1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 /*
205 * The vfs inode keeps clean during commit, but the f2fs inode
206 * doesn't. So clear the dirty state after commit and let
207 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 */
209 f2fs_inode_synced(inode);
210 f2fs_mark_inode_dirty_sync(inode, true);
211 }
212 stat_dec_atomic_inode(inode);
213
214 F2FS_I(inode)->atomic_write_task = NULL;
215
216 if (clean) {
217 f2fs_i_size_write(inode, fi->original_i_size);
218 fi->original_i_size = 0;
219 }
220 /* avoid stale dirty inode during eviction */
221 sync_inode_metadata(inode, 0);
222 }
223
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 block_t new_addr, block_t *old_addr, bool recover)
226 {
227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 struct dnode_of_data dn;
229 struct node_info ni;
230 int err;
231
232 retry:
233 set_new_dnode(&dn, inode, NULL, NULL, 0);
234 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 if (err) {
236 if (err == -ENOMEM) {
237 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
238 goto retry;
239 }
240 return err;
241 }
242
243 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 if (err) {
245 f2fs_put_dnode(&dn);
246 return err;
247 }
248
249 if (recover) {
250 /* dn.data_blkaddr is always valid */
251 if (!__is_valid_data_blkaddr(new_addr)) {
252 if (new_addr == NULL_ADDR)
253 dec_valid_block_count(sbi, inode, 1);
254 f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 f2fs_update_data_blkaddr(&dn, new_addr);
256 } else {
257 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 new_addr, ni.version, true, true);
259 }
260 } else {
261 blkcnt_t count = 1;
262
263 err = inc_valid_block_count(sbi, inode, &count, true);
264 if (err) {
265 f2fs_put_dnode(&dn);
266 return err;
267 }
268
269 *old_addr = dn.data_blkaddr;
270 f2fs_truncate_data_blocks_range(&dn, 1);
271 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272
273 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 ni.version, true, false);
275 }
276
277 f2fs_put_dnode(&dn);
278
279 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 index, old_addr ? *old_addr : 0, new_addr, recover);
281 return 0;
282 }
283
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 bool revoke)
286 {
287 struct revoke_entry *cur, *tmp;
288 pgoff_t start_index = 0;
289 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290
291 list_for_each_entry_safe(cur, tmp, head, list) {
292 if (revoke) {
293 __replace_atomic_write_block(inode, cur->index,
294 cur->old_addr, NULL, true);
295 } else if (truncate) {
296 f2fs_truncate_hole(inode, start_index, cur->index);
297 start_index = cur->index + 1;
298 }
299
300 list_del(&cur->list);
301 kmem_cache_free(revoke_entry_slab, cur);
302 }
303
304 if (!revoke && truncate)
305 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 struct inode *cow_inode = fi->cow_inode;
313 struct revoke_entry *new;
314 struct list_head revoke_list;
315 block_t blkaddr;
316 struct dnode_of_data dn;
317 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 pgoff_t off = 0, blen, index;
319 int ret = 0, i;
320
321 INIT_LIST_HEAD(&revoke_list);
322
323 while (len) {
324 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325
326 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 if (ret && ret != -ENOENT) {
329 goto out;
330 } else if (ret == -ENOENT) {
331 ret = 0;
332 if (dn.max_level == 0)
333 goto out;
334 goto next;
335 }
336
337 blen = min((pgoff_t)ADDRS_PER_PAGE(&dn.node_folio->page, cow_inode),
338 len);
339 index = off;
340 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 blkaddr = f2fs_data_blkaddr(&dn);
342
343 if (!__is_valid_data_blkaddr(blkaddr)) {
344 continue;
345 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 DATA_GENERIC_ENHANCE)) {
347 f2fs_put_dnode(&dn);
348 ret = -EFSCORRUPTED;
349 goto out;
350 }
351
352 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 true, NULL);
354
355 ret = __replace_atomic_write_block(inode, index, blkaddr,
356 &new->old_addr, false);
357 if (ret) {
358 f2fs_put_dnode(&dn);
359 kmem_cache_free(revoke_entry_slab, new);
360 goto out;
361 }
362
363 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 new->index = index;
365 list_add_tail(&new->list, &revoke_list);
366 }
367 f2fs_put_dnode(&dn);
368 next:
369 off += blen;
370 len -= blen;
371 }
372
373 out:
374 if (time_to_inject(sbi, FAULT_TIMEOUT))
375 f2fs_io_schedule_timeout_killable(DEFAULT_FAULT_TIMEOUT);
376
377 if (ret) {
378 sbi->revoked_atomic_block += fi->atomic_write_cnt;
379 } else {
380 sbi->committed_atomic_block += fi->atomic_write_cnt;
381 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
382
383 /*
384 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
385 * before commit.
386 */
387 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
388 /* clear atomic dirty status and set vfs dirty status */
389 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
390 f2fs_mark_inode_dirty_sync(inode, true);
391 }
392 }
393
394 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
395
396 return ret;
397 }
398
f2fs_commit_atomic_write(struct inode * inode)399 int f2fs_commit_atomic_write(struct inode *inode)
400 {
401 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 struct f2fs_inode_info *fi = F2FS_I(inode);
403 int err;
404
405 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
406 if (err)
407 return err;
408
409 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
410 f2fs_lock_op(sbi);
411
412 err = __f2fs_commit_atomic_write(inode);
413
414 f2fs_unlock_op(sbi);
415 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
416
417 return err;
418 }
419
420 /*
421 * This function balances dirty node and dentry pages.
422 * In addition, it controls garbage collection.
423 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)424 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
425 {
426 if (f2fs_cp_error(sbi))
427 return;
428
429 if (time_to_inject(sbi, FAULT_CHECKPOINT))
430 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
431
432 /* balance_fs_bg is able to be pending */
433 if (need && excess_cached_nats(sbi))
434 f2fs_balance_fs_bg(sbi, false);
435
436 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
437 return;
438
439 /*
440 * We should do GC or end up with checkpoint, if there are so many dirty
441 * dir/node pages without enough free segments.
442 */
443 if (has_enough_free_secs(sbi, 0, 0))
444 return;
445
446 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
447 sbi->gc_thread->f2fs_gc_task) {
448 DEFINE_WAIT(wait);
449
450 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
451 TASK_UNINTERRUPTIBLE);
452 wake_up(&sbi->gc_thread->gc_wait_queue_head);
453 io_schedule();
454 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
455 } else {
456 struct f2fs_gc_control gc_control = {
457 .victim_segno = NULL_SEGNO,
458 .init_gc_type = BG_GC,
459 .no_bg_gc = true,
460 .should_migrate_blocks = false,
461 .err_gc_skipped = false,
462 .nr_free_secs = 1 };
463 f2fs_down_write(&sbi->gc_lock);
464 stat_inc_gc_call_count(sbi, FOREGROUND);
465 f2fs_gc(sbi, &gc_control);
466 }
467 }
468
excess_dirty_threshold(struct f2fs_sb_info * sbi)469 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
470 {
471 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
472 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
473 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
474 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
475 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
476 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
477 unsigned int threshold =
478 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
479 unsigned int global_threshold = threshold * 3 / 2;
480
481 if (dents >= threshold || qdata >= threshold ||
482 nodes >= threshold || meta >= threshold ||
483 imeta >= threshold)
484 return true;
485 return dents + qdata + nodes + meta + imeta > global_threshold;
486 }
487
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)488 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
489 {
490 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491 return;
492
493 /* try to shrink extent cache when there is no enough memory */
494 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
495 f2fs_shrink_read_extent_tree(sbi,
496 READ_EXTENT_CACHE_SHRINK_NUMBER);
497
498 /* try to shrink age extent cache when there is no enough memory */
499 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
500 f2fs_shrink_age_extent_tree(sbi,
501 AGE_EXTENT_CACHE_SHRINK_NUMBER);
502
503 /* check the # of cached NAT entries */
504 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
505 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
506
507 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
508 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
509 else
510 f2fs_build_free_nids(sbi, false, false);
511
512 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
513 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
514 goto do_sync;
515
516 /* there is background inflight IO or foreground operation recently */
517 if (is_inflight_io(sbi, REQ_TIME) ||
518 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
519 return;
520
521 /* exceed periodical checkpoint timeout threshold */
522 if (f2fs_time_over(sbi, CP_TIME))
523 goto do_sync;
524
525 /* checkpoint is the only way to shrink partial cached entries */
526 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
527 f2fs_available_free_memory(sbi, INO_ENTRIES))
528 return;
529
530 do_sync:
531 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
532 struct blk_plug plug;
533
534 mutex_lock(&sbi->flush_lock);
535
536 blk_start_plug(&plug);
537 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
538 blk_finish_plug(&plug);
539
540 mutex_unlock(&sbi->flush_lock);
541 }
542 stat_inc_cp_call_count(sbi, BACKGROUND);
543 f2fs_sync_fs(sbi->sb, 1);
544 }
545
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)546 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
547 struct block_device *bdev)
548 {
549 int ret = blkdev_issue_flush(bdev);
550
551 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
552 test_opt(sbi, FLUSH_MERGE), ret);
553 if (!ret)
554 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
555 return ret;
556 }
557
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)558 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
559 {
560 int ret = 0;
561 int i;
562
563 if (!f2fs_is_multi_device(sbi))
564 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
565
566 for (i = 0; i < sbi->s_ndevs; i++) {
567 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
568 continue;
569 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
570 if (ret)
571 break;
572 }
573 return ret;
574 }
575
issue_flush_thread(void * data)576 static int issue_flush_thread(void *data)
577 {
578 struct f2fs_sb_info *sbi = data;
579 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
580 wait_queue_head_t *q = &fcc->flush_wait_queue;
581 repeat:
582 if (kthread_should_stop())
583 return 0;
584
585 if (!llist_empty(&fcc->issue_list)) {
586 struct flush_cmd *cmd, *next;
587 int ret;
588
589 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
590 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
591
592 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
593
594 ret = submit_flush_wait(sbi, cmd->ino);
595 atomic_inc(&fcc->issued_flush);
596
597 llist_for_each_entry_safe(cmd, next,
598 fcc->dispatch_list, llnode) {
599 cmd->ret = ret;
600 complete(&cmd->wait);
601 }
602 fcc->dispatch_list = NULL;
603 }
604
605 wait_event_interruptible(*q,
606 kthread_should_stop() || !llist_empty(&fcc->issue_list));
607 goto repeat;
608 }
609
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)610 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
611 {
612 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
613 struct flush_cmd cmd;
614 int ret;
615
616 if (test_opt(sbi, NOBARRIER))
617 return 0;
618
619 if (!test_opt(sbi, FLUSH_MERGE)) {
620 atomic_inc(&fcc->queued_flush);
621 ret = submit_flush_wait(sbi, ino);
622 atomic_dec(&fcc->queued_flush);
623 atomic_inc(&fcc->issued_flush);
624 return ret;
625 }
626
627 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
628 f2fs_is_multi_device(sbi)) {
629 ret = submit_flush_wait(sbi, ino);
630 atomic_dec(&fcc->queued_flush);
631
632 atomic_inc(&fcc->issued_flush);
633 return ret;
634 }
635
636 cmd.ino = ino;
637 init_completion(&cmd.wait);
638
639 llist_add(&cmd.llnode, &fcc->issue_list);
640
641 /*
642 * update issue_list before we wake up issue_flush thread, this
643 * smp_mb() pairs with another barrier in ___wait_event(), see
644 * more details in comments of waitqueue_active().
645 */
646 smp_mb();
647
648 if (waitqueue_active(&fcc->flush_wait_queue))
649 wake_up(&fcc->flush_wait_queue);
650
651 if (fcc->f2fs_issue_flush) {
652 wait_for_completion(&cmd.wait);
653 atomic_dec(&fcc->queued_flush);
654 } else {
655 struct llist_node *list;
656
657 list = llist_del_all(&fcc->issue_list);
658 if (!list) {
659 wait_for_completion(&cmd.wait);
660 atomic_dec(&fcc->queued_flush);
661 } else {
662 struct flush_cmd *tmp, *next;
663
664 ret = submit_flush_wait(sbi, ino);
665
666 llist_for_each_entry_safe(tmp, next, list, llnode) {
667 if (tmp == &cmd) {
668 cmd.ret = ret;
669 atomic_dec(&fcc->queued_flush);
670 continue;
671 }
672 tmp->ret = ret;
673 complete(&tmp->wait);
674 }
675 }
676 }
677
678 return cmd.ret;
679 }
680
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)681 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
682 {
683 dev_t dev = sbi->sb->s_bdev->bd_dev;
684 struct flush_cmd_control *fcc;
685
686 if (SM_I(sbi)->fcc_info) {
687 fcc = SM_I(sbi)->fcc_info;
688 if (fcc->f2fs_issue_flush)
689 return 0;
690 goto init_thread;
691 }
692
693 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
694 if (!fcc)
695 return -ENOMEM;
696 atomic_set(&fcc->issued_flush, 0);
697 atomic_set(&fcc->queued_flush, 0);
698 init_waitqueue_head(&fcc->flush_wait_queue);
699 init_llist_head(&fcc->issue_list);
700 SM_I(sbi)->fcc_info = fcc;
701 if (!test_opt(sbi, FLUSH_MERGE))
702 return 0;
703
704 init_thread:
705 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
706 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
707 if (IS_ERR(fcc->f2fs_issue_flush)) {
708 int err = PTR_ERR(fcc->f2fs_issue_flush);
709
710 fcc->f2fs_issue_flush = NULL;
711 return err;
712 }
713
714 return 0;
715 }
716
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)717 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
718 {
719 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
720
721 if (fcc && fcc->f2fs_issue_flush) {
722 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
723
724 fcc->f2fs_issue_flush = NULL;
725 kthread_stop(flush_thread);
726 }
727 if (free) {
728 kfree(fcc);
729 SM_I(sbi)->fcc_info = NULL;
730 }
731 }
732
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)733 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
734 {
735 int ret = 0, i;
736
737 if (!f2fs_is_multi_device(sbi))
738 return 0;
739
740 if (test_opt(sbi, NOBARRIER))
741 return 0;
742
743 for (i = 1; i < sbi->s_ndevs; i++) {
744 int count = DEFAULT_RETRY_IO_COUNT;
745
746 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
747 continue;
748
749 do {
750 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
751 if (ret)
752 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
753 } while (ret && --count);
754
755 if (ret) {
756 f2fs_stop_checkpoint(sbi, false,
757 STOP_CP_REASON_FLUSH_FAIL);
758 break;
759 }
760
761 spin_lock(&sbi->dev_lock);
762 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
763 spin_unlock(&sbi->dev_lock);
764 }
765
766 return ret;
767 }
768
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)769 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
770 enum dirty_type dirty_type)
771 {
772 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
773
774 /* need not be added */
775 if (IS_CURSEG(sbi, segno))
776 return;
777
778 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
779 dirty_i->nr_dirty[dirty_type]++;
780
781 if (dirty_type == DIRTY) {
782 struct seg_entry *sentry = get_seg_entry(sbi, segno);
783 enum dirty_type t = sentry->type;
784
785 if (unlikely(t >= DIRTY)) {
786 f2fs_bug_on(sbi, 1);
787 return;
788 }
789 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
790 dirty_i->nr_dirty[t]++;
791
792 if (__is_large_section(sbi)) {
793 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
794 block_t valid_blocks =
795 get_valid_blocks(sbi, segno, true);
796
797 f2fs_bug_on(sbi,
798 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
799 !valid_blocks) ||
800 valid_blocks == CAP_BLKS_PER_SEC(sbi));
801
802 if (!IS_CURSEC(sbi, secno))
803 set_bit(secno, dirty_i->dirty_secmap);
804 }
805 }
806 }
807
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)808 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
809 enum dirty_type dirty_type)
810 {
811 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
812 block_t valid_blocks;
813
814 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
815 dirty_i->nr_dirty[dirty_type]--;
816
817 if (dirty_type == DIRTY) {
818 struct seg_entry *sentry = get_seg_entry(sbi, segno);
819 enum dirty_type t = sentry->type;
820
821 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
822 dirty_i->nr_dirty[t]--;
823
824 valid_blocks = get_valid_blocks(sbi, segno, true);
825 if (valid_blocks == 0) {
826 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
827 dirty_i->victim_secmap);
828 #ifdef CONFIG_F2FS_CHECK_FS
829 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
830 #endif
831 }
832 if (__is_large_section(sbi)) {
833 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
834
835 if (!valid_blocks ||
836 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
837 clear_bit(secno, dirty_i->dirty_secmap);
838 return;
839 }
840
841 if (!IS_CURSEC(sbi, secno))
842 set_bit(secno, dirty_i->dirty_secmap);
843 }
844 }
845 }
846
847 /*
848 * Should not occur error such as -ENOMEM.
849 * Adding dirty entry into seglist is not critical operation.
850 * If a given segment is one of current working segments, it won't be added.
