xref: /linux/fs/f2fs/segment.c (revision d8441523f21375b11a4593a2d89942b407bcb44f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		/*
205 		 * The vfs inode keeps clean during commit, but the f2fs inode
206 		 * doesn't. So clear the dirty state after commit and let
207 		 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 		 */
209 		f2fs_inode_synced(inode);
210 		f2fs_mark_inode_dirty_sync(inode, true);
211 	}
212 	stat_dec_atomic_inode(inode);
213 
214 	F2FS_I(inode)->atomic_write_task = NULL;
215 
216 	if (clean) {
217 		f2fs_i_size_write(inode, fi->original_i_size);
218 		fi->original_i_size = 0;
219 	}
220 	/* avoid stale dirty inode during eviction */
221 	sync_inode_metadata(inode, 0);
222 }
223 
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 			block_t new_addr, block_t *old_addr, bool recover)
226 {
227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 	struct dnode_of_data dn;
229 	struct node_info ni;
230 	int err;
231 
232 retry:
233 	set_new_dnode(&dn, inode, NULL, NULL, 0);
234 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 	if (err) {
236 		if (err == -ENOMEM) {
237 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
238 			goto retry;
239 		}
240 		return err;
241 	}
242 
243 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 	if (err) {
245 		f2fs_put_dnode(&dn);
246 		return err;
247 	}
248 
249 	if (recover) {
250 		/* dn.data_blkaddr is always valid */
251 		if (!__is_valid_data_blkaddr(new_addr)) {
252 			if (new_addr == NULL_ADDR)
253 				dec_valid_block_count(sbi, inode, 1);
254 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 			f2fs_update_data_blkaddr(&dn, new_addr);
256 		} else {
257 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 				new_addr, ni.version, true, true);
259 		}
260 	} else {
261 		blkcnt_t count = 1;
262 
263 		err = inc_valid_block_count(sbi, inode, &count, true);
264 		if (err) {
265 			f2fs_put_dnode(&dn);
266 			return err;
267 		}
268 
269 		*old_addr = dn.data_blkaddr;
270 		f2fs_truncate_data_blocks_range(&dn, 1);
271 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272 
273 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 					ni.version, true, false);
275 	}
276 
277 	f2fs_put_dnode(&dn);
278 
279 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 			index, old_addr ? *old_addr : 0, new_addr, recover);
281 	return 0;
282 }
283 
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 					bool revoke)
286 {
287 	struct revoke_entry *cur, *tmp;
288 	pgoff_t start_index = 0;
289 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290 
291 	list_for_each_entry_safe(cur, tmp, head, list) {
292 		if (revoke) {
293 			__replace_atomic_write_block(inode, cur->index,
294 						cur->old_addr, NULL, true);
295 		} else if (truncate) {
296 			f2fs_truncate_hole(inode, start_index, cur->index);
297 			start_index = cur->index + 1;
298 		}
299 
300 		list_del(&cur->list);
301 		kmem_cache_free(revoke_entry_slab, cur);
302 	}
303 
304 	if (!revoke && truncate)
305 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307 
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 	struct f2fs_inode_info *fi = F2FS_I(inode);
312 	struct inode *cow_inode = fi->cow_inode;
313 	struct revoke_entry *new;
314 	struct list_head revoke_list;
315 	block_t blkaddr;
316 	struct dnode_of_data dn;
317 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 	pgoff_t off = 0, blen, index;
319 	int ret = 0, i;
320 
321 	INIT_LIST_HEAD(&revoke_list);
322 
323 	while (len) {
324 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325 
326 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 		if (ret && ret != -ENOENT) {
329 			goto out;
330 		} else if (ret == -ENOENT) {
331 			ret = 0;
332 			if (dn.max_level == 0)
333 				goto out;
334 			goto next;
335 		}
336 
337 		blen = min((pgoff_t)ADDRS_PER_PAGE(&dn.node_folio->page, cow_inode),
338 				len);
339 		index = off;
340 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 			blkaddr = f2fs_data_blkaddr(&dn);
342 
343 			if (!__is_valid_data_blkaddr(blkaddr)) {
344 				continue;
345 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 					DATA_GENERIC_ENHANCE)) {
347 				f2fs_put_dnode(&dn);
348 				ret = -EFSCORRUPTED;
349 				goto out;
350 			}
351 
352 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 							true, NULL);
354 
355 			ret = __replace_atomic_write_block(inode, index, blkaddr,
356 							&new->old_addr, false);
357 			if (ret) {
358 				f2fs_put_dnode(&dn);
359 				kmem_cache_free(revoke_entry_slab, new);
360 				goto out;
361 			}
362 
363 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 			new->index = index;
365 			list_add_tail(&new->list, &revoke_list);
366 		}
367 		f2fs_put_dnode(&dn);
368 next:
369 		off += blen;
370 		len -= blen;
371 	}
372 
373 out:
374 	if (time_to_inject(sbi, FAULT_TIMEOUT))
375 		f2fs_io_schedule_timeout_killable(DEFAULT_FAULT_TIMEOUT);
376 
377 	if (ret) {
378 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
379 	} else {
380 		sbi->committed_atomic_block += fi->atomic_write_cnt;
381 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
382 
383 		/*
384 		 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
385 		 * before commit.
386 		 */
387 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
388 			/* clear atomic dirty status and set vfs dirty status */
389 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
390 			f2fs_mark_inode_dirty_sync(inode, true);
391 		}
392 	}
393 
394 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
395 
396 	return ret;
397 }
398 
f2fs_commit_atomic_write(struct inode * inode)399 int f2fs_commit_atomic_write(struct inode *inode)
400 {
401 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 	struct f2fs_inode_info *fi = F2FS_I(inode);
403 	int err;
404 
405 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
406 	if (err)
407 		return err;
408 
409 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
410 	f2fs_lock_op(sbi);
411 
412 	err = __f2fs_commit_atomic_write(inode);
413 
414 	f2fs_unlock_op(sbi);
415 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
416 
417 	return err;
418 }
419 
420 /*
421  * This function balances dirty node and dentry pages.
422  * In addition, it controls garbage collection.
423  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)424 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
425 {
426 	if (f2fs_cp_error(sbi))
427 		return;
428 
429 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
430 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
431 
432 	/* balance_fs_bg is able to be pending */
433 	if (need && excess_cached_nats(sbi))
434 		f2fs_balance_fs_bg(sbi, false);
435 
436 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
437 		return;
438 
439 	/*
440 	 * We should do GC or end up with checkpoint, if there are so many dirty
441 	 * dir/node pages without enough free segments.
442 	 */
443 	if (has_enough_free_secs(sbi, 0, 0))
444 		return;
445 
446 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
447 				sbi->gc_thread->f2fs_gc_task) {
448 		DEFINE_WAIT(wait);
449 
450 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
451 					TASK_UNINTERRUPTIBLE);
452 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
453 		io_schedule();
454 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
455 	} else {
456 		struct f2fs_gc_control gc_control = {
457 			.victim_segno = NULL_SEGNO,
458 			.init_gc_type = BG_GC,
459 			.no_bg_gc = true,
460 			.should_migrate_blocks = false,
461 			.err_gc_skipped = false,
462 			.nr_free_secs = 1 };
463 		f2fs_down_write(&sbi->gc_lock);
464 		stat_inc_gc_call_count(sbi, FOREGROUND);
465 		f2fs_gc(sbi, &gc_control);
466 	}
467 }
468 
excess_dirty_threshold(struct f2fs_sb_info * sbi)469 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
470 {
471 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
472 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
473 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
474 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
475 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
476 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
477 	unsigned int threshold =
478 		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
479 	unsigned int global_threshold = threshold * 3 / 2;
480 
481 	if (dents >= threshold || qdata >= threshold ||
482 		nodes >= threshold || meta >= threshold ||
483 		imeta >= threshold)
484 		return true;
485 	return dents + qdata + nodes + meta + imeta >  global_threshold;
486 }
487 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)488 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
489 {
490 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491 		return;
492 
493 	/* try to shrink extent cache when there is no enough memory */
494 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
495 		f2fs_shrink_read_extent_tree(sbi,
496 				READ_EXTENT_CACHE_SHRINK_NUMBER);
497 
498 	/* try to shrink age extent cache when there is no enough memory */
499 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
500 		f2fs_shrink_age_extent_tree(sbi,
501 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
502 
503 	/* check the # of cached NAT entries */
504 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
505 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
506 
507 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
508 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
509 	else
510 		f2fs_build_free_nids(sbi, false, false);
511 
512 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
513 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
514 		goto do_sync;
515 
516 	/* there is background inflight IO or foreground operation recently */
517 	if (is_inflight_io(sbi, REQ_TIME) ||
518 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
519 		return;
520 
521 	/* exceed periodical checkpoint timeout threshold */
522 	if (f2fs_time_over(sbi, CP_TIME))
523 		goto do_sync;
524 
525 	/* checkpoint is the only way to shrink partial cached entries */
526 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
527 		f2fs_available_free_memory(sbi, INO_ENTRIES))
528 		return;
529 
530 do_sync:
531 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
532 		struct blk_plug plug;
533 
534 		mutex_lock(&sbi->flush_lock);
535 
536 		blk_start_plug(&plug);
537 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
538 		blk_finish_plug(&plug);
539 
540 		mutex_unlock(&sbi->flush_lock);
541 	}
542 	stat_inc_cp_call_count(sbi, BACKGROUND);
543 	f2fs_sync_fs(sbi->sb, 1);
544 }
545 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)546 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
547 				struct block_device *bdev)
548 {
549 	int ret = blkdev_issue_flush(bdev);
550 
551 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
552 				test_opt(sbi, FLUSH_MERGE), ret);
553 	if (!ret)
554 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
555 	return ret;
556 }
557 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)558 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
559 {
560 	int ret = 0;
561 	int i;
562 
563 	if (!f2fs_is_multi_device(sbi))
564 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
565 
566 	for (i = 0; i < sbi->s_ndevs; i++) {
567 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
568 			continue;
569 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
570 		if (ret)
571 			break;
572 	}
573 	return ret;
574 }
575 
issue_flush_thread(void * data)576 static int issue_flush_thread(void *data)
577 {
578 	struct f2fs_sb_info *sbi = data;
579 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
580 	wait_queue_head_t *q = &fcc->flush_wait_queue;
581 repeat:
582 	if (kthread_should_stop())
583 		return 0;
584 
585 	if (!llist_empty(&fcc->issue_list)) {
586 		struct flush_cmd *cmd, *next;
587 		int ret;
588 
589 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
590 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
591 
592 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
593 
594 		ret = submit_flush_wait(sbi, cmd->ino);
595 		atomic_inc(&fcc->issued_flush);
596 
597 		llist_for_each_entry_safe(cmd, next,
598 					  fcc->dispatch_list, llnode) {
599 			cmd->ret = ret;
600 			complete(&cmd->wait);
601 		}
602 		fcc->dispatch_list = NULL;
603 	}
604 
605 	wait_event_interruptible(*q,
606 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
607 	goto repeat;
608 }
609 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)610 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
611 {
612 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
613 	struct flush_cmd cmd;
614 	int ret;
615 
616 	if (test_opt(sbi, NOBARRIER))
617 		return 0;
618 
619 	if (!test_opt(sbi, FLUSH_MERGE)) {
620 		atomic_inc(&fcc->queued_flush);
621 		ret = submit_flush_wait(sbi, ino);
622 		atomic_dec(&fcc->queued_flush);
623 		atomic_inc(&fcc->issued_flush);
624 		return ret;
625 	}
626 
627 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
628 	    f2fs_is_multi_device(sbi)) {
629 		ret = submit_flush_wait(sbi, ino);
630 		atomic_dec(&fcc->queued_flush);
631 
632 		atomic_inc(&fcc->issued_flush);
633 		return ret;
634 	}
635 
636 	cmd.ino = ino;
637 	init_completion(&cmd.wait);
638 
639 	llist_add(&cmd.llnode, &fcc->issue_list);
640 
641 	/*
642 	 * update issue_list before we wake up issue_flush thread, this
643 	 * smp_mb() pairs with another barrier in ___wait_event(), see
644 	 * more details in comments of waitqueue_active().
645 	 */
646 	smp_mb();
647 
648 	if (waitqueue_active(&fcc->flush_wait_queue))
649 		wake_up(&fcc->flush_wait_queue);
650 
651 	if (fcc->f2fs_issue_flush) {
652 		wait_for_completion(&cmd.wait);
653 		atomic_dec(&fcc->queued_flush);
654 	} else {
655 		struct llist_node *list;
656 
657 		list = llist_del_all(&fcc->issue_list);
658 		if (!list) {
659 			wait_for_completion(&cmd.wait);
660 			atomic_dec(&fcc->queued_flush);
661 		} else {
662 			struct flush_cmd *tmp, *next;
663 
664 			ret = submit_flush_wait(sbi, ino);
665 
666 			llist_for_each_entry_safe(tmp, next, list, llnode) {
667 				if (tmp == &cmd) {
668 					cmd.ret = ret;
669 					atomic_dec(&fcc->queued_flush);
670 					continue;
671 				}
672 				tmp->ret = ret;
673 				complete(&tmp->wait);
674 			}
675 		}
676 	}
677 
678 	return cmd.ret;
679 }
680 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)681 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
682 {
683 	dev_t dev = sbi->sb->s_bdev->bd_dev;
684 	struct flush_cmd_control *fcc;
685 
686 	if (SM_I(sbi)->fcc_info) {
687 		fcc = SM_I(sbi)->fcc_info;
688 		if (fcc->f2fs_issue_flush)
689 			return 0;
690 		goto init_thread;
691 	}
692 
693 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
694 	if (!fcc)
695 		return -ENOMEM;
696 	atomic_set(&fcc->issued_flush, 0);
697 	atomic_set(&fcc->queued_flush, 0);
698 	init_waitqueue_head(&fcc->flush_wait_queue);
699 	init_llist_head(&fcc->issue_list);
700 	SM_I(sbi)->fcc_info = fcc;
701 	if (!test_opt(sbi, FLUSH_MERGE))
702 		return 0;
703 
704 init_thread:
705 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
706 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
707 	if (IS_ERR(fcc->f2fs_issue_flush)) {
708 		int err = PTR_ERR(fcc->f2fs_issue_flush);
709 
710 		fcc->f2fs_issue_flush = NULL;
711 		return err;
712 	}
713 
714 	return 0;
715 }
716 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)717 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
718 {
719 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
720 
721 	if (fcc && fcc->f2fs_issue_flush) {
722 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
723 
724 		fcc->f2fs_issue_flush = NULL;
725 		kthread_stop(flush_thread);
726 	}
727 	if (free) {
728 		kfree(fcc);
729 		SM_I(sbi)->fcc_info = NULL;
730 	}
731 }
732 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)733 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
734 {
735 	int ret = 0, i;
736 
737 	if (!f2fs_is_multi_device(sbi))
738 		return 0;
739 
740 	if (test_opt(sbi, NOBARRIER))
741 		return 0;
742 
743 	for (i = 1; i < sbi->s_ndevs; i++) {
744 		int count = DEFAULT_RETRY_IO_COUNT;
745 
746 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
747 			continue;
748 
749 		do {
750 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
751 			if (ret)
752 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
753 		} while (ret && --count);
754 
755 		if (ret) {
756 			f2fs_stop_checkpoint(sbi, false,
757 					STOP_CP_REASON_FLUSH_FAIL);
758 			break;
759 		}
760 
761 		spin_lock(&sbi->dev_lock);
762 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
763 		spin_unlock(&sbi->dev_lock);
764 	}
765 
766 	return ret;
767 }
768 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)769 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
770 		enum dirty_type dirty_type)
771 {
772 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
773 
774 	/* need not be added */
775 	if (IS_CURSEG(sbi, segno))
776 		return;
777 
778 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
779 		dirty_i->nr_dirty[dirty_type]++;
780 
781 	if (dirty_type == DIRTY) {
782 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
783 		enum dirty_type t = sentry->type;
784 
785 		if (unlikely(t >= DIRTY)) {
786 			f2fs_bug_on(sbi, 1);
787 			return;
788 		}
789 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
790 			dirty_i->nr_dirty[t]++;
791 
792 		if (__is_large_section(sbi)) {
793 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
794 			block_t valid_blocks =
795 				get_valid_blocks(sbi, segno, true);
796 
797 			f2fs_bug_on(sbi,
798 				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
799 				!valid_blocks) ||
800 				valid_blocks == CAP_BLKS_PER_SEC(sbi));
801 
802 			if (!IS_CURSEC(sbi, secno))
803 				set_bit(secno, dirty_i->dirty_secmap);
804 		}
805 	}
806 }
807 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)808 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
809 		enum dirty_type dirty_type)
810 {
811 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
812 	block_t valid_blocks;
813 
814 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
815 		dirty_i->nr_dirty[dirty_type]--;
816 
817 	if (dirty_type == DIRTY) {
818 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
819 		enum dirty_type t = sentry->type;
820 
821 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
822 			dirty_i->nr_dirty[t]--;
823 
824 		valid_blocks = get_valid_blocks(sbi, segno, true);
825 		if (valid_blocks == 0) {
826 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
827 						dirty_i->victim_secmap);
828 #ifdef CONFIG_F2FS_CHECK_FS
829 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
830 #endif
831 		}
832 		if (__is_large_section(sbi)) {
833 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
834 
835 			if (!valid_blocks ||
836 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
837 				clear_bit(secno, dirty_i->dirty_secmap);
838 				return;
839 			}
840 
841 			if (!IS_CURSEC(sbi, secno))
842 				set_bit(secno, dirty_i->dirty_secmap);
843 		}
844 	}
845 }
846 
847 /*
848  * Should not occur error such as -ENOMEM.
849  * Adding dirty entry into seglist is not critical operation.
850  * If a given segment is one of current working segments, it won't be added.
