xref: /linux/fs/f2fs/data.c (revision 86d563ac5fb0c6f404e82692581bb67a6f35e5de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
f2fs_init_bioset(void)39 int __init f2fs_init_bioset(void)
40 {
41 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS);
43 }
44 
f2fs_destroy_bioset(void)45 void f2fs_destroy_bioset(void)
46 {
47 	bioset_exit(&f2fs_bioset);
48 }
49 
f2fs_is_cp_guaranteed(const struct folio * folio)50 bool f2fs_is_cp_guaranteed(const struct folio *folio)
51 {
52 	struct address_space *mapping = folio->mapping;
53 	struct inode *inode;
54 	struct f2fs_sb_info *sbi;
55 
56 	if (fscrypt_is_bounce_folio(folio))
57 		return folio_test_f2fs_gcing(fscrypt_pagecache_folio(folio));
58 
59 	inode = mapping->host;
60 	sbi = F2FS_I_SB(inode);
61 
62 	if (inode->i_ino == F2FS_META_INO(sbi) ||
63 			inode->i_ino == F2FS_NODE_INO(sbi) ||
64 			S_ISDIR(inode->i_mode))
65 		return true;
66 
67 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 			folio_test_f2fs_gcing(folio))
69 		return true;
70 	return false;
71 }
72 
__read_io_type(struct folio * folio)73 static enum count_type __read_io_type(struct folio *folio)
74 {
75 	struct address_space *mapping = folio->mapping;
76 
77 	if (mapping) {
78 		struct inode *inode = mapping->host;
79 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80 
81 		if (inode->i_ino == F2FS_META_INO(sbi))
82 			return F2FS_RD_META;
83 
84 		if (inode->i_ino == F2FS_NODE_INO(sbi))
85 			return F2FS_RD_NODE;
86 	}
87 	return F2FS_RD_DATA;
88 }
89 
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 	STEP_DECRYPT	= BIT(0),
94 #else
95 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 	STEP_DECOMPRESS	= BIT(1),
99 #else
100 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 	STEP_VERITY	= BIT(2),
104 #else
105 	STEP_VERITY	= 0,	/* compile out the verity-related code */
106 #endif
107 };
108 
109 struct bio_post_read_ctx {
110 	struct bio *bio;
111 	struct f2fs_sb_info *sbi;
112 	struct work_struct work;
113 	unsigned int enabled_steps;
114 	/*
115 	 * decompression_attempted keeps track of whether
116 	 * f2fs_end_read_compressed_page() has been called on the pages in the
117 	 * bio that belong to a compressed cluster yet.
118 	 */
119 	bool decompression_attempted;
120 	block_t fs_blkaddr;
121 };
122 
123 /*
124  * Update and unlock a bio's pages, and free the bio.
125  *
126  * This marks pages up-to-date only if there was no error in the bio (I/O error,
127  * decryption error, or verity error), as indicated by bio->bi_status.
128  *
129  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130  * aren't marked up-to-date here, as decompression is done on a per-compression-
131  * cluster basis rather than a per-bio basis.  Instead, we only must do two
132  * things for each compressed page here: call f2fs_end_read_compressed_page()
133  * with failed=true if an error occurred before it would have normally gotten
134  * called (i.e., I/O error or decryption error, but *not* verity error), and
135  * release the bio's reference to the decompress_io_ctx of the page's cluster.
136  */
f2fs_finish_read_bio(struct bio * bio,bool in_task)137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 	struct folio_iter fi;
140 	struct bio_post_read_ctx *ctx = bio->bi_private;
141 
142 	bio_for_each_folio_all(fi, bio) {
143 		struct folio *folio = fi.folio;
144 
145 		if (f2fs_is_compressed_page(folio)) {
146 			if (ctx && !ctx->decompression_attempted)
147 				f2fs_end_read_compressed_page(folio, true, 0,
148 							in_task);
149 			f2fs_put_folio_dic(folio, in_task);
150 			continue;
151 		}
152 
153 		dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
154 		folio_end_read(folio, bio->bi_status == BLK_STS_OK);
155 	}
156 
157 	if (ctx)
158 		mempool_free(ctx, bio_post_read_ctx_pool);
159 	bio_put(bio);
160 }
161 
f2fs_verify_bio(struct work_struct * work)162 static void f2fs_verify_bio(struct work_struct *work)
163 {
164 	struct bio_post_read_ctx *ctx =
165 		container_of(work, struct bio_post_read_ctx, work);
166 	struct bio *bio = ctx->bio;
167 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
168 
169 	/*
170 	 * fsverity_verify_bio() may call readahead() again, and while verity
171 	 * will be disabled for this, decryption and/or decompression may still
172 	 * be needed, resulting in another bio_post_read_ctx being allocated.
173 	 * So to prevent deadlocks we need to release the current ctx to the
174 	 * mempool first.  This assumes that verity is the last post-read step.
175 	 */
176 	mempool_free(ctx, bio_post_read_ctx_pool);
177 	bio->bi_private = NULL;
178 
179 	/*
180 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
181 	 * as those were handled separately by f2fs_end_read_compressed_page().
182 	 */
183 	if (may_have_compressed_pages) {
184 		struct folio_iter fi;
185 
186 		bio_for_each_folio_all(fi, bio) {
187 			struct folio *folio = fi.folio;
188 
189 			if (!f2fs_is_compressed_page(folio) &&
190 			    !fsverity_verify_page(&folio->page)) {
191 				bio->bi_status = BLK_STS_IOERR;
192 				break;
193 			}
194 		}
195 	} else {
196 		fsverity_verify_bio(bio);
197 	}
198 
199 	f2fs_finish_read_bio(bio, true);
200 }
201 
202 /*
203  * If the bio's data needs to be verified with fs-verity, then enqueue the
204  * verity work for the bio.  Otherwise finish the bio now.
205  *
206  * Note that to avoid deadlocks, the verity work can't be done on the
207  * decryption/decompression workqueue.  This is because verifying the data pages
208  * can involve reading verity metadata pages from the file, and these verity
209  * metadata pages may be encrypted and/or compressed.
210  */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)211 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
212 {
213 	struct bio_post_read_ctx *ctx = bio->bi_private;
214 
215 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
216 		INIT_WORK(&ctx->work, f2fs_verify_bio);
217 		fsverity_enqueue_verify_work(&ctx->work);
218 	} else {
219 		f2fs_finish_read_bio(bio, in_task);
220 	}
221 }
222 
223 /*
224  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
225  * remaining page was read by @ctx->bio.
226  *
227  * Note that a bio may span clusters (even a mix of compressed and uncompressed
228  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
229  * that the bio includes at least one compressed page.  The actual decompression
230  * is done on a per-cluster basis, not a per-bio basis.