851 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)852 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
853 {
854 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
855 unsigned short valid_blocks, ckpt_valid_blocks;
856 unsigned int usable_blocks;
857
858 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
859 return;
860
861 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
862 mutex_lock(&dirty_i->seglist_lock);
863
864 valid_blocks = get_valid_blocks(sbi, segno, false);
865 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
866
867 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
868 ckpt_valid_blocks == usable_blocks)) {
869 __locate_dirty_segment(sbi, segno, PRE);
870 __remove_dirty_segment(sbi, segno, DIRTY);
871 } else if (valid_blocks < usable_blocks) {
872 __locate_dirty_segment(sbi, segno, DIRTY);
873 } else {
874 /* Recovery routine with SSR needs this */
875 __remove_dirty_segment(sbi, segno, DIRTY);
876 }
877
878 mutex_unlock(&dirty_i->seglist_lock);
879 }
880
881 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)882 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
883 {
884 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
885 unsigned int segno;
886
887 mutex_lock(&dirty_i->seglist_lock);
888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 if (get_valid_blocks(sbi, segno, false))
890 continue;
891 if (IS_CURSEG(sbi, segno))
892 continue;
893 __locate_dirty_segment(sbi, segno, PRE);
894 __remove_dirty_segment(sbi, segno, DIRTY);
895 }
896 mutex_unlock(&dirty_i->seglist_lock);
897 }
898
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)899 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
900 {
901 int ovp_hole_segs =
902 (overprovision_segments(sbi) - reserved_segments(sbi));
903 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
904 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
905 block_t holes[2] = {0, 0}; /* DATA and NODE */
906 block_t unusable;
907 struct seg_entry *se;
908 unsigned int segno;
909
910 mutex_lock(&dirty_i->seglist_lock);
911 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
912 se = get_seg_entry(sbi, segno);
913 if (IS_NODESEG(se->type))
914 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
915 se->valid_blocks;
916 else
917 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
918 se->valid_blocks;
919 }
920 mutex_unlock(&dirty_i->seglist_lock);
921
922 unusable = max(holes[DATA], holes[NODE]);
923 if (unusable > ovp_holes)
924 return unusable - ovp_holes;
925 return 0;
926 }
927
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)928 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
929 {
930 int ovp_hole_segs =
931 (overprovision_segments(sbi) - reserved_segments(sbi));
932
933 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
934 return 0;
935 if (unusable > F2FS_OPTION(sbi).unusable_cap)
936 return -EAGAIN;
937 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
938 dirty_segments(sbi) > ovp_hole_segs)
939 return -EAGAIN;
940 if (has_not_enough_free_secs(sbi, 0, 0))
941 return -EAGAIN;
942 return 0;
943 }
944
945 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)946 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
947 {
948 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
949 unsigned int segno = 0;
950
951 mutex_lock(&dirty_i->seglist_lock);
952 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
953 if (get_valid_blocks(sbi, segno, false))
954 continue;
955 if (get_ckpt_valid_blocks(sbi, segno, false))
956 continue;
957 mutex_unlock(&dirty_i->seglist_lock);
958 return segno;
959 }
960 mutex_unlock(&dirty_i->seglist_lock);
961 return NULL_SEGNO;
962 }
963
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)964 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
965 struct block_device *bdev, block_t lstart,
966 block_t start, block_t len)
967 {
968 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
969 struct list_head *pend_list;
970 struct discard_cmd *dc;
971
972 f2fs_bug_on(sbi, !len);
973
974 pend_list = &dcc->pend_list[plist_idx(len)];
975
976 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
977 INIT_LIST_HEAD(&dc->list);
978 dc->bdev = bdev;
979 dc->di.lstart = lstart;
980 dc->di.start = start;
981 dc->di.len = len;
982 dc->ref = 0;
983 dc->state = D_PREP;
984 dc->queued = 0;
985 dc->error = 0;
986 init_completion(&dc->wait);
987 list_add_tail(&dc->list, pend_list);
988 spin_lock_init(&dc->lock);
989 dc->bio_ref = 0;
990 atomic_inc(&dcc->discard_cmd_cnt);
991 dcc->undiscard_blks += len;
992
993 return dc;
994 }
995
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)996 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
997 {
998 #ifdef CONFIG_F2FS_CHECK_FS
999 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1000 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
1001 struct discard_cmd *cur_dc, *next_dc;
1002
1003 while (cur) {
1004 next = rb_next(cur);
1005 if (!next)
1006 return true;
1007
1008 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1009 next_dc = rb_entry(next, struct discard_cmd, rb_node);
1010
1011 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1012 f2fs_info(sbi, "broken discard_rbtree, "
1013 "cur(%u, %u) next(%u, %u)",
1014 cur_dc->di.lstart, cur_dc->di.len,
1015 next_dc->di.lstart, next_dc->di.len);
1016 return false;
1017 }
1018 cur = next;
1019 }
1020 #endif
1021 return true;
1022 }
1023
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1024 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1025 block_t blkaddr)
1026 {
1027 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1028 struct rb_node *node = dcc->root.rb_root.rb_node;
1029 struct discard_cmd *dc;
1030
1031 while (node) {
1032 dc = rb_entry(node, struct discard_cmd, rb_node);
1033
1034 if (blkaddr < dc->di.lstart)
1035 node = node->rb_left;
1036 else if (blkaddr >= dc->di.lstart + dc->di.len)
1037 node = node->rb_right;
1038 else
1039 return dc;
1040 }
1041 return NULL;
1042 }
1043
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1044 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1045 block_t blkaddr,
1046 struct discard_cmd **prev_entry,
1047 struct discard_cmd **next_entry,
1048 struct rb_node ***insert_p,
1049 struct rb_node **insert_parent)
1050 {
1051 struct rb_node **pnode = &root->rb_root.rb_node;
1052 struct rb_node *parent = NULL, *tmp_node;
1053 struct discard_cmd *dc;
1054
1055 *insert_p = NULL;
1056 *insert_parent = NULL;
1057 *prev_entry = NULL;
1058 *next_entry = NULL;
1059
1060 if (RB_EMPTY_ROOT(&root->rb_root))
1061 return NULL;
1062
1063 while (*pnode) {
1064 parent = *pnode;
1065 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1066
1067 if (blkaddr < dc->di.lstart)
1068 pnode = &(*pnode)->rb_left;
1069 else if (blkaddr >= dc->di.lstart + dc->di.len)
1070 pnode = &(*pnode)->rb_right;
1071 else
1072 goto lookup_neighbors;
1073 }
1074
1075 *insert_p = pnode;
1076 *insert_parent = parent;
1077
1078 dc = rb_entry(parent, struct discard_cmd, rb_node);
1079 tmp_node = parent;
1080 if (parent && blkaddr > dc->di.lstart)
1081 tmp_node = rb_next(parent);
1082 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1083
1084 tmp_node = parent;
1085 if (parent && blkaddr < dc->di.lstart)
1086 tmp_node = rb_prev(parent);
1087 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1088 return NULL;
1089
1090 lookup_neighbors:
1091 /* lookup prev node for merging backward later */
1092 tmp_node = rb_prev(&dc->rb_node);
1093 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1094
1095 /* lookup next node for merging frontward later */
1096 tmp_node = rb_next(&dc->rb_node);
1097 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1098 return dc;
1099 }
1100
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1101 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1102 struct discard_cmd *dc)
1103 {
1104 if (dc->state == D_DONE)
1105 atomic_sub(dc->queued, &dcc->queued_discard);
1106
1107 list_del(&dc->list);
1108 rb_erase_cached(&dc->rb_node, &dcc->root);
1109 dcc->undiscard_blks -= dc->di.len;
1110
1111 kmem_cache_free(discard_cmd_slab, dc);
1112
1113 atomic_dec(&dcc->discard_cmd_cnt);
1114 }
1115
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1116 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1117 struct discard_cmd *dc)
1118 {
1119 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1120 unsigned long flags;
1121
1122 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1123
1124 spin_lock_irqsave(&dc->lock, flags);
1125 if (dc->bio_ref) {
1126 spin_unlock_irqrestore(&dc->lock, flags);
1127 return;
1128 }
1129 spin_unlock_irqrestore(&dc->lock, flags);
1130
1131 f2fs_bug_on(sbi, dc->ref);
1132
1133 if (dc->error == -EOPNOTSUPP)
1134 dc->error = 0;
1135
1136 if (dc->error)
1137 f2fs_info_ratelimited(sbi,
1138 "Issue discard(%u, %u, %u) failed, ret: %d",
1139 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1140 __detach_discard_cmd(dcc, dc);
1141 }
1142
f2fs_submit_discard_endio(struct bio * bio)1143 static void f2fs_submit_discard_endio(struct bio *bio)
1144 {
1145 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1146 unsigned long flags;
1147
1148 spin_lock_irqsave(&dc->lock, flags);
1149 if (!dc->error)
1150 dc->error = blk_status_to_errno(bio->bi_status);
1151 dc->bio_ref--;
1152 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1153 dc->state = D_DONE;
1154 complete_all(&dc->wait);
1155 }
1156 spin_unlock_irqrestore(&dc->lock, flags);
1157 bio_put(bio);
1158 }
1159
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1160 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1161 block_t start, block_t end)
1162 {
1163 #ifdef CONFIG_F2FS_CHECK_FS
1164 struct seg_entry *sentry;
1165 unsigned int segno;
1166 block_t blk = start;
1167 unsigned long offset, size, *map;
1168
1169 while (blk < end) {
1170 segno = GET_SEGNO(sbi, blk);
1171 sentry = get_seg_entry(sbi, segno);
1172 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1173
1174 if (end < START_BLOCK(sbi, segno + 1))
1175 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1176 else
1177 size = BLKS_PER_SEG(sbi);
1178 map = (unsigned long *)(sentry->cur_valid_map);
1179 offset = __find_rev_next_bit(map, size, offset);
1180 f2fs_bug_on(sbi, offset != size);
1181 blk = START_BLOCK(sbi, segno + 1);
1182 }
1183 #endif
1184 }
1185
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1186 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1187 struct discard_policy *dpolicy,
1188 int discard_type, unsigned int granularity)
1189 {
1190 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1191
1192 /* common policy */
1193 dpolicy->type = discard_type;
1194 dpolicy->sync = true;
1195 dpolicy->ordered = false;
1196 dpolicy->granularity = granularity;
1197
1198 dpolicy->max_requests = dcc->max_discard_request;
1199 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1200 dpolicy->timeout = false;
1201
1202 if (discard_type == DPOLICY_BG) {
1203 dpolicy->min_interval = dcc->min_discard_issue_time;
1204 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1205 dpolicy->max_interval = dcc->max_discard_issue_time;
1206 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1207 dpolicy->io_aware = true;
1208 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1209 dpolicy->io_aware = false;
1210 dpolicy->sync = false;
1211 dpolicy->ordered = true;
1212 if (utilization(sbi) > dcc->discard_urgent_util) {
1213 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1214 if (atomic_read(&dcc->discard_cmd_cnt))
1215 dpolicy->max_interval =
1216 dcc->min_discard_issue_time;
1217 }
1218 } else if (discard_type == DPOLICY_FORCE) {
1219 dpolicy->min_interval = dcc->min_discard_issue_time;
1220 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1221 dpolicy->max_interval = dcc->max_discard_issue_time;
1222 dpolicy->io_aware = false;
1223 } else if (discard_type == DPOLICY_FSTRIM) {
1224 dpolicy->io_aware = false;
1225 } else if (discard_type == DPOLICY_UMOUNT) {
1226 dpolicy->io_aware = false;
1227 /* we need to issue all to keep CP_TRIMMED_FLAG */
1228 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1229 dpolicy->timeout = true;
1230 }
1231 }
1232
1233 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1234 struct block_device *bdev, block_t lstart,
1235 block_t start, block_t len);
1236
1237 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1238 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1239 struct discard_cmd *dc, blk_opf_t flag,
1240 struct list_head *wait_list,
1241 unsigned int *issued)
1242 {
1243 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1244 struct block_device *bdev = dc->bdev;
1245 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1246 unsigned long flags;
1247
1248 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1249
1250 spin_lock_irqsave(&dc->lock, flags);
1251 dc->state = D_SUBMIT;
1252 dc->bio_ref++;
1253 spin_unlock_irqrestore(&dc->lock, flags);
1254
1255 if (issued)
1256 (*issued)++;
1257
1258 atomic_inc(&dcc->queued_discard);
1259 dc->queued++;
1260 list_move_tail(&dc->list, wait_list);
1261
1262 /* sanity check on discard range */
1263 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1264
1265 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1266 bio->bi_private = dc;
1267 bio->bi_end_io = f2fs_submit_discard_endio;
1268 submit_bio(bio);
1269
1270 atomic_inc(&dcc->issued_discard);
1271 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1272 }
1273 #endif
1274
1275 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1276 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1277 struct discard_policy *dpolicy,
1278 struct discard_cmd *dc, int *issued)
1279 {
1280 struct block_device *bdev = dc->bdev;
1281 unsigned int max_discard_blocks =
1282 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1283 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1285 &(dcc->fstrim_list) : &(dcc->wait_list);
1286 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1287 block_t lstart, start, len, total_len;
1288 int err = 0;
1289
1290 if (dc->state != D_PREP)
1291 return 0;
1292
1293 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1294 return 0;
1295
1296 #ifdef CONFIG_BLK_DEV_ZONED
1297 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1298 int devi = f2fs_bdev_index(sbi, bdev);
1299
1300 if (devi < 0)
1301 return -EINVAL;
1302
1303 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1304 __submit_zone_reset_cmd(sbi, dc, flag,
1305 wait_list, issued);
1306 return 0;
1307 }
1308 }
1309 #endif
1310
1311 /*
1312 * stop issuing discard for any of below cases:
1313 * 1. device is conventional zone, but it doesn't support discard.
1314 * 2. device is regulare device, after snapshot it doesn't support
1315 * discard.
1316 */
1317 if (!bdev_max_discard_sectors(bdev))
1318 return -EOPNOTSUPP;
1319
1320 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1321
1322 lstart = dc->di.lstart;
1323 start = dc->di.start;
1324 len = dc->di.len;
1325 total_len = len;
1326
1327 dc->di.len = 0;
1328
1329 while (total_len && *issued < dpolicy->max_requests && !err) {
1330 struct bio *bio = NULL;
1331 unsigned long flags;
1332 bool last = true;
1333
1334 if (len > max_discard_blocks) {
1335 len = max_discard_blocks;
1336 last = false;
1337 }
1338
1339 (*issued)++;
1340 if (*issued == dpolicy->max_requests)
1341 last = true;
1342
1343 dc->di.len += len;
1344
1345 if (time_to_inject(sbi, FAULT_DISCARD)) {
1346 err = -EIO;
1347 } else {
1348 err = __blkdev_issue_discard(bdev,
1349 SECTOR_FROM_BLOCK(start),
1350 SECTOR_FROM_BLOCK(len),
1351 GFP_NOFS, &bio);
1352 }
1353 if (err) {
1354 spin_lock_irqsave(&dc->lock, flags);
1355 if (dc->state == D_PARTIAL)
1356 dc->state = D_SUBMIT;
1357 spin_unlock_irqrestore(&dc->lock, flags);
1358
1359 break;
1360 }
1361
1362 f2fs_bug_on(sbi, !bio);
1363
1364 /*
1365 * should keep before submission to avoid D_DONE
1366 * right away
1367 */
1368 spin_lock_irqsave(&dc->lock, flags);
1369 if (last)
1370 dc->state = D_SUBMIT;
1371 else
1372 dc->state = D_PARTIAL;
1373 dc->bio_ref++;
1374 spin_unlock_irqrestore(&dc->lock, flags);
1375
1376 atomic_inc(&dcc->queued_discard);
1377 dc->queued++;
1378 list_move_tail(&dc->list, wait_list);
1379
1380 /* sanity check on discard range */
1381 __check_sit_bitmap(sbi, lstart, lstart + len);
1382
1383 bio->bi_private = dc;
1384 bio->bi_end_io = f2fs_submit_discard_endio;
1385 bio->bi_opf |= flag;
1386 submit_bio(bio);
1387
1388 atomic_inc(&dcc->issued_discard);
1389
1390 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1391
1392 lstart += len;
1393 start += len;
1394 total_len -= len;
1395 len = total_len;
1396 }
1397
1398 if (!err && len) {
1399 dcc->undiscard_blks -= len;
1400 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1401 }
1402 return err;
1403 }
1404
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1405 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1406 struct block_device *bdev, block_t lstart,
1407 block_t start, block_t len)
1408 {
1409 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1410 struct rb_node **p = &dcc->root.rb_root.rb_node;
1411 struct rb_node *parent = NULL;
1412 struct discard_cmd *dc;
1413 bool leftmost = true;
1414
1415 /* look up rb tree to find parent node */
1416 while (*p) {
1417 parent = *p;
1418 dc = rb_entry(parent, struct discard_cmd, rb_node);
1419
1420 if (lstart < dc->di.lstart) {
1421 p = &(*p)->rb_left;
1422 } else if (lstart >= dc->di.lstart + dc->di.len) {
1423 p = &(*p)->rb_right;
1424 leftmost = false;
1425 } else {
1426 /* Let's skip to add, if exists */
1427 return;
1428 }
1429 }
1430
1431 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1432
1433 rb_link_node(&dc->rb_node, parent, p);
1434 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1435 }
1436
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1437 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1438 struct discard_cmd *dc)
1439 {
1440 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1441 }
1442
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1443 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1444 struct discard_cmd *dc, block_t blkaddr)
1445 {
1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447 struct discard_info di = dc->di;
1448 bool modified = false;
1449
1450 if (dc->state == D_DONE || dc->di.len == 1) {
1451 __remove_discard_cmd(sbi, dc);
1452 return;
1453 }
1454
1455 dcc->undiscard_blks -= di.len;
1456
1457 if (blkaddr > di.lstart) {
1458 dc->di.len = blkaddr - dc->di.lstart;
1459 dcc->undiscard_blks += dc->di.len;
1460 __relocate_discard_cmd(dcc, dc);
1461 modified = true;
1462 }
1463
1464 if (blkaddr < di.lstart + di.len - 1) {
1465 if (modified) {
1466 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1467 di.start + blkaddr + 1 - di.lstart,
1468 di.lstart + di.len - 1 - blkaddr);
1469 } else {
1470 dc->di.lstart++;
1471 dc->di.len--;
1472 dc->di.start++;
1473 dcc->undiscard_blks += dc->di.len;
1474 __relocate_discard_cmd(dcc, dc);
1475 }
1476 }
1477 }
1478
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1479 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1480 struct block_device *bdev, block_t lstart,
1481 block_t start, block_t len)
1482 {
1483 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1484 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1485 struct discard_cmd *dc;
1486 struct discard_info di = {0};
1487 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1488 unsigned int max_discard_blocks =
1489 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1490 block_t end = lstart + len;
1491
1492 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1493 &prev_dc, &next_dc, &insert_p, &insert_parent);
1494 if (dc)
1495 prev_dc = dc;
1496
1497 if (!prev_dc) {
1498 di.lstart = lstart;
1499 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1500 di.len = min(di.len, len);
1501 di.start = start;
1502 }
1503
1504 while (1) {
1505 struct rb_node *node;
1506 bool merged = false;
1507 struct discard_cmd *tdc = NULL;
1508
1509 if (prev_dc) {
1510 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1511 if (di.lstart < lstart)
1512 di.lstart = lstart;
1513 if (di.lstart >= end)
1514 break;
1515
1516 if (!next_dc || next_dc->di.lstart > end)
1517 di.len = end - di.lstart;
1518 else
1519 di.len = next_dc->di.lstart - di.lstart;
1520 di.start = start + di.lstart - lstart;
1521 }
1522
1523 if (!di.len)
1524 goto next;
1525
1526 if (prev_dc && prev_dc->state == D_PREP &&
1527 prev_dc->bdev == bdev &&
1528 __is_discard_back_mergeable(&di, &prev_dc->di,
1529 max_discard_blocks)) {
1530 prev_dc->di.len += di.len;
1531 dcc->undiscard_blks += di.len;
1532 __relocate_discard_cmd(dcc, prev_dc);
1533 di = prev_dc->di;
1534 tdc = prev_dc;
1535 merged = true;
1536 }
1537
1538 if (next_dc && next_dc->state == D_PREP &&
1539 next_dc->bdev == bdev &&
1540 __is_discard_front_mergeable(&di, &next_dc->di,
1541 max_discard_blocks)) {
1542 next_dc->di.lstart = di.lstart;
1543 next_dc->di.len += di.len;
1544 next_dc->di.start = di.start;
1545 dcc->undiscard_blks += di.len;
1546 __relocate_discard_cmd(dcc, next_dc);
1547 if (tdc)
1548 __remove_discard_cmd(sbi, tdc);
1549 merged = true;
1550 }
1551
1552 if (!merged)
1553 __insert_discard_cmd(sbi, bdev,
1554 di.lstart, di.start, di.len);
1555 next:
1556 prev_dc = next_dc;
1557 if (!prev_dc)
1558 break;
1559
1560 node = rb_next(&prev_dc->rb_node);
1561 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1562 }
1563 }
1564
1565 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1566 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1567 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1568 block_t blklen)
1569 {
1570 trace_f2fs_queue_reset_zone(bdev, blkstart);
1571
1572 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1573 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1574 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1575 }
1576 #endif
1577
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1578 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1579 struct block_device *bdev, block_t blkstart, block_t blklen)
1580 {
1581 block_t lblkstart = blkstart;
1582
1583 if (!f2fs_bdev_support_discard(bdev))
1584 return;
1585
1586 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1587
1588 if (f2fs_is_multi_device(sbi)) {
1589 int devi = f2fs_target_device_index(sbi, blkstart);
1590
1591 blkstart -= FDEV(devi).start_blk;
1592 }
1593 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1594 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1595 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1596 }
1597
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1598 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1599 struct discard_policy *dpolicy, int *issued)
1600 {
1601 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1602 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1603 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1604 struct discard_cmd *dc;
1605 struct blk_plug plug;
1606 bool io_interrupted = false;
1607
1608 mutex_lock(&dcc->cmd_lock);