851  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)852 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
853 {
854 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
855 	unsigned short valid_blocks, ckpt_valid_blocks;
856 	unsigned int usable_blocks;
857 
858 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
859 		return;
860 
861 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
862 	mutex_lock(&dirty_i->seglist_lock);
863 
864 	valid_blocks = get_valid_blocks(sbi, segno, false);
865 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
866 
867 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
868 		ckpt_valid_blocks == usable_blocks)) {
869 		__locate_dirty_segment(sbi, segno, PRE);
870 		__remove_dirty_segment(sbi, segno, DIRTY);
871 	} else if (valid_blocks < usable_blocks) {
872 		__locate_dirty_segment(sbi, segno, DIRTY);
873 	} else {
874 		/* Recovery routine with SSR needs this */
875 		__remove_dirty_segment(sbi, segno, DIRTY);
876 	}
877 
878 	mutex_unlock(&dirty_i->seglist_lock);
879 }
880 
881 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)882 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
883 {
884 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
885 	unsigned int segno;
886 
887 	mutex_lock(&dirty_i->seglist_lock);
888 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 		if (get_valid_blocks(sbi, segno, false))
890 			continue;
891 		if (IS_CURSEG(sbi, segno))
892 			continue;
893 		__locate_dirty_segment(sbi, segno, PRE);
894 		__remove_dirty_segment(sbi, segno, DIRTY);
895 	}
896 	mutex_unlock(&dirty_i->seglist_lock);
897 }
898 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)899 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
900 {
901 	int ovp_hole_segs =
902 		(overprovision_segments(sbi) - reserved_segments(sbi));
903 	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
904 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
905 	block_t holes[2] = {0, 0};	/* DATA and NODE */
906 	block_t unusable;
907 	struct seg_entry *se;
908 	unsigned int segno;
909 
910 	mutex_lock(&dirty_i->seglist_lock);
911 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
912 		se = get_seg_entry(sbi, segno);
913 		if (IS_NODESEG(se->type))
914 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
915 							se->valid_blocks;
916 		else
917 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
918 							se->valid_blocks;
919 	}
920 	mutex_unlock(&dirty_i->seglist_lock);
921 
922 	unusable = max(holes[DATA], holes[NODE]);
923 	if (unusable > ovp_holes)
924 		return unusable - ovp_holes;
925 	return 0;
926 }
927 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)928 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
929 {
930 	int ovp_hole_segs =
931 		(overprovision_segments(sbi) - reserved_segments(sbi));
932 
933 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
934 		return 0;
935 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
936 		return -EAGAIN;
937 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
938 		dirty_segments(sbi) > ovp_hole_segs)
939 		return -EAGAIN;
940 	if (has_not_enough_free_secs(sbi, 0, 0))
941 		return -EAGAIN;
942 	return 0;
943 }
944 
945 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)946 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
947 {
948 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
949 	unsigned int segno = 0;
950 
951 	mutex_lock(&dirty_i->seglist_lock);
952 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
953 		if (get_valid_blocks(sbi, segno, false))
954 			continue;
955 		if (get_ckpt_valid_blocks(sbi, segno, false))
956 			continue;
957 		mutex_unlock(&dirty_i->seglist_lock);
958 		return segno;
959 	}
960 	mutex_unlock(&dirty_i->seglist_lock);
961 	return NULL_SEGNO;
962 }
963 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)964 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
965 		struct block_device *bdev, block_t lstart,
966 		block_t start, block_t len)
967 {
968 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
969 	struct list_head *pend_list;
970 	struct discard_cmd *dc;
971 
972 	f2fs_bug_on(sbi, !len);
973 
974 	pend_list = &dcc->pend_list[plist_idx(len)];
975 
976 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
977 	INIT_LIST_HEAD(&dc->list);
978 	dc->bdev = bdev;
979 	dc->di.lstart = lstart;
980 	dc->di.start = start;
981 	dc->di.len = len;
982 	dc->ref = 0;
983 	dc->state = D_PREP;
984 	dc->queued = 0;
985 	dc->error = 0;
986 	init_completion(&dc->wait);
987 	list_add_tail(&dc->list, pend_list);
988 	spin_lock_init(&dc->lock);
989 	dc->bio_ref = 0;
990 	atomic_inc(&dcc->discard_cmd_cnt);
991 	dcc->undiscard_blks += len;
992 
993 	return dc;
994 }
995 
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)996 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
997 {
998 #ifdef CONFIG_F2FS_CHECK_FS
999 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1000 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
1001 	struct discard_cmd *cur_dc, *next_dc;
1002 
1003 	while (cur) {
1004 		next = rb_next(cur);
1005 		if (!next)
1006 			return true;
1007 
1008 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1009 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
1010 
1011 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1012 			f2fs_info(sbi, "broken discard_rbtree, "
1013 				"cur(%u, %u) next(%u, %u)",
1014 				cur_dc->di.lstart, cur_dc->di.len,
1015 				next_dc->di.lstart, next_dc->di.len);
1016 			return false;
1017 		}
1018 		cur = next;
1019 	}
1020 #endif
1021 	return true;
1022 }
1023 
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1024 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1025 						block_t blkaddr)
1026 {
1027 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1028 	struct rb_node *node = dcc->root.rb_root.rb_node;
1029 	struct discard_cmd *dc;
1030 
1031 	while (node) {
1032 		dc = rb_entry(node, struct discard_cmd, rb_node);
1033 
1034 		if (blkaddr < dc->di.lstart)
1035 			node = node->rb_left;
1036 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1037 			node = node->rb_right;
1038 		else
1039 			return dc;
1040 	}
1041 	return NULL;
1042 }
1043 
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1044 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1045 				block_t blkaddr,
1046 				struct discard_cmd **prev_entry,
1047 				struct discard_cmd **next_entry,
1048 				struct rb_node ***insert_p,
1049 				struct rb_node **insert_parent)
1050 {
1051 	struct rb_node **pnode = &root->rb_root.rb_node;
1052 	struct rb_node *parent = NULL, *tmp_node;
1053 	struct discard_cmd *dc;
1054 
1055 	*insert_p = NULL;
1056 	*insert_parent = NULL;
1057 	*prev_entry = NULL;
1058 	*next_entry = NULL;
1059 
1060 	if (RB_EMPTY_ROOT(&root->rb_root))
1061 		return NULL;
1062 
1063 	while (*pnode) {
1064 		parent = *pnode;
1065 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1066 
1067 		if (blkaddr < dc->di.lstart)
1068 			pnode = &(*pnode)->rb_left;
1069 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1070 			pnode = &(*pnode)->rb_right;
1071 		else
1072 			goto lookup_neighbors;
1073 	}
1074 
1075 	*insert_p = pnode;
1076 	*insert_parent = parent;
1077 
1078 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1079 	tmp_node = parent;
1080 	if (parent && blkaddr > dc->di.lstart)
1081 		tmp_node = rb_next(parent);
1082 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1083 
1084 	tmp_node = parent;
1085 	if (parent && blkaddr < dc->di.lstart)
1086 		tmp_node = rb_prev(parent);
1087 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1088 	return NULL;
1089 
1090 lookup_neighbors:
1091 	/* lookup prev node for merging backward later */
1092 	tmp_node = rb_prev(&dc->rb_node);
1093 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1094 
1095 	/* lookup next node for merging frontward later */
1096 	tmp_node = rb_next(&dc->rb_node);
1097 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1098 	return dc;
1099 }
1100 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1101 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1102 							struct discard_cmd *dc)
1103 {
1104 	if (dc->state == D_DONE)
1105 		atomic_sub(dc->queued, &dcc->queued_discard);
1106 
1107 	list_del(&dc->list);
1108 	rb_erase_cached(&dc->rb_node, &dcc->root);
1109 	dcc->undiscard_blks -= dc->di.len;
1110 
1111 	kmem_cache_free(discard_cmd_slab, dc);
1112 
1113 	atomic_dec(&dcc->discard_cmd_cnt);
1114 }
1115 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1116 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1117 							struct discard_cmd *dc)
1118 {
1119 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1120 	unsigned long flags;
1121 
1122 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1123 
1124 	spin_lock_irqsave(&dc->lock, flags);
1125 	if (dc->bio_ref) {
1126 		spin_unlock_irqrestore(&dc->lock, flags);
1127 		return;
1128 	}
1129 	spin_unlock_irqrestore(&dc->lock, flags);
1130 
1131 	f2fs_bug_on(sbi, dc->ref);
1132 
1133 	if (dc->error == -EOPNOTSUPP)
1134 		dc->error = 0;
1135 
1136 	if (dc->error)
1137 		f2fs_info_ratelimited(sbi,
1138 			"Issue discard(%u, %u, %u) failed, ret: %d",
1139 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1140 	__detach_discard_cmd(dcc, dc);
1141 }
1142 
f2fs_submit_discard_endio(struct bio * bio)1143 static void f2fs_submit_discard_endio(struct bio *bio)
1144 {
1145 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1146 	unsigned long flags;
1147 
1148 	spin_lock_irqsave(&dc->lock, flags);
1149 	if (!dc->error)
1150 		dc->error = blk_status_to_errno(bio->bi_status);
1151 	dc->bio_ref--;
1152 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1153 		dc->state = D_DONE;
1154 		complete_all(&dc->wait);
1155 	}
1156 	spin_unlock_irqrestore(&dc->lock, flags);
1157 	bio_put(bio);
1158 }
1159 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1160 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1161 				block_t start, block_t end)
1162 {
1163 #ifdef CONFIG_F2FS_CHECK_FS
1164 	struct seg_entry *sentry;
1165 	unsigned int segno;
1166 	block_t blk = start;
1167 	unsigned long offset, size, *map;
1168 
1169 	while (blk < end) {
1170 		segno = GET_SEGNO(sbi, blk);
1171 		sentry = get_seg_entry(sbi, segno);
1172 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1173 
1174 		if (end < START_BLOCK(sbi, segno + 1))
1175 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1176 		else
1177 			size = BLKS_PER_SEG(sbi);
1178 		map = (unsigned long *)(sentry->cur_valid_map);
1179 		offset = __find_rev_next_bit(map, size, offset);
1180 		f2fs_bug_on(sbi, offset != size);
1181 		blk = START_BLOCK(sbi, segno + 1);
1182 	}
1183 #endif
1184 }
1185 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1186 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1187 				struct discard_policy *dpolicy,
1188 				int discard_type, unsigned int granularity)
1189 {
1190 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1191 
1192 	/* common policy */
1193 	dpolicy->type = discard_type;
1194 	dpolicy->sync = true;
1195 	dpolicy->ordered = false;
1196 	dpolicy->granularity = granularity;
1197 
1198 	dpolicy->max_requests = dcc->max_discard_request;
1199 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1200 	dpolicy->timeout = false;
1201 
1202 	if (discard_type == DPOLICY_BG) {
1203 		dpolicy->min_interval = dcc->min_discard_issue_time;
1204 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1205 		dpolicy->max_interval = dcc->max_discard_issue_time;
1206 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1207 			dpolicy->io_aware = true;
1208 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1209 			dpolicy->io_aware = false;
1210 		dpolicy->sync = false;
1211 		dpolicy->ordered = true;
1212 		if (utilization(sbi) > dcc->discard_urgent_util) {
1213 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1214 			if (atomic_read(&dcc->discard_cmd_cnt))
1215 				dpolicy->max_interval =
1216 					dcc->min_discard_issue_time;
1217 		}
1218 	} else if (discard_type == DPOLICY_FORCE) {
1219 		dpolicy->min_interval = dcc->min_discard_issue_time;
1220 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1221 		dpolicy->max_interval = dcc->max_discard_issue_time;
1222 		dpolicy->io_aware = false;
1223 	} else if (discard_type == DPOLICY_FSTRIM) {
1224 		dpolicy->io_aware = false;
1225 	} else if (discard_type == DPOLICY_UMOUNT) {
1226 		dpolicy->io_aware = false;
1227 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1228 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1229 		dpolicy->timeout = true;
1230 	}
1231 }
1232 
1233 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1234 				struct block_device *bdev, block_t lstart,
1235 				block_t start, block_t len);
1236 
1237 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1238 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1239 				   struct discard_cmd *dc, blk_opf_t flag,
1240 				   struct list_head *wait_list,
1241 				   unsigned int *issued)
1242 {
1243 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1244 	struct block_device *bdev = dc->bdev;
1245 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1246 	unsigned long flags;
1247 
1248 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1249 
1250 	spin_lock_irqsave(&dc->lock, flags);
1251 	dc->state = D_SUBMIT;
1252 	dc->bio_ref++;
1253 	spin_unlock_irqrestore(&dc->lock, flags);
1254 
1255 	if (issued)
1256 		(*issued)++;
1257 
1258 	atomic_inc(&dcc->queued_discard);
1259 	dc->queued++;
1260 	list_move_tail(&dc->list, wait_list);
1261 
1262 	/* sanity check on discard range */
1263 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1264 
1265 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1266 	bio->bi_private = dc;
1267 	bio->bi_end_io = f2fs_submit_discard_endio;
1268 	submit_bio(bio);
1269 
1270 	atomic_inc(&dcc->issued_discard);
1271 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1272 }
1273 #endif
1274 
1275 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1276 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1277 				struct discard_policy *dpolicy,
1278 				struct discard_cmd *dc, int *issued)
1279 {
1280 	struct block_device *bdev = dc->bdev;
1281 	unsigned int max_discard_blocks =
1282 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1283 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1285 					&(dcc->fstrim_list) : &(dcc->wait_list);
1286 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1287 	block_t lstart, start, len, total_len;
1288 	int err = 0;
1289 
1290 	if (dc->state != D_PREP)
1291 		return 0;
1292 
1293 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1294 		return 0;
1295 
1296 #ifdef CONFIG_BLK_DEV_ZONED
1297 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1298 		int devi = f2fs_bdev_index(sbi, bdev);
1299 
1300 		if (devi < 0)
1301 			return -EINVAL;
1302 
1303 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1304 			__submit_zone_reset_cmd(sbi, dc, flag,
1305 						wait_list, issued);
1306 			return 0;
1307 		}
1308 	}
1309 #endif
1310 
1311 	/*
1312 	 * stop issuing discard for any of below cases:
1313 	 * 1. device is conventional zone, but it doesn't support discard.
1314 	 * 2. device is regulare device, after snapshot it doesn't support
1315 	 * discard.
1316 	 */
1317 	if (!bdev_max_discard_sectors(bdev))
1318 		return -EOPNOTSUPP;
1319 
1320 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1321 
1322 	lstart = dc->di.lstart;
1323 	start = dc->di.start;
1324 	len = dc->di.len;
1325 	total_len = len;
1326 
1327 	dc->di.len = 0;
1328 
1329 	while (total_len && *issued < dpolicy->max_requests && !err) {
1330 		struct bio *bio = NULL;
1331 		unsigned long flags;
1332 		bool last = true;
1333 
1334 		if (len > max_discard_blocks) {
1335 			len = max_discard_blocks;
1336 			last = false;
1337 		}
1338 
1339 		(*issued)++;
1340 		if (*issued == dpolicy->max_requests)
1341 			last = true;
1342 
1343 		dc->di.len += len;
1344 
1345 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1346 			err = -EIO;
1347 		} else {
1348 			err = __blkdev_issue_discard(bdev,
1349 					SECTOR_FROM_BLOCK(start),
1350 					SECTOR_FROM_BLOCK(len),
1351 					GFP_NOFS, &bio);
1352 		}
1353 		if (err) {
1354 			spin_lock_irqsave(&dc->lock, flags);
1355 			if (dc->state == D_PARTIAL)
1356 				dc->state = D_SUBMIT;
1357 			spin_unlock_irqrestore(&dc->lock, flags);
1358 
1359 			break;
1360 		}
1361 
1362 		f2fs_bug_on(sbi, !bio);
1363 
1364 		/*
1365 		 * should keep before submission to avoid D_DONE
1366 		 * right away
1367 		 */
1368 		spin_lock_irqsave(&dc->lock, flags);
1369 		if (last)
1370 			dc->state = D_SUBMIT;
1371 		else
1372 			dc->state = D_PARTIAL;
1373 		dc->bio_ref++;
1374 		spin_unlock_irqrestore(&dc->lock, flags);
1375 
1376 		atomic_inc(&dcc->queued_discard);
1377 		dc->queued++;
1378 		list_move_tail(&dc->list, wait_list);
1379 
1380 		/* sanity check on discard range */
1381 		__check_sit_bitmap(sbi, lstart, lstart + len);
1382 
1383 		bio->bi_private = dc;
1384 		bio->bi_end_io = f2fs_submit_discard_endio;
1385 		bio->bi_opf |= flag;
1386 		submit_bio(bio);
1387 
1388 		atomic_inc(&dcc->issued_discard);
1389 
1390 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1391 
1392 		lstart += len;
1393 		start += len;
1394 		total_len -= len;
1395 		len = total_len;
1396 	}
1397 
1398 	if (!err && len) {
1399 		dcc->undiscard_blks -= len;
1400 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1401 	}
1402 	return err;
1403 }
1404 
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1405 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1406 				struct block_device *bdev, block_t lstart,
1407 				block_t start, block_t len)
1408 {
1409 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1410 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1411 	struct rb_node *parent = NULL;
1412 	struct discard_cmd *dc;
1413 	bool leftmost = true;
1414 
1415 	/* look up rb tree to find parent node */
1416 	while (*p) {
1417 		parent = *p;
1418 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1419 
1420 		if (lstart < dc->di.lstart) {
1421 			p = &(*p)->rb_left;
1422 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1423 			p = &(*p)->rb_right;
1424 			leftmost = false;
1425 		} else {
1426 			/* Let's skip to add, if exists */
1427 			return;
1428 		}
1429 	}
1430 
1431 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1432 
1433 	rb_link_node(&dc->rb_node, parent, p);
1434 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1435 }
1436 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1437 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1438 						struct discard_cmd *dc)
1439 {
1440 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1441 }
1442 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1443 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1444 				struct discard_cmd *dc, block_t blkaddr)
1445 {
1446 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447 	struct discard_info di = dc->di;
1448 	bool modified = false;
1449 
1450 	if (dc->state == D_DONE || dc->di.len == 1) {
1451 		__remove_discard_cmd(sbi, dc);
1452 		return;
1453 	}
1454 
1455 	dcc->undiscard_blks -= di.len;
1456 
1457 	if (blkaddr > di.lstart) {
1458 		dc->di.len = blkaddr - dc->di.lstart;
1459 		dcc->undiscard_blks += dc->di.len;
1460 		__relocate_discard_cmd(dcc, dc);
1461 		modified = true;
1462 	}
1463 
1464 	if (blkaddr < di.lstart + di.len - 1) {
1465 		if (modified) {
1466 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1467 					di.start + blkaddr + 1 - di.lstart,
1468 					di.lstart + di.len - 1 - blkaddr);
1469 		} else {
1470 			dc->di.lstart++;
1471 			dc->di.len--;
1472 			dc->di.start++;
1473 			dcc->undiscard_blks += dc->di.len;
1474 			__relocate_discard_cmd(dcc, dc);
1475 		}
1476 	}
1477 }
1478 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1479 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1480 				struct block_device *bdev, block_t lstart,
1481 				block_t start, block_t len)
1482 {
1483 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1484 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1485 	struct discard_cmd *dc;
1486 	struct discard_info di = {0};
1487 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1488 	unsigned int max_discard_blocks =
1489 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1490 	block_t end = lstart + len;
1491 
1492 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1493 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1494 	if (dc)
1495 		prev_dc = dc;
1496 
1497 	if (!prev_dc) {
1498 		di.lstart = lstart;
1499 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1500 		di.len = min(di.len, len);
1501 		di.start = start;
1502 	}
1503 
1504 	while (1) {
1505 		struct rb_node *node;
1506 		bool merged = false;
1507 		struct discard_cmd *tdc = NULL;
1508 
1509 		if (prev_dc) {
1510 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1511 			if (di.lstart < lstart)
1512 				di.lstart = lstart;
1513 			if (di.lstart >= end)
1514 				break;
1515 
1516 			if (!next_dc || next_dc->di.lstart > end)
1517 				di.len = end - di.lstart;
1518 			else
1519 				di.len = next_dc->di.lstart - di.lstart;
1520 			di.start = start + di.lstart - lstart;
1521 		}
1522 
1523 		if (!di.len)
1524 			goto next;
1525 
1526 		if (prev_dc && prev_dc->state == D_PREP &&
1527 			prev_dc->bdev == bdev &&
1528 			__is_discard_back_mergeable(&di, &prev_dc->di,
1529 							max_discard_blocks)) {
1530 			prev_dc->di.len += di.len;
1531 			dcc->undiscard_blks += di.len;
1532 			__relocate_discard_cmd(dcc, prev_dc);
1533 			di = prev_dc->di;
1534 			tdc = prev_dc;
1535 			merged = true;
1536 		}
1537 
1538 		if (next_dc && next_dc->state == D_PREP &&
1539 			next_dc->bdev == bdev &&
1540 			__is_discard_front_mergeable(&di, &next_dc->di,
1541 							max_discard_blocks)) {
1542 			next_dc->di.lstart = di.lstart;
1543 			next_dc->di.len += di.len;
1544 			next_dc->di.start = di.start;
1545 			dcc->undiscard_blks += di.len;
1546 			__relocate_discard_cmd(dcc, next_dc);
1547 			if (tdc)
1548 				__remove_discard_cmd(sbi, tdc);
1549 			merged = true;
1550 		}
1551 
1552 		if (!merged)
1553 			__insert_discard_cmd(sbi, bdev,
1554 						di.lstart, di.start, di.len);
1555  next:
1556 		prev_dc = next_dc;
1557 		if (!prev_dc)
1558 			break;
1559 
1560 		node = rb_next(&prev_dc->rb_node);
1561 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1562 	}
1563 }
1564 
1565 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1566 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1567 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1568 		block_t blklen)
1569 {
1570 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1571 
1572 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1573 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1574 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1575 }
1576 #endif
1577 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1578 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1579 		struct block_device *bdev, block_t blkstart, block_t blklen)
1580 {
1581 	block_t lblkstart = blkstart;
1582 
1583 	if (!f2fs_bdev_support_discard(bdev))
1584 		return;
1585 
1586 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1587 
1588 	if (f2fs_is_multi_device(sbi)) {
1589 		int devi = f2fs_target_device_index(sbi, blkstart);
1590 
1591 		blkstart -= FDEV(devi).start_blk;
1592 	}
1593 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1594 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1595 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1596 }
1597 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1598 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1599 		struct discard_policy *dpolicy, int *issued)
1600 {
1601 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1602 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1603 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1604 	struct discard_cmd *dc;
1605 	struct blk_plug plug;
1606 	bool io_interrupted = false;
1607 
1608 	mutex_lock(&dcc->cmd_lock);
1609 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1610 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1611 	if (!dc)