231  */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)232 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
233 		bool in_task)
234 {
235 	struct folio_iter fi;
236 	bool all_compressed = true;
237 	block_t blkaddr = ctx->fs_blkaddr;
238 
239 	bio_for_each_folio_all(fi, ctx->bio) {
240 		struct folio *folio = fi.folio;
241 
242 		if (f2fs_is_compressed_page(folio))
243 			f2fs_end_read_compressed_page(folio, false, blkaddr,
244 						      in_task);
245 		else
246 			all_compressed = false;
247 
248 		blkaddr++;
249 	}
250 
251 	ctx->decompression_attempted = true;
252 
253 	/*
254 	 * Optimization: if all the bio's pages are compressed, then scheduling
255 	 * the per-bio verity work is unnecessary, as verity will be fully
256 	 * handled at the compression cluster level.
257 	 */
258 	if (all_compressed)
259 		ctx->enabled_steps &= ~STEP_VERITY;
260 }
261 
f2fs_post_read_work(struct work_struct * work)262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264 	struct bio_post_read_ctx *ctx =
265 		container_of(work, struct bio_post_read_ctx, work);
266 	struct bio *bio = ctx->bio;
267 
268 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
269 		f2fs_finish_read_bio(bio, true);
270 		return;
271 	}
272 
273 	if (ctx->enabled_steps & STEP_DECOMPRESS)
274 		f2fs_handle_step_decompress(ctx, true);
275 
276 	f2fs_verify_and_finish_bio(bio, true);
277 }
278 
f2fs_read_end_io(struct bio * bio)279 static void f2fs_read_end_io(struct bio *bio)
280 {
281 	struct f2fs_sb_info *sbi = F2FS_F_SB(bio_first_folio_all(bio));
282 	struct bio_post_read_ctx *ctx;
283 	bool intask = in_task() && !irqs_disabled();
284 
285 	iostat_update_and_unbind_ctx(bio);
286 	ctx = bio->bi_private;
287 
288 	if (time_to_inject(sbi, FAULT_READ_IO))
289 		bio->bi_status = BLK_STS_IOERR;
290 
291 	if (bio->bi_status != BLK_STS_OK) {
292 		f2fs_finish_read_bio(bio, intask);
293 		return;
294 	}
295 
296 	if (ctx) {
297 		unsigned int enabled_steps = ctx->enabled_steps &
298 					(STEP_DECRYPT | STEP_DECOMPRESS);
299 
300 		/*
301 		 * If we have only decompression step between decompression and
302 		 * decrypt, we don't need post processing for this.
303 		 */
304 		if (enabled_steps == STEP_DECOMPRESS &&
305 				!f2fs_low_mem_mode(sbi)) {
306 			f2fs_handle_step_decompress(ctx, intask);
307 		} else if (enabled_steps) {
308 			INIT_WORK(&ctx->work, f2fs_post_read_work);
309 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
310 			return;
311 		}
312 	}
313 
314 	f2fs_verify_and_finish_bio(bio, intask);
315 }
316 
f2fs_write_end_io(struct bio * bio)317 static void f2fs_write_end_io(struct bio *bio)
318 {
319 	struct f2fs_sb_info *sbi;
320 	struct folio_iter fi;
321 
322 	iostat_update_and_unbind_ctx(bio);
323 	sbi = bio->bi_private;
324 
325 	if (time_to_inject(sbi, FAULT_WRITE_IO))
326 		bio->bi_status = BLK_STS_IOERR;
327 
328 	bio_for_each_folio_all(fi, bio) {
329 		struct folio *folio = fi.folio;
330 		enum count_type type;
331 
332 		if (fscrypt_is_bounce_folio(folio)) {
333 			struct folio *io_folio = folio;
334 
335 			folio = fscrypt_pagecache_folio(io_folio);
336 			fscrypt_free_bounce_page(&io_folio->page);
337 		}
338 
339 #ifdef CONFIG_F2FS_FS_COMPRESSION
340 		if (f2fs_is_compressed_page(folio)) {
341 			f2fs_compress_write_end_io(bio, folio);
342 			continue;
343 		}
344 #endif
345 
346 		type = WB_DATA_TYPE(folio, false);
347 
348 		if (unlikely(bio->bi_status != BLK_STS_OK)) {
349 			mapping_set_error(folio->mapping, -EIO);
350 			if (type == F2FS_WB_CP_DATA)
351 				f2fs_stop_checkpoint(sbi, true,
352 						STOP_CP_REASON_WRITE_FAIL);
353 		}
354 
355 		f2fs_bug_on(sbi, is_node_folio(folio) &&
356 				folio->index != nid_of_node(folio));
357 
358 		dec_page_count(sbi, type);
359 		if (f2fs_in_warm_node_list(sbi, folio))
360 			f2fs_del_fsync_node_entry(sbi, folio);
361 		folio_clear_f2fs_gcing(folio);
362 		folio_end_writeback(folio);
363 	}
364 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
365 				wq_has_sleeper(&sbi->cp_wait))
366 		wake_up(&sbi->cp_wait);
367 
368 	bio_put(bio);
369 }
370 
371 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)372 static void f2fs_zone_write_end_io(struct bio *bio)
373 {
374 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
375 
376 	bio->bi_private = io->bi_private;
377 	complete(&io->zone_wait);
378 	f2fs_write_end_io(bio);
379 }
380 #endif
381 
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)382 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
383 		block_t blk_addr, sector_t *sector)
384 {
385 	struct block_device *bdev = sbi->sb->s_bdev;
386 	int i;
387 
388 	if (f2fs_is_multi_device(sbi)) {
389 		for (i = 0; i < sbi->s_ndevs; i++) {
390 			if (FDEV(i).start_blk <= blk_addr &&
391 			    FDEV(i).end_blk >= blk_addr) {
392 				blk_addr -= FDEV(i).start_blk;
393 				bdev = FDEV(i).bdev;
394 				break;
395 			}
396 		}
397 	}
398 
399 	if (sector)
400 		*sector = SECTOR_FROM_BLOCK(blk_addr);
401 	return bdev;
402 }
403 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)404 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
405 {
406 	int i;
407 
408 	if (!f2fs_is_multi_device(sbi))
409 		return 0;
410 
411 	for (i = 0; i < sbi->s_ndevs; i++)
412 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
413 			return i;
414 	return 0;
415 }
416 
f2fs_io_flags(struct f2fs_io_info * fio)417 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
418 {
419 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
420 	unsigned int fua_flag, meta_flag, io_flag;
421 	blk_opf_t op_flags = 0;
422 
423 	if (fio->op != REQ_OP_WRITE)
424 		return 0;
425 	if (fio->type == DATA)
426 		io_flag = fio->sbi->data_io_flag;
427 	else if (fio->type == NODE)
428 		io_flag = fio->sbi->node_io_flag;
429 	else
430 		return 0;
431 
432 	fua_flag = io_flag & temp_mask;
433 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
434 
435 	/*
436 	 * data/node io flag bits per temp:
437 	 *      REQ_META     |      REQ_FUA      |
438 	 *    5 |    4 |   3 |    2 |    1 |   0 |
439 	 * Cold | Warm | Hot | Cold | Warm | Hot |
440 	 */
441 	if (BIT(fio->temp) & meta_flag)
442 		op_flags |= REQ_META;
443 	if (BIT(fio->temp) & fua_flag)
444 		op_flags |= REQ_FUA;
445 
446 	if (fio->type == DATA &&
447 	    F2FS_I(fio->folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE)
448 		op_flags |= REQ_PRIO;
449 
450 	return op_flags;
451 }
452 
__bio_alloc(struct f2fs_io_info * fio,int npages)453 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
454 {
455 	struct f2fs_sb_info *sbi = fio->sbi;
456 	struct block_device *bdev;
457 	sector_t sector;
458 	struct bio *bio;
459 
460 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
461 	bio = bio_alloc_bioset(bdev, npages,
462 				fio->op | fio->op_flags | f2fs_io_flags(fio),
463 				GFP_NOIO, &f2fs_bioset);
464 	bio->bi_iter.bi_sector = sector;
465 	if (is_read_io(fio->op)) {
466 		bio->bi_end_io = f2fs_read_end_io;
467 		bio->bi_private = NULL;
468 	} else {
469 		bio->bi_end_io = f2fs_write_end_io;
470 		bio->bi_private = sbi;
471 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
472 						fio->type, fio->temp);
473 	}
474 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
475 
476 	if (fio->io_wbc)
477 		wbc_init_bio(fio->io_wbc, bio);
478 
479 	return bio;
480 }
481 
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)482 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
483 				  pgoff_t first_idx,
484 				  const struct f2fs_io_info *fio,
485 				  gfp_t gfp_mask)
486 {
487 	/*
488 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
489 	 * read/write raw data without encryption.