1609 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1610 &prev_dc, &next_dc, &insert_p, &insert_parent);
1611 if (!dc)
1612 dc = next_dc;
1613
1614 blk_start_plug(&plug);
1615
1616 while (dc) {
1617 struct rb_node *node;
1618 int err = 0;
1619
1620 if (dc->state != D_PREP)
1621 goto next;
1622
1623 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1624 io_interrupted = true;
1625 break;
1626 }
1627
1628 dcc->next_pos = dc->di.lstart + dc->di.len;
1629 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1630
1631 if (*issued >= dpolicy->max_requests)
1632 break;
1633 next:
1634 node = rb_next(&dc->rb_node);
1635 if (err)
1636 __remove_discard_cmd(sbi, dc);
1637 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1638 }
1639
1640 blk_finish_plug(&plug);
1641
1642 if (!dc)
1643 dcc->next_pos = 0;
1644
1645 mutex_unlock(&dcc->cmd_lock);
1646
1647 if (!(*issued) && io_interrupted)
1648 *issued = -1;
1649 }
1650 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1651 struct discard_policy *dpolicy);
1652
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1653 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1654 struct discard_policy *dpolicy)
1655 {
1656 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1657 struct list_head *pend_list;
1658 struct discard_cmd *dc, *tmp;
1659 struct blk_plug plug;
1660 int i, issued;
1661 bool io_interrupted = false;
1662
1663 if (dpolicy->timeout)
1664 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1665
1666 retry:
1667 issued = 0;
1668 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1669 if (dpolicy->timeout &&
1670 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1671 break;
1672
1673 if (i + 1 < dpolicy->granularity)
1674 break;
1675
1676 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1677 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1678 return issued;
1679 }
1680
1681 pend_list = &dcc->pend_list[i];
1682
1683 mutex_lock(&dcc->cmd_lock);
1684 if (list_empty(pend_list))
1685 goto next;
1686 if (unlikely(dcc->rbtree_check))
1687 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1688 blk_start_plug(&plug);
1689 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1690 f2fs_bug_on(sbi, dc->state != D_PREP);
1691
1692 if (dpolicy->timeout &&
1693 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1694 break;
1695
1696 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1697 !is_idle(sbi, DISCARD_TIME)) {
1698 io_interrupted = true;
1699 break;
1700 }
1701
1702 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1703
1704 if (issued >= dpolicy->max_requests)
1705 break;
1706 }
1707 blk_finish_plug(&plug);
1708 next:
1709 mutex_unlock(&dcc->cmd_lock);
1710
1711 if (issued >= dpolicy->max_requests || io_interrupted)
1712 break;
1713 }
1714
1715 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1716 __wait_all_discard_cmd(sbi, dpolicy);
1717 goto retry;
1718 }
1719
1720 if (!issued && io_interrupted)
1721 issued = -1;
1722
1723 return issued;
1724 }
1725
__drop_discard_cmd(struct f2fs_sb_info * sbi)1726 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1727 {
1728 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1729 struct list_head *pend_list;
1730 struct discard_cmd *dc, *tmp;
1731 int i;
1732 bool dropped = false;
1733
1734 mutex_lock(&dcc->cmd_lock);
1735 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1736 pend_list = &dcc->pend_list[i];
1737 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1738 f2fs_bug_on(sbi, dc->state != D_PREP);
1739 __remove_discard_cmd(sbi, dc);
1740 dropped = true;
1741 }
1742 }
1743 mutex_unlock(&dcc->cmd_lock);
1744
1745 return dropped;
1746 }
1747
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1748 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1749 {
1750 __drop_discard_cmd(sbi);
1751 }
1752
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1753 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1754 struct discard_cmd *dc)
1755 {
1756 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1757 unsigned int len = 0;
1758
1759 wait_for_completion_io(&dc->wait);
1760 mutex_lock(&dcc->cmd_lock);
1761 f2fs_bug_on(sbi, dc->state != D_DONE);
1762 dc->ref--;
1763 if (!dc->ref) {
1764 if (!dc->error)
1765 len = dc->di.len;
1766 __remove_discard_cmd(sbi, dc);
1767 }
1768 mutex_unlock(&dcc->cmd_lock);
1769
1770 return len;
1771 }
1772
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1773 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1774 struct discard_policy *dpolicy,
1775 block_t start, block_t end)
1776 {
1777 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1778 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1779 &(dcc->fstrim_list) : &(dcc->wait_list);
1780 struct discard_cmd *dc = NULL, *iter, *tmp;
1781 unsigned int trimmed = 0;
1782
1783 next:
1784 dc = NULL;
1785
1786 mutex_lock(&dcc->cmd_lock);
1787 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1788 if (iter->di.lstart + iter->di.len <= start ||
1789 end <= iter->di.lstart)
1790 continue;
1791 if (iter->di.len < dpolicy->granularity)
1792 continue;
1793 if (iter->state == D_DONE && !iter->ref) {
1794 wait_for_completion_io(&iter->wait);
1795 if (!iter->error)
1796 trimmed += iter->di.len;
1797 __remove_discard_cmd(sbi, iter);
1798 } else {
1799 iter->ref++;
1800 dc = iter;
1801 break;
1802 }
1803 }
1804 mutex_unlock(&dcc->cmd_lock);
1805
1806 if (dc) {
1807 trimmed += __wait_one_discard_bio(sbi, dc);
1808 goto next;
1809 }
1810
1811 return trimmed;
1812 }
1813
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1814 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1815 struct discard_policy *dpolicy)
1816 {
1817 struct discard_policy dp;
1818 unsigned int discard_blks;
1819
1820 if (dpolicy)
1821 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1822
1823 /* wait all */
1824 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1825 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1826 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1827 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1828
1829 return discard_blks;
1830 }
1831
1832 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1833 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1834 {
1835 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1836 struct discard_cmd *dc;
1837 bool need_wait = false;
1838
1839 mutex_lock(&dcc->cmd_lock);
1840 dc = __lookup_discard_cmd(sbi, blkaddr);
1841 #ifdef CONFIG_BLK_DEV_ZONED
1842 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1843 int devi = f2fs_bdev_index(sbi, dc->bdev);
1844
1845 if (devi < 0) {
1846 mutex_unlock(&dcc->cmd_lock);
1847 return;
1848 }
1849
1850 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1851 /* force submit zone reset */
1852 if (dc->state == D_PREP)
1853 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1854 &dcc->wait_list, NULL);
1855 dc->ref++;
1856 mutex_unlock(&dcc->cmd_lock);
1857 /* wait zone reset */
1858 __wait_one_discard_bio(sbi, dc);
1859 return;
1860 }
1861 }
1862 #endif
1863 if (dc) {
1864 if (dc->state == D_PREP) {
1865 __punch_discard_cmd(sbi, dc, blkaddr);
1866 } else {
1867 dc->ref++;
1868 need_wait = true;
1869 }
1870 }
1871 mutex_unlock(&dcc->cmd_lock);
1872
1873 if (need_wait)
1874 __wait_one_discard_bio(sbi, dc);
1875 }
1876
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1877 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1878 {
1879 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1880
1881 if (dcc && dcc->f2fs_issue_discard) {
1882 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1883
1884 dcc->f2fs_issue_discard = NULL;
1885 kthread_stop(discard_thread);
1886 }
1887 }
1888
1889 /**
1890 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1891 * @sbi: the f2fs_sb_info data for discard cmd to issue
1892 *
1893 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1894 *
1895 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1896 */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1897 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1898 {
1899 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1900 struct discard_policy dpolicy;
1901 bool dropped;
1902
1903 if (!atomic_read(&dcc->discard_cmd_cnt))
1904 return true;
1905
1906 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1907 dcc->discard_granularity);
1908 __issue_discard_cmd(sbi, &dpolicy);
1909 dropped = __drop_discard_cmd(sbi);
1910
1911 /* just to make sure there is no pending discard commands */
1912 __wait_all_discard_cmd(sbi, NULL);
1913
1914 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1915 return !dropped;
1916 }
1917
issue_discard_thread(void * data)1918 static int issue_discard_thread(void *data)
1919 {
1920 struct f2fs_sb_info *sbi = data;
1921 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1922 wait_queue_head_t *q = &dcc->discard_wait_queue;
1923 struct discard_policy dpolicy;
1924 unsigned int wait_ms = dcc->min_discard_issue_time;
1925 int issued;
1926
1927 set_freezable();
1928
1929 do {
1930 wait_event_freezable_timeout(*q,
1931 kthread_should_stop() || dcc->discard_wake,
1932 msecs_to_jiffies(wait_ms));
1933
1934 if (sbi->gc_mode == GC_URGENT_HIGH ||
1935 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1936 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1937 MIN_DISCARD_GRANULARITY);
1938 else
1939 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1940 dcc->discard_granularity);
1941
1942 if (dcc->discard_wake)
1943 dcc->discard_wake = false;
1944
1945 /* clean up pending candidates before going to sleep */
1946 if (atomic_read(&dcc->queued_discard))
1947 __wait_all_discard_cmd(sbi, NULL);
1948
1949 if (f2fs_readonly(sbi->sb))
1950 continue;
1951 if (kthread_should_stop())
1952 return 0;
1953 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1954 !atomic_read(&dcc->discard_cmd_cnt)) {
1955 wait_ms = dpolicy.max_interval;
1956 continue;
1957 }
1958
1959 sb_start_intwrite(sbi->sb);
1960
1961 issued = __issue_discard_cmd(sbi, &dpolicy);
1962 if (issued > 0) {
1963 __wait_all_discard_cmd(sbi, &dpolicy);
1964 wait_ms = dpolicy.min_interval;
1965 } else if (issued == -1) {
1966 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1967 if (!wait_ms)
1968 wait_ms = dpolicy.mid_interval;
1969 } else {
1970 wait_ms = dpolicy.max_interval;
1971 }
1972 if (!atomic_read(&dcc->discard_cmd_cnt))
1973 wait_ms = dpolicy.max_interval;
1974
1975 sb_end_intwrite(sbi->sb);
1976
1977 } while (!kthread_should_stop());
1978 return 0;
1979 }
1980
1981 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1982 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1983 struct block_device *bdev, block_t blkstart, block_t blklen)
1984 {
1985 sector_t sector, nr_sects;
1986 block_t lblkstart = blkstart;
1987 int devi = 0;
1988 u64 remainder = 0;
1989
1990 if (f2fs_is_multi_device(sbi)) {
1991 devi = f2fs_target_device_index(sbi, blkstart);
1992 if (blkstart < FDEV(devi).start_blk ||
1993 blkstart > FDEV(devi).end_blk) {
1994 f2fs_err(sbi, "Invalid block %x", blkstart);
1995 return -EIO;
1996 }
1997 blkstart -= FDEV(devi).start_blk;
1998 }
1999
2000 /* For sequential zones, reset the zone write pointer */
2001 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
2002 sector = SECTOR_FROM_BLOCK(blkstart);
2003 nr_sects = SECTOR_FROM_BLOCK(blklen);
2004 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2005
2006 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2007 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2008 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2009 blkstart, blklen);
2010 return -EIO;
2011 }
2012
2013 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2014 unsigned int nofs_flags;
2015 int ret;
2016
2017 trace_f2fs_issue_reset_zone(bdev, blkstart);
2018 nofs_flags = memalloc_nofs_save();
2019 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2020 sector, nr_sects);
2021 memalloc_nofs_restore(nofs_flags);
2022 return ret;
2023 }
2024
2025 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2026 return 0;
2027 }
2028
2029 /* For conventional zones, use regular discard if supported */
2030 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2031 return 0;
2032 }
2033 #endif
2034
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2035 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2036 struct block_device *bdev, block_t blkstart, block_t blklen)
2037 {
2038 #ifdef CONFIG_BLK_DEV_ZONED
2039 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2040 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2041 #endif
2042 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2043 return 0;
2044 }
2045
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2046 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2047 block_t blkstart, block_t blklen)
2048 {
2049 sector_t start = blkstart, len = 0;
2050 struct block_device *bdev;
2051 struct seg_entry *se;
2052 unsigned int offset;
2053 block_t i;
2054 int err = 0;
2055
2056 bdev = f2fs_target_device(sbi, blkstart, NULL);
2057
2058 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2059 if (i != start) {
2060 struct block_device *bdev2 =
2061 f2fs_target_device(sbi, i, NULL);
2062
2063 if (bdev2 != bdev) {
2064 err = __issue_discard_async(sbi, bdev,
2065 start, len);
2066 if (err)
2067 return err;
2068 bdev = bdev2;
2069 start = i;
2070 len = 0;
2071 }
2072 }
2073
2074 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2075 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2076
2077 if (f2fs_block_unit_discard(sbi) &&
2078 !f2fs_test_and_set_bit(offset, se->discard_map))
2079 sbi->discard_blks--;
2080 }
2081
2082 if (len)
2083 err = __issue_discard_async(sbi, bdev, start, len);
2084 return err;
2085 }
2086
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2087 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2088 bool check_only)
2089 {
2090 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2091 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2092 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2093 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2094 unsigned long *discard_map = (unsigned long *)se->discard_map;
2095 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2096 unsigned int start = 0, end = -1;
2097 bool force = (cpc->reason & CP_DISCARD);
2098 struct discard_entry *de = NULL;
2099 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2100 int i;
2101
2102 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2103 !f2fs_hw_support_discard(sbi) ||
2104 !f2fs_block_unit_discard(sbi))
2105 return false;
2106
2107 if (!force) {
2108 if (!f2fs_realtime_discard_enable(sbi) ||
2109 (!se->valid_blocks &&
2110 !IS_CURSEG(sbi, cpc->trim_start)) ||
2111 SM_I(sbi)->dcc_info->nr_discards >=
2112 SM_I(sbi)->dcc_info->max_discards)
2113 return false;
2114 }
2115
2116 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2117 for (i = 0; i < entries; i++)
2118 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2119 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2120
2121 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2122 SM_I(sbi)->dcc_info->max_discards) {
2123 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2124 if (start >= BLKS_PER_SEG(sbi))
2125 break;
2126
2127 end = __find_rev_next_zero_bit(dmap,
2128 BLKS_PER_SEG(sbi), start + 1);
2129 if (force && start && end != BLKS_PER_SEG(sbi) &&
2130 (end - start) < cpc->trim_minlen)
2131 continue;
2132
2133 if (check_only)
2134 return true;
2135
2136 if (!de) {
2137 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2138 GFP_F2FS_ZERO, true, NULL);
2139 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2140 list_add_tail(&de->list, head);
2141 }
2142
2143 for (i = start; i < end; i++)
2144 __set_bit_le(i, (void *)de->discard_map);
2145
2146 SM_I(sbi)->dcc_info->nr_discards += end - start;
2147 }
2148 return false;
2149 }
2150
release_discard_addr(struct discard_entry * entry)2151 static void release_discard_addr(struct discard_entry *entry)
2152 {
2153 list_del(&entry->list);
2154 kmem_cache_free(discard_entry_slab, entry);
2155 }
2156
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2157 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2158 {
2159 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2160 struct discard_entry *entry, *this;
2161
2162 /* drop caches */
2163 list_for_each_entry_safe(entry, this, head, list)
2164 release_discard_addr(entry);
2165 }
2166
2167 /*
2168 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2169 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2170 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2171 {
2172 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2173 unsigned int segno;
2174
2175 mutex_lock(&dirty_i->seglist_lock);
2176 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2177 __set_test_and_free(sbi, segno, false);
2178 mutex_unlock(&dirty_i->seglist_lock);
2179 }
2180
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2181 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2182 struct cp_control *cpc)
2183 {
2184 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2185 struct list_head *head = &dcc->entry_list;
2186 struct discard_entry *entry, *this;
2187 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2188 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2189 unsigned int start = 0, end = -1;
2190 unsigned int secno, start_segno;
2191 bool force = (cpc->reason & CP_DISCARD);
2192 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2193 DISCARD_UNIT_SECTION;
2194
2195 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2196 section_alignment = true;
2197
2198 mutex_lock(&dirty_i->seglist_lock);
2199
2200 while (1) {
2201 int i;
2202
2203 if (section_alignment && end != -1)
2204 end--;
2205 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2206 if (start >= MAIN_SEGS(sbi))
2207 break;
2208 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2209 start + 1);
2210
2211 if (section_alignment) {
2212 start = rounddown(start, SEGS_PER_SEC(sbi));
2213 end = roundup(end, SEGS_PER_SEC(sbi));
2214 }
2215
2216 for (i = start; i < end; i++) {
2217 if (test_and_clear_bit(i, prefree_map))
2218 dirty_i->nr_dirty[PRE]--;
2219 }
2220
2221 if (!f2fs_realtime_discard_enable(sbi))
2222 continue;
2223
2224 if (force && start >= cpc->trim_start &&
2225 (end - 1) <= cpc->trim_end)
2226 continue;
2227
2228 /* Should cover 2MB zoned device for zone-based reset */
2229 if (!f2fs_sb_has_blkzoned(sbi) &&
2230 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2231 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2232 SEGS_TO_BLKS(sbi, end - start));
2233 continue;
2234 }
2235 next:
2236 secno = GET_SEC_FROM_SEG(sbi, start);
2237 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2238 if (!IS_CURSEC(sbi, secno) &&
2239 !get_valid_blocks(sbi, start, true))
2240 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2241 BLKS_PER_SEC(sbi));
2242
2243 start = start_segno + SEGS_PER_SEC(sbi);
2244 if (start < end)
2245 goto next;
2246 else
2247 end = start - 1;
2248 }
2249 mutex_unlock(&dirty_i->seglist_lock);
2250
2251 if (!f2fs_block_unit_discard(sbi))
2252 goto wakeup;
2253
2254 /* send small discards */
2255 list_for_each_entry_safe(entry, this, head, list) {
2256 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2257 bool is_valid = test_bit_le(0, entry->discard_map);
2258
2259 find_next:
2260 if (is_valid) {
2261 next_pos = find_next_zero_bit_le(entry->discard_map,
2262 BLKS_PER_SEG(sbi), cur_pos);
2263 len = next_pos - cur_pos;
2264
2265 if (f2fs_sb_has_blkzoned(sbi) ||
2266 (force && len < cpc->trim_minlen))
2267 goto skip;
2268
2269 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2270 len);
2271 total_len += len;
2272 } else {
2273 next_pos = find_next_bit_le(entry->discard_map,
2274 BLKS_PER_SEG(sbi), cur_pos);
2275 }
2276 skip:
2277 cur_pos = next_pos;
2278 is_valid = !is_valid;
2279
2280 if (cur_pos < BLKS_PER_SEG(sbi))
2281 goto find_next;
2282
2283 release_discard_addr(entry);
2284 dcc->nr_discards -= total_len;
2285 }
2286
2287 wakeup:
2288 wake_up_discard_thread(sbi, false);
2289 }
2290
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2291 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2292 {
2293 dev_t dev = sbi->sb->s_bdev->bd_dev;
2294 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2295 int err = 0;
2296
2297 if (f2fs_sb_has_readonly(sbi)) {
2298 f2fs_info(sbi,
2299 "Skip to start discard thread for readonly image");
2300 return 0;
2301 }
2302
2303 if (!f2fs_realtime_discard_enable(sbi))
2304 return 0;
2305
2306 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2307 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2308 if (IS_ERR(dcc->f2fs_issue_discard)) {
2309 err = PTR_ERR(dcc->f2fs_issue_discard);
2310 dcc->f2fs_issue_discard = NULL;
2311 }
2312
2313 return err;
2314 }
2315
create_discard_cmd_control(struct f2fs_sb_info * sbi)2316 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2317 {
2318 struct discard_cmd_control *dcc;
2319 int err = 0, i;
2320
2321 if (SM_I(sbi)->dcc_info) {
2322 dcc = SM_I(sbi)->dcc_info;
2323 goto init_thread;
2324 }
2325
2326 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2327 if (!dcc)
2328 return -ENOMEM;
2329
2330 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2331 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2332 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2333 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2334 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2335 F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2336 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2337
2338 INIT_LIST_HEAD(&dcc->entry_list);
2339 for (i = 0; i < MAX_PLIST_NUM; i++)
2340 INIT_LIST_HEAD(&dcc->pend_list[i]);
2341 INIT_LIST_HEAD(&dcc->wait_list);
2342 INIT_LIST_HEAD(&dcc->fstrim_list);
2343 mutex_init(&dcc->cmd_lock);
2344 atomic_set(&dcc->issued_discard, 0);
2345 atomic_set(&dcc->queued_discard, 0);
2346 atomic_set(&dcc->discard_cmd_cnt, 0);
2347 dcc->nr_discards = 0;
2348 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2349 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2350 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2351 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2352 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2353 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2354 dcc->undiscard_blks = 0;
2355 dcc->next_pos = 0;
2356 dcc->root = RB_ROOT_CACHED;
2357 dcc->rbtree_check = false;
2358
2359 init_waitqueue_head(&dcc->discard_wait_queue);
2360 SM_I(sbi)->dcc_info = dcc;
2361 init_thread:
2362 err = f2fs_start_discard_thread(sbi);
2363 if (err) {
2364 kfree(dcc);
2365 SM_I(sbi)->dcc_info = NULL;
2366 }
2367
2368 return err;
2369 }
2370
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2371 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2372 {
2373 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2374
2375 if (!dcc)
2376 return;
2377
2378 f2fs_stop_discard_thread(sbi);
2379
2380 /*
2381 * Recovery can cache discard commands, so in error path of
2382 * fill_super(), it needs to give a chance to handle them.
