1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/super.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 #include <linux/ctype.h>
31 #include <linux/fs_parser.h>
32
33 #include "f2fs.h"
34 #include "node.h"
35 #include "segment.h"
36 #include "xattr.h"
37 #include "gc.h"
38 #include "iostat.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/f2fs.h>
42
43 static struct kmem_cache *f2fs_inode_cachep;
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46
47 const char *f2fs_fault_name[FAULT_MAX] = {
48 [FAULT_KMALLOC] = "kmalloc",
49 [FAULT_KVMALLOC] = "kvmalloc",
50 [FAULT_PAGE_ALLOC] = "page alloc",
51 [FAULT_PAGE_GET] = "page get",
52 [FAULT_ALLOC_BIO] = "alloc bio(obsolete)",
53 [FAULT_ALLOC_NID] = "alloc nid",
54 [FAULT_ORPHAN] = "orphan",
55 [FAULT_BLOCK] = "no more block",
56 [FAULT_DIR_DEPTH] = "too big dir depth",
57 [FAULT_EVICT_INODE] = "evict_inode fail",
58 [FAULT_TRUNCATE] = "truncate fail",
59 [FAULT_READ_IO] = "read IO error",
60 [FAULT_CHECKPOINT] = "checkpoint error",
61 [FAULT_DISCARD] = "discard error",
62 [FAULT_WRITE_IO] = "write IO error",
63 [FAULT_SLAB_ALLOC] = "slab alloc",
64 [FAULT_DQUOT_INIT] = "dquot initialize",
65 [FAULT_LOCK_OP] = "lock_op",
66 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr",
67 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr",
68 [FAULT_NO_SEGMENT] = "no free segment",
69 [FAULT_INCONSISTENT_FOOTER] = "inconsistent footer",
70 [FAULT_TIMEOUT] = "timeout",
71 [FAULT_VMALLOC] = "vmalloc",
72 };
73
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type,enum fault_option fo)74 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
75 unsigned long type, enum fault_option fo)
76 {
77 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
78
79 if (fo & FAULT_ALL) {
80 memset(ffi, 0, sizeof(struct f2fs_fault_info));
81 return 0;
82 }
83
84 if (fo & FAULT_RATE) {
85 if (rate > INT_MAX)
86 return -EINVAL;
87 atomic_set(&ffi->inject_ops, 0);
88 ffi->inject_rate = (int)rate;
89 f2fs_info(sbi, "build fault injection rate: %lu", rate);
90 }
91
92 if (fo & FAULT_TYPE) {
93 if (type >= BIT(FAULT_MAX))
94 return -EINVAL;
95 ffi->inject_type = (unsigned int)type;
96 f2fs_info(sbi, "build fault injection type: 0x%lx", type);
97 }
98
99 return 0;
100 }
101 #endif
102
103 /* f2fs-wide shrinker description */
104 static struct shrinker *f2fs_shrinker_info;
105
f2fs_init_shrinker(void)106 static int __init f2fs_init_shrinker(void)
107 {
108 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker");
109 if (!f2fs_shrinker_info)
110 return -ENOMEM;
111
112 f2fs_shrinker_info->count_objects = f2fs_shrink_count;
113 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan;
114
115 shrinker_register(f2fs_shrinker_info);
116
117 return 0;
118 }
119
f2fs_exit_shrinker(void)120 static void f2fs_exit_shrinker(void)
121 {
122 shrinker_free(f2fs_shrinker_info);
123 }
124
125 enum {
126 Opt_gc_background,
127 Opt_disable_roll_forward,
128 Opt_norecovery,
129 Opt_discard,
130 Opt_noheap,
131 Opt_heap,
132 Opt_user_xattr,
133 Opt_acl,
134 Opt_active_logs,
135 Opt_disable_ext_identify,
136 Opt_inline_xattr,
137 Opt_inline_xattr_size,
138 Opt_inline_data,
139 Opt_inline_dentry,
140 Opt_flush_merge,
141 Opt_barrier,
142 Opt_fastboot,
143 Opt_extent_cache,
144 Opt_data_flush,
145 Opt_reserve_root,
146 Opt_reserve_node,
147 Opt_resgid,
148 Opt_resuid,
149 Opt_mode,
150 Opt_fault_injection,
151 Opt_fault_type,
152 Opt_lazytime,
153 Opt_quota,
154 Opt_usrquota,
155 Opt_grpquota,
156 Opt_prjquota,
157 Opt_usrjquota,
158 Opt_grpjquota,
159 Opt_prjjquota,
160 Opt_alloc,
161 Opt_fsync,
162 Opt_test_dummy_encryption,
163 Opt_inlinecrypt,
164 Opt_checkpoint_disable,
165 Opt_checkpoint_disable_cap,
166 Opt_checkpoint_disable_cap_perc,
167 Opt_checkpoint_enable,
168 Opt_checkpoint_merge,
169 Opt_compress_algorithm,
170 Opt_compress_log_size,
171 Opt_nocompress_extension,
172 Opt_compress_extension,
173 Opt_compress_chksum,
174 Opt_compress_mode,
175 Opt_compress_cache,
176 Opt_atgc,
177 Opt_gc_merge,
178 Opt_discard_unit,
179 Opt_memory_mode,
180 Opt_age_extent_cache,
181 Opt_errors,
182 Opt_nat_bits,
183 Opt_jqfmt,
184 Opt_checkpoint,
185 Opt_lookup_mode,
186 Opt_err,
187 };
188
189 static const struct constant_table f2fs_param_background_gc[] = {
190 {"on", BGGC_MODE_ON},
191 {"off", BGGC_MODE_OFF},
192 {"sync", BGGC_MODE_SYNC},
193 {}
194 };
195
196 static const struct constant_table f2fs_param_mode[] = {
197 {"adaptive", FS_MODE_ADAPTIVE},
198 {"lfs", FS_MODE_LFS},
199 {"fragment:segment", FS_MODE_FRAGMENT_SEG},
200 {"fragment:block", FS_MODE_FRAGMENT_BLK},
201 {}
202 };
203
204 static const struct constant_table f2fs_param_jqfmt[] = {
205 {"vfsold", QFMT_VFS_OLD},
206 {"vfsv0", QFMT_VFS_V0},
207 {"vfsv1", QFMT_VFS_V1},
208 {}
209 };
210
211 static const struct constant_table f2fs_param_alloc_mode[] = {
212 {"default", ALLOC_MODE_DEFAULT},
213 {"reuse", ALLOC_MODE_REUSE},
214 {}
215 };
216 static const struct constant_table f2fs_param_fsync_mode[] = {
217 {"posix", FSYNC_MODE_POSIX},
218 {"strict", FSYNC_MODE_STRICT},
219 {"nobarrier", FSYNC_MODE_NOBARRIER},
220 {}
221 };
222
223 static const struct constant_table f2fs_param_compress_mode[] = {
224 {"fs", COMPR_MODE_FS},
225 {"user", COMPR_MODE_USER},
226 {}
227 };
228
229 static const struct constant_table f2fs_param_discard_unit[] = {
230 {"block", DISCARD_UNIT_BLOCK},
231 {"segment", DISCARD_UNIT_SEGMENT},
232 {"section", DISCARD_UNIT_SECTION},
233 {}
234 };
235
236 static const struct constant_table f2fs_param_memory_mode[] = {
237 {"normal", MEMORY_MODE_NORMAL},
238 {"low", MEMORY_MODE_LOW},
239 {}
240 };
241
242 static const struct constant_table f2fs_param_errors[] = {
243 {"remount-ro", MOUNT_ERRORS_READONLY},
244 {"continue", MOUNT_ERRORS_CONTINUE},
245 {"panic", MOUNT_ERRORS_PANIC},
246 {}
247 };
248
249 static const struct constant_table f2fs_param_lookup_mode[] = {
250 {"perf", LOOKUP_PERF},
251 {"compat", LOOKUP_COMPAT},
252 {"auto", LOOKUP_AUTO},
253 {}
254 };
255
256 static const struct fs_parameter_spec f2fs_param_specs[] = {
257 fsparam_enum("background_gc", Opt_gc_background, f2fs_param_background_gc),
258 fsparam_flag("disable_roll_forward", Opt_disable_roll_forward),
259 fsparam_flag("norecovery", Opt_norecovery),
260 fsparam_flag_no("discard", Opt_discard),
261 fsparam_flag("no_heap", Opt_noheap),
262 fsparam_flag("heap", Opt_heap),
263 fsparam_flag_no("user_xattr", Opt_user_xattr),
264 fsparam_flag_no("acl", Opt_acl),
265 fsparam_s32("active_logs", Opt_active_logs),
266 fsparam_flag("disable_ext_identify", Opt_disable_ext_identify),
267 fsparam_flag_no("inline_xattr", Opt_inline_xattr),
268 fsparam_s32("inline_xattr_size", Opt_inline_xattr_size),
269 fsparam_flag_no("inline_data", Opt_inline_data),
270 fsparam_flag_no("inline_dentry", Opt_inline_dentry),
271 fsparam_flag_no("flush_merge", Opt_flush_merge),
272 fsparam_flag_no("barrier", Opt_barrier),
273 fsparam_flag("fastboot", Opt_fastboot),
274 fsparam_flag_no("extent_cache", Opt_extent_cache),
275 fsparam_flag("data_flush", Opt_data_flush),
276 fsparam_u32("reserve_root", Opt_reserve_root),
277 fsparam_u32("reserve_node", Opt_reserve_node),
278 fsparam_gid("resgid", Opt_resgid),
279 fsparam_uid("resuid", Opt_resuid),
280 fsparam_enum("mode", Opt_mode, f2fs_param_mode),
281 fsparam_s32("fault_injection", Opt_fault_injection),
282 fsparam_u32("fault_type", Opt_fault_type),
283 fsparam_flag_no("lazytime", Opt_lazytime),
284 fsparam_flag_no("quota", Opt_quota),
285 fsparam_flag("usrquota", Opt_usrquota),
286 fsparam_flag("grpquota", Opt_grpquota),
287 fsparam_flag("prjquota", Opt_prjquota),
288 fsparam_string_empty("usrjquota", Opt_usrjquota),
289 fsparam_string_empty("grpjquota", Opt_grpjquota),
290 fsparam_string_empty("prjjquota", Opt_prjjquota),
291 fsparam_flag("nat_bits", Opt_nat_bits),
292 fsparam_enum("jqfmt", Opt_jqfmt, f2fs_param_jqfmt),
293 fsparam_enum("alloc_mode", Opt_alloc, f2fs_param_alloc_mode),
294 fsparam_enum("fsync_mode", Opt_fsync, f2fs_param_fsync_mode),
295 fsparam_string("test_dummy_encryption", Opt_test_dummy_encryption),
296 fsparam_flag("test_dummy_encryption", Opt_test_dummy_encryption),
297 fsparam_flag("inlinecrypt", Opt_inlinecrypt),
298 fsparam_string("checkpoint", Opt_checkpoint),
299 fsparam_flag_no("checkpoint_merge", Opt_checkpoint_merge),
300 fsparam_string("compress_algorithm", Opt_compress_algorithm),
301 fsparam_u32("compress_log_size", Opt_compress_log_size),
302 fsparam_string("compress_extension", Opt_compress_extension),
303 fsparam_string("nocompress_extension", Opt_nocompress_extension),
304 fsparam_flag("compress_chksum", Opt_compress_chksum),
305 fsparam_enum("compress_mode", Opt_compress_mode, f2fs_param_compress_mode),
306 fsparam_flag("compress_cache", Opt_compress_cache),
307 fsparam_flag("atgc", Opt_atgc),
308 fsparam_flag_no("gc_merge", Opt_gc_merge),
309 fsparam_enum("discard_unit", Opt_discard_unit, f2fs_param_discard_unit),
310 fsparam_enum("memory", Opt_memory_mode, f2fs_param_memory_mode),
311 fsparam_flag("age_extent_cache", Opt_age_extent_cache),
312 fsparam_enum("errors", Opt_errors, f2fs_param_errors),
313 fsparam_enum("lookup_mode", Opt_lookup_mode, f2fs_param_lookup_mode),
314 {}
315 };
316
317 /* Resort to a match_table for this interestingly formatted option */
318 static match_table_t f2fs_checkpoint_tokens = {
319 {Opt_checkpoint_disable, "disable"},
320 {Opt_checkpoint_disable_cap, "disable:%u"},
321 {Opt_checkpoint_disable_cap_perc, "disable:%u%%"},
322 {Opt_checkpoint_enable, "enable"},
323 {Opt_err, NULL},
324 };
325
326 #define F2FS_SPEC_background_gc (1 << 0)
327 #define F2FS_SPEC_inline_xattr_size (1 << 1)
328 #define F2FS_SPEC_active_logs (1 << 2)
329 #define F2FS_SPEC_reserve_root (1 << 3)
330 #define F2FS_SPEC_resgid (1 << 4)
331 #define F2FS_SPEC_resuid (1 << 5)
332 #define F2FS_SPEC_mode (1 << 6)
333 #define F2FS_SPEC_fault_injection (1 << 7)
334 #define F2FS_SPEC_fault_type (1 << 8)
335 #define F2FS_SPEC_jqfmt (1 << 9)
336 #define F2FS_SPEC_alloc_mode (1 << 10)
337 #define F2FS_SPEC_fsync_mode (1 << 11)
338 #define F2FS_SPEC_checkpoint_disable_cap (1 << 12)
339 #define F2FS_SPEC_checkpoint_disable_cap_perc (1 << 13)
340 #define F2FS_SPEC_compress_level (1 << 14)
341 #define F2FS_SPEC_compress_algorithm (1 << 15)
342 #define F2FS_SPEC_compress_log_size (1 << 16)
343 #define F2FS_SPEC_compress_extension (1 << 17)
344 #define F2FS_SPEC_nocompress_extension (1 << 18)
345 #define F2FS_SPEC_compress_chksum (1 << 19)
346 #define F2FS_SPEC_compress_mode (1 << 20)
347 #define F2FS_SPEC_discard_unit (1 << 21)
348 #define F2FS_SPEC_memory_mode (1 << 22)
349 #define F2FS_SPEC_errors (1 << 23)
350 #define F2FS_SPEC_lookup_mode (1 << 24)
351 #define F2FS_SPEC_reserve_node (1 << 25)
352
353 struct f2fs_fs_context {
354 struct f2fs_mount_info info;
355 unsigned int opt_mask; /* Bits changed */
356 unsigned int spec_mask;
357 unsigned short qname_mask;
358 };
359
360 #define F2FS_CTX_INFO(ctx) ((ctx)->info)
361
ctx_set_opt(struct f2fs_fs_context * ctx,unsigned int flag)362 static inline void ctx_set_opt(struct f2fs_fs_context *ctx,
363 unsigned int flag)
364 {
365 ctx->info.opt |= flag;
366 ctx->opt_mask |= flag;
367 }
368
ctx_clear_opt(struct f2fs_fs_context * ctx,unsigned int flag)369 static inline void ctx_clear_opt(struct f2fs_fs_context *ctx,
370 unsigned int flag)
371 {
372 ctx->info.opt &= ~flag;
373 ctx->opt_mask |= flag;
374 }
375
ctx_test_opt(struct f2fs_fs_context * ctx,unsigned int flag)376 static inline bool ctx_test_opt(struct f2fs_fs_context *ctx,
377 unsigned int flag)
378 {
379 return ctx->info.opt & flag;
380 }
381
f2fs_printk(struct f2fs_sb_info * sbi,bool limit_rate,const char * fmt,...)382 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate,
383 const char *fmt, ...)
384 {
385 struct va_format vaf;
386 va_list args;
387 int level;
388
389 va_start(args, fmt);
390
391 level = printk_get_level(fmt);
392 vaf.fmt = printk_skip_level(fmt);
393 vaf.va = &args;
394 if (limit_rate)
395 if (sbi)
396 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n",
397 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
398 else
399 printk_ratelimited("%c%cF2FS-fs: %pV\n",
400 KERN_SOH_ASCII, level, &vaf);
401 else
402 if (sbi)
403 printk("%c%cF2FS-fs (%s): %pV\n",
404 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
405 else
406 printk("%c%cF2FS-fs: %pV\n",
407 KERN_SOH_ASCII, level, &vaf);
408
409 va_end(args);
410 }
411
412 #if IS_ENABLED(CONFIG_UNICODE)
413 static const struct f2fs_sb_encodings {
414 __u16 magic;
415 char *name;
416 unsigned int version;
417 } f2fs_sb_encoding_map[] = {
418 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
419 };
420
421 static const struct f2fs_sb_encodings *
f2fs_sb_read_encoding(const struct f2fs_super_block * sb)422 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
423 {
424 __u16 magic = le16_to_cpu(sb->s_encoding);
425 int i;
426
427 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
428 if (magic == f2fs_sb_encoding_map[i].magic)
429 return &f2fs_sb_encoding_map[i];
430
431 return NULL;
432 }
433
434 struct kmem_cache *f2fs_cf_name_slab;
f2fs_create_casefold_cache(void)435 static int __init f2fs_create_casefold_cache(void)
436 {
437 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
438 F2FS_NAME_LEN);
439 return f2fs_cf_name_slab ? 0 : -ENOMEM;
440 }
441
f2fs_destroy_casefold_cache(void)442 static void f2fs_destroy_casefold_cache(void)
443 {
444 kmem_cache_destroy(f2fs_cf_name_slab);
445 }
446 #else
f2fs_create_casefold_cache(void)447 static int __init f2fs_create_casefold_cache(void) { return 0; }
f2fs_destroy_casefold_cache(void)448 static void f2fs_destroy_casefold_cache(void) { }
449 #endif
450
limit_reserve_root(struct f2fs_sb_info * sbi)451 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
452 {
453 block_t block_limit = min((sbi->user_block_count >> 3),
454 sbi->user_block_count - sbi->reserved_blocks);
455 block_t node_limit = sbi->total_node_count >> 3;
456
457 /* limit is 12.5% */
458 if (test_opt(sbi, RESERVE_ROOT) &&
459 F2FS_OPTION(sbi).root_reserved_blocks > block_limit) {
460 F2FS_OPTION(sbi).root_reserved_blocks = block_limit;
461 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
462 F2FS_OPTION(sbi).root_reserved_blocks);
463 }
464 if (test_opt(sbi, RESERVE_NODE) &&
465 F2FS_OPTION(sbi).root_reserved_nodes > node_limit) {
466 F2FS_OPTION(sbi).root_reserved_nodes = node_limit;
467 f2fs_info(sbi, "Reduce reserved nodes for root = %u",
468 F2FS_OPTION(sbi).root_reserved_nodes);
469 }
470 if (!test_opt(sbi, RESERVE_ROOT) && !test_opt(sbi, RESERVE_NODE) &&
471 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
472 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
473 !gid_eq(F2FS_OPTION(sbi).s_resgid,
474 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
475 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root"
476 " and reserve_node",
477 from_kuid_munged(&init_user_ns,
478 F2FS_OPTION(sbi).s_resuid),
479 from_kgid_munged(&init_user_ns,
480 F2FS_OPTION(sbi).s_resgid));
481 }
482
adjust_unusable_cap_perc(struct f2fs_sb_info * sbi)483 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
484 {
485 if (!F2FS_OPTION(sbi).unusable_cap_perc)
486 return;
487
488 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
489 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
490 else
491 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
492 F2FS_OPTION(sbi).unusable_cap_perc;
493
494 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
495 F2FS_OPTION(sbi).unusable_cap,
496 F2FS_OPTION(sbi).unusable_cap_perc);
497 }
498
init_once(void * foo)499 static void init_once(void *foo)
500 {
501 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
502
503 inode_init_once(&fi->vfs_inode);
504 #ifdef CONFIG_FS_ENCRYPTION
505 fi->i_crypt_info = NULL;
506 #endif
507 #ifdef CONFIG_FS_VERITY
508 fi->i_verity_info = NULL;
509 #endif
510 }
511
512 #ifdef CONFIG_QUOTA
513 static const char * const quotatypes[] = INITQFNAMES;
514 #define QTYPE2NAME(t) (quotatypes[t])
515 /*
516 * Note the name of the specified quota file.
517 */
f2fs_note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)518 static int f2fs_note_qf_name(struct fs_context *fc, int qtype,
519 struct fs_parameter *param)
520 {
521 struct f2fs_fs_context *ctx = fc->fs_private;
522 char *qname;
523
524 if (param->size < 1) {
525 f2fs_err(NULL, "Missing quota name");
526 return -EINVAL;
527 }
528 if (strchr(param->string, '/')) {
529 f2fs_err(NULL, "quotafile must be on filesystem root");
530 return -EINVAL;
531 }
532 if (ctx->info.s_qf_names[qtype]) {
533 if (strcmp(ctx->info.s_qf_names[qtype], param->string) != 0) {
534 f2fs_err(NULL, "Quota file already specified");
535 return -EINVAL;
536 }
537 return 0;
538 }
539
540 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
541 if (!qname) {
542 f2fs_err(NULL, "Not enough memory for storing quotafile name");
543 return -ENOMEM;
544 }
545 F2FS_CTX_INFO(ctx).s_qf_names[qtype] = qname;
546 ctx->qname_mask |= 1 << qtype;
547 return 0;
548 }
549
550 /*
551 * Clear the name of the specified quota file.
552 */
f2fs_unnote_qf_name(struct fs_context * fc,int qtype)553 static int f2fs_unnote_qf_name(struct fs_context *fc, int qtype)
554 {
555 struct f2fs_fs_context *ctx = fc->fs_private;
556
557 kfree(ctx->info.s_qf_names[qtype]);
558 ctx->info.s_qf_names[qtype] = NULL;
559 ctx->qname_mask |= 1 << qtype;
560 return 0;
561 }
562
f2fs_unnote_qf_name_all(struct fs_context * fc)563 static void f2fs_unnote_qf_name_all(struct fs_context *fc)
564 {
565 int i;
566
567 for (i = 0; i < MAXQUOTAS; i++)
568 f2fs_unnote_qf_name(fc, i);
569 }
570 #endif
571
f2fs_parse_test_dummy_encryption(const struct fs_parameter * param,struct f2fs_fs_context * ctx)572 static int f2fs_parse_test_dummy_encryption(const struct fs_parameter *param,
573 struct f2fs_fs_context *ctx)
574 {
575 int err;
576
577 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
578 f2fs_warn(NULL, "test_dummy_encryption option not supported");
579 return -EINVAL;
580 }
581 err = fscrypt_parse_test_dummy_encryption(param,
582 &ctx->info.dummy_enc_policy);
583 if (err) {
584 if (err == -EINVAL)
585 f2fs_warn(NULL, "Value of option \"%s\" is unrecognized",
586 param->key);
587 else if (err == -EEXIST)
588 f2fs_warn(NULL, "Conflicting test_dummy_encryption options");
589 else
590 f2fs_warn(NULL, "Error processing option \"%s\" [%d]",
591 param->key, err);
592 return -EINVAL;
593 }
594 return 0;
595 }
596
597 #ifdef CONFIG_F2FS_FS_COMPRESSION
is_compress_extension_exist(struct f2fs_mount_info * info,const char * new_ext,bool is_ext)598 static bool is_compress_extension_exist(struct f2fs_mount_info *info,
599 const char *new_ext, bool is_ext)
600 {
601 unsigned char (*ext)[F2FS_EXTENSION_LEN];
602 int ext_cnt;
603 int i;
604
605 if (is_ext) {
606 ext = info->extensions;
607 ext_cnt = info->compress_ext_cnt;
608 } else {
609 ext = info->noextensions;
610 ext_cnt = info->nocompress_ext_cnt;
611 }
612
613 for (i = 0; i < ext_cnt; i++) {
614 if (!strcasecmp(new_ext, ext[i]))
615 return true;
616 }
617
618 return false;
619 }
620
621 /*
622 * 1. The same extension name cannot not appear in both compress and non-compress extension
623 * at the same time.
624 * 2. If the compress extension specifies all files, the types specified by the non-compress
625 * extension will be treated as special cases and will not be compressed.
626 * 3. Don't allow the non-compress extension specifies all files.