1612 		dc = next_dc;
1613 
1614 	blk_start_plug(&plug);
1615 
1616 	while (dc) {
1617 		struct rb_node *node;
1618 		int err = 0;
1619 
1620 		if (dc->state != D_PREP)
1621 			goto next;
1622 
1623 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1624 			io_interrupted = true;
1625 			break;
1626 		}
1627 
1628 		dcc->next_pos = dc->di.lstart + dc->di.len;
1629 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1630 
1631 		if (*issued >= dpolicy->max_requests)
1632 			break;
1633 next:
1634 		node = rb_next(&dc->rb_node);
1635 		if (err)
1636 			__remove_discard_cmd(sbi, dc);
1637 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1638 	}
1639 
1640 	blk_finish_plug(&plug);
1641 
1642 	if (!dc)
1643 		dcc->next_pos = 0;
1644 
1645 	mutex_unlock(&dcc->cmd_lock);
1646 
1647 	if (!(*issued) && io_interrupted)
1648 		*issued = -1;
1649 }
1650 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1651 					struct discard_policy *dpolicy);
1652 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1653 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1654 					struct discard_policy *dpolicy)
1655 {
1656 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1657 	struct list_head *pend_list;
1658 	struct discard_cmd *dc, *tmp;
1659 	struct blk_plug plug;
1660 	int i, issued;
1661 	bool io_interrupted = false;
1662 
1663 	if (dpolicy->timeout)
1664 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1665 
1666 retry:
1667 	issued = 0;
1668 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1669 		if (dpolicy->timeout &&
1670 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1671 			break;
1672 
1673 		if (i + 1 < dpolicy->granularity)
1674 			break;
1675 
1676 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1677 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1678 			return issued;
1679 		}
1680 
1681 		pend_list = &dcc->pend_list[i];
1682 
1683 		mutex_lock(&dcc->cmd_lock);
1684 		if (list_empty(pend_list))
1685 			goto next;
1686 		if (unlikely(dcc->rbtree_check))
1687 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1688 		blk_start_plug(&plug);
1689 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1690 			f2fs_bug_on(sbi, dc->state != D_PREP);
1691 
1692 			if (dpolicy->timeout &&
1693 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1694 				break;
1695 
1696 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1697 						!is_idle(sbi, DISCARD_TIME)) {
1698 				io_interrupted = true;
1699 				break;
1700 			}
1701 
1702 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1703 
1704 			if (issued >= dpolicy->max_requests)
1705 				break;
1706 		}
1707 		blk_finish_plug(&plug);
1708 next:
1709 		mutex_unlock(&dcc->cmd_lock);
1710 
1711 		if (issued >= dpolicy->max_requests || io_interrupted)
1712 			break;
1713 	}
1714 
1715 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1716 		__wait_all_discard_cmd(sbi, dpolicy);
1717 		goto retry;
1718 	}
1719 
1720 	if (!issued && io_interrupted)
1721 		issued = -1;
1722 
1723 	return issued;
1724 }
1725 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1726 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1727 {
1728 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1729 	struct list_head *pend_list;
1730 	struct discard_cmd *dc, *tmp;
1731 	int i;
1732 	bool dropped = false;
1733 
1734 	mutex_lock(&dcc->cmd_lock);
1735 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1736 		pend_list = &dcc->pend_list[i];
1737 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1738 			f2fs_bug_on(sbi, dc->state != D_PREP);
1739 			__remove_discard_cmd(sbi, dc);
1740 			dropped = true;
1741 		}
1742 	}
1743 	mutex_unlock(&dcc->cmd_lock);
1744 
1745 	return dropped;
1746 }
1747 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1748 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1749 {
1750 	__drop_discard_cmd(sbi);
1751 }
1752 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1753 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1754 							struct discard_cmd *dc)
1755 {
1756 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1757 	unsigned int len = 0;
1758 
1759 	wait_for_completion_io(&dc->wait);
1760 	mutex_lock(&dcc->cmd_lock);
1761 	f2fs_bug_on(sbi, dc->state != D_DONE);
1762 	dc->ref--;
1763 	if (!dc->ref) {
1764 		if (!dc->error)
1765 			len = dc->di.len;
1766 		__remove_discard_cmd(sbi, dc);
1767 	}
1768 	mutex_unlock(&dcc->cmd_lock);
1769 
1770 	return len;
1771 }
1772 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1773 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1774 						struct discard_policy *dpolicy,
1775 						block_t start, block_t end)
1776 {
1777 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1778 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1779 					&(dcc->fstrim_list) : &(dcc->wait_list);
1780 	struct discard_cmd *dc = NULL, *iter, *tmp;
1781 	unsigned int trimmed = 0;
1782 
1783 next:
1784 	dc = NULL;
1785 
1786 	mutex_lock(&dcc->cmd_lock);
1787 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1788 		if (iter->di.lstart + iter->di.len <= start ||
1789 					end <= iter->di.lstart)
1790 			continue;
1791 		if (iter->di.len < dpolicy->granularity)
1792 			continue;
1793 		if (iter->state == D_DONE && !iter->ref) {
1794 			wait_for_completion_io(&iter->wait);
1795 			if (!iter->error)
1796 				trimmed += iter->di.len;
1797 			__remove_discard_cmd(sbi, iter);
1798 		} else {
1799 			iter->ref++;
1800 			dc = iter;
1801 			break;
1802 		}
1803 	}
1804 	mutex_unlock(&dcc->cmd_lock);
1805 
1806 	if (dc) {
1807 		trimmed += __wait_one_discard_bio(sbi, dc);
1808 		goto next;
1809 	}
1810 
1811 	return trimmed;
1812 }
1813 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1814 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1815 						struct discard_policy *dpolicy)
1816 {
1817 	struct discard_policy dp;
1818 	unsigned int discard_blks;
1819 
1820 	if (dpolicy)
1821 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1822 
1823 	/* wait all */
1824 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1825 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1826 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1827 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1828 
1829 	return discard_blks;
1830 }
1831 
1832 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1833 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1834 {
1835 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1836 	struct discard_cmd *dc;
1837 	bool need_wait = false;
1838 
1839 	mutex_lock(&dcc->cmd_lock);
1840 	dc = __lookup_discard_cmd(sbi, blkaddr);
1841 #ifdef CONFIG_BLK_DEV_ZONED
1842 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1843 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1844 
1845 		if (devi < 0) {
1846 			mutex_unlock(&dcc->cmd_lock);
1847 			return;
1848 		}
1849 
1850 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1851 			/* force submit zone reset */
1852 			if (dc->state == D_PREP)
1853 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1854 							&dcc->wait_list, NULL);
1855 			dc->ref++;
1856 			mutex_unlock(&dcc->cmd_lock);
1857 			/* wait zone reset */
1858 			__wait_one_discard_bio(sbi, dc);
1859 			return;
1860 		}
1861 	}
1862 #endif
1863 	if (dc) {
1864 		if (dc->state == D_PREP) {
1865 			__punch_discard_cmd(sbi, dc, blkaddr);
1866 		} else {
1867 			dc->ref++;
1868 			need_wait = true;
1869 		}
1870 	}
1871 	mutex_unlock(&dcc->cmd_lock);
1872 
1873 	if (need_wait)
1874 		__wait_one_discard_bio(sbi, dc);
1875 }
1876 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1877 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1878 {
1879 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1880 
1881 	if (dcc && dcc->f2fs_issue_discard) {
1882 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1883 
1884 		dcc->f2fs_issue_discard = NULL;
1885 		kthread_stop(discard_thread);
1886 	}
1887 }
1888 
1889 /**
1890  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1891  * @sbi: the f2fs_sb_info data for discard cmd to issue
1892  *
1893  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1894  *
1895  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1896  */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1897 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1898 {
1899 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1900 	struct discard_policy dpolicy;
1901 	bool dropped;
1902 
1903 	if (!atomic_read(&dcc->discard_cmd_cnt))
1904 		return true;
1905 
1906 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1907 					dcc->discard_granularity);
1908 	__issue_discard_cmd(sbi, &dpolicy);
1909 	dropped = __drop_discard_cmd(sbi);
1910 
1911 	/* just to make sure there is no pending discard commands */
1912 	__wait_all_discard_cmd(sbi, NULL);
1913 
1914 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1915 	return !dropped;
1916 }
1917 
issue_discard_thread(void * data)1918 static int issue_discard_thread(void *data)
1919 {
1920 	struct f2fs_sb_info *sbi = data;
1921 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1922 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1923 	struct discard_policy dpolicy;
1924 	unsigned int wait_ms = dcc->min_discard_issue_time;
1925 	int issued;
1926 
1927 	set_freezable();
1928 
1929 	do {
1930 		wait_event_freezable_timeout(*q,
1931 				kthread_should_stop() || dcc->discard_wake,
1932 				msecs_to_jiffies(wait_ms));
1933 
1934 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1935 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1936 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1937 						MIN_DISCARD_GRANULARITY);
1938 		else
1939 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1940 						dcc->discard_granularity);
1941 
1942 		if (dcc->discard_wake)
1943 			dcc->discard_wake = false;
1944 
1945 		/* clean up pending candidates before going to sleep */
1946 		if (atomic_read(&dcc->queued_discard))
1947 			__wait_all_discard_cmd(sbi, NULL);
1948 
1949 		if (f2fs_readonly(sbi->sb))
1950 			continue;
1951 		if (kthread_should_stop())
1952 			return 0;
1953 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1954 			!atomic_read(&dcc->discard_cmd_cnt)) {
1955 			wait_ms = dpolicy.max_interval;
1956 			continue;
1957 		}
1958 
1959 		sb_start_intwrite(sbi->sb);
1960 
1961 		issued = __issue_discard_cmd(sbi, &dpolicy);
1962 		if (issued > 0) {
1963 			__wait_all_discard_cmd(sbi, &dpolicy);
1964 			wait_ms = dpolicy.min_interval;
1965 		} else if (issued == -1) {
1966 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1967 			if (!wait_ms)
1968 				wait_ms = dpolicy.mid_interval;
1969 		} else {
1970 			wait_ms = dpolicy.max_interval;
1971 		}
1972 		if (!atomic_read(&dcc->discard_cmd_cnt))
1973 			wait_ms = dpolicy.max_interval;
1974 
1975 		sb_end_intwrite(sbi->sb);
1976 
1977 	} while (!kthread_should_stop());
1978 	return 0;
1979 }
1980 
1981 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1982 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1983 		struct block_device *bdev, block_t blkstart, block_t blklen)
1984 {
1985 	sector_t sector, nr_sects;
1986 	block_t lblkstart = blkstart;
1987 	int devi = 0;
1988 	u64 remainder = 0;
1989 
1990 	if (f2fs_is_multi_device(sbi)) {
1991 		devi = f2fs_target_device_index(sbi, blkstart);
1992 		if (blkstart < FDEV(devi).start_blk ||
1993 		    blkstart > FDEV(devi).end_blk) {
1994 			f2fs_err(sbi, "Invalid block %x", blkstart);
1995 			return -EIO;
1996 		}
1997 		blkstart -= FDEV(devi).start_blk;
1998 	}
1999 
2000 	/* For sequential zones, reset the zone write pointer */
2001 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
2002 		sector = SECTOR_FROM_BLOCK(blkstart);
2003 		nr_sects = SECTOR_FROM_BLOCK(blklen);
2004 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2005 
2006 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2007 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2008 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2009 				 blkstart, blklen);
2010 			return -EIO;
2011 		}
2012 
2013 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2014 			unsigned int nofs_flags;
2015 			int ret;
2016 
2017 			trace_f2fs_issue_reset_zone(bdev, blkstart);
2018 			nofs_flags = memalloc_nofs_save();
2019 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2020 						sector, nr_sects);
2021 			memalloc_nofs_restore(nofs_flags);
2022 			return ret;
2023 		}
2024 
2025 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2026 		return 0;
2027 	}
2028 
2029 	/* For conventional zones, use regular discard if supported */
2030 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2031 	return 0;
2032 }
2033 #endif
2034 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2035 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2036 		struct block_device *bdev, block_t blkstart, block_t blklen)
2037 {
2038 #ifdef CONFIG_BLK_DEV_ZONED
2039 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2040 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2041 #endif
2042 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2043 	return 0;
2044 }
2045 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2046 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2047 				block_t blkstart, block_t blklen)
2048 {
2049 	sector_t start = blkstart, len = 0;
2050 	struct block_device *bdev;
2051 	struct seg_entry *se;
2052 	unsigned int offset;
2053 	block_t i;
2054 	int err = 0;
2055 
2056 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2057 
2058 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2059 		if (i != start) {
2060 			struct block_device *bdev2 =
2061 				f2fs_target_device(sbi, i, NULL);
2062 
2063 			if (bdev2 != bdev) {
2064 				err = __issue_discard_async(sbi, bdev,
2065 						start, len);
2066 				if (err)
2067 					return err;
2068 				bdev = bdev2;
2069 				start = i;
2070 				len = 0;
2071 			}
2072 		}
2073 
2074 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2075 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2076 
2077 		if (f2fs_block_unit_discard(sbi) &&
2078 				!f2fs_test_and_set_bit(offset, se->discard_map))
2079 			sbi->discard_blks--;
2080 	}
2081 
2082 	if (len)
2083 		err = __issue_discard_async(sbi, bdev, start, len);
2084 	return err;
2085 }
2086 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2087 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2088 							bool check_only)
2089 {
2090 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2091 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2092 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2093 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2094 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2095 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2096 	unsigned int start = 0, end = -1;
2097 	bool force = (cpc->reason & CP_DISCARD);
2098 	struct discard_entry *de = NULL;
2099 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2100 	int i;
2101 
2102 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2103 	    !f2fs_hw_support_discard(sbi) ||
2104 	    !f2fs_block_unit_discard(sbi))
2105 		return false;
2106 
2107 	if (!force) {
2108 		if (!f2fs_realtime_discard_enable(sbi) ||
2109 			(!se->valid_blocks &&
2110 				!IS_CURSEG(sbi, cpc->trim_start)) ||
2111 			SM_I(sbi)->dcc_info->nr_discards >=
2112 				SM_I(sbi)->dcc_info->max_discards)
2113 			return false;
2114 	}
2115 
2116 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2117 	for (i = 0; i < entries; i++)
2118 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2119 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2120 
2121 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2122 				SM_I(sbi)->dcc_info->max_discards) {
2123 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2124 		if (start >= BLKS_PER_SEG(sbi))
2125 			break;
2126 
2127 		end = __find_rev_next_zero_bit(dmap,
2128 						BLKS_PER_SEG(sbi), start + 1);
2129 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2130 		    (end - start) < cpc->trim_minlen)
2131 			continue;
2132 
2133 		if (check_only)
2134 			return true;
2135 
2136 		if (!de) {
2137 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2138 						GFP_F2FS_ZERO, true, NULL);
2139 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2140 			list_add_tail(&de->list, head);
2141 		}
2142 
2143 		for (i = start; i < end; i++)
2144 			__set_bit_le(i, (void *)de->discard_map);
2145 
2146 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2147 	}
2148 	return false;
2149 }
2150 
release_discard_addr(struct discard_entry * entry)2151 static void release_discard_addr(struct discard_entry *entry)
2152 {
2153 	list_del(&entry->list);
2154 	kmem_cache_free(discard_entry_slab, entry);
2155 }
2156 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2157 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2158 {
2159 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2160 	struct discard_entry *entry, *this;
2161 
2162 	/* drop caches */
2163 	list_for_each_entry_safe(entry, this, head, list)
2164 		release_discard_addr(entry);
2165 }
2166 
2167 /*
2168  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2169  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2170 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2171 {
2172 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2173 	unsigned int segno;
2174 
2175 	mutex_lock(&dirty_i->seglist_lock);
2176 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2177 		__set_test_and_free(sbi, segno, false);
2178 	mutex_unlock(&dirty_i->seglist_lock);
2179 }
2180 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2181 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2182 						struct cp_control *cpc)
2183 {
2184 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2185 	struct list_head *head = &dcc->entry_list;
2186 	struct discard_entry *entry, *this;
2187 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2188 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2189 	unsigned int start = 0, end = -1;
2190 	unsigned int secno, start_segno;
2191 	bool force = (cpc->reason & CP_DISCARD);
2192 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2193 						DISCARD_UNIT_SECTION;
2194 
2195 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2196 		section_alignment = true;
2197 
2198 	mutex_lock(&dirty_i->seglist_lock);
2199 
2200 	while (1) {
2201 		int i;
2202 
2203 		if (section_alignment && end != -1)
2204 			end--;
2205 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2206 		if (start >= MAIN_SEGS(sbi))
2207 			break;
2208 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2209 								start + 1);
2210 
2211 		if (section_alignment) {
2212 			start = rounddown(start, SEGS_PER_SEC(sbi));
2213 			end = roundup(end, SEGS_PER_SEC(sbi));
2214 		}
2215 
2216 		for (i = start; i < end; i++) {
2217 			if (test_and_clear_bit(i, prefree_map))
2218 				dirty_i->nr_dirty[PRE]--;
2219 		}
2220 
2221 		if (!f2fs_realtime_discard_enable(sbi))
2222 			continue;
2223 
2224 		if (force && start >= cpc->trim_start &&
2225 					(end - 1) <= cpc->trim_end)
2226 			continue;
2227 
2228 		/* Should cover 2MB zoned device for zone-based reset */
2229 		if (!f2fs_sb_has_blkzoned(sbi) &&
2230 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2231 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2232 				SEGS_TO_BLKS(sbi, end - start));
2233 			continue;
2234 		}
2235 next:
2236 		secno = GET_SEC_FROM_SEG(sbi, start);
2237 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2238 		if (!IS_CURSEC(sbi, secno) &&
2239 			!get_valid_blocks(sbi, start, true))
2240 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2241 						BLKS_PER_SEC(sbi));
2242 
2243 		start = start_segno + SEGS_PER_SEC(sbi);
2244 		if (start < end)
2245 			goto next;
2246 		else
2247 			end = start - 1;
2248 	}
2249 	mutex_unlock(&dirty_i->seglist_lock);
2250 
2251 	if (!f2fs_block_unit_discard(sbi))
2252 		goto wakeup;
2253 
2254 	/* send small discards */
2255 	list_for_each_entry_safe(entry, this, head, list) {
2256 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2257 		bool is_valid = test_bit_le(0, entry->discard_map);
2258 
2259 find_next:
2260 		if (is_valid) {
2261 			next_pos = find_next_zero_bit_le(entry->discard_map,
2262 						BLKS_PER_SEG(sbi), cur_pos);
2263 			len = next_pos - cur_pos;
2264 
2265 			if (f2fs_sb_has_blkzoned(sbi) ||
2266 			    (force && len < cpc->trim_minlen))
2267 				goto skip;
2268 
2269 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2270 									len);
2271 			total_len += len;
2272 		} else {
2273 			next_pos = find_next_bit_le(entry->discard_map,
2274 						BLKS_PER_SEG(sbi), cur_pos);
2275 		}
2276 skip:
2277 		cur_pos = next_pos;
2278 		is_valid = !is_valid;
2279 
2280 		if (cur_pos < BLKS_PER_SEG(sbi))
2281 			goto find_next;
2282 
2283 		release_discard_addr(entry);
2284 		dcc->nr_discards -= total_len;
2285 	}
2286 
2287 wakeup:
2288 	wake_up_discard_thread(sbi, false);
2289 }
2290 
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2291 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2292 {
2293 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2294 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2295 	int err = 0;
2296 
2297 	if (f2fs_sb_has_readonly(sbi)) {
2298 		f2fs_info(sbi,
2299 			"Skip to start discard thread for readonly image");
2300 		return 0;
2301 	}
2302 
2303 	if (!f2fs_realtime_discard_enable(sbi))
2304 		return 0;
2305 
2306 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2307 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2308 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2309 		err = PTR_ERR(dcc->f2fs_issue_discard);
2310 		dcc->f2fs_issue_discard = NULL;
2311 	}
2312 
2313 	return err;
2314 }
2315 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2316 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2317 {
2318 	struct discard_cmd_control *dcc;
2319 	int err = 0, i;
2320 
2321 	if (SM_I(sbi)->dcc_info) {
2322 		dcc = SM_I(sbi)->dcc_info;
2323 		goto init_thread;
2324 	}
2325 
2326 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2327 	if (!dcc)
2328 		return -ENOMEM;
2329 
2330 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2331 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2332 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2333 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2334 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2335 		F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2336 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2337 
2338 	INIT_LIST_HEAD(&dcc->entry_list);
2339 	for (i = 0; i < MAX_PLIST_NUM; i++)
2340 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2341 	INIT_LIST_HEAD(&dcc->wait_list);
2342 	INIT_LIST_HEAD(&dcc->fstrim_list);
2343 	mutex_init(&dcc->cmd_lock);
2344 	atomic_set(&dcc->issued_discard, 0);
2345 	atomic_set(&dcc->queued_discard, 0);
2346 	atomic_set(&dcc->discard_cmd_cnt, 0);
2347 	dcc->nr_discards = 0;
2348 	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2349 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2350 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2351 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2352 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2353 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2354 	dcc->undiscard_blks = 0;
2355 	dcc->next_pos = 0;
2356 	dcc->root = RB_ROOT_CACHED;
2357 	dcc->rbtree_check = false;
2358 
2359 	init_waitqueue_head(&dcc->discard_wait_queue);
2360 	SM_I(sbi)->dcc_info = dcc;
2361 init_thread:
2362 	err = f2fs_start_discard_thread(sbi);
2363 	if (err) {
2364 		kfree(dcc);
2365 		SM_I(sbi)->dcc_info = NULL;
2366 	}
2367 
2368 	return err;
2369 }
2370 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2371 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2372 {
2373 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2374 
2375 	if (!dcc)
2376 		return;
2377 
2378 	f2fs_stop_discard_thread(sbi);
2379 
2380 	/*
2381 	 * Recovery can cache discard commands, so in error path of
2382 	 * fill_super(), it needs to give a chance to handle them.