2383 */
2384 f2fs_issue_discard_timeout(sbi);
2385
2386 kfree(dcc);
2387 SM_I(sbi)->dcc_info = NULL;
2388 }
2389
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2390 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2391 {
2392 struct sit_info *sit_i = SIT_I(sbi);
2393
2394 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2395 sit_i->dirty_sentries++;
2396 return false;
2397 }
2398
2399 return true;
2400 }
2401
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2402 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2403 unsigned int segno, int modified)
2404 {
2405 struct seg_entry *se = get_seg_entry(sbi, segno);
2406
2407 se->type = type;
2408 if (modified)
2409 __mark_sit_entry_dirty(sbi, segno);
2410 }
2411
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2412 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2413 block_t blkaddr)
2414 {
2415 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2416
2417 if (segno == NULL_SEGNO)
2418 return 0;
2419 return get_seg_entry(sbi, segno)->mtime;
2420 }
2421
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2422 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2423 unsigned long long old_mtime)
2424 {
2425 struct seg_entry *se;
2426 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2427 unsigned long long ctime = get_mtime(sbi, false);
2428 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2429
2430 if (segno == NULL_SEGNO)
2431 return;
2432
2433 se = get_seg_entry(sbi, segno);
2434
2435 if (!se->mtime)
2436 se->mtime = mtime;
2437 else
2438 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2439 se->valid_blocks + 1);
2440
2441 if (ctime > SIT_I(sbi)->max_mtime)
2442 SIT_I(sbi)->max_mtime = ctime;
2443 }
2444
2445 /*
2446 * NOTE: when updating multiple blocks at the same time, please ensure
2447 * that the consecutive input blocks belong to the same segment.
2448 */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2449 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2450 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2451 {
2452 bool exist;
2453 #ifdef CONFIG_F2FS_CHECK_FS
2454 bool mir_exist;
2455 #endif
2456 int i;
2457 int del_count = -del;
2458
2459 f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2460
2461 for (i = 0; i < del_count; i++) {
2462 exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2463 #ifdef CONFIG_F2FS_CHECK_FS
2464 mir_exist = f2fs_test_and_clear_bit(offset + i,
2465 se->cur_valid_map_mir);
2466 if (unlikely(exist != mir_exist)) {
2467 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2468 blkaddr + i, exist);
2469 f2fs_bug_on(sbi, 1);
2470 }
2471 #endif
2472 if (unlikely(!exist)) {
2473 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2474 f2fs_bug_on(sbi, 1);
2475 se->valid_blocks++;
2476 del += 1;
2477 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2478 /*
2479 * If checkpoints are off, we must not reuse data that
2480 * was used in the previous checkpoint. If it was used
2481 * before, we must track that to know how much space we
2482 * really have.
2483 */
2484 if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2485 spin_lock(&sbi->stat_lock);
2486 sbi->unusable_block_count++;
2487 spin_unlock(&sbi->stat_lock);
2488 }
2489 }
2490
2491 if (f2fs_block_unit_discard(sbi) &&
2492 f2fs_test_and_clear_bit(offset + i, se->discard_map))
2493 sbi->discard_blks++;
2494
2495 if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2496 se->ckpt_valid_blocks -= 1;
2497 if (__is_large_section(sbi))
2498 get_sec_entry(sbi, segno)->ckpt_valid_blocks -= 1;
2499 }
2500 }
2501
2502 if (__is_large_section(sbi))
2503 sanity_check_valid_blocks(sbi, segno);
2504
2505 return del;
2506 }
2507
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2508 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2509 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2510 {
2511 bool exist;
2512 #ifdef CONFIG_F2FS_CHECK_FS
2513 bool mir_exist;
2514 #endif
2515
2516 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2517 #ifdef CONFIG_F2FS_CHECK_FS
2518 mir_exist = f2fs_test_and_set_bit(offset,
2519 se->cur_valid_map_mir);
2520 if (unlikely(exist != mir_exist)) {
2521 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2522 blkaddr, exist);
2523 f2fs_bug_on(sbi, 1);
2524 }
2525 #endif
2526 if (unlikely(exist)) {
2527 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2528 f2fs_bug_on(sbi, 1);
2529 se->valid_blocks--;
2530 del = 0;
2531 }
2532
2533 if (f2fs_block_unit_discard(sbi) &&
2534 !f2fs_test_and_set_bit(offset, se->discard_map))
2535 sbi->discard_blks--;
2536
2537 /*
2538 * SSR should never reuse block which is checkpointed
2539 * or newly invalidated.
2540 */
2541 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2542 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2543 se->ckpt_valid_blocks++;
2544 if (__is_large_section(sbi))
2545 get_sec_entry(sbi, segno)->ckpt_valid_blocks++;
2546 }
2547 }
2548
2549 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2550 se->ckpt_valid_blocks += del;
2551 if (__is_large_section(sbi))
2552 get_sec_entry(sbi, segno)->ckpt_valid_blocks += del;
2553 }
2554
2555 if (__is_large_section(sbi))
2556 sanity_check_valid_blocks(sbi, segno);
2557
2558 return del;
2559 }
2560
2561 /*
2562 * If releasing blocks, this function supports updating multiple consecutive blocks
2563 * at one time, but please note that these consecutive blocks need to belong to the
2564 * same segment.
2565 */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2566 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2567 {
2568 struct seg_entry *se;
2569 unsigned int segno, offset;
2570 long int new_vblocks;
2571
2572 segno = GET_SEGNO(sbi, blkaddr);
2573 if (segno == NULL_SEGNO)
2574 return;
2575
2576 se = get_seg_entry(sbi, segno);
2577 new_vblocks = se->valid_blocks + del;
2578 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2579
2580 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2581 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2582
2583 se->valid_blocks = new_vblocks;
2584
2585 /* Update valid block bitmap */
2586 if (del > 0) {
2587 del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2588 } else {
2589 del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2590 }
2591
2592 __mark_sit_entry_dirty(sbi, segno);
2593
2594 /* update total number of valid blocks to be written in ckpt area */
2595 SIT_I(sbi)->written_valid_blocks += del;
2596
2597 if (__is_large_section(sbi))
2598 get_sec_entry(sbi, segno)->valid_blocks += del;
2599 }
2600
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2601 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2602 unsigned int len)
2603 {
2604 unsigned int segno = GET_SEGNO(sbi, addr);
2605 struct sit_info *sit_i = SIT_I(sbi);
2606 block_t addr_start = addr, addr_end = addr + len - 1;
2607 unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2608 unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2609
2610 f2fs_bug_on(sbi, addr == NULL_ADDR);
2611 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2612 return;
2613
2614 f2fs_invalidate_internal_cache(sbi, addr, len);
2615
2616 /* add it into sit main buffer */
2617 down_write(&sit_i->sentry_lock);
2618
2619 if (seg_num == 1)
2620 cnt = len;
2621 else
2622 cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2623
2624 do {
2625 update_segment_mtime(sbi, addr_start, 0);
2626 update_sit_entry(sbi, addr_start, -cnt);
2627
2628 /* add it into dirty seglist */
2629 locate_dirty_segment(sbi, segno);
2630
2631 /* update @addr_start and @cnt and @segno */
2632 addr_start = START_BLOCK(sbi, ++segno);
2633 if (++i == seg_num)
2634 cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2635 else
2636 cnt = max_blocks;
2637 } while (i <= seg_num);
2638
2639 up_write(&sit_i->sentry_lock);
2640 }
2641
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2642 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2643 {
2644 struct sit_info *sit_i = SIT_I(sbi);
2645 unsigned int segno, offset;
2646 struct seg_entry *se;
2647 bool is_cp = false;
2648
2649 if (!__is_valid_data_blkaddr(blkaddr))
2650 return true;
2651
2652 down_read(&sit_i->sentry_lock);
2653
2654 segno = GET_SEGNO(sbi, blkaddr);
2655 se = get_seg_entry(sbi, segno);
2656 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2657
2658 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2659 is_cp = true;
2660
2661 up_read(&sit_i->sentry_lock);
2662
2663 return is_cp;
2664 }
2665
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2666 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2667 {
2668 struct curseg_info *curseg = CURSEG_I(sbi, type);
2669
2670 if (sbi->ckpt->alloc_type[type] == SSR)
2671 return BLKS_PER_SEG(sbi);
2672 return curseg->next_blkoff;
2673 }
2674
2675 /*
2676 * Calculate the number of current summary pages for writing
2677 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2678 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2679 {
2680 int valid_sum_count = 0;
2681 int i, sum_in_page;
2682
2683 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2684 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2685 valid_sum_count +=
2686 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2687 else
2688 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2689 }
2690
2691 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2692 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2693 if (valid_sum_count <= sum_in_page)
2694 return 1;
2695 else if ((valid_sum_count - sum_in_page) <=
2696 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2697 return 2;
2698 return 3;
2699 }
2700
2701 /*
2702 * Caller should put this summary folio
2703 */
f2fs_get_sum_folio(struct f2fs_sb_info * sbi,unsigned int segno)2704 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno)
2705 {
2706 if (unlikely(f2fs_cp_error(sbi)))
2707 return ERR_PTR(-EIO);
2708 return f2fs_get_meta_folio_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2709 }
2710
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2711 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2712 void *src, block_t blk_addr)
2713 {
2714 struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2715
2716 memcpy(folio_address(folio), src, PAGE_SIZE);
2717 folio_mark_dirty(folio);
2718 f2fs_folio_put(folio, true);
2719 }
2720
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2721 static void write_sum_page(struct f2fs_sb_info *sbi,
2722 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2723 {
2724 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2725 }
2726
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2727 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2728 int type, block_t blk_addr)
2729 {
2730 struct curseg_info *curseg = CURSEG_I(sbi, type);
2731 struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2732 struct f2fs_summary_block *src = curseg->sum_blk;
2733 struct f2fs_summary_block *dst;
2734
2735 dst = folio_address(folio);
2736 memset(dst, 0, PAGE_SIZE);
2737
2738 mutex_lock(&curseg->curseg_mutex);
2739
2740 down_read(&curseg->journal_rwsem);
2741 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2742 up_read(&curseg->journal_rwsem);
2743
2744 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2745 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2746
2747 mutex_unlock(&curseg->curseg_mutex);
2748
2749 folio_mark_dirty(folio);
2750 f2fs_folio_put(folio, true);
2751 }
2752
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2753 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2754 struct curseg_info *curseg)
2755 {
2756 unsigned int segno = curseg->segno + 1;
2757 struct free_segmap_info *free_i = FREE_I(sbi);
2758
2759 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2760 return !test_bit(segno, free_i->free_segmap);
2761 return 0;
2762 }
2763
2764 /*
2765 * Find a new segment from the free segments bitmap to right order
2766 * This function should be returned with success, otherwise BUG
2767 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2768 static int get_new_segment(struct f2fs_sb_info *sbi,
2769 unsigned int *newseg, bool new_sec, bool pinning)
2770 {
2771 struct free_segmap_info *free_i = FREE_I(sbi);
2772 unsigned int segno, secno, zoneno;
2773 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2774 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2775 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2776 bool init = true;
2777 int i;
2778 int ret = 0;
2779
2780 spin_lock(&free_i->segmap_lock);
2781
2782 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2783 ret = -ENOSPC;
2784 goto out_unlock;
2785 }
2786
2787 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2788 segno = find_next_zero_bit(free_i->free_segmap,
2789 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2790 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2791 goto got_it;
2792 }
2793
2794 #ifdef CONFIG_BLK_DEV_ZONED
2795 /*
2796 * If we format f2fs on zoned storage, let's try to get pinned sections
2797 * from beginning of the storage, which should be a conventional one.
2798 */
2799 if (f2fs_sb_has_blkzoned(sbi)) {
2800 /* Prioritize writing to conventional zones */
2801 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2802 segno = 0;
2803 else
2804 segno = max(sbi->first_seq_zone_segno, *newseg);
2805 hint = GET_SEC_FROM_SEG(sbi, segno);
2806 }
2807 #endif
2808
2809 find_other_zone:
2810 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2811
2812 #ifdef CONFIG_BLK_DEV_ZONED
2813 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2814 /* Write only to sequential zones */
2815 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2816 hint = GET_SEC_FROM_SEG(sbi, sbi->first_seq_zone_segno);
2817 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2818 } else
2819 secno = find_first_zero_bit(free_i->free_secmap,
2820 MAIN_SECS(sbi));
2821 if (secno >= MAIN_SECS(sbi)) {
2822 ret = -ENOSPC;
2823 f2fs_bug_on(sbi, 1);
2824 goto out_unlock;
2825 }
2826 }
2827 #endif
2828
2829 if (secno >= MAIN_SECS(sbi)) {
2830 secno = find_first_zero_bit(free_i->free_secmap,
2831 MAIN_SECS(sbi));
2832 if (secno >= MAIN_SECS(sbi)) {
2833 ret = -ENOSPC;
2834 f2fs_bug_on(sbi, !pinning);
2835 goto out_unlock;
2836 }
2837 }
2838 segno = GET_SEG_FROM_SEC(sbi, secno);
2839 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2840
2841 /* give up on finding another zone */
2842 if (!init)
2843 goto got_it;
2844 if (sbi->secs_per_zone == 1)
2845 goto got_it;
2846 if (zoneno == old_zoneno)
2847 goto got_it;
2848 for (i = 0; i < NR_CURSEG_TYPE; i++)
2849 if (CURSEG_I(sbi, i)->zone == zoneno)
2850 break;
2851
2852 if (i < NR_CURSEG_TYPE) {
2853 /* zone is in user, try another */
2854 if (zoneno + 1 >= total_zones)
2855 hint = 0;
2856 else
2857 hint = (zoneno + 1) * sbi->secs_per_zone;
2858 init = false;
2859 goto find_other_zone;
2860 }
2861 got_it:
2862 /* set it as dirty segment in free segmap */
2863 if (test_bit(segno, free_i->free_segmap)) {
2864 ret = -EFSCORRUPTED;
2865 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2866 goto out_unlock;
2867 }
2868
2869 /* no free section in conventional device or conventional zone */
2870 if (new_sec && pinning &&
2871 f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2872 ret = -EAGAIN;
2873 goto out_unlock;
2874 }
2875 __set_inuse(sbi, segno);
2876 *newseg = segno;
2877 out_unlock:
2878 spin_unlock(&free_i->segmap_lock);
2879
2880 if (ret == -ENOSPC && !pinning)
2881 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2882 return ret;
2883 }
2884
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2885 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2886 {
2887 struct curseg_info *curseg = CURSEG_I(sbi, type);
2888 struct summary_footer *sum_footer;
2889 unsigned short seg_type = curseg->seg_type;
2890
2891 /* only happen when get_new_segment() fails */
2892 if (curseg->next_segno == NULL_SEGNO)
2893 return;
2894
2895 curseg->inited = true;
2896 curseg->segno = curseg->next_segno;
2897 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2898 curseg->next_blkoff = 0;
2899 curseg->next_segno = NULL_SEGNO;
2900
2901 sum_footer = &(curseg->sum_blk->footer);
2902 memset(sum_footer, 0, sizeof(struct summary_footer));
2903
2904 sanity_check_seg_type(sbi, seg_type);
2905
2906 if (IS_DATASEG(seg_type))
2907 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2908 if (IS_NODESEG(seg_type))
2909 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2910 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2911 }
2912
__get_next_segno(struct f2fs_sb_info * sbi,int type)2913 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2914 {
2915 struct curseg_info *curseg = CURSEG_I(sbi, type);
2916 unsigned short seg_type = curseg->seg_type;
2917
2918 sanity_check_seg_type(sbi, seg_type);
2919 if (__is_large_section(sbi)) {
2920 if (f2fs_need_rand_seg(sbi)) {
2921 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2922
2923 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2924 return curseg->segno;
2925 return get_random_u32_inclusive(curseg->segno + 1,
2926 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2927 }
2928 return curseg->segno;
2929 } else if (f2fs_need_rand_seg(sbi)) {
2930 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2931 }
2932
2933 /* inmem log may not locate on any segment after mount */
2934 if (!curseg->inited)
2935 return 0;
2936
2937 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2938 return 0;
2939
2940 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2941 return 0;
2942
2943 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2944 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2945
2946 /* find segments from 0 to reuse freed segments */
2947 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2948 return 0;
2949
2950 return curseg->segno;
2951 }
2952
reset_curseg_fields(struct curseg_info * curseg)2953 static void reset_curseg_fields(struct curseg_info *curseg)
2954 {
2955 curseg->inited = false;
2956 curseg->segno = NULL_SEGNO;
2957 curseg->next_segno = 0;
2958 }
2959
2960 /*
2961 * Allocate a current working segment.
2962 * This function always allocates a free segment in LFS manner.