490 	 */
491 	if (!fio || !fio->encrypted_page)
492 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
493 }
494 
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)495 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
496 				     pgoff_t next_idx,
497 				     const struct f2fs_io_info *fio)
498 {
499 	/*
500 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
501 	 * read/write raw data without encryption.
502 	 */
503 	if (fio && fio->encrypted_page)
504 		return !bio_has_crypt_ctx(bio);
505 
506 	return fscrypt_mergeable_bio(bio, inode, next_idx);
507 }
508 
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)509 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
510 				 enum page_type type)
511 {
512 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
513 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
514 
515 	iostat_update_submit_ctx(bio, type);
516 	submit_bio(bio);
517 }
518 
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)519 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
520 				  enum page_type type)
521 {
522 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
523 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524 	iostat_update_submit_ctx(bio, type);
525 	submit_bio(bio);
526 }
527 
__submit_merged_bio(struct f2fs_bio_info * io)528 static void __submit_merged_bio(struct f2fs_bio_info *io)
529 {
530 	struct f2fs_io_info *fio = &io->fio;
531 
532 	if (!io->bio)
533 		return;
534 
535 	if (is_read_io(fio->op)) {
536 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
537 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
538 	} else {
539 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
540 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
541 	}
542 	io->bio = NULL;
543 }
544 
__has_merged_page(struct bio * bio,struct inode * inode,struct folio * folio,nid_t ino)545 static bool __has_merged_page(struct bio *bio, struct inode *inode,
546 						struct folio *folio, nid_t ino)
547 {
548 	struct folio_iter fi;
549 
550 	if (!bio)
551 		return false;
552 
553 	if (!inode && !folio && !ino)
554 		return true;
555 
556 	bio_for_each_folio_all(fi, bio) {
557 		struct folio *target = fi.folio;
558 
559 		if (fscrypt_is_bounce_folio(target)) {
560 			target = fscrypt_pagecache_folio(target);
561 			if (IS_ERR(target))
562 				continue;
563 		}
564 		if (f2fs_is_compressed_page(target)) {
565 			target = f2fs_compress_control_folio(target);
566 			if (IS_ERR(target))
567 				continue;
568 		}
569 
570 		if (inode && inode == target->mapping->host)
571 			return true;
572 		if (folio && folio == target)
573 			return true;
574 		if (ino && ino == ino_of_node(target))
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582 {
583 	int i;
584 
585 	for (i = 0; i < NR_PAGE_TYPE; i++) {
586 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 		int j;
588 
589 		sbi->write_io[i] = f2fs_kmalloc(sbi,
590 				array_size(n, sizeof(struct f2fs_bio_info)),
591 				GFP_KERNEL);
592 		if (!sbi->write_io[i])
593 			return -ENOMEM;
594 
595 		for (j = HOT; j < n; j++) {
596 			struct f2fs_bio_info *io = &sbi->write_io[i][j];
597 
598 			init_f2fs_rwsem(&io->io_rwsem);
599 			io->sbi = sbi;
600 			io->bio = NULL;
601 			io->last_block_in_bio = 0;
602 			spin_lock_init(&io->io_lock);
603 			INIT_LIST_HEAD(&io->io_list);
604 			INIT_LIST_HEAD(&io->bio_list);
605 			init_f2fs_rwsem(&io->bio_list_lock);
606 #ifdef CONFIG_BLK_DEV_ZONED
607 			init_completion(&io->zone_wait);
608 			io->zone_pending_bio = NULL;
609 			io->bi_private = NULL;
610 #endif
611 		}
612 	}
613 
614 	return 0;
615 }
616 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)617 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
618 				enum page_type type, enum temp_type temp)
619 {
620 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
621 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
622 
623 	f2fs_down_write(&io->io_rwsem);
624 
625 	if (!io->bio)
626 		goto unlock_out;
627 
628 	/* change META to META_FLUSH in the checkpoint procedure */
629 	if (type >= META_FLUSH) {
630 		io->fio.type = META_FLUSH;
631 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
632 		if (!test_opt(sbi, NOBARRIER))
633 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
634 	}
635 	__submit_merged_bio(io);
636 unlock_out:
637 	f2fs_up_write(&io->io_rwsem);
638 }
639 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct folio * folio,nid_t ino,enum page_type type,bool force)640 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
641 				struct inode *inode, struct folio *folio,
642 				nid_t ino, enum page_type type, bool force)
643 {
644 	enum temp_type temp;
645 	bool ret = true;
646 
647 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
648 		if (!force)	{
649 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
650 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
651 
652 			f2fs_down_read(&io->io_rwsem);
653 			ret = __has_merged_page(io->bio, inode, folio, ino);
654 			f2fs_up_read(&io->io_rwsem);
655 		}
656 		if (ret)
657 			__f2fs_submit_merged_write(sbi, type, temp);
658 
659 		/* TODO: use HOT temp only for meta pages now. */
660 		if (type >= META)
661 			break;
662 	}
663 }
664 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)665 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
666 {
667 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
668 }
669 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct folio * folio,nid_t ino,enum page_type type)670 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
671 				struct inode *inode, struct folio *folio,
672 				nid_t ino, enum page_type type)
673 {
674 	__submit_merged_write_cond(sbi, inode, folio, ino, type, false);
675 }
676 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)677 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
678 {
679 	f2fs_submit_merged_write(sbi, DATA);
680 	f2fs_submit_merged_write(sbi, NODE);
681 	f2fs_submit_merged_write(sbi, META);
682 }
683 
684 /*
685  * Fill the locked page with data located in the block address.
