(bio, inode, next_idx); 545 } 546 547 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 548 enum page_type type) 549 { 550 if (!bio) 551 return; 552 553 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 554 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 555 556 iostat_update_submit_ctx(bio, type); 557 blk_crypto_submit_bio(bio); 558 } 559 560 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 561 enum page_type type) 562 { 563 WARN_ON_ONCE(is_read_io(bio_op(bio))); 564 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 565 iostat_update_submit_ctx(bio, type); 566 blk_crypto_submit_bio(bio); 567 } 568 569 static void __submit_merged_bio(struct f2fs_bio_info *io) 570 { 571 struct f2fs_io_info *fio = &io->fio; 572 573 if (!io->bio) 574 return; 575 576 if (is_read_io(fio->op)) { 577 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 578 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 579 } else { 580 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 581 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 582 } 583 io->bio = NULL; 584 } 585 586 static bool __has_merged_page(struct bio *bio, struct inode *inode, 587 struct folio *folio, nid_t ino) 588 { 589 struct folio_iter fi; 590 591 if (!bio) 592 return false; 593 594 if (!inode && !folio && !ino) 595 return true; 596 597 bio_for_each_folio_all(fi, bio) { 598 struct folio *target = fi.folio; 599 600 if (fscrypt_is_bounce_folio(target)) { 601 target = fscrypt_pagecache_folio(target); 602 if (IS_ERR(target)) 603 continue; 604 } 605 if (f2fs_is_compressed_page(target)) { 606 target = f2fs_compress_control_folio(target); 607 if (IS_ERR(target)) 608 continue; 609 } 610 611 if (inode && inode == target->mapping->host) 612 return true; 613 if (folio && folio == target) 614 return true; 615 if (ino && ino == ino_of_node(target)) 616 return true; 617 } 618 619 return false; 620 } 621 622 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 623 { 624 int i; 625 626 for (i = 0; i < NR_PAGE_TYPE; i++) { 627 int n = (i == META) ? 1 : NR_TEMP_TYPE; 628 int j; 629 630 sbi->write_io[i] = f2fs_kmalloc(sbi, 631 array_size(n, sizeof(struct f2fs_bio_info)), 632 GFP_KERNEL); 633 if (!sbi->write_io[i]) 634 return -ENOMEM; 635 636 for (j = HOT; j < n; j++) { 637 struct f2fs_bio_info *io = &sbi->write_io[i][j]; 638 639 init_f2fs_rwsem_trace(&io->io_rwsem, sbi, 640 LOCK_NAME_IO_RWSEM); 641 io->sbi = sbi; 642 io->bio = NULL; 643 io->last_block_in_bio = 0; 644 spin_lock_init(&io->io_lock); 645 INIT_LIST_HEAD(&io->io_list); 646 INIT_LIST_HEAD(&io->bio_list); 647 init_f2fs_rwsem(&io->bio_list_lock); 648 #ifdef CONFIG_BLK_DEV_ZONED 649 init_completion(&io->zone_wait); 650 io->zone_pending_bio = NULL; 651 io->bi_private = NULL; 652 #endif 653 } 654 } 655 656 return 0; 657 } 658 659 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 660 enum page_type type, enum temp_type temp) 661 { 662 enum page_type btype = PAGE_TYPE_OF_BIO(type); 663 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 664 struct f2fs_lock_context lc; 665 666 f2fs_down_write_trace(&io->io_rwsem, &lc); 667 668 if (!io->bio) 669 goto unlock_out; 670 671 /* change META to META_FLUSH in the checkpoint procedure */ 672 if (type >= META_FLUSH) { 673 io->fio.type = META_FLUSH; 674 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 675 if (!test_opt(sbi, NOBARRIER)) 676 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 677 } 678 __submit_merged_bio(io); 679 unlock_out: 680 f2fs_up_write_trace(&io->io_rwsem, &lc); 681 } 682 683 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 684 struct inode *inode, struct folio *folio, 685 nid_t ino, enum page_type type, bool writeback) 686 { 687 enum temp_type temp; 688 bool ret = true; 689 bool force = !inode && !folio && !ino; 690 691 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 692 if (!force) { 693 enum page_type btype = PAGE_TYPE_OF_BIO(type); 694 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 695 struct f2fs_lock_context lc; 696 697 f2fs_down_read_trace(&io->io_rwsem, &lc); 698 ret = __has_merged_page(io->bio, inode, folio, ino); 699 f2fs_up_read_trace(&io->io_rwsem, &lc); 700 } 701 if (ret) { 702 __f2fs_submit_merged_write(sbi, type, temp); 703 /* 704 * For waitting writebck case, if the bio owned by the 705 * folio is already submitted, we do not need to submit 706 * other types of bios. 707 */ 708 if (writeback) 709 break; 710 } 711 712 /* TODO: use HOT temp only for meta pages now. */ 713 if (type >= META) 714 break; 715 } 716 } 717 718 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 719 { 720 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, false); 721 } 722 723 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 724 struct inode *inode, struct folio *folio, 725 nid_t ino, enum page_type type) 726 { 727 __submit_merged_write_cond(sbi, inode, folio, ino, type, false); 728 } 729 730 void f2fs_submit_merged_write_folio(struct f2fs_sb_info *sbi, 731 struct folio *folio, enum page_type type) 732 { 733 __submit_merged_write_cond(sbi, NULL, folio, 0, type, true); 734 } 735 736 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 737 { 738 f2fs_submit_merged_write(sbi, DATA); 739 f2fs_submit_merged_write(sbi, NODE); 740 f2fs_submit_merged_write(sbi, META); 741 } 742 743 /* 744 * Fill the locked page with data located in the block address. 745 * A caller needs to unlock the page on failure. 746 */ 747 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 748 { 749 struct bio *bio; 750 struct folio *fio_folio = fio->folio; 751 struct folio *data_folio = fio->encrypted_page ? 752 page_folio(fio->encrypted_page) : fio_folio; 753 754 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 755 fio->is_por ? META_POR : (__is_meta_io(fio) ? 756 META_GENERIC : DATA_GENERIC_ENHANCE))) 757 return -EFSCORRUPTED; 758 759 trace_f2fs_submit_folio_bio(data_folio, fio); 760 761 /* Allocate a new bio */ 762 bio = __bio_alloc(fio, 1); 763 764 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host, 765 fio_folio->index, fio, GFP_NOIO); 766 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0); 767 768 if (fio->io_wbc && !is_read_io(fio->op)) 769 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE); 770 771 inc_page_count(fio->sbi, is_read_io(fio->op) ? 772 __read_io_type(data_folio) : WB_DATA_TYPE(fio->folio, false)); 773 774 if (is_read_io(bio_op(bio))) 775 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 776 else 777 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 778 return 0; 779 } 780 781 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 782 block_t last_blkaddr, block_t cur_blkaddr) 783 { 784 if (unlikely(sbi->max_io_bytes && 785 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 786 return false; 787 if (last_blkaddr + 1 != cur_blkaddr) 788 return false; 789 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 790 } 791 792 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 793 struct f2fs_io_info *fio) 794 { 795 blk_opf_t mask = ~(REQ_PREFLUSH | REQ_FUA); 796 797 if (io->fio.op != fio->op) 798 return false; 799 return (io->fio.op_flags & mask) == (fio->op_flags & mask); 800 } 801 802 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 803 struct f2fs_bio_info *io, 804 struct f2fs_io_info *fio, 805 block_t last_blkaddr, 806 block_t cur_blkaddr) 807 { 808 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 809 return false; 810 return io_type_is_mergeable(io, fio); 811 } 812 813 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 814 struct folio *folio, enum temp_type temp) 815 { 816 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 817 struct bio_entry *be; 818 819 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 820 be->bio = bio; 821 bio_get(bio); 822 823 bio_add_folio_nofail(bio, folio, folio_size(folio), 0); 824 825 f2fs_down_write(&io->bio_list_lock); 826 list_add_tail(&be->list, &io->bio_list); 827 f2fs_up_write(&io->bio_list_lock); 828 } 829 830 static void del_bio_entry(struct bio_entry *be) 831 { 832 list_del(&be->list); 833 kmem_cache_free(bio_entry_slab, be); 834 } 835 836 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 837 struct folio *folio) 838 { 839 struct folio *fio_folio = fio->folio; 840 struct f2fs_sb_info *sbi = fio->sbi; 841 enum temp_type temp; 842 bool found = false; 843 int ret = -EAGAIN; 844 845 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 846 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 847 struct list_head *head = &io->bio_list; 848 struct bio_entry *be; 849 850 f2fs_down_write(&io->bio_list_lock); 851 list_for_each_entry(be, head, list) { 852 if (be->bio != *bio) 853 continue; 854 855 found = true; 856 857 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 858 *fio->last_block, 859 fio->new_blkaddr)); 860 if (f2fs_crypt_mergeable_bio(*bio, 861 fio_folio->mapping->host, 862 fio_folio->index, fio) && 863 bio_add_folio(*bio, folio, folio_size(folio), 0)) { 864 ret = 0; 865 break; 866 } 867 868 /* page can't be merged into bio; submit the bio */ 869 del_bio_entry(be); 870 f2fs_submit_write_bio(sbi, *bio, DATA); 871 break; 872 } 873 f2fs_up_write(&io->bio_list_lock); 874 } 875 876 if (ret) { 877 bio_put(*bio); 878 *bio = NULL; 879 } 880 881 return ret; 882 } 883 884 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 885 struct bio **bio, struct folio *folio) 886 { 887 enum temp_type temp; 888 bool found = false; 889 struct bio *target = bio ? *bio : NULL; 890 891 f2fs_bug_on(sbi, !target && !folio); 892 893 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 894 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 895 struct list_head *head = &io->bio_list; 896 struct bio_entry *be; 897 898 if (list_empty(head)) 899 continue; 900 901 f2fs_down_read(&io->bio_list_lock); 902 list_for_each_entry(be, head, list) { 903 if (target) 904 found = (target == be->bio); 905 else 906 found = __has_merged_page(be->bio, NULL, 907 folio, 0); 908 if (found) 909 break; 910 } 911 f2fs_up_read(&io->bio_list_lock); 912 913 if (!found) 914 continue; 915 916 found = false; 917 918 f2fs_down_write(&io->bio_list_lock); 919 list_for_each_entry(be, head, list) { 920 if (target) 921 found = (target == be->bio); 922 else 923 found = __has_merged_page(be->bio, NULL, 924 folio, 0); 925 if (found) { 926 target = be->bio; 927 del_bio_entry(be); 928 break; 929 } 930 } 931 f2fs_up_write(&io->bio_list_lock); 932 } 933 934 if (found) 935 f2fs_submit_write_bio(sbi, target, DATA); 936 if (bio && *bio) { 937 bio_put(*bio); 938 *bio = NULL; 939 } 940 } 941 942 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 943 { 944 struct bio *bio = *fio->bio; 945 struct folio *data_folio = fio->encrypted_page ? 946 page_folio(fio->encrypted_page) : fio->folio; 947 struct folio *folio = fio->folio; 948 949 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 950 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 951 return -EFSCORRUPTED; 952 953 trace_f2fs_submit_folio_bio(data_folio, fio); 954 955 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 956 fio->new_blkaddr)) 957 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 958 alloc_new: 959 if (!bio) { 960 bio = __bio_alloc(fio, BIO_MAX_VECS); 961 f2fs_set_bio_crypt_ctx(bio, folio->mapping->host, 962 folio->index, fio, GFP_NOIO); 963 964 add_bio_entry(fio->sbi, bio, data_folio, fio->temp); 965 } else { 966 if (add_ipu_page(fio, &bio, data_folio)) 967 goto alloc_new; 968 } 969 970 if (fio->io_wbc) 971 wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio)); 972 973 inc_page_count(fio->sbi, WB_DATA_TYPE(folio, false)); 974 975 *fio->last_block = fio->new_blkaddr; 976 *fio->bio = bio; 977 978 return 0; 979 } 980 981 #ifdef CONFIG_BLK_DEV_ZONED 982 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 983 { 984 struct block_device *bdev = sbi->sb->s_bdev; 985 int devi = 0; 986 987 if (f2fs_is_multi_device(sbi)) { 988 devi = f2fs_target_device_index(sbi, blkaddr); 989 if (blkaddr < FDEV(devi).start_blk || 990 blkaddr > FDEV(devi).end_blk) { 991 f2fs_err(sbi, "Invalid block %x", blkaddr); 992 return false; 993 } 994 blkaddr -= FDEV(devi).start_blk; 995 bdev = FDEV(devi).bdev; 996 } 997 return bdev_is_zoned(bdev) && 998 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 999 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 1000 } 1001 #endif 1002 1003 void f2fs_submit_page_write(struct f2fs_io_info *fio) 1004 { 1005 struct f2fs_sb_info *sbi = fio->sbi; 1006 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 1007 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 1008 struct folio *bio_folio; 1009 struct f2fs_lock_context lc; 1010 enum count_type type; 1011 1012 f2fs_bug_on(sbi, is_read_io(fio->op)); 1013 1014 f2fs_down_write_trace(&io->io_rwsem, &lc); 1015 next: 1016 #ifdef CONFIG_BLK_DEV_ZONED 1017 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 1018 wait_for_completion_io(&io->zone_wait); 1019 bio_put(io->zone_pending_bio); 1020 io->zone_pending_bio = NULL; 1021 io->bi_private = NULL; 1022 } 1023 #endif 1024 1025 if (fio->in_list) { 1026 spin_lock(&io->io_lock); 1027 if (list_empty(&io->io_list)) { 1028 spin_unlock(&io->io_lock); 1029 goto out; 1030 } 1031 fio = list_first_entry(&io->io_list, 1032 struct f2fs_io_info, list); 1033 list_del(&fio->list); 1034 spin_unlock(&io->io_lock); 1035 } 1036 1037 verify_fio_blkaddr(fio); 1038 1039 if (fio->encrypted_page) 1040 bio_folio = page_folio(fio->encrypted_page); 1041 else if (fio->compressed_page) 1042 bio_folio = page_folio(fio->compressed_page); 1043 else 1044 bio_folio = fio->folio; 1045 1046 /* set submitted = true as a return value */ 1047 fio->submitted = 1; 1048 1049 type = WB_DATA_TYPE(bio_folio, fio->compressed_page); 1050 inc_page_count(sbi, type); 1051 1052 if (io->bio && 1053 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 1054 fio->new_blkaddr) || 1055 !f2fs_crypt_mergeable_bio(io->bio, fio_inode(fio), 1056 bio_folio->index, fio))) 1057 __submit_merged_bio(io); 1058 alloc_new: 1059 if (io->bio == NULL) { 1060 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1061 f2fs_set_bio_crypt_ctx(io->bio, fio_inode(fio), 1062 bio_folio->index, fio, GFP_NOIO); 1063 io->fio = *fio; 1064 } 1065 1066 if (!bio_add_folio(io->bio, bio_folio, folio_size(bio_folio), 0)) { 1067 __submit_merged_bio(io); 1068 goto alloc_new; 1069 } 1070 1071 if (fio->io_wbc) 1072 wbc_account_cgroup_owner(fio->io_wbc, fio->folio, 1073 folio_size(fio->folio)); 1074 1075 io->last_block_in_bio = fio->new_blkaddr; 1076 1077 trace_f2fs_submit_folio_write(fio->folio, fio); 1078 #ifdef CONFIG_BLK_DEV_ZONED 1079 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1080 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1081 bio_get(io->bio); 1082 reinit_completion(&io->zone_wait); 1083 io->bi_private = io->bio->bi_private; 1084 io->bio->bi_private = io; 1085 io->bio->bi_end_io = f2fs_zone_write_end_io; 1086 io->zone_pending_bio = io->bio; 1087 __submit_merged_bio(io); 1088 } 1089 #endif 1090 if (fio->in_list) 1091 goto next; 1092 out: 1093 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1094 !f2fs_is_checkpoint_ready(sbi)) 1095 __submit_merged_bio(io); 1096 f2fs_up_write_trace(&io->io_rwsem, &lc); 1097 } 1098 1099 static struct bio *f2fs_grab_read_bio(struct inode *inode, 1100 struct fsverity_info *vi, block_t blkaddr, 1101 unsigned nr_pages, blk_opf_t op_flag, 1102 pgoff_t first_idx, bool for_write) 1103 { 1104 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1105 struct bio *bio; 1106 struct bio_post_read_ctx *ctx = NULL; 1107 unsigned int post_read_steps = 0; 1108 sector_t sector; 1109 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1110 1111 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1112 REQ_OP_READ | op_flag, 1113 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1114 bio->bi_iter.bi_sector = sector; 1115 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1116 bio->bi_end_io = f2fs_read_end_io; 1117 1118 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1119 post_read_steps |= STEP_DECRYPT; 1120 1121 if (vi) 1122 post_read_steps |= STEP_VERITY; 1123 1124 /* 1125 * STEP_DECOMPRESS is handled specially, since a compressed file might 1126 * contain both compressed and uncompressed clusters. We'll allocate a 1127 * bio_post_read_ctx if the file is compressed, but the caller is 1128 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1129 */ 1130 1131 if (post_read_steps || f2fs_compressed_file(inode)) { 1132 /* Due to the mempool, this never fails. */ 1133 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1134 ctx->bio = bio; 1135 ctx->sbi = sbi; 1136 ctx->vi = vi; 1137 ctx->enabled_steps = post_read_steps; 1138 ctx->fs_blkaddr = blkaddr; 1139 ctx->decompression_attempted = false; 1140 bio->bi_private = ctx; 1141 } 1142 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1143 1144 return bio; 1145 } 1146 1147 /* This can handle encryption stuffs */ 1148 static void f2fs_submit_page_read(struct inode *inode, struct fsverity_info *vi, 1149 struct folio *folio, block_t blkaddr, 1150 blk_opf_t op_flags, bool for_write) 1151 { 1152 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1153 struct bio *bio; 1154 1155 bio = f2fs_grab_read_bio(inode, vi, blkaddr, 1, op_flags, folio->index, 1156 for_write); 1157 1158 /* wait for GCed page writeback via META_MAPPING */ 1159 f2fs_wait_on_block_writeback(inode, blkaddr); 1160 1161 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) 1162 f2fs_bug_on(sbi, 1); 1163 1164 inc_page_count(sbi, F2FS_RD_DATA); 1165 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1166 f2fs_submit_read_bio(sbi, bio, DATA); 1167 } 1168 1169 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1170 { 1171 __le32 *addr = get_dnode_addr(dn->inode, dn->node_folio); 1172 1173 dn->data_blkaddr = blkaddr; 1174 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1175 } 1176 1177 /* 1178 * Lock ordering for the change of data block address: 1179 * ->data_page 1180 * ->node_folio 1181 * update block addresses in the node page 1182 */ 1183 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1184 { 1185 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true); 1186 __set_data_blkaddr(dn, blkaddr); 1187 if (folio_mark_dirty(dn->node_folio)) 1188 dn->node_changed = true; 1189 } 1190 1191 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1192 { 1193 f2fs_set_data_blkaddr(dn, blkaddr); 1194 f2fs_update_read_extent_cache(dn); 1195 } 1196 1197 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1198 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1199 { 1200 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1201 int err; 1202 1203 if (!count) 1204 return 0; 1205 1206 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1207 return -EPERM; 1208 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1209 if (unlikely(err)) 1210 return err; 1211 1212 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1213 dn->ofs_in_node, count); 1214 1215 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true); 1216 1217 for (; count > 0; dn->ofs_in_node++) { 1218 block_t blkaddr = f2fs_data_blkaddr(dn); 1219 1220 if (blkaddr == NULL_ADDR) { 1221 __set_data_blkaddr(dn, NEW_ADDR); 1222 count--; 1223 } 1224 } 1225 1226 if (folio_mark_dirty(dn->node_folio)) 1227 dn->node_changed = true; 1228 return 0; 1229 } 1230 1231 /* Should keep dn->ofs_in_node unchanged */ 1232 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1233 { 1234 unsigned int ofs_in_node = dn->ofs_in_node; 1235 int ret; 1236 1237 ret = f2fs_reserve_new_blocks(dn, 1); 1238 dn->ofs_in_node = ofs_in_node; 1239 return ret; 1240 } 1241 1242 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1243 { 1244 bool need_put = dn->inode_folio ? false : true; 1245 int err; 1246 1247 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1248 if (err) 1249 return err; 1250 1251 if (dn->data_blkaddr == NULL_ADDR) 1252 err = f2fs_reserve_new_block(dn); 1253 if (err || need_put) 1254 f2fs_put_dnode(dn); 1255 return err; 1256 } 1257 1258 static inline struct fsverity_info *f2fs_need_verity(const struct inode *inode, 1259 pgoff_t idx) 1260 { 1261 if (idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE)) 1262 return fsverity_get_info(inode); 1263 return NULL; 1264 } 1265 1266 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index, 1267 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs) 1268 { 1269 struct address_space *mapping = inode->i_mapping; 1270 struct dnode_of_data dn; 1271 struct folio *folio; 1272 int err; 1273 retry: 1274 folio = f2fs_grab_cache_folio(mapping, index, for_write); 1275 if (IS_ERR(folio)) 1276 return folio; 1277 1278 if (folio_test_large(folio)) { 1279 pgoff_t folio_index = mapping_align_index(mapping, index); 1280 1281 f2fs_folio_put(folio, true); 1282 invalidate_inode_pages2_range(mapping, folio_index, 1283 folio_index + folio_nr_pages(folio) - 1); 1284 f2fs_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT); 1285 goto retry; 1286 } 1287 1288 if (f2fs_lookup_read_extent_cache_block(inode, index, 1289 &dn.data_blkaddr)) { 1290 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1291 DATA_GENERIC_ENHANCE_READ)) { 1292 err = -EFSCORRUPTED; 1293 goto put_err; 1294 } 1295 goto got_it; 1296 } 1297 1298 set_new_dnode(&dn, inode, NULL, NULL, 0); 1299 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1300 if (err) { 1301 if (err == -ENOENT && next_pgofs) 1302 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1303 goto put_err; 1304 } 1305 f2fs_put_dnode(&dn); 1306 1307 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1308 err = -ENOENT; 1309 if (next_pgofs) 1310 *next_pgofs = index + 1; 1311 goto put_err; 1312 } 1313 if (dn.data_blkaddr != NEW_ADDR && 1314 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1315 dn.data_blkaddr, 1316 DATA_GENERIC_ENHANCE)) { 1317 err = -EFSCORRUPTED; 1318 goto put_err; 1319 } 1320 got_it: 1321 if (folio_test_uptodate(folio)) { 1322 folio_unlock(folio); 1323 return folio; 1324 } 1325 1326 /* 1327 * A new dentry page is allocated but not able to be written, since its 1328 * new inode page couldn't be allocated due to -ENOSPC. 1329 * In such the case, its blkaddr can be remained as NEW_ADDR. 1330 * see, f2fs_add_link -> f2fs_get_new_data_folio -> 1331 * f2fs_init_inode_metadata. 1332 */ 1333 if (dn.data_blkaddr == NEW_ADDR) { 1334 folio_zero_segment(folio, 0, folio_size(folio)); 1335 if (!folio_test_uptodate(folio)) 1336 folio_mark_uptodate(folio); 1337 folio_unlock(folio); 1338 return folio; 1339 } 1340 1341 f2fs_submit_page_read(inode, f2fs_need_verity(inode, folio->index), 1342 folio, dn.data_blkaddr, op_flags, for_write); 1343 return folio; 1344 1345 put_err: 1346 f2fs_folio_put(folio, true); 1347 return ERR_PTR(err); 1348 } 1349 1350 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index, 1351 pgoff_t *next_pgofs) 1352 { 1353 struct address_space *mapping = inode->i_mapping; 1354 struct folio *folio; 1355 1356 folio = f2fs_filemap_get_folio(mapping, index, FGP_ACCESSED, 0); 1357 if (IS_ERR(folio)) 1358 goto read; 1359 if (folio_test_uptodate(folio)) 1360 return folio; 1361 f2fs_folio_put(folio, false); 1362 1363 read: 1364 folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs); 1365 if (IS_ERR(folio)) 1366 return folio; 1367 1368 if (folio_test_uptodate(folio)) 1369 return folio; 1370 1371 folio_wait_locked(folio); 1372 if (unlikely(!folio_test_uptodate(folio))) { 1373 f2fs_folio_put(folio, false); 1374 return ERR_PTR(-EIO); 1375 } 1376 return folio; 1377 } 1378 1379 /* 1380 * If it tries to access a hole, return an error. 1381 * Because, the callers, functions in dir.c and GC, should be able to know 1382 * whether this page exists or not. 1383 */ 1384 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index, 1385 bool for_write) 1386 { 1387 struct address_space *mapping = inode->i_mapping; 1388 struct folio *folio; 1389 1390 folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL); 1391 if (IS_ERR(folio)) 1392 return folio; 1393 1394 /* wait for read completion */ 1395 folio_lock(folio); 1396 if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) { 1397 f2fs_folio_put(folio, true); 1398 return ERR_PTR(-EIO); 1399 } 1400 return folio; 1401 } 1402 1403 /* 1404 * Caller ensures that this data page is never allocated. 1405 * A new zero-filled data page is allocated in the page cache. 1406 * 1407 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1408 * f2fs_unlock_op(). 1409 * Note that, ifolio is set only by make_empty_dir, and if any error occur, 1410 * ifolio should be released by this function. 1411 */ 1412 struct folio *f2fs_get_new_data_folio(struct inode *inode, 1413 struct folio *ifolio, pgoff_t index, bool new_i_size) 1414 { 1415 struct address_space *mapping = inode->i_mapping; 1416 struct folio *folio; 1417 struct dnode_of_data dn; 1418 int err; 1419 1420 folio = f2fs_grab_cache_folio(mapping, index, true); 1421 if (IS_ERR(folio)) { 1422 /* 1423 * before exiting, we should make sure ifolio will be released 1424 * if any error occur. 1425 */ 1426 f2fs_folio_put(ifolio, true); 1427 return ERR_PTR(-ENOMEM); 1428 } 1429 1430 set_new_dnode(&dn, inode, ifolio, NULL, 0); 1431 err = f2fs_reserve_block(&dn, index); 1432 if (err) { 1433 f2fs_folio_put(folio, true); 1434 return ERR_PTR(err); 1435 } 1436 if (!ifolio) 1437 f2fs_put_dnode(&dn); 1438 1439 if (folio_test_uptodate(folio)) 1440 goto got_it; 1441 1442 if (dn.data_blkaddr == NEW_ADDR) { 1443 folio_zero_segment(folio, 0, folio_size(folio)); 1444 if (!folio_test_uptodate(folio)) 1445 folio_mark_uptodate(folio); 1446 } else { 1447 f2fs_folio_put(folio, true); 1448 1449 /* if ifolio exists, blkaddr should be NEW_ADDR */ 1450 f2fs_bug_on(F2FS_I_SB(inode), ifolio); 1451 folio = f2fs_get_lock_data_folio(inode, index, true); 1452 if (IS_ERR(folio)) 1453 return folio; 1454 } 1455 got_it: 1456 if (new_i_size && i_size_read(inode) < 1457 ((loff_t)(index + 1) << PAGE_SHIFT)) 1458 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1459 return folio; 1460 } 1461 1462 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1463 { 1464 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1465 struct f2fs_summary sum; 1466 struct node_info ni; 1467 block_t old_blkaddr; 1468 blkcnt_t count = 1; 1469 int err; 1470 1471 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1472 return -EPERM; 1473 1474 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1475 if (err) 1476 return err; 1477 1478 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1479 if (dn->data_blkaddr == NULL_ADDR) { 1480 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1481 if (unlikely(err)) 1482 return err; 1483 } 1484 1485 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1486 old_blkaddr = dn->data_blkaddr; 1487 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr, 1488 &dn->data_blkaddr, &sum, seg_type, NULL); 1489 if (err) 1490 return err; 1491 1492 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1493 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1); 1494 1495 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1496 return 0; 1497 } 1498 1499 static void f2fs_map_lock(struct f2fs_sb_info *sbi, 1500 struct f2fs_lock_context *lc, 1501 int flag) 1502 { 1503 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1504 f2fs_down_read_trace(&sbi->node_change, lc); 1505 else 1506 f2fs_lock_op(sbi, lc); 1507 } 1508 1509 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, 1510 struct f2fs_lock_context *lc, 1511 int flag) 1512 { 1513 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1514 f2fs_up_read_trace(&sbi->node_change, lc); 1515 else 1516 f2fs_unlock_op(sbi, lc); 1517 } 1518 1519 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1520 { 1521 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1522 struct f2fs_lock_context lc; 1523 int err = 0; 1524 1525 f2fs_map_lock(sbi, &lc, F2FS_GET_BLOCK_PRE_AIO); 1526 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1527 &dn->data_blkaddr)) 1528 err = f2fs_reserve_block(dn, index); 1529 f2fs_map_unlock(sbi, &lc, F2FS_GET_BLOCK_PRE_AIO); 1530 1531 return err; 1532 } 1533 1534 static int f2fs_map_no_dnode(struct inode *inode, 1535 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1536 pgoff_t pgoff) 1537 { 1538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1539 1540 /* 1541 * There is