2963 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2964 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2965 {
2966 struct curseg_info *curseg = CURSEG_I(sbi, type);
2967 unsigned int segno = curseg->segno;
2968 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2969 int ret;
2970
2971 if (curseg->inited)
2972 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2973
2974 segno = __get_next_segno(sbi, type);
2975 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2976 if (ret) {
2977 if (ret == -ENOSPC)
2978 reset_curseg_fields(curseg);
2979 return ret;
2980 }
2981
2982 curseg->next_segno = segno;
2983 reset_curseg(sbi, type, 1);
2984 curseg->alloc_type = LFS;
2985 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2986 curseg->fragment_remained_chunk =
2987 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2988 return 0;
2989 }
2990
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2991 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2992 int segno, block_t start)
2993 {
2994 struct seg_entry *se = get_seg_entry(sbi, segno);
2995 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2996 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2997 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2998 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2999 int i;
3000
3001 for (i = 0; i < entries; i++)
3002 target_map[i] = ckpt_map[i] | cur_map[i];
3003
3004 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3005 }
3006
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3007 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3008 struct curseg_info *seg)
3009 {
3010 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3011 }
3012
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3013 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3014 {
3015 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3016 }
3017
3018 /*
3019 * This function always allocates a used segment(from dirty seglist) by SSR
3020 * manner, so it should recover the existing segment information of valid blocks
3021 */
change_curseg(struct f2fs_sb_info * sbi,int type)3022 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3023 {
3024 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3025 struct curseg_info *curseg = CURSEG_I(sbi, type);
3026 unsigned int new_segno = curseg->next_segno;
3027 struct f2fs_summary_block *sum_node;
3028 struct folio *sum_folio;
3029
3030 if (curseg->inited)
3031 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
3032
3033 __set_test_and_inuse(sbi, new_segno);
3034
3035 mutex_lock(&dirty_i->seglist_lock);
3036 __remove_dirty_segment(sbi, new_segno, PRE);
3037 __remove_dirty_segment(sbi, new_segno, DIRTY);
3038 mutex_unlock(&dirty_i->seglist_lock);
3039
3040 reset_curseg(sbi, type, 1);
3041 curseg->alloc_type = SSR;
3042 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3043
3044 sum_folio = f2fs_get_sum_folio(sbi, new_segno);
3045 if (IS_ERR(sum_folio)) {
3046 /* GC won't be able to use stale summary pages by cp_error */
3047 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3048 return PTR_ERR(sum_folio);
3049 }
3050 sum_node = folio_address(sum_folio);
3051 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3052 f2fs_folio_put(sum_folio, true);
3053 return 0;
3054 }
3055
3056 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3057 int alloc_mode, unsigned long long age);
3058
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3059 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3060 int target_type, int alloc_mode,
3061 unsigned long long age)
3062 {
3063 struct curseg_info *curseg = CURSEG_I(sbi, type);
3064 int ret = 0;
3065
3066 curseg->seg_type = target_type;
3067
3068 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3069 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3070
3071 curseg->seg_type = se->type;
3072 ret = change_curseg(sbi, type);
3073 } else {
3074 /* allocate cold segment by default */
3075 curseg->seg_type = CURSEG_COLD_DATA;
3076 ret = new_curseg(sbi, type, true);
3077 }
3078 stat_inc_seg_type(sbi, curseg);
3079 return ret;
3080 }
3081
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3082 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3083 {
3084 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3085 int ret = 0;
3086
3087 if (!sbi->am.atgc_enabled && !force)
3088 return 0;
3089
3090 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3091
3092 mutex_lock(&curseg->curseg_mutex);
3093 down_write(&SIT_I(sbi)->sentry_lock);
3094
3095 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3096 CURSEG_COLD_DATA, SSR, 0);
3097
3098 up_write(&SIT_I(sbi)->sentry_lock);
3099 mutex_unlock(&curseg->curseg_mutex);
3100
3101 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3102 return ret;
3103 }
3104
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3105 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3106 {
3107 return __f2fs_init_atgc_curseg(sbi, false);
3108 }
3109
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3110 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3111 {
3112 int ret;
3113
3114 if (!test_opt(sbi, ATGC))
3115 return 0;
3116 if (sbi->am.atgc_enabled)
3117 return 0;
3118 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3119 sbi->am.age_threshold)
3120 return 0;
3121
3122 ret = __f2fs_init_atgc_curseg(sbi, true);
3123 if (!ret) {
3124 sbi->am.atgc_enabled = true;
3125 f2fs_info(sbi, "reenabled age threshold GC");
3126 }
3127 return ret;
3128 }
3129
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3130 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3131 {
3132 struct curseg_info *curseg = CURSEG_I(sbi, type);
3133
3134 mutex_lock(&curseg->curseg_mutex);
3135 if (!curseg->inited)
3136 goto out;
3137
3138 if (get_valid_blocks(sbi, curseg->segno, false)) {
3139 write_sum_page(sbi, curseg->sum_blk,
3140 GET_SUM_BLOCK(sbi, curseg->segno));
3141 } else {
3142 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3143 __set_test_and_free(sbi, curseg->segno, true);
3144 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3145 }
3146 out:
3147 mutex_unlock(&curseg->curseg_mutex);
3148 }
3149
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3150 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3151 {
3152 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3153
3154 if (sbi->am.atgc_enabled)
3155 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3156 }
3157
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3158 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3159 {
3160 struct curseg_info *curseg = CURSEG_I(sbi, type);
3161
3162 mutex_lock(&curseg->curseg_mutex);
3163 if (!curseg->inited)
3164 goto out;
3165 if (get_valid_blocks(sbi, curseg->segno, false))
3166 goto out;
3167
3168 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3169 __set_test_and_inuse(sbi, curseg->segno);
3170 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3171 out:
3172 mutex_unlock(&curseg->curseg_mutex);
3173 }
3174
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3175 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3176 {
3177 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3178
3179 if (sbi->am.atgc_enabled)
3180 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3181 }
3182
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3183 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3184 int alloc_mode, unsigned long long age)
3185 {
3186 struct curseg_info *curseg = CURSEG_I(sbi, type);
3187 unsigned segno = NULL_SEGNO;
3188 unsigned short seg_type = curseg->seg_type;
3189 int i, cnt;
3190 bool reversed = false;
3191
3192 sanity_check_seg_type(sbi, seg_type);
3193
3194 /* f2fs_need_SSR() already forces to do this */
3195 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3196 alloc_mode, age, false)) {
3197 curseg->next_segno = segno;
3198 return 1;
3199 }
3200
3201 /* For node segments, let's do SSR more intensively */
3202 if (IS_NODESEG(seg_type)) {
3203 if (seg_type >= CURSEG_WARM_NODE) {
3204 reversed = true;
3205 i = CURSEG_COLD_NODE;
3206 } else {
3207 i = CURSEG_HOT_NODE;
3208 }
3209 cnt = NR_CURSEG_NODE_TYPE;
3210 } else {
3211 if (seg_type >= CURSEG_WARM_DATA) {
3212 reversed = true;
3213 i = CURSEG_COLD_DATA;
3214 } else {
3215 i = CURSEG_HOT_DATA;
3216 }
3217 cnt = NR_CURSEG_DATA_TYPE;
3218 }
3219
3220 for (; cnt-- > 0; reversed ? i-- : i++) {
3221 if (i == seg_type)
3222 continue;
3223 if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3224 alloc_mode, age, false)) {
3225 curseg->next_segno = segno;
3226 return 1;
3227 }
3228 }
3229
3230 /* find valid_blocks=0 in dirty list */
3231 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3232 segno = get_free_segment(sbi);
3233 if (segno != NULL_SEGNO) {
3234 curseg->next_segno = segno;
3235 return 1;
3236 }
3237 }
3238 return 0;
3239 }
3240
need_new_seg(struct f2fs_sb_info * sbi,int type)3241 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3242 {
3243 struct curseg_info *curseg = CURSEG_I(sbi, type);
3244
3245 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3246 curseg->seg_type == CURSEG_WARM_NODE)
3247 return true;
3248 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3249 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3250 return true;
3251 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3252 return true;
3253 return false;
3254 }
3255
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3256 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3257 unsigned int start, unsigned int end)
3258 {
3259 struct curseg_info *curseg = CURSEG_I(sbi, type);
3260 unsigned int segno;
3261 int ret = 0;
3262
3263 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3264 mutex_lock(&curseg->curseg_mutex);
3265 down_write(&SIT_I(sbi)->sentry_lock);
3266
3267 segno = CURSEG_I(sbi, type)->segno;
3268 if (segno < start || segno > end)
3269 goto unlock;
3270
3271 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3272 ret = change_curseg(sbi, type);
3273 else
3274 ret = new_curseg(sbi, type, true);
3275
3276 stat_inc_seg_type(sbi, curseg);
3277
3278 locate_dirty_segment(sbi, segno);
3279 unlock:
3280 up_write(&SIT_I(sbi)->sentry_lock);
3281
3282 if (segno != curseg->segno)
3283 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3284 type, segno, curseg->segno);
3285
3286 mutex_unlock(&curseg->curseg_mutex);
3287 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3288 return ret;
3289 }
3290
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3291 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3292 bool new_sec, bool force)
3293 {
3294 struct curseg_info *curseg = CURSEG_I(sbi, type);
3295 unsigned int old_segno;
3296 int err = 0;
3297
3298 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3299 goto allocate;
3300
3301 if (!force && curseg->inited &&
3302 !curseg->next_blkoff &&
3303 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3304 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3305 return 0;
3306
3307 allocate:
3308 old_segno = curseg->segno;
3309 err = new_curseg(sbi, type, true);
3310 if (err)
3311 return err;
3312 stat_inc_seg_type(sbi, curseg);
3313 locate_dirty_segment(sbi, old_segno);
3314 return 0;
3315 }
3316
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3317 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3318 {
3319 int ret;
3320
3321 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3322 down_write(&SIT_I(sbi)->sentry_lock);
3323 ret = __allocate_new_segment(sbi, type, true, force);
3324 up_write(&SIT_I(sbi)->sentry_lock);
3325 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3326
3327 return ret;
3328 }
3329
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3330 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3331 {
3332 int err;
3333 bool gc_required = true;
3334
3335 retry:
3336 f2fs_lock_op(sbi);
3337 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3338 f2fs_unlock_op(sbi);
3339
3340 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3341 f2fs_down_write(&sbi->gc_lock);
3342 err = f2fs_gc_range(sbi, 0, sbi->first_seq_zone_segno - 1,
3343 true, ZONED_PIN_SEC_REQUIRED_COUNT);
3344 f2fs_up_write(&sbi->gc_lock);
3345
3346 gc_required = false;
3347 if (!err)
3348 goto retry;
3349 }
3350
3351 return err;
3352 }
3353
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3354 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3355 {
3356 int i;
3357 int err = 0;
3358
3359 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3360 down_write(&SIT_I(sbi)->sentry_lock);
3361 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3362 err += __allocate_new_segment(sbi, i, false, false);
3363 up_write(&SIT_I(sbi)->sentry_lock);
3364 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3365
3366 return err;
3367 }
3368
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3369 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3370 struct cp_control *cpc)
3371 {
3372 __u64 trim_start = cpc->trim_start;
3373 bool has_candidate = false;
3374
3375 down_write(&SIT_I(sbi)->sentry_lock);
3376 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3377 if (add_discard_addrs(sbi, cpc, true)) {
3378 has_candidate = true;
3379 break;
3380 }
3381 }
3382 up_write(&SIT_I(sbi)->sentry_lock);
3383
3384 cpc->trim_start = trim_start;
3385 return has_candidate;
3386 }
3387
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3388 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3389 struct discard_policy *dpolicy,
3390 unsigned int start, unsigned int end)
3391 {
3392 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3393 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3394 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3395 struct discard_cmd *dc;
3396 struct blk_plug plug;
3397 int issued;
3398 unsigned int trimmed = 0;
3399
3400 next:
3401 issued = 0;
3402
3403 mutex_lock(&dcc->cmd_lock);
3404 if (unlikely(dcc->rbtree_check))
3405 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3406
3407 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3408 &prev_dc, &next_dc, &insert_p, &insert_parent);
3409 if (!dc)
3410 dc = next_dc;
3411
3412 blk_start_plug(&plug);
3413
3414 while (dc && dc->di.lstart <= end) {
3415 struct rb_node *node;
3416 int err = 0;
3417
3418 if (dc->di.len < dpolicy->granularity)
3419 goto skip;
3420
3421 if (dc->state != D_PREP) {
3422 list_move_tail(&dc->list, &dcc->fstrim_list);
3423 goto skip;
3424 }
3425
3426 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3427
3428 if (issued >= dpolicy->max_requests) {
3429 start = dc->di.lstart + dc->di.len;
3430
3431 if (err)
3432 __remove_discard_cmd(sbi, dc);
3433
3434 blk_finish_plug(&plug);
3435 mutex_unlock(&dcc->cmd_lock);
3436 trimmed += __wait_all_discard_cmd(sbi, NULL);
3437 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3438 goto next;
3439 }
3440 skip:
3441 node = rb_next(&dc->rb_node);
3442 if (err)
3443 __remove_discard_cmd(sbi, dc);
3444 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3445
3446 if (fatal_signal_pending(current))
3447 break;
3448 }
3449
3450 blk_finish_plug(&plug);
3451 mutex_unlock(&dcc->cmd_lock);
3452
3453 return trimmed;
3454 }
3455
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3456 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3457 {
3458 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3459 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3460 unsigned int start_segno, end_segno;
3461 block_t start_block, end_block;
3462 struct cp_control cpc;
3463 struct discard_policy dpolicy;
3464 unsigned long long trimmed = 0;
3465 int err = 0;
3466 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3467
3468 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3469 return -EINVAL;
3470
3471 if (end < MAIN_BLKADDR(sbi))
3472 goto out;
3473
3474 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3475 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3476 return -EFSCORRUPTED;
3477 }
3478
3479 /* start/end segment number in main_area */
3480 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3481 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3482 GET_SEGNO(sbi, end);
3483 if (need_align) {
3484 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3485 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3486 }
3487
3488 cpc.reason = CP_DISCARD;
3489 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3490 cpc.trim_start = start_segno;
3491 cpc.trim_end = end_segno;
3492
3493 if (sbi->discard_blks == 0)
3494 goto out;
3495
3496 f2fs_down_write(&sbi->gc_lock);
3497 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3498 err = f2fs_write_checkpoint(sbi, &cpc);
3499 f2fs_up_write(&sbi->gc_lock);
3500 if (err)
3501 goto out;
3502
3503 /*
3504 * We filed discard candidates, but actually we don't need to wait for
3505 * all of them, since they'll be issued in idle time along with runtime
3506 * discard option. User configuration looks like using runtime discard
3507 * or periodic fstrim instead of it.
3508 */
3509 if (f2fs_realtime_discard_enable(sbi))
3510 goto out;
3511
3512 start_block = START_BLOCK(sbi, start_segno);
3513 end_block = START_BLOCK(sbi, end_segno + 1);
3514
3515 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3516 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3517 start_block, end_block);
3518
3519 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3520 start_block, end_block);
3521 out:
3522 if (!err)
3523 range->len = F2FS_BLK_TO_BYTES(trimmed);
3524 return err;
3525 }
3526
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3527 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3528 {
3529 if (F2FS_OPTION(sbi).active_logs == 2)
3530 return CURSEG_HOT_DATA;
3531 else if (F2FS_OPTION(sbi).active_logs == 4)
3532 return CURSEG_COLD_DATA;
3533
3534 /* active_log == 6 */
3535 switch (hint) {
3536 case WRITE_LIFE_SHORT:
3537 return CURSEG_HOT_DATA;
3538 case WRITE_LIFE_EXTREME:
3539 return CURSEG_COLD_DATA;
3540 default:
3541 return CURSEG_WARM_DATA;
3542 }
3543 }
3544
3545 /*
3546 * This returns write hints for each segment type. This hints will be
3547 * passed down to block layer as below by default.
3548 *
3549 * User F2FS Block
3550 * ---- ---- -----
3551 * META WRITE_LIFE_NONE|REQ_META
3552 * HOT_NODE WRITE_LIFE_NONE
3553 * WARM_NODE WRITE_LIFE_MEDIUM
3554 * COLD_NODE WRITE_LIFE_LONG
3555 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3556 * extension list " "
3557 *
3558 * -- buffered io
3559 * COLD_DATA WRITE_LIFE_EXTREME
3560 * HOT_DATA WRITE_LIFE_SHORT
3561 * WARM_DATA WRITE_LIFE_NOT_SET
3562 *
3563 * -- direct io
3564 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3565 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3566 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3567 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3568 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3569 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3570 */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3571 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3572 enum page_type type, enum temp_type temp)
3573 {
3574 switch (type) {
3575 case DATA:
3576 switch (temp) {
3577 case WARM:
3578 return WRITE_LIFE_NOT_SET;
3579 case HOT:
3580 return WRITE_LIFE_SHORT;
3581 case COLD:
3582 return WRITE_LIFE_EXTREME;
3583 default:
3584 return WRITE_LIFE_NONE;
3585 }
3586 case NODE:
3587 switch (temp) {
3588 case WARM:
3589 return WRITE_LIFE_MEDIUM;
3590 case HOT:
3591 return WRITE_LIFE_NONE;
3592 case COLD:
3593 return WRITE_LIFE_LONG;
3594 default:
3595 return WRITE_LIFE_NONE;
3596 }
3597 case META:
3598 return WRITE_LIFE_NONE;
3599 default:
3600 return WRITE_LIFE_NONE;
3601 }
3602 }
3603
__get_segment_type_2(struct f2fs_io_info * fio)3604 static int __get_segment_type_2(struct f2fs_io_info *fio)
3605 {
3606 if (fio->type == DATA)
3607 return CURSEG_HOT_DATA;
3608 else
3609 return CURSEG_HOT_NODE;
3610 }
3611
__get_segment_type_4(struct f2fs_io_info * fio)3612 static int __get_segment_type_4(struct f2fs_io_info *fio)
3613 {
3614 if (fio->type == DATA) {
3615 struct inode *inode = fio_inode(fio);
3616
3617 if (S_ISDIR(inode->i_mode))
3618 return CURSEG_HOT_DATA;
3619 else
3620 return CURSEG_COLD_DATA;
3621 } else {
3622 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3623 return CURSEG_WARM_NODE;
3624 else
3625 return CURSEG_COLD_NODE;
3626 }
3627 }
3628
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3629 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3630 {
3631 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3632 struct extent_info ei = {};
3633
3634 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3635 if (!ei.age)
3636 return NO_CHECK_TYPE;
3637 if (ei.age <= sbi->hot_data_age_threshold)
3638 return CURSEG_HOT_DATA;
3639 if (ei.age <= sbi->warm_data_age_threshold)
3640 return CURSEG_WARM_DATA;
3641 return CURSEG_COLD_DATA;
3642 }
3643 return NO_CHECK_TYPE;
3644 }
3645
__get_segment_type_6(struct f2fs_io_info * fio)3646 static int __get_segment_type_6(struct f2fs_io_info *fio)
3647 {
3648 if (fio->type == DATA) {
3649 struct inode *inode = fio_inode(fio);
3650 int type;
3651
3652 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3653 return CURSEG_COLD_DATA_PINNED;
3654
3655 if (page_private_gcing(fio->page)) {
3656 if (fio->sbi->am.atgc_enabled &&
3657 (fio->io_type == FS_DATA_IO) &&
3658 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3659 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3660 !is_inode_flag_set(inode, FI_OPU_WRITE))
3661 return CURSEG_ALL_DATA_ATGC;
3662 else
3663 return CURSEG_COLD_DATA;
3664 }
3665 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3666 return CURSEG_COLD_DATA;
3667
3668 type = __get_age_segment_type(inode,
3669 page_folio(fio->page)->index);
3670 if (type != NO_CHECK_TYPE)
3671 return type;
3672
3673 if (file_is_hot(inode) ||
3674 is_inode_flag_set(inode, FI_HOT_DATA) ||
3675 f2fs_is_cow_file(inode))
3676 return CURSEG_HOT_DATA;
3677 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3678 inode->i_write_hint);
3679 } else {
3680 if (IS_DNODE(fio->page))
3681 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3682 CURSEG_HOT_NODE;
3683 return CURSEG_COLD_NODE;
3684 }
3685 }
3686
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3687 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3688 enum log_type type)
3689 {
3690 struct curseg_info *curseg = CURSEG_I(sbi, type);
3691 enum temp_type temp = COLD;
3692
3693 switch (curseg->seg_type) {
3694 case CURSEG_HOT_NODE:
3695 case CURSEG_HOT_DATA:
3696 temp = HOT;
3697 break;
3698 case CURSEG_WARM_NODE:
3699 case CURSEG_WARM_DATA:
3700 temp = WARM;
3701 break;
3702 case CURSEG_COLD_NODE:
3703 case CURSEG_COLD_DATA:
3704 temp = COLD;
3705 break;
3706 default:
3707 f2fs_bug_on(sbi, 1);
3708 }
3709
3710 return temp;
3711 }
3712
__get_segment_type(struct f2fs_io_info * fio)3713 static int __get_segment_type(struct f2fs_io_info *fio)
3714 {
3715 enum log_type type = CURSEG_HOT_DATA;
3716
3717 switch (F2FS_OPTION(fio->sbi).active_logs) {
3718 case 2:
3719 type = __get_segment_type_2(fio);
3720 break;
3721 case 4:
3722 type = __get_segment_type_4(fio);
3723 break;
3724 case 6:
3725 type = __get_segment_type_6(fio);
3726 break;
3727 default:
3728 f2fs_bug_on(fio->sbi, true);
3729 }
3730
3731 fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3732
3733 return type;
3734 }
3735
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3736 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3737 struct curseg_info *seg)
3738 {
3739 /* To allocate block chunks in different sizes, use random number */
3740 if (--seg->fragment_remained_chunk > 0)
3741 return;
3742
3743 seg->fragment_remained_chunk =
3744 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3745 seg->next_blkoff +=
3746 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3747 }
3748
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3749 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3750 block_t old_blkaddr, block_t *new_blkaddr,
3751 struct f2fs_summary *sum, int type,
3752 struct f2fs_io_info *fio)
3753 {
3754 struct sit_info *sit_i = SIT_I(sbi);
3755 struct curseg_info *curseg = CURSEG_I(sbi, type);
3756 unsigned long long old_mtime;
3757 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3758 struct seg_entry *se = NULL;
3759 bool segment_full = false;
3760 int ret = 0;
3761
3762 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3763
3764 mutex_lock(&curseg->curseg_mutex);
3765 down_write(&sit_i->sentry_lock);
3766
3767 if (curseg->segno == NULL_SEGNO) {
3768 ret = -ENOSPC;
3769 goto out_err;
3770 }
3771
3772 if (from_gc) {
3773 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3774 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3775 sanity_check_seg_type(sbi, se->type);
3776 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3777 }
3778 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3779
3780 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3781
3782 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3783
3784 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3785 if (curseg->alloc_type == SSR) {
3786 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3787 } else {
3788 curseg->next_blkoff++;
3789 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3790 f2fs_randomize_chunk(sbi, curseg);
3791 }
3792 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3793 segment_full = true;
3794 stat_inc_block_count(sbi, curseg);
3795
3796 if (from_gc) {
3797 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3798 } else {
3799 update_segment_mtime(sbi, old_blkaddr, 0);
3800 old_mtime = 0;
3801 }
3802 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3803
3804 /*
3805 * SIT information should be updated before segment allocation,
3806 * since SSR needs latest valid block information.