686  * A caller needs to unlock the page on failure.
687  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)688 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
689 {
690 	struct bio *bio;
691 	struct folio *fio_folio = fio->folio;
692 	struct folio *data_folio = fio->encrypted_page ?
693 			page_folio(fio->encrypted_page) : fio_folio;
694 
695 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
696 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
697 			META_GENERIC : DATA_GENERIC_ENHANCE)))
698 		return -EFSCORRUPTED;
699 
700 	trace_f2fs_submit_folio_bio(data_folio, fio);
701 
702 	/* Allocate a new bio */
703 	bio = __bio_alloc(fio, 1);
704 
705 	f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
706 			fio_folio->index, fio, GFP_NOIO);
707 	bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
708 
709 	if (fio->io_wbc && !is_read_io(fio->op))
710 		wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
711 
712 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
713 			__read_io_type(data_folio) : WB_DATA_TYPE(fio->folio, false));
714 
715 	if (is_read_io(bio_op(bio)))
716 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
717 	else
718 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
719 	return 0;
720 }
721 
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)722 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
723 				block_t last_blkaddr, block_t cur_blkaddr)
724 {
725 	if (unlikely(sbi->max_io_bytes &&
726 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
727 		return false;
728 	if (last_blkaddr + 1 != cur_blkaddr)
729 		return false;
730 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
731 }
732 
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)733 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
734 						struct f2fs_io_info *fio)
735 {
736 	blk_opf_t mask = ~(REQ_PREFLUSH | REQ_FUA);
737 
738 	if (io->fio.op != fio->op)
739 		return false;
740 	return (io->fio.op_flags & mask) == (fio->op_flags & mask);
741 }
742 
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)743 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
744 					struct f2fs_bio_info *io,
745 					struct f2fs_io_info *fio,
746 					block_t last_blkaddr,
747 					block_t cur_blkaddr)
748 {
749 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
750 		return false;
751 	return io_type_is_mergeable(io, fio);
752 }
753 
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)754 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
755 				struct page *page, enum temp_type temp)
756 {
757 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
758 	struct bio_entry *be;
759 
760 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
761 	be->bio = bio;
762 	bio_get(bio);
763 
764 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
765 		f2fs_bug_on(sbi, 1);
766 
767 	f2fs_down_write(&io->bio_list_lock);
768 	list_add_tail(&be->list, &io->bio_list);
769 	f2fs_up_write(&io->bio_list_lock);
770 }
771 
del_bio_entry(struct bio_entry * be)772 static void del_bio_entry(struct bio_entry *be)
773 {
774 	list_del(&be->list);
775 	kmem_cache_free(bio_entry_slab, be);
776 }
777 
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)778 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
779 							struct page *page)
780 {
781 	struct folio *fio_folio = fio->folio;
782 	struct f2fs_sb_info *sbi = fio->sbi;
783 	enum temp_type temp;
784 	bool found = false;
785 	int ret = -EAGAIN;
786 
787 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
788 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
789 		struct list_head *head = &io->bio_list;
790 		struct bio_entry *be;
791 
792 		f2fs_down_write(&io->bio_list_lock);
793 		list_for_each_entry(be, head, list) {
794 			if (be->bio != *bio)
795 				continue;
796 
797 			found = true;
798 
799 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
800 							    *fio->last_block,
801 							    fio->new_blkaddr));
802 			if (f2fs_crypt_mergeable_bio(*bio,
803 					fio_folio->mapping->host,
804 					fio_folio->index, fio) &&
805 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
806 					PAGE_SIZE) {
807 				ret = 0;
808 				break;
809 			}
810 
811 			/* page can't be merged into bio; submit the bio */
812 			del_bio_entry(be);
813 			f2fs_submit_write_bio(sbi, *bio, DATA);
814 			break;
815 		}
816 		f2fs_up_write(&io->bio_list_lock);
817 	}
818 
819 	if (ret) {
820 		bio_put(*bio);
821 		*bio = NULL;
822 	}
823 
824 	return ret;
825 }
826 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct folio * folio)827 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
828 					struct bio **bio, struct folio *folio)
829 {
830 	enum temp_type temp;
831 	bool found = false;
832 	struct bio *target = bio ? *bio : NULL;
833 
834 	f2fs_bug_on(sbi, !target && !folio);
835 
836 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
837 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
838 		struct list_head *head = &io->bio_list;
839 		struct bio_entry *be;
840 
841 		if (list_empty(head))
842 			continue;
843 
844 		f2fs_down_read(&io->bio_list_lock);
845 		list_for_each_entry(be, head, list) {
846 			if (target)
847 				found = (target == be->bio);
848 			else
849 				found = __has_merged_page(be->bio, NULL,
850 							folio, 0);
851 			if (found)
852 				break;
853 		}
854 		f2fs_up_read(&io->bio_list_lock);
855 
856 		if (!found)
857 			continue;
858 
859 		found = false;
860 
861 		f2fs_down_write(&io->bio_list_lock);
862 		list_for_each_entry(be, head, list) {
863 			if (target)
864 				found = (target == be->bio);
865 			else
866 				found = __has_merged_page(be->bio, NULL,
867 							folio, 0);
868 			if (found) {
869 				target = be->bio;
870 				del_bio_entry(be);
871 				break;
872 			}
873 		}
874 		f2fs_up_write(&io->bio_list_lock);
875 	}
876 
877 	if (found)
878 		f2fs_submit_write_bio(sbi, target, DATA);
879 	if (bio && *bio) {
880 		bio_put(*bio);
881 		*bio = NULL;
882 	}
883 }
884 
f2fs_merge_page_bio(struct f2fs_io_info * fio)885 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
886 {
887 	struct bio *bio = *fio->bio;
888 	struct folio *data_folio = fio->encrypted_page ?