one exceptional case that read_node_page() may return 1542 * -ENOENT due to filesystem has been shutdown or cp_error, return 1543 * -EIO in that case. 1544 */ 1545 if (map->m_may_create && 1546 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1547 return -EIO; 1548 1549 if (map->m_next_pgofs) 1550 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1551 if (map->m_next_extent) 1552 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1553 return 0; 1554 } 1555 1556 static bool f2fs_map_blocks_cached(struct inode *inode, 1557 struct f2fs_map_blocks *map, int flag) 1558 { 1559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1560 unsigned int maxblocks = map->m_len; 1561 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1562 struct extent_info ei = {}; 1563 1564 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1565 return false; 1566 1567 map->m_pblk = ei.blk + pgoff - ei.fofs; 1568 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1569 map->m_flags = F2FS_MAP_MAPPED; 1570 if (map->m_next_extent) 1571 *map->m_next_extent = pgoff + map->m_len; 1572 1573 /* for hardware encryption, but to avoid potential issue in future */ 1574 if (flag == F2FS_GET_BLOCK_DIO) 1575 f2fs_wait_on_block_writeback_range(inode, 1576 map->m_pblk, map->m_len); 1577 1578 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1579 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1580 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1581 1582 map->m_bdev = dev->bdev; 1583 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1584 map->m_pblk -= dev->start_blk; 1585 } else { 1586 map->m_bdev = inode->i_sb->s_bdev; 1587 } 1588 return true; 1589 } 1590 1591 static bool map_is_mergeable(struct f2fs_sb_info *sbi, 1592 struct f2fs_map_blocks *map, 1593 block_t blkaddr, int flag, int bidx, 1594 int ofs) 1595 { 1596 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1597 return false; 1598 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) 1599 return true; 1600 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) 1601 return true; 1602 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1603 return true; 1604 if (flag == F2FS_GET_BLOCK_DIO && 1605 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR) 1606 return true; 1607 return false; 1608 } 1609 1610 /* 1611 * f2fs_map_blocks() tries to find or build mapping relationship which 1612 * maps continuous logical blocks to physical blocks, and return such 1613 * info via f2fs_map_blocks structure. 1614 */ 1615 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1616 { 1617 unsigned int maxblocks = map->m_len; 1618 struct dnode_of_data dn; 1619 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1620 struct f2fs_lock_context lc; 1621 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1622 pgoff_t pgofs, end_offset, end; 1623 int err = 0, ofs = 1; 1624 unsigned int ofs_in_node, last_ofs_in_node; 1625 blkcnt_t prealloc; 1626 block_t blkaddr; 1627 unsigned int start_pgofs; 1628 int bidx = 0; 1629 bool is_hole; 1630 bool lfs_dio_write; 1631 1632 if (!maxblocks) 1633 return 0; 1634 1635 lfs_dio_write = (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1636 map->m_may_create); 1637 1638 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1639 goto out; 1640 1641 map->m_bdev = inode->i_sb->s_bdev; 1642 map->m_multidev_dio = 1643 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1644 1645 map->m_len = 0; 1646 map->m_flags = 0; 1647 1648 /* it only supports block size == page size */ 1649 pgofs = (pgoff_t)map->m_lblk; 1650 end = pgofs + maxblocks; 1651 1652 if (flag == F2FS_GET_BLOCK_PRECACHE) 1653 mode = LOOKUP_NODE_RA; 1654 1655 next_dnode: 1656 if (map->m_may_create) { 1657 if (f2fs_lfs_mode(sbi)) 1658 f2fs_balance_fs(sbi, true); 1659 f2fs_map_lock(sbi, &lc, flag); 1660 } 1661 1662 /* When reading holes, we need its node page */ 1663 set_new_dnode(&dn, inode, NULL, NULL, 0); 1664 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1665 if (err) { 1666 if (flag == F2FS_GET_BLOCK_BMAP) 1667 map->m_pblk = 0; 1668 if (err == -ENOENT) 1669 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1670 goto unlock_out; 1671 } 1672 1673 start_pgofs = pgofs; 1674 prealloc = 0; 1675 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1676 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode); 1677 1678 next_block: 1679 blkaddr = f2fs_data_blkaddr(&dn); 1680 is_hole = !__is_valid_data_blkaddr(blkaddr); 1681 if (!is_hole && 1682 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1683 err = -EFSCORRUPTED; 1684 goto sync_out; 1685 } 1686 1687 /* use out-place-update for direct IO under LFS mode */ 1688 if (map->m_may_create && (is_hole || 1689 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1690 !f2fs_is_pinned_file(inode) && map->m_last_pblk != blkaddr))) { 1691 if (unlikely(f2fs_cp_error(sbi))) { 1692 err = -EIO; 1693 goto sync_out; 1694 } 1695 1696 switch (flag) { 1697 case F2FS_GET_BLOCK_PRE_AIO: 1698 if (blkaddr == NULL_ADDR) { 1699 prealloc++; 1700 last_ofs_in_node = dn.ofs_in_node; 1701 } 1702 break; 1703 case F2FS_GET_BLOCK_PRE_DIO: 1704 case F2FS_GET_BLOCK_DIO: 1705 err = __allocate_data_block(&dn, map->m_seg_type); 1706 if (err) 1707 goto sync_out; 1708 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1709 file_need_truncate(inode); 1710 set_inode_flag(inode, FI_APPEND_WRITE); 1711 break; 1712 default: 1713 WARN_ON_ONCE(1); 1714 err = -EIO; 1715 goto sync_out; 1716 } 1717 1718 blkaddr = dn.data_blkaddr; 1719 if (is_hole) 1720 map->m_flags |= F2FS_MAP_NEW; 1721 } else if (is_hole) { 1722 if (f2fs_compressed_file(inode) && 1723 f2fs_sanity_check_cluster(&dn)) { 1724 err = -EFSCORRUPTED; 1725 f2fs_handle_error(sbi, 1726 ERROR_CORRUPTED_CLUSTER); 1727 goto sync_out; 1728 } 1729 1730 switch (flag) { 1731 case F2FS_GET_BLOCK_PRECACHE: 1732 goto sync_out; 1733 case F2FS_GET_BLOCK_BMAP: 1734 map->m_pblk = 0; 1735 goto sync_out; 1736 case F2FS_GET_BLOCK_FIEMAP: 1737 if (blkaddr == NULL_ADDR) { 1738 if (map->m_next_pgofs) 1739 *map->m_next_pgofs = pgofs + 1; 1740 goto sync_out; 1741 } 1742 break; 1743 case F2FS_GET_BLOCK_DIO: 1744 if (map->m_next_pgofs) 1745 *map->m_next_pgofs = pgofs + 1; 1746 break; 1747 default: 1748 /* for defragment case */ 1749 if (map->m_next_pgofs) 1750 *map->m_next_pgofs = pgofs + 1; 1751 goto sync_out; 1752 } 1753 } 1754 1755 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1756 goto skip; 1757 1758 if (map->m_multidev_dio) 1759 bidx = f2fs_target_device_index(sbi, blkaddr); 1760 1761 if (map->m_len == 0) { 1762 /* reserved delalloc block should be mapped for fiemap. */ 1763 if (blkaddr == NEW_ADDR) 1764 map->m_flags |= F2FS_MAP_DELALLOC; 1765 /* DIO READ and hole case, should not map the blocks. */ 1766 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create)) 1767 map->m_flags |= F2FS_MAP_MAPPED; 1768 1769 map->m_pblk = blkaddr; 1770 map->m_len = 1; 1771 1772 if (map->m_multidev_dio) 1773 map->m_bdev = FDEV(bidx).bdev; 1774 1775 if (lfs_dio_write) 1776 map->m_last_pblk = NULL_ADDR; 1777 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) { 1778 ofs++; 1779 map->m_len++; 1780 } else { 1781 if (lfs_dio_write && !f2fs_is_pinned_file(inode)) 1782 map->m_last_pblk = blkaddr; 1783 goto sync_out; 1784 } 1785 1786 skip: 1787 dn.ofs_in_node++; 1788 pgofs++; 1789 1790 /* preallocate blocks in batch for one dnode page */ 1791 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1792 (pgofs == end || dn.ofs_in_node == end_offset)) { 1793 1794 dn.ofs_in_node = ofs_in_node; 1795 err = f2fs_reserve_new_blocks(&dn, prealloc); 1796 if (err) 1797 goto sync_out; 1798 1799 map->m_len += dn.ofs_in_node - ofs_in_node; 1800 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1801 err = -ENOSPC; 1802 goto sync_out; 1803 } 1804 dn.ofs_in_node = end_offset; 1805 } 1806 1807 if (pgofs >= end) 1808 goto sync_out; 1809 else if (dn.ofs_in_node < end_offset) 1810 goto next_block; 1811 1812 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1813 if (map->m_flags & F2FS_MAP_MAPPED) { 1814 unsigned int ofs = start_pgofs - map->m_lblk; 1815 1816 f2fs_update_read_extent_cache_range(&dn, 1817 start_pgofs, map->m_pblk + ofs, 1818 map->m_len - ofs); 1819 } 1820 } 1821 1822 f2fs_put_dnode(&dn); 1823 1824 if (map->m_may_create) { 1825 f2fs_map_unlock(sbi, &lc, flag); 1826 f2fs_balance_fs(sbi, dn.node_changed); 1827 } 1828 goto next_dnode; 1829 1830 sync_out: 1831 1832 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1833 /* 1834 * for hardware encryption, but to avoid potential issue 1835 * in future 1836 */ 1837 f2fs_wait_on_block_writeback_range(inode, 1838 map->m_pblk, map->m_len); 1839 1840 if (map->m_multidev_dio) { 1841 block_t blk_addr = map->m_pblk; 1842 1843 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1844 1845 map->m_bdev = FDEV(bidx).bdev; 1846 map->m_pblk -= FDEV(bidx).start_blk; 1847 1848 if (map->m_may_create) 1849 f2fs_update_device_state(sbi, inode->i_ino, 1850 blk_addr, map->m_len); 1851 1852 f2fs_bug_on(sbi, blk_addr + map->m_len > 1853 FDEV(bidx).end_blk + 1); 1854 } 1855 } 1856 1857 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1858 if (map->m_flags & F2FS_MAP_MAPPED) { 1859 unsigned int ofs = start_pgofs - map->m_lblk; 1860 1861 if (map->m_len > ofs) 1862 f2fs_update_read_extent_cache_range(&dn, 1863 start_pgofs, map->m_pblk + ofs, 1864 map->m_len - ofs); 1865 } 1866 if (map->m_next_extent) 1867 *map->m_next_extent = is_hole ? pgofs + 1 : pgofs; 1868 } 1869 f2fs_put_dnode(&dn); 1870 unlock_out: 1871 if (map->m_may_create) { 1872 f2fs_map_unlock(sbi, &lc, flag); 1873 f2fs_balance_fs(sbi, dn.node_changed); 1874 } 1875 out: 1876 trace_f2fs_map_blocks(inode, map, flag, err); 1877 return err; 1878 } 1879 1880 static bool __f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len, 1881 bool check_first) 1882 { 1883 struct f2fs_map_blocks map; 1884 block_t last_lblk; 1885 int err; 1886 1887 if (pos + len > i_size_read(inode)) 1888 return false; 1889 1890 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1891 map.m_next_pgofs = NULL; 1892 map.m_next_extent = NULL; 1893 map.m_seg_type = NO_CHECK_TYPE; 1894 map.m_may_create = false; 1895 last_lblk = F2FS_BLK_ALIGN(pos + len); 1896 1897 while (map.m_lblk < last_lblk) { 1898 map.m_len = last_lblk - map.m_lblk; 1899 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1900 if (err || map.m_len == 0) 1901 return false; 1902 map.m_lblk += map.m_len; 1903 if (check_first) 1904 break; 1905 } 1906 return true; 1907 } 1908 1909 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1910 { 1911 return __f2fs_overwrite_io(inode, pos, len, false); 1912 } 1913 1914 static int f2fs_xattr_fiemap(struct inode *inode, 1915 struct fiemap_extent_info *fieinfo) 1916 { 1917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1918 struct node_info ni; 1919 __u64 phys = 0, len; 1920 __u32 flags; 1921 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1922 int err = 0; 1923 1924 if (f2fs_has_inline_xattr(inode)) { 1925 int offset; 1926 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), 1927 inode->i_ino, false); 1928 1929 if (IS_ERR(folio)) 1930 return PTR_ERR(folio); 1931 1932 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1933 if (err) { 1934 f2fs_folio_put(folio, true); 1935 return err; 1936 } 1937 1938 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1939 offset = offsetof(struct f2fs_inode, i_addr) + 1940 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1941 get_inline_xattr_addrs(inode)); 1942 1943 phys += offset; 1944 len = inline_xattr_size(inode); 1945 1946 f2fs_folio_put(folio, true); 1947 1948 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1949 1950 if (!xnid) 1951 flags |= FIEMAP_EXTENT_LAST; 1952 1953 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1954 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1955 if (err) 1956 return err; 1957 } 1958 1959 if (xnid) { 1960 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), 1961 xnid, false); 1962 1963 if (IS_ERR(folio)) 1964 return PTR_ERR(folio); 1965 1966 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1967 if (err) { 1968 f2fs_folio_put(folio, true); 1969 return err; 1970 } 1971 1972 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1973 len = inode->i_sb->s_blocksize; 1974 1975 f2fs_folio_put(folio, true); 1976 1977 flags = FIEMAP_EXTENT_LAST; 1978 } 1979 1980 if (phys) { 1981 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1982 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1983 } 1984 1985 return (err < 0 ? err : 0); 1986 } 1987 1988 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1989 u64 start, u64 len) 1990 { 1991 struct f2fs_map_blocks map; 1992 sector_t start_blk, last_blk, blk_len, max_len; 1993 pgoff_t next_pgofs; 1994 u64 logical = 0, phys = 0, size = 0; 1995 u32 flags = 0; 1996 int ret = 0; 1997 bool compr_cluster = false, compr_appended; 1998 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1999 unsigned int count_in_cluster = 0; 2000 loff_t maxbytes; 2001 2002 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 2003 ret = f2fs_precache_extents(inode); 2004 if (ret) 2005 return ret; 2006 } 2007 2008 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 2009 if (ret) 2010 return ret; 2011 2012 inode_lock_shared(inode); 2013 2014 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 2015 if (start > maxbytes) { 2016 ret = -EFBIG; 2017 goto out; 2018 } 2019 2020 if (len > maxbytes || (maxbytes - len) < start) 2021 len = maxbytes - start; 2022 2023 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 2024 ret = f2fs_xattr_fiemap(inode, fieinfo); 2025 goto out; 2026 } 2027 2028 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 2029 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 2030 if (ret != -EAGAIN) 2031 goto out; 2032 } 2033 2034 start_blk = F2FS_BYTES_TO_BLK(start); 2035 last_blk = F2FS_BYTES_TO_BLK(start + len - 1); 2036 blk_len = last_blk - start_blk + 1; 2037 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk; 2038 2039 next: 2040 memset(&map, 0, sizeof(map)); 2041 map.m_lblk = start_blk; 2042 map.m_len = blk_len; 2043 map.m_next_pgofs = &next_pgofs; 2044 map.m_seg_type = NO_CHECK_TYPE; 2045 2046 if (compr_cluster) { 2047 map.m_lblk += 1; 2048 map.m_len = cluster_size - count_in_cluster; 2049 } 2050 2051 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 2052 if (ret) 2053 goto out; 2054 2055 /* HOLE */ 2056 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 2057 start_blk = next_pgofs; 2058 2059 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes) 2060 goto prep_next; 2061 2062 flags |= FIEMAP_EXTENT_LAST; 2063 } 2064 2065 /* 2066 * current extent may cross boundary of inquiry, increase len to 2067 * requery. 