3807 */
3808 update_sit_entry(sbi, *new_blkaddr, 1);
3809 update_sit_entry(sbi, old_blkaddr, -1);
3810
3811 /*
3812 * If the current segment is full, flush it out and replace it with a
3813 * new segment.
3814 */
3815 if (segment_full) {
3816 if (type == CURSEG_COLD_DATA_PINNED &&
3817 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3818 write_sum_page(sbi, curseg->sum_blk,
3819 GET_SUM_BLOCK(sbi, curseg->segno));
3820 reset_curseg_fields(curseg);
3821 goto skip_new_segment;
3822 }
3823
3824 if (from_gc) {
3825 ret = get_atssr_segment(sbi, type, se->type,
3826 AT_SSR, se->mtime);
3827 } else {
3828 if (need_new_seg(sbi, type))
3829 ret = new_curseg(sbi, type, false);
3830 else
3831 ret = change_curseg(sbi, type);
3832 stat_inc_seg_type(sbi, curseg);
3833 }
3834
3835 if (ret)
3836 goto out_err;
3837 }
3838
3839 skip_new_segment:
3840 /*
3841 * segment dirty status should be updated after segment allocation,
3842 * so we just need to update status only one time after previous
3843 * segment being closed.
3844 */
3845 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3846 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3847
3848 if (IS_DATASEG(curseg->seg_type))
3849 atomic64_inc(&sbi->allocated_data_blocks);
3850
3851 up_write(&sit_i->sentry_lock);
3852
3853 if (page && IS_NODESEG(curseg->seg_type)) {
3854 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3855
3856 f2fs_inode_chksum_set(sbi, page);
3857 }
3858
3859 if (fio) {
3860 struct f2fs_bio_info *io;
3861
3862 INIT_LIST_HEAD(&fio->list);
3863 fio->in_list = 1;
3864 io = sbi->write_io[fio->type] + fio->temp;
3865 spin_lock(&io->io_lock);
3866 list_add_tail(&fio->list, &io->io_list);
3867 spin_unlock(&io->io_lock);
3868 }
3869
3870 mutex_unlock(&curseg->curseg_mutex);
3871 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3872 return 0;
3873
3874 out_err:
3875 *new_blkaddr = NULL_ADDR;
3876 up_write(&sit_i->sentry_lock);
3877 mutex_unlock(&curseg->curseg_mutex);
3878 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3879 return ret;
3880 }
3881
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3882 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3883 block_t blkaddr, unsigned int blkcnt)
3884 {
3885 if (!f2fs_is_multi_device(sbi))
3886 return;
3887
3888 while (1) {
3889 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3890 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3891
3892 /* update device state for fsync */
3893 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3894
3895 /* update device state for checkpoint */
3896 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3897 spin_lock(&sbi->dev_lock);
3898 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3899 spin_unlock(&sbi->dev_lock);
3900 }
3901
3902 if (blkcnt <= blks)
3903 break;
3904 blkcnt -= blks;
3905 blkaddr += blks;
3906 }
3907 }
3908
log_type_to_seg_type(enum log_type type)3909 static int log_type_to_seg_type(enum log_type type)
3910 {
3911 int seg_type = CURSEG_COLD_DATA;
3912
3913 switch (type) {
3914 case CURSEG_HOT_DATA:
3915 case CURSEG_WARM_DATA:
3916 case CURSEG_COLD_DATA:
3917 case CURSEG_HOT_NODE:
3918 case CURSEG_WARM_NODE:
3919 case CURSEG_COLD_NODE:
3920 seg_type = (int)type;
3921 break;
3922 case CURSEG_COLD_DATA_PINNED:
3923 case CURSEG_ALL_DATA_ATGC:
3924 seg_type = CURSEG_COLD_DATA;
3925 break;
3926 default:
3927 break;
3928 }
3929 return seg_type;
3930 }
3931
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3932 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3933 {
3934 struct folio *folio = page_folio(fio->page);
3935 enum log_type type = __get_segment_type(fio);
3936 int seg_type = log_type_to_seg_type(type);
3937 bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3938 seg_type == CURSEG_COLD_DATA);
3939
3940 if (keep_order)
3941 f2fs_down_read(&fio->sbi->io_order_lock);
3942
3943 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3944 &fio->new_blkaddr, sum, type, fio)) {
3945 if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3946 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3947 folio_end_writeback(folio);
3948 if (f2fs_in_warm_node_list(fio->sbi, folio))
3949 f2fs_del_fsync_node_entry(fio->sbi, folio);
3950 goto out;
3951 }
3952 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3953 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3954
3955 /* writeout dirty page into bdev */
3956 f2fs_submit_page_write(fio);
3957
3958 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3959 out:
3960 if (keep_order)
3961 f2fs_up_read(&fio->sbi->io_order_lock);
3962 }
3963
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)3964 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3965 enum iostat_type io_type)
3966 {
3967 struct f2fs_io_info fio = {
3968 .sbi = sbi,
3969 .type = META,
3970 .temp = HOT,
3971 .op = REQ_OP_WRITE,
3972 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3973 .old_blkaddr = folio->index,
3974 .new_blkaddr = folio->index,
3975 .page = folio_page(folio, 0),
3976 .encrypted_page = NULL,
3977 .in_list = 0,
3978 };
3979
3980 if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3981 fio.op_flags &= ~REQ_META;
3982
3983 folio_start_writeback(folio);
3984 f2fs_submit_page_write(&fio);
3985
3986 stat_inc_meta_count(sbi, folio->index);
3987 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3988 }
3989
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3990 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3991 {
3992 struct f2fs_summary sum;
3993
3994 set_summary(&sum, nid, 0, 0);
3995 do_write_page(&sum, fio);
3996
3997 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3998 }
3999
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4000 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4001 struct f2fs_io_info *fio)
4002 {
4003 struct f2fs_sb_info *sbi = fio->sbi;
4004 struct f2fs_summary sum;
4005
4006 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4007 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4008 f2fs_update_age_extent_cache(dn);
4009 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4010 do_write_page(&sum, fio);
4011 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4012
4013 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4014 }
4015
f2fs_inplace_write_data(struct f2fs_io_info * fio)4016 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4017 {
4018 int err;
4019 struct f2fs_sb_info *sbi = fio->sbi;
4020 unsigned int segno;
4021
4022 fio->new_blkaddr = fio->old_blkaddr;
4023 /* i/o temperature is needed for passing down write hints */
4024 __get_segment_type(fio);
4025
4026 segno = GET_SEGNO(sbi, fio->new_blkaddr);
4027
4028 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4029 set_sbi_flag(sbi, SBI_NEED_FSCK);
4030 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4031 __func__, segno);
4032 err = -EFSCORRUPTED;
4033 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4034 goto drop_bio;
4035 }
4036
4037 if (f2fs_cp_error(sbi)) {
4038 err = -EIO;
4039 goto drop_bio;
4040 }
4041
4042 if (fio->meta_gc)
4043 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4044
4045 stat_inc_inplace_blocks(fio->sbi);
4046
4047 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4048 err = f2fs_merge_page_bio(fio);
4049 else
4050 err = f2fs_submit_page_bio(fio);
4051 if (!err) {
4052 f2fs_update_device_state(fio->sbi, fio->ino,
4053 fio->new_blkaddr, 1);
4054 f2fs_update_iostat(fio->sbi, fio_inode(fio),
4055 fio->io_type, F2FS_BLKSIZE);
4056 }
4057
4058 return err;
4059 drop_bio:
4060 if (fio->bio && *(fio->bio)) {
4061 struct bio *bio = *(fio->bio);
4062
4063 bio->bi_status = BLK_STS_IOERR;
4064 bio_endio(bio);
4065 *(fio->bio) = NULL;
4066 }
4067 return err;
4068 }
4069
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4070 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4071 unsigned int segno)
4072 {
4073 int i;
4074
4075 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4076 if (CURSEG_I(sbi, i)->segno == segno)
4077 break;
4078 }
4079 return i;
4080 }
4081
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4082 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4083 block_t old_blkaddr, block_t new_blkaddr,
4084 bool recover_curseg, bool recover_newaddr,
4085 bool from_gc)
4086 {
4087 struct sit_info *sit_i = SIT_I(sbi);
4088 struct curseg_info *curseg;
4089 unsigned int segno, old_cursegno;
4090 struct seg_entry *se;
4091 int type;
4092 unsigned short old_blkoff;
4093 unsigned char old_alloc_type;
4094
4095 segno = GET_SEGNO(sbi, new_blkaddr);
4096 se = get_seg_entry(sbi, segno);
4097 type = se->type;
4098
4099 f2fs_down_write(&SM_I(sbi)->curseg_lock);
4100
4101 if (!recover_curseg) {
4102 /* for recovery flow */
4103 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4104 if (old_blkaddr == NULL_ADDR)
4105 type = CURSEG_COLD_DATA;
4106 else
4107 type = CURSEG_WARM_DATA;
4108 }
4109 } else {
4110 if (IS_CURSEG(sbi, segno)) {
4111 /* se->type is volatile as SSR allocation */
4112 type = __f2fs_get_curseg(sbi, segno);
4113 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4114 } else {
4115 type = CURSEG_WARM_DATA;
4116 }
4117 }
4118
4119 curseg = CURSEG_I(sbi, type);
4120 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4121
4122 mutex_lock(&curseg->curseg_mutex);
4123 down_write(&sit_i->sentry_lock);
4124
4125 old_cursegno = curseg->segno;
4126 old_blkoff = curseg->next_blkoff;
4127 old_alloc_type = curseg->alloc_type;
4128
4129 /* change the current segment */
4130 if (segno != curseg->segno) {
4131 curseg->next_segno = segno;
4132 if (change_curseg(sbi, type))
4133 goto out_unlock;
4134 }
4135
4136 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4137 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4138
4139 if (!recover_curseg || recover_newaddr) {
4140 if (!from_gc)
4141 update_segment_mtime(sbi, new_blkaddr, 0);
4142 update_sit_entry(sbi, new_blkaddr, 1);
4143 }
4144 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4145 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4146 if (!from_gc)
4147 update_segment_mtime(sbi, old_blkaddr, 0);
4148 update_sit_entry(sbi, old_blkaddr, -1);
4149 }
4150
4151 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4152 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4153
4154 locate_dirty_segment(sbi, old_cursegno);
4155
4156 if (recover_curseg) {
4157 if (old_cursegno != curseg->segno) {
4158 curseg->next_segno = old_cursegno;
4159 if (change_curseg(sbi, type))
4160 goto out_unlock;
4161 }
4162 curseg->next_blkoff = old_blkoff;
4163 curseg->alloc_type = old_alloc_type;
4164 }
4165
4166 out_unlock:
4167 up_write(&sit_i->sentry_lock);
4168 mutex_unlock(&curseg->curseg_mutex);
4169 f2fs_up_write(&SM_I(sbi)->curseg_lock);
4170 }
4171
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4172 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4173 block_t old_addr, block_t new_addr,
4174 unsigned char version, bool recover_curseg,
4175 bool recover_newaddr)
4176 {
4177 struct f2fs_summary sum;
4178
4179 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4180
4181 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4182 recover_curseg, recover_newaddr, false);
4183
4184 f2fs_update_data_blkaddr(dn, new_addr);
4185 }
4186
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4187 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4188 bool ordered, bool locked)
4189 {
4190 if (folio_test_writeback(folio)) {
4191 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4192
4193 /* submit cached LFS IO */
4194 f2fs_submit_merged_write_cond(sbi, NULL, &folio->page, 0, type);
4195 /* submit cached IPU IO */
4196 f2fs_submit_merged_ipu_write(sbi, NULL, folio);
4197 if (ordered) {
4198 folio_wait_writeback(folio);
4199 f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4200 } else {
4201 folio_wait_stable(folio);
4202 }
4203 }
4204 }
4205
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4206 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4207 {
4208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4209 struct folio *cfolio;
4210
4211 if (!f2fs_meta_inode_gc_required(inode))
4212 return;
4213
4214 if (!__is_valid_data_blkaddr(blkaddr))
4215 return;
4216
4217 cfolio = filemap_lock_folio(META_MAPPING(sbi), blkaddr);
4218 if (!IS_ERR(cfolio)) {
4219 f2fs_folio_wait_writeback(cfolio, DATA, true, true);
4220 f2fs_folio_put(cfolio, true);
4221 }
4222 }
4223
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4224 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4225 block_t len)
4226 {
4227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4228 block_t i;
4229
4230 if (!f2fs_meta_inode_gc_required(inode))
4231 return;
4232
4233 for (i = 0; i < len; i++)
4234 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4235
4236 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4237 }
4238
read_compacted_summaries(struct f2fs_sb_info * sbi)4239 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4240 {
4241 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4242 struct curseg_info *seg_i;
4243 unsigned char *kaddr;
4244 struct folio *folio;
4245 block_t start;
4246 int i, j, offset;
4247
4248 start = start_sum_block(sbi);
4249
4250 folio = f2fs_get_meta_folio(sbi, start++);
4251 if (IS_ERR(folio))
4252 return PTR_ERR(folio);
4253 kaddr = folio_address(folio);
4254
4255 /* Step 1: restore nat cache */
4256 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4257 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4258
4259 /* Step 2: restore sit cache */
4260 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4261 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4262 offset = 2 * SUM_JOURNAL_SIZE;
4263
4264 /* Step 3: restore summary entries */
4265 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4266 unsigned short blk_off;
4267 unsigned int segno;
4268
4269 seg_i = CURSEG_I(sbi, i);
4270 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4271 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4272 seg_i->next_segno = segno;
4273 reset_curseg(sbi, i, 0);
4274 seg_i->alloc_type = ckpt->alloc_type[i];
4275 seg_i->next_blkoff = blk_off;
4276
4277 if (seg_i->alloc_type == SSR)
4278 blk_off = BLKS_PER_SEG(sbi);
4279
4280 for (j = 0; j < blk_off; j++) {
4281 struct f2fs_summary *s;
4282
4283 s = (struct f2fs_summary *)(kaddr + offset);
4284 seg_i->sum_blk->entries[j] = *s;
4285 offset += SUMMARY_SIZE;
4286 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4287 SUM_FOOTER_SIZE)
4288 continue;
4289
4290 f2fs_folio_put(folio, true);
4291
4292 folio = f2fs_get_meta_folio(sbi, start++);
4293 if (IS_ERR(folio))
4294 return PTR_ERR(folio);
4295 kaddr = folio_address(folio);
4296 offset = 0;
4297 }
4298 }
4299 f2fs_folio_put(folio, true);
4300 return 0;
4301 }
4302
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4303 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4304 {
4305 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4306 struct f2fs_summary_block *sum;
4307 struct curseg_info *curseg;
4308 struct folio *new;
4309 unsigned short blk_off;
4310 unsigned int segno = 0;
4311 block_t blk_addr = 0;
4312 int err = 0;
4313
4314 /* get segment number and block addr */
4315 if (IS_DATASEG(type)) {
4316 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4317 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4318 CURSEG_HOT_DATA]);
4319 if (__exist_node_summaries(sbi))
4320 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4321 else
4322 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4323 } else {
4324 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4325 CURSEG_HOT_NODE]);
4326 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4327 CURSEG_HOT_NODE]);
4328 if (__exist_node_summaries(sbi))
4329 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4330 type - CURSEG_HOT_NODE);
4331 else
4332 blk_addr = GET_SUM_BLOCK(sbi, segno);
4333 }
4334
4335 new = f2fs_get_meta_folio(sbi, blk_addr);
4336 if (IS_ERR(new))
4337 return PTR_ERR(new);
4338 sum = folio_address(new);
4339
4340 if (IS_NODESEG(type)) {
4341 if (__exist_node_summaries(sbi)) {
4342 struct f2fs_summary *ns = &sum->entries[0];
4343 int i;
4344
4345 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4346 ns->version = 0;
4347 ns->ofs_in_node = 0;
4348 }
4349 } else {
4350 err = f2fs_restore_node_summary(sbi, segno, sum);
4351 if (err)
4352 goto out;
4353 }
4354 }
4355
4356 /* set uncompleted segment to curseg */
4357 curseg = CURSEG_I(sbi, type);
4358 mutex_lock(&curseg->curseg_mutex);
4359
4360 /* update journal info */
4361 down_write(&curseg->journal_rwsem);
4362 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4363 up_write(&curseg->journal_rwsem);
4364
4365 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4366 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4367 curseg->next_segno = segno;
4368 reset_curseg(sbi, type, 0);
4369 curseg->alloc_type = ckpt->alloc_type[type];
4370 curseg->next_blkoff = blk_off;
4371 mutex_unlock(&curseg->curseg_mutex);
4372 out:
4373 f2fs_folio_put(new, true);
4374 return err;
4375 }
4376
restore_curseg_summaries(struct f2fs_sb_info * sbi)4377 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4378 {
4379 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4380 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4381 int type = CURSEG_HOT_DATA;
4382 int err;
4383
4384 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4385 int npages = f2fs_npages_for_summary_flush(sbi, true);
4386
4387 if (npages >= 2)
4388 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4389 META_CP, true);
4390
4391 /* restore for compacted data summary */
4392 err = read_compacted_summaries(sbi);
4393 if (err)
4394 return err;
4395 type = CURSEG_HOT_NODE;
4396 }
4397
4398 if (__exist_node_summaries(sbi))
4399 f2fs_ra_meta_pages(sbi,
4400 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4401 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4402
4403 for (; type <= CURSEG_COLD_NODE; type++) {
4404 err = read_normal_summaries(sbi, type);
4405 if (err)
4406 return err;
4407 }
4408
4409 /* sanity check for summary blocks */
4410 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4411 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4412 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4413 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4414 return -EINVAL;
4415 }
4416
4417 return 0;
4418 }
4419
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4420 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4421 {
4422 struct folio *folio;
4423 unsigned char *kaddr;
4424 struct f2fs_summary *summary;
4425 struct curseg_info *seg_i;
4426 int written_size = 0;
4427 int i, j;
4428
4429 folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4430 kaddr = folio_address(folio);
4431 memset(kaddr, 0, PAGE_SIZE);
4432
4433 /* Step 1: write nat cache */
4434 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4435 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4436 written_size += SUM_JOURNAL_SIZE;
4437
4438 /* Step 2: write sit cache */
4439 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4440 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4441 written_size += SUM_JOURNAL_SIZE;
4442
4443 /* Step 3: write summary entries */
4444 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4445 seg_i = CURSEG_I(sbi, i);
4446 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4447 if (!folio) {
4448 folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4449 kaddr = folio_address(folio);
4450 memset(kaddr, 0, PAGE_SIZE);
4451 written_size = 0;
4452 }
4453 summary = (struct f2fs_summary *)(kaddr + written_size);
4454 *summary = seg_i->sum_blk->entries[j];
4455 written_size += SUMMARY_SIZE;
4456
4457 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4458 SUM_FOOTER_SIZE)
4459 continue;
4460
4461 folio_mark_dirty(folio);
4462 f2fs_folio_put(folio, true);
4463 folio = NULL;
4464 }
4465 }
4466 if (folio) {
4467 folio_mark_dirty(folio);
4468 f2fs_folio_put(folio, true);
4469 }
4470 }
4471
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4472 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4473 block_t blkaddr, int type)
4474 {
4475 int i, end;
4476
4477 if (IS_DATASEG(type))
4478 end = type + NR_CURSEG_DATA_TYPE;
4479 else
4480 end = type + NR_CURSEG_NODE_TYPE;
4481
4482 for (i = type; i < end; i++)
4483 write_current_sum_page(sbi, i, blkaddr + (i - type));
4484 }
4485
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4486 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4487 {
4488 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4489 write_compacted_summaries(sbi, start_blk);
4490 else
4491 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4492 }
4493
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4494 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4495 {
4496 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4497 }
4498
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4499 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4500 unsigned int val, int alloc)
4501 {
4502 int i;
4503
4504 if (type == NAT_JOURNAL) {
4505 for (i = 0; i < nats_in_cursum(journal); i++) {
4506 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4507 return i;
4508 }
4509 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4510 return update_nats_in_cursum(journal, 1);
4511 } else if (type == SIT_JOURNAL) {
4512 for (i = 0; i < sits_in_cursum(journal); i++)
4513 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4514 return i;
4515 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4516 return update_sits_in_cursum(journal, 1);
4517 }
4518 return -1;
4519 }
4520
get_current_sit_folio(struct f2fs_sb_info * sbi,unsigned int segno)4521 static struct folio *get_current_sit_folio(struct f2fs_sb_info *sbi,
4522 unsigned int segno)
4523 {
4524 return f2fs_get_meta_folio(sbi, current_sit_addr(sbi, segno));
4525 }
4526
get_next_sit_folio(struct f2fs_sb_info * sbi,unsigned int start)4527 static struct folio *get_next_sit_folio(struct f2fs_sb_info *sbi,
4528 unsigned int start)
4529 {
4530 struct sit_info *sit_i = SIT_I(sbi);
4531 struct folio *folio;
4532 pgoff_t src_off, dst_off;
4533
4534 src_off = current_sit_addr(sbi, start);
4535 dst_off = next_sit_addr(sbi, src_off);
4536
4537 folio = f2fs_grab_meta_folio(sbi, dst_off);
4538 seg_info_to_sit_folio(sbi, folio, start);
4539
4540 folio_mark_dirty(folio);
4541 set_to_next_sit(sit_i, start);
4542
4543 return folio;
4544 }
4545
grab_sit_entry_set(void)4546 static struct sit_entry_set *grab_sit_entry_set(void)
4547 {
4548 struct sit_entry_set *ses =
4549 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4550 GFP_NOFS, true, NULL);
4551
4552 ses->entry_cnt = 0;
4553 INIT_LIST_HEAD(&ses->set_list);
4554 return ses;
4555 }
4556
release_sit_entry_set(struct sit_entry_set * ses)4557 static void release_sit_entry_set(struct sit_entry_set *ses)
4558 {
4559 list_del(&ses->set_list);
4560 kmem_cache_free(sit_entry_set_slab, ses);
4561 }
4562
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4563 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4564 struct list_head *head)
4565 {
4566 struct sit_entry_set *next = ses;
4567
4568 if (list_is_last(&ses->set_list, head))
4569 return;
4570
4571 list_for_each_entry_continue(next, head, set_list)
4572 if (ses->entry_cnt <= next->entry_cnt) {
4573 list_move_tail(&ses->set_list, &next->set_list);
4574 return;
4575 }
4576
4577 list_move_tail(&ses->set_list, head);
4578 }
4579
add_sit_entry(unsigned int segno,struct list_head * head)4580 static void add_sit_entry(unsigned int segno, struct list_head *head)
4581 {
4582 struct sit_entry_set *ses;
4583 unsigned int start_segno = START_SEGNO(segno);
4584
4585 list_for_each_entry(ses, head, set_list) {
4586 if (ses->start_segno == start_segno) {
4587 ses->entry_cnt++;
4588 adjust_sit_entry_set(ses, head);
4589 return;
4590 }
4591 }
4592
4593 ses = grab_sit_entry_set();
4594
4595 ses->start_segno = start_segno;
4596 ses->entry_cnt++;
4597 list_add(&ses->set_list, head);
4598 }
4599
add_sits_in_set(struct f2fs_sb_info * sbi)4600 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4601 {
4602 struct f2fs_sm_info *sm_info = SM_I(sbi);
4603 struct list_head *set_list = &sm_info->sit_entry_set;
4604 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4605 unsigned int segno;
4606
4607 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4608 add_sit_entry(segno, set_list);
4609 }
4610
remove_sits_in_journal(struct f2fs_sb_info * sbi)4611 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4612 {
4613 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4614 struct f2fs_journal *journal = curseg->journal;
4615 int i;
4616
4617 down_write(&curseg->journal_rwsem);
4618 for (i = 0; i < sits_in_cursum(journal); i++) {
4619 unsigned int segno;
4620 bool dirtied;
4621
4622 segno = le32_to_cpu(segno_in_journal(journal, i));
4623 dirtied = __mark_sit_entry_dirty(sbi, segno);
4624
4625 if (!dirtied)
4626 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4627 }
4628 update_sits_in_cursum(journal, -i);
4629 up_write(&curseg->journal_rwsem);
4630 }
4631
4632 /*
4633 * CP calls this function, which flushes SIT entries including sit_journal,
4634 * and moves prefree segs to free segs.