889 			page_folio(fio->encrypted_page) : fio->folio;
890 	struct folio *folio = fio->folio;
891 
892 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
893 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
894 		return -EFSCORRUPTED;
895 
896 	trace_f2fs_submit_folio_bio(data_folio, fio);
897 
898 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899 						fio->new_blkaddr))
900 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 alloc_new:
902 	if (!bio) {
903 		bio = __bio_alloc(fio, BIO_MAX_VECS);
904 		f2fs_set_bio_crypt_ctx(bio, folio->mapping->host,
905 				folio->index, fio, GFP_NOIO);
906 
907 		add_bio_entry(fio->sbi, bio, &data_folio->page, fio->temp);
908 	} else {
909 		if (add_ipu_page(fio, &bio, &data_folio->page))
910 			goto alloc_new;
911 	}
912 
913 	if (fio->io_wbc)
914 		wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio));
915 
916 	inc_page_count(fio->sbi, WB_DATA_TYPE(folio, false));
917 
918 	*fio->last_block = fio->new_blkaddr;
919 	*fio->bio = bio;
920 
921 	return 0;
922 }
923 
924 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)925 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927 	struct block_device *bdev = sbi->sb->s_bdev;
928 	int devi = 0;
929 
930 	if (f2fs_is_multi_device(sbi)) {
931 		devi = f2fs_target_device_index(sbi, blkaddr);
932 		if (blkaddr < FDEV(devi).start_blk ||
933 		    blkaddr > FDEV(devi).end_blk) {
934 			f2fs_err(sbi, "Invalid block %x", blkaddr);
935 			return false;
936 		}
937 		blkaddr -= FDEV(devi).start_blk;
938 		bdev = FDEV(devi).bdev;
939 	}
940 	return bdev_is_zoned(bdev) &&
941 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
942 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
943 }
944 #endif
945 
f2fs_submit_page_write(struct f2fs_io_info * fio)946 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 {
948 	struct f2fs_sb_info *sbi = fio->sbi;
949 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951 	struct folio *bio_folio;
952 	enum count_type type;
953 
954 	f2fs_bug_on(sbi, is_read_io(fio->op));
955 
956 	f2fs_down_write(&io->io_rwsem);
957 next:
958 #ifdef CONFIG_BLK_DEV_ZONED
959 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
960 		wait_for_completion_io(&io->zone_wait);
961 		bio_put(io->zone_pending_bio);
962 		io->zone_pending_bio = NULL;
963 		io->bi_private = NULL;
964 	}
965 #endif
966 
967 	if (fio->in_list) {
968 		spin_lock(&io->io_lock);
969 		if (list_empty(&io->io_list)) {
970 			spin_unlock(&io->io_lock);
971 			goto out;
972 		}
973 		fio = list_first_entry(&io->io_list,
974 						struct f2fs_io_info, list);
975 		list_del(&fio->list);
976 		spin_unlock(&io->io_lock);
977 	}
978 
979 	verify_fio_blkaddr(fio);
980 
981 	if (fio->encrypted_page)
982 		bio_folio = page_folio(fio->encrypted_page);
983 	else if (fio->compressed_page)
984 		bio_folio = page_folio(fio->compressed_page);
985 	else
986 		bio_folio = fio->folio;
987 
988 	/* set submitted = true as a return value */
989 	fio->submitted = 1;
990 
991 	type = WB_DATA_TYPE(bio_folio, fio->compressed_page);
992 	inc_page_count(sbi, type);
993 
994 	if (io->bio &&
995 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
996 			      fio->new_blkaddr) ||
997 	     !f2fs_crypt_mergeable_bio(io->bio, fio_inode(fio),
998 				bio_folio->index, fio)))
999 		__submit_merged_bio(io);
1000 alloc_new:
1001 	if (io->bio == NULL) {
1002 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1003 		f2fs_set_bio_crypt_ctx(io->bio, fio_inode(fio),
1004 				bio_folio->index, fio, GFP_NOIO);
1005 		io->fio = *fio;
1006 	}
1007 
1008 	if (!bio_add_folio(io->bio, bio_folio, folio_size(bio_folio), 0)) {
1009 		__submit_merged_bio(io);
1010 		goto alloc_new;
1011 	}
1012 
1013 	if (fio->io_wbc)
1014 		wbc_account_cgroup_owner(fio->io_wbc, fio->folio,
1015 				folio_size(fio->folio));
1016 
1017 	io->last_block_in_bio = fio->new_blkaddr;
1018 
1019 	trace_f2fs_submit_folio_write(fio->folio, fio);
1020 #ifdef CONFIG_BLK_DEV_ZONED
1021 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1022 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1023 		bio_get(io->bio);
1024 		reinit_completion(&io->zone_wait);
1025 		io->bi_private = io->bio->bi_private;
1026 		io->bio->bi_private = io;
1027 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1028 		io->zone_pending_bio = io->bio;
1029 		__submit_merged_bio(io);
1030 	}
1031 #endif
1032 	if (fio->in_list)
1033 		goto next;
1034 out:
1035 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1036 				!f2fs_is_checkpoint_ready(sbi))
1037 		__submit_merged_bio(io);
1038 	f2fs_up_write(&io->io_rwsem);
1039 }
1040 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1041 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1042 				      unsigned nr_pages, blk_opf_t op_flag,
1043 				      pgoff_t first_idx, bool for_write)
1044 {
1045 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 	struct bio *bio;
1047 	struct bio_post_read_ctx *ctx = NULL;
1048 	unsigned int post_read_steps = 0;
1049 	sector_t sector;
1050 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1051 
1052 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1053 			       REQ_OP_READ | op_flag,
1054 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1055 	bio->bi_iter.bi_sector = sector;
1056 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1057 	bio->bi_end_io = f2fs_read_end_io;
1058 
1059 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1060 		post_read_steps |= STEP_DECRYPT;
1061 
1062 	if (f2fs_need_verity(inode, first_idx))
1063 		post_read_steps |= STEP_VERITY;
1064 
1065 	/*
1066 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1067 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1068 	 * bio_post_read_ctx if the file is compressed, but the caller is
1069 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1070 	 */
1071 
1072 	if (post_read_steps || f2fs_compressed_file(inode)) {
1073 		/* Due to the mempool, this never fails. */
1074 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1075 		ctx->bio = bio;
1076 		ctx->sbi = sbi;
1077 		ctx->enabled_steps = post_read_steps;
1078 		ctx->fs_blkaddr = blkaddr;
1079 		ctx->decompression_attempted = false;
1080 		bio->bi_private = ctx;
1081 	}
1082 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1083 
1084 	return bio;
1085 }
1086 
1087 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1088 static void f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1089 				 block_t blkaddr, blk_opf_t op_flags,
1090 				 bool for_write)
1091 {
1092 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093 	struct bio *bio;
1094 
1095 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1096 					folio->index, for_write);
1097 
1098 	/* wait for GCed page writeback via META_MAPPING */
1099 	f2fs_wait_on_block_writeback(inode, blkaddr);
1100 
1101 	if (!bio_add_folio(bio, folio, PAGE_SIZE, 0))
1102 		f2fs_bug_on(sbi, 1);
1103 
1104 	inc_page_count(sbi, F2FS_RD_DATA);
1105 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1106 	f2fs_submit_read_bio(sbi, bio, DATA);
1107 }
1108 
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1109 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1110 {
1111 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_folio);
1112 
1113 	dn->data_blkaddr = blkaddr;