2068 */ 2069 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) && 2070 map.m_lblk + map.m_len - 1 == last_blk && 2071 blk_len != max_len) { 2072 blk_len = max_len; 2073 goto next; 2074 } 2075 2076 compr_appended = false; 2077 /* In a case of compressed cluster, append this to the last extent */ 2078 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 2079 !(map.m_flags & F2FS_MAP_FLAGS))) { 2080 compr_appended = true; 2081 goto skip_fill; 2082 } 2083 2084 if (size) { 2085 flags |= FIEMAP_EXTENT_MERGED; 2086 if (IS_ENCRYPTED(inode)) 2087 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2088 2089 ret = fiemap_fill_next_extent(fieinfo, logical, 2090 phys, size, flags); 2091 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2092 if (ret) 2093 goto out; 2094 size = 0; 2095 } 2096 2097 if (start_blk > last_blk) 2098 goto out; 2099 2100 skip_fill: 2101 if (map.m_pblk == COMPRESS_ADDR) { 2102 compr_cluster = true; 2103 count_in_cluster = 1; 2104 } else if (compr_appended) { 2105 unsigned int appended_blks = cluster_size - 2106 count_in_cluster + 1; 2107 size += F2FS_BLK_TO_BYTES(appended_blks); 2108 start_blk += appended_blks; 2109 compr_cluster = false; 2110 } else { 2111 logical = F2FS_BLK_TO_BYTES(start_blk); 2112 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2113 F2FS_BLK_TO_BYTES(map.m_pblk) : 0; 2114 size = F2FS_BLK_TO_BYTES(map.m_len); 2115 flags = 0; 2116 2117 if (compr_cluster) { 2118 flags = FIEMAP_EXTENT_ENCODED; 2119 count_in_cluster += map.m_len; 2120 if (count_in_cluster == cluster_size) { 2121 compr_cluster = false; 2122 size += F2FS_BLKSIZE; 2123 } 2124 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2125 flags = FIEMAP_EXTENT_UNWRITTEN; 2126 } 2127 2128 start_blk += F2FS_BYTES_TO_BLK(size); 2129 } 2130 2131 prep_next: 2132 cond_resched(); 2133 if (fatal_signal_pending(current)) 2134 ret = -EINTR; 2135 else 2136 goto next; 2137 out: 2138 if (ret == 1) 2139 ret = 0; 2140 2141 inode_unlock_shared(inode); 2142 return ret; 2143 } 2144 2145 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2146 { 2147 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2148 return F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 2149 2150 return i_size_read(inode); 2151 } 2152 2153 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac) 2154 { 2155 return rac ? REQ_RAHEAD : 0; 2156 } 2157 2158 static int f2fs_read_single_page(struct inode *inode, struct fsverity_info *vi, 2159 struct folio *folio, unsigned int nr_pages, 2160 struct f2fs_map_blocks *map, 2161 struct bio **bio_ret, 2162 sector_t *last_block_in_bio, 2163 struct readahead_control *rac) 2164 { 2165 struct bio *bio = *bio_ret; 2166 const unsigned int blocksize = F2FS_BLKSIZE; 2167 sector_t block_in_file; 2168 sector_t last_block; 2169 sector_t last_block_in_file; 2170 sector_t block_nr; 2171 pgoff_t index = folio->index; 2172 int ret = 0; 2173 2174 block_in_file = (sector_t)index; 2175 last_block = block_in_file + nr_pages; 2176 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2177 blocksize - 1); 2178 if (last_block > last_block_in_file) 2179 last_block = last_block_in_file; 2180 2181 /* just zeroing out page which is beyond EOF */ 2182 if (block_in_file >= last_block) 2183 goto zero_out; 2184 /* 2185 * Map blocks using the previous result first. 2186 */ 2187 if (map->m_flags & F2FS_MAP_MAPPED) { 2188 if (block_in_file > map->m_lblk && 2189 block_in_file < (map->m_lblk + map->m_len)) 2190 goto got_it; 2191 } else if (block_in_file < *map->m_next_pgofs) { 2192 goto got_it; 2193 } 2194 2195 /* 2196 * Then do more f2fs_map_blocks() calls until we are 2197 * done with this page. 2198 */ 2199 map->m_lblk = block_in_file; 2200 map->m_len = last_block - block_in_file; 2201 2202 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2203 if (ret) 2204 goto out; 2205 got_it: 2206 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2207 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2208 folio_set_mappedtodisk(folio); 2209 2210 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2211 DATA_GENERIC_ENHANCE_READ)) { 2212 ret = -EFSCORRUPTED; 2213 goto out; 2214 } 2215 } else { 2216 zero_out: 2217 folio_zero_segment(folio, 0, folio_size(folio)); 2218 if (vi && !fsverity_verify_folio(vi, folio)) { 2219 ret = -EIO; 2220 goto out; 2221 } 2222 if (!folio_test_uptodate(folio)) 2223 folio_mark_uptodate(folio); 2224 folio_unlock(folio); 2225 goto out; 2226 } 2227 2228 /* 2229 * This page will go to BIO. Do we need to send this 2230 * BIO off first? 2231 */ 2232 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2233 *last_block_in_bio, block_nr) || 2234 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) { 2235 submit_and_realloc: 2236 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2237 bio = NULL; 2238 } 2239 if (bio == NULL) 2240 bio = f2fs_grab_read_bio(inode, vi, block_nr, nr_pages, 2241 f2fs_ra_op_flags(rac), index, false); 2242 2243 /* 2244 * If the page is under writeback, we need to wait for 2245 * its completion to see the correct decrypted data. 2246 */ 2247 f2fs_wait_on_block_writeback(inode, block_nr); 2248 2249 if (!bio_add_folio(bio, folio, blocksize, 0)) 2250 goto submit_and_realloc; 2251 2252 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2253 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2254 F2FS_BLKSIZE); 2255 *last_block_in_bio = block_nr; 2256 out: 2257 *bio_ret = bio; 2258 return ret; 2259 } 2260 2261 #ifdef CONFIG_F2FS_FS_COMPRESSION 2262 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2263 unsigned nr_pages, sector_t *last_block_in_bio, 2264 struct readahead_control *rac, bool for_write) 2265 { 2266 struct dnode_of_data dn; 2267 struct inode *inode = cc->inode; 2268 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2269 struct bio *bio = *bio_ret; 2270 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2271 sector_t last_block_in_file; 2272 const unsigned int blocksize = F2FS_BLKSIZE; 2273 struct decompress_io_ctx *dic = NULL; 2274 struct extent_info ei = {}; 2275 bool from_dnode = true; 2276 int i; 2277 int ret = 0; 2278 2279 if (unlikely(f2fs_cp_error(sbi))) { 2280 ret = -EIO; 2281 from_dnode = false; 2282 goto out_put_dnode; 2283 } 2284 2285 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2286 2287 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2288 blocksize - 1); 2289 2290 /* get rid of pages beyond EOF */ 2291 for (i = 0; i < cc->cluster_size; i++) { 2292 struct page *page = cc->rpages[i]; 2293 struct folio *folio; 2294 2295 if (!page) 2296 continue; 2297 2298 folio = page_folio(page); 2299 if ((sector_t)folio->index >= last_block_in_file) { 2300 folio_zero_segment(folio, 0, folio_size(folio)); 2301 if (!folio_test_uptodate(folio)) 2302 folio_mark_uptodate(folio); 2303 } else if (!folio_test_uptodate(folio)) { 2304 continue; 2305 } 2306 folio_unlock(folio); 2307 if (for_write) 2308 folio_put(folio); 2309 cc->rpages[i] = NULL; 2310 cc->nr_rpages--; 2311 } 2312 2313 /* we are done since all pages are beyond EOF */ 2314 if (f2fs_cluster_is_empty(cc)) 2315 goto out; 2316 2317 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2318 from_dnode = false; 2319 2320 if (!from_dnode) 2321 goto skip_reading_dnode; 2322 2323 set_new_dnode(&dn, inode, NULL, NULL, 0); 2324 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2325 if (ret) 2326 goto out; 2327 2328 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2329 2330 skip_reading_dnode: 2331 for (i = 1; i < cc->cluster_size; i++) { 2332 block_t blkaddr; 2333 2334 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio, 2335 dn.ofs_in_node + i) : 2336 ei.blk + i - 1; 2337 2338 if (!__is_valid_data_blkaddr(blkaddr)) 2339 break; 2340 2341 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2342 ret = -EFAULT; 2343 goto out_put_dnode; 2344 } 2345 cc->nr_cpages++; 2346 2347 if (!from_dnode && i >= ei.c_len) 2348 break; 2349 } 2350 2351 /* nothing to decompress */ 2352 if (cc->nr_cpages == 0) { 2353 ret = 0; 2354 goto out_put_dnode; 2355 } 2356 2357 dic = f2fs_alloc_dic(cc); 2358 if (IS_ERR(dic)) { 2359 ret = PTR_ERR(dic); 2360 goto out_put_dnode; 2361 } 2362 2363 for (i = 0; i < cc->nr_cpages; i++) { 2364 struct folio *folio = page_folio(dic->cpages[i]); 2365 block_t blkaddr; 2366 struct bio_post_read_ctx *ctx; 2367 2368 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio, 2369 dn.ofs_in_node + i + 1) : 2370 ei.blk + i; 2371 2372 f2fs_wait_on_block_writeback(inode, blkaddr); 2373 2374 if (f2fs_load_compressed_folio(sbi, folio, blkaddr)) { 2375 if (atomic_dec_and_test(&dic->remaining_pages)) { 2376 f2fs_decompress_cluster(dic, true); 2377 break; 2378 } 2379 continue; 2380 } 2381 2382 if (bio && (!page_is_mergeable(sbi, bio, 2383 *last_block_in_bio, blkaddr) || 2384 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) { 2385 submit_and_realloc: 2386 f2fs_submit_read_bio(sbi, bio, DATA); 2387 bio = NULL; 2388 } 2389 2390 if (!bio) 2391 bio = f2fs_grab_read_bio(inode, cc->vi, blkaddr, 2392 nr_pages - i, 2393 f2fs_ra_op_flags(rac), 2394 folio->index, for_write); 2395 2396 if (!bio_add_folio(bio, folio, blocksize, 0)) 2397 goto submit_and_realloc; 2398 2399 ctx = get_post_read_ctx(bio); 2400 ctx->enabled_steps |= STEP_DECOMPRESS; 2401 refcount_inc(&dic->refcnt); 2402 2403 inc_page_count(sbi, F2FS_RD_DATA); 2404 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2405 *last_block_in_bio = blkaddr; 2406 } 2407 2408 if (from_dnode) 2409 f2fs_put_dnode(&dn); 2410 2411 *bio_ret = bio; 2412 return 0; 2413 2414 out_put_dnode: 2415 if (from_dnode) 2416 f2fs_put_dnode(&dn); 2417 out: 2418 for (i = 0; i < cc->cluster_size; i++) { 2419 if (cc->rpages[i]) { 2420 ClearPageUptodate(cc->rpages[i]); 2421 unlock_page(cc->rpages[i]); 2422 } 2423 } 2424 *bio_ret = bio; 2425 return ret; 2426 } 2427 #endif 2428 2429 static struct f2fs_folio_state *ffs_find_or_alloc(struct folio *folio) 2430 { 2431 struct f2fs_folio_state *ffs = folio->private; 2432 2433 if (ffs) 2434 return ffs; 2435 2436 ffs = f2fs_kmem_cache_alloc(ffs_entry_slab, 2437 GFP_NOIO | __GFP_ZERO, true, NULL); 2438 2439 spin_lock_init(&ffs->state_lock); 2440 folio_attach_private(folio, ffs); 2441 return ffs; 2442 } 2443 2444 static void ffs_detach_free(struct folio *folio) 2445 { 2446 struct f2fs_folio_state *ffs; 2447 2448 if (!folio_test_large(folio)) { 2449 folio_detach_private(folio); 2450 return; 2451 } 2452 2453 ffs = folio_detach_private(folio); 2454 if (!ffs) 2455 return; 2456 2457 WARN_ON_ONCE(ffs->read_pages_pending != 0); 2458 kmem_cache_free(ffs_entry_slab, ffs); 2459 } 2460 2461 static int f2fs_read_data_large_folio(struct inode *inode, 2462 struct fsverity_info *vi, 2463 struct readahead_control *rac, struct folio *folio) 2464 { 2465 struct bio *bio = NULL; 2466 sector_t last_block_in_bio = 0; 2467 struct f2fs_map_blocks map = {0, }; 2468 pgoff_t index, offset, next_pgofs = 0; 2469 unsigned max_nr_pages = rac ? readahead_count(rac) : 2470 folio_nr_pages(folio); 2471 unsigned nrpages; 2472 struct f2fs_folio_state *ffs; 2473 int ret = 0; 2474 bool folio_in_bio; 2475 2476 if (!IS_IMMUTABLE(inode) || f2fs_compressed_file(inode)) { 2477 if (folio) 2478 folio_unlock(folio); 2479 return -EOPNOTSUPP; 2480 } 2481 2482 map.m_seg_type = NO_CHECK_TYPE; 2483 2484 if (rac) 2485 folio = readahead_folio(rac); 2486 next_folio: 2487 if (!folio) 2488 goto out; 2489 2490 folio_in_bio = false; 2491 index = folio->index; 2492 offset = 0; 2493 ffs = NULL; 2494 nrpages = folio_nr_pages(folio); 2495 2496 for (; nrpages; nrpages--, max_nr_pages--, index++, offset++) { 2497 sector_t block_nr; 2498 /* 2499 * Map blocks using the previous result first. 2500 */ 2501 if (map.m_flags & F2FS_MAP_MAPPED) { 2502 if (index > map.m_lblk && 2503 index < (map.m_lblk + map.m_len)) 2504 goto got_it; 2505 } else if (index < next_pgofs) { 2506 /* hole case */ 2507 goto got_it; 2508 } 2509 2510 /* 2511 * Then do more f2fs_map_blocks() calls until we are 2512 * done with this page. 2513 */ 2514 memset(&map, 0, sizeof(map)); 2515 map.m_next_pgofs = &next_pgofs; 2516 map.m_seg_type = NO_CHECK_TYPE; 2517 map.m_lblk = index; 2518 map.m_len = max_nr_pages; 2519 2520 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2521 if (ret) 2522 goto err_out; 2523 got_it: 2524 if ((map.m_flags & F2FS_MAP_MAPPED)) { 2525 block_nr = map.m_pblk + index - map.m_lblk; 2526 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2527 DATA_GENERIC_ENHANCE_READ)) { 2528 ret = -EFSCORRUPTED; 2529 goto err_out; 2530 } 2531 } else { 2532 size_t page_offset = offset << PAGE_SHIFT; 2533 folio_zero_range(folio, page_offset, PAGE_SIZE); 2534 if (vi && !fsverity_verify_blocks(vi, folio, PAGE_SIZE, page_offset)) { 2535 ret = -EIO; 2536 goto err_out; 2537 } 2538 continue; 2539 } 2540 2541 /* We must increment read_pages_pending before possible BIOs submitting 2542 * to prevent from premature folio_end_read() call on folio 2543 */ 2544 if (folio_test_large(folio)) { 2545 ffs = ffs_find_or_alloc(folio); 2546 2547 /* set the bitmap to wait */ 2548 spin_lock_irq(&ffs->state_lock); 2549 ffs->read_pages_pending++; 2550 spin_unlock_irq(&ffs->state_lock); 2551 } 2552 2553 /* 2554 * This page will go to BIO. Do we need to send this 2555 * BIO off first? 