4635 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4636 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4637 {
4638 struct sit_info *sit_i = SIT_I(sbi);
4639 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4640 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4641 struct f2fs_journal *journal = curseg->journal;
4642 struct sit_entry_set *ses, *tmp;
4643 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4644 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4645 struct seg_entry *se;
4646
4647 down_write(&sit_i->sentry_lock);
4648
4649 if (!sit_i->dirty_sentries)
4650 goto out;
4651
4652 /*
4653 * add and account sit entries of dirty bitmap in sit entry
4654 * set temporarily
4655 */
4656 add_sits_in_set(sbi);
4657
4658 /*
4659 * if there are no enough space in journal to store dirty sit
4660 * entries, remove all entries from journal and add and account
4661 * them in sit entry set.
4662 */
4663 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4664 !to_journal)
4665 remove_sits_in_journal(sbi);
4666
4667 /*
4668 * there are two steps to flush sit entries:
4669 * #1, flush sit entries to journal in current cold data summary block.
4670 * #2, flush sit entries to sit page.
4671 */
4672 list_for_each_entry_safe(ses, tmp, head, set_list) {
4673 struct folio *folio = NULL;
4674 struct f2fs_sit_block *raw_sit = NULL;
4675 unsigned int start_segno = ses->start_segno;
4676 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4677 (unsigned long)MAIN_SEGS(sbi));
4678 unsigned int segno = start_segno;
4679
4680 if (to_journal &&
4681 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4682 to_journal = false;
4683
4684 if (to_journal) {
4685 down_write(&curseg->journal_rwsem);
4686 } else {
4687 folio = get_next_sit_folio(sbi, start_segno);
4688 raw_sit = folio_address(folio);
4689 }
4690
4691 /* flush dirty sit entries in region of current sit set */
4692 for_each_set_bit_from(segno, bitmap, end) {
4693 int offset, sit_offset;
4694
4695 se = get_seg_entry(sbi, segno);
4696 #ifdef CONFIG_F2FS_CHECK_FS
4697 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4698 SIT_VBLOCK_MAP_SIZE))
4699 f2fs_bug_on(sbi, 1);
4700 #endif
4701
4702 /* add discard candidates */
4703 if (!(cpc->reason & CP_DISCARD)) {
4704 cpc->trim_start = segno;
4705 add_discard_addrs(sbi, cpc, false);
4706 }
4707
4708 if (to_journal) {
4709 offset = f2fs_lookup_journal_in_cursum(journal,
4710 SIT_JOURNAL, segno, 1);
4711 f2fs_bug_on(sbi, offset < 0);
4712 segno_in_journal(journal, offset) =
4713 cpu_to_le32(segno);
4714 seg_info_to_raw_sit(se,
4715 &sit_in_journal(journal, offset));
4716 check_block_count(sbi, segno,
4717 &sit_in_journal(journal, offset));
4718 } else {
4719 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4720 seg_info_to_raw_sit(se,
4721 &raw_sit->entries[sit_offset]);
4722 check_block_count(sbi, segno,
4723 &raw_sit->entries[sit_offset]);
4724 }
4725
4726 /* update ckpt_valid_block */
4727 if (__is_large_section(sbi)) {
4728 set_ckpt_valid_blocks(sbi, segno);
4729 sanity_check_valid_blocks(sbi, segno);
4730 }
4731
4732 __clear_bit(segno, bitmap);
4733 sit_i->dirty_sentries--;
4734 ses->entry_cnt--;
4735 }
4736
4737 if (to_journal)
4738 up_write(&curseg->journal_rwsem);
4739 else
4740 f2fs_folio_put(folio, true);
4741
4742 f2fs_bug_on(sbi, ses->entry_cnt);
4743 release_sit_entry_set(ses);
4744 }
4745
4746 f2fs_bug_on(sbi, !list_empty(head));
4747 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4748 out:
4749 if (cpc->reason & CP_DISCARD) {
4750 __u64 trim_start = cpc->trim_start;
4751
4752 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4753 add_discard_addrs(sbi, cpc, false);
4754
4755 cpc->trim_start = trim_start;
4756 }
4757 up_write(&sit_i->sentry_lock);
4758
4759 set_prefree_as_free_segments(sbi);
4760 }
4761
build_sit_info(struct f2fs_sb_info * sbi)4762 static int build_sit_info(struct f2fs_sb_info *sbi)
4763 {
4764 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4765 struct sit_info *sit_i;
4766 unsigned int sit_segs, start;
4767 char *src_bitmap, *bitmap;
4768 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4769 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4770
4771 /* allocate memory for SIT information */
4772 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4773 if (!sit_i)
4774 return -ENOMEM;
4775
4776 SM_I(sbi)->sit_info = sit_i;
4777
4778 sit_i->sentries =
4779 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4780 MAIN_SEGS(sbi)),
4781 GFP_KERNEL);
4782 if (!sit_i->sentries)
4783 return -ENOMEM;
4784
4785 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4786 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4787 GFP_KERNEL);
4788 if (!sit_i->dirty_sentries_bitmap)
4789 return -ENOMEM;
4790
4791 #ifdef CONFIG_F2FS_CHECK_FS
4792 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4793 #else
4794 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4795 #endif
4796 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4797 if (!sit_i->bitmap)
4798 return -ENOMEM;
4799
4800 bitmap = sit_i->bitmap;
4801
4802 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4803 sit_i->sentries[start].cur_valid_map = bitmap;
4804 bitmap += SIT_VBLOCK_MAP_SIZE;
4805
4806 sit_i->sentries[start].ckpt_valid_map = bitmap;
4807 bitmap += SIT_VBLOCK_MAP_SIZE;
4808
4809 #ifdef CONFIG_F2FS_CHECK_FS
4810 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4811 bitmap += SIT_VBLOCK_MAP_SIZE;
4812 #endif
4813
4814 if (discard_map) {
4815 sit_i->sentries[start].discard_map = bitmap;
4816 bitmap += SIT_VBLOCK_MAP_SIZE;
4817 }
4818 }
4819
4820 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4821 if (!sit_i->tmp_map)
4822 return -ENOMEM;
4823
4824 if (__is_large_section(sbi)) {
4825 sit_i->sec_entries =
4826 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4827 MAIN_SECS(sbi)),
4828 GFP_KERNEL);
4829 if (!sit_i->sec_entries)
4830 return -ENOMEM;
4831 }
4832
4833 /* get information related with SIT */
4834 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4835
4836 /* setup SIT bitmap from ckeckpoint pack */
4837 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4838 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4839
4840 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4841 if (!sit_i->sit_bitmap)
4842 return -ENOMEM;
4843
4844 #ifdef CONFIG_F2FS_CHECK_FS
4845 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4846 sit_bitmap_size, GFP_KERNEL);
4847 if (!sit_i->sit_bitmap_mir)
4848 return -ENOMEM;
4849
4850 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4851 main_bitmap_size, GFP_KERNEL);
4852 if (!sit_i->invalid_segmap)
4853 return -ENOMEM;
4854 #endif
4855
4856 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4857 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4858 sit_i->written_valid_blocks = 0;
4859 sit_i->bitmap_size = sit_bitmap_size;
4860 sit_i->dirty_sentries = 0;
4861 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4862 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4863 sit_i->mounted_time = ktime_get_boottime_seconds();
4864 init_rwsem(&sit_i->sentry_lock);
4865 return 0;
4866 }
4867
build_free_segmap(struct f2fs_sb_info * sbi)4868 static int build_free_segmap(struct f2fs_sb_info *sbi)
4869 {
4870 struct free_segmap_info *free_i;
4871 unsigned int bitmap_size, sec_bitmap_size;
4872
4873 /* allocate memory for free segmap information */
4874 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4875 if (!free_i)
4876 return -ENOMEM;
4877
4878 SM_I(sbi)->free_info = free_i;
4879
4880 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4881 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4882 if (!free_i->free_segmap)
4883 return -ENOMEM;
4884
4885 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4886 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4887 if (!free_i->free_secmap)
4888 return -ENOMEM;
4889
4890 /* set all segments as dirty temporarily */
4891 memset(free_i->free_segmap, 0xff, bitmap_size);
4892 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4893
4894 /* init free segmap information */
4895 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4896 free_i->free_segments = 0;
4897 free_i->free_sections = 0;
4898 spin_lock_init(&free_i->segmap_lock);
4899 return 0;
4900 }
4901
build_curseg(struct f2fs_sb_info * sbi)4902 static int build_curseg(struct f2fs_sb_info *sbi)
4903 {
4904 struct curseg_info *array;
4905 int i;
4906
4907 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4908 sizeof(*array)), GFP_KERNEL);
4909 if (!array)
4910 return -ENOMEM;
4911
4912 SM_I(sbi)->curseg_array = array;
4913
4914 for (i = 0; i < NO_CHECK_TYPE; i++) {
4915 mutex_init(&array[i].curseg_mutex);
4916 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4917 if (!array[i].sum_blk)
4918 return -ENOMEM;
4919 init_rwsem(&array[i].journal_rwsem);
4920 array[i].journal = f2fs_kzalloc(sbi,
4921 sizeof(struct f2fs_journal), GFP_KERNEL);
4922 if (!array[i].journal)
4923 return -ENOMEM;
4924 array[i].seg_type = log_type_to_seg_type(i);
4925 reset_curseg_fields(&array[i]);
4926 }
4927 return restore_curseg_summaries(sbi);
4928 }
4929
build_sit_entries(struct f2fs_sb_info * sbi)4930 static int build_sit_entries(struct f2fs_sb_info *sbi)
4931 {
4932 struct sit_info *sit_i = SIT_I(sbi);
4933 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4934 struct f2fs_journal *journal = curseg->journal;
4935 struct seg_entry *se;
4936 struct f2fs_sit_entry sit;
4937 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4938 unsigned int i, start, end;
4939 unsigned int readed, start_blk = 0;
4940 int err = 0;
4941 block_t sit_valid_blocks[2] = {0, 0};
4942
4943 do {
4944 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4945 META_SIT, true);
4946
4947 start = start_blk * sit_i->sents_per_block;
4948 end = (start_blk + readed) * sit_i->sents_per_block;
4949
4950 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4951 struct f2fs_sit_block *sit_blk;
4952 struct folio *folio;
4953
4954 se = &sit_i->sentries[start];
4955 folio = get_current_sit_folio(sbi, start);
4956 if (IS_ERR(folio))
4957 return PTR_ERR(folio);
4958 sit_blk = folio_address(folio);
4959 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4960 f2fs_folio_put(folio, true);
4961
4962 err = check_block_count(sbi, start, &sit);
4963 if (err)
4964 return err;
4965 seg_info_from_raw_sit(se, &sit);
4966
4967 if (se->type >= NR_PERSISTENT_LOG) {
4968 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4969 se->type, start);
4970 f2fs_handle_error(sbi,
4971 ERROR_INCONSISTENT_SUM_TYPE);
4972 return -EFSCORRUPTED;
4973 }
4974
4975 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4976
4977 if (!f2fs_block_unit_discard(sbi))
4978 goto init_discard_map_done;
4979
4980 /* build discard map only one time */
4981 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4982 memset(se->discard_map, 0xff,
4983 SIT_VBLOCK_MAP_SIZE);
4984 goto init_discard_map_done;
4985 }
4986 memcpy(se->discard_map, se->cur_valid_map,
4987 SIT_VBLOCK_MAP_SIZE);
4988 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4989 se->valid_blocks;
4990 init_discard_map_done:
4991 if (__is_large_section(sbi))
4992 get_sec_entry(sbi, start)->valid_blocks +=
4993 se->valid_blocks;
4994 }
4995 start_blk += readed;
4996 } while (start_blk < sit_blk_cnt);
4997
4998 down_read(&curseg->journal_rwsem);
4999 for (i = 0; i < sits_in_cursum(journal); i++) {
5000 unsigned int old_valid_blocks;
5001
5002 start = le32_to_cpu(segno_in_journal(journal, i));
5003 if (start >= MAIN_SEGS(sbi)) {
5004 f2fs_err(sbi, "Wrong journal entry on segno %u",
5005 start);
5006 err = -EFSCORRUPTED;
5007 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5008 break;
5009 }
5010
5011 se = &sit_i->sentries[start];
5012 sit = sit_in_journal(journal, i);
5013
5014 old_valid_blocks = se->valid_blocks;
5015
5016 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5017
5018 err = check_block_count(sbi, start, &sit);
5019 if (err)
5020 break;
5021 seg_info_from_raw_sit(se, &sit);
5022
5023 if (se->type >= NR_PERSISTENT_LOG) {
5024 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5025 se->type, start);
5026 err = -EFSCORRUPTED;
5027 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5028 break;
5029 }
5030
5031 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5032
5033 if (f2fs_block_unit_discard(sbi)) {
5034 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5035 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5036 } else {
5037 memcpy(se->discard_map, se->cur_valid_map,
5038 SIT_VBLOCK_MAP_SIZE);
5039 sbi->discard_blks += old_valid_blocks;
5040 sbi->discard_blks -= se->valid_blocks;
5041 }
5042 }
5043
5044 if (__is_large_section(sbi)) {
5045 get_sec_entry(sbi, start)->valid_blocks +=
5046 se->valid_blocks;
5047 get_sec_entry(sbi, start)->valid_blocks -=
5048 old_valid_blocks;
5049 }
5050 }
5051 up_read(&curseg->journal_rwsem);
5052
5053 /* update ckpt_valid_block */
5054 if (__is_large_section(sbi)) {
5055 unsigned int segno;
5056
5057 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5058 set_ckpt_valid_blocks(sbi, segno);
5059 sanity_check_valid_blocks(sbi, segno);
5060 }
5061 }
5062
5063 if (err)
5064 return err;
5065
5066 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5067 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5068 sit_valid_blocks[NODE], valid_node_count(sbi));
5069 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5070 return -EFSCORRUPTED;
5071 }
5072
5073 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5074 valid_user_blocks(sbi)) {
5075 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5076 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5077 valid_user_blocks(sbi));
5078 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5079 return -EFSCORRUPTED;
5080 }
5081
5082 return 0;
5083 }
5084
init_free_segmap(struct f2fs_sb_info * sbi)5085 static void init_free_segmap(struct f2fs_sb_info *sbi)
5086 {
5087 unsigned int start;
5088 int type;
5089 struct seg_entry *sentry;
5090
5091 for (start = 0; start < MAIN_SEGS(sbi); start++) {
5092 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5093 continue;
5094 sentry = get_seg_entry(sbi, start);
5095 if (!sentry->valid_blocks)
5096 __set_free(sbi, start);
5097 else
5098 SIT_I(sbi)->written_valid_blocks +=
5099 sentry->valid_blocks;
5100 }
5101
5102 /* set use the current segments */
5103 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5104 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5105
5106 __set_test_and_inuse(sbi, curseg_t->segno);
5107 }
5108 }
5109
init_dirty_segmap(struct f2fs_sb_info * sbi)5110 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5111 {
5112 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5113 struct free_segmap_info *free_i = FREE_I(sbi);
5114 unsigned int segno = 0, offset = 0, secno;
5115 block_t valid_blocks, usable_blks_in_seg;
5116
5117 while (1) {
5118 /* find dirty segment based on free segmap */
5119 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5120 if (segno >= MAIN_SEGS(sbi))
5121 break;
5122 offset = segno + 1;
5123 valid_blocks = get_valid_blocks(sbi, segno, false);
5124 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5125 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5126 continue;
5127 if (valid_blocks > usable_blks_in_seg) {
5128 f2fs_bug_on(sbi, 1);
5129 continue;
5130 }
5131 mutex_lock(&dirty_i->seglist_lock);
5132 __locate_dirty_segment(sbi, segno, DIRTY);
5133 mutex_unlock(&dirty_i->seglist_lock);
5134 }
5135
5136 if (!__is_large_section(sbi))
5137 return;
5138
5139 mutex_lock(&dirty_i->seglist_lock);
5140 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5141 valid_blocks = get_valid_blocks(sbi, segno, true);
5142 secno = GET_SEC_FROM_SEG(sbi, segno);
5143
5144 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5145 continue;
5146 if (IS_CURSEC(sbi, secno))
5147 continue;
5148 set_bit(secno, dirty_i->dirty_secmap);
5149 }
5150 mutex_unlock(&dirty_i->seglist_lock);
5151 }
5152
init_victim_secmap(struct f2fs_sb_info * sbi)5153 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5154 {
5155 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5156 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5157
5158 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5159 if (!dirty_i->victim_secmap)
5160 return -ENOMEM;
5161
5162 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5163 if (!dirty_i->pinned_secmap)
5164 return -ENOMEM;
5165
5166 dirty_i->pinned_secmap_cnt = 0;
5167 dirty_i->enable_pin_section = true;
5168 return 0;
5169 }
5170
build_dirty_segmap(struct f2fs_sb_info * sbi)5171 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5172 {
5173 struct dirty_seglist_info *dirty_i;
5174 unsigned int bitmap_size, i;
5175
5176 /* allocate memory for dirty segments list information */
5177 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5178 GFP_KERNEL);
5179 if (!dirty_i)
5180 return -ENOMEM;
5181
5182 SM_I(sbi)->dirty_info = dirty_i;
5183 mutex_init(&dirty_i->seglist_lock);
5184
5185 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5186
5187 for (i = 0; i < NR_DIRTY_TYPE; i++) {
5188 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5189 GFP_KERNEL);
5190 if (!dirty_i->dirty_segmap[i])
5191 return -ENOMEM;
5192 }
5193
5194 if (__is_large_section(sbi)) {
5195 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5196 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5197 bitmap_size, GFP_KERNEL);
5198 if (!dirty_i->dirty_secmap)
5199 return -ENOMEM;
5200 }
5201
5202 init_dirty_segmap(sbi);
5203 return init_victim_secmap(sbi);
5204 }
5205
sanity_check_curseg(struct f2fs_sb_info * sbi)5206 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5207 {
5208 int i;
5209
5210 /*
5211 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5212 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5213 */
5214 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5215 struct curseg_info *curseg = CURSEG_I(sbi, i);
5216 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5217 unsigned int blkofs = curseg->next_blkoff;
5218
5219 if (f2fs_sb_has_readonly(sbi) &&
5220 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5221 continue;
5222
5223 sanity_check_seg_type(sbi, curseg->seg_type);
5224
5225 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5226 f2fs_err(sbi,
5227 "Current segment has invalid alloc_type:%d",
5228 curseg->alloc_type);
5229 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5230 return -EFSCORRUPTED;
5231 }
5232
5233 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5234 goto out;
5235
5236 if (curseg->alloc_type == SSR)
5237 continue;
5238
5239 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5240 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5241 continue;
5242 out:
5243 f2fs_err(sbi,
5244 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5245 i, curseg->segno, curseg->alloc_type,
5246 curseg->next_blkoff, blkofs);
5247 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5248 return -EFSCORRUPTED;
5249 }
5250 }
5251 return 0;
5252 }
5253
5254 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5255 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5256 struct f2fs_dev_info *fdev,
5257 struct blk_zone *zone)
5258 {
5259 unsigned int zone_segno;
5260 block_t zone_block, valid_block_cnt;
5261 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5262 int ret;
5263 unsigned int nofs_flags;
5264
5265 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5266 return 0;
5267
5268 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5269 zone_segno = GET_SEGNO(sbi, zone_block);
5270
5271 /*
5272 * Skip check of zones cursegs point to, since
5273 * fix_curseg_write_pointer() checks them.