1114 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1115 }
1116 
1117 /*
1118  * Lock ordering for the change of data block address:
1119  * ->data_page
1120  *  ->node_folio
1121  *    update block addresses in the node page
1122  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1123 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1124 {
1125 	f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1126 	__set_data_blkaddr(dn, blkaddr);
1127 	if (folio_mark_dirty(dn->node_folio))
1128 		dn->node_changed = true;
1129 }
1130 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1131 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 	f2fs_set_data_blkaddr(dn, blkaddr);
1134 	f2fs_update_read_extent_cache(dn);
1135 }
1136 
1137 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1138 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1139 {
1140 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1141 	int err;
1142 
1143 	if (!count)
1144 		return 0;
1145 
1146 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1147 		return -EPERM;
1148 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1149 	if (unlikely(err))
1150 		return err;
1151 
1152 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1153 						dn->ofs_in_node, count);
1154 
1155 	f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1156 
1157 	for (; count > 0; dn->ofs_in_node++) {
1158 		block_t blkaddr = f2fs_data_blkaddr(dn);
1159 
1160 		if (blkaddr == NULL_ADDR) {
1161 			__set_data_blkaddr(dn, NEW_ADDR);
1162 			count--;
1163 		}
1164 	}
1165 
1166 	if (folio_mark_dirty(dn->node_folio))
1167 		dn->node_changed = true;
1168 	return 0;
1169 }
1170 
1171 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1172 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1173 {
1174 	unsigned int ofs_in_node = dn->ofs_in_node;
1175 	int ret;
1176 
1177 	ret = f2fs_reserve_new_blocks(dn, 1);
1178 	dn->ofs_in_node = ofs_in_node;
1179 	return ret;
1180 }
1181 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1182 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1183 {
1184 	bool need_put = dn->inode_folio ? false : true;
1185 	int err;
1186 
1187 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1188 	if (err)
1189 		return err;
1190 
1191 	if (dn->data_blkaddr == NULL_ADDR)
1192 		err = f2fs_reserve_new_block(dn);
1193 	if (err || need_put)
1194 		f2fs_put_dnode(dn);
1195 	return err;
1196 }
1197 
f2fs_get_read_data_folio(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1198 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
1199 		blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs)
1200 {
1201 	struct address_space *mapping = inode->i_mapping;
1202 	struct dnode_of_data dn;
1203 	struct folio *folio;
1204 	int err;
1205 
1206 	folio = f2fs_grab_cache_folio(mapping, index, for_write);
1207 	if (IS_ERR(folio))
1208 		return folio;
1209 
1210 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1211 						&dn.data_blkaddr)) {
1212 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1213 						DATA_GENERIC_ENHANCE_READ)) {
1214 			err = -EFSCORRUPTED;
1215 			goto put_err;
1216 		}
1217 		goto got_it;
1218 	}
1219 
1220 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1221 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1222 	if (err) {
1223 		if (err == -ENOENT && next_pgofs)
1224 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1225 		goto put_err;
1226 	}
1227 	f2fs_put_dnode(&dn);
1228 
1229 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1230 		err = -ENOENT;
1231 		if (next_pgofs)
1232 			*next_pgofs = index + 1;
1233 		goto put_err;
1234 	}
1235 	if (dn.data_blkaddr != NEW_ADDR &&
1236 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1237 						dn.data_blkaddr,
1238 						DATA_GENERIC_ENHANCE)) {
1239 		err = -EFSCORRUPTED;
1240 		goto put_err;
1241 	}
1242 got_it:
1243 	if (folio_test_uptodate(folio)) {
1244 		folio_unlock(folio);
1245 		return folio;
1246 	}
1247 
1248 	/*
1249 	 * A new dentry page is allocated but not able to be written, since its
1250 	 * new inode page couldn't be allocated due to -ENOSPC.
1251 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1252 	 * see, f2fs_add_link -> f2fs_get_new_data_folio ->
1253 	 * f2fs_init_inode_metadata.
1254 	 */
1255 	if (dn.data_blkaddr == NEW_ADDR) {
1256 		folio_zero_segment(folio, 0, folio_size(folio));
1257 		if (!folio_test_uptodate(folio))
1258 			folio_mark_uptodate(folio);
1259 		folio_unlock(folio);
1260 		return folio;
1261 	}
1262 
1263 	f2fs_submit_page_read(inode, folio, dn.data_blkaddr,
1264 						op_flags, for_write);
1265 	return folio;
1266 
1267 put_err:
1268 	f2fs_folio_put(folio, true);
1269 	return ERR_PTR(err);
1270 }
1271 
f2fs_find_data_folio(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1272 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
1273 					pgoff_t *next_pgofs)
1274 {
1275 	struct address_space *mapping = inode->i_mapping;
1276 	struct folio *folio;
1277 
1278 	folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0);
1279 	if (IS_ERR(folio))
1280 		goto read;
1281 	if (folio_test_uptodate(folio))
1282 		return folio;
1283 	f2fs_folio_put(folio, false);
1284 
1285 read:
1286 	folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs);
1287 	if (IS_ERR(folio))
1288 		return folio;
1289 
1290 	if (folio_test_uptodate(folio))
1291 		return folio;
1292 
1293 	folio_wait_locked(folio);
1294 	if (unlikely(!folio_test_uptodate(folio))) {
1295 		f2fs_folio_put(folio, false);
1296 		return ERR_PTR(-EIO);
1297 	}
1298 	return folio;
1299 }
1300 
1301 /*
1302  * If it tries to access a hole, return an error.
1303  * Because, the callers, functions in dir.c and GC, should be able to know
1304  * whether this page exists or not.
1305  */
f2fs_get_lock_data_folio(struct inode * inode,pgoff_t index,bool for_write)1306 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
1307 							bool for_write)
1308 {
1309 	struct address_space *mapping = inode->i_mapping;
1310 	struct folio *folio;
1311 
1312 	folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL);
1313 	if (IS_ERR(folio))
1314 		return folio;
1315 
1316 	/* wait for read completion */
1317 	folio_lock(folio);
1318 	if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) {
1319 		f2fs_folio_put(folio, true);
1320 		return ERR_PTR(-EIO);
1321 	}
1322 	return folio;
1323 }
1324 
1325 /*
1326  * Caller ensures that this data page is never allocated.
1327  * A new zero-filled data page is allocated in the page cache.
1328  *
1329  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1330  * f2fs_unlock_op().
1331  * Note that, ifolio is set only by make_empty_dir, and if any error occur,
1332  * ifolio should be released by this function.
1333  */
f2fs_get_new_data_folio(struct inode * inode,struct folio * ifolio,pgoff_t index,bool new_i_size)1334 struct folio *f2fs_get_new_data_folio(struct inode *inode,
1335 		struct folio *ifolio, pgoff_t index, bool new_i_size)
1336 {
1337 	struct address_space *mapping = inode->i_mapping;
1338 	struct folio *folio;
1339 	struct dnode_of_data dn;
1340 	int err;
1341 
1342 	folio = f2fs_grab_cache_folio(mapping, index, true);
1343 	if (IS_ERR(folio)) {
1344 		/*
1345 		 * before exiting, we should make sure ifolio will be released
1346 		 * if any error occur.