627 */
f2fs_test_compress_extension(unsigned char (* noext)[F2FS_EXTENSION_LEN],int noext_cnt,unsigned char (* ext)[F2FS_EXTENSION_LEN],int ext_cnt)628 static int f2fs_test_compress_extension(unsigned char (*noext)[F2FS_EXTENSION_LEN],
629 int noext_cnt,
630 unsigned char (*ext)[F2FS_EXTENSION_LEN],
631 int ext_cnt)
632 {
633 int index = 0, no_index = 0;
634
635 if (!noext_cnt)
636 return 0;
637
638 for (no_index = 0; no_index < noext_cnt; no_index++) {
639 if (strlen(noext[no_index]) == 0)
640 continue;
641 if (!strcasecmp("*", noext[no_index])) {
642 f2fs_info(NULL, "Don't allow the nocompress extension specifies all files");
643 return -EINVAL;
644 }
645 for (index = 0; index < ext_cnt; index++) {
646 if (strlen(ext[index]) == 0)
647 continue;
648 if (!strcasecmp(ext[index], noext[no_index])) {
649 f2fs_info(NULL, "Don't allow the same extension %s appear in both compress and nocompress extension",
650 ext[index]);
651 return -EINVAL;
652 }
653 }
654 }
655 return 0;
656 }
657
658 #ifdef CONFIG_F2FS_FS_LZ4
f2fs_set_lz4hc_level(struct f2fs_fs_context * ctx,const char * str)659 static int f2fs_set_lz4hc_level(struct f2fs_fs_context *ctx, const char *str)
660 {
661 #ifdef CONFIG_F2FS_FS_LZ4HC
662 unsigned int level;
663
664 if (strlen(str) == 3) {
665 F2FS_CTX_INFO(ctx).compress_level = 0;
666 ctx->spec_mask |= F2FS_SPEC_compress_level;
667 return 0;
668 }
669
670 str += 3;
671
672 if (str[0] != ':') {
673 f2fs_info(NULL, "wrong format, e.g. <alg_name>:<compr_level>");
674 return -EINVAL;
675 }
676 if (kstrtouint(str + 1, 10, &level))
677 return -EINVAL;
678
679 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) {
680 f2fs_info(NULL, "invalid lz4hc compress level: %d", level);
681 return -EINVAL;
682 }
683
684 F2FS_CTX_INFO(ctx).compress_level = level;
685 ctx->spec_mask |= F2FS_SPEC_compress_level;
686 return 0;
687 #else
688 if (strlen(str) == 3) {
689 F2FS_CTX_INFO(ctx).compress_level = 0;
690 ctx->spec_mask |= F2FS_SPEC_compress_level;
691 return 0;
692 }
693 f2fs_info(NULL, "kernel doesn't support lz4hc compression");
694 return -EINVAL;
695 #endif
696 }
697 #endif
698
699 #ifdef CONFIG_F2FS_FS_ZSTD
f2fs_set_zstd_level(struct f2fs_fs_context * ctx,const char * str)700 static int f2fs_set_zstd_level(struct f2fs_fs_context *ctx, const char *str)
701 {
702 int level;
703 int len = 4;
704
705 if (strlen(str) == len) {
706 F2FS_CTX_INFO(ctx).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
707 ctx->spec_mask |= F2FS_SPEC_compress_level;
708 return 0;
709 }
710
711 str += len;
712
713 if (str[0] != ':') {
714 f2fs_info(NULL, "wrong format, e.g. <alg_name>:<compr_level>");
715 return -EINVAL;
716 }
717 if (kstrtoint(str + 1, 10, &level))
718 return -EINVAL;
719
720 /* f2fs does not support negative compress level now */
721 if (level < 0) {
722 f2fs_info(NULL, "do not support negative compress level: %d", level);
723 return -ERANGE;
724 }
725
726 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) {
727 f2fs_info(NULL, "invalid zstd compress level: %d", level);
728 return -EINVAL;
729 }
730
731 F2FS_CTX_INFO(ctx).compress_level = level;
732 ctx->spec_mask |= F2FS_SPEC_compress_level;
733 return 0;
734 }
735 #endif
736 #endif
737
f2fs_parse_param(struct fs_context * fc,struct fs_parameter * param)738 static int f2fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
739 {
740 struct f2fs_fs_context *ctx = fc->fs_private;
741 #ifdef CONFIG_F2FS_FS_COMPRESSION
742 unsigned char (*ext)[F2FS_EXTENSION_LEN];
743 unsigned char (*noext)[F2FS_EXTENSION_LEN];
744 int ext_cnt, noext_cnt;
745 char *name;
746 #endif
747 substring_t args[MAX_OPT_ARGS];
748 struct fs_parse_result result;
749 int token, ret, arg;
750
751 token = fs_parse(fc, f2fs_param_specs, param, &result);
752 if (token < 0)
753 return token;
754
755 switch (token) {
756 case Opt_gc_background:
757 F2FS_CTX_INFO(ctx).bggc_mode = result.uint_32;
758 ctx->spec_mask |= F2FS_SPEC_background_gc;
759 break;
760 case Opt_disable_roll_forward:
761 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_ROLL_FORWARD);
762 break;
763 case Opt_norecovery:
764 /* requires ro mount, checked in f2fs_validate_options */
765 ctx_set_opt(ctx, F2FS_MOUNT_NORECOVERY);
766 break;
767 case Opt_discard:
768 if (result.negated)
769 ctx_clear_opt(ctx, F2FS_MOUNT_DISCARD);
770 else
771 ctx_set_opt(ctx, F2FS_MOUNT_DISCARD);
772 break;
773 case Opt_noheap:
774 case Opt_heap:
775 f2fs_warn(NULL, "heap/no_heap options were deprecated");
776 break;
777 #ifdef CONFIG_F2FS_FS_XATTR
778 case Opt_user_xattr:
779 if (result.negated)
780 ctx_clear_opt(ctx, F2FS_MOUNT_XATTR_USER);
781 else
782 ctx_set_opt(ctx, F2FS_MOUNT_XATTR_USER);
783 break;
784 case Opt_inline_xattr:
785 if (result.negated)
786 ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_XATTR);
787 else
788 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_XATTR);
789 break;
790 case Opt_inline_xattr_size:
791 if (result.int_32 < MIN_INLINE_XATTR_SIZE ||
792 result.int_32 > MAX_INLINE_XATTR_SIZE) {
793 f2fs_err(NULL, "inline xattr size is out of range: %u ~ %u",
794 (u32)MIN_INLINE_XATTR_SIZE, (u32)MAX_INLINE_XATTR_SIZE);
795 return -EINVAL;
796 }
797 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_XATTR_SIZE);
798 F2FS_CTX_INFO(ctx).inline_xattr_size = result.int_32;
799 ctx->spec_mask |= F2FS_SPEC_inline_xattr_size;
800 break;
801 #else
802 case Opt_user_xattr:
803 case Opt_inline_xattr:
804 case Opt_inline_xattr_size:
805 f2fs_info(NULL, "%s options not supported", param->key);
806 break;
807 #endif
808 #ifdef CONFIG_F2FS_FS_POSIX_ACL
809 case Opt_acl:
810 if (result.negated)
811 ctx_clear_opt(ctx, F2FS_MOUNT_POSIX_ACL);
812 else
813 ctx_set_opt(ctx, F2FS_MOUNT_POSIX_ACL);
814 break;
815 #else
816 case Opt_acl:
817 f2fs_info(NULL, "%s options not supported", param->key);
818 break;
819 #endif
820 case Opt_active_logs:
821 if (result.int_32 != 2 && result.int_32 != 4 &&
822 result.int_32 != NR_CURSEG_PERSIST_TYPE)
823 return -EINVAL;
824 ctx->spec_mask |= F2FS_SPEC_active_logs;
825 F2FS_CTX_INFO(ctx).active_logs = result.int_32;
826 break;
827 case Opt_disable_ext_identify:
828 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_EXT_IDENTIFY);
829 break;
830 case Opt_inline_data:
831 if (result.negated)
832 ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_DATA);
833 else
834 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_DATA);
835 break;
836 case Opt_inline_dentry:
837 if (result.negated)
838 ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_DENTRY);
839 else
840 ctx_set_opt(ctx, F2FS_MOUNT_INLINE_DENTRY);
841 break;
842 case Opt_flush_merge:
843 if (result.negated)
844 ctx_clear_opt(ctx, F2FS_MOUNT_FLUSH_MERGE);
845 else
846 ctx_set_opt(ctx, F2FS_MOUNT_FLUSH_MERGE);
847 break;
848 case Opt_barrier:
849 if (result.negated)
850 ctx_set_opt(ctx, F2FS_MOUNT_NOBARRIER);
851 else
852 ctx_clear_opt(ctx, F2FS_MOUNT_NOBARRIER);
853 break;
854 case Opt_fastboot:
855 ctx_set_opt(ctx, F2FS_MOUNT_FASTBOOT);
856 break;
857 case Opt_extent_cache:
858 if (result.negated)
859 ctx_clear_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE);
860 else
861 ctx_set_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE);
862 break;
863 case Opt_data_flush:
864 ctx_set_opt(ctx, F2FS_MOUNT_DATA_FLUSH);
865 break;
866 case Opt_reserve_root:
867 ctx_set_opt(ctx, F2FS_MOUNT_RESERVE_ROOT);
868 F2FS_CTX_INFO(ctx).root_reserved_blocks = result.uint_32;
869 ctx->spec_mask |= F2FS_SPEC_reserve_root;
870 break;
871 case Opt_reserve_node:
872 ctx_set_opt(ctx, F2FS_MOUNT_RESERVE_NODE);
873 F2FS_CTX_INFO(ctx).root_reserved_nodes = result.uint_32;
874 ctx->spec_mask |= F2FS_SPEC_reserve_node;
875 break;
876 case Opt_resuid:
877 F2FS_CTX_INFO(ctx).s_resuid = result.uid;
878 ctx->spec_mask |= F2FS_SPEC_resuid;
879 break;
880 case Opt_resgid:
881 F2FS_CTX_INFO(ctx).s_resgid = result.gid;
882 ctx->spec_mask |= F2FS_SPEC_resgid;
883 break;
884 case Opt_mode:
885 F2FS_CTX_INFO(ctx).fs_mode = result.uint_32;
886 ctx->spec_mask |= F2FS_SPEC_mode;
887 break;
888 #ifdef CONFIG_F2FS_FAULT_INJECTION
889 case Opt_fault_injection:
890 F2FS_CTX_INFO(ctx).fault_info.inject_rate = result.int_32;
891 ctx->spec_mask |= F2FS_SPEC_fault_injection;
892 ctx_set_opt(ctx, F2FS_MOUNT_FAULT_INJECTION);
893 break;
894
895 case Opt_fault_type:
896 if (result.uint_32 > BIT(FAULT_MAX))
897 return -EINVAL;
898 F2FS_CTX_INFO(ctx).fault_info.inject_type = result.uint_32;
899 ctx->spec_mask |= F2FS_SPEC_fault_type;
900 ctx_set_opt(ctx, F2FS_MOUNT_FAULT_INJECTION);
901 break;
902 #else
903 case Opt_fault_injection:
904 case Opt_fault_type:
905 f2fs_info(NULL, "%s options not supported", param->key);
906 break;
907 #endif
908 case Opt_lazytime:
909 if (result.negated)
910 ctx_clear_opt(ctx, F2FS_MOUNT_LAZYTIME);
911 else
912 ctx_set_opt(ctx, F2FS_MOUNT_LAZYTIME);
913 break;
914 #ifdef CONFIG_QUOTA
915 case Opt_quota:
916 if (result.negated) {
917 ctx_clear_opt(ctx, F2FS_MOUNT_QUOTA);
918 ctx_clear_opt(ctx, F2FS_MOUNT_USRQUOTA);
919 ctx_clear_opt(ctx, F2FS_MOUNT_GRPQUOTA);
920 ctx_clear_opt(ctx, F2FS_MOUNT_PRJQUOTA);
921 } else
922 ctx_set_opt(ctx, F2FS_MOUNT_USRQUOTA);
923 break;
924 case Opt_usrquota:
925 ctx_set_opt(ctx, F2FS_MOUNT_USRQUOTA);
926 break;
927 case Opt_grpquota:
928 ctx_set_opt(ctx, F2FS_MOUNT_GRPQUOTA);
929 break;
930 case Opt_prjquota:
931 ctx_set_opt(ctx, F2FS_MOUNT_PRJQUOTA);
932 break;
933 case Opt_usrjquota:
934 if (!*param->string)
935 ret = f2fs_unnote_qf_name(fc, USRQUOTA);
936 else
937 ret = f2fs_note_qf_name(fc, USRQUOTA, param);
938 if (ret)
939 return ret;
940 break;
941 case Opt_grpjquota:
942 if (!*param->string)
943 ret = f2fs_unnote_qf_name(fc, GRPQUOTA);
944 else
945 ret = f2fs_note_qf_name(fc, GRPQUOTA, param);
946 if (ret)
947 return ret;
948 break;
949 case Opt_prjjquota:
950 if (!*param->string)
951 ret = f2fs_unnote_qf_name(fc, PRJQUOTA);
952 else
953 ret = f2fs_note_qf_name(fc, PRJQUOTA, param);
954 if (ret)
955 return ret;
956 break;
957 case Opt_jqfmt:
958 F2FS_CTX_INFO(ctx).s_jquota_fmt = result.int_32;
959 ctx->spec_mask |= F2FS_SPEC_jqfmt;
960 break;
961 #else
962 case Opt_quota:
963 case Opt_usrquota:
964 case Opt_grpquota:
965 case Opt_prjquota:
966 case Opt_usrjquota:
967 case Opt_grpjquota:
968 case Opt_prjjquota:
969 f2fs_info(NULL, "quota operations not supported");
970 break;
971 #endif
972 case Opt_alloc:
973 F2FS_CTX_INFO(ctx).alloc_mode = result.uint_32;
974 ctx->spec_mask |= F2FS_SPEC_alloc_mode;
975 break;
976 case Opt_fsync:
977 F2FS_CTX_INFO(ctx).fsync_mode = result.uint_32;
978 ctx->spec_mask |= F2FS_SPEC_fsync_mode;
979 break;
980 case Opt_test_dummy_encryption:
981 ret = f2fs_parse_test_dummy_encryption(param, ctx);
982 if (ret)
983 return ret;
984 break;
985 case Opt_inlinecrypt:
986 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
987 ctx_set_opt(ctx, F2FS_MOUNT_INLINECRYPT);
988 #else
989 f2fs_info(NULL, "inline encryption not supported");
990 #endif
991 break;
992 case Opt_checkpoint:
993 /*
994 * Initialize args struct so we know whether arg was
995 * found; some options take optional arguments.
996 */
997 args[0].from = args[0].to = NULL;
998 arg = 0;
999
1000 /* revert to match_table for checkpoint= options */
1001 token = match_token(param->string, f2fs_checkpoint_tokens, args);
1002 switch (token) {
1003 case Opt_checkpoint_disable_cap_perc:
1004 if (args->from && match_int(args, &arg))
1005 return -EINVAL;
1006 if (arg < 0 || arg > 100)
1007 return -EINVAL;
1008 F2FS_CTX_INFO(ctx).unusable_cap_perc = arg;
1009 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap_perc;
1010 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
1011 break;
1012 case Opt_checkpoint_disable_cap:
1013 if (args->from && match_int(args, &arg))
1014 return -EINVAL;
1015 F2FS_CTX_INFO(ctx).unusable_cap = arg;
1016 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap;
1017 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
1018 break;
1019 case Opt_checkpoint_disable:
1020 ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
1021 break;
1022 case Opt_checkpoint_enable:
1023 F2FS_CTX_INFO(ctx).unusable_cap_perc = 0;
1024 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap_perc;
1025 F2FS_CTX_INFO(ctx).unusable_cap = 0;
1026 ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap;
1027 ctx_clear_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
1028 break;
1029 default:
1030 return -EINVAL;
1031 }
1032 break;
1033 case Opt_checkpoint_merge:
1034 if (result.negated)
1035 ctx_clear_opt(ctx, F2FS_MOUNT_MERGE_CHECKPOINT);
1036 else
1037 ctx_set_opt(ctx, F2FS_MOUNT_MERGE_CHECKPOINT);
1038 break;
1039 #ifdef CONFIG_F2FS_FS_COMPRESSION
1040 case Opt_compress_algorithm:
1041 name = param->string;
1042 if (!strcmp(name, "lzo")) {
1043 #ifdef CONFIG_F2FS_FS_LZO
1044 F2FS_CTX_INFO(ctx).compress_level = 0;
1045 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZO;
1046 ctx->spec_mask |= F2FS_SPEC_compress_level;
1047 ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1048 #else
1049 f2fs_info(NULL, "kernel doesn't support lzo compression");
1050 #endif
1051 } else if (!strncmp(name, "lz4", 3)) {
1052 #ifdef CONFIG_F2FS_FS_LZ4
1053 ret = f2fs_set_lz4hc_level(ctx, name);
1054 if (ret)
1055 return -EINVAL;
1056 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZ4;
1057 ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1058 #else
1059 f2fs_info(NULL, "kernel doesn't support lz4 compression");
1060 #endif
1061 } else if (!strncmp(name, "zstd", 4)) {
1062 #ifdef CONFIG_F2FS_FS_ZSTD
1063 ret = f2fs_set_zstd_level(ctx, name);
1064 if (ret)
1065 return -EINVAL;
1066 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_ZSTD;
1067 ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1068 #else
1069 f2fs_info(NULL, "kernel doesn't support zstd compression");
1070 #endif
1071 } else if (!strcmp(name, "lzo-rle")) {
1072 #ifdef CONFIG_F2FS_FS_LZORLE
1073 F2FS_CTX_INFO(ctx).compress_level = 0;
1074 F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZORLE;
1075 ctx->spec_mask |= F2FS_SPEC_compress_level;
1076 ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1077 #else
1078 f2fs_info(NULL, "kernel doesn't support lzorle compression");
1079 #endif
1080 } else
1081 return -EINVAL;
1082 break;
1083 case Opt_compress_log_size:
1084 if (result.uint_32 < MIN_COMPRESS_LOG_SIZE ||
1085 result.uint_32 > MAX_COMPRESS_LOG_SIZE) {
1086 f2fs_err(NULL,
1087 "Compress cluster log size is out of range");
1088 return -EINVAL;
1089 }
1090 F2FS_CTX_INFO(ctx).compress_log_size = result.uint_32;
1091 ctx->spec_mask |= F2FS_SPEC_compress_log_size;
1092 break;
1093 case Opt_compress_extension:
1094 name = param->string;
1095 ext = F2FS_CTX_INFO(ctx).extensions;
1096 ext_cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt;
1097
1098 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1099 ext_cnt >= COMPRESS_EXT_NUM) {
1100 f2fs_err(NULL, "invalid extension length/number");
1101 return -EINVAL;
1102 }
1103
1104 if (is_compress_extension_exist(&ctx->info, name, true))
1105 break;
1106
1107 ret = strscpy(ext[ext_cnt], name, F2FS_EXTENSION_LEN);
1108 if (ret < 0)
1109 return ret;
1110 F2FS_CTX_INFO(ctx).compress_ext_cnt++;
1111 ctx->spec_mask |= F2FS_SPEC_compress_extension;
1112 break;
1113 case Opt_nocompress_extension:
1114 name = param->string;
1115 noext = F2FS_CTX_INFO(ctx).noextensions;
1116 noext_cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt;
1117
1118 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1119 noext_cnt >= COMPRESS_EXT_NUM) {
1120 f2fs_err(NULL, "invalid extension length/number");
1121 return -EINVAL;
1122 }
1123
1124 if (is_compress_extension_exist(&ctx->info, name, false))
1125 break;
1126
1127 ret = strscpy(noext[noext_cnt], name, F2FS_EXTENSION_LEN);
1128 if (ret < 0)
1129 return ret;
1130 F2FS_CTX_INFO(ctx).nocompress_ext_cnt++;
1131 ctx->spec_mask |= F2FS_SPEC_nocompress_extension;
1132 break;
1133 case Opt_compress_chksum:
1134 F2FS_CTX_INFO(ctx).compress_chksum = true;
1135 ctx->spec_mask |= F2FS_SPEC_compress_chksum;
1136 break;
1137 case Opt_compress_mode:
1138 F2FS_CTX_INFO(ctx).compress_mode = result.uint_32;
1139 ctx->spec_mask |= F2FS_SPEC_compress_mode;
1140 break;
1141 case Opt_compress_cache:
1142 ctx_set_opt(ctx, F2FS_MOUNT_COMPRESS_CACHE);
1143 break;
1144 #else
1145 case Opt_compress_algorithm:
1146 case Opt_compress_log_size:
1147 case Opt_compress_extension:
1148 case Opt_nocompress_extension:
1149 case Opt_compress_chksum:
1150 case Opt_compress_mode:
1151 case Opt_compress_cache:
1152 f2fs_info(NULL, "compression options not supported");
1153 break;
1154 #endif
1155 case Opt_atgc:
1156 ctx_set_opt(ctx, F2FS_MOUNT_ATGC);
1157 break;
1158 case Opt_gc_merge:
1159 if (result.negated)
1160 ctx_clear_opt(ctx, F2FS_MOUNT_GC_MERGE);
1161 else
1162 ctx_set_opt(ctx, F2FS_MOUNT_GC_MERGE);
1163 break;
1164 case Opt_discard_unit:
1165 F2FS_CTX_INFO(ctx).discard_unit = result.uint_32;
1166 ctx->spec_mask |= F2FS_SPEC_discard_unit;
1167 break;
1168 case Opt_memory_mode:
1169 F2FS_CTX_INFO(ctx).memory_mode = result.uint_32;
1170 ctx->spec_mask |= F2FS_SPEC_memory_mode;
1171 break;
1172 case Opt_age_extent_cache:
1173 ctx_set_opt(ctx, F2FS_MOUNT_AGE_EXTENT_CACHE);
1174 break;
1175 case Opt_errors:
1176 F2FS_CTX_INFO(ctx).errors = result.uint_32;
1177 ctx->spec_mask |= F2FS_SPEC_errors;
1178 break;
1179 case Opt_nat_bits:
1180 ctx_set_opt(ctx, F2FS_MOUNT_NAT_BITS);
1181 break;
1182 case Opt_lookup_mode:
1183 F2FS_CTX_INFO(ctx).lookup_mode = result.uint_32;
1184 ctx->spec_mask |= F2FS_SPEC_lookup_mode;
1185 break;
1186 }
1187 return 0;
1188 }
1189
1190 /*
1191 * Check quota settings consistency.
1192 */
f2fs_check_quota_consistency(struct fs_context * fc,struct super_block * sb)1193 static int f2fs_check_quota_consistency(struct fs_context *fc,
1194 struct super_block *sb)
1195 {
1196 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1197 #ifdef CONFIG_QUOTA
1198 struct f2fs_fs_context *ctx = fc->fs_private;
1199 bool quota_feature = f2fs_sb_has_quota_ino(sbi);
1200 bool quota_turnon = sb_any_quota_loaded(sb);
1201 char *old_qname, *new_qname;
1202 bool usr_qf_name, grp_qf_name, prj_qf_name, usrquota, grpquota, prjquota;
1203 int i;
1204
1205 /*
1206 * We do the test below only for project quotas. 'usrquota' and
1207 * 'grpquota' mount options are allowed even without quota feature
1208 * to support legacy quotas in quota files.
1209 */
1210 if (ctx_test_opt(ctx, F2FS_MOUNT_PRJQUOTA) &&
1211 !f2fs_sb_has_project_quota(sbi)) {
1212 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
1213 return -EINVAL;
1214 }
1215
1216 if (ctx->qname_mask) {
1217 for (i = 0; i < MAXQUOTAS; i++) {
1218 if (!(ctx->qname_mask & (1 << i)))
1219 continue;
1220
1221 old_qname = F2FS_OPTION(sbi).s_qf_names[i];
1222 new_qname = F2FS_CTX_INFO(ctx).s_qf_names[i];
1223 if (quota_turnon &&
1224 !!old_qname != !!new_qname)
1225 goto err_jquota_change;
1226
1227 if (old_qname) {
1228 if (!new_qname) {
1229 f2fs_info(sbi, "remove qf_name %s",
1230 old_qname);
1231 continue;
1232 } else if (strcmp(old_qname, new_qname) == 0) {
1233 ctx->qname_mask &= ~(1 << i);
1234 continue;
1235 }
1236 goto err_jquota_specified;
1237 }
1238
1239 if (quota_feature) {
1240 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
1241 ctx->qname_mask &= ~(1 << i);
1242 kfree(F2FS_CTX_INFO(ctx).s_qf_names[i]);
1243 F2FS_CTX_INFO(ctx).s_qf_names[i] = NULL;
1244 }
1245 }
1246 }
1247
1248 /* Make sure we don't mix old and new quota format */
1249 usr_qf_name = F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
1250 F2FS_CTX_INFO(ctx).s_qf_names[USRQUOTA];
1251 grp_qf_name = F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
1252 F2FS_CTX_INFO(ctx).s_qf_names[GRPQUOTA];
1253 prj_qf_name = F2FS_OPTION(sbi).s_qf_names[PRJQUOTA] ||
1254 F2FS_CTX_INFO(ctx).s_qf_names[PRJQUOTA];
1255 usrquota = test_opt(sbi, USRQUOTA) ||
1256 ctx_test_opt(ctx, F2FS_MOUNT_USRQUOTA);
1257 grpquota = test_opt(sbi, GRPQUOTA) ||
1258 ctx_test_opt(ctx, F2FS_MOUNT_GRPQUOTA);
1259 prjquota = test_opt(sbi, PRJQUOTA) ||
1260 ctx_test_opt(ctx, F2FS_MOUNT_PRJQUOTA);
1261
1262 if (usr_qf_name) {
1263 ctx_clear_opt(ctx, F2FS_MOUNT_USRQUOTA);
1264 usrquota = false;
1265 }
1266 if (grp_qf_name) {
1267 ctx_clear_opt(ctx, F2FS_MOUNT_GRPQUOTA);
1268 grpquota = false;
1269 }
1270 if (prj_qf_name) {
1271 ctx_clear_opt(ctx, F2FS_MOUNT_PRJQUOTA);
1272 prjquota = false;
1273 }
1274 if (usr_qf_name || grp_qf_name || prj_qf_name) {
1275 if (grpquota || usrquota || prjquota) {
1276 f2fs_err(sbi, "old and new quota format mixing");
1277 return -EINVAL;
1278 }
1279 if (!(ctx->spec_mask & F2FS_SPEC_jqfmt ||
1280 F2FS_OPTION(sbi).s_jquota_fmt)) {
1281 f2fs_err(sbi, "journaled quota format not specified");
1282 return -EINVAL;
1283 }
1284 }
1285 return 0;
1286
1287 err_jquota_change:
1288 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
1289 return -EINVAL;
1290 err_jquota_specified:
1291 f2fs_err(sbi, "%s quota file already specified",
1292 QTYPE2NAME(i));
1293 return -EINVAL;
1294
1295 #else
1296 if (f2fs_readonly(sbi->sb))
1297 return 0;
1298 if (f2fs_sb_has_quota_ino(sbi)) {
1299 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1300 return -EINVAL;
1301 }
1302 if (f2fs_sb_has_project_quota(sbi)) {
1303 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1304 return -EINVAL;
1305 }
1306
1307 return 0;
1308 #endif
1309 }
1310
f2fs_check_test_dummy_encryption(struct fs_context * fc,struct super_block * sb)1311 static int f2fs_check_test_dummy_encryption(struct fs_context *fc,
1312 struct super_block *sb)
1313 {
1314 struct f2fs_fs_context *ctx = fc->fs_private;
1315 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1316
1317 if (!fscrypt_is_dummy_policy_set(&F2FS_CTX_INFO(ctx).dummy_enc_policy))
1318 return 0;
1319
1320 if (!f2fs_sb_has_encrypt(sbi)) {
1321 f2fs_err(sbi, "Encrypt feature is off");
1322 return -EINVAL;
1323 }
1324
1325 /*
1326 * This mount option is just for testing, and it's not worthwhile to
1327 * implement the extra complexity (e.g. RCU protection) that would be
1328 * needed to allow it to be set or changed during remount. We do allow
1329 * it to be specified during remount, but only if there is no change.