2556 */ 2557 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2558 last_block_in_bio, block_nr) || 2559 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) { 2560 submit_and_realloc: 2561 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2562 bio = NULL; 2563 } 2564 if (bio == NULL) 2565 bio = f2fs_grab_read_bio(inode, vi, 2566 block_nr, max_nr_pages, 2567 f2fs_ra_op_flags(rac), 2568 index, false); 2569 2570 /* 2571 * If the page is under writeback, we need to wait for 2572 * its completion to see the correct decrypted data. 2573 */ 2574 f2fs_wait_on_block_writeback(inode, block_nr); 2575 2576 if (!bio_add_folio(bio, folio, F2FS_BLKSIZE, 2577 offset << PAGE_SHIFT)) 2578 goto submit_and_realloc; 2579 2580 folio_in_bio = true; 2581 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2582 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2583 F2FS_BLKSIZE); 2584 last_block_in_bio = block_nr; 2585 } 2586 trace_f2fs_read_folio(folio, DATA); 2587 err_out: 2588 if (!folio_in_bio) { 2589 folio_end_read(folio, !ret); 2590 if (ret) 2591 return ret; 2592 } 2593 if (rac) { 2594 folio = readahead_folio(rac); 2595 goto next_folio; 2596 } 2597 out: 2598 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2599 if (ret) { 2600 /* Wait bios and clear uptodate. */ 2601 folio_lock(folio); 2602 folio_clear_uptodate(folio); 2603 folio_unlock(folio); 2604 } 2605 return ret; 2606 } 2607 2608 /* 2609 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2610 * Major change was from block_size == page_size in f2fs by default. 2611 */ 2612 static int f2fs_mpage_readpages(struct inode *inode, struct fsverity_info *vi, 2613 struct readahead_control *rac, struct folio *folio) 2614 { 2615 struct bio *bio = NULL; 2616 sector_t last_block_in_bio = 0; 2617 struct f2fs_map_blocks map; 2618 #ifdef CONFIG_F2FS_FS_COMPRESSION 2619 struct compress_ctx cc = { 2620 .inode = inode, 2621 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2622 .cluster_size = F2FS_I(inode)->i_cluster_size, 2623 .cluster_idx = NULL_CLUSTER, 2624 .rpages = NULL, 2625 .cpages = NULL, 2626 .nr_rpages = 0, 2627 .nr_cpages = 0, 2628 }; 2629 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2630 pgoff_t index; 2631 #endif 2632 pgoff_t next_pgofs = 0; 2633 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2634 struct address_space *mapping = rac ? rac->mapping : folio->mapping; 2635 unsigned max_nr_pages = nr_pages; 2636 int ret = 0; 2637 2638 if (mapping_large_folio_support(mapping)) 2639 return f2fs_read_data_large_folio(inode, vi, rac, folio); 2640 2641 #ifdef CONFIG_F2FS_FS_COMPRESSION 2642 if (f2fs_compressed_file(inode)) { 2643 index = rac ? readahead_index(rac) : folio->index; 2644 max_nr_pages = round_up(index + nr_pages, cc.cluster_size) - 2645 round_down(index, cc.cluster_size); 2646 } 2647 #endif 2648 2649 map.m_pblk = 0; 2650 map.m_lblk = 0; 2651 map.m_len = 0; 2652 map.m_flags = 0; 2653 map.m_next_pgofs = &next_pgofs; 2654 map.m_next_extent = NULL; 2655 map.m_seg_type = NO_CHECK_TYPE; 2656 map.m_may_create = false; 2657 2658 for (; nr_pages; nr_pages--) { 2659 if (rac) { 2660 folio = readahead_folio(rac); 2661 prefetchw(&folio->flags); 2662 } 2663 2664 #ifdef CONFIG_F2FS_FS_COMPRESSION 2665 index = folio->index; 2666 2667 if (!f2fs_compressed_file(inode)) 2668 goto read_single_page; 2669 2670 /* there are remained compressed pages, submit them */ 2671 if (!f2fs_cluster_can_merge_page(&cc, index)) { 2672 cc.vi = vi; 2673 ret = f2fs_read_multi_pages(&cc, &bio, 2674 max_nr_pages, 2675 &last_block_in_bio, 2676 rac, false); 2677 f2fs_destroy_compress_ctx(&cc, false); 2678 if (ret) 2679 goto set_error_page; 2680 } 2681 if (cc.cluster_idx == NULL_CLUSTER) { 2682 if (nc_cluster_idx == index >> cc.log_cluster_size) 2683 goto read_single_page; 2684 2685 ret = f2fs_is_compressed_cluster(inode, index); 2686 if (ret < 0) 2687 goto set_error_page; 2688 else if (!ret) { 2689 nc_cluster_idx = 2690 index >> cc.log_cluster_size; 2691 goto read_single_page; 2692 } 2693 2694 nc_cluster_idx = NULL_CLUSTER; 2695 } 2696 ret = f2fs_init_compress_ctx(&cc); 2697 if (ret) 2698 goto set_error_page; 2699 2700 f2fs_compress_ctx_add_page(&cc, folio); 2701 2702 goto next_page; 2703 read_single_page: 2704 #endif 2705 2706 ret = f2fs_read_single_page(inode, vi, folio, max_nr_pages, 2707 &map, &bio, &last_block_in_bio, 2708 rac); 2709 if (ret) { 2710 #ifdef CONFIG_F2FS_FS_COMPRESSION 2711 set_error_page: 2712 #endif 2713 folio_zero_segment(folio, 0, folio_size(folio)); 2714 folio_unlock(folio); 2715 } 2716 #ifdef CONFIG_F2FS_FS_COMPRESSION 2717 next_page: 2718 #endif 2719 2720 #ifdef CONFIG_F2FS_FS_COMPRESSION 2721 if (f2fs_compressed_file(inode)) { 2722 /* last page */ 2723 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2724 cc.vi = vi; 2725 ret = f2fs_read_multi_pages(&cc, &bio, 2726 max_nr_pages, 2727 &last_block_in_bio, 2728 rac, false); 2729 f2fs_destroy_compress_ctx(&cc, false); 2730 } 2731 } 2732 #endif 2733 } 2734 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2735 return ret; 2736 } 2737 2738 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2739 { 2740 struct inode *inode = folio->mapping->host; 2741 struct fsverity_info *vi = NULL; 2742 int ret; 2743 2744 trace_f2fs_readpage(folio, DATA); 2745 2746 if (!f2fs_is_compress_backend_ready(inode)) { 2747 folio_unlock(folio); 2748 return -EOPNOTSUPP; 2749 } 2750 2751 /* If the file has inline data, try to read it directly */ 2752 if (f2fs_has_inline_data(inode)) { 2753 ret = f2fs_read_inline_data(inode, folio); 2754 if (ret != -EAGAIN) 2755 return ret; 2756 } 2757 2758 vi = f2fs_need_verity(inode, folio->index); 2759 if (vi) 2760 fsverity_readahead(vi, folio->index, folio_nr_pages(folio)); 2761 return f2fs_mpage_readpages(inode, vi, NULL, folio); 2762 } 2763 2764 static void f2fs_readahead(struct readahead_control *rac) 2765 { 2766 struct inode *inode = rac->mapping->host; 2767 struct fsverity_info *vi = NULL; 2768 2769 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2770 2771 if (!f2fs_is_compress_backend_ready(inode)) 2772 return; 2773 2774 /* If the file has inline data, skip readahead */ 2775 if (f2fs_has_inline_data(inode)) 2776 return; 2777 2778 vi = f2fs_need_verity(inode, readahead_index(rac)); 2779 if (vi) 2780 fsverity_readahead(vi, readahead_index(rac), 2781 readahead_count(rac)); 2782 f2fs_mpage_readpages(inode, vi, rac, NULL); 2783 } 2784 2785 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2786 { 2787 struct inode *inode = fio_inode(fio); 2788 struct folio *mfolio; 2789 struct page *page; 2790 gfp_t gfp_flags = GFP_NOFS; 2791 2792 if (!f2fs_encrypted_file(inode)) 2793 return 0; 2794 2795 page = fio->compressed_page ? fio->compressed_page : fio->page; 2796 2797 if (fscrypt_inode_uses_inline_crypto(inode)) 2798 return 0; 2799 2800 retry_encrypt: 2801 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page), 2802 PAGE_SIZE, 0, gfp_flags); 2803 if (IS_ERR(fio->encrypted_page)) { 2804 /* flush pending IOs and wait for a while in the ENOMEM case */ 2805 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2806 f2fs_flush_merged_writes(fio->sbi); 2807 memalloc_retry_wait(GFP_NOFS); 2808 gfp_flags |= __GFP_NOFAIL; 2809 goto retry_encrypt; 2810 } 2811 return PTR_ERR(fio->encrypted_page); 2812 } 2813 2814 mfolio = filemap_lock_folio(META_MAPPING(fio->sbi), fio->old_blkaddr); 2815 if (!IS_ERR(mfolio)) { 2816 if (folio_test_uptodate(mfolio)) 2817 memcpy(folio_address(mfolio), 2818 page_address(fio->encrypted_page), PAGE_SIZE); 2819 f2fs_folio_put(mfolio, true); 2820 } 2821 return 0; 2822 } 2823 2824 static inline bool check_inplace_update_policy(struct inode *inode, 2825 struct f2fs_io_info *fio) 2826 { 2827 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2828 2829 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2830 is_inode_flag_set(inode, FI_OPU_WRITE)) 2831 return false; 2832 if (IS_F2FS_IPU_FORCE(sbi)) 2833 return true; 2834 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2835 return true; 2836 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2837 return true; 2838 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2839 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2840 return true; 2841 2842 /* 2843 * IPU for rewrite async pages 2844 */ 2845 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2846 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2847 return true; 2848 2849 /* this is only set during fdatasync */ 2850 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2851 return true; 2852 2853 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2854 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2855 return true; 2856 2857 return false; 2858 } 2859 2860 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2861 { 2862 /* swap file is migrating in aligned write mode */ 2863 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2864 return false; 2865 2866 if (f2fs_is_pinned_file(inode)) 2867 return true; 2868 2869 /* if this is cold file, we should overwrite to avoid fragmentation */ 2870 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2871 return true; 2872 2873 return check_inplace_update_policy(inode, fio); 2874 } 2875 2876 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2877 { 2878 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2879 2880 /* The below cases were checked when setting it. */ 2881 if (f2fs_is_pinned_file(inode)) 2882 return false; 2883 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2884 return true; 2885 if (f2fs_lfs_mode(sbi)) 2886 return true; 2887 if (S_ISDIR(inode->i_mode)) 2888 return true; 2889 if (IS_NOQUOTA(inode)) 2890 return true; 2891 if (f2fs_used_in_atomic_write(inode)) 2892 return true; 2893 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */ 2894 if (f2fs_compressed_file(inode) && 2895 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER && 2896 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2897 return true; 2898 2899 /* swap file is migrating in aligned write mode */ 2900 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2901 return true; 2902 2903 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2904 return true; 2905 2906 if (fio) { 2907 if (page_private_gcing(fio->page)) 2908 return true; 2909 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2910 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2911 return true; 2912 } 2913 return false; 2914 } 2915 2916 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2917 { 2918 struct inode *inode = fio_inode(fio); 2919 2920 if (f2fs_should_update_outplace(inode, fio)) 2921 return false; 2922 2923 return f2fs_should_update_inplace(inode, fio); 2924 } 2925 2926 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2927 { 2928 struct folio *folio = fio->folio; 2929 struct inode *inode = folio->mapping->host; 2930 struct dnode_of_data dn; 2931 struct node_info ni; 2932 struct f2fs_lock_context lc; 2933 bool ipu_force = false; 2934 bool atomic_commit; 2935 int err = 0; 2936 2937 /* Use COW inode to make dnode_of_data for atomic write */ 2938 atomic_commit = f2fs_is_atomic_file(inode) && 2939 folio_test_f2fs_atomic(folio); 2940 if (atomic_commit) 2941 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2942 else 2943 set_new_dnode(&dn, inode, NULL, NULL, 0); 2944 2945 if (need_inplace_update(fio) && 2946 f2fs_lookup_read_extent_cache_block(inode, folio->index, 2947 &fio->old_blkaddr)) { 2948 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2949 DATA_GENERIC_ENHANCE)) 2950 return -EFSCORRUPTED; 2951 2952 ipu_force = true; 2953 fio->need_lock = LOCK_DONE; 2954 goto got_it; 2955 } 2956 2957 if (is_sbi_flag_set(fio->sbi, SBI_ENABLE_CHECKPOINT) && 2958 time_to_inject(fio->sbi, FAULT_SKIP_WRITE)) 2959 return -EINVAL; 2960 2961 /* Deadlock due to between page->lock and f2fs_lock_op */ 2962 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi, &lc)) 2963 return -EAGAIN; 2964 2965 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 2966 if (err) 2967 goto out; 2968 2969 fio->old_blkaddr = dn.data_blkaddr; 2970 2971 /* This page is already truncated */ 2972 if (fio->old_blkaddr == NULL_ADDR) { 2973 folio_clear_uptodate(folio); 2974 folio_clear_f2fs_gcing(folio); 2975 goto out_writepage; 2976 } 2977 got_it: 2978 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2979 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2980 DATA_GENERIC_ENHANCE)) { 2981 err = -EFSCORRUPTED; 2982 goto out_writepage; 2983 } 2984 2985 /* wait for GCed page writeback via META_MAPPING */ 2986 if (fio->meta_gc) 2987 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2988 2989 /* 2990 * If current allocation needs SSR, 2991 * it had better in-place writes for updated data. 2992 */ 2993 if (ipu_force || 2994 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2995 need_inplace_update(fio))) { 2996 err = f2fs_encrypt_one_page(fio); 2997 if (err) 2998 goto out_writepage; 2999 3000 folio_start_writeback(folio); 3001 f2fs_put_dnode(&dn); 3002 if (fio->need_lock == LOCK_REQ) 3003 f2fs_unlock_op(fio->sbi, &lc); 3004 err = f2fs_inplace_write_data(fio); 3005 if (err) { 3006 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 3007 fscrypt_finalize_bounce_page(&fio->encrypted_page); 3008 folio_end_writeback(folio); 3009 } else { 3010 set_inode_flag(inode, FI_UPDATE_WRITE); 3011 } 3012 trace_f2fs_do_write_data_page(folio, IPU); 3013 return err; 3014 } 3015 3016 if (fio->need_lock == LOCK_RETRY) { 3017 if (!f2fs_trylock_op(fio->sbi, &lc)) { 3018 err = -EAGAIN; 3019 goto out_writepage; 3020 } 3021 fio->need_lock = LOCK_REQ; 3022 } 3023 3024 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 3025 if (err) 3026 goto out_writepage; 3027 3028 fio->version = ni.version; 3029 3030 err = f2fs_encrypt_one_page(fio); 3031 if (err) 3032 goto out_writepage; 3033 3034 folio_start_writeback(folio); 3035 3036 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 3037 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 3038 3039 /* LFS mode write path */ 3040 f2fs_outplace_write_data(&dn, fio); 3041 trace_f2fs_do_write_data_page(folio, OPU); 3042 set_inode_flag(inode, FI_APPEND_WRITE); 3043 if (atomic_commit) 3044 folio_clear_f2fs_atomic(folio); 3045 out_writepage: 3046 f2fs_put_dnode(&dn); 3047 out: 3048 if (fio->need_lock == LOCK_REQ) 3049 f2fs_unlock_op(fio->sbi, &lc); 3050 return err; 3051 } 3052 3053 int f2fs_write_single_data_page(struct folio *folio, int *submitted, 3054 struct bio **bio, 3055 sector_t *last_block, 3056 struct writeback_control *wbc, 3057 enum iostat_type io_type, 3058 int compr_blocks, 3059 bool allow_balance) 3060 { 3061 struct inode *inode = folio->mapping->host; 3062 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3063 loff_t i_size = i_size_read(inode); 3064 const pgoff_t end_index = ((unsigned long long)i_size) 3065 >> PAGE_SHIFT; 3066 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT; 3067 unsigned offset = 0; 3068 bool need_balance_fs = false; 3069 bool quota_inode = IS_NOQUOTA(inode); 3070 int err = 0; 3071 struct f2fs_io_info fio = { 3072 .sbi = sbi, 3073 .ino = inode->i_ino, 3074 .type = DATA, 3075 .op = REQ_OP_WRITE, 3076 .op_flags = wbc_to_write_flags(wbc), 3077 .old_blkaddr = NULL_ADDR, 3078 .folio = folio, 3079 .encrypted_page = NULL, 3080 .submitted = 0, 3081 .compr_blocks = compr_blocks, 3082 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY, 3083 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0, 3084 .io_type = io_type, 3085 .io_wbc = wbc, 3086 .bio = bio, 3087 .last_block = last_block, 3088 }; 3089 3090 trace_f2fs_writepage(folio, DATA); 3091 3092 /* we should bypass data pages to proceed the kworker jobs */ 3093 if (unlikely(f2fs_cp_error(sbi))) { 3094 mapping_set_error(folio->mapping, -EIO); 3095 /* 3096 * don't drop any dirty dentry pages for keeping lastest 3097 * directory structure. 