2383 	 */
2384 	f2fs_issue_discard_timeout(sbi);
2385 
2386 	kfree(dcc);
2387 	SM_I(sbi)->dcc_info = NULL;
2388 }
2389 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2390 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2391 {
2392 	struct sit_info *sit_i = SIT_I(sbi);
2393 
2394 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2395 		sit_i->dirty_sentries++;
2396 		return false;
2397 	}
2398 
2399 	return true;
2400 }
2401 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2402 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2403 					unsigned int segno, int modified)
2404 {
2405 	struct seg_entry *se = get_seg_entry(sbi, segno);
2406 
2407 	se->type = type;
2408 	if (modified)
2409 		__mark_sit_entry_dirty(sbi, segno);
2410 }
2411 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2412 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2413 								block_t blkaddr)
2414 {
2415 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2416 
2417 	if (segno == NULL_SEGNO)
2418 		return 0;
2419 	return get_seg_entry(sbi, segno)->mtime;
2420 }
2421 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2422 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2423 						unsigned long long old_mtime)
2424 {
2425 	struct seg_entry *se;
2426 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2427 	unsigned long long ctime = get_mtime(sbi, false);
2428 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2429 
2430 	if (segno == NULL_SEGNO)
2431 		return;
2432 
2433 	se = get_seg_entry(sbi, segno);
2434 
2435 	if (!se->mtime)
2436 		se->mtime = mtime;
2437 	else
2438 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2439 						se->valid_blocks + 1);
2440 
2441 	if (ctime > SIT_I(sbi)->max_mtime)
2442 		SIT_I(sbi)->max_mtime = ctime;
2443 }
2444 
2445 /*
2446  * NOTE: when updating multiple blocks at the same time, please ensure
2447  * that the consecutive input blocks belong to the same segment.
2448  */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2449 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2450 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2451 {
2452 	bool exist;
2453 #ifdef CONFIG_F2FS_CHECK_FS
2454 	bool mir_exist;
2455 #endif
2456 	int i;
2457 	int del_count = -del;
2458 
2459 	f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2460 
2461 	for (i = 0; i < del_count; i++) {
2462 		exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2463 #ifdef CONFIG_F2FS_CHECK_FS
2464 		mir_exist = f2fs_test_and_clear_bit(offset + i,
2465 						se->cur_valid_map_mir);
2466 		if (unlikely(exist != mir_exist)) {
2467 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2468 				blkaddr + i, exist);
2469 			f2fs_bug_on(sbi, 1);
2470 		}
2471 #endif
2472 		if (unlikely(!exist)) {
2473 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2474 			f2fs_bug_on(sbi, 1);
2475 			se->valid_blocks++;
2476 			del += 1;
2477 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2478 			/*
2479 			 * If checkpoints are off, we must not reuse data that
2480 			 * was used in the previous checkpoint. If it was used
2481 			 * before, we must track that to know how much space we
2482 			 * really have.
2483 			 */
2484 			if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2485 				spin_lock(&sbi->stat_lock);
2486 				sbi->unusable_block_count++;
2487 				spin_unlock(&sbi->stat_lock);
2488 			}
2489 		}
2490 
2491 		if (f2fs_block_unit_discard(sbi) &&
2492 				f2fs_test_and_clear_bit(offset + i, se->discard_map))
2493 			sbi->discard_blks++;
2494 
2495 		if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2496 			se->ckpt_valid_blocks -= 1;
2497 			if (__is_large_section(sbi))
2498 				get_sec_entry(sbi, segno)->ckpt_valid_blocks -= 1;
2499 		}
2500 	}
2501 
2502 	if (__is_large_section(sbi))
2503 		sanity_check_valid_blocks(sbi, segno);
2504 
2505 	return del;
2506 }
2507 
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2508 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2509 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2510 {
2511 	bool exist;
2512 #ifdef CONFIG_F2FS_CHECK_FS
2513 	bool mir_exist;
2514 #endif
2515 
2516 	exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2517 #ifdef CONFIG_F2FS_CHECK_FS
2518 	mir_exist = f2fs_test_and_set_bit(offset,
2519 					se->cur_valid_map_mir);
2520 	if (unlikely(exist != mir_exist)) {
2521 		f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2522 			blkaddr, exist);
2523 		f2fs_bug_on(sbi, 1);
2524 	}
2525 #endif
2526 	if (unlikely(exist)) {
2527 		f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2528 		f2fs_bug_on(sbi, 1);
2529 		se->valid_blocks--;
2530 		del = 0;
2531 	}
2532 
2533 	if (f2fs_block_unit_discard(sbi) &&
2534 			!f2fs_test_and_set_bit(offset, se->discard_map))
2535 		sbi->discard_blks--;
2536 
2537 	/*
2538 	 * SSR should never reuse block which is checkpointed
2539 	 * or newly invalidated.
2540 	 */
2541 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2542 		if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2543 			se->ckpt_valid_blocks++;
2544 			if (__is_large_section(sbi))
2545 				get_sec_entry(sbi, segno)->ckpt_valid_blocks++;
2546 		}
2547 	}
2548 
2549 	if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2550 		se->ckpt_valid_blocks += del;
2551 		if (__is_large_section(sbi))
2552 			get_sec_entry(sbi, segno)->ckpt_valid_blocks += del;
2553 	}
2554 
2555 	if (__is_large_section(sbi))
2556 		sanity_check_valid_blocks(sbi, segno);
2557 
2558 	return del;
2559 }
2560 
2561 /*
2562  * If releasing blocks, this function supports updating multiple consecutive blocks
2563  * at one time, but please note that these consecutive blocks need to belong to the
2564  * same segment.
2565  */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2566 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2567 {
2568 	struct seg_entry *se;
2569 	unsigned int segno, offset;
2570 	long int new_vblocks;
2571 
2572 	segno = GET_SEGNO(sbi, blkaddr);
2573 	if (segno == NULL_SEGNO)
2574 		return;
2575 
2576 	se = get_seg_entry(sbi, segno);
2577 	new_vblocks = se->valid_blocks + del;
2578 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2579 
2580 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2581 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2582 
2583 	se->valid_blocks = new_vblocks;
2584 
2585 	/* Update valid block bitmap */
2586 	if (del > 0) {
2587 		del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2588 	} else {
2589 		del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2590 	}
2591 
2592 	__mark_sit_entry_dirty(sbi, segno);
2593 
2594 	/* update total number of valid blocks to be written in ckpt area */
2595 	SIT_I(sbi)->written_valid_blocks += del;
2596 
2597 	if (__is_large_section(sbi))
2598 		get_sec_entry(sbi, segno)->valid_blocks += del;
2599 }
2600 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2601 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2602 				unsigned int len)
2603 {
2604 	unsigned int segno = GET_SEGNO(sbi, addr);
2605 	struct sit_info *sit_i = SIT_I(sbi);
2606 	block_t addr_start = addr, addr_end = addr + len - 1;
2607 	unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2608 	unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2609 
2610 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2611 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2612 		return;
2613 
2614 	f2fs_invalidate_internal_cache(sbi, addr, len);
2615 
2616 	/* add it into sit main buffer */
2617 	down_write(&sit_i->sentry_lock);
2618 
2619 	if (seg_num == 1)
2620 		cnt = len;
2621 	else
2622 		cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2623 
2624 	do {
2625 		update_segment_mtime(sbi, addr_start, 0);
2626 		update_sit_entry(sbi, addr_start, -cnt);
2627 
2628 		/* add it into dirty seglist */
2629 		locate_dirty_segment(sbi, segno);
2630 
2631 		/* update @addr_start and @cnt and @segno */
2632 		addr_start = START_BLOCK(sbi, ++segno);
2633 		if (++i == seg_num)
2634 			cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2635 		else
2636 			cnt = max_blocks;
2637 	} while (i <= seg_num);
2638 
2639 	up_write(&sit_i->sentry_lock);
2640 }
2641 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2642 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2643 {
2644 	struct sit_info *sit_i = SIT_I(sbi);
2645 	unsigned int segno, offset;
2646 	struct seg_entry *se;
2647 	bool is_cp = false;
2648 
2649 	if (!__is_valid_data_blkaddr(blkaddr))
2650 		return true;
2651 
2652 	down_read(&sit_i->sentry_lock);
2653 
2654 	segno = GET_SEGNO(sbi, blkaddr);
2655 	se = get_seg_entry(sbi, segno);
2656 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2657 
2658 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2659 		is_cp = true;
2660 
2661 	up_read(&sit_i->sentry_lock);
2662 
2663 	return is_cp;
2664 }
2665 
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2666 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2667 {
2668 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2669 
2670 	if (sbi->ckpt->alloc_type[type] == SSR)
2671 		return BLKS_PER_SEG(sbi);
2672 	return curseg->next_blkoff;
2673 }
2674 
2675 /*
2676  * Calculate the number of current summary pages for writing
2677  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2678 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2679 {
2680 	int valid_sum_count = 0;
2681 	int i, sum_in_page;
2682 
2683 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2684 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2685 			valid_sum_count +=
2686 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2687 		else
2688 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2689 	}
2690 
2691 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2692 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2693 	if (valid_sum_count <= sum_in_page)
2694 		return 1;
2695 	else if ((valid_sum_count - sum_in_page) <=
2696 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2697 		return 2;
2698 	return 3;
2699 }
2700 
2701 /*
2702  * Caller should put this summary folio
2703  */
f2fs_get_sum_folio(struct f2fs_sb_info * sbi,unsigned int segno)2704 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno)
2705 {
2706 	if (unlikely(f2fs_cp_error(sbi)))
2707 		return ERR_PTR(-EIO);
2708 	return f2fs_get_meta_folio_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2709 }
2710 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2711 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2712 					void *src, block_t blk_addr)
2713 {
2714 	struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2715 
2716 	memcpy(folio_address(folio), src, PAGE_SIZE);
2717 	folio_mark_dirty(folio);
2718 	f2fs_folio_put(folio, true);
2719 }
2720 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2721 static void write_sum_page(struct f2fs_sb_info *sbi,
2722 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2723 {
2724 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2725 }
2726 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2727 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2728 						int type, block_t blk_addr)
2729 {
2730 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2731 	struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2732 	struct f2fs_summary_block *src = curseg->sum_blk;
2733 	struct f2fs_summary_block *dst;
2734 
2735 	dst = folio_address(folio);
2736 	memset(dst, 0, PAGE_SIZE);
2737 
2738 	mutex_lock(&curseg->curseg_mutex);
2739 
2740 	down_read(&curseg->journal_rwsem);
2741 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2742 	up_read(&curseg->journal_rwsem);
2743 
2744 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2745 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2746 
2747 	mutex_unlock(&curseg->curseg_mutex);
2748 
2749 	folio_mark_dirty(folio);
2750 	f2fs_folio_put(folio, true);
2751 }
2752 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2753 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2754 				struct curseg_info *curseg)
2755 {
2756 	unsigned int segno = curseg->segno + 1;
2757 	struct free_segmap_info *free_i = FREE_I(sbi);
2758 
2759 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2760 		return !test_bit(segno, free_i->free_segmap);
2761 	return 0;
2762 }
2763 
2764 /*
2765  * Find a new segment from the free segments bitmap to right order
2766  * This function should be returned with success, otherwise BUG
2767  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2768 static int get_new_segment(struct f2fs_sb_info *sbi,
2769 			unsigned int *newseg, bool new_sec, bool pinning)
2770 {
2771 	struct free_segmap_info *free_i = FREE_I(sbi);
2772 	unsigned int segno, secno, zoneno;
2773 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2774 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2775 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2776 	bool init = true;
2777 	int i;
2778 	int ret = 0;
2779 
2780 	spin_lock(&free_i->segmap_lock);
2781 
2782 	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2783 		ret = -ENOSPC;
2784 		goto out_unlock;
2785 	}
2786 
2787 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2788 		segno = find_next_zero_bit(free_i->free_segmap,
2789 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2790 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2791 			goto got_it;
2792 	}
2793 
2794 #ifdef CONFIG_BLK_DEV_ZONED
2795 	/*
2796 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2797 	 * from beginning of the storage, which should be a conventional one.
2798 	 */
2799 	if (f2fs_sb_has_blkzoned(sbi)) {
2800 		/* Prioritize writing to conventional zones */
2801 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2802 			segno = 0;
2803 		else
2804 			segno = max(sbi->first_seq_zone_segno, *newseg);
2805 		hint = GET_SEC_FROM_SEG(sbi, segno);
2806 	}
2807 #endif
2808 
2809 find_other_zone:
2810 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2811 
2812 #ifdef CONFIG_BLK_DEV_ZONED
2813 	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2814 		/* Write only to sequential zones */
2815 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2816 			hint = GET_SEC_FROM_SEG(sbi, sbi->first_seq_zone_segno);
2817 			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2818 		} else
2819 			secno = find_first_zero_bit(free_i->free_secmap,
2820 								MAIN_SECS(sbi));
2821 		if (secno >= MAIN_SECS(sbi)) {
2822 			ret = -ENOSPC;
2823 			f2fs_bug_on(sbi, 1);
2824 			goto out_unlock;
2825 		}
2826 	}
2827 #endif
2828 
2829 	if (secno >= MAIN_SECS(sbi)) {
2830 		secno = find_first_zero_bit(free_i->free_secmap,
2831 							MAIN_SECS(sbi));
2832 		if (secno >= MAIN_SECS(sbi)) {
2833 			ret = -ENOSPC;
2834 			f2fs_bug_on(sbi, !pinning);
2835 			goto out_unlock;
2836 		}
2837 	}
2838 	segno = GET_SEG_FROM_SEC(sbi, secno);
2839 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2840 
2841 	/* give up on finding another zone */
2842 	if (!init)
2843 		goto got_it;
2844 	if (sbi->secs_per_zone == 1)
2845 		goto got_it;
2846 	if (zoneno == old_zoneno)
2847 		goto got_it;
2848 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2849 		if (CURSEG_I(sbi, i)->zone == zoneno)
2850 			break;
2851 
2852 	if (i < NR_CURSEG_TYPE) {
2853 		/* zone is in user, try another */
2854 		if (zoneno + 1 >= total_zones)
2855 			hint = 0;
2856 		else
2857 			hint = (zoneno + 1) * sbi->secs_per_zone;
2858 		init = false;
2859 		goto find_other_zone;
2860 	}
2861 got_it:
2862 	/* set it as dirty segment in free segmap */
2863 	if (test_bit(segno, free_i->free_segmap)) {
2864 		ret = -EFSCORRUPTED;
2865 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2866 		goto out_unlock;
2867 	}
2868 
2869 	/* no free section in conventional device or conventional zone */
2870 	if (new_sec && pinning &&
2871 		f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2872 		ret = -EAGAIN;
2873 		goto out_unlock;
2874 	}
2875 	__set_inuse(sbi, segno);
2876 	*newseg = segno;
2877 out_unlock:
2878 	spin_unlock(&free_i->segmap_lock);
2879 
2880 	if (ret == -ENOSPC && !pinning)
2881 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2882 	return ret;
2883 }
2884 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2885 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2886 {
2887 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2888 	struct summary_footer *sum_footer;
2889 	unsigned short seg_type = curseg->seg_type;
2890 
2891 	/* only happen when get_new_segment() fails */
2892 	if (curseg->next_segno == NULL_SEGNO)
2893 		return;
2894 
2895 	curseg->inited = true;
2896 	curseg->segno = curseg->next_segno;
2897 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2898 	curseg->next_blkoff = 0;
2899 	curseg->next_segno = NULL_SEGNO;
2900 
2901 	sum_footer = &(curseg->sum_blk->footer);
2902 	memset(sum_footer, 0, sizeof(struct summary_footer));
2903 
2904 	sanity_check_seg_type(sbi, seg_type);
2905 
2906 	if (IS_DATASEG(seg_type))
2907 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2908 	if (IS_NODESEG(seg_type))
2909 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2910 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2911 }
2912 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2913 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2914 {
2915 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2916 	unsigned short seg_type = curseg->seg_type;
2917 
2918 	sanity_check_seg_type(sbi, seg_type);
2919 	if (__is_large_section(sbi)) {
2920 		if (f2fs_need_rand_seg(sbi)) {
2921 			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2922 
2923 			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2924 				return curseg->segno;
2925 			return get_random_u32_inclusive(curseg->segno + 1,
2926 					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2927 		}
2928 		return curseg->segno;
2929 	} else if (f2fs_need_rand_seg(sbi)) {
2930 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2931 	}
2932 
2933 	/* inmem log may not locate on any segment after mount */
2934 	if (!curseg->inited)
2935 		return 0;
2936 
2937 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2938 		return 0;
2939 
2940 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2941 		return 0;
2942 
2943 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2944 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2945 
2946 	/* find segments from 0 to reuse freed segments */
2947 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2948 		return 0;
2949 
2950 	return curseg->segno;
2951 }
2952 
reset_curseg_fields(struct curseg_info * curseg)2953 static void reset_curseg_fields(struct curseg_info *curseg)
2954 {
2955 	curseg->inited = false;
2956 	curseg->segno = NULL_SEGNO;
2957 	curseg->next_segno = 0;
2958 }
2959 
2960 /*
2961  * Allocate a current working segment.
2962  * This function always allocates a free segment in LFS manner.