1330 */
1331 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
1332 if (fscrypt_dummy_policies_equal(&F2FS_OPTION(sbi).dummy_enc_policy,
1333 &F2FS_CTX_INFO(ctx).dummy_enc_policy))
1334 return 0;
1335 f2fs_warn(sbi, "Can't set or change test_dummy_encryption on remount");
1336 return -EINVAL;
1337 }
1338 return 0;
1339 }
1340
test_compression_spec(unsigned int mask)1341 static inline bool test_compression_spec(unsigned int mask)
1342 {
1343 return mask & (F2FS_SPEC_compress_algorithm
1344 | F2FS_SPEC_compress_log_size
1345 | F2FS_SPEC_compress_extension
1346 | F2FS_SPEC_nocompress_extension
1347 | F2FS_SPEC_compress_chksum
1348 | F2FS_SPEC_compress_mode);
1349 }
1350
clear_compression_spec(struct f2fs_fs_context * ctx)1351 static inline void clear_compression_spec(struct f2fs_fs_context *ctx)
1352 {
1353 ctx->spec_mask &= ~(F2FS_SPEC_compress_algorithm
1354 | F2FS_SPEC_compress_log_size
1355 | F2FS_SPEC_compress_extension
1356 | F2FS_SPEC_nocompress_extension
1357 | F2FS_SPEC_compress_chksum
1358 | F2FS_SPEC_compress_mode);
1359 }
1360
f2fs_check_compression(struct fs_context * fc,struct super_block * sb)1361 static int f2fs_check_compression(struct fs_context *fc,
1362 struct super_block *sb)
1363 {
1364 #ifdef CONFIG_F2FS_FS_COMPRESSION
1365 struct f2fs_fs_context *ctx = fc->fs_private;
1366 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1367 int i, cnt;
1368
1369 if (!f2fs_sb_has_compression(sbi)) {
1370 if (test_compression_spec(ctx->spec_mask) ||
1371 ctx_test_opt(ctx, F2FS_MOUNT_COMPRESS_CACHE))
1372 f2fs_info(sbi, "Image doesn't support compression");
1373 clear_compression_spec(ctx);
1374 ctx->opt_mask &= ~F2FS_MOUNT_COMPRESS_CACHE;
1375 return 0;
1376 }
1377 if (ctx->spec_mask & F2FS_SPEC_compress_extension) {
1378 cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt;
1379 for (i = 0; i < F2FS_CTX_INFO(ctx).compress_ext_cnt; i++) {
1380 if (is_compress_extension_exist(&F2FS_OPTION(sbi),
1381 F2FS_CTX_INFO(ctx).extensions[i], true)) {
1382 F2FS_CTX_INFO(ctx).extensions[i][0] = '\0';
1383 cnt--;
1384 }
1385 }
1386 if (F2FS_OPTION(sbi).compress_ext_cnt + cnt > COMPRESS_EXT_NUM) {
1387 f2fs_err(sbi, "invalid extension length/number");
1388 return -EINVAL;
1389 }
1390 }
1391 if (ctx->spec_mask & F2FS_SPEC_nocompress_extension) {
1392 cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt;
1393 for (i = 0; i < F2FS_CTX_INFO(ctx).nocompress_ext_cnt; i++) {
1394 if (is_compress_extension_exist(&F2FS_OPTION(sbi),
1395 F2FS_CTX_INFO(ctx).noextensions[i], false)) {
1396 F2FS_CTX_INFO(ctx).noextensions[i][0] = '\0';
1397 cnt--;
1398 }
1399 }
1400 if (F2FS_OPTION(sbi).nocompress_ext_cnt + cnt > COMPRESS_EXT_NUM) {
1401 f2fs_err(sbi, "invalid noextension length/number");
1402 return -EINVAL;
1403 }
1404 }
1405
1406 if (f2fs_test_compress_extension(F2FS_CTX_INFO(ctx).noextensions,
1407 F2FS_CTX_INFO(ctx).nocompress_ext_cnt,
1408 F2FS_CTX_INFO(ctx).extensions,
1409 F2FS_CTX_INFO(ctx).compress_ext_cnt)) {
1410 f2fs_err(sbi, "new noextensions conflicts with new extensions");
1411 return -EINVAL;
1412 }
1413 if (f2fs_test_compress_extension(F2FS_CTX_INFO(ctx).noextensions,
1414 F2FS_CTX_INFO(ctx).nocompress_ext_cnt,
1415 F2FS_OPTION(sbi).extensions,
1416 F2FS_OPTION(sbi).compress_ext_cnt)) {
1417 f2fs_err(sbi, "new noextensions conflicts with old extensions");
1418 return -EINVAL;
1419 }
1420 if (f2fs_test_compress_extension(F2FS_OPTION(sbi).noextensions,
1421 F2FS_OPTION(sbi).nocompress_ext_cnt,
1422 F2FS_CTX_INFO(ctx).extensions,
1423 F2FS_CTX_INFO(ctx).compress_ext_cnt)) {
1424 f2fs_err(sbi, "new extensions conflicts with old noextensions");
1425 return -EINVAL;
1426 }
1427 #endif
1428 return 0;
1429 }
1430
f2fs_check_opt_consistency(struct fs_context * fc,struct super_block * sb)1431 static int f2fs_check_opt_consistency(struct fs_context *fc,
1432 struct super_block *sb)
1433 {
1434 struct f2fs_fs_context *ctx = fc->fs_private;
1435 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1436 int err;
1437
1438 if (ctx_test_opt(ctx, F2FS_MOUNT_NORECOVERY) && !f2fs_readonly(sb))
1439 return -EINVAL;
1440
1441 if (f2fs_hw_should_discard(sbi) &&
1442 (ctx->opt_mask & F2FS_MOUNT_DISCARD) &&
1443 !ctx_test_opt(ctx, F2FS_MOUNT_DISCARD)) {
1444 f2fs_warn(sbi, "discard is required for zoned block devices");
1445 return -EINVAL;
1446 }
1447
1448 if (!f2fs_hw_support_discard(sbi) &&
1449 (ctx->opt_mask & F2FS_MOUNT_DISCARD) &&
1450 ctx_test_opt(ctx, F2FS_MOUNT_DISCARD)) {
1451 f2fs_warn(sbi, "device does not support discard");
1452 ctx_clear_opt(ctx, F2FS_MOUNT_DISCARD);
1453 ctx->opt_mask &= ~F2FS_MOUNT_DISCARD;
1454 }
1455
1456 if (f2fs_sb_has_device_alias(sbi) &&
1457 (ctx->opt_mask & F2FS_MOUNT_READ_EXTENT_CACHE) &&
1458 !ctx_test_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE)) {
1459 f2fs_err(sbi, "device aliasing requires extent cache");
1460 return -EINVAL;
1461 }
1462
1463 if (test_opt(sbi, RESERVE_ROOT) &&
1464 (ctx->opt_mask & F2FS_MOUNT_RESERVE_ROOT) &&
1465 ctx_test_opt(ctx, F2FS_MOUNT_RESERVE_ROOT)) {
1466 f2fs_info(sbi, "Preserve previous reserve_root=%u",
1467 F2FS_OPTION(sbi).root_reserved_blocks);
1468 ctx_clear_opt(ctx, F2FS_MOUNT_RESERVE_ROOT);
1469 ctx->opt_mask &= ~F2FS_MOUNT_RESERVE_ROOT;
1470 }
1471 if (test_opt(sbi, RESERVE_NODE) &&
1472 (ctx->opt_mask & F2FS_MOUNT_RESERVE_NODE) &&
1473 ctx_test_opt(ctx, F2FS_MOUNT_RESERVE_NODE)) {
1474 f2fs_info(sbi, "Preserve previous reserve_node=%u",
1475 F2FS_OPTION(sbi).root_reserved_nodes);
1476 ctx_clear_opt(ctx, F2FS_MOUNT_RESERVE_NODE);
1477 ctx->opt_mask &= ~F2FS_MOUNT_RESERVE_NODE;
1478 }
1479
1480 err = f2fs_check_test_dummy_encryption(fc, sb);
1481 if (err)
1482 return err;
1483
1484 err = f2fs_check_compression(fc, sb);
1485 if (err)
1486 return err;
1487
1488 err = f2fs_check_quota_consistency(fc, sb);
1489 if (err)
1490 return err;
1491
1492 if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) {
1493 f2fs_err(sbi,
1494 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1495 return -EINVAL;
1496 }
1497
1498 /*
1499 * The BLKZONED feature indicates that the drive was formatted with
1500 * zone alignment optimization. This is optional for host-aware
1501 * devices, but mandatory for host-managed zoned block devices.
1502 */
1503 if (f2fs_sb_has_blkzoned(sbi)) {
1504 if (F2FS_CTX_INFO(ctx).bggc_mode == BGGC_MODE_OFF) {
1505 f2fs_warn(sbi, "zoned devices need bggc");
1506 return -EINVAL;
1507 }
1508 #ifdef CONFIG_BLK_DEV_ZONED
1509 if ((ctx->spec_mask & F2FS_SPEC_discard_unit) &&
1510 F2FS_CTX_INFO(ctx).discard_unit != DISCARD_UNIT_SECTION) {
1511 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1512 F2FS_CTX_INFO(ctx).discard_unit = DISCARD_UNIT_SECTION;
1513 }
1514
1515 if ((ctx->spec_mask & F2FS_SPEC_mode) &&
1516 F2FS_CTX_INFO(ctx).fs_mode != FS_MODE_LFS) {
1517 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature");
1518 return -EINVAL;
1519 }
1520 #else
1521 f2fs_err(sbi, "Zoned block device support is not enabled");
1522 return -EINVAL;
1523 #endif
1524 }
1525
1526 if (ctx_test_opt(ctx, F2FS_MOUNT_INLINE_XATTR_SIZE)) {
1527 if (!f2fs_sb_has_extra_attr(sbi) ||
1528 !f2fs_sb_has_flexible_inline_xattr(sbi)) {
1529 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1530 return -EINVAL;
1531 }
1532 if (!ctx_test_opt(ctx, F2FS_MOUNT_INLINE_XATTR) && !test_opt(sbi, INLINE_XATTR)) {
1533 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1534 return -EINVAL;
1535 }
1536 }
1537
1538 if (ctx_test_opt(ctx, F2FS_MOUNT_ATGC) &&
1539 F2FS_CTX_INFO(ctx).fs_mode == FS_MODE_LFS) {
1540 f2fs_err(sbi, "LFS is not compatible with ATGC");
1541 return -EINVAL;
1542 }
1543
1544 if (f2fs_is_readonly(sbi) && ctx_test_opt(ctx, F2FS_MOUNT_FLUSH_MERGE)) {
1545 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1546 return -EINVAL;
1547 }
1548
1549 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1550 f2fs_err(sbi, "Allow to mount readonly mode only");
1551 return -EROFS;
1552 }
1553 return 0;
1554 }
1555
f2fs_apply_quota_options(struct fs_context * fc,struct super_block * sb)1556 static void f2fs_apply_quota_options(struct fs_context *fc,
1557 struct super_block *sb)
1558 {
1559 #ifdef CONFIG_QUOTA
1560 struct f2fs_fs_context *ctx = fc->fs_private;
1561 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1562 bool quota_feature = f2fs_sb_has_quota_ino(sbi);
1563 char *qname;
1564 int i;
1565
1566 if (quota_feature)
1567 return;
1568
1569 for (i = 0; i < MAXQUOTAS; i++) {
1570 if (!(ctx->qname_mask & (1 << i)))
1571 continue;
1572
1573 qname = F2FS_CTX_INFO(ctx).s_qf_names[i];
1574 if (qname) {
1575 qname = kstrdup(F2FS_CTX_INFO(ctx).s_qf_names[i],
1576 GFP_KERNEL | __GFP_NOFAIL);
1577 set_opt(sbi, QUOTA);
1578 }
1579 F2FS_OPTION(sbi).s_qf_names[i] = qname;
1580 }
1581
1582 if (ctx->spec_mask & F2FS_SPEC_jqfmt)
1583 F2FS_OPTION(sbi).s_jquota_fmt = F2FS_CTX_INFO(ctx).s_jquota_fmt;
1584
1585 if (quota_feature && F2FS_OPTION(sbi).s_jquota_fmt) {
1586 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
1587 F2FS_OPTION(sbi).s_jquota_fmt = 0;
1588 }
1589 #endif
1590 }
1591
f2fs_apply_test_dummy_encryption(struct fs_context * fc,struct super_block * sb)1592 static void f2fs_apply_test_dummy_encryption(struct fs_context *fc,
1593 struct super_block *sb)
1594 {
1595 struct f2fs_fs_context *ctx = fc->fs_private;
1596 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1597
1598 if (!fscrypt_is_dummy_policy_set(&F2FS_CTX_INFO(ctx).dummy_enc_policy) ||
1599 /* if already set, it was already verified to be the same */
1600 fscrypt_is_dummy_policy_set(&F2FS_OPTION(sbi).dummy_enc_policy))
1601 return;
1602 swap(F2FS_OPTION(sbi).dummy_enc_policy, F2FS_CTX_INFO(ctx).dummy_enc_policy);
1603 f2fs_warn(sbi, "Test dummy encryption mode enabled");
1604 }
1605
f2fs_apply_compression(struct fs_context * fc,struct super_block * sb)1606 static void f2fs_apply_compression(struct fs_context *fc,
1607 struct super_block *sb)
1608 {
1609 #ifdef CONFIG_F2FS_FS_COMPRESSION
1610 struct f2fs_fs_context *ctx = fc->fs_private;
1611 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1612 unsigned char (*ctx_ext)[F2FS_EXTENSION_LEN];
1613 unsigned char (*sbi_ext)[F2FS_EXTENSION_LEN];
1614 int ctx_cnt, sbi_cnt, i;
1615
1616 if (ctx->spec_mask & F2FS_SPEC_compress_level)
1617 F2FS_OPTION(sbi).compress_level =
1618 F2FS_CTX_INFO(ctx).compress_level;
1619 if (ctx->spec_mask & F2FS_SPEC_compress_algorithm)
1620 F2FS_OPTION(sbi).compress_algorithm =
1621 F2FS_CTX_INFO(ctx).compress_algorithm;
1622 if (ctx->spec_mask & F2FS_SPEC_compress_log_size)
1623 F2FS_OPTION(sbi).compress_log_size =
1624 F2FS_CTX_INFO(ctx).compress_log_size;
1625 if (ctx->spec_mask & F2FS_SPEC_compress_chksum)
1626 F2FS_OPTION(sbi).compress_chksum =
1627 F2FS_CTX_INFO(ctx).compress_chksum;
1628 if (ctx->spec_mask & F2FS_SPEC_compress_mode)
1629 F2FS_OPTION(sbi).compress_mode =
1630 F2FS_CTX_INFO(ctx).compress_mode;
1631 if (ctx->spec_mask & F2FS_SPEC_compress_extension) {
1632 ctx_ext = F2FS_CTX_INFO(ctx).extensions;
1633 ctx_cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt;
1634 sbi_ext = F2FS_OPTION(sbi).extensions;
1635 sbi_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1636 for (i = 0; i < ctx_cnt; i++) {
1637 if (strlen(ctx_ext[i]) == 0)
1638 continue;
1639 strscpy(sbi_ext[sbi_cnt], ctx_ext[i]);
1640 sbi_cnt++;
1641 }
1642 F2FS_OPTION(sbi).compress_ext_cnt = sbi_cnt;
1643 }
1644 if (ctx->spec_mask & F2FS_SPEC_nocompress_extension) {
1645 ctx_ext = F2FS_CTX_INFO(ctx).noextensions;
1646 ctx_cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt;
1647 sbi_ext = F2FS_OPTION(sbi).noextensions;
1648 sbi_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1649 for (i = 0; i < ctx_cnt; i++) {
1650 if (strlen(ctx_ext[i]) == 0)
1651 continue;
1652 strscpy(sbi_ext[sbi_cnt], ctx_ext[i]);
1653 sbi_cnt++;
1654 }
1655 F2FS_OPTION(sbi).nocompress_ext_cnt = sbi_cnt;
1656 }
1657 #endif
1658 }
1659
f2fs_apply_options(struct fs_context * fc,struct super_block * sb)1660 static void f2fs_apply_options(struct fs_context *fc, struct super_block *sb)
1661 {
1662 struct f2fs_fs_context *ctx = fc->fs_private;
1663 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1664
1665 F2FS_OPTION(sbi).opt &= ~ctx->opt_mask;
1666 F2FS_OPTION(sbi).opt |= F2FS_CTX_INFO(ctx).opt;
1667
1668 if (ctx->spec_mask & F2FS_SPEC_background_gc)
1669 F2FS_OPTION(sbi).bggc_mode = F2FS_CTX_INFO(ctx).bggc_mode;
1670 if (ctx->spec_mask & F2FS_SPEC_inline_xattr_size)
1671 F2FS_OPTION(sbi).inline_xattr_size =
1672 F2FS_CTX_INFO(ctx).inline_xattr_size;
1673 if (ctx->spec_mask & F2FS_SPEC_active_logs)
1674 F2FS_OPTION(sbi).active_logs = F2FS_CTX_INFO(ctx).active_logs;
1675 if (ctx->spec_mask & F2FS_SPEC_reserve_root)
1676 F2FS_OPTION(sbi).root_reserved_blocks =
1677 F2FS_CTX_INFO(ctx).root_reserved_blocks;
1678 if (ctx->spec_mask & F2FS_SPEC_reserve_node)
1679 F2FS_OPTION(sbi).root_reserved_nodes =
1680 F2FS_CTX_INFO(ctx).root_reserved_nodes;
1681 if (ctx->spec_mask & F2FS_SPEC_resgid)
1682 F2FS_OPTION(sbi).s_resgid = F2FS_CTX_INFO(ctx).s_resgid;
1683 if (ctx->spec_mask & F2FS_SPEC_resuid)
1684 F2FS_OPTION(sbi).s_resuid = F2FS_CTX_INFO(ctx).s_resuid;
1685 if (ctx->spec_mask & F2FS_SPEC_mode)
1686 F2FS_OPTION(sbi).fs_mode = F2FS_CTX_INFO(ctx).fs_mode;
1687 #ifdef CONFIG_F2FS_FAULT_INJECTION
1688 if (ctx->spec_mask & F2FS_SPEC_fault_injection)
1689 (void)f2fs_build_fault_attr(sbi,
1690 F2FS_CTX_INFO(ctx).fault_info.inject_rate, 0, FAULT_RATE);
1691 if (ctx->spec_mask & F2FS_SPEC_fault_type)
1692 (void)f2fs_build_fault_attr(sbi, 0,
1693 F2FS_CTX_INFO(ctx).fault_info.inject_type, FAULT_TYPE);
1694 #endif
1695 if (ctx->spec_mask & F2FS_SPEC_alloc_mode)
1696 F2FS_OPTION(sbi).alloc_mode = F2FS_CTX_INFO(ctx).alloc_mode;
1697 if (ctx->spec_mask & F2FS_SPEC_fsync_mode)
1698 F2FS_OPTION(sbi).fsync_mode = F2FS_CTX_INFO(ctx).fsync_mode;
1699 if (ctx->spec_mask & F2FS_SPEC_checkpoint_disable_cap)
1700 F2FS_OPTION(sbi).unusable_cap = F2FS_CTX_INFO(ctx).unusable_cap;
1701 if (ctx->spec_mask & F2FS_SPEC_checkpoint_disable_cap_perc)
1702 F2FS_OPTION(sbi).unusable_cap_perc =
1703 F2FS_CTX_INFO(ctx).unusable_cap_perc;
1704 if (ctx->spec_mask & F2FS_SPEC_discard_unit)
1705 F2FS_OPTION(sbi).discard_unit = F2FS_CTX_INFO(ctx).discard_unit;
1706 if (ctx->spec_mask & F2FS_SPEC_memory_mode)
1707 F2FS_OPTION(sbi).memory_mode = F2FS_CTX_INFO(ctx).memory_mode;
1708 if (ctx->spec_mask & F2FS_SPEC_errors)
1709 F2FS_OPTION(sbi).errors = F2FS_CTX_INFO(ctx).errors;
1710 if (ctx->spec_mask & F2FS_SPEC_lookup_mode)
1711 F2FS_OPTION(sbi).lookup_mode = F2FS_CTX_INFO(ctx).lookup_mode;
1712
1713 f2fs_apply_compression(fc, sb);
1714 f2fs_apply_test_dummy_encryption(fc, sb);
1715 f2fs_apply_quota_options(fc, sb);
1716 }
1717
f2fs_sanity_check_options(struct f2fs_sb_info * sbi,bool remount)1718 static int f2fs_sanity_check_options(struct f2fs_sb_info *sbi, bool remount)
1719 {
1720 if (f2fs_sb_has_device_alias(sbi) &&
1721 !test_opt(sbi, READ_EXTENT_CACHE)) {
1722 f2fs_err(sbi, "device aliasing requires extent cache");
1723 return -EINVAL;
1724 }
1725
1726 if (!remount)
1727 return 0;
1728
1729 #ifdef CONFIG_BLK_DEV_ZONED
1730 if (f2fs_sb_has_blkzoned(sbi) &&
1731 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) {
1732 f2fs_err(sbi,
1733 "zoned: max open zones %u is too small, need at least %u open zones",
1734 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs);
1735 return -EINVAL;
1736 }
1737 #endif
1738 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
1739 f2fs_warn(sbi, "LFS is not compatible with IPU");
1740 return -EINVAL;
1741 }
1742 return 0;
1743 }
1744
f2fs_alloc_inode(struct super_block * sb)1745 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1746 {
1747 struct f2fs_inode_info *fi;
1748
1749 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
1750 return NULL;
1751
1752 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1753 if (!fi)
1754 return NULL;
1755
1756 init_once((void *) fi);
1757
1758 /* Initialize f2fs-specific inode info */
1759 atomic_set(&fi->dirty_pages, 0);
1760 atomic_set(&fi->i_compr_blocks, 0);
1761 atomic_set(&fi->open_count, 0);
1762 init_f2fs_rwsem(&fi->i_sem);
1763 spin_lock_init(&fi->i_size_lock);
1764 INIT_LIST_HEAD(&fi->dirty_list);
1765 INIT_LIST_HEAD(&fi->gdirty_list);
1766 INIT_LIST_HEAD(&fi->gdonate_list);
1767 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1768 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1769 init_f2fs_rwsem(&fi->i_xattr_sem);
1770
1771 /* Will be used by directory only */
1772 fi->i_dir_level = F2FS_SB(sb)->dir_level;
1773
1774 return &fi->vfs_inode;
1775 }
1776
f2fs_drop_inode(struct inode * inode)1777 static int f2fs_drop_inode(struct inode *inode)
1778 {
1779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1780 int ret;
1781
1782 /*
1783 * during filesystem shutdown, if checkpoint is disabled,
1784 * drop useless meta/node dirty pages.
1785 */
1786 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1787 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1788 inode->i_ino == F2FS_META_INO(sbi)) {
1789 trace_f2fs_drop_inode(inode, 1);
1790 return 1;
1791 }
1792 }
1793
1794 /*
1795 * This is to avoid a deadlock condition like below.