1347 		 */
1348 		f2fs_folio_put(ifolio, true);
1349 		return ERR_PTR(-ENOMEM);
1350 	}
1351 
1352 	set_new_dnode(&dn, inode, ifolio, NULL, 0);
1353 	err = f2fs_reserve_block(&dn, index);
1354 	if (err) {
1355 		f2fs_folio_put(folio, true);
1356 		return ERR_PTR(err);
1357 	}
1358 	if (!ifolio)
1359 		f2fs_put_dnode(&dn);
1360 
1361 	if (folio_test_uptodate(folio))
1362 		goto got_it;
1363 
1364 	if (dn.data_blkaddr == NEW_ADDR) {
1365 		folio_zero_segment(folio, 0, folio_size(folio));
1366 		if (!folio_test_uptodate(folio))
1367 			folio_mark_uptodate(folio);
1368 	} else {
1369 		f2fs_folio_put(folio, true);
1370 
1371 		/* if ifolio exists, blkaddr should be NEW_ADDR */
1372 		f2fs_bug_on(F2FS_I_SB(inode), ifolio);
1373 		folio = f2fs_get_lock_data_folio(inode, index, true);
1374 		if (IS_ERR(folio))
1375 			return folio;
1376 	}
1377 got_it:
1378 	if (new_i_size && i_size_read(inode) <
1379 				((loff_t)(index + 1) << PAGE_SHIFT))
1380 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1381 	return folio;
1382 }
1383 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1384 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1385 {
1386 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1387 	struct f2fs_summary sum;
1388 	struct node_info ni;
1389 	block_t old_blkaddr;
1390 	blkcnt_t count = 1;
1391 	int err;
1392 
1393 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1394 		return -EPERM;
1395 
1396 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1397 	if (err)
1398 		return err;
1399 
1400 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1401 	if (dn->data_blkaddr == NULL_ADDR) {
1402 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1403 		if (unlikely(err))
1404 			return err;
1405 	}
1406 
1407 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1408 	old_blkaddr = dn->data_blkaddr;
1409 	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1410 				&dn->data_blkaddr, &sum, seg_type, NULL);
1411 	if (err)
1412 		return err;
1413 
1414 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1415 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1416 
1417 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1418 	return 0;
1419 }
1420 
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1421 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1422 {
1423 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1424 		f2fs_down_read(&sbi->node_change);
1425 	else
1426 		f2fs_lock_op(sbi);
1427 }
1428 
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1429 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1430 {
1431 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1432 		f2fs_up_read(&sbi->node_change);
1433 	else
1434 		f2fs_unlock_op(sbi);
1435 }
1436 
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1437 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1438 {
1439 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1440 	int err = 0;
1441 
1442 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1443 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1444 						&dn->data_blkaddr))
1445 		err = f2fs_reserve_block(dn, index);
1446 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1447 
1448 	return err;
1449 }
1450 
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1451 static int f2fs_map_no_dnode(struct inode *inode,
1452 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1453 		pgoff_t pgoff)
1454 {
1455 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1456 
1457 	/*
1458 	 * There is one exceptional case that read_node_page() may return
1459 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1460 	 * -EIO in that case.
1461 	 */
1462 	if (map->m_may_create &&
1463 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1464 		return -EIO;
1465 
1466 	if (map->m_next_pgofs)
1467 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1468 	if (map->m_next_extent)
1469 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1470 	return 0;
1471 }
1472 
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1473 static bool f2fs_map_blocks_cached(struct inode *inode,
1474 		struct f2fs_map_blocks *map, int flag)
1475 {
1476 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1477 	unsigned int maxblocks = map->m_len;
1478 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1479 	struct extent_info ei = {};
1480 
1481 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1482 		return false;
1483 
1484 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1485 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1486 	map->m_flags = F2FS_MAP_MAPPED;
1487 	if (map->m_next_extent)
1488 		*map->m_next_extent = pgoff + map->m_len;
1489 
1490 	/* for hardware encryption, but to avoid potential issue in future */
1491 	if (flag == F2FS_GET_BLOCK_DIO)
1492 		f2fs_wait_on_block_writeback_range(inode,
1493 					map->m_pblk, map->m_len);
1494 
1495 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1496 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1497 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1498 
1499 		map->m_bdev = dev->bdev;
1500 		map->m_pblk -= dev->start_blk;
1501 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1502 	} else {
1503 		map->m_bdev = inode->i_sb->s_bdev;
1504 	}
1505 	return true;
1506 }
1507 
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1508 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1509 				struct f2fs_map_blocks *map,
1510 				block_t blkaddr, int flag, int bidx,
1511 				int ofs)
1512 {
1513 	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1514 		return false;
1515 	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1516 		return true;
1517 	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1518 		return true;
1519 	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1520 		return true;
1521 	if (flag == F2FS_GET_BLOCK_DIO &&
1522 		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1523 		return true;
1524 	return false;
1525 }
1526 
1527 /*
1528  * f2fs_map_blocks() tries to find or build mapping relationship which
1529  * maps continuous logical blocks to physical blocks, and return such
1530  * info via f2fs_map_blocks structure.