2963  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2964 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2965 {
2966 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2967 	unsigned int segno = curseg->segno;
2968 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2969 	int ret;
2970 
2971 	if (curseg->inited)
2972 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2973 
2974 	segno = __get_next_segno(sbi, type);
2975 	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2976 	if (ret) {
2977 		if (ret == -ENOSPC)
2978 			reset_curseg_fields(curseg);
2979 		return ret;
2980 	}
2981 
2982 	curseg->next_segno = segno;
2983 	reset_curseg(sbi, type, 1);
2984 	curseg->alloc_type = LFS;
2985 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2986 		curseg->fragment_remained_chunk =
2987 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2988 	return 0;
2989 }
2990 
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2991 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2992 					int segno, block_t start)
2993 {
2994 	struct seg_entry *se = get_seg_entry(sbi, segno);
2995 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2996 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2997 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2998 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2999 	int i;
3000 
3001 	for (i = 0; i < entries; i++)
3002 		target_map[i] = ckpt_map[i] | cur_map[i];
3003 
3004 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3005 }
3006 
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3007 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3008 		struct curseg_info *seg)
3009 {
3010 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3011 }
3012 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3013 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3014 {
3015 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3016 }
3017 
3018 /*
3019  * This function always allocates a used segment(from dirty seglist) by SSR
3020  * manner, so it should recover the existing segment information of valid blocks
3021  */
change_curseg(struct f2fs_sb_info * sbi,int type)3022 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3023 {
3024 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3025 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3026 	unsigned int new_segno = curseg->next_segno;
3027 	struct f2fs_summary_block *sum_node;
3028 	struct folio *sum_folio;
3029 
3030 	if (curseg->inited)
3031 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
3032 
3033 	__set_test_and_inuse(sbi, new_segno);
3034 
3035 	mutex_lock(&dirty_i->seglist_lock);
3036 	__remove_dirty_segment(sbi, new_segno, PRE);
3037 	__remove_dirty_segment(sbi, new_segno, DIRTY);
3038 	mutex_unlock(&dirty_i->seglist_lock);
3039 
3040 	reset_curseg(sbi, type, 1);
3041 	curseg->alloc_type = SSR;
3042 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3043 
3044 	sum_folio = f2fs_get_sum_folio(sbi, new_segno);
3045 	if (IS_ERR(sum_folio)) {
3046 		/* GC won't be able to use stale summary pages by cp_error */
3047 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3048 		return PTR_ERR(sum_folio);
3049 	}
3050 	sum_node = folio_address(sum_folio);
3051 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3052 	f2fs_folio_put(sum_folio, true);
3053 	return 0;
3054 }
3055 
3056 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3057 				int alloc_mode, unsigned long long age);
3058 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3059 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3060 					int target_type, int alloc_mode,
3061 					unsigned long long age)
3062 {
3063 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3064 	int ret = 0;
3065 
3066 	curseg->seg_type = target_type;
3067 
3068 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3069 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3070 
3071 		curseg->seg_type = se->type;
3072 		ret = change_curseg(sbi, type);
3073 	} else {
3074 		/* allocate cold segment by default */
3075 		curseg->seg_type = CURSEG_COLD_DATA;
3076 		ret = new_curseg(sbi, type, true);
3077 	}
3078 	stat_inc_seg_type(sbi, curseg);
3079 	return ret;
3080 }
3081 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3082 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3083 {
3084 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3085 	int ret = 0;
3086 
3087 	if (!sbi->am.atgc_enabled && !force)
3088 		return 0;
3089 
3090 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3091 
3092 	mutex_lock(&curseg->curseg_mutex);
3093 	down_write(&SIT_I(sbi)->sentry_lock);
3094 
3095 	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3096 					CURSEG_COLD_DATA, SSR, 0);
3097 
3098 	up_write(&SIT_I(sbi)->sentry_lock);
3099 	mutex_unlock(&curseg->curseg_mutex);
3100 
3101 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3102 	return ret;
3103 }
3104 
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3105 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3106 {
3107 	return __f2fs_init_atgc_curseg(sbi, false);
3108 }
3109 
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3110 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3111 {
3112 	int ret;
3113 
3114 	if (!test_opt(sbi, ATGC))
3115 		return 0;
3116 	if (sbi->am.atgc_enabled)
3117 		return 0;
3118 	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3119 			sbi->am.age_threshold)
3120 		return 0;
3121 
3122 	ret = __f2fs_init_atgc_curseg(sbi, true);
3123 	if (!ret) {
3124 		sbi->am.atgc_enabled = true;
3125 		f2fs_info(sbi, "reenabled age threshold GC");
3126 	}
3127 	return ret;
3128 }
3129 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3130 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3131 {
3132 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3133 
3134 	mutex_lock(&curseg->curseg_mutex);
3135 	if (!curseg->inited)
3136 		goto out;
3137 
3138 	if (get_valid_blocks(sbi, curseg->segno, false)) {
3139 		write_sum_page(sbi, curseg->sum_blk,
3140 				GET_SUM_BLOCK(sbi, curseg->segno));
3141 	} else {
3142 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3143 		__set_test_and_free(sbi, curseg->segno, true);
3144 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3145 	}
3146 out:
3147 	mutex_unlock(&curseg->curseg_mutex);
3148 }
3149 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3150 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3151 {
3152 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3153 
3154 	if (sbi->am.atgc_enabled)
3155 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3156 }
3157 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3158 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3159 {
3160 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3161 
3162 	mutex_lock(&curseg->curseg_mutex);
3163 	if (!curseg->inited)
3164 		goto out;
3165 	if (get_valid_blocks(sbi, curseg->segno, false))
3166 		goto out;
3167 
3168 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3169 	__set_test_and_inuse(sbi, curseg->segno);
3170 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3171 out:
3172 	mutex_unlock(&curseg->curseg_mutex);
3173 }
3174 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3175 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3176 {
3177 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3178 
3179 	if (sbi->am.atgc_enabled)
3180 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3181 }
3182 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3183 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3184 				int alloc_mode, unsigned long long age)
3185 {
3186 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3187 	unsigned segno = NULL_SEGNO;
3188 	unsigned short seg_type = curseg->seg_type;
3189 	int i, cnt;
3190 	bool reversed = false;
3191 
3192 	sanity_check_seg_type(sbi, seg_type);
3193 
3194 	/* f2fs_need_SSR() already forces to do this */
3195 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3196 				alloc_mode, age, false)) {
3197 		curseg->next_segno = segno;
3198 		return 1;
3199 	}
3200 
3201 	/* For node segments, let's do SSR more intensively */
3202 	if (IS_NODESEG(seg_type)) {
3203 		if (seg_type >= CURSEG_WARM_NODE) {
3204 			reversed = true;
3205 			i = CURSEG_COLD_NODE;
3206 		} else {
3207 			i = CURSEG_HOT_NODE;
3208 		}
3209 		cnt = NR_CURSEG_NODE_TYPE;
3210 	} else {
3211 		if (seg_type >= CURSEG_WARM_DATA) {
3212 			reversed = true;
3213 			i = CURSEG_COLD_DATA;
3214 		} else {
3215 			i = CURSEG_HOT_DATA;
3216 		}
3217 		cnt = NR_CURSEG_DATA_TYPE;
3218 	}
3219 
3220 	for (; cnt-- > 0; reversed ? i-- : i++) {
3221 		if (i == seg_type)
3222 			continue;
3223 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3224 					alloc_mode, age, false)) {
3225 			curseg->next_segno = segno;
3226 			return 1;
3227 		}
3228 	}
3229 
3230 	/* find valid_blocks=0 in dirty list */
3231 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3232 		segno = get_free_segment(sbi);
3233 		if (segno != NULL_SEGNO) {
3234 			curseg->next_segno = segno;
3235 			return 1;
3236 		}
3237 	}
3238 	return 0;
3239 }
3240 
need_new_seg(struct f2fs_sb_info * sbi,int type)3241 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3242 {
3243 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3244 
3245 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3246 	    curseg->seg_type == CURSEG_WARM_NODE)
3247 		return true;
3248 	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3249 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3250 		return true;
3251 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3252 		return true;
3253 	return false;
3254 }
3255 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3256 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3257 					unsigned int start, unsigned int end)
3258 {
3259 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3260 	unsigned int segno;
3261 	int ret = 0;
3262 
3263 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3264 	mutex_lock(&curseg->curseg_mutex);
3265 	down_write(&SIT_I(sbi)->sentry_lock);
3266 
3267 	segno = CURSEG_I(sbi, type)->segno;
3268 	if (segno < start || segno > end)
3269 		goto unlock;
3270 
3271 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3272 		ret = change_curseg(sbi, type);
3273 	else
3274 		ret = new_curseg(sbi, type, true);
3275 
3276 	stat_inc_seg_type(sbi, curseg);
3277 
3278 	locate_dirty_segment(sbi, segno);
3279 unlock:
3280 	up_write(&SIT_I(sbi)->sentry_lock);
3281 
3282 	if (segno != curseg->segno)
3283 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3284 			    type, segno, curseg->segno);
3285 
3286 	mutex_unlock(&curseg->curseg_mutex);
3287 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3288 	return ret;
3289 }
3290 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3291 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3292 						bool new_sec, bool force)
3293 {
3294 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3295 	unsigned int old_segno;
3296 	int err = 0;
3297 
3298 	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3299 		goto allocate;
3300 
3301 	if (!force && curseg->inited &&
3302 	    !curseg->next_blkoff &&
3303 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3304 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3305 		return 0;
3306 
3307 allocate:
3308 	old_segno = curseg->segno;
3309 	err = new_curseg(sbi, type, true);
3310 	if (err)
3311 		return err;
3312 	stat_inc_seg_type(sbi, curseg);
3313 	locate_dirty_segment(sbi, old_segno);
3314 	return 0;
3315 }
3316 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3317 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3318 {
3319 	int ret;
3320 
3321 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3322 	down_write(&SIT_I(sbi)->sentry_lock);
3323 	ret = __allocate_new_segment(sbi, type, true, force);
3324 	up_write(&SIT_I(sbi)->sentry_lock);
3325 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3326 
3327 	return ret;
3328 }
3329 
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3330 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3331 {
3332 	int err;
3333 	bool gc_required = true;
3334 
3335 retry:
3336 	f2fs_lock_op(sbi);
3337 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3338 	f2fs_unlock_op(sbi);
3339 
3340 	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3341 		f2fs_down_write(&sbi->gc_lock);
3342 		err = f2fs_gc_range(sbi, 0, sbi->first_seq_zone_segno - 1,
3343 				true, ZONED_PIN_SEC_REQUIRED_COUNT);
3344 		f2fs_up_write(&sbi->gc_lock);
3345 
3346 		gc_required = false;
3347 		if (!err)
3348 			goto retry;
3349 	}
3350 
3351 	return err;
3352 }
3353 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3354 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3355 {
3356 	int i;
3357 	int err = 0;
3358 
3359 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3360 	down_write(&SIT_I(sbi)->sentry_lock);
3361 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3362 		err += __allocate_new_segment(sbi, i, false, false);
3363 	up_write(&SIT_I(sbi)->sentry_lock);
3364 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3365 
3366 	return err;
3367 }
3368 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3369 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3370 						struct cp_control *cpc)
3371 {
3372 	__u64 trim_start = cpc->trim_start;
3373 	bool has_candidate = false;
3374 
3375 	down_write(&SIT_I(sbi)->sentry_lock);
3376 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3377 		if (add_discard_addrs(sbi, cpc, true)) {
3378 			has_candidate = true;
3379 			break;
3380 		}
3381 	}
3382 	up_write(&SIT_I(sbi)->sentry_lock);
3383 
3384 	cpc->trim_start = trim_start;
3385 	return has_candidate;
3386 }
3387 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3388 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3389 					struct discard_policy *dpolicy,
3390 					unsigned int start, unsigned int end)
3391 {
3392 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3393 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3394 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3395 	struct discard_cmd *dc;
3396 	struct blk_plug plug;
3397 	int issued;
3398 	unsigned int trimmed = 0;
3399 
3400 next:
3401 	issued = 0;
3402 
3403 	mutex_lock(&dcc->cmd_lock);
3404 	if (unlikely(dcc->rbtree_check))
3405 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3406 
3407 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3408 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3409 	if (!dc)
3410 		dc = next_dc;
3411 
3412 	blk_start_plug(&plug);
3413 
3414 	while (dc && dc->di.lstart <= end) {
3415 		struct rb_node *node;
3416 		int err = 0;
3417 
3418 		if (dc->di.len < dpolicy->granularity)
3419 			goto skip;
3420 
3421 		if (dc->state != D_PREP) {
3422 			list_move_tail(&dc->list, &dcc->fstrim_list);
3423 			goto skip;
3424 		}
3425 
3426 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3427 
3428 		if (issued >= dpolicy->max_requests) {
3429 			start = dc->di.lstart + dc->di.len;
3430 
3431 			if (err)
3432 				__remove_discard_cmd(sbi, dc);
3433 
3434 			blk_finish_plug(&plug);
3435 			mutex_unlock(&dcc->cmd_lock);
3436 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3437 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3438 			goto next;
3439 		}
3440 skip:
3441 		node = rb_next(&dc->rb_node);
3442 		if (err)
3443 			__remove_discard_cmd(sbi, dc);
3444 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3445 
3446 		if (fatal_signal_pending(current))
3447 			break;
3448 	}
3449 
3450 	blk_finish_plug(&plug);
3451 	mutex_unlock(&dcc->cmd_lock);
3452 
3453 	return trimmed;
3454 }
3455 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3456 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3457 {
3458 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3459 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3460 	unsigned int start_segno, end_segno;
3461 	block_t start_block, end_block;
3462 	struct cp_control cpc;
3463 	struct discard_policy dpolicy;
3464 	unsigned long long trimmed = 0;
3465 	int err = 0;
3466 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3467 
3468 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3469 		return -EINVAL;
3470 
3471 	if (end < MAIN_BLKADDR(sbi))
3472 		goto out;
3473 
3474 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3475 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3476 		return -EFSCORRUPTED;
3477 	}
3478 
3479 	/* start/end segment number in main_area */
3480 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3481 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3482 						GET_SEGNO(sbi, end);
3483 	if (need_align) {
3484 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3485 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3486 	}
3487 
3488 	cpc.reason = CP_DISCARD;
3489 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3490 	cpc.trim_start = start_segno;
3491 	cpc.trim_end = end_segno;
3492 
3493 	if (sbi->discard_blks == 0)
3494 		goto out;
3495 
3496 	f2fs_down_write(&sbi->gc_lock);
3497 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3498 	err = f2fs_write_checkpoint(sbi, &cpc);
3499 	f2fs_up_write(&sbi->gc_lock);
3500 	if (err)
3501 		goto out;
3502 
3503 	/*
3504 	 * We filed discard candidates, but actually we don't need to wait for
3505 	 * all of them, since they'll be issued in idle time along with runtime
3506 	 * discard option. User configuration looks like using runtime discard
3507 	 * or periodic fstrim instead of it.
3508 	 */
3509 	if (f2fs_realtime_discard_enable(sbi))
3510 		goto out;
3511 
3512 	start_block = START_BLOCK(sbi, start_segno);
3513 	end_block = START_BLOCK(sbi, end_segno + 1);
3514 
3515 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3516 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3517 					start_block, end_block);
3518 
3519 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3520 					start_block, end_block);
3521 out:
3522 	if (!err)
3523 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3524 	return err;
3525 }
3526 
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3527 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3528 {
3529 	if (F2FS_OPTION(sbi).active_logs == 2)
3530 		return CURSEG_HOT_DATA;
3531 	else if (F2FS_OPTION(sbi).active_logs == 4)
3532 		return CURSEG_COLD_DATA;
3533 
3534 	/* active_log == 6 */
3535 	switch (hint) {
3536 	case WRITE_LIFE_SHORT:
3537 		return CURSEG_HOT_DATA;
3538 	case WRITE_LIFE_EXTREME:
3539 		return CURSEG_COLD_DATA;
3540 	default:
3541 		return CURSEG_WARM_DATA;
3542 	}
3543 }
3544 
3545 /*
3546  * This returns write hints for each segment type. This hints will be
3547  * passed down to block layer as below by default.
3548  *
3549  * User                  F2FS                     Block
3550  * ----                  ----                     -----
3551  *                       META                     WRITE_LIFE_NONE|REQ_META
3552  *                       HOT_NODE                 WRITE_LIFE_NONE
3553  *                       WARM_NODE                WRITE_LIFE_MEDIUM
3554  *                       COLD_NODE                WRITE_LIFE_LONG
3555  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3556  * extension list        "                        "
3557  *
3558  * -- buffered io
3559  *                       COLD_DATA                WRITE_LIFE_EXTREME
3560  *                       HOT_DATA                 WRITE_LIFE_SHORT
3561  *                       WARM_DATA                WRITE_LIFE_NOT_SET
3562  *
3563  * -- direct io
3564  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3565  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3566  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3567  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3568  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3569  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3570  */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3571 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3572 				enum page_type type, enum temp_type temp)
3573 {
3574 	switch (type) {
3575 	case DATA:
3576 		switch (temp) {
3577 		case WARM:
3578 			return WRITE_LIFE_NOT_SET;
3579 		case HOT:
3580 			return WRITE_LIFE_SHORT;
3581 		case COLD:
3582 			return WRITE_LIFE_EXTREME;
3583 		default:
3584 			return WRITE_LIFE_NONE;
3585 		}
3586 	case NODE:
3587 		switch (temp) {
3588 		case WARM:
3589 			return WRITE_LIFE_MEDIUM;
3590 		case HOT:
3591 			return WRITE_LIFE_NONE;
3592 		case COLD:
3593 			return WRITE_LIFE_LONG;
3594 		default:
3595 			return WRITE_LIFE_NONE;
3596 		}
3597 	case META:
3598 		return WRITE_LIFE_NONE;
3599 	default:
3600 		return WRITE_LIFE_NONE;
3601 	}
3602 }
3603 
__get_segment_type_2(struct f2fs_io_info * fio)3604 static int __get_segment_type_2(struct f2fs_io_info *fio)
3605 {
3606 	if (fio->type == DATA)
3607 		return CURSEG_HOT_DATA;
3608 	else
3609 		return CURSEG_HOT_NODE;
3610 }
3611 
__get_segment_type_4(struct f2fs_io_info * fio)3612 static int __get_segment_type_4(struct f2fs_io_info *fio)
3613 {
3614 	if (fio->type == DATA) {
3615 		struct inode *inode = fio_inode(fio);
3616 
3617 		if (S_ISDIR(inode->i_mode))
3618 			return CURSEG_HOT_DATA;
3619 		else
3620 			return CURSEG_COLD_DATA;
3621 	} else {
3622 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3623 			return CURSEG_WARM_NODE;
3624 		else
3625 			return CURSEG_COLD_NODE;
3626 	}
3627 }
3628 
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3629 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3630 {
3631 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3632 	struct extent_info ei = {};
3633 
3634 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3635 		if (!ei.age)
3636 			return NO_CHECK_TYPE;
3637 		if (ei.age <= sbi->hot_data_age_threshold)
3638 			return CURSEG_HOT_DATA;
3639 		if (ei.age <= sbi->warm_data_age_threshold)
3640 			return CURSEG_WARM_DATA;
3641 		return CURSEG_COLD_DATA;
3642 	}
3643 	return NO_CHECK_TYPE;
3644 }
3645 
__get_segment_type_6(struct f2fs_io_info * fio)3646 static int __get_segment_type_6(struct f2fs_io_info *fio)
3647 {
3648 	if (fio->type == DATA) {
3649 		struct inode *inode = fio_inode(fio);
3650 		int type;
3651 
3652 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3653 			return CURSEG_COLD_DATA_PINNED;
3654 
3655 		if (page_private_gcing(fio->page)) {
3656 			if (fio->sbi->am.atgc_enabled &&
3657 				(fio->io_type == FS_DATA_IO) &&
3658 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3659 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3660 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3661 				return CURSEG_ALL_DATA_ATGC;
3662 			else
3663 				return CURSEG_COLD_DATA;
3664 		}
3665 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3666 			return CURSEG_COLD_DATA;
3667 
3668 		type = __get_age_segment_type(inode,
3669 				page_folio(fio->page)->index);
3670 		if (type != NO_CHECK_TYPE)
3671 			return type;
3672 
3673 		if (file_is_hot(inode) ||
3674 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3675 				f2fs_is_cow_file(inode))
3676 			return CURSEG_HOT_DATA;
3677 		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3678 						inode->i_write_hint);
3679 	} else {
3680 		if (IS_DNODE(fio->page))
3681 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3682 						CURSEG_HOT_NODE;
3683 		return CURSEG_COLD_NODE;
3684 	}
3685 }
3686 
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3687 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3688 						enum log_type type)
3689 {
3690 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3691 	enum temp_type temp = COLD;
3692 
3693 	switch (curseg->seg_type) {
3694 	case CURSEG_HOT_NODE:
3695 	case CURSEG_HOT_DATA:
3696 		temp = HOT;
3697 		break;
3698 	case CURSEG_WARM_NODE:
3699 	case CURSEG_WARM_DATA:
3700 		temp = WARM;
3701 		break;
3702 	case CURSEG_COLD_NODE:
3703 	case CURSEG_COLD_DATA:
3704 		temp = COLD;
3705 		break;
3706 	default:
3707 		f2fs_bug_on(sbi, 1);
3708 	}
3709 
3710 	return temp;
3711 }
3712 
__get_segment_type(struct f2fs_io_info * fio)3713 static int __get_segment_type(struct f2fs_io_info *fio)
3714 {
3715 	enum log_type type = CURSEG_HOT_DATA;
3716 
3717 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3718 	case 2:
3719 		type = __get_segment_type_2(fio);
3720 		break;
3721 	case 4:
3722 		type = __get_segment_type_4(fio);
3723 		break;
3724 	case 6:
3725 		type = __get_segment_type_6(fio);
3726 		break;
3727 	default:
3728 		f2fs_bug_on(fio->sbi, true);
3729 	}
3730 
3731 	fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3732 
3733 	return type;
3734 }
3735 
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3736 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3737 		struct curseg_info *seg)
3738 {
3739 	/* To allocate block chunks in different sizes, use random number */
3740 	if (--seg->fragment_remained_chunk > 0)
3741 		return;
3742 
3743 	seg->fragment_remained_chunk =
3744 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3745 	seg->next_blkoff +=
3746 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3747 }
3748 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3749 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3750 		block_t old_blkaddr, block_t *new_blkaddr,
3751 		struct f2fs_summary *sum, int type,
3752 		struct f2fs_io_info *fio)
3753 {
3754 	struct sit_info *sit_i = SIT_I(sbi);
3755 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3756 	unsigned long long old_mtime;
3757 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3758 	struct seg_entry *se = NULL;
3759 	bool segment_full = false;
3760 	int ret = 0;
3761 
3762 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3763 
3764 	mutex_lock(&curseg->curseg_mutex);
3765 	down_write(&sit_i->sentry_lock);
3766 
3767 	if (curseg->segno == NULL_SEGNO) {
3768 		ret = -ENOSPC;
3769 		goto out_err;
3770 	}
3771 
3772 	if (from_gc) {
3773 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3774 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3775 		sanity_check_seg_type(sbi, se->type);
3776 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3777 	}
3778 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3779 
3780 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3781 
3782 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3783 
3784 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3785 	if (curseg->alloc_type == SSR) {
3786 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3787 	} else {
3788 		curseg->next_blkoff++;
3789 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3790 			f2fs_randomize_chunk(sbi, curseg);
3791 	}
3792 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3793 		segment_full = true;
3794 	stat_inc_block_count(sbi, curseg);
3795 
3796 	if (from_gc) {
3797 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3798 	} else {
3799 		update_segment_mtime(sbi, old_blkaddr, 0);
3800 		old_mtime = 0;
3801 	}
3802 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3803 
3804 	/*
3805 	 * SIT information should be updated before segment allocation,
3806 	 * since SSR needs latest valid block information.
3807 	 */
3808 	update_sit_entry(sbi, *new_blkaddr, 1);
3809 	update_sit_entry(sbi, old_blkaddr, -1);
3810 
3811 	/*
3812 	 * If the current segment is full, flush it out and replace it with a
3813 	 * new segment.