1796 * writeback_single_inode(inode)
1797 * - f2fs_write_data_page
1798 * - f2fs_gc -> iput -> evict
1799 * - inode_wait_for_writeback(inode)
1800 */
1801 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1802 if (!inode->i_nlink && !is_bad_inode(inode)) {
1803 /* to avoid evict_inode call simultaneously */
1804 __iget(inode);
1805 spin_unlock(&inode->i_lock);
1806
1807 /* should remain fi->extent_tree for writepage */
1808 f2fs_destroy_extent_node(inode);
1809
1810 sb_start_intwrite(inode->i_sb);
1811 f2fs_i_size_write(inode, 0);
1812
1813 f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1814 inode, NULL, 0, DATA);
1815 truncate_inode_pages_final(inode->i_mapping);
1816
1817 if (F2FS_HAS_BLOCKS(inode))
1818 f2fs_truncate(inode);
1819
1820 sb_end_intwrite(inode->i_sb);
1821
1822 spin_lock(&inode->i_lock);
1823 iput(inode);
1824 }
1825 trace_f2fs_drop_inode(inode, 0);
1826 return 0;
1827 }
1828 ret = inode_generic_drop(inode);
1829 if (!ret)
1830 ret = fscrypt_drop_inode(inode);
1831 trace_f2fs_drop_inode(inode, ret);
1832 return ret;
1833 }
1834
f2fs_inode_dirtied(struct inode * inode,bool sync)1835 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1836 {
1837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 int ret = 0;
1839
1840 spin_lock(&sbi->inode_lock[DIRTY_META]);
1841 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1842 ret = 1;
1843 } else {
1844 set_inode_flag(inode, FI_DIRTY_INODE);
1845 stat_inc_dirty_inode(sbi, DIRTY_META);
1846 }
1847 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1848 list_add_tail(&F2FS_I(inode)->gdirty_list,
1849 &sbi->inode_list[DIRTY_META]);
1850 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1851 }
1852 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1853
1854 /* if atomic write is not committed, set inode w/ atomic dirty */
1855 if (!ret && f2fs_is_atomic_file(inode) &&
1856 !is_inode_flag_set(inode, FI_ATOMIC_COMMITTED))
1857 set_inode_flag(inode, FI_ATOMIC_DIRTIED);
1858
1859 return ret;
1860 }
1861
f2fs_inode_synced(struct inode * inode)1862 void f2fs_inode_synced(struct inode *inode)
1863 {
1864 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1865
1866 spin_lock(&sbi->inode_lock[DIRTY_META]);
1867 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1868 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1869 return;
1870 }
1871 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1872 list_del_init(&F2FS_I(inode)->gdirty_list);
1873 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1874 }
1875 clear_inode_flag(inode, FI_DIRTY_INODE);
1876 clear_inode_flag(inode, FI_AUTO_RECOVER);
1877 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1878 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1879 }
1880
1881 /*
1882 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1883 *
1884 * We should call set_dirty_inode to write the dirty inode through write_inode.
1885 */
f2fs_dirty_inode(struct inode * inode,int flags)1886 static void f2fs_dirty_inode(struct inode *inode, int flags)
1887 {
1888 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1889
1890 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1891 inode->i_ino == F2FS_META_INO(sbi))
1892 return;
1893
1894 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1895 clear_inode_flag(inode, FI_AUTO_RECOVER);
1896
1897 f2fs_inode_dirtied(inode, false);
1898 }
1899
f2fs_free_inode(struct inode * inode)1900 static void f2fs_free_inode(struct inode *inode)
1901 {
1902 fscrypt_free_inode(inode);
1903 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1904 }
1905
destroy_percpu_info(struct f2fs_sb_info * sbi)1906 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1907 {
1908 percpu_counter_destroy(&sbi->total_valid_inode_count);
1909 percpu_counter_destroy(&sbi->rf_node_block_count);
1910 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1911 }
1912
destroy_device_list(struct f2fs_sb_info * sbi)1913 static void destroy_device_list(struct f2fs_sb_info *sbi)
1914 {
1915 int i;
1916
1917 for (i = 0; i < sbi->s_ndevs; i++) {
1918 if (i > 0)
1919 bdev_fput(FDEV(i).bdev_file);
1920 #ifdef CONFIG_BLK_DEV_ZONED
1921 kvfree(FDEV(i).blkz_seq);
1922 #endif
1923 }
1924 kvfree(sbi->devs);
1925 }
1926
f2fs_put_super(struct super_block * sb)1927 static void f2fs_put_super(struct super_block *sb)
1928 {
1929 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1930 int i;
1931 int err = 0;
1932 bool done;
1933
1934 /* unregister procfs/sysfs entries in advance to avoid race case */
1935 f2fs_unregister_sysfs(sbi);
1936
1937 f2fs_quota_off_umount(sb);
1938
1939 /* prevent remaining shrinker jobs */
1940 mutex_lock(&sbi->umount_mutex);
1941
1942 /*
1943 * flush all issued checkpoints and stop checkpoint issue thread.
1944 * after then, all checkpoints should be done by each process context.
1945 */
1946 f2fs_stop_ckpt_thread(sbi);
1947
1948 /*
1949 * We don't need to do checkpoint when superblock is clean.
1950 * But, the previous checkpoint was not done by umount, it needs to do
1951 * clean checkpoint again.
1952 */
1953 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1954 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1955 struct cp_control cpc = {
1956 .reason = CP_UMOUNT,
1957 };
1958 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1959 err = f2fs_write_checkpoint(sbi, &cpc);
1960 }
1961
1962 /* be sure to wait for any on-going discard commands */
1963 done = f2fs_issue_discard_timeout(sbi);
1964 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
1965 struct cp_control cpc = {
1966 .reason = CP_UMOUNT | CP_TRIMMED,
1967 };
1968 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1969 err = f2fs_write_checkpoint(sbi, &cpc);
1970 }
1971
1972 /*
1973 * normally superblock is clean, so we need to release this.
1974 * In addition, EIO will skip do checkpoint, we need this as well.
1975 */
1976 f2fs_release_ino_entry(sbi, true);
1977
1978 f2fs_leave_shrinker(sbi);
1979 mutex_unlock(&sbi->umount_mutex);
1980
1981 /* our cp_error case, we can wait for any writeback page */
1982 f2fs_flush_merged_writes(sbi);
1983
1984 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1985
1986 if (err || f2fs_cp_error(sbi)) {
1987 truncate_inode_pages_final(NODE_MAPPING(sbi));
1988 truncate_inode_pages_final(META_MAPPING(sbi));
1989 }
1990
1991 for (i = 0; i < NR_COUNT_TYPE; i++) {
1992 if (!get_pages(sbi, i))
1993 continue;
1994 f2fs_err(sbi, "detect filesystem reference count leak during "
1995 "umount, type: %d, count: %lld", i, get_pages(sbi, i));
1996 f2fs_bug_on(sbi, 1);
1997 }
1998
1999 f2fs_bug_on(sbi, sbi->fsync_node_num);
2000
2001 f2fs_destroy_compress_inode(sbi);
2002
2003 iput(sbi->node_inode);
2004 sbi->node_inode = NULL;
2005
2006 iput(sbi->meta_inode);
2007 sbi->meta_inode = NULL;
2008
2009 /*
2010 * iput() can update stat information, if f2fs_write_checkpoint()
2011 * above failed with error.
2012 */
2013 f2fs_destroy_stats(sbi);
2014
2015 /* destroy f2fs internal modules */
2016 f2fs_destroy_node_manager(sbi);
2017 f2fs_destroy_segment_manager(sbi);
2018
2019 /* flush s_error_work before sbi destroy */
2020 flush_work(&sbi->s_error_work);
2021
2022 f2fs_destroy_post_read_wq(sbi);
2023
2024 kvfree(sbi->ckpt);
2025
2026 kfree(sbi->raw_super);
2027
2028 f2fs_destroy_page_array_cache(sbi);
2029 f2fs_destroy_xattr_caches(sbi);
2030 #ifdef CONFIG_QUOTA
2031 for (i = 0; i < MAXQUOTAS; i++)
2032 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2033 #endif
2034 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
2035 destroy_percpu_info(sbi);
2036 f2fs_destroy_iostat(sbi);
2037 for (i = 0; i < NR_PAGE_TYPE; i++)
2038 kfree(sbi->write_io[i]);
2039 #if IS_ENABLED(CONFIG_UNICODE)
2040 utf8_unload(sb->s_encoding);
2041 #endif
2042 }
2043
f2fs_sync_fs(struct super_block * sb,int sync)2044 int f2fs_sync_fs(struct super_block *sb, int sync)
2045 {
2046 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2047 int err = 0;
2048
2049 if (unlikely(f2fs_cp_error(sbi)))
2050 return 0;
2051 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2052 return 0;
2053
2054 trace_f2fs_sync_fs(sb, sync);
2055
2056 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2057 return -EAGAIN;
2058
2059 if (sync) {
2060 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2061 err = f2fs_issue_checkpoint(sbi);
2062 }
2063
2064 return err;
2065 }
2066
f2fs_freeze(struct super_block * sb)2067 static int f2fs_freeze(struct super_block *sb)
2068 {
2069 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2070
2071 if (f2fs_readonly(sb))
2072 return 0;
2073
2074 /* IO error happened before */
2075 if (unlikely(f2fs_cp_error(sbi)))
2076 return -EIO;
2077
2078 /* must be clean, since sync_filesystem() was already called */
2079 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY))
2080 return -EINVAL;
2081
2082 sbi->umount_lock_holder = current;
2083
2084 /* Let's flush checkpoints and stop the thread. */
2085 f2fs_flush_ckpt_thread(sbi);
2086
2087 sbi->umount_lock_holder = NULL;
2088
2089 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
2090 set_sbi_flag(sbi, SBI_IS_FREEZING);
2091 return 0;
2092 }
2093
f2fs_unfreeze(struct super_block * sb)2094 static int f2fs_unfreeze(struct super_block *sb)
2095 {
2096 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2097
2098 /*
2099 * It will update discard_max_bytes of mounted lvm device to zero
2100 * after creating snapshot on this lvm device, let's drop all
2101 * remained discards.
2102 * We don't need to disable real-time discard because discard_max_bytes
2103 * will recover after removal of snapshot.
2104 */
2105 if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi))
2106 f2fs_issue_discard_timeout(sbi);
2107
2108 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
2109 return 0;
2110 }
2111
2112 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)2113 static int f2fs_statfs_project(struct super_block *sb,
2114 kprojid_t projid, struct kstatfs *buf)
2115 {
2116 struct kqid qid;
2117 struct dquot *dquot;
2118 u64 limit;
2119 u64 curblock;
2120
2121 qid = make_kqid_projid(projid);
2122 dquot = dqget(sb, qid);
2123 if (IS_ERR(dquot))
2124 return PTR_ERR(dquot);
2125 spin_lock(&dquot->dq_dqb_lock);
2126
2127 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
2128 dquot->dq_dqb.dqb_bhardlimit);
2129 limit >>= sb->s_blocksize_bits;
2130
2131 if (limit) {
2132 uint64_t remaining = 0;
2133
2134 curblock = (dquot->dq_dqb.dqb_curspace +
2135 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
2136 if (limit > curblock)
2137 remaining = limit - curblock;
2138
2139 buf->f_blocks = min(buf->f_blocks, limit);
2140 buf->f_bfree = min(buf->f_bfree, remaining);
2141 buf->f_bavail = min(buf->f_bavail, remaining);
2142 }
2143
2144 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
2145 dquot->dq_dqb.dqb_ihardlimit);
2146
2147 if (limit) {
2148 uint64_t remaining = 0;
2149
2150 if (limit > dquot->dq_dqb.dqb_curinodes)
2151 remaining = limit - dquot->dq_dqb.dqb_curinodes;
2152
2153 buf->f_files = min(buf->f_files, limit);
2154 buf->f_ffree = min(buf->f_ffree, remaining);
2155 }
2156
2157 spin_unlock(&dquot->dq_dqb_lock);
2158 dqput(dquot);
2159 return 0;
2160 }
2161 #endif
2162
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)2163 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
2164 {
2165 struct super_block *sb = dentry->d_sb;
2166 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2167 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2168 block_t total_count, user_block_count, start_count;
2169 u64 avail_node_count;
2170 unsigned int total_valid_node_count;
2171
2172 total_count = le64_to_cpu(sbi->raw_super->block_count);
2173 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
2174 buf->f_type = F2FS_SUPER_MAGIC;
2175 buf->f_bsize = sbi->blocksize;
2176
2177 buf->f_blocks = total_count - start_count;
2178
2179 spin_lock(&sbi->stat_lock);
2180 if (sbi->carve_out)
2181 buf->f_blocks -= sbi->current_reserved_blocks;
2182 user_block_count = sbi->user_block_count;
2183 total_valid_node_count = valid_node_count(sbi);
2184 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2185 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
2186 sbi->current_reserved_blocks;
2187
2188 if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
2189 buf->f_bfree = 0;
2190 else
2191 buf->f_bfree -= sbi->unusable_block_count;
2192 spin_unlock(&sbi->stat_lock);
2193
2194 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
2195 buf->f_bavail = buf->f_bfree -
2196 F2FS_OPTION(sbi).root_reserved_blocks;
2197 else
2198 buf->f_bavail = 0;
2199
2200 if (avail_node_count > user_block_count) {
2201 buf->f_files = user_block_count;
2202 buf->f_ffree = buf->f_bavail;
2203 } else {
2204 buf->f_files = avail_node_count;
2205 buf->f_ffree = min(avail_node_count - total_valid_node_count,
2206 buf->f_bavail);
2207 }
2208
2209 buf->f_namelen = F2FS_NAME_LEN;
2210 buf->f_fsid = u64_to_fsid(id);
2211
2212 #ifdef CONFIG_QUOTA
2213 if (is_inode_flag_set(d_inode(dentry), FI_PROJ_INHERIT) &&
2214 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
2215 f2fs_statfs_project(sb, F2FS_I(d_inode(dentry))->i_projid, buf);
2216 }
2217 #endif
2218 return 0;
2219 }
2220
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)2221 static inline void f2fs_show_quota_options(struct seq_file *seq,
2222 struct super_block *sb)
2223 {
2224 #ifdef CONFIG_QUOTA
2225 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2226
2227 if (F2FS_OPTION(sbi).s_jquota_fmt) {
2228 char *fmtname = "";
2229
2230 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
2231 case QFMT_VFS_OLD:
2232 fmtname = "vfsold";
2233 break;
2234 case QFMT_VFS_V0:
2235 fmtname = "vfsv0";
2236 break;
2237 case QFMT_VFS_V1:
2238 fmtname = "vfsv1";
2239 break;
2240 }
2241 seq_printf(seq, ",jqfmt=%s", fmtname);
2242 }
2243
2244 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
2245 seq_show_option(seq, "usrjquota",
2246 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
2247
2248 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
2249 seq_show_option(seq, "grpjquota",
2250 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
2251
2252 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
2253 seq_show_option(seq, "prjjquota",
2254 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
2255 #endif
2256 }
2257
2258 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_show_compress_options(struct seq_file * seq,struct super_block * sb)2259 static inline void f2fs_show_compress_options(struct seq_file *seq,
2260 struct super_block *sb)
2261 {
2262 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2263 char *algtype = "";
2264 int i;
2265
2266 if (!f2fs_sb_has_compression(sbi))
2267 return;
2268
2269 switch (F2FS_OPTION(sbi).compress_algorithm) {
2270 case COMPRESS_LZO:
2271 algtype = "lzo";
2272 break;
2273 case COMPRESS_LZ4:
2274 algtype = "lz4";
2275 break;
2276 case COMPRESS_ZSTD:
2277 algtype = "zstd";
2278 break;
2279 case COMPRESS_LZORLE:
2280 algtype = "lzo-rle";
2281 break;
2282 }
2283 seq_printf(seq, ",compress_algorithm=%s", algtype);
2284
2285 if (F2FS_OPTION(sbi).compress_level)
2286 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
2287
2288 seq_printf(seq, ",compress_log_size=%u",
2289 F2FS_OPTION(sbi).compress_log_size);
2290
2291 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
2292 seq_printf(seq, ",compress_extension=%s",
2293 F2FS_OPTION(sbi).extensions[i]);
2294 }
2295
2296 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
2297 seq_printf(seq, ",nocompress_extension=%s",
2298 F2FS_OPTION(sbi).noextensions[i]);
2299 }
2300
2301 if (F2FS_OPTION(sbi).compress_chksum)
2302 seq_puts(seq, ",compress_chksum");
2303
2304 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
2305 seq_printf(seq, ",compress_mode=%s", "fs");
2306 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
2307 seq_printf(seq, ",compress_mode=%s", "user");
2308
2309 if (test_opt(sbi, COMPRESS_CACHE))
2310 seq_puts(seq, ",compress_cache");
2311 }
2312 #endif
2313
f2fs_show_options(struct seq_file * seq,struct dentry * root)2314 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
2315 {
2316 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
2317
2318 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
2319 seq_printf(seq, ",background_gc=%s", "sync");
2320 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
2321 seq_printf(seq, ",background_gc=%s", "on");
2322 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
2323 seq_printf(seq, ",background_gc=%s", "off");
2324
2325 if (test_opt(sbi, GC_MERGE))
2326 seq_puts(seq, ",gc_merge");
2327 else
2328 seq_puts(seq, ",nogc_merge");
2329
2330 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2331 seq_puts(seq, ",disable_roll_forward");
2332 if (test_opt(sbi, NORECOVERY))
2333 seq_puts(seq, ",norecovery");
2334 if (test_opt(sbi, DISCARD)) {
2335 seq_puts(seq, ",discard");
2336 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
2337 seq_printf(seq, ",discard_unit=%s", "block");
2338 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2339 seq_printf(seq, ",discard_unit=%s", "segment");
2340 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2341 seq_printf(seq, ",discard_unit=%s", "section");
2342 } else {
2343 seq_puts(seq, ",nodiscard");
2344 }
2345 #ifdef CONFIG_F2FS_FS_XATTR
2346 if (test_opt(sbi, XATTR_USER))
2347 seq_puts(seq, ",user_xattr");
2348 else
2349 seq_puts(seq, ",nouser_xattr");
2350 if (test_opt(sbi, INLINE_XATTR))
2351 seq_puts(seq, ",inline_xattr");
2352 else
2353 seq_puts(seq, ",noinline_xattr");
2354 if (test_opt(sbi, INLINE_XATTR_SIZE))
2355 seq_printf(seq, ",inline_xattr_size=%u",
2356 F2FS_OPTION(sbi).inline_xattr_size);
2357 #endif
2358 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2359 if (test_opt(sbi, POSIX_ACL))
2360 seq_puts(seq, ",acl");
2361 else
2362 seq_puts(seq, ",noacl");
2363 #endif
2364 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
2365 seq_puts(seq, ",disable_ext_identify");
2366 if (test_opt(sbi, INLINE_DATA))
2367 seq_puts(seq, ",inline_data");
2368 else
2369 seq_puts(seq, ",noinline_data");
2370 if (test_opt(sbi, INLINE_DENTRY))
2371 seq_puts(seq, ",inline_dentry");
2372 else
2373 seq_puts(seq, ",noinline_dentry");
2374 if (test_opt(sbi, FLUSH_MERGE))
2375 seq_puts(seq, ",flush_merge");
2376 else
2377 seq_puts(seq, ",noflush_merge");
2378 if (test_opt(sbi, NOBARRIER))
2379 seq_puts(seq, ",nobarrier");
2380 else
2381 seq_puts(seq, ",barrier");
2382 if (test_opt(sbi, FASTBOOT))
2383 seq_puts(seq, ",fastboot");
2384 if (test_opt(sbi, READ_EXTENT_CACHE))
2385 seq_puts(seq, ",extent_cache");
2386 else
2387 seq_puts(seq, ",noextent_cache");
2388 if (test_opt(sbi, AGE_EXTENT_CACHE))
2389 seq_puts(seq, ",age_extent_cache");
2390 if (test_opt(sbi, DATA_FLUSH))
2391 seq_puts(seq, ",data_flush");
2392
2393 seq_puts(seq, ",mode=");
2394 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
2395 seq_puts(seq, "adaptive");
2396 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
2397 seq_puts(seq, "lfs");
2398 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
2399 seq_puts(seq, "fragment:segment");
2400 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2401 seq_puts(seq, "fragment:block");
2402 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
2403 if (test_opt(sbi, RESERVE_ROOT) || test_opt(sbi, RESERVE_NODE))
2404 seq_printf(seq, ",reserve_root=%u,reserve_node=%u,resuid=%u,"
2405 "resgid=%u",
2406 F2FS_OPTION(sbi).root_reserved_blocks,
2407 F2FS_OPTION(sbi).root_reserved_nodes,
2408 from_kuid_munged(&init_user_ns,
2409 F2FS_OPTION(sbi).s_resuid),
2410 from_kgid_munged(&init_user_ns,
2411 F2FS_OPTION(sbi).s_resgid));
2412 #ifdef CONFIG_F2FS_FAULT_INJECTION
2413 if (test_opt(sbi, FAULT_INJECTION)) {
2414 seq_printf(seq, ",fault_injection=%u",
2415 F2FS_OPTION(sbi).fault_info.inject_rate);
2416 seq_printf(seq, ",fault_type=%u",
2417 F2FS_OPTION(sbi).fault_info.inject_type);
2418 }
2419 #endif
2420 #ifdef CONFIG_QUOTA
2421 if (test_opt(sbi, QUOTA))
2422 seq_puts(seq, ",quota");
2423 if (test_opt(sbi, USRQUOTA))
2424 seq_puts(seq, ",usrquota");
2425 if (test_opt(sbi, GRPQUOTA))
2426 seq_puts(seq, ",grpquota");
2427 if (test_opt(sbi, PRJQUOTA))
2428 seq_puts(seq, ",prjquota");
2429 #endif
2430 f2fs_show_quota_options(seq, sbi->sb);
2431
2432 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2433
2434 if (sbi->sb->s_flags & SB_INLINECRYPT)
2435 seq_puts(seq, ",inlinecrypt");
2436
2437 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2438 seq_printf(seq, ",alloc_mode=%s", "default");
2439 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2440 seq_printf(seq, ",alloc_mode=%s", "reuse");
2441
2442 if (test_opt(sbi, DISABLE_CHECKPOINT))
2443 seq_printf(seq, ",checkpoint=disable:%u",
2444 F2FS_OPTION(sbi).unusable_cap);
2445 if (test_opt(sbi, MERGE_CHECKPOINT))
2446 seq_puts(seq, ",checkpoint_merge");
2447 else
2448 seq_puts(seq, ",nocheckpoint_merge");
2449 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2450 seq_printf(seq, ",fsync_mode=%s", "posix");
2451 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2452 seq_printf(seq, ",fsync_mode=%s", "strict");
2453 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2454 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2455
2456 #ifdef CONFIG_F2FS_FS_COMPRESSION
2457 f2fs_show_compress_options(seq, sbi->sb);
2458 #endif
2459
2460 if (test_opt(sbi, ATGC))
2461 seq_puts(seq, ",atgc");
2462
2463 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2464 seq_printf(seq, ",memory=%s", "normal");
2465 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2466 seq_printf(seq, ",memory=%s", "low");
2467
2468 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2469 seq_printf(seq, ",errors=%s", "remount-ro");
2470 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE)
2471 seq_printf(seq, ",errors=%s", "continue");
2472 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC)
2473 seq_printf(seq, ",errors=%s", "panic");
2474
2475 if (test_opt(sbi, NAT_BITS))
2476 seq_puts(seq, ",nat_bits");
2477
2478 if (F2FS_OPTION(sbi).lookup_mode == LOOKUP_PERF)
2479 seq_show_option(seq, "lookup_mode", "perf");
2480 else if (F2FS_OPTION(sbi).lookup_mode == LOOKUP_COMPAT)
2481 seq_show_option(seq, "lookup_mode", "compat");
2482 else if (F2FS_OPTION(sbi).lookup_mode == LOOKUP_AUTO)
2483 seq_show_option(seq, "lookup_mode", "auto");
2484
2485 return 0;
2486 }
2487
default_options(struct f2fs_sb_info * sbi,bool remount)2488 static void default_options(struct f2fs_sb_info *sbi, bool remount)
2489 {
2490 /* init some FS parameters */
2491 if (!remount) {
2492 set_opt(sbi, READ_EXTENT_CACHE);
2493 clear_opt(sbi, DISABLE_CHECKPOINT);
2494
2495 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2496 set_opt(sbi, DISCARD);
2497
2498 if (f2fs_sb_has_blkzoned(sbi))
2499 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2500 else
2501 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2502 }
2503
2504 if (f2fs_sb_has_readonly(sbi))
2505 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2506 else
2507 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2508
2509 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2510 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2511 SMALL_VOLUME_SEGMENTS)
2512 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2513 else
2514 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2515 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2516 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2517 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2518 if (f2fs_sb_has_compression(sbi)) {
2519 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2520 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2521 F2FS_OPTION(sbi).compress_ext_cnt = 0;
2522 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2523 }
2524 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2525 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2526 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE;
2527
2528 set_opt(sbi, INLINE_XATTR);
2529 set_opt(sbi, INLINE_DATA);
2530 set_opt(sbi, INLINE_DENTRY);
2531 set_opt(sbi, MERGE_CHECKPOINT);
2532 set_opt(sbi, LAZYTIME);
2533 F2FS_OPTION(sbi).unusable_cap = 0;
2534 if (!f2fs_is_readonly(sbi))
2535 set_opt(sbi, FLUSH_MERGE);
2536 if (f2fs_sb_has_blkzoned(sbi))
2537 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2538 else
2539 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2540
2541 #ifdef CONFIG_F2FS_FS_XATTR
2542 set_opt(sbi, XATTR_USER);
2543 #endif
2544 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2545 set_opt(sbi, POSIX_ACL);
2546 #endif
2547
2548 f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL);
2549
2550 F2FS_OPTION(sbi).lookup_mode = LOOKUP_PERF;
2551 }
2552
2553 #ifdef CONFIG_QUOTA
2554 static int f2fs_enable_quotas(struct super_block *sb);
2555 #endif
2556
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)2557 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2558 {
2559 unsigned int s_flags = sbi->sb->s_flags;
2560 struct cp_control cpc;
2561 unsigned int gc_mode = sbi->gc_mode;
2562 int err = 0;
2563 int ret;
2564 block_t unusable;
2565
2566 if (s_flags & SB_RDONLY) {
2567 f2fs_err(sbi, "checkpoint=disable on readonly fs");
2568 return -EINVAL;
2569 }
2570 sbi->sb->s_flags |= SB_ACTIVE;
2571
2572 /* check if we need more GC first */
2573 unusable = f2fs_get_unusable_blocks(sbi);
2574 if (!f2fs_disable_cp_again(sbi, unusable))
2575 goto skip_gc;
2576
2577 f2fs_update_time(sbi, DISABLE_TIME);
2578
2579 sbi->gc_mode = GC_URGENT_HIGH;
2580
2581 while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2582 struct f2fs_gc_control gc_control = {
2583 .victim_segno = NULL_SEGNO,
2584 .init_gc_type = FG_GC,
2585 .should_migrate_blocks = false,
2586 .err_gc_skipped = true,
2587 .no_bg_gc = true,
2588 .nr_free_secs = 1 };
2589
2590 f2fs_down_write(&sbi->gc_lock);
2591 stat_inc_gc_call_count(sbi, FOREGROUND);
2592 err = f2fs_gc(sbi, &gc_control);
2593 if (err == -ENODATA) {
2594 err = 0;
2595 break;
2596 }
2597 if (err && err != -EAGAIN)
2598 break;
2599 }
2600
2601 ret = sync_filesystem(sbi->sb);
2602 if (ret || err) {
2603 err = ret ? ret : err;
2604 goto restore_flag;
2605 }
2606
2607 unusable = f2fs_get_unusable_blocks(sbi);
2608 if (f2fs_disable_cp_again(sbi, unusable)) {
2609 err = -EAGAIN;
2610 goto restore_flag;
2611 }
2612
2613 skip_gc:
2614 f2fs_down_write(&sbi->gc_lock);
2615 cpc.reason = CP_PAUSE;
2616 set_sbi_flag(sbi, SBI_CP_DISABLED);
2617 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2618 err = f2fs_write_checkpoint(sbi, &cpc);
2619 if (err)
2620 goto out_unlock;
2621
2622 spin_lock(&sbi->stat_lock);
2623 sbi->unusable_block_count = unusable;
2624 spin_unlock(&sbi->stat_lock);
2625
2626 out_unlock:
2627 f2fs_up_write(&sbi->gc_lock);
2628 restore_flag:
2629 sbi->gc_mode = gc_mode;
2630 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2631 f2fs_info(sbi, "f2fs_disable_checkpoint() finish, err:%d", err);
2632 return err;
2633 }
2634
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)2635 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2636 {
2637 unsigned int nr_pages = get_pages(sbi, F2FS_DIRTY_DATA) / 16;
2638 long long start, writeback, end;
2639
2640 f2fs_info(sbi, "f2fs_enable_checkpoint() starts, meta: %lld, node: %lld, data: %lld",
2641 get_pages(sbi, F2FS_DIRTY_META),
2642 get_pages(sbi, F2FS_DIRTY_NODES),
2643 get_pages(sbi, F2FS_DIRTY_DATA));
2644
2645 f2fs_update_time(sbi, ENABLE_TIME);
2646
2647 start = ktime_get();
2648
2649 /* we should flush all the data to keep data consistency */
2650 while (get_pages(sbi, F2FS_DIRTY_DATA)) {
2651 writeback_inodes_sb_nr(sbi->sb, nr_pages, WB_REASON_SYNC);
2652 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2653
2654 if (f2fs_time_over(sbi, ENABLE_TIME))
2655 break;
2656 }
2657 writeback = ktime_get();
2658
2659 sync_inodes_sb(sbi->sb);
2660
2661 if (unlikely(get_pages(sbi, F2FS_DIRTY_DATA)))
2662 f2fs_warn(sbi, "checkpoint=enable has some unwritten data: %lld",
2663 get_pages(sbi, F2FS_DIRTY_DATA));
2664
2665 f2fs_down_write(&sbi->gc_lock);
2666 f2fs_dirty_to_prefree(sbi);
2667
2668 clear_sbi_flag(sbi, SBI_CP_DISABLED);
2669 set_sbi_flag(sbi, SBI_IS_DIRTY);
2670 f2fs_up_write(&sbi->gc_lock);
2671
2672 f2fs_sync_fs(sbi->sb, 1);
2673
2674 /* Let's ensure there's no pending checkpoint anymore */
2675 f2fs_flush_ckpt_thread(sbi);
2676
2677 end = ktime_get();
2678
2679 f2fs_info(sbi, "f2fs_enable_checkpoint() finishes, writeback:%llu, sync:%llu",
2680 ktime_ms_delta(writeback, start),
2681 ktime_ms_delta(end, writeback));
2682 }
2683
__f2fs_remount(struct fs_context * fc,struct super_block * sb)2684 static int __f2fs_remount(struct fs_context *fc, struct super_block *sb)
2685 {
2686 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2687 struct f2fs_mount_info org_mount_opt;
2688 unsigned long old_sb_flags;
2689 unsigned int flags = fc->sb_flags;
2690 int err;
2691 bool need_restart_gc = false, need_stop_gc = false;
2692 bool need_restart_flush = false, need_stop_flush = false;
2693 bool need_restart_discard = false, need_stop_discard = false;
2694 bool need_enable_checkpoint = false, need_disable_checkpoint = false;
2695 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2696 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2697 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2698 bool no_atgc = !test_opt(sbi, ATGC);
2699 bool no_discard = !test_opt(sbi, DISCARD);
2700 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2701 bool block_unit_discard = f2fs_block_unit_discard(sbi);
2702 bool no_nat_bits = !test_opt(sbi, NAT_BITS);
2703 #ifdef CONFIG_QUOTA
2704 int i, j;
2705 #endif
2706
2707 /*
2708 * Save the old mount options in case we
2709 * need to restore them.