3098 */ 3099 if (S_ISDIR(inode->i_mode) && 3100 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 3101 goto redirty_out; 3102 3103 /* keep data pages in remount-ro mode */ 3104 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 3105 goto redirty_out; 3106 goto out; 3107 } 3108 3109 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3110 goto redirty_out; 3111 3112 if (folio->index < end_index || 3113 f2fs_verity_in_progress(inode) || 3114 compr_blocks) 3115 goto write; 3116 3117 /* 3118 * If the offset is out-of-range of file size, 3119 * this page does not have to be written to disk. 3120 */ 3121 offset = i_size & (PAGE_SIZE - 1); 3122 if ((folio->index >= end_index + 1) || !offset) 3123 goto out; 3124 3125 folio_zero_segment(folio, offset, folio_size(folio)); 3126 write: 3127 /* Dentry/quota blocks are controlled by checkpoint */ 3128 if (S_ISDIR(inode->i_mode) || quota_inode) { 3129 struct f2fs_lock_context lc; 3130 3131 /* 3132 * We need to wait for node_write to avoid block allocation during 3133 * checkpoint. This can only happen to quota writes which can cause 3134 * the below discard race condition. 3135 */ 3136 if (quota_inode) 3137 f2fs_down_read_trace(&sbi->node_write, &lc); 3138 3139 fio.need_lock = LOCK_DONE; 3140 err = f2fs_do_write_data_page(&fio); 3141 3142 if (quota_inode) 3143 f2fs_up_read_trace(&sbi->node_write, &lc); 3144 3145 goto done; 3146 } 3147 3148 need_balance_fs = true; 3149 err = -EAGAIN; 3150 if (f2fs_has_inline_data(inode)) { 3151 err = f2fs_write_inline_data(inode, folio); 3152 if (!err) 3153 goto out; 3154 } 3155 3156 if (err == -EAGAIN) { 3157 err = f2fs_do_write_data_page(&fio); 3158 if (err == -EAGAIN) { 3159 f2fs_bug_on(sbi, compr_blocks); 3160 fio.need_lock = LOCK_REQ; 3161 err = f2fs_do_write_data_page(&fio); 3162 } 3163 } 3164 3165 if (err) { 3166 file_set_keep_isize(inode); 3167 } else { 3168 spin_lock(&F2FS_I(inode)->i_size_lock); 3169 if (F2FS_I(inode)->last_disk_size < psize) 3170 F2FS_I(inode)->last_disk_size = psize; 3171 spin_unlock(&F2FS_I(inode)->i_size_lock); 3172 } 3173 3174 done: 3175 if (err && err != -ENOENT) 3176 goto redirty_out; 3177 3178 out: 3179 inode_dec_dirty_pages(inode); 3180 if (err) { 3181 folio_clear_uptodate(folio); 3182 folio_clear_f2fs_gcing(folio); 3183 } 3184 folio_unlock(folio); 3185 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 3186 !F2FS_I(inode)->wb_task && allow_balance) 3187 f2fs_balance_fs(sbi, need_balance_fs); 3188 3189 if (unlikely(f2fs_cp_error(sbi))) { 3190 f2fs_submit_merged_write(sbi, DATA); 3191 if (bio && *bio) 3192 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 3193 submitted = NULL; 3194 } 3195 3196 if (submitted) 3197 *submitted = fio.submitted; 3198 3199 return 0; 3200 3201 redirty_out: 3202 folio_redirty_for_writepage(wbc, folio); 3203 /* 3204 * pageout() in MM translates EAGAIN, so calls handle_write_error() 3205 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 3206 * file_write_and_wait_range() will see EIO error, which is critical 3207 * to return value of fsync() followed by atomic_write failure to user. 3208 */ 3209 folio_unlock(folio); 3210 if (!err) 3211 return 1; 3212 return err; 3213 } 3214 3215 /* 3216 * This function was copied from write_cache_pages from mm/page-writeback.c. 3217 * The major change is making write step of cold data page separately from 3218 * warm/hot data page. 3219 */ 3220 static int f2fs_write_cache_pages(struct address_space *mapping, 3221 struct writeback_control *wbc, 3222 enum iostat_type io_type) 3223 { 3224 int ret = 0; 3225 int done = 0, retry = 0; 3226 struct page *pages_local[F2FS_ONSTACK_PAGES]; 3227 struct page **pages = pages_local; 3228 struct folio_batch fbatch; 3229 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 3230 struct bio *bio = NULL; 3231 sector_t last_block; 3232 #ifdef CONFIG_F2FS_FS_COMPRESSION 3233 struct inode *inode = mapping->host; 3234 struct compress_ctx cc = { 3235 .inode = inode, 3236 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 3237 .cluster_size = F2FS_I(inode)->i_cluster_size, 3238 .cluster_idx = NULL_CLUSTER, 3239 .rpages = NULL, 3240 .nr_rpages = 0, 3241 .cpages = NULL, 3242 .valid_nr_cpages = 0, 3243 .rbuf = NULL, 3244 .cbuf = NULL, 3245 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 3246 .private = NULL, 3247 }; 3248 #endif 3249 int nr_folios, p, idx; 3250 int nr_pages; 3251 unsigned int max_pages = F2FS_ONSTACK_PAGES; 3252 pgoff_t index; 3253 pgoff_t end; /* Inclusive */ 3254 pgoff_t done_index; 3255 int range_whole = 0; 3256 xa_mark_t tag; 3257 int nwritten = 0; 3258 int submitted = 0; 3259 int i; 3260 3261 #ifdef CONFIG_F2FS_FS_COMPRESSION 3262 if (f2fs_compressed_file(inode) && 3263 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 3264 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 3265 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 3266 max_pages = 1 << cc.log_cluster_size; 3267 } 3268 #endif 3269 3270 folio_batch_init(&fbatch); 3271 3272 if (get_dirty_pages(mapping->host) <= 3273 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3274 set_inode_flag(mapping->host, FI_HOT_DATA); 3275 else 3276 clear_inode_flag(mapping->host, FI_HOT_DATA); 3277 3278 if (wbc->range_cyclic) { 3279 index = mapping->writeback_index; /* prev offset */ 3280 end = -1; 3281 } else { 3282 index = wbc->range_start >> PAGE_SHIFT; 3283 end = wbc->range_end >> PAGE_SHIFT; 3284 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3285 range_whole = 1; 3286 } 3287 tag = wbc_to_tag(wbc); 3288 retry: 3289 retry = 0; 3290 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3291 tag_pages_for_writeback(mapping, index, end); 3292 done_index = index; 3293 while (!done && !retry && (index <= end)) { 3294 nr_pages = 0; 3295 again: 3296 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3297 tag, &fbatch); 3298 if (nr_folios == 0) { 3299 if (nr_pages) 3300 goto write; 3301 break; 3302 } 3303 3304 for (i = 0; i < nr_folios; i++) { 3305 struct folio *folio = fbatch.folios[i]; 3306 3307 idx = 0; 3308 p = folio_nr_pages(folio); 3309 add_more: 3310 pages[nr_pages] = folio_page(folio, idx); 3311 folio_get(folio); 3312 if (++nr_pages == max_pages) { 3313 index = folio->index + idx + 1; 3314 folio_batch_release(&fbatch); 3315 goto write; 3316 } 3317 if (++idx < p) 3318 goto add_more; 3319 } 3320 folio_batch_release(&fbatch); 3321 goto again; 3322 write: 3323 for (i = 0; i < nr_pages; i++) { 3324 struct page *page = pages[i]; 3325 struct folio *folio = page_folio(page); 3326 bool need_readd; 3327 readd: 3328 need_readd = false; 3329 #ifdef CONFIG_F2FS_FS_COMPRESSION 3330 if (f2fs_compressed_file(inode)) { 3331 void *fsdata = NULL; 3332 struct page *pagep; 3333 int ret2; 3334 3335 ret = f2fs_init_compress_ctx(&cc); 3336 if (ret) { 3337 done = 1; 3338 break; 3339 } 3340 3341 if (!f2fs_cluster_can_merge_page(&cc, 3342 folio->index)) { 3343 ret = f2fs_write_multi_pages(&cc, 3344 &submitted, wbc, io_type); 3345 if (!ret) 3346 need_readd = true; 3347 goto result; 3348 } 3349 3350 if (unlikely(f2fs_cp_error(sbi))) 3351 goto lock_folio; 3352 3353 if (!f2fs_cluster_is_empty(&cc)) 3354 goto lock_folio; 3355 3356 if (f2fs_all_cluster_page_ready(&cc, 3357 pages, i, nr_pages, true)) 3358 goto lock_folio; 3359 3360 ret2 = f2fs_prepare_compress_overwrite( 3361 inode, &pagep, 3362 folio->index, &fsdata); 3363 if (ret2 < 0) { 3364 ret = ret2; 3365 done = 1; 3366 break; 3367 } else if (ret2 && 3368 (!f2fs_compress_write_end(inode, 3369 fsdata, folio->index, 1) || 3370 !f2fs_all_cluster_page_ready(&cc, 3371 pages, i, nr_pages, 3372 false))) { 3373 retry = 1; 3374 break; 3375 } 3376 } 3377 #endif 3378 /* give a priority to WB_SYNC threads */ 3379 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3380 wbc->sync_mode == WB_SYNC_NONE) { 3381 done = 1; 3382 break; 3383 } 3384 #ifdef CONFIG_F2FS_FS_COMPRESSION 3385 lock_folio: 3386 #endif 3387 done_index = folio->index; 3388 retry_write: 3389 folio_lock(folio); 3390 3391 if (unlikely(folio->mapping != mapping)) { 3392 continue_unlock: 3393 folio_unlock(folio); 3394 continue; 3395 } 3396 3397 if (!folio_test_dirty(folio)) { 3398 /* someone wrote it for us */ 3399 goto continue_unlock; 3400 } 3401 3402 if (folio_test_writeback(folio)) { 3403 if (wbc->sync_mode == WB_SYNC_NONE) 3404 goto continue_unlock; 3405 f2fs_folio_wait_writeback(folio, DATA, true, true); 3406 } 3407 3408 if (!folio_clear_dirty_for_io(folio)) 3409 goto continue_unlock; 3410 3411 #ifdef CONFIG_F2FS_FS_COMPRESSION 3412 if (f2fs_compressed_file(inode)) { 3413 folio_get(folio); 3414 f2fs_compress_ctx_add_page(&cc, folio); 3415 continue; 3416 } 3417 #endif 3418 submitted = 0; 3419 ret = f2fs_write_single_data_page(folio, 3420 &submitted, &bio, &last_block, 3421 wbc, io_type, 0, true); 3422 #ifdef CONFIG_F2FS_FS_COMPRESSION 3423 result: 3424 #endif 3425 nwritten += submitted; 3426 wbc->nr_to_write -= submitted; 3427 3428 if (unlikely(ret)) { 3429 /* 3430 * keep nr_to_write, since vfs uses this to 3431 * get # of written pages. 3432 */ 3433 if (ret == 1) { 3434 ret = 0; 3435 goto next; 3436 } else if (ret == -EAGAIN) { 3437 ret = 0; 3438 if (wbc->sync_mode == WB_SYNC_ALL) { 3439 f2fs_schedule_timeout( 3440 DEFAULT_SCHEDULE_TIMEOUT); 3441 goto retry_write; 3442 } 3443 goto next; 3444 } 3445 done_index = folio_next_index(folio); 3446 done = 1; 3447 break; 3448 } 3449 3450 if (wbc->nr_to_write <= 0 && 3451 wbc->sync_mode == WB_SYNC_NONE) { 3452 done = 1; 3453 break; 3454 } 3455 next: 3456 if (need_readd) 3457 goto readd; 3458 } 3459 release_pages(pages, nr_pages); 3460 cond_resched(); 3461 } 3462 #ifdef CONFIG_F2FS_FS_COMPRESSION 3463 /* flush remained pages in compress cluster */ 3464 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3465 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3466 nwritten += submitted; 3467 wbc->nr_to_write -= submitted; 3468 if (ret) { 3469 done = 1; 3470 retry = 0; 3471 } 3472 } 3473 if (f2fs_compressed_file(inode)) 3474 f2fs_destroy_compress_ctx(&cc, false); 3475 #endif 3476 if (retry) { 3477 index = 0; 3478 end = -1; 3479 goto retry; 3480 } 3481 if (wbc->range_cyclic && !done) 3482 done_index = 0; 3483 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3484 mapping->writeback_index = done_index; 3485 3486 if (nwritten) 3487 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3488 NULL, 0, DATA); 3489 /* submit cached bio of IPU write */ 3490 if (bio) 3491 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3492 3493 #ifdef CONFIG_F2FS_FS_COMPRESSION 3494 if (pages != pages_local) 3495 kfree(pages); 3496 #endif 3497 3498 return ret; 3499 } 3500 3501 static inline bool __should_serialize_io(struct inode *inode, 3502 struct writeback_control *wbc) 3503 { 3504 /* to avoid deadlock in path of data flush */ 3505 if (F2FS_I(inode)->wb_task) 3506 return false; 3507 3508 if (!S_ISREG(inode->i_mode)) 3509 return false; 3510 if (IS_NOQUOTA(inode)) 3511 return false; 3512 3513 if (f2fs_is_pinned_file(inode)) 3514 return false; 3515 if (f2fs_need_compress_data(inode)) 3516 return true; 3517 if (wbc->sync_mode != WB_SYNC_ALL) 3518 return true; 3519 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3520 return true; 3521 return false; 3522 } 3523 3524 static inline void account_writeback(struct inode *inode, bool inc) 3525 { 3526 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3527 return; 3528 3529 f2fs_down_read(&F2FS_I(inode)->i_sem); 3530 if (inc) 3531 atomic_inc(&F2FS_I(inode)->writeback); 3532 else 3533 atomic_dec(&F2FS_I(inode)->writeback); 3534 f2fs_up_read(&F2FS_I(inode)->i_sem); 3535 } 3536 3537 static inline void update_skipped_write(struct f2fs_sb_info *sbi, 3538 struct writeback_control *wbc) 3539 { 3540 long skipped = wbc->pages_skipped; 3541 3542 if (is_sbi_flag_set(sbi, SBI_ENABLE_CHECKPOINT) && skipped && 3543 wbc->sync_mode == WB_SYNC_ALL) 3544 atomic_add(skipped, &sbi->nr_pages[F2FS_SKIPPED_WRITE]); 3545 } 3546 3547 static int __f2fs_write_data_pages(struct address_space *mapping, 3548 struct writeback_control *wbc, 3549 enum iostat_type io_type) 3550 { 3551 struct inode *inode = mapping->host; 3552 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3553 struct blk_plug plug; 3554 int ret; 3555 bool locked = false; 3556 3557 /* skip writing if there is no dirty page in this inode */ 3558 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3559 return 0; 3560 3561 /* during POR, we don't need to trigger writepage at all. */ 3562 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3563 goto skip_write; 3564 3565 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3566 wbc->sync_mode == WB_SYNC_NONE && 3567 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3568 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3569 goto skip_write; 3570 3571 /* skip writing in file defragment preparing stage */ 3572 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3573 goto skip_write; 3574 3575 trace_f2fs_writepages(mapping->host, wbc, DATA); 3576 3577 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3578 if (wbc->sync_mode == WB_SYNC_ALL) 3579 atomic_inc(&sbi->wb_sync_req[DATA]); 3580 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3581 /* to avoid potential deadlock */ 3582 if (current->plug) 3583 blk_finish_plug(current->plug); 3584 goto skip_write; 3585 } 3586 3587 if (__should_serialize_io(inode, wbc)) { 3588 mutex_lock(&sbi->writepages); 3589 locked = true; 3590 } 3591 3592 account_writeback(inode, true); 3593 3594 blk_start_plug(&plug); 3595 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3596 blk_finish_plug(&plug); 3597 3598 account_writeback(inode, false); 3599 3600 if (locked) 3601 mutex_unlock(&sbi->writepages); 3602 3603 if (wbc->sync_mode == WB_SYNC_ALL) 3604 atomic_dec(&sbi->wb_sync_req[DATA]); 3605 /* 3606 * if some pages were truncated, we cannot guarantee its mapping->host 3607 * to detect pending bios. 3608 */ 3609 3610 f2fs_remove_dirty_inode(inode); 3611 3612 /* 3613 * f2fs_write_cache_pages() has retry logic for EAGAIN case which is 3614 * common when racing w/ checkpoint, so only update skipped write 3615 * when ret is non-zero. 3616 */ 3617 if (ret) 3618 update_skipped_write(sbi, wbc); 3619 return ret; 3620 3621 skip_write: 3622 wbc->pages_skipped += get_dirty_pages(inode); 3623 update_skipped_write(sbi, wbc); 3624 trace_f2fs_writepages(mapping->host, wbc, DATA); 3625 return 0; 3626 } 3627 3628 static int f2fs_write_data_pages(struct address_space *mapping, 3629 struct writeback_control *wbc) 3630 { 3631 struct inode *inode = mapping->host; 3632 3633 return __f2fs_write_data_pages(mapping, wbc, 3634 F2FS_I(inode)->cp_task == current ? 