3814 	 */
3815 	if (segment_full) {
3816 		if (type == CURSEG_COLD_DATA_PINNED &&
3817 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3818 			write_sum_page(sbi, curseg->sum_blk,
3819 					GET_SUM_BLOCK(sbi, curseg->segno));
3820 			reset_curseg_fields(curseg);
3821 			goto skip_new_segment;
3822 		}
3823 
3824 		if (from_gc) {
3825 			ret = get_atssr_segment(sbi, type, se->type,
3826 						AT_SSR, se->mtime);
3827 		} else {
3828 			if (need_new_seg(sbi, type))
3829 				ret = new_curseg(sbi, type, false);
3830 			else
3831 				ret = change_curseg(sbi, type);
3832 			stat_inc_seg_type(sbi, curseg);
3833 		}
3834 
3835 		if (ret)
3836 			goto out_err;
3837 	}
3838 
3839 skip_new_segment:
3840 	/*
3841 	 * segment dirty status should be updated after segment allocation,
3842 	 * so we just need to update status only one time after previous
3843 	 * segment being closed.
3844 	 */
3845 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3846 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3847 
3848 	if (IS_DATASEG(curseg->seg_type))
3849 		atomic64_inc(&sbi->allocated_data_blocks);
3850 
3851 	up_write(&sit_i->sentry_lock);
3852 
3853 	if (page && IS_NODESEG(curseg->seg_type)) {
3854 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3855 
3856 		f2fs_inode_chksum_set(sbi, page);
3857 	}
3858 
3859 	if (fio) {
3860 		struct f2fs_bio_info *io;
3861 
3862 		INIT_LIST_HEAD(&fio->list);
3863 		fio->in_list = 1;
3864 		io = sbi->write_io[fio->type] + fio->temp;
3865 		spin_lock(&io->io_lock);
3866 		list_add_tail(&fio->list, &io->io_list);
3867 		spin_unlock(&io->io_lock);
3868 	}
3869 
3870 	mutex_unlock(&curseg->curseg_mutex);
3871 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3872 	return 0;
3873 
3874 out_err:
3875 	*new_blkaddr = NULL_ADDR;
3876 	up_write(&sit_i->sentry_lock);
3877 	mutex_unlock(&curseg->curseg_mutex);
3878 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3879 	return ret;
3880 }
3881 
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3882 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3883 					block_t blkaddr, unsigned int blkcnt)
3884 {
3885 	if (!f2fs_is_multi_device(sbi))
3886 		return;
3887 
3888 	while (1) {
3889 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3890 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3891 
3892 		/* update device state for fsync */
3893 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3894 
3895 		/* update device state for checkpoint */
3896 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3897 			spin_lock(&sbi->dev_lock);
3898 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3899 			spin_unlock(&sbi->dev_lock);
3900 		}
3901 
3902 		if (blkcnt <= blks)
3903 			break;
3904 		blkcnt -= blks;
3905 		blkaddr += blks;
3906 	}
3907 }
3908 
log_type_to_seg_type(enum log_type type)3909 static int log_type_to_seg_type(enum log_type type)
3910 {
3911 	int seg_type = CURSEG_COLD_DATA;
3912 
3913 	switch (type) {
3914 	case CURSEG_HOT_DATA:
3915 	case CURSEG_WARM_DATA:
3916 	case CURSEG_COLD_DATA:
3917 	case CURSEG_HOT_NODE:
3918 	case CURSEG_WARM_NODE:
3919 	case CURSEG_COLD_NODE:
3920 		seg_type = (int)type;
3921 		break;
3922 	case CURSEG_COLD_DATA_PINNED:
3923 	case CURSEG_ALL_DATA_ATGC:
3924 		seg_type = CURSEG_COLD_DATA;
3925 		break;
3926 	default:
3927 		break;
3928 	}
3929 	return seg_type;
3930 }
3931 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3932 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3933 {
3934 	struct folio *folio = page_folio(fio->page);
3935 	enum log_type type = __get_segment_type(fio);
3936 	int seg_type = log_type_to_seg_type(type);
3937 	bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3938 				seg_type == CURSEG_COLD_DATA);
3939 
3940 	if (keep_order)
3941 		f2fs_down_read(&fio->sbi->io_order_lock);
3942 
3943 	if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3944 			&fio->new_blkaddr, sum, type, fio)) {
3945 		if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3946 			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3947 		folio_end_writeback(folio);
3948 		if (f2fs_in_warm_node_list(fio->sbi, folio))
3949 			f2fs_del_fsync_node_entry(fio->sbi, folio);
3950 		goto out;
3951 	}
3952 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3953 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3954 
3955 	/* writeout dirty page into bdev */
3956 	f2fs_submit_page_write(fio);
3957 
3958 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3959 out:
3960 	if (keep_order)
3961 		f2fs_up_read(&fio->sbi->io_order_lock);
3962 }
3963 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)3964 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3965 					enum iostat_type io_type)
3966 {
3967 	struct f2fs_io_info fio = {
3968 		.sbi = sbi,
3969 		.type = META,
3970 		.temp = HOT,
3971 		.op = REQ_OP_WRITE,
3972 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3973 		.old_blkaddr = folio->index,
3974 		.new_blkaddr = folio->index,
3975 		.page = folio_page(folio, 0),
3976 		.encrypted_page = NULL,
3977 		.in_list = 0,
3978 	};
3979 
3980 	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3981 		fio.op_flags &= ~REQ_META;
3982 
3983 	folio_start_writeback(folio);
3984 	f2fs_submit_page_write(&fio);
3985 
3986 	stat_inc_meta_count(sbi, folio->index);
3987 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3988 }
3989 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3990 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3991 {
3992 	struct f2fs_summary sum;
3993 
3994 	set_summary(&sum, nid, 0, 0);
3995 	do_write_page(&sum, fio);
3996 
3997 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3998 }
3999 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4000 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4001 					struct f2fs_io_info *fio)
4002 {
4003 	struct f2fs_sb_info *sbi = fio->sbi;
4004 	struct f2fs_summary sum;
4005 
4006 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4007 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4008 		f2fs_update_age_extent_cache(dn);
4009 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4010 	do_write_page(&sum, fio);
4011 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4012 
4013 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4014 }
4015 
f2fs_inplace_write_data(struct f2fs_io_info * fio)4016 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4017 {
4018 	int err;
4019 	struct f2fs_sb_info *sbi = fio->sbi;
4020 	unsigned int segno;
4021 
4022 	fio->new_blkaddr = fio->old_blkaddr;
4023 	/* i/o temperature is needed for passing down write hints */
4024 	__get_segment_type(fio);
4025 
4026 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
4027 
4028 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4029 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4030 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4031 			  __func__, segno);
4032 		err = -EFSCORRUPTED;
4033 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4034 		goto drop_bio;
4035 	}
4036 
4037 	if (f2fs_cp_error(sbi)) {
4038 		err = -EIO;
4039 		goto drop_bio;
4040 	}
4041 
4042 	if (fio->meta_gc)
4043 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4044 
4045 	stat_inc_inplace_blocks(fio->sbi);
4046 
4047 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4048 		err = f2fs_merge_page_bio(fio);
4049 	else
4050 		err = f2fs_submit_page_bio(fio);
4051 	if (!err) {
4052 		f2fs_update_device_state(fio->sbi, fio->ino,
4053 						fio->new_blkaddr, 1);
4054 		f2fs_update_iostat(fio->sbi, fio_inode(fio),
4055 						fio->io_type, F2FS_BLKSIZE);
4056 	}
4057 
4058 	return err;
4059 drop_bio:
4060 	if (fio->bio && *(fio->bio)) {
4061 		struct bio *bio = *(fio->bio);
4062 
4063 		bio->bi_status = BLK_STS_IOERR;
4064 		bio_endio(bio);
4065 		*(fio->bio) = NULL;
4066 	}
4067 	return err;
4068 }
4069 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4070 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4071 						unsigned int segno)
4072 {
4073 	int i;
4074 
4075 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4076 		if (CURSEG_I(sbi, i)->segno == segno)
4077 			break;
4078 	}
4079 	return i;
4080 }
4081 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4082 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4083 				block_t old_blkaddr, block_t new_blkaddr,
4084 				bool recover_curseg, bool recover_newaddr,
4085 				bool from_gc)
4086 {
4087 	struct sit_info *sit_i = SIT_I(sbi);
4088 	struct curseg_info *curseg;
4089 	unsigned int segno, old_cursegno;
4090 	struct seg_entry *se;
4091 	int type;
4092 	unsigned short old_blkoff;
4093 	unsigned char old_alloc_type;
4094 
4095 	segno = GET_SEGNO(sbi, new_blkaddr);
4096 	se = get_seg_entry(sbi, segno);
4097 	type = se->type;
4098 
4099 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
4100 
4101 	if (!recover_curseg) {
4102 		/* for recovery flow */
4103 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4104 			if (old_blkaddr == NULL_ADDR)
4105 				type = CURSEG_COLD_DATA;
4106 			else
4107 				type = CURSEG_WARM_DATA;
4108 		}
4109 	} else {
4110 		if (IS_CURSEG(sbi, segno)) {
4111 			/* se->type is volatile as SSR allocation */
4112 			type = __f2fs_get_curseg(sbi, segno);
4113 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4114 		} else {
4115 			type = CURSEG_WARM_DATA;
4116 		}
4117 	}
4118 
4119 	curseg = CURSEG_I(sbi, type);
4120 	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4121 
4122 	mutex_lock(&curseg->curseg_mutex);
4123 	down_write(&sit_i->sentry_lock);
4124 
4125 	old_cursegno = curseg->segno;
4126 	old_blkoff = curseg->next_blkoff;
4127 	old_alloc_type = curseg->alloc_type;
4128 
4129 	/* change the current segment */
4130 	if (segno != curseg->segno) {
4131 		curseg->next_segno = segno;
4132 		if (change_curseg(sbi, type))
4133 			goto out_unlock;
4134 	}
4135 
4136 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4137 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4138 
4139 	if (!recover_curseg || recover_newaddr) {
4140 		if (!from_gc)
4141 			update_segment_mtime(sbi, new_blkaddr, 0);
4142 		update_sit_entry(sbi, new_blkaddr, 1);
4143 	}
4144 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4145 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4146 		if (!from_gc)
4147 			update_segment_mtime(sbi, old_blkaddr, 0);
4148 		update_sit_entry(sbi, old_blkaddr, -1);
4149 	}
4150 
4151 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4152 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4153 
4154 	locate_dirty_segment(sbi, old_cursegno);
4155 
4156 	if (recover_curseg) {
4157 		if (old_cursegno != curseg->segno) {
4158 			curseg->next_segno = old_cursegno;
4159 			if (change_curseg(sbi, type))
4160 				goto out_unlock;
4161 		}
4162 		curseg->next_blkoff = old_blkoff;
4163 		curseg->alloc_type = old_alloc_type;
4164 	}
4165 
4166 out_unlock:
4167 	up_write(&sit_i->sentry_lock);
4168 	mutex_unlock(&curseg->curseg_mutex);
4169 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4170 }
4171 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4172 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4173 				block_t old_addr, block_t new_addr,
4174 				unsigned char version, bool recover_curseg,
4175 				bool recover_newaddr)
4176 {
4177 	struct f2fs_summary sum;
4178 
4179 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4180 
4181 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4182 					recover_curseg, recover_newaddr, false);
4183 
4184 	f2fs_update_data_blkaddr(dn, new_addr);
4185 }
4186 
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4187 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4188 		bool ordered, bool locked)
4189 {
4190 	if (folio_test_writeback(folio)) {
4191 		struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4192 
4193 		/* submit cached LFS IO */
4194 		f2fs_submit_merged_write_cond(sbi, NULL, &folio->page, 0, type);
4195 		/* submit cached IPU IO */
4196 		f2fs_submit_merged_ipu_write(sbi, NULL, folio);
4197 		if (ordered) {
4198 			folio_wait_writeback(folio);
4199 			f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4200 		} else {
4201 			folio_wait_stable(folio);
4202 		}
4203 	}
4204 }
4205 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4206 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4207 {
4208 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4209 	struct folio *cfolio;
4210 
4211 	if (!f2fs_meta_inode_gc_required(inode))
4212 		return;
4213 
4214 	if (!__is_valid_data_blkaddr(blkaddr))
4215 		return;
4216 
4217 	cfolio = filemap_lock_folio(META_MAPPING(sbi), blkaddr);
4218 	if (!IS_ERR(cfolio)) {
4219 		f2fs_folio_wait_writeback(cfolio, DATA, true, true);
4220 		f2fs_folio_put(cfolio, true);
4221 	}
4222 }
4223 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4224 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4225 								block_t len)
4226 {
4227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4228 	block_t i;
4229 
4230 	if (!f2fs_meta_inode_gc_required(inode))
4231 		return;
4232 
4233 	for (i = 0; i < len; i++)
4234 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4235 
4236 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4237 }
4238 
read_compacted_summaries(struct f2fs_sb_info * sbi)4239 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4240 {
4241 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4242 	struct curseg_info *seg_i;
4243 	unsigned char *kaddr;
4244 	struct folio *folio;
4245 	block_t start;
4246 	int i, j, offset;
4247 
4248 	start = start_sum_block(sbi);
4249 
4250 	folio = f2fs_get_meta_folio(sbi, start++);
4251 	if (IS_ERR(folio))
4252 		return PTR_ERR(folio);
4253 	kaddr = folio_address(folio);
4254 
4255 	/* Step 1: restore nat cache */
4256 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4257 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4258 
4259 	/* Step 2: restore sit cache */
4260 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4261 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4262 	offset = 2 * SUM_JOURNAL_SIZE;
4263 
4264 	/* Step 3: restore summary entries */
4265 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4266 		unsigned short blk_off;
4267 		unsigned int segno;
4268 
4269 		seg_i = CURSEG_I(sbi, i);
4270 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4271 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4272 		seg_i->next_segno = segno;
4273 		reset_curseg(sbi, i, 0);
4274 		seg_i->alloc_type = ckpt->alloc_type[i];
4275 		seg_i->next_blkoff = blk_off;
4276 
4277 		if (seg_i->alloc_type == SSR)
4278 			blk_off = BLKS_PER_SEG(sbi);
4279 
4280 		for (j = 0; j < blk_off; j++) {
4281 			struct f2fs_summary *s;
4282 
4283 			s = (struct f2fs_summary *)(kaddr + offset);
4284 			seg_i->sum_blk->entries[j] = *s;
4285 			offset += SUMMARY_SIZE;
4286 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4287 						SUM_FOOTER_SIZE)
4288 				continue;
4289 
4290 			f2fs_folio_put(folio, true);
4291 
4292 			folio = f2fs_get_meta_folio(sbi, start++);
4293 			if (IS_ERR(folio))
4294 				return PTR_ERR(folio);
4295 			kaddr = folio_address(folio);
4296 			offset = 0;
4297 		}
4298 	}
4299 	f2fs_folio_put(folio, true);
4300 	return 0;
4301 }
4302 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4303 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4304 {
4305 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4306 	struct f2fs_summary_block *sum;
4307 	struct curseg_info *curseg;
4308 	struct folio *new;
4309 	unsigned short blk_off;
4310 	unsigned int segno = 0;
4311 	block_t blk_addr = 0;
4312 	int err = 0;
4313 
4314 	/* get segment number and block addr */
4315 	if (IS_DATASEG(type)) {
4316 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4317 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4318 							CURSEG_HOT_DATA]);
4319 		if (__exist_node_summaries(sbi))
4320 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4321 		else
4322 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4323 	} else {
4324 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4325 							CURSEG_HOT_NODE]);
4326 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4327 							CURSEG_HOT_NODE]);
4328 		if (__exist_node_summaries(sbi))
4329 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4330 							type - CURSEG_HOT_NODE);
4331 		else
4332 			blk_addr = GET_SUM_BLOCK(sbi, segno);
4333 	}
4334 
4335 	new = f2fs_get_meta_folio(sbi, blk_addr);
4336 	if (IS_ERR(new))
4337 		return PTR_ERR(new);
4338 	sum = folio_address(new);
4339 
4340 	if (IS_NODESEG(type)) {
4341 		if (__exist_node_summaries(sbi)) {
4342 			struct f2fs_summary *ns = &sum->entries[0];
4343 			int i;
4344 
4345 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4346 				ns->version = 0;
4347 				ns->ofs_in_node = 0;
4348 			}
4349 		} else {
4350 			err = f2fs_restore_node_summary(sbi, segno, sum);
4351 			if (err)
4352 				goto out;
4353 		}
4354 	}
4355 
4356 	/* set uncompleted segment to curseg */
4357 	curseg = CURSEG_I(sbi, type);
4358 	mutex_lock(&curseg->curseg_mutex);
4359 
4360 	/* update journal info */
4361 	down_write(&curseg->journal_rwsem);
4362 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4363 	up_write(&curseg->journal_rwsem);
4364 
4365 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4366 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4367 	curseg->next_segno = segno;
4368 	reset_curseg(sbi, type, 0);
4369 	curseg->alloc_type = ckpt->alloc_type[type];
4370 	curseg->next_blkoff = blk_off;
4371 	mutex_unlock(&curseg->curseg_mutex);
4372 out:
4373 	f2fs_folio_put(new, true);
4374 	return err;
4375 }
4376 
restore_curseg_summaries(struct f2fs_sb_info * sbi)4377 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4378 {
4379 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4380 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4381 	int type = CURSEG_HOT_DATA;
4382 	int err;
4383 
4384 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4385 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4386 
4387 		if (npages >= 2)
4388 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4389 							META_CP, true);
4390 
4391 		/* restore for compacted data summary */
4392 		err = read_compacted_summaries(sbi);
4393 		if (err)
4394 			return err;
4395 		type = CURSEG_HOT_NODE;
4396 	}
4397 
4398 	if (__exist_node_summaries(sbi))
4399 		f2fs_ra_meta_pages(sbi,
4400 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4401 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4402 
4403 	for (; type <= CURSEG_COLD_NODE; type++) {
4404 		err = read_normal_summaries(sbi, type);
4405 		if (err)
4406 			return err;
4407 	}
4408 
4409 	/* sanity check for summary blocks */
4410 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4411 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4412 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4413 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4414 		return -EINVAL;
4415 	}
4416 
4417 	return 0;
4418 }
4419 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4420 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4421 {
4422 	struct folio *folio;
4423 	unsigned char *kaddr;
4424 	struct f2fs_summary *summary;
4425 	struct curseg_info *seg_i;
4426 	int written_size = 0;
4427 	int i, j;
4428 
4429 	folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4430 	kaddr = folio_address(folio);
4431 	memset(kaddr, 0, PAGE_SIZE);
4432 
4433 	/* Step 1: write nat cache */
4434 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4435 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4436 	written_size += SUM_JOURNAL_SIZE;
4437 
4438 	/* Step 2: write sit cache */
4439 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4440 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4441 	written_size += SUM_JOURNAL_SIZE;
4442 
4443 	/* Step 3: write summary entries */
4444 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4445 		seg_i = CURSEG_I(sbi, i);
4446 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4447 			if (!folio) {
4448 				folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4449 				kaddr = folio_address(folio);
4450 				memset(kaddr, 0, PAGE_SIZE);
4451 				written_size = 0;
4452 			}
4453 			summary = (struct f2fs_summary *)(kaddr + written_size);
4454 			*summary = seg_i->sum_blk->entries[j];
4455 			written_size += SUMMARY_SIZE;
4456 
4457 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4458 							SUM_FOOTER_SIZE)
4459 				continue;
4460 
4461 			folio_mark_dirty(folio);
4462 			f2fs_folio_put(folio, true);
4463 			folio = NULL;
4464 		}
4465 	}
4466 	if (folio) {
4467 		folio_mark_dirty(folio);
4468 		f2fs_folio_put(folio, true);
4469 	}
4470 }
4471 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4472 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4473 					block_t blkaddr, int type)
4474 {
4475 	int i, end;
4476 
4477 	if (IS_DATASEG(type))
4478 		end = type + NR_CURSEG_DATA_TYPE;
4479 	else
4480 		end = type + NR_CURSEG_NODE_TYPE;
4481 
4482 	for (i = type; i < end; i++)
4483 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4484 }
4485 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4486 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4487 {
4488 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4489 		write_compacted_summaries(sbi, start_blk);
4490 	else
4491 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4492 }
4493 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4494 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4495 {
4496 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4497 }
4498 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4499 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4500 					unsigned int val, int alloc)
4501 {
4502 	int i;
4503 
4504 	if (type == NAT_JOURNAL) {
4505 		for (i = 0; i < nats_in_cursum(journal); i++) {
4506 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4507 				return i;
4508 		}
4509 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4510 			return update_nats_in_cursum(journal, 1);
4511 	} else if (type == SIT_JOURNAL) {
4512 		for (i = 0; i < sits_in_cursum(journal); i++)
4513 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4514 				return i;
4515 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4516 			return update_sits_in_cursum(journal, 1);
4517 	}
4518 	return -1;
4519 }
4520 
get_current_sit_folio(struct f2fs_sb_info * sbi,unsigned int segno)4521 static struct folio *get_current_sit_folio(struct f2fs_sb_info *sbi,
4522 					unsigned int segno)
4523 {
4524 	return f2fs_get_meta_folio(sbi, current_sit_addr(sbi, segno));
4525 }
4526 
get_next_sit_folio(struct f2fs_sb_info * sbi,unsigned int start)4527 static struct folio *get_next_sit_folio(struct f2fs_sb_info *sbi,
4528 					unsigned int start)
4529 {
4530 	struct sit_info *sit_i = SIT_I(sbi);
4531 	struct folio *folio;
4532 	pgoff_t src_off, dst_off;
4533 
4534 	src_off = current_sit_addr(sbi, start);
4535 	dst_off = next_sit_addr(sbi, src_off);
4536 
4537 	folio = f2fs_grab_meta_folio(sbi, dst_off);
4538 	seg_info_to_sit_folio(sbi, folio, start);
4539 
4540 	folio_mark_dirty(folio);
4541 	set_to_next_sit(sit_i, start);
4542 
4543 	return folio;
4544 }
4545 
grab_sit_entry_set(void)4546 static struct sit_entry_set *grab_sit_entry_set(void)
4547 {
4548 	struct sit_entry_set *ses =
4549 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4550 						GFP_NOFS, true, NULL);
4551 
4552 	ses->entry_cnt = 0;
4553 	INIT_LIST_HEAD(&ses->set_list);
4554 	return ses;
4555 }
4556 
release_sit_entry_set(struct sit_entry_set * ses)4557 static void release_sit_entry_set(struct sit_entry_set *ses)
4558 {
4559 	list_del(&ses->set_list);
4560 	kmem_cache_free(sit_entry_set_slab, ses);
4561 }
4562 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4563 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4564 						struct list_head *head)
4565 {
4566 	struct sit_entry_set *next = ses;
4567 
4568 	if (list_is_last(&ses->set_list, head))
4569 		return;
4570 
4571 	list_for_each_entry_continue(next, head, set_list)
4572 		if (ses->entry_cnt <= next->entry_cnt) {
4573 			list_move_tail(&ses->set_list, &next->set_list);
4574 			return;
4575 		}
4576 
4577 	list_move_tail(&ses->set_list, head);
4578 }
4579 
add_sit_entry(unsigned int segno,struct list_head * head)4580 static void add_sit_entry(unsigned int segno, struct list_head *head)
4581 {
4582 	struct sit_entry_set *ses;
4583 	unsigned int start_segno = START_SEGNO(segno);
4584 
4585 	list_for_each_entry(ses, head, set_list) {
4586 		if (ses->start_segno == start_segno) {
4587 			ses->entry_cnt++;
4588 			adjust_sit_entry_set(ses, head);
4589 			return;
4590 		}
4591 	}
4592 
4593 	ses = grab_sit_entry_set();
4594 
4595 	ses->start_segno = start_segno;
4596 	ses->entry_cnt++;
4597 	list_add(&ses->set_list, head);
4598 }
4599 
add_sits_in_set(struct f2fs_sb_info * sbi)4600 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4601 {
4602 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4603 	struct list_head *set_list = &sm_info->sit_entry_set;
4604 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4605 	unsigned int segno;
4606 
4607 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4608 		add_sit_entry(segno, set_list);
4609 }
4610 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4611 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4612 {
4613 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4614 	struct f2fs_journal *journal = curseg->journal;
4615 	int i;
4616 
4617 	down_write(&curseg->journal_rwsem);
4618 	for (i = 0; i < sits_in_cursum(journal); i++) {
4619 		unsigned int segno;
4620 		bool dirtied;
4621 
4622 		segno = le32_to_cpu(segno_in_journal(journal, i));
4623 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4624 
4625 		if (!dirtied)
4626 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4627 	}
4628 	update_sits_in_cursum(journal, -i);
4629 	up_write(&curseg->journal_rwsem);
4630 }
4631 
4632 /*
4633  * CP calls this function, which flushes SIT entries including sit_journal,
4634  * and moves prefree segs to free segs.