2710 */
2711 org_mount_opt = sbi->mount_opt;
2712 old_sb_flags = sb->s_flags;
2713
2714 sbi->umount_lock_holder = current;
2715
2716 #ifdef CONFIG_QUOTA
2717 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2718 for (i = 0; i < MAXQUOTAS; i++) {
2719 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2720 org_mount_opt.s_qf_names[i] =
2721 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2722 GFP_KERNEL);
2723 if (!org_mount_opt.s_qf_names[i]) {
2724 for (j = 0; j < i; j++)
2725 kfree(org_mount_opt.s_qf_names[j]);
2726 return -ENOMEM;
2727 }
2728 } else {
2729 org_mount_opt.s_qf_names[i] = NULL;
2730 }
2731 }
2732 #endif
2733
2734 /* recover superblocks we couldn't write due to previous RO mount */
2735 if (!(flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2736 err = f2fs_commit_super(sbi, false);
2737 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2738 err);
2739 if (!err)
2740 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2741 }
2742
2743 default_options(sbi, true);
2744
2745 err = f2fs_check_opt_consistency(fc, sb);
2746 if (err)
2747 goto restore_opts;
2748
2749 f2fs_apply_options(fc, sb);
2750
2751 err = f2fs_sanity_check_options(sbi, true);
2752 if (err)
2753 goto restore_opts;
2754
2755 /* flush outstanding errors before changing fs state */
2756 flush_work(&sbi->s_error_work);
2757
2758 /*
2759 * Previous and new state of filesystem is RO,
2760 * so skip checking GC and FLUSH_MERGE conditions.
2761 */
2762 if (f2fs_readonly(sb) && (flags & SB_RDONLY))
2763 goto skip;
2764
2765 if (f2fs_dev_is_readonly(sbi) && !(flags & SB_RDONLY)) {
2766 err = -EROFS;
2767 goto restore_opts;
2768 }
2769
2770 #ifdef CONFIG_QUOTA
2771 if (!f2fs_readonly(sb) && (flags & SB_RDONLY)) {
2772 err = dquot_suspend(sb, -1);
2773 if (err < 0)
2774 goto restore_opts;
2775 } else if (f2fs_readonly(sb) && !(flags & SB_RDONLY)) {
2776 /* dquot_resume needs RW */
2777 sb->s_flags &= ~SB_RDONLY;
2778 if (sb_any_quota_suspended(sb)) {
2779 dquot_resume(sb, -1);
2780 } else if (f2fs_sb_has_quota_ino(sbi)) {
2781 err = f2fs_enable_quotas(sb);
2782 if (err)
2783 goto restore_opts;
2784 }
2785 }
2786 #endif
2787 /* disallow enable atgc dynamically */
2788 if (no_atgc == !!test_opt(sbi, ATGC)) {
2789 err = -EINVAL;
2790 f2fs_warn(sbi, "switch atgc option is not allowed");
2791 goto restore_opts;
2792 }
2793
2794 /* disallow enable/disable extent_cache dynamically */
2795 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2796 err = -EINVAL;
2797 f2fs_warn(sbi, "switch extent_cache option is not allowed");
2798 goto restore_opts;
2799 }
2800 /* disallow enable/disable age extent_cache dynamically */
2801 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2802 err = -EINVAL;
2803 f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2804 goto restore_opts;
2805 }
2806
2807 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2808 err = -EINVAL;
2809 f2fs_warn(sbi, "switch compress_cache option is not allowed");
2810 goto restore_opts;
2811 }
2812
2813 if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2814 err = -EINVAL;
2815 f2fs_warn(sbi, "switch discard_unit option is not allowed");
2816 goto restore_opts;
2817 }
2818
2819 if (no_nat_bits == !!test_opt(sbi, NAT_BITS)) {
2820 err = -EINVAL;
2821 f2fs_warn(sbi, "switch nat_bits option is not allowed");
2822 goto restore_opts;
2823 }
2824
2825 if ((flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2826 err = -EINVAL;
2827 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2828 goto restore_opts;
2829 }
2830
2831 /*
2832 * We stop the GC thread if FS is mounted as RO
2833 * or if background_gc = off is passed in mount
2834 * option. Also sync the filesystem.
2835 */
2836 if ((flags & SB_RDONLY) ||
2837 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2838 !test_opt(sbi, GC_MERGE))) {
2839 if (sbi->gc_thread) {
2840 f2fs_stop_gc_thread(sbi);
2841 need_restart_gc = true;
2842 }
2843 } else if (!sbi->gc_thread) {
2844 err = f2fs_start_gc_thread(sbi);
2845 if (err)
2846 goto restore_opts;
2847 need_stop_gc = true;
2848 }
2849
2850 if (flags & SB_RDONLY) {
2851 sync_inodes_sb(sb);
2852
2853 set_sbi_flag(sbi, SBI_IS_DIRTY);
2854 set_sbi_flag(sbi, SBI_IS_CLOSE);
2855 f2fs_sync_fs(sb, 1);
2856 clear_sbi_flag(sbi, SBI_IS_CLOSE);
2857 }
2858
2859 /*
2860 * We stop issue flush thread if FS is mounted as RO
2861 * or if flush_merge is not passed in mount option.
2862 */
2863 if ((flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2864 clear_opt(sbi, FLUSH_MERGE);
2865 f2fs_destroy_flush_cmd_control(sbi, false);
2866 need_restart_flush = true;
2867 } else {
2868 err = f2fs_create_flush_cmd_control(sbi);
2869 if (err)
2870 goto restore_gc;
2871 need_stop_flush = true;
2872 }
2873
2874 if (no_discard == !!test_opt(sbi, DISCARD)) {
2875 if (test_opt(sbi, DISCARD)) {
2876 err = f2fs_start_discard_thread(sbi);
2877 if (err)
2878 goto restore_flush;
2879 need_stop_discard = true;
2880 } else {
2881 f2fs_stop_discard_thread(sbi);
2882 f2fs_issue_discard_timeout(sbi);
2883 need_restart_discard = true;
2884 }
2885 }
2886
2887 adjust_unusable_cap_perc(sbi);
2888 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2889 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2890 err = f2fs_disable_checkpoint(sbi);
2891 if (err)
2892 goto restore_discard;
2893 need_enable_checkpoint = true;
2894 } else {
2895 f2fs_enable_checkpoint(sbi);
2896 need_disable_checkpoint = true;
2897 }
2898 }
2899
2900 /*
2901 * Place this routine at the end, since a new checkpoint would be
2902 * triggered while remount and we need to take care of it before
2903 * returning from remount.
2904 */
2905 if ((flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2906 !test_opt(sbi, MERGE_CHECKPOINT)) {
2907 f2fs_stop_ckpt_thread(sbi);
2908 } else {
2909 /* Flush if the previous checkpoint, if exists. */
2910 f2fs_flush_ckpt_thread(sbi);
2911
2912 err = f2fs_start_ckpt_thread(sbi);
2913 if (err) {
2914 f2fs_err(sbi,
2915 "Failed to start F2FS issue_checkpoint_thread (%d)",
2916 err);
2917 goto restore_checkpoint;
2918 }
2919 }
2920
2921 skip:
2922 #ifdef CONFIG_QUOTA
2923 /* Release old quota file names */
2924 for (i = 0; i < MAXQUOTAS; i++)
2925 kfree(org_mount_opt.s_qf_names[i]);
2926 #endif
2927 /* Update the POSIXACL Flag */
2928 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2929 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2930
2931 limit_reserve_root(sbi);
2932 fc->sb_flags = (flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2933
2934 sbi->umount_lock_holder = NULL;
2935 return 0;
2936 restore_checkpoint:
2937 if (need_enable_checkpoint) {
2938 f2fs_enable_checkpoint(sbi);
2939 } else if (need_disable_checkpoint) {
2940 if (f2fs_disable_checkpoint(sbi))
2941 f2fs_warn(sbi, "checkpoint has not been disabled");
2942 }
2943 restore_discard:
2944 if (need_restart_discard) {
2945 if (f2fs_start_discard_thread(sbi))
2946 f2fs_warn(sbi, "discard has been stopped");
2947 } else if (need_stop_discard) {
2948 f2fs_stop_discard_thread(sbi);
2949 }
2950 restore_flush:
2951 if (need_restart_flush) {
2952 if (f2fs_create_flush_cmd_control(sbi))
2953 f2fs_warn(sbi, "background flush thread has stopped");
2954 } else if (need_stop_flush) {
2955 clear_opt(sbi, FLUSH_MERGE);
2956 f2fs_destroy_flush_cmd_control(sbi, false);
2957 }
2958 restore_gc:
2959 if (need_restart_gc) {
2960 if (f2fs_start_gc_thread(sbi))
2961 f2fs_warn(sbi, "background gc thread has stopped");
2962 } else if (need_stop_gc) {
2963 f2fs_stop_gc_thread(sbi);
2964 }
2965 restore_opts:
2966 #ifdef CONFIG_QUOTA
2967 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2968 for (i = 0; i < MAXQUOTAS; i++) {
2969 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2970 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2971 }
2972 #endif
2973 sbi->mount_opt = org_mount_opt;
2974 sb->s_flags = old_sb_flags;
2975
2976 sbi->umount_lock_holder = NULL;
2977 return err;
2978 }
2979
f2fs_shutdown(struct super_block * sb)2980 static void f2fs_shutdown(struct super_block *sb)
2981 {
2982 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false);
2983 }
2984
2985 #ifdef CONFIG_QUOTA
f2fs_need_recovery(struct f2fs_sb_info * sbi)2986 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi)
2987 {
2988 /* need to recovery orphan */
2989 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
2990 return true;
2991 /* need to recovery data */
2992 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2993 return false;
2994 if (test_opt(sbi, NORECOVERY))
2995 return false;
2996 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG);
2997 }
2998
f2fs_recover_quota_begin(struct f2fs_sb_info * sbi)2999 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi)
3000 {
3001 bool readonly = f2fs_readonly(sbi->sb);
3002
3003 if (!f2fs_need_recovery(sbi))
3004 return false;
3005
3006 /* it doesn't need to check f2fs_sb_has_readonly() */
3007 if (f2fs_hw_is_readonly(sbi))
3008 return false;
3009
3010 if (readonly) {
3011 sbi->sb->s_flags &= ~SB_RDONLY;
3012 set_sbi_flag(sbi, SBI_IS_WRITABLE);
3013 }
3014
3015 /*
3016 * Turn on quotas which were not enabled for read-only mounts if
3017 * filesystem has quota feature, so that they are updated correctly.
3018 */
3019 return f2fs_enable_quota_files(sbi, readonly);
3020 }
3021
f2fs_recover_quota_end(struct f2fs_sb_info * sbi,bool quota_enabled)3022 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi,
3023 bool quota_enabled)
3024 {
3025 if (quota_enabled)
3026 f2fs_quota_off_umount(sbi->sb);
3027
3028 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) {
3029 clear_sbi_flag(sbi, SBI_IS_WRITABLE);
3030 sbi->sb->s_flags |= SB_RDONLY;
3031 }
3032 }
3033
3034 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)3035 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
3036 size_t len, loff_t off)
3037 {
3038 struct inode *inode = sb_dqopt(sb)->files[type];
3039 struct address_space *mapping = inode->i_mapping;
3040 int tocopy;
3041 size_t toread;
3042 loff_t i_size = i_size_read(inode);
3043
3044 if (off > i_size)
3045 return 0;
3046
3047 if (off + len > i_size)
3048 len = i_size - off;
3049 toread = len;
3050 while (toread > 0) {
3051 struct folio *folio;
3052 size_t offset;
3053
3054 repeat:
3055 folio = mapping_read_folio_gfp(mapping, off >> PAGE_SHIFT,
3056 GFP_NOFS);
3057 if (IS_ERR(folio)) {
3058 if (PTR_ERR(folio) == -ENOMEM) {
3059 memalloc_retry_wait(GFP_NOFS);
3060 goto repeat;
3061 }
3062 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3063 return PTR_ERR(folio);
3064 }
3065 offset = offset_in_folio(folio, off);
3066 tocopy = min(folio_size(folio) - offset, toread);
3067
3068 folio_lock(folio);
3069
3070 if (unlikely(folio->mapping != mapping)) {
3071 f2fs_folio_put(folio, true);
3072 goto repeat;
3073 }
3074
3075 /*
3076 * should never happen, just leave f2fs_bug_on() here to catch
3077 * any potential bug.
3078 */
3079 f2fs_bug_on(F2FS_SB(sb), !folio_test_uptodate(folio));
3080
3081 memcpy_from_folio(data, folio, offset, tocopy);
3082 f2fs_folio_put(folio, true);
3083
3084 toread -= tocopy;
3085 data += tocopy;
3086 off += tocopy;
3087 }
3088 return len;
3089 }
3090
3091 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)3092 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
3093 const char *data, size_t len, loff_t off)
3094 {
3095 struct inode *inode = sb_dqopt(sb)->files[type];
3096 struct address_space *mapping = inode->i_mapping;
3097 const struct address_space_operations *a_ops = mapping->a_ops;
3098 int offset = off & (sb->s_blocksize - 1);
3099 size_t towrite = len;
3100 struct folio *folio;
3101 void *fsdata = NULL;
3102 int err = 0;
3103 int tocopy;
3104
3105 while (towrite > 0) {
3106 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
3107 towrite);
3108 retry:
3109 err = a_ops->write_begin(NULL, mapping, off, tocopy,
3110 &folio, &fsdata);
3111 if (unlikely(err)) {
3112 if (err == -ENOMEM) {
3113 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3114 goto retry;
3115 }
3116 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3117 break;
3118 }
3119
3120 memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy);
3121
3122 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
3123 folio, fsdata);
3124 offset = 0;
3125 towrite -= tocopy;
3126 off += tocopy;
3127 data += tocopy;
3128 cond_resched();
3129 }
3130
3131 if (len == towrite)
3132 return err;
3133 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
3134 f2fs_mark_inode_dirty_sync(inode, false);
3135 return len - towrite;
3136 }
3137
f2fs_dquot_initialize(struct inode * inode)3138 int f2fs_dquot_initialize(struct inode *inode)
3139 {
3140 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
3141 return -ESRCH;
3142
3143 return dquot_initialize(inode);
3144 }
3145
f2fs_get_dquots(struct inode * inode)3146 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode)
3147 {
3148 return F2FS_I(inode)->i_dquot;
3149 }
3150
f2fs_get_reserved_space(struct inode * inode)3151 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
3152 {
3153 return &F2FS_I(inode)->i_reserved_quota;
3154 }
3155
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)3156 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
3157 {
3158 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
3159 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
3160 return 0;
3161 }
3162
3163 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
3164 F2FS_OPTION(sbi).s_jquota_fmt, type);
3165 }
3166
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)3167 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
3168 {
3169 int enabled = 0;
3170 int i, err;
3171
3172 if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
3173 err = f2fs_enable_quotas(sbi->sb);
3174 if (err) {
3175 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
3176 return 0;
3177 }
3178 return 1;
3179 }
3180
3181 for (i = 0; i < MAXQUOTAS; i++) {
3182 if (F2FS_OPTION(sbi).s_qf_names[i]) {
3183 err = f2fs_quota_on_mount(sbi, i);
3184 if (!err) {
3185 enabled = 1;
3186 continue;
3187 }
3188 f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
3189 err, i);
3190 }
3191 }
3192 return enabled;
3193 }
3194
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)3195 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
3196 unsigned int flags)
3197 {
3198 struct inode *qf_inode;
3199 unsigned long qf_inum;
3200 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL;
3201 int err;
3202
3203 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
3204
3205 qf_inum = f2fs_qf_ino(sb, type);
3206 if (!qf_inum)
3207 return -EPERM;
3208
3209 qf_inode = f2fs_iget(sb, qf_inum);
3210 if (IS_ERR(qf_inode)) {
3211 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
3212 return PTR_ERR(qf_inode);
3213 }
3214
3215 /* Don't account quota for quota files to avoid recursion */
3216 inode_lock(qf_inode);
3217 qf_inode->i_flags |= S_NOQUOTA;
3218
3219 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) {
3220 F2FS_I(qf_inode)->i_flags |= qf_flag;
3221 f2fs_set_inode_flags(qf_inode);
3222 }
3223 inode_unlock(qf_inode);
3224
3225 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
3226 iput(qf_inode);
3227 return err;
3228 }
3229
f2fs_enable_quotas(struct super_block * sb)3230 static int f2fs_enable_quotas(struct super_block *sb)
3231 {
3232 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3233 int type, err = 0;
3234 unsigned long qf_inum;
3235 bool quota_mopt[MAXQUOTAS] = {
3236 test_opt(sbi, USRQUOTA),
3237 test_opt(sbi, GRPQUOTA),
3238 test_opt(sbi, PRJQUOTA),
3239 };
3240
3241 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
3242 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
3243 return 0;
3244 }
3245
3246 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
3247
3248 for (type = 0; type < MAXQUOTAS; type++) {
3249 qf_inum = f2fs_qf_ino(sb, type);
3250 if (qf_inum) {
3251 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
3252 DQUOT_USAGE_ENABLED |
3253 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
3254 if (err) {
3255 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
3256 type, err);
3257 for (type--; type >= 0; type--)
3258 dquot_quota_off(sb, type);
3259 set_sbi_flag(F2FS_SB(sb),
3260 SBI_QUOTA_NEED_REPAIR);
3261 return err;
3262 }
3263 }
3264 }
3265 return 0;
3266 }
3267
f2fs_quota_sync_file(struct f2fs_sb_info * sbi,int type)3268 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
3269 {
3270 struct quota_info *dqopt = sb_dqopt(sbi->sb);
3271 struct address_space *mapping = dqopt->files[type]->i_mapping;
3272 int ret = 0;
3273
3274 ret = dquot_writeback_dquots(sbi->sb, type);
3275 if (ret)
3276 goto out;
3277
3278 ret = filemap_fdatawrite(mapping);
3279 if (ret)
3280 goto out;
3281
3282 /* if we are using journalled quota */
3283 if (is_journalled_quota(sbi))
3284 goto out;
3285
3286 ret = filemap_fdatawait(mapping);
3287
3288 truncate_inode_pages(&dqopt->files[type]->i_data, 0);
3289 out:
3290 if (ret)
3291 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3292 return ret;
3293 }
3294
f2fs_do_quota_sync(struct super_block * sb,int type)3295 int f2fs_do_quota_sync(struct super_block *sb, int type)
3296 {
3297 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3298 struct quota_info *dqopt = sb_dqopt(sb);
3299 int cnt;
3300 int ret = 0;
3301
3302 /*
3303 * Now when everything is written we can discard the pagecache so
3304 * that userspace sees the changes.