5274 */
5275 if (zone_segno >= MAIN_SEGS(sbi))
5276 return 0;
5277
5278 /*
5279 * Get # of valid block of the zone.
5280 */
5281 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5282 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5283 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5284 zone_segno, valid_block_cnt,
5285 blk_zone_cond_str(zone->cond));
5286 return 0;
5287 }
5288
5289 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5290 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5291 return 0;
5292
5293 if (!valid_block_cnt) {
5294 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5295 "pointer. Reset the write pointer: cond[%s]",
5296 blk_zone_cond_str(zone->cond));
5297 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5298 zone->len >> log_sectors_per_block);
5299 if (ret)
5300 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5301 fdev->path, ret);
5302 return ret;
5303 }
5304
5305 /*
5306 * If there are valid blocks and the write pointer doesn't match
5307 * with them, we need to report the inconsistency and fill
5308 * the zone till the end to close the zone. This inconsistency
5309 * does not cause write error because the zone will not be
5310 * selected for write operation until it get discarded.
5311 */
5312 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5313 "pointer: valid block[0x%x,0x%x] cond[%s]",
5314 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5315
5316 nofs_flags = memalloc_nofs_save();
5317 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5318 zone->start, zone->len);
5319 memalloc_nofs_restore(nofs_flags);
5320 if (ret == -EOPNOTSUPP) {
5321 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5322 zone->len - (zone->wp - zone->start),
5323 GFP_NOFS, 0);
5324 if (ret)
5325 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5326 fdev->path, ret);
5327 } else if (ret) {
5328 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5329 fdev->path, ret);
5330 }
5331
5332 return ret;
5333 }
5334
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5335 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5336 block_t zone_blkaddr)
5337 {
5338 int i;
5339
5340 for (i = 0; i < sbi->s_ndevs; i++) {
5341 if (!bdev_is_zoned(FDEV(i).bdev))
5342 continue;
5343 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5344 zone_blkaddr <= FDEV(i).end_blk))
5345 return &FDEV(i);
5346 }
5347
5348 return NULL;
5349 }
5350
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5351 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5352 void *data)
5353 {
5354 memcpy(data, zone, sizeof(struct blk_zone));
5355 return 0;
5356 }
5357
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5358 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5359 {
5360 struct curseg_info *cs = CURSEG_I(sbi, type);
5361 struct f2fs_dev_info *zbd;
5362 struct blk_zone zone;
5363 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5364 block_t cs_zone_block, wp_block;
5365 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5366 sector_t zone_sector;
5367 int err;
5368
5369 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5370 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5371
5372 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5373 if (!zbd)
5374 return 0;
5375
5376 /* report zone for the sector the curseg points to */
5377 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5378 << log_sectors_per_block;
5379 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5380 report_one_zone_cb, &zone);
5381 if (err != 1) {
5382 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5383 zbd->path, err);
5384 return err;
5385 }
5386
5387 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5388 return 0;
5389
5390 /*
5391 * When safely unmounted in the previous mount, we could use current
5392 * segments. Otherwise, allocate new sections.
5393 */
5394 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5395 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5396 wp_segno = GET_SEGNO(sbi, wp_block);
5397 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5398 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5399
5400 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5401 wp_sector_off == 0)
5402 return 0;
5403
5404 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5405 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5406 cs->next_blkoff, wp_segno, wp_blkoff);
5407 }
5408
5409 /* Allocate a new section if it's not new. */
5410 if (cs->next_blkoff ||
5411 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5412 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5413
5414 f2fs_allocate_new_section(sbi, type, true);
5415 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5416 "[0x%x,0x%x] -> [0x%x,0x%x]",
5417 type, old_segno, old_blkoff,
5418 cs->segno, cs->next_blkoff);
5419 }
5420
5421 /* check consistency of the zone curseg pointed to */
5422 if (check_zone_write_pointer(sbi, zbd, &zone))
5423 return -EIO;
5424
5425 /* check newly assigned zone */
5426 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5427 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5428
5429 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5430 if (!zbd)
5431 return 0;
5432
5433 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5434 << log_sectors_per_block;
5435 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5436 report_one_zone_cb, &zone);
5437 if (err != 1) {
5438 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5439 zbd->path, err);
5440 return err;
5441 }
5442
5443 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5444 return 0;
5445
5446 if (zone.wp != zone.start) {
5447 f2fs_notice(sbi,
5448 "New zone for curseg[%d] is not yet discarded. "
5449 "Reset the zone: curseg[0x%x,0x%x]",
5450 type, cs->segno, cs->next_blkoff);
5451 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5452 zone.len >> log_sectors_per_block);
5453 if (err) {
5454 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5455 zbd->path, err);
5456 return err;
5457 }
5458 }
5459
5460 return 0;
5461 }
5462
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5463 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5464 {
5465 int i, ret;
5466
5467 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5468 ret = do_fix_curseg_write_pointer(sbi, i);
5469 if (ret)
5470 return ret;
5471 }
5472
5473 return 0;
5474 }
5475
5476 struct check_zone_write_pointer_args {
5477 struct f2fs_sb_info *sbi;
5478 struct f2fs_dev_info *fdev;
5479 };
5480
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5481 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5482 void *data)
5483 {
5484 struct check_zone_write_pointer_args *args;
5485
5486 args = (struct check_zone_write_pointer_args *)data;
5487
5488 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5489 }
5490
check_write_pointer(struct f2fs_sb_info * sbi)5491 static int check_write_pointer(struct f2fs_sb_info *sbi)
5492 {
5493 int i, ret;
5494 struct check_zone_write_pointer_args args;
5495
5496 for (i = 0; i < sbi->s_ndevs; i++) {
5497 if (!bdev_is_zoned(FDEV(i).bdev))
5498 continue;
5499
5500 args.sbi = sbi;
5501 args.fdev = &FDEV(i);
5502 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5503 check_zone_write_pointer_cb, &args);
5504 if (ret < 0)
5505 return ret;
5506 }
5507
5508 return 0;
5509 }
5510
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5511 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5512 {
5513 int ret;
5514
5515 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5516 f2fs_hw_is_readonly(sbi))
5517 return 0;
5518
5519 f2fs_notice(sbi, "Checking entire write pointers");
5520 ret = fix_curseg_write_pointer(sbi);
5521 if (!ret)
5522 ret = check_write_pointer(sbi);
5523 return ret;
5524 }
5525
5526 /*
5527 * Return the number of usable blocks in a segment. The number of blocks
5528 * returned is always equal to the number of blocks in a segment for
5529 * segments fully contained within a sequential zone capacity or a
5530 * conventional zone. For segments partially contained in a sequential
5531 * zone capacity, the number of usable blocks up to the zone capacity
5532 * is returned. 0 is returned in all other cases.
5533 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5534 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5535 struct f2fs_sb_info *sbi, unsigned int segno)
5536 {
5537 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5538 unsigned int secno;
5539
5540 if (!sbi->unusable_blocks_per_sec)
5541 return BLKS_PER_SEG(sbi);
5542
5543 secno = GET_SEC_FROM_SEG(sbi, segno);
5544 seg_start = START_BLOCK(sbi, segno);
5545 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5546 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5547
5548 /*
5549 * If segment starts before zone capacity and spans beyond
5550 * zone capacity, then usable blocks are from seg start to
5551 * zone capacity. If the segment starts after the zone capacity,
5552 * then there are no usable blocks.
5553 */
5554 if (seg_start >= sec_cap_blkaddr)
5555 return 0;
5556 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5557 return sec_cap_blkaddr - seg_start;
5558
5559 return BLKS_PER_SEG(sbi);
5560 }
5561 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5562 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5563 {
5564 return 0;
5565 }
5566
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5567 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5568 unsigned int segno)
5569 {
5570 return 0;
5571 }
5572
5573 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5574 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5575 unsigned int segno)
5576 {
5577 if (f2fs_sb_has_blkzoned(sbi))
5578 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5579
5580 return BLKS_PER_SEG(sbi);
5581 }
5582
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5583 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5584 {
5585 if (f2fs_sb_has_blkzoned(sbi))
5586 return CAP_SEGS_PER_SEC(sbi);
5587
5588 return SEGS_PER_SEC(sbi);
5589 }
5590
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5591 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5592 unsigned int segno)
5593 {
5594 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5595 unsigned int secno = 0, start = 0;
5596 unsigned int total_valid_blocks = 0;
5597 unsigned long long mtime = 0;
5598 unsigned int i = 0;
5599
5600 secno = GET_SEC_FROM_SEG(sbi, segno);
5601 start = GET_SEG_FROM_SEC(sbi, secno);
5602
5603 if (!__is_large_section(sbi)) {
5604 mtime = get_seg_entry(sbi, start + i)->mtime;
5605 goto out;
5606 }
5607
5608 for (i = 0; i < usable_segs_per_sec; i++) {
5609 /* for large section, only check the mtime of valid segments */
5610 struct seg_entry *se = get_seg_entry(sbi, start+i);
5611
5612 mtime += se->mtime * se->valid_blocks;
5613 total_valid_blocks += se->valid_blocks;
5614 }
5615
5616 if (total_valid_blocks == 0)
5617 return INVALID_MTIME;
5618
5619 mtime = div_u64(mtime, total_valid_blocks);
5620 out:
5621 if (unlikely(mtime == INVALID_MTIME))
5622 mtime -= 1;
5623 return mtime;
5624 }
5625
5626 /*
5627 * Update min, max modified time for cost-benefit GC algorithm
5628 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5629 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5630 {
5631 struct sit_info *sit_i = SIT_I(sbi);
5632 unsigned int segno;
5633
5634 down_write(&sit_i->sentry_lock);
5635
5636 sit_i->min_mtime = ULLONG_MAX;
5637
5638 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5639 unsigned long long mtime = 0;
5640
5641 mtime = f2fs_get_section_mtime(sbi, segno);
5642
5643 if (sit_i->min_mtime > mtime)
5644 sit_i->min_mtime = mtime;
5645 }
5646 sit_i->max_mtime = get_mtime(sbi, false);
5647 sit_i->dirty_max_mtime = 0;
5648 up_write(&sit_i->sentry_lock);
5649 }
5650
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5651 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5652 {
5653 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5654 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5655 struct f2fs_sm_info *sm_info;
5656 int err;
5657
5658 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5659 if (!sm_info)
5660 return -ENOMEM;
5661
5662 /* init sm info */
5663 sbi->sm_info = sm_info;
5664 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5665 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5666 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5667 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5668 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5669 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5670 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5671 sm_info->rec_prefree_segments = sm_info->main_segments *
5672 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5673 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5674 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5675
5676 if (!f2fs_lfs_mode(sbi))
5677 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5678 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5679 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5680 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5681 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5682 sm_info->min_ssr_sections = reserved_sections(sbi);
5683
5684 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5685
5686 init_f2fs_rwsem(&sm_info->curseg_lock);
5687
5688 err = f2fs_create_flush_cmd_control(sbi);
5689 if (err)
5690 return err;
5691
5692 err = create_discard_cmd_control(sbi);
5693 if (err)
5694 return err;
5695
5696 err = build_sit_info(sbi);
5697 if (err)
5698 return err;
5699 err = build_free_segmap(sbi);
5700 if (err)
5701 return err;
5702 err = build_curseg(sbi);
5703 if (err)
5704 return err;
5705
5706 /* reinit free segmap based on SIT */
5707 err = build_sit_entries(sbi);
5708 if (err)
5709 return err;
5710
5711 init_free_segmap(sbi);
5712 err = build_dirty_segmap(sbi);
5713 if (err)
5714 return err;
5715
5716 err = sanity_check_curseg(sbi);
5717 if (err)
5718 return err;
5719
5720 init_min_max_mtime(sbi);
5721 return 0;
5722 }
5723
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5724 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5725 enum dirty_type dirty_type)
5726 {
5727 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5728
5729 mutex_lock(&dirty_i->seglist_lock);
5730 kvfree(dirty_i->dirty_segmap[dirty_type]);
5731 dirty_i->nr_dirty[dirty_type] = 0;
5732 mutex_unlock(&dirty_i->seglist_lock);
5733 }
5734
destroy_victim_secmap(struct f2fs_sb_info * sbi)5735 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5736 {
5737 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5738
5739 kvfree(dirty_i->pinned_secmap);
5740 kvfree(dirty_i->victim_secmap);
5741 }
5742
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5743 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5744 {
5745 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5746 int i;
5747
5748 if (!dirty_i)
5749 return;
5750
5751 /* discard pre-free/dirty segments list */
5752 for (i = 0; i < NR_DIRTY_TYPE; i++)
5753 discard_dirty_segmap(sbi, i);
5754
5755 if (__is_large_section(sbi)) {
5756 mutex_lock(&dirty_i->seglist_lock);
5757 kvfree(dirty_i->dirty_secmap);
5758 mutex_unlock(&dirty_i->seglist_lock);
5759 }
5760
5761 destroy_victim_secmap(sbi);
5762 SM_I(sbi)->dirty_info = NULL;
5763 kfree(dirty_i);
5764 }
5765
destroy_curseg(struct f2fs_sb_info * sbi)5766 static void destroy_curseg(struct f2fs_sb_info *sbi)
5767 {
5768 struct curseg_info *array = SM_I(sbi)->curseg_array;
5769 int i;
5770
5771 if (!array)
5772 return;
5773 SM_I(sbi)->curseg_array = NULL;
5774 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5775 kfree(array[i].sum_blk);
5776 kfree(array[i].journal);
5777 }
5778 kfree(array);
5779 }
5780
destroy_free_segmap(struct f2fs_sb_info * sbi)5781 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5782 {
5783 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5784
5785 if (!free_i)
5786 return;
5787 SM_I(sbi)->free_info = NULL;
5788 kvfree(free_i->free_segmap);
5789 kvfree(free_i->free_secmap);
5790 kfree(free_i);
5791 }
5792
destroy_sit_info(struct f2fs_sb_info * sbi)5793 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5794 {
5795 struct sit_info *sit_i = SIT_I(sbi);
5796
5797 if (!sit_i)
5798 return;
5799
5800 if (sit_i->sentries)
5801 kvfree(sit_i->bitmap);
5802 kfree(sit_i->tmp_map);
5803
5804 kvfree(sit_i->sentries);
5805 kvfree(sit_i->sec_entries);
5806 kvfree(sit_i->dirty_sentries_bitmap);
5807
5808 SM_I(sbi)->sit_info = NULL;
5809 kvfree(sit_i->sit_bitmap);
5810 #ifdef CONFIG_F2FS_CHECK_FS
5811 kvfree(sit_i->sit_bitmap_mir);
5812 kvfree(sit_i->invalid_segmap);
5813 #endif
5814 kfree(sit_i);
5815 }
5816
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5817 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5818 {
5819 struct f2fs_sm_info *sm_info = SM_I(sbi);
5820
5821 if (!sm_info)
5822 return;
5823 f2fs_destroy_flush_cmd_control(sbi, true);
5824 destroy_discard_cmd_control(sbi);
5825 destroy_dirty_segmap(sbi);
5826 destroy_curseg(sbi);
5827 destroy_free_segmap(sbi);
5828 destroy_sit_info(sbi);
5829 sbi->sm_info = NULL;
5830 kfree(sm_info);
5831 }
5832
f2fs_create_segment_manager_caches(void)5833 int __init f2fs_create_segment_manager_caches(void)
5834 {
5835 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5836 sizeof(struct discard_entry));
5837 if (!discard_entry_slab)
5838 goto fail;
5839
5840 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5841 sizeof(struct discard_cmd));
5842 if (!discard_cmd_slab)
5843 goto destroy_discard_entry;
5844
5845 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5846 sizeof(struct sit_entry_set));
5847 if (!sit_entry_set_slab)
5848 goto destroy_discard_cmd;
5849
5850 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5851 sizeof(struct revoke_entry));
5852 if (!revoke_entry_slab)
5853 goto destroy_sit_entry_set;
5854 return 0;
5855
5856 destroy_sit_entry_set:
5857 kmem_cache_destroy(sit_entry_set_slab);
5858 destroy_discard_cmd:
5859 kmem_cache_destroy(discard_cmd_slab);
5860 destroy_discard_entry:
5861 kmem_cache_destroy(discard_entry_slab);
5862 fail:
5863 return -ENOMEM;
5864 }
5865
f2fs_destroy_segment_manager_caches(void)5866 void f2fs_destroy_segment_manager_caches(void)
5867 {
5868 kmem_cache_destroy(sit_entry_set_slab);
5869 kmem_cache_destroy(discard_cmd_slab);
5870 kmem_cache_destroy(discard_entry_slab);
5871 kmem_cache_destroy(revoke_entry_slab);
5872 }
5873