4635  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4636 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4637 {
4638 	struct sit_info *sit_i = SIT_I(sbi);
4639 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4640 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4641 	struct f2fs_journal *journal = curseg->journal;
4642 	struct sit_entry_set *ses, *tmp;
4643 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4644 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4645 	struct seg_entry *se;
4646 
4647 	down_write(&sit_i->sentry_lock);
4648 
4649 	if (!sit_i->dirty_sentries)
4650 		goto out;
4651 
4652 	/*
4653 	 * add and account sit entries of dirty bitmap in sit entry
4654 	 * set temporarily
4655 	 */
4656 	add_sits_in_set(sbi);
4657 
4658 	/*
4659 	 * if there are no enough space in journal to store dirty sit
4660 	 * entries, remove all entries from journal and add and account
4661 	 * them in sit entry set.
4662 	 */
4663 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4664 								!to_journal)
4665 		remove_sits_in_journal(sbi);
4666 
4667 	/*
4668 	 * there are two steps to flush sit entries:
4669 	 * #1, flush sit entries to journal in current cold data summary block.
4670 	 * #2, flush sit entries to sit page.
4671 	 */
4672 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4673 		struct folio *folio = NULL;
4674 		struct f2fs_sit_block *raw_sit = NULL;
4675 		unsigned int start_segno = ses->start_segno;
4676 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4677 						(unsigned long)MAIN_SEGS(sbi));
4678 		unsigned int segno = start_segno;
4679 
4680 		if (to_journal &&
4681 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4682 			to_journal = false;
4683 
4684 		if (to_journal) {
4685 			down_write(&curseg->journal_rwsem);
4686 		} else {
4687 			folio = get_next_sit_folio(sbi, start_segno);
4688 			raw_sit = folio_address(folio);
4689 		}
4690 
4691 		/* flush dirty sit entries in region of current sit set */
4692 		for_each_set_bit_from(segno, bitmap, end) {
4693 			int offset, sit_offset;
4694 
4695 			se = get_seg_entry(sbi, segno);
4696 #ifdef CONFIG_F2FS_CHECK_FS
4697 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4698 						SIT_VBLOCK_MAP_SIZE))
4699 				f2fs_bug_on(sbi, 1);
4700 #endif
4701 
4702 			/* add discard candidates */
4703 			if (!(cpc->reason & CP_DISCARD)) {
4704 				cpc->trim_start = segno;
4705 				add_discard_addrs(sbi, cpc, false);
4706 			}
4707 
4708 			if (to_journal) {
4709 				offset = f2fs_lookup_journal_in_cursum(journal,
4710 							SIT_JOURNAL, segno, 1);
4711 				f2fs_bug_on(sbi, offset < 0);
4712 				segno_in_journal(journal, offset) =
4713 							cpu_to_le32(segno);
4714 				seg_info_to_raw_sit(se,
4715 					&sit_in_journal(journal, offset));
4716 				check_block_count(sbi, segno,
4717 					&sit_in_journal(journal, offset));
4718 			} else {
4719 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4720 				seg_info_to_raw_sit(se,
4721 						&raw_sit->entries[sit_offset]);
4722 				check_block_count(sbi, segno,
4723 						&raw_sit->entries[sit_offset]);
4724 			}
4725 
4726 			/* update ckpt_valid_block */
4727 			if (__is_large_section(sbi)) {
4728 				set_ckpt_valid_blocks(sbi, segno);
4729 				sanity_check_valid_blocks(sbi, segno);
4730 			}
4731 
4732 			__clear_bit(segno, bitmap);
4733 			sit_i->dirty_sentries--;
4734 			ses->entry_cnt--;
4735 		}
4736 
4737 		if (to_journal)
4738 			up_write(&curseg->journal_rwsem);
4739 		else
4740 			f2fs_folio_put(folio, true);
4741 
4742 		f2fs_bug_on(sbi, ses->entry_cnt);
4743 		release_sit_entry_set(ses);
4744 	}
4745 
4746 	f2fs_bug_on(sbi, !list_empty(head));
4747 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4748 out:
4749 	if (cpc->reason & CP_DISCARD) {
4750 		__u64 trim_start = cpc->trim_start;
4751 
4752 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4753 			add_discard_addrs(sbi, cpc, false);
4754 
4755 		cpc->trim_start = trim_start;
4756 	}
4757 	up_write(&sit_i->sentry_lock);
4758 
4759 	set_prefree_as_free_segments(sbi);
4760 }
4761 
build_sit_info(struct f2fs_sb_info * sbi)4762 static int build_sit_info(struct f2fs_sb_info *sbi)
4763 {
4764 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4765 	struct sit_info *sit_i;
4766 	unsigned int sit_segs, start;
4767 	char *src_bitmap, *bitmap;
4768 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4769 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4770 
4771 	/* allocate memory for SIT information */
4772 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4773 	if (!sit_i)
4774 		return -ENOMEM;
4775 
4776 	SM_I(sbi)->sit_info = sit_i;
4777 
4778 	sit_i->sentries =
4779 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4780 					      MAIN_SEGS(sbi)),
4781 			      GFP_KERNEL);
4782 	if (!sit_i->sentries)
4783 		return -ENOMEM;
4784 
4785 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4786 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4787 								GFP_KERNEL);
4788 	if (!sit_i->dirty_sentries_bitmap)
4789 		return -ENOMEM;
4790 
4791 #ifdef CONFIG_F2FS_CHECK_FS
4792 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4793 #else
4794 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4795 #endif
4796 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4797 	if (!sit_i->bitmap)
4798 		return -ENOMEM;
4799 
4800 	bitmap = sit_i->bitmap;
4801 
4802 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4803 		sit_i->sentries[start].cur_valid_map = bitmap;
4804 		bitmap += SIT_VBLOCK_MAP_SIZE;
4805 
4806 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4807 		bitmap += SIT_VBLOCK_MAP_SIZE;
4808 
4809 #ifdef CONFIG_F2FS_CHECK_FS
4810 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4811 		bitmap += SIT_VBLOCK_MAP_SIZE;
4812 #endif
4813 
4814 		if (discard_map) {
4815 			sit_i->sentries[start].discard_map = bitmap;
4816 			bitmap += SIT_VBLOCK_MAP_SIZE;
4817 		}
4818 	}
4819 
4820 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4821 	if (!sit_i->tmp_map)
4822 		return -ENOMEM;
4823 
4824 	if (__is_large_section(sbi)) {
4825 		sit_i->sec_entries =
4826 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4827 						      MAIN_SECS(sbi)),
4828 				      GFP_KERNEL);
4829 		if (!sit_i->sec_entries)
4830 			return -ENOMEM;
4831 	}
4832 
4833 	/* get information related with SIT */
4834 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4835 
4836 	/* setup SIT bitmap from ckeckpoint pack */
4837 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4838 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4839 
4840 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4841 	if (!sit_i->sit_bitmap)
4842 		return -ENOMEM;
4843 
4844 #ifdef CONFIG_F2FS_CHECK_FS
4845 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4846 					sit_bitmap_size, GFP_KERNEL);
4847 	if (!sit_i->sit_bitmap_mir)
4848 		return -ENOMEM;
4849 
4850 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4851 					main_bitmap_size, GFP_KERNEL);
4852 	if (!sit_i->invalid_segmap)
4853 		return -ENOMEM;
4854 #endif
4855 
4856 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4857 	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4858 	sit_i->written_valid_blocks = 0;
4859 	sit_i->bitmap_size = sit_bitmap_size;
4860 	sit_i->dirty_sentries = 0;
4861 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4862 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4863 	sit_i->mounted_time = ktime_get_boottime_seconds();
4864 	init_rwsem(&sit_i->sentry_lock);
4865 	return 0;
4866 }
4867 
build_free_segmap(struct f2fs_sb_info * sbi)4868 static int build_free_segmap(struct f2fs_sb_info *sbi)
4869 {
4870 	struct free_segmap_info *free_i;
4871 	unsigned int bitmap_size, sec_bitmap_size;
4872 
4873 	/* allocate memory for free segmap information */
4874 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4875 	if (!free_i)
4876 		return -ENOMEM;
4877 
4878 	SM_I(sbi)->free_info = free_i;
4879 
4880 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4881 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4882 	if (!free_i->free_segmap)
4883 		return -ENOMEM;
4884 
4885 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4886 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4887 	if (!free_i->free_secmap)
4888 		return -ENOMEM;
4889 
4890 	/* set all segments as dirty temporarily */
4891 	memset(free_i->free_segmap, 0xff, bitmap_size);
4892 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4893 
4894 	/* init free segmap information */
4895 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4896 	free_i->free_segments = 0;
4897 	free_i->free_sections = 0;
4898 	spin_lock_init(&free_i->segmap_lock);
4899 	return 0;
4900 }
4901 
build_curseg(struct f2fs_sb_info * sbi)4902 static int build_curseg(struct f2fs_sb_info *sbi)
4903 {
4904 	struct curseg_info *array;
4905 	int i;
4906 
4907 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4908 					sizeof(*array)), GFP_KERNEL);
4909 	if (!array)
4910 		return -ENOMEM;
4911 
4912 	SM_I(sbi)->curseg_array = array;
4913 
4914 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4915 		mutex_init(&array[i].curseg_mutex);
4916 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4917 		if (!array[i].sum_blk)
4918 			return -ENOMEM;
4919 		init_rwsem(&array[i].journal_rwsem);
4920 		array[i].journal = f2fs_kzalloc(sbi,
4921 				sizeof(struct f2fs_journal), GFP_KERNEL);
4922 		if (!array[i].journal)
4923 			return -ENOMEM;
4924 		array[i].seg_type = log_type_to_seg_type(i);
4925 		reset_curseg_fields(&array[i]);
4926 	}
4927 	return restore_curseg_summaries(sbi);
4928 }
4929 
build_sit_entries(struct f2fs_sb_info * sbi)4930 static int build_sit_entries(struct f2fs_sb_info *sbi)
4931 {
4932 	struct sit_info *sit_i = SIT_I(sbi);
4933 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4934 	struct f2fs_journal *journal = curseg->journal;
4935 	struct seg_entry *se;
4936 	struct f2fs_sit_entry sit;
4937 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4938 	unsigned int i, start, end;
4939 	unsigned int readed, start_blk = 0;
4940 	int err = 0;
4941 	block_t sit_valid_blocks[2] = {0, 0};
4942 
4943 	do {
4944 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4945 							META_SIT, true);
4946 
4947 		start = start_blk * sit_i->sents_per_block;
4948 		end = (start_blk + readed) * sit_i->sents_per_block;
4949 
4950 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4951 			struct f2fs_sit_block *sit_blk;
4952 			struct folio *folio;
4953 
4954 			se = &sit_i->sentries[start];
4955 			folio = get_current_sit_folio(sbi, start);
4956 			if (IS_ERR(folio))
4957 				return PTR_ERR(folio);
4958 			sit_blk = folio_address(folio);
4959 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4960 			f2fs_folio_put(folio, true);
4961 
4962 			err = check_block_count(sbi, start, &sit);
4963 			if (err)
4964 				return err;
4965 			seg_info_from_raw_sit(se, &sit);
4966 
4967 			if (se->type >= NR_PERSISTENT_LOG) {
4968 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4969 							se->type, start);
4970 				f2fs_handle_error(sbi,
4971 						ERROR_INCONSISTENT_SUM_TYPE);
4972 				return -EFSCORRUPTED;
4973 			}
4974 
4975 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4976 
4977 			if (!f2fs_block_unit_discard(sbi))
4978 				goto init_discard_map_done;
4979 
4980 			/* build discard map only one time */
4981 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4982 				memset(se->discard_map, 0xff,
4983 						SIT_VBLOCK_MAP_SIZE);
4984 				goto init_discard_map_done;
4985 			}
4986 			memcpy(se->discard_map, se->cur_valid_map,
4987 						SIT_VBLOCK_MAP_SIZE);
4988 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4989 						se->valid_blocks;
4990 init_discard_map_done:
4991 			if (__is_large_section(sbi))
4992 				get_sec_entry(sbi, start)->valid_blocks +=
4993 							se->valid_blocks;
4994 		}
4995 		start_blk += readed;
4996 	} while (start_blk < sit_blk_cnt);
4997 
4998 	down_read(&curseg->journal_rwsem);
4999 	for (i = 0; i < sits_in_cursum(journal); i++) {
5000 		unsigned int old_valid_blocks;
5001 
5002 		start = le32_to_cpu(segno_in_journal(journal, i));
5003 		if (start >= MAIN_SEGS(sbi)) {
5004 			f2fs_err(sbi, "Wrong journal entry on segno %u",
5005 				 start);
5006 			err = -EFSCORRUPTED;
5007 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5008 			break;
5009 		}
5010 
5011 		se = &sit_i->sentries[start];
5012 		sit = sit_in_journal(journal, i);
5013 
5014 		old_valid_blocks = se->valid_blocks;
5015 
5016 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5017 
5018 		err = check_block_count(sbi, start, &sit);
5019 		if (err)
5020 			break;
5021 		seg_info_from_raw_sit(se, &sit);
5022 
5023 		if (se->type >= NR_PERSISTENT_LOG) {
5024 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5025 							se->type, start);
5026 			err = -EFSCORRUPTED;
5027 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5028 			break;
5029 		}
5030 
5031 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5032 
5033 		if (f2fs_block_unit_discard(sbi)) {
5034 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5035 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5036 			} else {
5037 				memcpy(se->discard_map, se->cur_valid_map,
5038 							SIT_VBLOCK_MAP_SIZE);
5039 				sbi->discard_blks += old_valid_blocks;
5040 				sbi->discard_blks -= se->valid_blocks;
5041 			}
5042 		}
5043 
5044 		if (__is_large_section(sbi)) {
5045 			get_sec_entry(sbi, start)->valid_blocks +=
5046 							se->valid_blocks;
5047 			get_sec_entry(sbi, start)->valid_blocks -=
5048 							old_valid_blocks;
5049 		}
5050 	}
5051 	up_read(&curseg->journal_rwsem);
5052 
5053 	/* update ckpt_valid_block */
5054 	if (__is_large_section(sbi)) {
5055 		unsigned int segno;
5056 
5057 		for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5058 			set_ckpt_valid_blocks(sbi, segno);
5059 			sanity_check_valid_blocks(sbi, segno);
5060 		}
5061 	}
5062 
5063 	if (err)
5064 		return err;
5065 
5066 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5067 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5068 			 sit_valid_blocks[NODE], valid_node_count(sbi));
5069 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5070 		return -EFSCORRUPTED;
5071 	}
5072 
5073 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5074 				valid_user_blocks(sbi)) {
5075 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5076 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5077 			 valid_user_blocks(sbi));
5078 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5079 		return -EFSCORRUPTED;
5080 	}
5081 
5082 	return 0;
5083 }
5084 
init_free_segmap(struct f2fs_sb_info * sbi)5085 static void init_free_segmap(struct f2fs_sb_info *sbi)
5086 {
5087 	unsigned int start;
5088 	int type;
5089 	struct seg_entry *sentry;
5090 
5091 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
5092 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5093 			continue;
5094 		sentry = get_seg_entry(sbi, start);
5095 		if (!sentry->valid_blocks)
5096 			__set_free(sbi, start);
5097 		else
5098 			SIT_I(sbi)->written_valid_blocks +=
5099 						sentry->valid_blocks;
5100 	}
5101 
5102 	/* set use the current segments */
5103 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5104 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5105 
5106 		__set_test_and_inuse(sbi, curseg_t->segno);
5107 	}
5108 }
5109 
init_dirty_segmap(struct f2fs_sb_info * sbi)5110 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5111 {
5112 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5113 	struct free_segmap_info *free_i = FREE_I(sbi);
5114 	unsigned int segno = 0, offset = 0, secno;
5115 	block_t valid_blocks, usable_blks_in_seg;
5116 
5117 	while (1) {
5118 		/* find dirty segment based on free segmap */
5119 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5120 		if (segno >= MAIN_SEGS(sbi))
5121 			break;
5122 		offset = segno + 1;
5123 		valid_blocks = get_valid_blocks(sbi, segno, false);
5124 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5125 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5126 			continue;
5127 		if (valid_blocks > usable_blks_in_seg) {
5128 			f2fs_bug_on(sbi, 1);
5129 			continue;
5130 		}
5131 		mutex_lock(&dirty_i->seglist_lock);
5132 		__locate_dirty_segment(sbi, segno, DIRTY);
5133 		mutex_unlock(&dirty_i->seglist_lock);
5134 	}
5135 
5136 	if (!__is_large_section(sbi))
5137 		return;
5138 
5139 	mutex_lock(&dirty_i->seglist_lock);
5140 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5141 		valid_blocks = get_valid_blocks(sbi, segno, true);
5142 		secno = GET_SEC_FROM_SEG(sbi, segno);
5143 
5144 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5145 			continue;
5146 		if (IS_CURSEC(sbi, secno))
5147 			continue;
5148 		set_bit(secno, dirty_i->dirty_secmap);
5149 	}
5150 	mutex_unlock(&dirty_i->seglist_lock);
5151 }
5152 
init_victim_secmap(struct f2fs_sb_info * sbi)5153 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5154 {
5155 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5156 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5157 
5158 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5159 	if (!dirty_i->victim_secmap)
5160 		return -ENOMEM;
5161 
5162 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5163 	if (!dirty_i->pinned_secmap)
5164 		return -ENOMEM;
5165 
5166 	dirty_i->pinned_secmap_cnt = 0;
5167 	dirty_i->enable_pin_section = true;
5168 	return 0;
5169 }
5170 
build_dirty_segmap(struct f2fs_sb_info * sbi)5171 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5172 {
5173 	struct dirty_seglist_info *dirty_i;
5174 	unsigned int bitmap_size, i;
5175 
5176 	/* allocate memory for dirty segments list information */
5177 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5178 								GFP_KERNEL);
5179 	if (!dirty_i)
5180 		return -ENOMEM;
5181 
5182 	SM_I(sbi)->dirty_info = dirty_i;
5183 	mutex_init(&dirty_i->seglist_lock);
5184 
5185 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5186 
5187 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5188 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5189 								GFP_KERNEL);
5190 		if (!dirty_i->dirty_segmap[i])
5191 			return -ENOMEM;
5192 	}
5193 
5194 	if (__is_large_section(sbi)) {
5195 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5196 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5197 						bitmap_size, GFP_KERNEL);
5198 		if (!dirty_i->dirty_secmap)
5199 			return -ENOMEM;
5200 	}
5201 
5202 	init_dirty_segmap(sbi);
5203 	return init_victim_secmap(sbi);
5204 }
5205 
sanity_check_curseg(struct f2fs_sb_info * sbi)5206 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5207 {
5208 	int i;
5209 
5210 	/*
5211 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5212 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5213 	 */
5214 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5215 		struct curseg_info *curseg = CURSEG_I(sbi, i);
5216 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5217 		unsigned int blkofs = curseg->next_blkoff;
5218 
5219 		if (f2fs_sb_has_readonly(sbi) &&
5220 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5221 			continue;
5222 
5223 		sanity_check_seg_type(sbi, curseg->seg_type);
5224 
5225 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5226 			f2fs_err(sbi,
5227 				 "Current segment has invalid alloc_type:%d",
5228 				 curseg->alloc_type);
5229 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5230 			return -EFSCORRUPTED;
5231 		}
5232 
5233 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5234 			goto out;
5235 
5236 		if (curseg->alloc_type == SSR)
5237 			continue;
5238 
5239 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5240 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5241 				continue;
5242 out:
5243 			f2fs_err(sbi,
5244 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5245 				 i, curseg->segno, curseg->alloc_type,
5246 				 curseg->next_blkoff, blkofs);
5247 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5248 			return -EFSCORRUPTED;
5249 		}
5250 	}
5251 	return 0;
5252 }
5253 
5254 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5255 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5256 				    struct f2fs_dev_info *fdev,
5257 				    struct blk_zone *zone)
5258 {
5259 	unsigned int zone_segno;
5260 	block_t zone_block, valid_block_cnt;
5261 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5262 	int ret;
5263 	unsigned int nofs_flags;
5264 
5265 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5266 		return 0;
5267 
5268 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5269 	zone_segno = GET_SEGNO(sbi, zone_block);
5270 
5271 	/*
5272 	 * Skip check of zones cursegs point to, since
5273 	 * fix_curseg_write_pointer() checks them.