3305 */
3306 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
3307
3308 if (type != -1 && cnt != type)
3309 continue;
3310
3311 if (!sb_has_quota_active(sb, cnt))
3312 continue;
3313
3314 if (!f2fs_sb_has_quota_ino(sbi))
3315 inode_lock(dqopt->files[cnt]);
3316
3317 /*
3318 * do_quotactl
3319 * f2fs_quota_sync
3320 * f2fs_down_read(quota_sem)
3321 * dquot_writeback_dquots()
3322 * f2fs_dquot_commit
3323 * block_operation
3324 * f2fs_down_read(quota_sem)
3325 */
3326 f2fs_lock_op(sbi);
3327 f2fs_down_read(&sbi->quota_sem);
3328
3329 ret = f2fs_quota_sync_file(sbi, cnt);
3330
3331 f2fs_up_read(&sbi->quota_sem);
3332 f2fs_unlock_op(sbi);
3333
3334 if (!f2fs_sb_has_quota_ino(sbi))
3335 inode_unlock(dqopt->files[cnt]);
3336
3337 if (ret)
3338 break;
3339 }
3340 return ret;
3341 }
3342
f2fs_quota_sync(struct super_block * sb,int type)3343 static int f2fs_quota_sync(struct super_block *sb, int type)
3344 {
3345 int ret;
3346
3347 F2FS_SB(sb)->umount_lock_holder = current;
3348 ret = f2fs_do_quota_sync(sb, type);
3349 F2FS_SB(sb)->umount_lock_holder = NULL;
3350 return ret;
3351 }
3352
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)3353 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
3354 const struct path *path)
3355 {
3356 struct inode *inode;
3357 int err = 0;
3358
3359 /* if quota sysfile exists, deny enabling quota with specific file */
3360 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
3361 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
3362 return -EBUSY;
3363 }
3364
3365 if (path->dentry->d_sb != sb)
3366 return -EXDEV;
3367
3368 F2FS_SB(sb)->umount_lock_holder = current;
3369
3370 err = f2fs_do_quota_sync(sb, type);
3371 if (err)
3372 goto out;
3373
3374 inode = d_inode(path->dentry);
3375
3376 err = filemap_fdatawrite(inode->i_mapping);
3377 if (err)
3378 goto out;
3379
3380 err = filemap_fdatawait(inode->i_mapping);
3381 if (err)
3382 goto out;
3383
3384 err = dquot_quota_on(sb, type, format_id, path);
3385 if (err)
3386 goto out;
3387
3388 inode_lock(inode);
3389 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL;
3390 f2fs_set_inode_flags(inode);
3391 inode_unlock(inode);
3392 f2fs_mark_inode_dirty_sync(inode, false);
3393 out:
3394 F2FS_SB(sb)->umount_lock_holder = NULL;
3395 return err;
3396 }
3397
__f2fs_quota_off(struct super_block * sb,int type)3398 static int __f2fs_quota_off(struct super_block *sb, int type)
3399 {
3400 struct inode *inode = sb_dqopt(sb)->files[type];
3401 int err;
3402
3403 if (!inode || !igrab(inode))
3404 return dquot_quota_off(sb, type);
3405
3406 err = f2fs_do_quota_sync(sb, type);
3407 if (err)
3408 goto out_put;
3409
3410 err = dquot_quota_off(sb, type);
3411 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
3412 goto out_put;
3413
3414 inode_lock(inode);
3415 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL;
3416 f2fs_set_inode_flags(inode);
3417 inode_unlock(inode);
3418 f2fs_mark_inode_dirty_sync(inode, false);
3419 out_put:
3420 iput(inode);
3421 return err;
3422 }
3423
f2fs_quota_off(struct super_block * sb,int type)3424 static int f2fs_quota_off(struct super_block *sb, int type)
3425 {
3426 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3427 int err;
3428
3429 F2FS_SB(sb)->umount_lock_holder = current;
3430
3431 err = __f2fs_quota_off(sb, type);
3432
3433 /*
3434 * quotactl can shutdown journalled quota, result in inconsistence
3435 * between quota record and fs data by following updates, tag the
3436 * flag to let fsck be aware of it.
3437 */
3438 if (is_journalled_quota(sbi))
3439 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3440
3441 F2FS_SB(sb)->umount_lock_holder = NULL;
3442
3443 return err;
3444 }
3445
f2fs_quota_off_umount(struct super_block * sb)3446 void f2fs_quota_off_umount(struct super_block *sb)
3447 {
3448 int type;
3449 int err;
3450
3451 for (type = 0; type < MAXQUOTAS; type++) {
3452 err = __f2fs_quota_off(sb, type);
3453 if (err) {
3454 int ret = dquot_quota_off(sb, type);
3455
3456 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
3457 type, err, ret);
3458 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3459 }
3460 }
3461 /*
3462 * In case of checkpoint=disable, we must flush quota blocks.
3463 * This can cause NULL exception for node_inode in end_io, since
3464 * put_super already dropped it.
3465 */
3466 sync_filesystem(sb);
3467 }
3468
f2fs_truncate_quota_inode_pages(struct super_block * sb)3469 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
3470 {
3471 struct quota_info *dqopt = sb_dqopt(sb);
3472 int type;
3473
3474 for (type = 0; type < MAXQUOTAS; type++) {
3475 if (!dqopt->files[type])
3476 continue;
3477 f2fs_inode_synced(dqopt->files[type]);
3478 }
3479 }
3480
f2fs_dquot_commit(struct dquot * dquot)3481 static int f2fs_dquot_commit(struct dquot *dquot)
3482 {
3483 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3484 int ret;
3485
3486 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
3487 ret = dquot_commit(dquot);
3488 if (ret < 0)
3489 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3490 f2fs_up_read(&sbi->quota_sem);
3491 return ret;
3492 }
3493
f2fs_dquot_acquire(struct dquot * dquot)3494 static int f2fs_dquot_acquire(struct dquot *dquot)
3495 {
3496 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3497 int ret;
3498
3499 f2fs_down_read(&sbi->quota_sem);
3500 ret = dquot_acquire(dquot);
3501 if (ret < 0)
3502 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3503 f2fs_up_read(&sbi->quota_sem);
3504 return ret;
3505 }
3506
f2fs_dquot_release(struct dquot * dquot)3507 static int f2fs_dquot_release(struct dquot *dquot)
3508 {
3509 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3510 int ret = dquot_release(dquot);
3511
3512 if (ret < 0)
3513 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3514 return ret;
3515 }
3516
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)3517 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
3518 {
3519 struct super_block *sb = dquot->dq_sb;
3520 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3521 int ret = dquot_mark_dquot_dirty(dquot);
3522
3523 /* if we are using journalled quota */
3524 if (is_journalled_quota(sbi))
3525 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
3526
3527 return ret;
3528 }
3529
f2fs_dquot_commit_info(struct super_block * sb,int type)3530 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
3531 {
3532 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3533 int ret = dquot_commit_info(sb, type);
3534
3535 if (ret < 0)
3536 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3537 return ret;
3538 }
3539
f2fs_get_projid(struct inode * inode,kprojid_t * projid)3540 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
3541 {
3542 *projid = F2FS_I(inode)->i_projid;
3543 return 0;
3544 }
3545
3546 static const struct dquot_operations f2fs_quota_operations = {
3547 .get_reserved_space = f2fs_get_reserved_space,
3548 .write_dquot = f2fs_dquot_commit,
3549 .acquire_dquot = f2fs_dquot_acquire,
3550 .release_dquot = f2fs_dquot_release,
3551 .mark_dirty = f2fs_dquot_mark_dquot_dirty,
3552 .write_info = f2fs_dquot_commit_info,
3553 .alloc_dquot = dquot_alloc,
3554 .destroy_dquot = dquot_destroy,
3555 .get_projid = f2fs_get_projid,
3556 .get_next_id = dquot_get_next_id,
3557 };
3558
3559 static const struct quotactl_ops f2fs_quotactl_ops = {
3560 .quota_on = f2fs_quota_on,
3561 .quota_off = f2fs_quota_off,
3562 .quota_sync = f2fs_quota_sync,
3563 .get_state = dquot_get_state,
3564 .set_info = dquot_set_dqinfo,
3565 .get_dqblk = dquot_get_dqblk,
3566 .set_dqblk = dquot_set_dqblk,
3567 .get_nextdqblk = dquot_get_next_dqblk,
3568 };
3569 #else
f2fs_dquot_initialize(struct inode * inode)3570 int f2fs_dquot_initialize(struct inode *inode)
3571 {
3572 return 0;
3573 }
3574
f2fs_do_quota_sync(struct super_block * sb,int type)3575 int f2fs_do_quota_sync(struct super_block *sb, int type)
3576 {
3577 return 0;
3578 }
3579
f2fs_quota_off_umount(struct super_block * sb)3580 void f2fs_quota_off_umount(struct super_block *sb)
3581 {
3582 }
3583 #endif
3584
3585 static const struct super_operations f2fs_sops = {
3586 .alloc_inode = f2fs_alloc_inode,
3587 .free_inode = f2fs_free_inode,
3588 .drop_inode = f2fs_drop_inode,
3589 .write_inode = f2fs_write_inode,
3590 .dirty_inode = f2fs_dirty_inode,
3591 .show_options = f2fs_show_options,
3592 #ifdef CONFIG_QUOTA
3593 .quota_read = f2fs_quota_read,
3594 .quota_write = f2fs_quota_write,
3595 .get_dquots = f2fs_get_dquots,
3596 #endif
3597 .evict_inode = f2fs_evict_inode,
3598 .put_super = f2fs_put_super,
3599 .sync_fs = f2fs_sync_fs,
3600 .freeze_fs = f2fs_freeze,
3601 .unfreeze_fs = f2fs_unfreeze,
3602 .statfs = f2fs_statfs,
3603 .shutdown = f2fs_shutdown,
3604 };
3605
3606 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)3607 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3608 {
3609 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3610 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3611 ctx, len, NULL);
3612 }
3613
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)3614 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3615 void *fs_data)
3616 {
3617 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3618
3619 /*
3620 * Encrypting the root directory is not allowed because fsck
3621 * expects lost+found directory to exist and remain unencrypted
3622 * if LOST_FOUND feature is enabled.
3623 *
3624 */
3625 if (f2fs_sb_has_lost_found(sbi) &&
3626 inode->i_ino == F2FS_ROOT_INO(sbi))
3627 return -EPERM;
3628
3629 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3630 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3631 ctx, len, fs_data, XATTR_CREATE);
3632 }
3633
f2fs_get_dummy_policy(struct super_block * sb)3634 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3635 {
3636 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3637 }
3638
f2fs_has_stable_inodes(struct super_block * sb)3639 static bool f2fs_has_stable_inodes(struct super_block *sb)
3640 {
3641 return true;
3642 }
3643
f2fs_get_devices(struct super_block * sb,unsigned int * num_devs)3644 static struct block_device **f2fs_get_devices(struct super_block *sb,
3645 unsigned int *num_devs)
3646 {
3647 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3648 struct block_device **devs;
3649 int i;
3650
3651 if (!f2fs_is_multi_device(sbi))
3652 return NULL;
3653
3654 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3655 if (!devs)
3656 return ERR_PTR(-ENOMEM);
3657
3658 for (i = 0; i < sbi->s_ndevs; i++)
3659 devs[i] = FDEV(i).bdev;
3660 *num_devs = sbi->s_ndevs;
3661 return devs;
3662 }
3663
3664 static const struct fscrypt_operations f2fs_cryptops = {
3665 .inode_info_offs = (int)offsetof(struct f2fs_inode_info, i_crypt_info) -
3666 (int)offsetof(struct f2fs_inode_info, vfs_inode),
3667 .needs_bounce_pages = 1,
3668 .has_32bit_inodes = 1,
3669 .supports_subblock_data_units = 1,
3670 .legacy_key_prefix = "f2fs:",
3671 .get_context = f2fs_get_context,
3672 .set_context = f2fs_set_context,
3673 .get_dummy_policy = f2fs_get_dummy_policy,
3674 .empty_dir = f2fs_empty_dir,
3675 .has_stable_inodes = f2fs_has_stable_inodes,
3676 .get_devices = f2fs_get_devices,
3677 };
3678 #endif /* CONFIG_FS_ENCRYPTION */
3679
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)3680 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3681 u64 ino, u32 generation)
3682 {
3683 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3684 struct inode *inode;
3685
3686 if (f2fs_check_nid_range(sbi, ino))
3687 return ERR_PTR(-ESTALE);
3688
3689 /*
3690 * f2fs_iget isn't quite right if the inode is currently unallocated!
3691 * However f2fs_iget currently does appropriate checks to handle stale
3692 * inodes so everything is OK.
3693 */
3694 inode = f2fs_iget(sb, ino);
3695 if (IS_ERR(inode))
3696 return ERR_CAST(inode);
3697 if (unlikely(generation && inode->i_generation != generation)) {
3698 /* we didn't find the right inode.. */
3699 iput(inode);
3700 return ERR_PTR(-ESTALE);
3701 }
3702 return inode;
3703 }
3704
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3705 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3706 int fh_len, int fh_type)
3707 {
3708 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3709 f2fs_nfs_get_inode);
3710 }
3711
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3712 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3713 int fh_len, int fh_type)
3714 {
3715 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3716 f2fs_nfs_get_inode);
3717 }
3718
3719 static const struct export_operations f2fs_export_ops = {
3720 .encode_fh = generic_encode_ino32_fh,
3721 .fh_to_dentry = f2fs_fh_to_dentry,
3722 .fh_to_parent = f2fs_fh_to_parent,
3723 .get_parent = f2fs_get_parent,
3724 };
3725
max_file_blocks(struct inode * inode)3726 loff_t max_file_blocks(struct inode *inode)
3727 {
3728 loff_t result = 0;
3729 loff_t leaf_count;
3730
3731 /*
3732 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3733 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3734 * space in inode.i_addr, it will be more safe to reassign
3735 * result as zero.
3736 */
3737
3738 if (inode && f2fs_compressed_file(inode))
3739 leaf_count = ADDRS_PER_BLOCK(inode);
3740 else
3741 leaf_count = DEF_ADDRS_PER_BLOCK;
3742
3743 /* two direct node blocks */
3744 result += (leaf_count * 2);
3745
3746 /* two indirect node blocks */
3747 leaf_count *= NIDS_PER_BLOCK;
3748 result += (leaf_count * 2);
3749
3750 /* one double indirect node block */
3751 leaf_count *= NIDS_PER_BLOCK;
3752 result += leaf_count;
3753
3754 /*
3755 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with
3756 * a 4K crypto data unit, we must restrict the max filesize to what can
3757 * fit within U32_MAX + 1 data units.
3758 */
3759
3760 result = umin(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096));
3761
3762 return result;
3763 }
3764
__f2fs_commit_super(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t index,bool update)3765 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio,
3766 pgoff_t index, bool update)
3767 {
3768 struct bio *bio;
3769 /* it's rare case, we can do fua all the time */
3770 blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA;
3771 int ret;
3772
3773 folio_lock(folio);
3774 folio_wait_writeback(folio);
3775 if (update)
3776 memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi),
3777 sizeof(struct f2fs_super_block));
3778 folio_mark_dirty(folio);
3779 folio_clear_dirty_for_io(folio);
3780 folio_start_writeback(folio);
3781 folio_unlock(folio);
3782
3783 bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS);
3784
3785 /* it doesn't need to set crypto context for superblock update */
3786 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio->index);
3787
3788 if (!bio_add_folio(bio, folio, folio_size(folio), 0))
3789 f2fs_bug_on(sbi, 1);
3790
3791 ret = submit_bio_wait(bio);
3792 bio_put(bio);
3793 folio_end_writeback(folio);
3794
3795 return ret;
3796 }
3797
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t index)3798 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3799 struct folio *folio, pgoff_t index)
3800 {
3801 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index);
3802 struct super_block *sb = sbi->sb;
3803 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3804 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3805 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3806 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3807 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3808 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3809 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3810 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3811 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3812 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3813 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3814 u32 segment_count = le32_to_cpu(raw_super->segment_count);
3815 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3816 u64 main_end_blkaddr = main_blkaddr +
3817 ((u64)segment_count_main << log_blocks_per_seg);
3818 u64 seg_end_blkaddr = segment0_blkaddr +
3819 ((u64)segment_count << log_blocks_per_seg);
3820
3821 if (segment0_blkaddr != cp_blkaddr) {
3822 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3823 segment0_blkaddr, cp_blkaddr);
3824 return true;
3825 }
3826
3827 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3828 sit_blkaddr) {
3829 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3830 cp_blkaddr, sit_blkaddr,
3831 segment_count_ckpt << log_blocks_per_seg);
3832 return true;
3833 }
3834
3835 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3836 nat_blkaddr) {
3837 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3838 sit_blkaddr, nat_blkaddr,
3839 segment_count_sit << log_blocks_per_seg);
3840 return true;
3841 }
3842
3843 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3844 ssa_blkaddr) {
3845 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3846 nat_blkaddr, ssa_blkaddr,
3847 segment_count_nat << log_blocks_per_seg);
3848 return true;
3849 }
3850
3851 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3852 main_blkaddr) {
3853 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3854 ssa_blkaddr, main_blkaddr,
3855 segment_count_ssa << log_blocks_per_seg);
3856 return true;
3857 }
3858
3859 if (main_end_blkaddr > seg_end_blkaddr) {
3860 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3861 main_blkaddr, seg_end_blkaddr,
3862 segment_count_main << log_blocks_per_seg);
3863 return true;
3864 } else if (main_end_blkaddr < seg_end_blkaddr) {
3865 int err = 0;
3866 char *res;
3867
3868 /* fix in-memory information all the time */
3869 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3870 segment0_blkaddr) >> log_blocks_per_seg);
3871
3872 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) {
3873 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3874 res = "internally";
3875 } else {
3876 err = __f2fs_commit_super(sbi, folio, index, false);
3877 res = err ? "failed" : "done";
3878 }
3879 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3880 res, main_blkaddr, seg_end_blkaddr,
3881 segment_count_main << log_blocks_per_seg);
3882 if (err)
3883 return true;
3884 }
3885 return false;
3886 }
3887
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t index)3888 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3889 struct folio *folio, pgoff_t index)
3890 {
3891 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3892 block_t total_sections, blocks_per_seg;
3893 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index);
3894 size_t crc_offset = 0;
3895 __u32 crc = 0;
3896
3897 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3898 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3899 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3900 return -EINVAL;
3901 }
3902
3903 /* Check checksum_offset and crc in superblock */
3904 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3905 crc_offset = le32_to_cpu(raw_super->checksum_offset);
3906 if (crc_offset !=
3907 offsetof(struct f2fs_super_block, crc)) {
3908 f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3909 crc_offset);
3910 return -EFSCORRUPTED;
3911 }
3912 crc = le32_to_cpu(raw_super->crc);
3913 if (crc != f2fs_crc32(raw_super, crc_offset)) {
3914 f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3915 return -EFSCORRUPTED;
3916 }
3917 }
3918
3919 /* only support block_size equals to PAGE_SIZE */
3920 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3921 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3922 le32_to_cpu(raw_super->log_blocksize),
3923 F2FS_BLKSIZE_BITS);
3924 return -EFSCORRUPTED;
3925 }
3926
3927 /* check log blocks per segment */
3928 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3929 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3930 le32_to_cpu(raw_super->log_blocks_per_seg));
3931 return -EFSCORRUPTED;
3932 }
3933
3934 /* Currently, support 512/1024/2048/4096/16K bytes sector size */
3935 if (le32_to_cpu(raw_super->log_sectorsize) >
3936 F2FS_MAX_LOG_SECTOR_SIZE ||
3937 le32_to_cpu(raw_super->log_sectorsize) <
3938 F2FS_MIN_LOG_SECTOR_SIZE) {
3939 f2fs_info(sbi, "Invalid log sectorsize (%u)",
3940 le32_to_cpu(raw_super->log_sectorsize));
3941 return -EFSCORRUPTED;
3942 }
3943 if (le32_to_cpu(raw_super->log_sectors_per_block) +
3944 le32_to_cpu(raw_super->log_sectorsize) !=
3945 F2FS_MAX_LOG_SECTOR_SIZE) {
3946 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3947 le32_to_cpu(raw_super->log_sectors_per_block),
3948 le32_to_cpu(raw_super->log_sectorsize));
3949 return -EFSCORRUPTED;
3950 }
3951
3952 segment_count = le32_to_cpu(raw_super->segment_count);
3953 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3954 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3955 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3956 total_sections = le32_to_cpu(raw_super->section_count);
3957
3958 /* blocks_per_seg should be 512, given the above check */
3959 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg));
3960
3961 if (segment_count > F2FS_MAX_SEGMENT ||
3962 segment_count < F2FS_MIN_SEGMENTS) {
3963 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3964 return -EFSCORRUPTED;
3965 }
3966
3967 if (total_sections > segment_count_main || total_sections < 1 ||
3968 segs_per_sec > segment_count || !segs_per_sec) {
3969 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3970 segment_count, total_sections, segs_per_sec);
3971 return -EFSCORRUPTED;
3972 }
3973
3974 if (segment_count_main != total_sections * segs_per_sec) {
3975 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3976 segment_count_main, total_sections, segs_per_sec);
3977 return -EFSCORRUPTED;
3978 }
3979
3980 if ((segment_count / segs_per_sec) < total_sections) {
3981 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3982 segment_count, segs_per_sec, total_sections);
3983 return -EFSCORRUPTED;
3984 }
3985
3986 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3987 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3988 segment_count, le64_to_cpu(raw_super->block_count));
3989 return -EFSCORRUPTED;
3990 }
3991
3992 if (RDEV(0).path[0]) {
3993 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3994 int i = 1;
3995
3996 while (i < MAX_DEVICES && RDEV(i).path[0]) {
3997 dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3998 i++;
3999 }
4000 if (segment_count != dev_seg_count) {
4001 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
4002 segment_count, dev_seg_count);
4003 return -EFSCORRUPTED;
4004 }
4005 } else {
4006 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
4007 !bdev_is_zoned(sbi->sb->s_bdev)) {
4008 f2fs_info(sbi, "Zoned block device path is missing");
4009 return -EFSCORRUPTED;
4010 }
4011 }
4012
4013 if (secs_per_zone > total_sections || !secs_per_zone) {
4014 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
4015 secs_per_zone, total_sections);
4016 return -EFSCORRUPTED;
4017 }
4018 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
4019 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
4020 (le32_to_cpu(raw_super->extension_count) +
4021 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
4022 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
4023 le32_to_cpu(raw_super->extension_count),
4024 raw_super->hot_ext_count,
4025 F2FS_MAX_EXTENSION);
4026 return -EFSCORRUPTED;
4027 }
4028
4029 if (le32_to_cpu(raw_super->cp_payload) >=
4030 (blocks_per_seg - F2FS_CP_PACKS -
4031 NR_CURSEG_PERSIST_TYPE)) {
4032 f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
4033 le32_to_cpu(raw_super->cp_payload),
4034 blocks_per_seg - F2FS_CP_PACKS -
4035 NR_CURSEG_PERSIST_TYPE);
4036 return -EFSCORRUPTED;
4037 }
4038
4039 /* check reserved ino info */
4040 if (le32_to_cpu(raw_super->node_ino) != 1 ||
4041 le32_to_cpu(raw_super->meta_ino) != 2 ||
4042 le32_to_cpu(raw_super->root_ino) != 3) {
4043 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
4044 le32_to_cpu(raw_super->node_ino),
4045 le32_to_cpu(raw_super->meta_ino),
4046 le32_to_cpu(raw_super->root_ino));
4047 return -EFSCORRUPTED;
4048 }
4049
4050 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
4051 if (sanity_check_area_boundary(sbi, folio, index))
4052 return -EFSCORRUPTED;
4053
4054 return 0;
4055 }
4056
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)4057 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
4058 {
4059 unsigned int total, fsmeta;
4060 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4061 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4062 unsigned int ovp_segments, reserved_segments;
4063 unsigned int main_segs, blocks_per_seg;
4064 unsigned int sit_segs, nat_segs;
4065 unsigned int sit_bitmap_size, nat_bitmap_size;
4066 unsigned int log_blocks_per_seg;
4067 unsigned int segment_count_main;
4068 unsigned int cp_pack_start_sum, cp_payload;
4069 block_t user_block_count, valid_user_blocks;
4070 block_t avail_node_count, valid_node_count;
4071 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
4072 unsigned int sit_blk_cnt;
4073 int i, j;
4074
4075 total = le32_to_cpu(raw_super->segment_count);
4076 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
4077 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
4078 fsmeta += sit_segs;
4079 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
4080 fsmeta += nat_segs;
4081 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
4082 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
4083
4084 if (unlikely(fsmeta >= total))
4085 return 1;
4086
4087 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4088 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4089
4090 if (!f2fs_sb_has_readonly(sbi) &&
4091 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
4092 ovp_segments == 0 || reserved_segments == 0)) {
4093 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
4094 return 1;
4095 }
4096 user_block_count = le64_to_cpu(ckpt->user_block_count);
4097 segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
4098 (f2fs_sb_has_readonly(sbi) ? 1 : 0);
4099 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
4100 if (!user_block_count || user_block_count >=
4101 segment_count_main << log_blocks_per_seg) {
4102 f2fs_err(sbi, "Wrong user_block_count: %u",
4103 user_block_count);
4104 return 1;
4105 }
4106
4107 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
4108 if (valid_user_blocks > user_block_count) {
4109 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
4110 valid_user_blocks, user_block_count);
4111 return 1;
4112 }
4113
4114 valid_node_count = le32_to_cpu(ckpt->valid_node_count);
4115 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
4116 if (valid_node_count > avail_node_count) {
4117 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
4118 valid_node_count, avail_node_count);
4119 return 1;
4120 }
4121
4122 main_segs = le32_to_cpu(raw_super->segment_count_main);
4123 blocks_per_seg = BLKS_PER_SEG(sbi);
4124
4125 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
4126 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
4127 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
4128 return 1;
4129
4130 if (f2fs_sb_has_readonly(sbi))
4131 goto check_data;
4132
4133 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
4134 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
4135 le32_to_cpu(ckpt->cur_node_segno[j])) {
4136 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
4137 i, j,
4138 le32_to_cpu(ckpt->cur_node_segno[i]));
4139 return 1;
4140 }
4141 }
4142 }
4143 check_data:
4144 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
4145 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
4146 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
4147 return 1;
4148
4149 if (f2fs_sb_has_readonly(sbi))
4150 goto skip_cross;
4151
4152 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
4153 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
4154 le32_to_cpu(ckpt->cur_data_segno[j])) {
4155 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
4156 i, j,
4157 le32_to_cpu(ckpt->cur_data_segno[i]));
4158 return 1;
4159 }
4160 }
4161 }
4162 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
4163 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
4164 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
4165 le32_to_cpu(ckpt->cur_data_segno[j])) {
4166 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
4167 i, j,
4168 le32_to_cpu(ckpt->cur_node_segno[i]));
4169 return 1;
4170 }
4171 }
4172 }
4173 skip_cross:
4174 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
4175 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
4176
4177 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
4178 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
4179 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
4180 sit_bitmap_size, nat_bitmap_size);
4181 return 1;
4182 }
4183
4184 sit_blk_cnt = DIV_ROUND_UP(main_segs, SIT_ENTRY_PER_BLOCK);
4185 if (sit_bitmap_size * 8 < sit_blk_cnt) {
4186 f2fs_err(sbi, "Wrong bitmap size: sit: %u, sit_blk_cnt:%u",
4187 sit_bitmap_size, sit_blk_cnt);
4188 return 1;
4189 }
4190
4191 cp_pack_start_sum = __start_sum_addr(sbi);
4192 cp_payload = __cp_payload(sbi);
4193 if (cp_pack_start_sum < cp_payload + 1 ||
4194 cp_pack_start_sum > blocks_per_seg - 1 -
4195 NR_CURSEG_PERSIST_TYPE) {
4196 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
4197 cp_pack_start_sum);
4198 return 1;
4199 }
4200
4201 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
4202 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
4203 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
4204 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
4205 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
4206 le32_to_cpu(ckpt->checksum_offset));
4207 return 1;
4208 }
4209
4210 nat_blocks = nat_segs << log_blocks_per_seg;
4211 nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
4212 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
4213 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
4214 (cp_payload + F2FS_CP_PACKS +
4215 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
4216 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
4217 cp_payload, nat_bits_blocks);
4218 return 1;
4219 }
4220
4221 if (unlikely(f2fs_cp_error(sbi))) {
4222 f2fs_err(sbi, "A bug case: need to run fsck");
4223 return 1;
4224 }
4225 return 0;
4226 }
4227
init_sb_info(struct f2fs_sb_info * sbi)4228 static void init_sb_info(struct f2fs_sb_info *sbi)
4229 {
4230 struct f2fs_super_block *raw_super = sbi->raw_super;
4231 int i;
4232
4233 sbi->log_sectors_per_block =
4234 le32_to_cpu(raw_super->log_sectors_per_block);
4235 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
4236 sbi->blocksize = BIT(sbi->log_blocksize);
4237 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
4238 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg);
4239 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
4240 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
4241 sbi->total_sections = le32_to_cpu(raw_super->section_count);
4242 sbi->total_node_count = SEGS_TO_BLKS(sbi,
4243 ((le32_to_cpu(raw_super->segment_count_nat) / 2) *
4244 NAT_ENTRY_PER_BLOCK));
4245 sbi->allocate_section_hint = le32_to_cpu(raw_super->section_count);
4246 sbi->allocate_section_policy = ALLOCATE_FORWARD_NOHINT;
4247 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
4248 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
4249 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
4250 sbi->cur_victim_sec = NULL_SECNO;
4251 sbi->gc_mode = GC_NORMAL;
4252 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
4253 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
4254 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
4255 sbi->migration_granularity = SEGS_PER_SEC(sbi);
4256 sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ?