3635 FS_CP_DATA_IO : FS_DATA_IO); 3636 } 3637 3638 void f2fs_write_failed(struct inode *inode, loff_t to) 3639 { 3640 loff_t i_size = i_size_read(inode); 3641 3642 if (IS_NOQUOTA(inode)) 3643 return; 3644 3645 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3646 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3647 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3648 filemap_invalidate_lock(inode->i_mapping); 3649 3650 truncate_pagecache(inode, i_size); 3651 f2fs_truncate_blocks(inode, i_size, true); 3652 3653 filemap_invalidate_unlock(inode->i_mapping); 3654 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3655 } 3656 } 3657 3658 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3659 struct folio *folio, loff_t pos, unsigned int len, 3660 block_t *blk_addr, bool *node_changed) 3661 { 3662 struct inode *inode = folio->mapping->host; 3663 pgoff_t index = folio->index; 3664 struct dnode_of_data dn; 3665 struct f2fs_lock_context lc; 3666 struct folio *ifolio; 3667 bool locked = false; 3668 int flag = F2FS_GET_BLOCK_PRE_AIO; 3669 int err = 0; 3670 3671 /* 3672 * If a whole page is being written and we already preallocated all the 3673 * blocks, then there is no need to get a block address now. 3674 */ 3675 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3676 return 0; 3677 3678 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3679 if (f2fs_has_inline_data(inode)) { 3680 if (pos + len > MAX_INLINE_DATA(inode)) 3681 flag = F2FS_GET_BLOCK_DEFAULT; 3682 f2fs_map_lock(sbi, &lc, flag); 3683 locked = true; 3684 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3685 f2fs_map_lock(sbi, &lc, flag); 3686 locked = true; 3687 } 3688 3689 restart: 3690 /* check inline_data */ 3691 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino); 3692 if (IS_ERR(ifolio)) { 3693 err = PTR_ERR(ifolio); 3694 goto unlock_out; 3695 } 3696 3697 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3698 3699 if (f2fs_has_inline_data(inode)) { 3700 if (pos + len <= MAX_INLINE_DATA(inode)) { 3701 f2fs_do_read_inline_data(folio, ifolio); 3702 set_inode_flag(inode, FI_DATA_EXIST); 3703 if (inode->i_nlink) 3704 folio_set_f2fs_inline(ifolio); 3705 goto out; 3706 } 3707 err = f2fs_convert_inline_folio(&dn, folio); 3708 if (err || dn.data_blkaddr != NULL_ADDR) 3709 goto out; 3710 } 3711 3712 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3713 &dn.data_blkaddr)) { 3714 if (IS_DEVICE_ALIASING(inode)) { 3715 err = -ENODATA; 3716 goto out; 3717 } 3718 3719 if (locked) { 3720 err = f2fs_reserve_block(&dn, index); 3721 goto out; 3722 } 3723 3724 /* hole case */ 3725 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3726 if (!err && dn.data_blkaddr != NULL_ADDR) 3727 goto out; 3728 f2fs_put_dnode(&dn); 3729 f2fs_map_lock(sbi, &lc, F2FS_GET_BLOCK_PRE_AIO); 3730 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3731 locked = true; 3732 goto restart; 3733 } 3734 out: 3735 if (!err) { 3736 /* convert_inline_page can make node_changed */ 3737 *blk_addr = dn.data_blkaddr; 3738 *node_changed = dn.node_changed; 3739 } 3740 f2fs_put_dnode(&dn); 3741 unlock_out: 3742 if (locked) 3743 f2fs_map_unlock(sbi, &lc, flag); 3744 return err; 3745 } 3746 3747 static int __find_data_block(struct inode *inode, pgoff_t index, 3748 block_t *blk_addr) 3749 { 3750 struct dnode_of_data dn; 3751 struct folio *ifolio; 3752 int err = 0; 3753 3754 ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino); 3755 if (IS_ERR(ifolio)) 3756 return PTR_ERR(ifolio); 3757 3758 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3759 3760 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3761 &dn.data_blkaddr)) { 3762 /* hole case */ 3763 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3764 if (err) { 3765 dn.data_blkaddr = NULL_ADDR; 3766 err = 0; 3767 } 3768 } 3769 *blk_addr = dn.data_blkaddr; 3770 f2fs_put_dnode(&dn); 3771 return err; 3772 } 3773 3774 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3775 block_t *blk_addr, bool *node_changed) 3776 { 3777 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3778 struct dnode_of_data dn; 3779 struct f2fs_lock_context lc; 3780 struct folio *ifolio; 3781 int err = 0; 3782 3783 f2fs_map_lock(sbi, &lc, F2FS_GET_BLOCK_PRE_AIO); 3784 3785 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino); 3786 if (IS_ERR(ifolio)) { 3787 err = PTR_ERR(ifolio); 3788 goto unlock_out; 3789 } 3790 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3791 3792 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3793 &dn.data_blkaddr)) 3794 err = f2fs_reserve_block(&dn, index); 3795 3796 *blk_addr = dn.data_blkaddr; 3797 *node_changed = dn.node_changed; 3798 f2fs_put_dnode(&dn); 3799 3800 unlock_out: 3801 f2fs_map_unlock(sbi, &lc, F2FS_GET_BLOCK_PRE_AIO); 3802 return err; 3803 } 3804 3805 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3806 struct folio *folio, loff_t pos, unsigned int len, 3807 block_t *blk_addr, bool *node_changed, bool *use_cow) 3808 { 3809 struct inode *inode = folio->mapping->host; 3810 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3811 pgoff_t index = folio->index; 3812 int err = 0; 3813 block_t ori_blk_addr = NULL_ADDR; 3814 3815 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3816 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3817 goto reserve_block; 3818 3819 /* Look for the block in COW inode first */ 3820 err = __find_data_block(cow_inode, index, blk_addr); 3821 if (err) { 3822 return err; 3823 } else if (*blk_addr != NULL_ADDR) { 3824 *use_cow = true; 3825 return 0; 3826 } 3827 3828 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3829 goto reserve_block; 3830 3831 /* Look for the block in the original inode */ 3832 err = __find_data_block(inode, index, &ori_blk_addr); 3833 if (err) 3834 return err; 3835 3836 reserve_block: 3837 /* Finally, we should reserve a new block in COW inode for the update */ 3838 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3839 if (err) 3840 return err; 3841 inc_atomic_write_cnt(inode); 3842 3843 if (ori_blk_addr != NULL_ADDR) 3844 *blk_addr = ori_blk_addr; 3845 return 0; 3846 } 3847 3848 static int f2fs_write_begin(const struct kiocb *iocb, 3849 struct address_space *mapping, 3850 loff_t pos, unsigned len, struct folio **foliop, 3851 void **fsdata) 3852 { 3853 struct inode *inode = mapping->host; 3854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3855 struct folio *folio; 3856 pgoff_t index = pos >> PAGE_SHIFT; 3857 bool need_balance = false; 3858 bool use_cow = false; 3859 block_t blkaddr = NULL_ADDR; 3860 int err = 0; 3861 3862 trace_f2fs_write_begin(inode, pos, len); 3863 3864 if (!f2fs_is_checkpoint_ready(sbi)) { 3865 err = -ENOSPC; 3866 goto fail; 3867 } 3868 3869 /* 3870 * We should check this at this moment to avoid deadlock on inode page 3871 * and #0 page. The locking rule for inline_data conversion should be: 3872 * folio_lock(folio #0) -> folio_lock(inode_page) 3873 */ 3874 if (index != 0) { 3875 err = f2fs_convert_inline_inode(inode); 3876 if (err) 3877 goto fail; 3878 } 3879 3880 #ifdef CONFIG_F2FS_FS_COMPRESSION 3881 if (f2fs_compressed_file(inode)) { 3882 int ret; 3883 struct page *page; 3884 3885 *fsdata = NULL; 3886 3887 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3888 goto repeat; 3889 3890 ret = f2fs_prepare_compress_overwrite(inode, &page, 3891 index, fsdata); 3892 if (ret < 0) { 3893 err = ret; 3894 goto fail; 3895 } else if (ret) { 3896 *foliop = page_folio(page); 3897 return 0; 3898 } 3899 } 3900 #endif 3901 3902 repeat: 3903 /* 3904 * Do not use FGP_STABLE to avoid deadlock. 3905 * Will wait that below with our IO control. 3906 */ 3907 folio = f2fs_filemap_get_folio(mapping, index, 3908 FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_NOFS, 3909 mapping_gfp_mask(mapping)); 3910 if (IS_ERR(folio)) { 3911 err = PTR_ERR(folio); 3912 goto fail; 3913 } 3914 3915 /* TODO: cluster can be compressed due to race with .writepage */ 3916 3917 *foliop = folio; 3918 3919 if (f2fs_is_atomic_file(inode)) 3920 err = prepare_atomic_write_begin(sbi, folio, pos, len, 3921 &blkaddr, &need_balance, &use_cow); 3922 else 3923 err = prepare_write_begin(sbi, folio, pos, len, 3924 &blkaddr, &need_balance); 3925 if (err) 3926 goto put_folio; 3927 3928 if (need_balance && !IS_NOQUOTA(inode) && 3929 has_not_enough_free_secs(sbi, 0, 0)) { 3930 folio_unlock(folio); 3931 f2fs_balance_fs(sbi, true); 3932 folio_lock(folio); 3933 if (folio->mapping != mapping) { 3934 /* The folio got truncated from under us */ 3935 folio_unlock(folio); 3936 folio_put(folio); 3937 goto repeat; 3938 } 3939 } 3940 3941 f2fs_folio_wait_writeback(folio, DATA, false, true); 3942 3943 if (len == folio_size(folio) || folio_test_uptodate(folio)) 3944 return 0; 3945 3946 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3947 !f2fs_verity_in_progress(inode)) { 3948 folio_zero_segment(folio, len, folio_size(folio)); 3949 return 0; 3950 } 3951 3952 if (blkaddr == NEW_ADDR) { 3953 folio_zero_segment(folio, 0, folio_size(folio)); 3954 folio_mark_uptodate(folio); 3955 } else { 3956 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3957 DATA_GENERIC_ENHANCE_READ)) { 3958 err = -EFSCORRUPTED; 3959 goto put_folio; 3960 } 3961 f2fs_submit_page_read(use_cow ? F2FS_I(inode)->cow_inode : 3962 inode, 3963 NULL, /* can't write to fsverity files */ 3964 folio, blkaddr, 0, true); 3965 3966 folio_lock(folio); 3967 if (unlikely(folio->mapping != mapping)) { 3968 folio_unlock(folio); 3969 folio_put(folio); 3970 goto repeat; 3971 } 3972 if (unlikely(!folio_test_uptodate(folio))) { 3973 err = -EIO; 3974 goto put_folio; 3975 } 3976 } 3977 return 0; 3978 3979 put_folio: 3980 f2fs_folio_put(folio, true); 3981 fail: 3982 f2fs_write_failed(inode, pos + len); 3983 return err; 3984 } 3985 3986 static int f2fs_write_end(const struct kiocb *iocb, 3987 struct address_space *mapping, 3988 loff_t pos, unsigned len, unsigned copied, 3989 struct folio *folio, void *fsdata) 3990 { 3991 struct inode *inode = folio->mapping->host; 3992 3993 trace_f2fs_write_end(inode, pos, len, copied); 3994 3995 /* 3996 * This should be come from len == PAGE_SIZE, and we expect copied 3997 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3998 * let generic_perform_write() try to copy data again through copied=0. 3999 */ 4000 if (!folio_test_uptodate(folio)) { 4001 if (unlikely(copied != len)) 4002 copied = 0; 4003 else 4004 folio_mark_uptodate(folio); 4005 } 4006 4007 #ifdef CONFIG_F2FS_FS_COMPRESSION 4008 /* overwrite compressed file */ 4009 if (f2fs_compressed_file(inode) && fsdata) { 4010 f2fs_compress_write_end(inode, fsdata, folio->index, copied); 4011 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4012 4013 if (pos + copied > i_size_read(inode) && 4014 !f2fs_verity_in_progress(inode)) 4015 f2fs_i_size_write(inode, pos + copied); 4016 return copied; 4017 } 4018 #endif 4019 4020 if (!copied) 4021 goto unlock_out; 4022 4023 folio_mark_dirty(folio); 4024 4025 if (f2fs_is_atomic_file(inode)) 4026 folio_set_f2fs_atomic(folio); 4027 4028 if (pos + copied > i_size_read(inode) && 4029 !f2fs_verity_in_progress(inode)) { 4030 f2fs_i_size_write(inode, pos + copied); 4031 if (f2fs_is_atomic_file(inode)) 4032 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 4033 pos + copied); 4034 } 4035 unlock_out: 4036 f2fs_folio_put(folio, true); 4037 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4038 return copied; 4039 } 4040 4041 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 4042 { 4043 struct inode *inode = folio->mapping->host; 4044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4045 4046 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 4047 (offset || length != folio_size(folio))) 4048 return; 4049 4050 if (folio_test_dirty(folio)) { 4051 if (inode->i_ino == F2FS_META_INO(sbi)) { 4052 dec_page_count(sbi, F2FS_DIRTY_META); 4053 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 4054 dec_page_count(sbi, F2FS_DIRTY_NODES); 4055 } else { 4056 inode_dec_dirty_pages(inode); 4057 f2fs_remove_dirty_inode(inode); 4058 } 4059 } 4060 4061 if (offset || length != folio_size(folio)) 4062 return; 4063 4064 folio_cancel_dirty(folio); 4065 ffs_detach_free(folio); 4066 } 4067 4068 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 4069 { 4070 /* If this is dirty folio, keep private data */ 4071 if (folio_test_dirty(folio)) 4072 return false; 4073 4074 ffs_detach_free(folio); 4075 return true; 4076 } 4077 4078 static bool f2fs_dirty_data_folio(struct address_space *mapping, 4079 struct folio *folio) 4080 { 4081 struct inode *inode = mapping->host; 4082 4083 trace_f2fs_set_page_dirty(folio, DATA); 4084 4085 if (!folio_test_uptodate(folio)) 4086 folio_mark_uptodate(folio); 4087 BUG_ON(folio_test_swapcache(folio)); 4088 4089 if (filemap_dirty_folio(mapping, folio)) { 4090 f2fs_update_dirty_folio(inode, folio); 4091 return true; 4092 } 4093 return false; 4094 } 4095 4096 4097 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 4098 { 4099 #ifdef CONFIG_F2FS_FS_COMPRESSION 4100 struct dnode_of_data dn; 4101 sector_t start_idx, blknr = 0; 4102 int ret; 4103 4104 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 4105 4106 set_new_dnode(&dn, inode, NULL, NULL, 0); 4107 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 4108 if (ret) 4109 return 0; 4110 4111 if (dn.data_blkaddr != COMPRESS_ADDR) { 4112 dn.ofs_in_node += block - start_idx; 4113 blknr = f2fs_data_blkaddr(&dn); 4114 if (!