5274 	 */
5275 	if (zone_segno >= MAIN_SEGS(sbi))
5276 		return 0;
5277 
5278 	/*
5279 	 * Get # of valid block of the zone.
5280 	 */
5281 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5282 	if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5283 		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5284 				zone_segno, valid_block_cnt,
5285 				blk_zone_cond_str(zone->cond));
5286 		return 0;
5287 	}
5288 
5289 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5290 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5291 		return 0;
5292 
5293 	if (!valid_block_cnt) {
5294 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5295 			    "pointer. Reset the write pointer: cond[%s]",
5296 			    blk_zone_cond_str(zone->cond));
5297 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5298 					zone->len >> log_sectors_per_block);
5299 		if (ret)
5300 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5301 				 fdev->path, ret);
5302 		return ret;
5303 	}
5304 
5305 	/*
5306 	 * If there are valid blocks and the write pointer doesn't match
5307 	 * with them, we need to report the inconsistency and fill
5308 	 * the zone till the end to close the zone. This inconsistency
5309 	 * does not cause write error because the zone will not be
5310 	 * selected for write operation until it get discarded.
5311 	 */
5312 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5313 		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5314 		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5315 
5316 	nofs_flags = memalloc_nofs_save();
5317 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5318 				zone->start, zone->len);
5319 	memalloc_nofs_restore(nofs_flags);
5320 	if (ret == -EOPNOTSUPP) {
5321 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5322 					zone->len - (zone->wp - zone->start),
5323 					GFP_NOFS, 0);
5324 		if (ret)
5325 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5326 					fdev->path, ret);
5327 	} else if (ret) {
5328 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5329 				fdev->path, ret);
5330 	}
5331 
5332 	return ret;
5333 }
5334 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5335 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5336 						  block_t zone_blkaddr)
5337 {
5338 	int i;
5339 
5340 	for (i = 0; i < sbi->s_ndevs; i++) {
5341 		if (!bdev_is_zoned(FDEV(i).bdev))
5342 			continue;
5343 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5344 				zone_blkaddr <= FDEV(i).end_blk))
5345 			return &FDEV(i);
5346 	}
5347 
5348 	return NULL;
5349 }
5350 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5351 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5352 			      void *data)
5353 {
5354 	memcpy(data, zone, sizeof(struct blk_zone));
5355 	return 0;
5356 }
5357 
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5358 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5359 {
5360 	struct curseg_info *cs = CURSEG_I(sbi, type);
5361 	struct f2fs_dev_info *zbd;
5362 	struct blk_zone zone;
5363 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5364 	block_t cs_zone_block, wp_block;
5365 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5366 	sector_t zone_sector;
5367 	int err;
5368 
5369 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5370 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5371 
5372 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5373 	if (!zbd)
5374 		return 0;
5375 
5376 	/* report zone for the sector the curseg points to */
5377 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5378 		<< log_sectors_per_block;
5379 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5380 				  report_one_zone_cb, &zone);
5381 	if (err != 1) {
5382 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5383 			 zbd->path, err);
5384 		return err;
5385 	}
5386 
5387 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5388 		return 0;
5389 
5390 	/*
5391 	 * When safely unmounted in the previous mount, we could use current
5392 	 * segments. Otherwise, allocate new sections.
5393 	 */
5394 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5395 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5396 		wp_segno = GET_SEGNO(sbi, wp_block);
5397 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5398 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5399 
5400 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5401 				wp_sector_off == 0)
5402 			return 0;
5403 
5404 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5405 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5406 			    cs->next_blkoff, wp_segno, wp_blkoff);
5407 	}
5408 
5409 	/* Allocate a new section if it's not new. */
5410 	if (cs->next_blkoff ||
5411 	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5412 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5413 
5414 		f2fs_allocate_new_section(sbi, type, true);
5415 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5416 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5417 				type, old_segno, old_blkoff,
5418 				cs->segno, cs->next_blkoff);
5419 	}
5420 
5421 	/* check consistency of the zone curseg pointed to */
5422 	if (check_zone_write_pointer(sbi, zbd, &zone))
5423 		return -EIO;
5424 
5425 	/* check newly assigned zone */
5426 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5427 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5428 
5429 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5430 	if (!zbd)
5431 		return 0;
5432 
5433 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5434 		<< log_sectors_per_block;
5435 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5436 				  report_one_zone_cb, &zone);
5437 	if (err != 1) {
5438 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5439 			 zbd->path, err);
5440 		return err;
5441 	}
5442 
5443 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5444 		return 0;
5445 
5446 	if (zone.wp != zone.start) {
5447 		f2fs_notice(sbi,
5448 			    "New zone for curseg[%d] is not yet discarded. "
5449 			    "Reset the zone: curseg[0x%x,0x%x]",
5450 			    type, cs->segno, cs->next_blkoff);
5451 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5452 					zone.len >> log_sectors_per_block);
5453 		if (err) {
5454 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5455 				 zbd->path, err);
5456 			return err;
5457 		}
5458 	}
5459 
5460 	return 0;
5461 }
5462 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5463 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5464 {
5465 	int i, ret;
5466 
5467 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5468 		ret = do_fix_curseg_write_pointer(sbi, i);
5469 		if (ret)
5470 			return ret;
5471 	}
5472 
5473 	return 0;
5474 }
5475 
5476 struct check_zone_write_pointer_args {
5477 	struct f2fs_sb_info *sbi;
5478 	struct f2fs_dev_info *fdev;
5479 };
5480 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5481 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5482 				      void *data)
5483 {
5484 	struct check_zone_write_pointer_args *args;
5485 
5486 	args = (struct check_zone_write_pointer_args *)data;
5487 
5488 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5489 }
5490 
check_write_pointer(struct f2fs_sb_info * sbi)5491 static int check_write_pointer(struct f2fs_sb_info *sbi)
5492 {
5493 	int i, ret;
5494 	struct check_zone_write_pointer_args args;
5495 
5496 	for (i = 0; i < sbi->s_ndevs; i++) {
5497 		if (!bdev_is_zoned(FDEV(i).bdev))
5498 			continue;
5499 
5500 		args.sbi = sbi;
5501 		args.fdev = &FDEV(i);
5502 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5503 					  check_zone_write_pointer_cb, &args);
5504 		if (ret < 0)
5505 			return ret;
5506 	}
5507 
5508 	return 0;
5509 }
5510 
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5511 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5512 {
5513 	int ret;
5514 
5515 	if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5516 	    f2fs_hw_is_readonly(sbi))
5517 		return 0;
5518 
5519 	f2fs_notice(sbi, "Checking entire write pointers");
5520 	ret = fix_curseg_write_pointer(sbi);
5521 	if (!ret)
5522 		ret = check_write_pointer(sbi);
5523 	return ret;
5524 }
5525 
5526 /*
5527  * Return the number of usable blocks in a segment. The number of blocks
5528  * returned is always equal to the number of blocks in a segment for
5529  * segments fully contained within a sequential zone capacity or a
5530  * conventional zone. For segments partially contained in a sequential
5531  * zone capacity, the number of usable blocks up to the zone capacity
5532  * is returned. 0 is returned in all other cases.
5533  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5534 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5535 			struct f2fs_sb_info *sbi, unsigned int segno)
5536 {
5537 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5538 	unsigned int secno;
5539 
5540 	if (!sbi->unusable_blocks_per_sec)
5541 		return BLKS_PER_SEG(sbi);
5542 
5543 	secno = GET_SEC_FROM_SEG(sbi, segno);
5544 	seg_start = START_BLOCK(sbi, segno);
5545 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5546 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5547 
5548 	/*
5549 	 * If segment starts before zone capacity and spans beyond
5550 	 * zone capacity, then usable blocks are from seg start to
5551 	 * zone capacity. If the segment starts after the zone capacity,
5552 	 * then there are no usable blocks.
5553 	 */
5554 	if (seg_start >= sec_cap_blkaddr)
5555 		return 0;
5556 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5557 		return sec_cap_blkaddr - seg_start;
5558 
5559 	return BLKS_PER_SEG(sbi);
5560 }
5561 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5562 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5563 {
5564 	return 0;
5565 }
5566 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5567 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5568 							unsigned int segno)
5569 {
5570 	return 0;
5571 }
5572 
5573 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5574 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5575 					unsigned int segno)
5576 {
5577 	if (f2fs_sb_has_blkzoned(sbi))
5578 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5579 
5580 	return BLKS_PER_SEG(sbi);
5581 }
5582 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5583 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5584 {
5585 	if (f2fs_sb_has_blkzoned(sbi))
5586 		return CAP_SEGS_PER_SEC(sbi);
5587 
5588 	return SEGS_PER_SEC(sbi);
5589 }
5590 
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5591 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5592 	unsigned int segno)
5593 {
5594 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5595 	unsigned int secno = 0, start = 0;
5596 	unsigned int total_valid_blocks = 0;
5597 	unsigned long long mtime = 0;
5598 	unsigned int i = 0;
5599 
5600 	secno = GET_SEC_FROM_SEG(sbi, segno);
5601 	start = GET_SEG_FROM_SEC(sbi, secno);
5602 
5603 	if (!__is_large_section(sbi)) {
5604 		mtime = get_seg_entry(sbi, start + i)->mtime;
5605 		goto out;
5606 	}
5607 
5608 	for (i = 0; i < usable_segs_per_sec; i++) {
5609 		/* for large section, only check the mtime of valid segments */
5610 		struct seg_entry *se = get_seg_entry(sbi, start+i);
5611 
5612 		mtime += se->mtime * se->valid_blocks;
5613 		total_valid_blocks += se->valid_blocks;
5614 	}
5615 
5616 	if (total_valid_blocks == 0)
5617 		return INVALID_MTIME;
5618 
5619 	mtime = div_u64(mtime, total_valid_blocks);
5620 out:
5621 	if (unlikely(mtime == INVALID_MTIME))
5622 		mtime -= 1;
5623 	return mtime;
5624 }
5625 
5626 /*
5627  * Update min, max modified time for cost-benefit GC algorithm
5628  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5629 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5630 {
5631 	struct sit_info *sit_i = SIT_I(sbi);
5632 	unsigned int segno;
5633 
5634 	down_write(&sit_i->sentry_lock);
5635 
5636 	sit_i->min_mtime = ULLONG_MAX;
5637 
5638 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5639 		unsigned long long mtime = 0;
5640 
5641 		mtime = f2fs_get_section_mtime(sbi, segno);
5642 
5643 		if (sit_i->min_mtime > mtime)
5644 			sit_i->min_mtime = mtime;
5645 	}
5646 	sit_i->max_mtime = get_mtime(sbi, false);
5647 	sit_i->dirty_max_mtime = 0;
5648 	up_write(&sit_i->sentry_lock);
5649 }
5650 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5651 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5652 {
5653 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5654 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5655 	struct f2fs_sm_info *sm_info;
5656 	int err;
5657 
5658 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5659 	if (!sm_info)
5660 		return -ENOMEM;
5661 
5662 	/* init sm info */
5663 	sbi->sm_info = sm_info;
5664 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5665 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5666 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5667 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5668 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5669 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5670 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5671 	sm_info->rec_prefree_segments = sm_info->main_segments *
5672 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5673 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5674 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5675 
5676 	if (!f2fs_lfs_mode(sbi))
5677 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5678 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5679 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5680 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5681 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5682 	sm_info->min_ssr_sections = reserved_sections(sbi);
5683 
5684 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5685 
5686 	init_f2fs_rwsem(&sm_info->curseg_lock);
5687 
5688 	err = f2fs_create_flush_cmd_control(sbi);
5689 	if (err)
5690 		return err;
5691 
5692 	err = create_discard_cmd_control(sbi);
5693 	if (err)
5694 		return err;
5695 
5696 	err = build_sit_info(sbi);
5697 	if (err)
5698 		return err;
5699 	err = build_free_segmap(sbi);
5700 	if (err)
5701 		return err;
5702 	err = build_curseg(sbi);
5703 	if (err)
5704 		return err;
5705 
5706 	/* reinit free segmap based on SIT */
5707 	err = build_sit_entries(sbi);
5708 	if (err)
5709 		return err;
5710 
5711 	init_free_segmap(sbi);
5712 	err = build_dirty_segmap(sbi);
5713 	if (err)
5714 		return err;
5715 
5716 	err = sanity_check_curseg(sbi);
5717 	if (err)
5718 		return err;
5719 
5720 	init_min_max_mtime(sbi);
5721 	return 0;
5722 }
5723 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5724 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5725 		enum dirty_type dirty_type)
5726 {
5727 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5728 
5729 	mutex_lock(&dirty_i->seglist_lock);
5730 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5731 	dirty_i->nr_dirty[dirty_type] = 0;
5732 	mutex_unlock(&dirty_i->seglist_lock);
5733 }
5734 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5735 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5736 {
5737 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5738 
5739 	kvfree(dirty_i->pinned_secmap);
5740 	kvfree(dirty_i->victim_secmap);
5741 }
5742 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5743 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5744 {
5745 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5746 	int i;
5747 
5748 	if (!dirty_i)
5749 		return;
5750 
5751 	/* discard pre-free/dirty segments list */
5752 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5753 		discard_dirty_segmap(sbi, i);
5754 
5755 	if (__is_large_section(sbi)) {
5756 		mutex_lock(&dirty_i->seglist_lock);
5757 		kvfree(dirty_i->dirty_secmap);
5758 		mutex_unlock(&dirty_i->seglist_lock);
5759 	}
5760 
5761 	destroy_victim_secmap(sbi);
5762 	SM_I(sbi)->dirty_info = NULL;
5763 	kfree(dirty_i);
5764 }
5765 
destroy_curseg(struct f2fs_sb_info * sbi)5766 static void destroy_curseg(struct f2fs_sb_info *sbi)
5767 {
5768 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5769 	int i;
5770 
5771 	if (!array)
5772 		return;
5773 	SM_I(sbi)->curseg_array = NULL;
5774 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5775 		kfree(array[i].sum_blk);
5776 		kfree(array[i].journal);
5777 	}
5778 	kfree(array);
5779 }
5780 
destroy_free_segmap(struct f2fs_sb_info * sbi)5781 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5782 {
5783 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5784 
5785 	if (!free_i)
5786 		return;
5787 	SM_I(sbi)->free_info = NULL;
5788 	kvfree(free_i->free_segmap);
5789 	kvfree(free_i->free_secmap);
5790 	kfree(free_i);
5791 }
5792 
destroy_sit_info(struct f2fs_sb_info * sbi)5793 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5794 {
5795 	struct sit_info *sit_i = SIT_I(sbi);
5796 
5797 	if (!sit_i)
5798 		return;
5799 
5800 	if (sit_i->sentries)
5801 		kvfree(sit_i->bitmap);
5802 	kfree(sit_i->tmp_map);
5803 
5804 	kvfree(sit_i->sentries);
5805 	kvfree(sit_i->sec_entries);
5806 	kvfree(sit_i->dirty_sentries_bitmap);
5807 
5808 	SM_I(sbi)->sit_info = NULL;
5809 	kvfree(sit_i->sit_bitmap);
5810 #ifdef CONFIG_F2FS_CHECK_FS
5811 	kvfree(sit_i->sit_bitmap_mir);
5812 	kvfree(sit_i->invalid_segmap);
5813 #endif
5814 	kfree(sit_i);
5815 }
5816 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5817 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5818 {
5819 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5820 
5821 	if (!sm_info)
5822 		return;
5823 	f2fs_destroy_flush_cmd_control(sbi, true);
5824 	destroy_discard_cmd_control(sbi);
5825 	destroy_dirty_segmap(sbi);
5826 	destroy_curseg(sbi);
5827 	destroy_free_segmap(sbi);
5828 	destroy_sit_info(sbi);
5829 	sbi->sm_info = NULL;
5830 	kfree(sm_info);
5831 }
5832 
f2fs_create_segment_manager_caches(void)5833 int __init f2fs_create_segment_manager_caches(void)
5834 {
5835 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5836 			sizeof(struct discard_entry));
5837 	if (!discard_entry_slab)
5838 		goto fail;
5839 
5840 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5841 			sizeof(struct discard_cmd));
5842 	if (!discard_cmd_slab)
5843 		goto destroy_discard_entry;
5844 
5845 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5846 			sizeof(struct sit_entry_set));
5847 	if (!sit_entry_set_slab)
5848 		goto destroy_discard_cmd;
5849 
5850 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5851 			sizeof(struct revoke_entry));
5852 	if (!revoke_entry_slab)
5853 		goto destroy_sit_entry_set;
5854 	return 0;
5855 
5856 destroy_sit_entry_set:
5857 	kmem_cache_destroy(sit_entry_set_slab);
5858 destroy_discard_cmd:
5859 	kmem_cache_destroy(discard_cmd_slab);
5860 destroy_discard_entry:
5861 	kmem_cache_destroy(discard_entry_slab);
5862 fail:
5863 	return -ENOMEM;
5864 }
5865 
f2fs_destroy_segment_manager_caches(void)5866 void f2fs_destroy_segment_manager_caches(void)
5867 {
5868 	kmem_cache_destroy(sit_entry_set_slab);
5869 	kmem_cache_destroy(discard_cmd_slab);
5870 	kmem_cache_destroy(discard_entry_slab);
5871 	kmem_cache_destroy(revoke_entry_slab);
5872 }
5873