4257 DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi);
4258 sbi->seq_file_ra_mul = MIN_RA_MUL;
4259 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
4260 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
4261 spin_lock_init(&sbi->gc_remaining_trials_lock);
4262 atomic64_set(&sbi->current_atomic_write, 0);
4263
4264 sbi->dir_level = DEF_DIR_LEVEL;
4265 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
4266 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
4267 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
4268 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
4269 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
4270 sbi->interval_time[ENABLE_TIME] = DEF_ENABLE_INTERVAL;
4271 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
4272 DEF_UMOUNT_DISCARD_TIMEOUT;
4273 clear_sbi_flag(sbi, SBI_NEED_FSCK);
4274
4275 for (i = 0; i < NR_COUNT_TYPE; i++)
4276 atomic_set(&sbi->nr_pages[i], 0);
4277
4278 for (i = 0; i < META; i++)
4279 atomic_set(&sbi->wb_sync_req[i], 0);
4280
4281 INIT_LIST_HEAD(&sbi->s_list);
4282 mutex_init(&sbi->umount_mutex);
4283 init_f2fs_rwsem(&sbi->io_order_lock);
4284 spin_lock_init(&sbi->cp_lock);
4285
4286 sbi->dirty_device = 0;
4287 spin_lock_init(&sbi->dev_lock);
4288
4289 init_f2fs_rwsem(&sbi->sb_lock);
4290 init_f2fs_rwsem(&sbi->pin_sem);
4291 }
4292
init_percpu_info(struct f2fs_sb_info * sbi)4293 static int init_percpu_info(struct f2fs_sb_info *sbi)
4294 {
4295 int err;
4296
4297 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
4298 if (err)
4299 return err;
4300
4301 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
4302 if (err)
4303 goto err_valid_block;
4304
4305 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
4306 GFP_KERNEL);
4307 if (err)
4308 goto err_node_block;
4309 return 0;
4310
4311 err_node_block:
4312 percpu_counter_destroy(&sbi->rf_node_block_count);
4313 err_valid_block:
4314 percpu_counter_destroy(&sbi->alloc_valid_block_count);
4315 return err;
4316 }
4317
4318 #ifdef CONFIG_BLK_DEV_ZONED
4319
4320 struct f2fs_report_zones_args {
4321 struct f2fs_sb_info *sbi;
4322 struct f2fs_dev_info *dev;
4323 };
4324
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4325 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
4326 void *data)
4327 {
4328 struct f2fs_report_zones_args *rz_args = data;
4329 block_t unusable_blocks = (zone->len - zone->capacity) >>
4330 F2FS_LOG_SECTORS_PER_BLOCK;
4331
4332 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
4333 return 0;
4334
4335 set_bit(idx, rz_args->dev->blkz_seq);
4336 if (!rz_args->sbi->unusable_blocks_per_sec) {
4337 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
4338 return 0;
4339 }
4340 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
4341 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
4342 return -EINVAL;
4343 }
4344 return 0;
4345 }
4346
init_blkz_info(struct f2fs_sb_info * sbi,int devi)4347 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
4348 {
4349 struct block_device *bdev = FDEV(devi).bdev;
4350 sector_t nr_sectors = bdev_nr_sectors(bdev);
4351 struct f2fs_report_zones_args rep_zone_arg;
4352 u64 zone_sectors;
4353 unsigned int max_open_zones;
4354 int ret;
4355
4356 if (!f2fs_sb_has_blkzoned(sbi))
4357 return 0;
4358
4359 if (bdev_is_zoned(FDEV(devi).bdev)) {
4360 max_open_zones = bdev_max_open_zones(bdev);
4361 if (max_open_zones && (max_open_zones < sbi->max_open_zones))
4362 sbi->max_open_zones = max_open_zones;
4363 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) {
4364 f2fs_err(sbi,
4365 "zoned: max open zones %u is too small, need at least %u open zones",
4366 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs);
4367 return -EINVAL;
4368 }
4369 }
4370
4371 zone_sectors = bdev_zone_sectors(bdev);
4372 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
4373 SECTOR_TO_BLOCK(zone_sectors))
4374 return -EINVAL;
4375 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
4376 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors),
4377 sbi->blocks_per_blkz);
4378 if (nr_sectors & (zone_sectors - 1))
4379 FDEV(devi).nr_blkz++;
4380
4381 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
4382 BITS_TO_LONGS(FDEV(devi).nr_blkz)
4383 * sizeof(unsigned long),
4384 GFP_KERNEL);
4385 if (!FDEV(devi).blkz_seq)
4386 return -ENOMEM;
4387
4388 rep_zone_arg.sbi = sbi;
4389 rep_zone_arg.dev = &FDEV(devi);
4390
4391 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
4392 &rep_zone_arg);
4393 if (ret < 0)
4394 return ret;
4395 return 0;
4396 }
4397 #endif
4398
4399 /*
4400 * Read f2fs raw super block.
4401 * Because we have two copies of super block, so read both of them
4402 * to get the first valid one. If any one of them is broken, we pass
4403 * them recovery flag back to the caller.
4404 */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)4405 static int read_raw_super_block(struct f2fs_sb_info *sbi,
4406 struct f2fs_super_block **raw_super,
4407 int *valid_super_block, int *recovery)
4408 {
4409 struct super_block *sb = sbi->sb;
4410 int block;
4411 struct folio *folio;
4412 struct f2fs_super_block *super;
4413 int err = 0;
4414
4415 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
4416 if (!super)
4417 return -ENOMEM;
4418
4419 for (block = 0; block < 2; block++) {
4420 folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL);
4421 if (IS_ERR(folio)) {
4422 f2fs_err(sbi, "Unable to read %dth superblock",
4423 block + 1);
4424 err = PTR_ERR(folio);
4425 *recovery = 1;
4426 continue;
4427 }
4428
4429 /* sanity checking of raw super */
4430 err = sanity_check_raw_super(sbi, folio, block);
4431 if (err) {
4432 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
4433 block + 1);
4434 folio_put(folio);
4435 *recovery = 1;
4436 continue;
4437 }
4438
4439 if (!*raw_super) {
4440 memcpy(super, F2FS_SUPER_BLOCK(folio, block),
4441 sizeof(*super));
4442 *valid_super_block = block;
4443 *raw_super = super;
4444 }
4445 folio_put(folio);
4446 }
4447
4448 /* No valid superblock */
4449 if (!*raw_super)
4450 kfree(super);
4451 else
4452 err = 0;
4453
4454 return err;
4455 }
4456
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)4457 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
4458 {
4459 struct folio *folio;
4460 pgoff_t index;
4461 __u32 crc = 0;
4462 int err;
4463
4464 if ((recover && f2fs_readonly(sbi->sb)) ||
4465 f2fs_hw_is_readonly(sbi)) {
4466 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
4467 return -EROFS;
4468 }
4469
4470 /* we should update superblock crc here */
4471 if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
4472 crc = f2fs_crc32(F2FS_RAW_SUPER(sbi),
4473 offsetof(struct f2fs_super_block, crc));
4474 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
4475 }
4476
4477 /* write back-up superblock first */
4478 index = sbi->valid_super_block ? 0 : 1;
4479 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL);
4480 if (IS_ERR(folio))
4481 return PTR_ERR(folio);
4482 err = __f2fs_commit_super(sbi, folio, index, true);
4483 folio_put(folio);
4484
4485 /* if we are in recovery path, skip writing valid superblock */
4486 if (recover || err)
4487 return err;
4488
4489 /* write current valid superblock */
4490 index = sbi->valid_super_block;
4491 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL);
4492 if (IS_ERR(folio))
4493 return PTR_ERR(folio);
4494 err = __f2fs_commit_super(sbi, folio, index, true);
4495 folio_put(folio);
4496 return err;
4497 }
4498
save_stop_reason(struct f2fs_sb_info * sbi,unsigned char reason)4499 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason)
4500 {
4501 unsigned long flags;
4502
4503 spin_lock_irqsave(&sbi->error_lock, flags);
4504 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0))
4505 sbi->stop_reason[reason]++;
4506 spin_unlock_irqrestore(&sbi->error_lock, flags);
4507 }
4508
f2fs_record_stop_reason(struct f2fs_sb_info * sbi)4509 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi)
4510 {
4511 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4512 unsigned long flags;
4513 int err;
4514
4515 f2fs_down_write(&sbi->sb_lock);
4516
4517 spin_lock_irqsave(&sbi->error_lock, flags);
4518 if (sbi->error_dirty) {
4519 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4520 MAX_F2FS_ERRORS);
4521 sbi->error_dirty = false;
4522 }
4523 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON);
4524 spin_unlock_irqrestore(&sbi->error_lock, flags);
4525
4526 err = f2fs_commit_super(sbi, false);
4527
4528 f2fs_up_write(&sbi->sb_lock);
4529 if (err)
4530 f2fs_err_ratelimited(sbi,
4531 "f2fs_commit_super fails to record stop_reason, err:%d",
4532 err);
4533 }
4534
f2fs_save_errors(struct f2fs_sb_info * sbi,unsigned char flag)4535 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
4536 {
4537 unsigned long flags;
4538
4539 spin_lock_irqsave(&sbi->error_lock, flags);
4540 if (!test_bit(flag, (unsigned long *)sbi->errors)) {
4541 set_bit(flag, (unsigned long *)sbi->errors);
4542 sbi->error_dirty = true;
4543 }
4544 spin_unlock_irqrestore(&sbi->error_lock, flags);
4545 }
4546
f2fs_update_errors(struct f2fs_sb_info * sbi)4547 static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
4548 {
4549 unsigned long flags;
4550 bool need_update = false;
4551
4552 spin_lock_irqsave(&sbi->error_lock, flags);
4553 if (sbi->error_dirty) {
4554 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4555 MAX_F2FS_ERRORS);
4556 sbi->error_dirty = false;
4557 need_update = true;
4558 }
4559 spin_unlock_irqrestore(&sbi->error_lock, flags);
4560
4561 return need_update;
4562 }
4563
f2fs_record_errors(struct f2fs_sb_info * sbi,unsigned char error)4564 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error)
4565 {
4566 int err;
4567
4568 f2fs_down_write(&sbi->sb_lock);
4569
4570 if (!f2fs_update_errors(sbi))
4571 goto out_unlock;
4572
4573 err = f2fs_commit_super(sbi, false);
4574 if (err)
4575 f2fs_err_ratelimited(sbi,
4576 "f2fs_commit_super fails to record errors:%u, err:%d",
4577 error, err);
4578 out_unlock:
4579 f2fs_up_write(&sbi->sb_lock);
4580 }
4581
f2fs_handle_error(struct f2fs_sb_info * sbi,unsigned char error)4582 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
4583 {
4584 f2fs_save_errors(sbi, error);
4585 f2fs_record_errors(sbi, error);
4586 }
4587
f2fs_handle_error_async(struct f2fs_sb_info * sbi,unsigned char error)4588 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error)
4589 {
4590 f2fs_save_errors(sbi, error);
4591
4592 if (!sbi->error_dirty)
4593 return;
4594 if (!test_bit(error, (unsigned long *)sbi->errors))
4595 return;
4596 schedule_work(&sbi->s_error_work);
4597 }
4598
system_going_down(void)4599 static bool system_going_down(void)
4600 {
4601 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
4602 || system_state == SYSTEM_RESTART;
4603 }
4604
f2fs_handle_critical_error(struct f2fs_sb_info * sbi,unsigned char reason)4605 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason)
4606 {
4607 struct super_block *sb = sbi->sb;
4608 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN;
4609 bool continue_fs = !shutdown &&
4610 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE;
4611
4612 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4613
4614 if (!f2fs_hw_is_readonly(sbi)) {
4615 save_stop_reason(sbi, reason);
4616
4617 /*
4618 * always create an asynchronous task to record stop_reason
4619 * in order to avoid potential deadlock when running into
4620 * f2fs_record_stop_reason() synchronously.
4621 */
4622 schedule_work(&sbi->s_error_work);
4623 }
4624
4625 /*
4626 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
4627 * could panic during 'reboot -f' as the underlying device got already
4628 * disabled.
4629 */
4630 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC &&
4631 !shutdown && !system_going_down() &&
4632 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
4633 panic("F2FS-fs (device %s): panic forced after error\n",
4634 sb->s_id);
4635
4636 if (shutdown)
4637 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
4638 else
4639 dump_stack();
4640
4641 /*
4642 * Continue filesystem operators if errors=continue. Should not set
4643 * RO by shutdown, since RO bypasses thaw_super which can hang the
4644 * system.
4645 */
4646 if (continue_fs || f2fs_readonly(sb) || shutdown) {
4647 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason);
4648 return;
4649 }
4650
4651 f2fs_warn(sbi, "Remounting filesystem read-only");
4652
4653 /*
4654 * We have already set CP_ERROR_FLAG flag to stop all updates
4655 * to filesystem, so it doesn't need to set SB_RDONLY flag here
4656 * because the flag should be set covered w/ sb->s_umount semaphore
4657 * via remount procedure, otherwise, it will confuse code like
4658 * freeze_super() which will lead to deadlocks and other problems.
4659 */
4660 }
4661
f2fs_record_error_work(struct work_struct * work)4662 static void f2fs_record_error_work(struct work_struct *work)
4663 {
4664 struct f2fs_sb_info *sbi = container_of(work,
4665 struct f2fs_sb_info, s_error_work);
4666
4667 f2fs_record_stop_reason(sbi);
4668 }
4669
get_first_seq_zone_segno(struct f2fs_sb_info * sbi)4670 static inline unsigned int get_first_seq_zone_segno(struct f2fs_sb_info *sbi)
4671 {
4672 #ifdef CONFIG_BLK_DEV_ZONED
4673 unsigned int zoneno, total_zones;
4674 int devi;
4675
4676 if (!f2fs_sb_has_blkzoned(sbi))
4677 return NULL_SEGNO;
4678
4679 for (devi = 0; devi < sbi->s_ndevs; devi++) {
4680 if (!bdev_is_zoned(FDEV(devi).bdev))
4681 continue;
4682
4683 total_zones = GET_ZONE_FROM_SEG(sbi, FDEV(devi).total_segments);
4684
4685 for (zoneno = 0; zoneno < total_zones; zoneno++) {
4686 unsigned int segs, blks;
4687
4688 if (!f2fs_zone_is_seq(sbi, devi, zoneno))
4689 continue;
4690
4691 segs = GET_SEG_FROM_SEC(sbi,
4692 zoneno * sbi->secs_per_zone);
4693 blks = SEGS_TO_BLKS(sbi, segs);
4694 return GET_SEGNO(sbi, FDEV(devi).start_blk + blks);
4695 }
4696 }
4697 #endif
4698 return NULL_SEGNO;
4699 }
4700
f2fs_scan_devices(struct f2fs_sb_info * sbi)4701 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
4702 {
4703 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4704 unsigned int max_devices = MAX_DEVICES;
4705 unsigned int logical_blksize;
4706 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags);
4707 int i;
4708
4709 /* Initialize single device information */
4710 if (!RDEV(0).path[0]) {
4711 if (!bdev_is_zoned(sbi->sb->s_bdev))
4712 return 0;
4713 max_devices = 1;
4714 }
4715
4716 /*
4717 * Initialize multiple devices information, or single
4718 * zoned block device information.