__is_valid_data_blkaddr(blknr)) 4115 blknr = 0; 4116 } 4117 4118 f2fs_put_dnode(&dn); 4119 return blknr; 4120 #else 4121 return 0; 4122 #endif 4123 } 4124 4125 4126 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 4127 { 4128 struct inode *inode = mapping->host; 4129 sector_t blknr = 0; 4130 4131 if (f2fs_has_inline_data(inode)) 4132 goto out; 4133 4134 /* make sure allocating whole blocks */ 4135 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 4136 filemap_write_and_wait(mapping); 4137 4138 /* Block number less than F2FS MAX BLOCKS */ 4139 if (unlikely(block >= max_file_blocks(inode))) 4140 goto out; 4141 4142 if (f2fs_compressed_file(inode)) { 4143 blknr = f2fs_bmap_compress(inode, block); 4144 } else { 4145 struct f2fs_map_blocks map; 4146 4147 memset(&map, 0, sizeof(map)); 4148 map.m_lblk = block; 4149 map.m_len = 1; 4150 map.m_next_pgofs = NULL; 4151 map.m_seg_type = NO_CHECK_TYPE; 4152 4153 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 4154 blknr = map.m_pblk; 4155 } 4156 out: 4157 trace_f2fs_bmap(inode, block, blknr); 4158 return blknr; 4159 } 4160 4161 #ifdef CONFIG_SWAP 4162 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 4163 unsigned int blkcnt) 4164 { 4165 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4166 unsigned int blkofs; 4167 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 4168 unsigned int end_blk = start_blk + blkcnt - 1; 4169 unsigned int secidx = start_blk / blk_per_sec; 4170 unsigned int end_sec; 4171 int ret = 0; 4172 4173 if (!blkcnt) 4174 return 0; 4175 end_sec = end_blk / blk_per_sec; 4176 4177 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4178 filemap_invalidate_lock(inode->i_mapping); 4179 4180 set_inode_flag(inode, FI_ALIGNED_WRITE); 4181 set_inode_flag(inode, FI_OPU_WRITE); 4182 4183 for (; secidx <= end_sec; secidx++) { 4184 unsigned int blkofs_end = secidx == end_sec ? 4185 end_blk % blk_per_sec : blk_per_sec - 1; 4186 4187 f2fs_down_write(&sbi->pin_sem); 4188 4189 ret = f2fs_allocate_pinning_section(sbi); 4190 if (ret) { 4191 f2fs_up_write(&sbi->pin_sem); 4192 break; 4193 } 4194 4195 set_inode_flag(inode, FI_SKIP_WRITES); 4196 4197 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) { 4198 struct folio *folio; 4199 unsigned int blkidx = secidx * blk_per_sec + blkofs; 4200 4201 folio = f2fs_get_lock_data_folio(inode, blkidx, true); 4202 if (IS_ERR(folio)) { 4203 f2fs_up_write(&sbi->pin_sem); 4204 ret = PTR_ERR(folio); 4205 goto done; 4206 } 4207 4208 folio_mark_dirty(folio); 4209 f2fs_folio_put(folio, true); 4210 } 4211 4212 clear_inode_flag(inode, FI_SKIP_WRITES); 4213 4214 ret = filemap_fdatawrite(inode->i_mapping); 4215 4216 f2fs_up_write(&sbi->pin_sem); 4217 4218 if (ret) 4219 break; 4220 } 4221 4222 done: 4223 clear_inode_flag(inode, FI_SKIP_WRITES); 4224 clear_inode_flag(inode, FI_OPU_WRITE); 4225 clear_inode_flag(inode, FI_ALIGNED_WRITE); 4226 4227 filemap_invalidate_unlock(inode->i_mapping); 4228 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4229 4230 return ret; 4231 } 4232 4233 static int check_swap_activate(struct swap_info_struct *sis, 4234 struct file *swap_file, sector_t *span) 4235 { 4236 struct address_space *mapping = swap_file->f_mapping; 4237 struct inode *inode = mapping->host; 4238 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4239 block_t cur_lblock; 4240 block_t last_lblock; 4241 block_t pblock; 4242 block_t lowest_pblock = -1; 4243 block_t highest_pblock = 0; 4244 int nr_extents = 0; 4245 unsigned int nr_pblocks; 4246 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 4247 unsigned int not_aligned = 0; 4248 int ret = 0; 4249 4250 /* 4251 * Map all the blocks into the extent list. This code doesn't try 4252 * to be very smart. 4253 */ 4254 cur_lblock = 0; 4255 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode)); 4256 4257 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 4258 struct f2fs_map_blocks map; 4259 bool last_extent = false; 4260 retry: 4261 cond_resched(); 4262 4263 memset(&map, 0, sizeof(map)); 4264 map.m_lblk = cur_lblock; 4265 map.m_len = last_lblock - cur_lblock; 4266 map.m_next_pgofs = NULL; 4267 map.m_next_extent = NULL; 4268 map.m_seg_type = NO_CHECK_TYPE; 4269 map.m_may_create = false; 4270 4271 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 4272 if (ret) 4273 goto out; 4274 4275 /* hole */ 4276 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 4277 f2fs_err(sbi, "Swapfile has holes"); 4278 ret = -EINVAL; 4279 goto out; 4280 } 4281 4282 pblock = map.m_pblk; 4283 nr_pblocks = map.m_len; 4284 4285 if (!last_extent && 4286 ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec || 4287 nr_pblocks % blks_per_sec || 4288 f2fs_is_sequential_zone_area(sbi, pblock))) { 4289 not_aligned++; 4290 4291 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 4292 if (cur_lblock + nr_pblocks > sis->max) 4293 nr_pblocks -= blks_per_sec; 4294 4295 /* this extent is last one */ 4296 if (!nr_pblocks) { 4297 nr_pblocks = last_lblock - cur_lblock; 4298 last_extent = true; 4299 } 4300 4301 ret = f2fs_migrate_blocks(inode, cur_lblock, 4302 nr_pblocks); 4303 if (ret) { 4304 if (ret == -ENOENT) 4305 ret = -EINVAL; 4306 goto out; 4307 } 4308 4309 /* lookup block mapping info after block migration */ 4310 goto retry; 4311 } 4312 4313 if (cur_lblock + nr_pblocks >= sis->max) 4314 nr_pblocks = sis->max - cur_lblock; 4315 4316 if (cur_lblock) { /* exclude the header page */ 4317 if (pblock < lowest_pblock) 4318 lowest_pblock = pblock; 4319 if (pblock + nr_pblocks - 1 > highest_pblock) 4320 highest_pblock = pblock + nr_pblocks - 1; 4321 } 4322 4323 /* 4324 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4325 */ 4326 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4327 if (ret < 0) 4328 goto out; 4329 nr_extents += ret; 4330 cur_lblock += nr_pblocks; 4331 } 4332 ret = nr_extents; 4333 *span = 1 + highest_pblock - lowest_pblock; 4334 if (cur_lblock == 0) 4335 cur_lblock = 1; /* force Empty message */ 4336 sis->max = cur_lblock; 4337 sis->pages = cur_lblock - 1; 4338 out: 4339 if (not_aligned) 4340 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)", 4341 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4342 return ret; 4343 } 4344 4345 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4346 sector_t *span) 4347 { 4348 struct inode *inode = file_inode(file); 4349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4350 int ret; 4351 4352 if (!S_ISREG(inode->i_mode)) 4353 return -EINVAL; 4354 4355 if (f2fs_readonly(sbi->sb)) 4356 return -EROFS; 4357 4358 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) { 4359 f2fs_err(sbi, "Swapfile not supported in LFS mode"); 4360 return -EINVAL; 4361 } 4362 4363 ret = f2fs_convert_inline_inode(inode); 4364 if (ret) 4365 return ret; 4366 4367 if (!f2fs_disable_compressed_file(inode)) 4368 return -EINVAL; 4369 4370 ret = filemap_fdatawrite(inode->i_mapping); 4371 if (ret < 0) 4372 return ret; 4373 4374 f2fs_precache_extents(inode); 4375 4376 ret = check_swap_activate(sis, file, span); 4377 if (ret < 0) 4378 return ret; 4379 4380 stat_inc_swapfile_inode(inode); 4381 set_inode_flag(inode, FI_PIN_FILE); 4382 f2fs_update_time(sbi, REQ_TIME); 4383 return ret; 4384 } 4385 4386 static void f2fs_swap_deactivate(struct file *file) 4387 { 4388 struct inode *inode = file_inode(file); 4389 4390 stat_dec_swapfile_inode(inode); 4391 clear_inode_flag(inode, FI_PIN_FILE); 4392 } 4393 #else 4394 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4395 sector_t *span) 4396 { 4397 return -EOPNOTSUPP; 4398 } 4399 4400 static void f2fs_swap_deactivate(struct file *file) 4401 { 4402 } 4403 #endif 4404 4405 const struct address_space_operations f2fs_dblock_aops = { 4406 .read_folio = f2fs_read_data_folio, 4407 .readahead = f2fs_readahead, 4408 .writepages = f2fs_write_data_pages, 4409 .write_begin = f2fs_write_begin, 4410 .write_end = f2fs_write_end, 4411 .dirty_folio = f2fs_dirty_data_folio, 4412 .migrate_folio = filemap_migrate_folio, 4413 .invalidate_folio = f2fs_invalidate_folio, 4414 .release_folio = f2fs_release_folio, 4415 .bmap = f2fs_bmap, 4416 .swap_activate = f2fs_swap_activate, 4417 .swap_deactivate = f2fs_swap_deactivate, 4418 }; 4419 4420 void f2fs_clear_page_cache_dirty_tag(struct folio *folio) 4421 { 4422 struct address_space *mapping = folio->mapping; 4423 unsigned long flags; 4424 4425 xa_lock_irqsave(&mapping->i_pages, flags); 4426 __xa_clear_mark(&mapping->i_pages, folio->index, 4427 PAGECACHE_TAG_DIRTY); 4428 xa_unlock_irqrestore(&mapping->i_pages, flags); 4429 } 4430 4431 int __init f2fs_init_post_read_processing(void) 4432 { 4433 bio_post_read_ctx_cache = 4434 kmem_cache_create("f2fs_bio_post_read_ctx", 4435 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4436 if (!bio_post_read_ctx_cache) 4437 goto fail; 4438 bio_post_read_ctx_pool = 4439 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4440 bio_post_read_ctx_cache); 4441 if (!bio_post_read_ctx_pool) 4442 goto fail_free_cache; 4443 return 0; 4444 4445 fail_free_cache: 4446 kmem_cache_destroy(bio_post_read_ctx_cache); 4447 fail: 4448 return -ENOMEM; 4449 } 4450 4451 void f2fs_destroy_post_read_processing(void) 4452 { 4453 mempool_destroy(bio_post_read_ctx_pool); 4454 kmem_cache_destroy(bio_post_read_ctx_cache); 4455 } 4456 4457 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4458 { 4459 if (!f2fs_sb_has_encrypt(sbi) && 4460 !f2fs_sb_has_verity(sbi) && 4461 !f2fs_sb_has_compression(sbi)) 4462 return 0; 4463 4464 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4465 WQ_UNBOUND | WQ_HIGHPRI, 4466 num_online_cpus()); 4467 return sbi->post_read_wq ? 0 : -ENOMEM; 4468 } 4469 4470 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4471 { 4472 if (sbi->post_read_wq) 4473 destroy_workqueue(sbi->post_read_wq); 4474 } 4475 4476 int __init f2fs_init_bio_entry_cache(void) 4477 { 4478 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4479 sizeof(struct bio_entry)); 4480 4481 if (!bio_entry_slab) 4482 return -ENOMEM; 4483 4484 ffs_entry_slab = f2fs_kmem_cache_create("f2fs_ffs_slab", 4485 sizeof(struct f2fs_folio_state)); 4486 4487 if (!ffs_entry_slab) { 4488 kmem_cache_destroy(bio_entry_slab); 4489 return -ENOMEM; 4490 } 4491 4492 return 0; 4493 } 4494 4495 void f2fs_destroy_bio_entry_cache(void) 4496 { 4497 kmem_cache_destroy(bio_entry_slab); 4498 kmem_cache_destroy(ffs_entry_slab); 4499 } 4500 4501 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4502 unsigned int flags, struct iomap *iomap, 4503 struct iomap *srcmap) 4504 { 4505 struct f2fs_map_blocks map = { NULL, }; 4506 pgoff_t next_pgofs = 0; 4507 int err; 4508 4509 map.m_lblk = F2FS_BYTES_TO_BLK(offset); 4510 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1; 4511 map.m_next_pgofs = &next_pgofs; 4512 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 4513 inode->i_write_hint); 4514 if (flags & IOMAP_WRITE && iomap->private) { 4515 map.m_last_pblk = (unsigned long)iomap->private; 4516 iomap->private = NULL; 4517 } 4518 4519 /* 4520 * If the blocks being overwritten are already allocated, 4521 * f2fs_map_lock and f2fs_balance_fs are not necessary. 4522 */ 4523 if ((flags & IOMAP_WRITE) && 4524 !__f2fs_overwrite_io(inode, offset, length, true)) 4525 map.m_may_create = true; 4526 4527 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4528 if (err) 4529 return err; 4530 4531 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk); 4532 4533 /* 4534 * When inline encryption is enabled, sometimes I/O to an encrypted file 4535 * has to be broken up to guarantee DUN contiguity. Handle this by 4536 * limiting the length of the mapping returned. 4537 */ 4538 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4539 4540 /* 4541 * We should never see delalloc or compressed extents here based on 4542 * prior flushing and checks. 4543 */ 4544 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4545 return -EINVAL; 4546 4547 if (map.m_flags & F2FS_MAP_MAPPED) { 4548 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4549 return -EINVAL; 4550 4551 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4552 iomap->type = IOMAP_MAPPED; 4553 iomap->flags |= IOMAP_F_MERGED; 4554 iomap->bdev = map.m_bdev; 4555 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk); 4556 4557 if (flags & IOMAP_WRITE && map.m_last_pblk) 4558 iomap->private = (void *)map.m_last_pblk; 4559 } else { 4560 if (flags & IOMAP_WRITE) 4561 return -ENOTBLK; 4562 4563 if (map.m_pblk == NULL_ADDR) { 4564 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) - 4565 iomap->offset; 4566 iomap->type = IOMAP_HOLE; 4567 } else if (map.m_pblk == NEW_ADDR) { 4568 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4569 iomap->type = IOMAP_UNWRITTEN; 4570 } else { 4571 f2fs_bug_on(F2FS_I_SB(inode), 1); 4572 } 4573 iomap->addr = IOMAP_NULL_ADDR; 4574 } 4575 4576 if (map.m_flags & F2FS_MAP_NEW) 4577 iomap->flags |= IOMAP_F_NEW; 4578 if ((inode_state_read_once(inode) & I_DIRTY_DATASYNC) || 4579 offset + length > i_size_read(inode)) 4580 iomap->flags |= IOMAP_F_DIRTY; 4581 4582 return 0; 4583 } 4584 4585 const struct iomap_ops f2fs_iomap_ops = { 4586 .iomap_begin = f2fs_iomap_begin, 4587 }; 4588