4719 */
4720 sbi->devs = f2fs_kzalloc(sbi,
4721 array_size(max_devices,
4722 sizeof(struct f2fs_dev_info)),
4723 GFP_KERNEL);
4724 if (!sbi->devs)
4725 return -ENOMEM;
4726
4727 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
4728 sbi->aligned_blksize = true;
4729 sbi->bggc_io_aware = AWARE_ALL_IO;
4730 #ifdef CONFIG_BLK_DEV_ZONED
4731 sbi->max_open_zones = UINT_MAX;
4732 sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ;
4733 sbi->bggc_io_aware = AWARE_READ_IO;
4734 #endif
4735
4736 for (i = 0; i < max_devices; i++) {
4737 if (max_devices == 1) {
4738 FDEV(i).total_segments =
4739 le32_to_cpu(raw_super->segment_count_main);
4740 FDEV(i).start_blk = 0;
4741 FDEV(i).end_blk = FDEV(i).total_segments *
4742 BLKS_PER_SEG(sbi);
4743 }
4744
4745 if (i == 0)
4746 FDEV(0).bdev_file = sbi->sb->s_bdev_file;
4747 else if (!RDEV(i).path[0])
4748 break;
4749
4750 if (max_devices > 1) {
4751 /* Multi-device mount */
4752 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
4753 FDEV(i).total_segments =
4754 le32_to_cpu(RDEV(i).total_segments);
4755 if (i == 0) {
4756 FDEV(i).start_blk = 0;
4757 FDEV(i).end_blk = FDEV(i).start_blk +
4758 SEGS_TO_BLKS(sbi,
4759 FDEV(i).total_segments) - 1 +
4760 le32_to_cpu(raw_super->segment0_blkaddr);
4761 sbi->allocate_section_hint = FDEV(i).total_segments /
4762 SEGS_PER_SEC(sbi);
4763 } else {
4764 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
4765 FDEV(i).end_blk = FDEV(i).start_blk +
4766 SEGS_TO_BLKS(sbi,
4767 FDEV(i).total_segments) - 1;
4768 FDEV(i).bdev_file = bdev_file_open_by_path(
4769 FDEV(i).path, mode, sbi->sb, NULL);
4770 }
4771 }
4772 if (IS_ERR(FDEV(i).bdev_file))
4773 return PTR_ERR(FDEV(i).bdev_file);
4774
4775 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file);
4776 /* to release errored devices */
4777 sbi->s_ndevs = i + 1;
4778
4779 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
4780 sbi->aligned_blksize = false;
4781
4782 #ifdef CONFIG_BLK_DEV_ZONED
4783 if (bdev_is_zoned(FDEV(i).bdev)) {
4784 if (!f2fs_sb_has_blkzoned(sbi)) {
4785 f2fs_err(sbi, "Zoned block device feature not enabled");
4786 return -EINVAL;
4787 }
4788 if (init_blkz_info(sbi, i)) {
4789 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4790 return -EINVAL;
4791 }
4792 if (max_devices == 1)
4793 break;
4794 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)",
4795 i, FDEV(i).path,
4796 FDEV(i).total_segments,
4797 FDEV(i).start_blk, FDEV(i).end_blk);
4798 continue;
4799 }
4800 #endif
4801 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4802 i, FDEV(i).path,
4803 FDEV(i).total_segments,
4804 FDEV(i).start_blk, FDEV(i).end_blk);
4805 }
4806 return 0;
4807 }
4808
f2fs_setup_casefold(struct f2fs_sb_info * sbi)4809 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4810 {
4811 #if IS_ENABLED(CONFIG_UNICODE)
4812 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4813 const struct f2fs_sb_encodings *encoding_info;
4814 struct unicode_map *encoding;
4815 __u16 encoding_flags;
4816
4817 encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4818 if (!encoding_info) {
4819 f2fs_err(sbi,
4820 "Encoding requested by superblock is unknown");
4821 return -EINVAL;
4822 }
4823
4824 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4825 encoding = utf8_load(encoding_info->version);
4826 if (IS_ERR(encoding)) {
4827 f2fs_err(sbi,
4828 "can't mount with superblock charset: %s-%u.%u.%u "
4829 "not supported by the kernel. flags: 0x%x.",
4830 encoding_info->name,
4831 unicode_major(encoding_info->version),
4832 unicode_minor(encoding_info->version),
4833 unicode_rev(encoding_info->version),
4834 encoding_flags);
4835 return PTR_ERR(encoding);
4836 }
4837 f2fs_info(sbi, "Using encoding defined by superblock: "
4838 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4839 unicode_major(encoding_info->version),
4840 unicode_minor(encoding_info->version),
4841 unicode_rev(encoding_info->version),
4842 encoding_flags);
4843
4844 sbi->sb->s_encoding = encoding;
4845 sbi->sb->s_encoding_flags = encoding_flags;
4846 }
4847 #else
4848 if (f2fs_sb_has_casefold(sbi)) {
4849 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4850 return -EINVAL;
4851 }
4852 #endif
4853 return 0;
4854 }
4855
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)4856 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4857 {
4858 /* adjust parameters according to the volume size */
4859 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4860 if (f2fs_block_unit_discard(sbi))
4861 SM_I(sbi)->dcc_info->discard_granularity =
4862 MIN_DISCARD_GRANULARITY;
4863 if (!f2fs_lfs_mode(sbi))
4864 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
4865 BIT(F2FS_IPU_HONOR_OPU_WRITE);
4866 }
4867
4868 sbi->readdir_ra = true;
4869 }
4870
f2fs_fill_super(struct super_block * sb,struct fs_context * fc)4871 static int f2fs_fill_super(struct super_block *sb, struct fs_context *fc)
4872 {
4873 struct f2fs_fs_context *ctx = fc->fs_private;
4874 struct f2fs_sb_info *sbi;
4875 struct f2fs_super_block *raw_super;
4876 struct inode *root;
4877 int err;
4878 bool skip_recovery = false, need_fsck = false;
4879 int recovery, i, valid_super_block;
4880 struct curseg_info *seg_i;
4881 int retry_cnt = 1;
4882 #ifdef CONFIG_QUOTA
4883 bool quota_enabled = false;
4884 #endif
4885
4886 try_onemore:
4887 err = -EINVAL;
4888 raw_super = NULL;
4889 valid_super_block = -1;
4890 recovery = 0;
4891
4892 /* allocate memory for f2fs-specific super block info */
4893 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4894 if (!sbi)
4895 return -ENOMEM;
4896
4897 sbi->sb = sb;
4898
4899 /* initialize locks within allocated memory */
4900 init_f2fs_rwsem(&sbi->gc_lock);
4901 mutex_init(&sbi->writepages);
4902 init_f2fs_rwsem(&sbi->cp_global_sem);
4903 init_f2fs_rwsem(&sbi->node_write);
4904 init_f2fs_rwsem(&sbi->node_change);
4905 spin_lock_init(&sbi->stat_lock);
4906 init_f2fs_rwsem(&sbi->cp_rwsem);
4907 init_f2fs_rwsem(&sbi->quota_sem);
4908 init_waitqueue_head(&sbi->cp_wait);
4909 spin_lock_init(&sbi->error_lock);
4910
4911 for (i = 0; i < NR_INODE_TYPE; i++) {
4912 INIT_LIST_HEAD(&sbi->inode_list[i]);
4913 spin_lock_init(&sbi->inode_lock[i]);
4914 }
4915 mutex_init(&sbi->flush_lock);
4916
4917 /* set a block size */
4918 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4919 f2fs_err(sbi, "unable to set blocksize");
4920 goto free_sbi;
4921 }
4922
4923 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4924 &recovery);
4925 if (err)
4926 goto free_sbi;
4927
4928 sb->s_fs_info = sbi;
4929 sbi->raw_super = raw_super;
4930
4931 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work);
4932 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4933 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON);
4934
4935 /* precompute checksum seed for metadata */
4936 if (f2fs_sb_has_inode_chksum(sbi))
4937 sbi->s_chksum_seed = f2fs_chksum(~0, raw_super->uuid,
4938 sizeof(raw_super->uuid));
4939
4940 default_options(sbi, false);
4941
4942 err = f2fs_check_opt_consistency(fc, sb);
4943 if (err)
4944 goto free_sb_buf;
4945
4946 f2fs_apply_options(fc, sb);
4947
4948 err = f2fs_sanity_check_options(sbi, false);
4949 if (err)
4950 goto free_options;
4951
4952 sb->s_maxbytes = max_file_blocks(NULL) <<
4953 le32_to_cpu(raw_super->log_blocksize);
4954 sb->s_max_links = F2FS_LINK_MAX;
4955
4956 err = f2fs_setup_casefold(sbi);
4957 if (err)
4958 goto free_options;
4959
4960 #ifdef CONFIG_QUOTA
4961 sb->dq_op = &f2fs_quota_operations;
4962 sb->s_qcop = &f2fs_quotactl_ops;
4963 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4964
4965 if (f2fs_sb_has_quota_ino(sbi)) {
4966 for (i = 0; i < MAXQUOTAS; i++) {
4967 if (f2fs_qf_ino(sbi->sb, i))
4968 sbi->nquota_files++;
4969 }
4970 }
4971 #endif
4972
4973 sb->s_op = &f2fs_sops;
4974 #ifdef CONFIG_FS_ENCRYPTION
4975 sb->s_cop = &f2fs_cryptops;
4976 #endif
4977 #ifdef CONFIG_FS_VERITY
4978 sb->s_vop = &f2fs_verityops;
4979 #endif
4980 sb->s_xattr = f2fs_xattr_handlers;
4981 sb->s_export_op = &f2fs_export_ops;
4982 sb->s_magic = F2FS_SUPER_MAGIC;
4983 sb->s_time_gran = 1;
4984 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4985 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4986 if (test_opt(sbi, INLINECRYPT))
4987 sb->s_flags |= SB_INLINECRYPT;
4988
4989 if (test_opt(sbi, LAZYTIME))
4990 sb->s_flags |= SB_LAZYTIME;
4991 else
4992 sb->s_flags &= ~SB_LAZYTIME;
4993
4994 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid));
4995 super_set_sysfs_name_bdev(sb);
4996 sb->s_iflags |= SB_I_CGROUPWB;
4997
4998 /* init f2fs-specific super block info */
4999 sbi->valid_super_block = valid_super_block;
5000
5001 /* disallow all the data/node/meta page writes */
5002 set_sbi_flag(sbi, SBI_POR_DOING);
5003
5004 err = f2fs_init_write_merge_io(sbi);
5005 if (err)
5006 goto free_bio_info;
5007
5008 init_sb_info(sbi);
5009
5010 err = f2fs_init_iostat(sbi);
5011 if (err)
5012 goto free_bio_info;
5013
5014 err = init_percpu_info(sbi);
5015 if (err)
5016 goto free_iostat;
5017
5018 /* init per sbi slab cache */
5019 err = f2fs_init_xattr_caches(sbi);
5020 if (err)
5021 goto free_percpu;
5022 err = f2fs_init_page_array_cache(sbi);
5023 if (err)
5024 goto free_xattr_cache;
5025
5026 /* get an inode for meta space */
5027 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
5028 if (IS_ERR(sbi->meta_inode)) {
5029 f2fs_err(sbi, "Failed to read F2FS meta data inode");
5030 err = PTR_ERR(sbi->meta_inode);
5031 goto free_page_array_cache;
5032 }
5033
5034 err = f2fs_get_valid_checkpoint(sbi);
5035 if (err) {
5036 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
5037 goto free_meta_inode;
5038 }
5039
5040 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
5041 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
5042 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
5043 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
5044 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
5045 }
5046
5047 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
5048 set_sbi_flag(sbi, SBI_NEED_FSCK);
5049
5050 /* Initialize device list */
5051 err = f2fs_scan_devices(sbi);
5052 if (err) {
5053 f2fs_err(sbi, "Failed to find devices");
5054 goto free_devices;
5055 }
5056
5057 err = f2fs_init_post_read_wq(sbi);
5058 if (err) {
5059 f2fs_err(sbi, "Failed to initialize post read workqueue");
5060 goto free_devices;
5061 }
5062
5063 sbi->total_valid_node_count =
5064 le32_to_cpu(sbi->ckpt->valid_node_count);
5065 percpu_counter_set(&sbi->total_valid_inode_count,
5066 le32_to_cpu(sbi->ckpt->valid_inode_count));
5067 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
5068 sbi->total_valid_block_count =
5069 le64_to_cpu(sbi->ckpt->valid_block_count);
5070 sbi->last_valid_block_count = sbi->total_valid_block_count;
5071 sbi->reserved_blocks = 0;
5072 sbi->current_reserved_blocks = 0;
5073 limit_reserve_root(sbi);
5074 adjust_unusable_cap_perc(sbi);
5075
5076 f2fs_init_extent_cache_info(sbi);
5077
5078 f2fs_init_ino_entry_info(sbi);
5079
5080 f2fs_init_fsync_node_info(sbi);
5081
5082 /* setup checkpoint request control and start checkpoint issue thread */
5083 f2fs_init_ckpt_req_control(sbi);
5084 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
5085 test_opt(sbi, MERGE_CHECKPOINT)) {
5086 err = f2fs_start_ckpt_thread(sbi);
5087 if (err) {
5088 f2fs_err(sbi,
5089 "Failed to start F2FS issue_checkpoint_thread (%d)",
5090 err);
5091 goto stop_ckpt_thread;
5092 }
5093 }
5094
5095 /* setup f2fs internal modules */
5096 err = f2fs_build_segment_manager(sbi);
5097 if (err) {
5098 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
5099 err);
5100 goto free_sm;
5101 }
5102 err = f2fs_build_node_manager(sbi);
5103 if (err) {
5104 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
5105 err);
5106 goto free_nm;
5107 }
5108
5109 /* For write statistics */
5110 sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
5111
5112 /* get segno of first zoned block device */
5113 sbi->first_seq_zone_segno = get_first_seq_zone_segno(sbi);
5114
5115 sbi->reserved_pin_section = f2fs_sb_has_blkzoned(sbi) ?
5116 ZONED_PIN_SEC_REQUIRED_COUNT :
5117 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi));
5118
5119 /* Read accumulated write IO statistics if exists */
5120 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
5121 if (__exist_node_summaries(sbi))
5122 sbi->kbytes_written =
5123 le64_to_cpu(seg_i->journal->info.kbytes_written);
5124
5125 f2fs_build_gc_manager(sbi);
5126
5127 err = f2fs_build_stats(sbi);
5128 if (err)
5129 goto free_nm;
5130
5131 /* get an inode for node space */
5132 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
5133 if (IS_ERR(sbi->node_inode)) {
5134 f2fs_err(sbi, "Failed to read node inode");
5135 err = PTR_ERR(sbi->node_inode);
5136 goto free_stats;
5137 }
5138
5139 /* read root inode and dentry */
5140 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
5141 if (IS_ERR(root)) {
5142 f2fs_err(sbi, "Failed to read root inode");
5143 err = PTR_ERR(root);
5144 goto free_node_inode;
5145 }
5146 if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
5147 !root->i_size || !root->i_nlink) {
5148 iput(root);
5149 err = -EINVAL;
5150 goto free_node_inode;
5151 }
5152
5153 generic_set_sb_d_ops(sb);
5154 sb->s_root = d_make_root(root); /* allocate root dentry */
5155 if (!sb->s_root) {
5156 err = -ENOMEM;
5157 goto free_node_inode;
5158 }
5159
5160 err = f2fs_init_compress_inode(sbi);
5161 if (err)
5162 goto free_root_inode;
5163
5164 err = f2fs_register_sysfs(sbi);
5165 if (err)
5166 goto free_compress_inode;
5167
5168 sbi->umount_lock_holder = current;
5169 #ifdef CONFIG_QUOTA
5170 /* Enable quota usage during mount */
5171 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
5172 err = f2fs_enable_quotas(sb);
5173 if (err)
5174 f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
5175 }
5176
5177 quota_enabled = f2fs_recover_quota_begin(sbi);
5178 #endif
5179 /* if there are any orphan inodes, free them */
5180 err = f2fs_recover_orphan_inodes(sbi);
5181 if (err)
5182 goto free_meta;
5183
5184 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) {
5185 skip_recovery = true;
5186 goto reset_checkpoint;
5187 }
5188
5189 /* recover fsynced data */
5190 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
5191 !test_opt(sbi, NORECOVERY)) {
5192 /*
5193 * mount should be failed, when device has readonly mode, and
5194 * previous checkpoint was not done by clean system shutdown.
5195 */
5196 if (f2fs_hw_is_readonly(sbi)) {
5197 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5198 err = f2fs_recover_fsync_data(sbi, true);
5199 if (err > 0) {
5200 err = -EROFS;
5201 f2fs_err(sbi, "Need to recover fsync data, but "
5202 "write access unavailable, please try "
5203 "mount w/ disable_roll_forward or norecovery");
5204 }
5205 if (err < 0)
5206 goto free_meta;
5207 }
5208 f2fs_info(sbi, "write access unavailable, skipping recovery");
5209 goto reset_checkpoint;
5210 }
5211
5212 if (need_fsck)
5213 set_sbi_flag(sbi, SBI_NEED_FSCK);
5214
5215 if (skip_recovery)
5216 goto reset_checkpoint;
5217
5218 err = f2fs_recover_fsync_data(sbi, false);
5219 if (err < 0) {
5220 if (err != -ENOMEM)
5221 skip_recovery = true;
5222 need_fsck = true;
5223 f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
5224 err);
5225 goto free_meta;
5226 }
5227 } else {
5228 err = f2fs_recover_fsync_data(sbi, true);
5229
5230 if (!f2fs_readonly(sb) && err > 0) {
5231 err = -EINVAL;
5232 f2fs_err(sbi, "Need to recover fsync data");
5233 goto free_meta;
5234 }
5235 }
5236
5237 reset_checkpoint:
5238 #ifdef CONFIG_QUOTA
5239 f2fs_recover_quota_end(sbi, quota_enabled);
5240 #endif
5241 /*
5242 * If the f2fs is not readonly and fsync data recovery succeeds,
5243 * write pointer consistency of cursegs and other zones are already
5244 * checked and fixed during recovery. However, if recovery fails,
5245 * write pointers are left untouched, and retry-mount should check
5246 * them here.
5247 */
5248 if (skip_recovery)
5249 err = f2fs_check_and_fix_write_pointer(sbi);
5250 if (err)
5251 goto free_meta;
5252
5253 /* f2fs_recover_fsync_data() cleared this already */
5254 clear_sbi_flag(sbi, SBI_POR_DOING);
5255
5256 err = f2fs_init_inmem_curseg(sbi);
5257 if (err)
5258 goto sync_free_meta;
5259
5260 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
5261 err = f2fs_disable_checkpoint(sbi);
5262 if (err)
5263 goto sync_free_meta;
5264 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
5265 f2fs_enable_checkpoint(sbi);
5266 }
5267
5268 /*
5269 * If filesystem is not mounted as read-only then
5270 * do start the gc_thread.
5271 */
5272 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
5273 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
5274 /* After POR, we can run background GC thread.*/
5275 err = f2fs_start_gc_thread(sbi);
5276 if (err)
5277 goto sync_free_meta;
5278 }
5279
5280 /* recover broken superblock */
5281 if (recovery) {
5282 err = f2fs_commit_super(sbi, true);
5283 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
5284 sbi->valid_super_block ? 1 : 2, err);
5285 }
5286
5287 f2fs_join_shrinker(sbi);
5288
5289 f2fs_tuning_parameters(sbi);
5290
5291 f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
5292 cur_cp_version(F2FS_CKPT(sbi)));
5293 f2fs_update_time(sbi, CP_TIME);
5294 f2fs_update_time(sbi, REQ_TIME);
5295 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
5296
5297 sbi->umount_lock_holder = NULL;
5298 return 0;
5299
5300 sync_free_meta:
5301 /* safe to flush all the data */
5302 sync_filesystem(sbi->sb);
5303 retry_cnt = 0;
5304
5305 free_meta:
5306 #ifdef CONFIG_QUOTA
5307 f2fs_truncate_quota_inode_pages(sb);
5308 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
5309 f2fs_quota_off_umount(sbi->sb);
5310 #endif
5311 /*
5312 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
5313 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
5314 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
5315 * falls into an infinite loop in f2fs_sync_meta_pages().
5316 */
5317 truncate_inode_pages_final(META_MAPPING(sbi));
5318 /* evict some inodes being cached by GC */
5319 evict_inodes(sb);
5320 f2fs_unregister_sysfs(sbi);
5321 free_compress_inode:
5322 f2fs_destroy_compress_inode(sbi);
5323 free_root_inode:
5324 dput(sb->s_root);
5325 sb->s_root = NULL;
5326 free_node_inode:
5327 f2fs_release_ino_entry(sbi, true);
5328 truncate_inode_pages_final(NODE_MAPPING(sbi));
5329 iput(sbi->node_inode);
5330 sbi->node_inode = NULL;
5331 free_stats:
5332 f2fs_destroy_stats(sbi);
5333 free_nm:
5334 /* stop discard thread before destroying node manager */
5335 f2fs_stop_discard_thread(sbi);
5336 f2fs_destroy_node_manager(sbi);
5337 free_sm:
5338 f2fs_destroy_segment_manager(sbi);
5339 stop_ckpt_thread:
5340 f2fs_stop_ckpt_thread(sbi);
5341 /* flush s_error_work before sbi destroy */
5342 flush_work(&sbi->s_error_work);
5343 f2fs_destroy_post_read_wq(sbi);
5344 free_devices:
5345 destroy_device_list(sbi);
5346 kvfree(sbi->ckpt);
5347 free_meta_inode:
5348 make_bad_inode(sbi->meta_inode);
5349 iput(sbi->meta_inode);
5350 sbi->meta_inode = NULL;
5351 free_page_array_cache:
5352 f2fs_destroy_page_array_cache(sbi);
5353 free_xattr_cache:
5354 f2fs_destroy_xattr_caches(sbi);
5355 free_percpu:
5356 destroy_percpu_info(sbi);
5357 free_iostat:
5358 f2fs_destroy_iostat(sbi);
5359 free_bio_info:
5360 for (i = 0; i < NR_PAGE_TYPE; i++)
5361 kfree(sbi->write_io[i]);
5362
5363 #if IS_ENABLED(CONFIG_UNICODE)
5364 utf8_unload(sb->s_encoding);
5365 sb->s_encoding = NULL;
5366 #endif
5367 free_options:
5368 #ifdef CONFIG_QUOTA
5369 for (i = 0; i < MAXQUOTAS; i++)
5370 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
5371 #endif
5372 /* no need to free dummy_enc_policy, we just keep it in ctx when failed */
5373 swap(F2FS_CTX_INFO(ctx).dummy_enc_policy, F2FS_OPTION(sbi).dummy_enc_policy);
5374 free_sb_buf:
5375 kfree(raw_super);
5376 free_sbi:
5377 kfree(sbi);
5378 sb->s_fs_info = NULL;
5379
5380 /* give only one another chance */
5381 if (retry_cnt > 0 && skip_recovery) {
5382 retry_cnt--;
5383 shrink_dcache_sb(sb);
5384 goto try_onemore;
5385 }
5386 return err;
5387 }
5388
f2fs_get_tree(struct fs_context * fc)5389 static int f2fs_get_tree(struct fs_context *fc)
5390 {
5391 return get_tree_bdev(fc, f2fs_fill_super);
5392 }
5393
f2fs_reconfigure(struct fs_context * fc)5394 static int f2fs_reconfigure(struct fs_context *fc)
5395 {
5396 struct super_block *sb = fc->root->d_sb;
5397
5398 return __f2fs_remount(fc, sb);
5399 }
5400
f2fs_fc_free(struct fs_context * fc)5401 static void f2fs_fc_free(struct fs_context *fc)
5402 {
5403 struct f2fs_fs_context *ctx = fc->fs_private;
5404
5405 if (!ctx)
5406 return;
5407
5408 #ifdef CONFIG_QUOTA
5409 f2fs_unnote_qf_name_all(fc);
5410 #endif
5411 fscrypt_free_dummy_policy(&F2FS_CTX_INFO(ctx).dummy_enc_policy);
5412 kfree(ctx);
5413 }
5414
5415 static const struct fs_context_operations f2fs_context_ops = {
5416 .parse_param = f2fs_parse_param,
5417 .get_tree = f2fs_get_tree,
5418 .reconfigure = f2fs_reconfigure,
5419 .free = f2fs_fc_free,
5420 };
5421
kill_f2fs_super(struct super_block * sb)5422 static void kill_f2fs_super(struct super_block *sb)
5423 {
5424 struct f2fs_sb_info *sbi = F2FS_SB(sb);
5425
5426 if (sb->s_root) {
5427 sbi->umount_lock_holder = current;
5428
5429 set_sbi_flag(sbi, SBI_IS_CLOSE);
5430 f2fs_stop_gc_thread(sbi);
5431 f2fs_stop_discard_thread(sbi);
5432
5433 #ifdef CONFIG_F2FS_FS_COMPRESSION
5434 /*
5435 * latter evict_inode() can bypass checking and invalidating
5436 * compress inode cache.
5437 */
5438 if (test_opt(sbi, COMPRESS_CACHE))
5439 truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
5440 #endif
5441
5442 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
5443 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5444 struct cp_control cpc = {
5445 .reason = CP_UMOUNT,
5446 };
5447 stat_inc_cp_call_count(sbi, TOTAL_CALL);
5448 f2fs_write_checkpoint(sbi, &cpc);
5449 }
5450
5451 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
5452 sb->s_flags &= ~SB_RDONLY;
5453 }
5454 kill_block_super(sb);
5455 /* Release block devices last, after fscrypt_destroy_keyring(). */
5456 if (sbi) {
5457 destroy_device_list(sbi);
5458 kfree(sbi);
5459 sb->s_fs_info = NULL;
5460 }
5461 }
5462
f2fs_init_fs_context(struct fs_context * fc)5463 static int f2fs_init_fs_context(struct fs_context *fc)
5464 {
5465 struct f2fs_fs_context *ctx;
5466
5467 ctx = kzalloc(sizeof(struct f2fs_fs_context), GFP_KERNEL);
5468 if (!ctx)
5469 return -ENOMEM;
5470
5471 fc->fs_private = ctx;
5472 fc->ops = &f2fs_context_ops;
5473
5474 return 0;
5475 }
5476
5477 static struct file_system_type f2fs_fs_type = {
5478 .owner = THIS_MODULE,
5479 .name = "f2fs",
5480 .init_fs_context = f2fs_init_fs_context,
5481 .kill_sb = kill_f2fs_super,
5482 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
5483 };
5484 MODULE_ALIAS_FS("f2fs");
5485
init_inodecache(void)5486 static int __init init_inodecache(void)
5487 {
5488 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
5489 sizeof(struct f2fs_inode_info), 0,
5490 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
5491 return f2fs_inode_cachep ? 0 : -ENOMEM;
5492 }
5493
destroy_inodecache(void)5494 static void destroy_inodecache(void)
5495 {
5496 /*
5497 * Make sure all delayed rcu free inodes are flushed before we
5498 * destroy cache.
5499 */
5500 rcu_barrier();
5501 kmem_cache_destroy(f2fs_inode_cachep);
5502 }
5503
init_f2fs_fs(void)5504 static int __init init_f2fs_fs(void)
5505 {
5506 int err;
5507
5508 err = init_inodecache();
5509 if (err)
5510 goto fail;
5511 err = f2fs_create_node_manager_caches();
5512 if (err)
5513 goto free_inodecache;
5514 err = f2fs_create_segment_manager_caches();
5515 if (err)
5516 goto free_node_manager_caches;
5517 err = f2fs_create_checkpoint_caches();
5518 if (err)
5519 goto free_segment_manager_caches;
5520 err = f2fs_create_recovery_cache();
5521 if (err)
5522 goto free_checkpoint_caches;
5523 err = f2fs_create_extent_cache();
5524 if (err)
5525 goto free_recovery_cache;
5526 err = f2fs_create_garbage_collection_cache();
5527 if (err)
5528 goto free_extent_cache;
5529 err = f2fs_init_sysfs();
5530 if (err)
5531 goto free_garbage_collection_cache;
5532 err = f2fs_init_shrinker();
5533 if (err)
5534 goto free_sysfs;
5535 f2fs_create_root_stats();
5536 err = f2fs_init_post_read_processing();
5537 if (err)
5538 goto free_root_stats;
5539 err = f2fs_init_iostat_processing();
5540 if (err)
5541 goto free_post_read;
5542 err = f2fs_init_bio_entry_cache();
5543 if (err)
5544 goto free_iostat;
5545 err = f2fs_init_bioset();
5546 if (err)
5547 goto free_bio_entry_cache;
5548 err = f2fs_init_compress_mempool();
5549 if (err)
5550 goto free_bioset;
5551 err = f2fs_init_compress_cache();
5552 if (err)
5553 goto free_compress_mempool;
5554 err = f2fs_create_casefold_cache();
5555 if (err)
5556 goto free_compress_cache;
5557 err = register_filesystem(&f2fs_fs_type);
5558 if (err)
5559 goto free_casefold_cache;
5560 return 0;
5561 free_casefold_cache:
5562 f2fs_destroy_casefold_cache();
5563 free_compress_cache:
5564 f2fs_destroy_compress_cache();
5565 free_compress_mempool:
5566 f2fs_destroy_compress_mempool();
5567 free_bioset:
5568 f2fs_destroy_bioset();
5569 free_bio_entry_cache:
5570 f2fs_destroy_bio_entry_cache();
5571 free_iostat:
5572 f2fs_destroy_iostat_processing();
5573 free_post_read:
5574 f2fs_destroy_post_read_processing();
5575 free_root_stats:
5576 f2fs_destroy_root_stats();
5577 f2fs_exit_shrinker();
5578 free_sysfs:
5579 f2fs_exit_sysfs();
5580 free_garbage_collection_cache:
5581 f2fs_destroy_garbage_collection_cache();
5582 free_extent_cache:
5583 f2fs_destroy_extent_cache();
5584 free_recovery_cache:
5585 f2fs_destroy_recovery_cache();
5586 free_checkpoint_caches:
5587 f2fs_destroy_checkpoint_caches();
5588 free_segment_manager_caches:
5589 f2fs_destroy_segment_manager_caches();
5590 free_node_manager_caches:
5591 f2fs_destroy_node_manager_caches();
5592 free_inodecache:
5593 destroy_inodecache();
5594 fail:
5595 return err;
5596 }
5597
exit_f2fs_fs(void)5598 static void __exit exit_f2fs_fs(void)
5599 {
5600 unregister_filesystem(&f2fs_fs_type);
5601 f2fs_destroy_casefold_cache();
5602 f2fs_destroy_compress_cache();
5603 f2fs_destroy_compress_mempool();
5604 f2fs_destroy_bioset();
5605 f2fs_destroy_bio_entry_cache();
5606 f2fs_destroy_iostat_processing();
5607 f2fs_destroy_post_read_processing();
5608 f2fs_destroy_root_stats();
5609 f2fs_exit_shrinker();
5610 f2fs_exit_sysfs();
5611 f2fs_destroy_garbage_collection_cache();
5612 f2fs_destroy_extent_cache();
5613 f2fs_destroy_recovery_cache();
5614 f2fs_destroy_checkpoint_caches();
5615 f2fs_destroy_segment_manager_caches();
5616 f2fs_destroy_node_manager_caches();
5617 destroy_inodecache();
5618 }
5619
5620 module_init(init_f2fs_fs)
5621 module_exit(exit_f2fs_fs)
5622
5623 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
5624 MODULE_DESCRIPTION("Flash Friendly File System");
5625 MODULE_LICENSE("GPL");
5626