1531  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1532 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1533 {
1534 	unsigned int maxblocks = map->m_len;
1535 	struct dnode_of_data dn;
1536 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1537 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1538 	pgoff_t pgofs, end_offset, end;
1539 	int err = 0, ofs = 1;
1540 	unsigned int ofs_in_node, last_ofs_in_node;
1541 	blkcnt_t prealloc;
1542 	block_t blkaddr;
1543 	unsigned int start_pgofs;
1544 	int bidx = 0;
1545 	bool is_hole;
1546 	bool lfs_dio_write;
1547 
1548 	if (!maxblocks)
1549 		return 0;
1550 
1551 	lfs_dio_write = (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1552 				map->m_may_create);
1553 
1554 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1555 		goto out;
1556 
1557 	map->m_bdev = inode->i_sb->s_bdev;
1558 	map->m_multidev_dio =
1559 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1560 
1561 	map->m_len = 0;
1562 	map->m_flags = 0;
1563 
1564 	/* it only supports block size == page size */
1565 	pgofs =	(pgoff_t)map->m_lblk;
1566 	end = pgofs + maxblocks;
1567 
1568 	if (flag == F2FS_GET_BLOCK_PRECACHE)
1569 		mode = LOOKUP_NODE_RA;
1570 
1571 next_dnode:
1572 	if (map->m_may_create) {
1573 		if (f2fs_lfs_mode(sbi))
1574 			f2fs_balance_fs(sbi, true);
1575 		f2fs_map_lock(sbi, flag);
1576 	}
1577 
1578 	/* When reading holes, we need its node page */
1579 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1580 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1581 	if (err) {
1582 		if (flag == F2FS_GET_BLOCK_BMAP)
1583 			map->m_pblk = 0;
1584 		if (err == -ENOENT)
1585 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1586 		goto unlock_out;
1587 	}
1588 
1589 	start_pgofs = pgofs;
1590 	prealloc = 0;
1591 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1592 	end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1593 
1594 next_block:
1595 	blkaddr = f2fs_data_blkaddr(&dn);
1596 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1597 	if (!is_hole &&
1598 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1599 		err = -EFSCORRUPTED;
1600 		goto sync_out;
1601 	}
1602 
1603 	/* use out-place-update for direct IO under LFS mode */
1604 	if (map->m_may_create && (is_hole ||
1605 		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1606 		!f2fs_is_pinned_file(inode) && map->m_last_pblk != blkaddr))) {
1607 		if (unlikely(f2fs_cp_error(sbi))) {
1608 			err = -EIO;
1609 			goto sync_out;
1610 		}
1611 
1612 		switch (flag) {
1613 		case F2FS_GET_BLOCK_PRE_AIO:
1614 			if (blkaddr == NULL_ADDR) {
1615 				prealloc++;
1616 				last_ofs_in_node = dn.ofs_in_node;
1617 			}
1618 			break;
1619 		case F2FS_GET_BLOCK_PRE_DIO:
1620 		case F2FS_GET_BLOCK_DIO:
1621 			err = __allocate_data_block(&dn, map->m_seg_type);
1622 			if (err)
1623 				goto sync_out;
1624 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1625 				file_need_truncate(inode);
1626 			set_inode_flag(inode, FI_APPEND_WRITE);
1627 			break;
1628 		default:
1629 			WARN_ON_ONCE(1);
1630 			err = -EIO;
1631 			goto sync_out;
1632 		}
1633 
1634 		blkaddr = dn.data_blkaddr;
1635 		if (is_hole)
1636 			map->m_flags |= F2FS_MAP_NEW;
1637 	} else if (is_hole) {
1638 		if (f2fs_compressed_file(inode) &&
1639 		    f2fs_sanity_check_cluster(&dn)) {
1640 			err = -EFSCORRUPTED;
1641 			f2fs_handle_error(sbi,
1642 					ERROR_CORRUPTED_CLUSTER);
1643 			goto sync_out;
1644 		}
1645 
1646 		switch (flag) {
1647 		case F2FS_GET_BLOCK_PRECACHE:
1648 			goto sync_out;
1649 		case F2FS_GET_BLOCK_BMAP:
1650 			map->m_pblk = 0;
1651 			goto sync_out;
1652 		case F2FS_GET_BLOCK_FIEMAP:
1653 			if (blkaddr == NULL_ADDR) {
1654 				if (map->m_next_pgofs)
1655 					*map->m_next_pgofs = pgofs + 1;
1656 				goto sync_out;
1657 			}
1658 			break;
1659 		case F2FS_GET_BLOCK_DIO:
1660 			if (map->m_next_pgofs)
1661 				*map->m_next_pgofs = pgofs + 1;
1662 			break;
1663 		default:
1664 			/* for defragment case */
1665 			if (map->m_next_pgofs)
1666 				*map->m_next_pgofs = pgofs + 1;
1667 			goto sync_out;
1668 		}
1669 	}
1670 
1671 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1672 		goto skip;
1673 
1674 	if (map->m_multidev_dio)
1675 		bidx = f2fs_target_device_index(sbi, blkaddr);
1676 
1677 	if (map->m_len == 0) {
1678 		/* reserved delalloc block should be mapped for fiemap. */
1679 		if (blkaddr == NEW_ADDR)
1680 			map->m_flags |= F2FS_MAP_DELALLOC;
1681 		/* DIO READ and hole case, should not map the blocks. */
1682 		if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1683 			map->m_flags |= F2FS_MAP_MAPPED;
1684 
1685 		map->m_pblk = blkaddr;
1686 		map->m_len = 1;
1687 
1688 		if (map->m_multidev_dio)
1689 			map->m_bdev = FDEV(bidx).bdev;
1690 
1691 		if (lfs_dio_write)
1692 			map->m_last_pblk = NULL_ADDR;
1693 	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1694 		ofs++;
1695 		map->m_len++;
1696 	} else {
1697 		if (lfs_dio_write && !f2fs_is_pinned_file(inode))
1698 			map->m_last_pblk = blkaddr;
1699 		goto sync_out;
1700 	}
1701 
1702 skip:
1703 	dn.ofs_in_node++;
1704 	pgofs++;
1705 
1706 	/* preallocate blocks in batch for one dnode page */
1707 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1708 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1709 
1710 		dn.ofs_in_node = ofs_in_node;
1711 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1712 		if (err)
1713 			goto sync_out;
1714 
1715 		map->m_len += dn.ofs_in_node - ofs_in_node;
1716 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1717 			err = -ENOSPC;
1718 			goto sync_out;
1719 		}
1720 		dn.ofs_in_node = end_offset;
1721 	}
1722 
1723 	if (pgofs >= end)
1724 		goto sync_out;
1725 	else if (dn.ofs_in_node < end_offset)
1726 		goto next_block;
1727 
1728 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1729 		if (map->m_flags & F2FS_MAP_MAPPED) {
1730 			unsigned int ofs = start_pgofs - map->m_lblk;
1731 
1732 			f2fs_update_read_extent_cache_range(&dn,
1733 				start_pgofs, map->m_pblk + ofs,
1734 				map->m_len - ofs);
1735 		}
1736 	}
1737 
1738 	f2fs_put_dnode(&dn);
1739 
1740 	if (map->m_may_create) {
1741 		f2fs_map_unlock(sbi, flag);
1742 		f2fs_balance_fs(sbi, dn.node_changed);
1743 	}
1744 	goto next_dnode;
1745 
1746 sync_out:
1747 
1748 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1749 		/*
1750 		 * for hardware encryption, but to avoid potential issue
1751 		 * in future
1752 		 */
1753 		f2fs_wait_on_block_writeback_range(inode,
1754 						map->m_pblk, map->m_len);
1755 
1756 		if (map->m_multidev_dio) {
1757 			block_t blk_addr = map->m_pblk;
1758 
1759 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1760 
1761 			map->m_bdev = FDEV(bidx).bdev;
1762 			map->m_pblk -= FDEV(bidx).start_blk;
1763 
1764 			if (map->m_may_create)
1765 				f2fs_update_device_state(sbi, inode->i_ino,
1766 							blk_addr, map->m_len);
1767 
1768 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1769 						FDEV(bidx).end_blk + 1);
1770 		}
1771 	}
1772 
1773 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1774 		if (map->m_flags & F2FS_MAP_MAPPED) {
1775 			unsigned int ofs = start_pgofs - map->m_lblk;
1776 
1777 			if (map->m_len > ofs)
1778 				f2fs_update_read_extent_cache_range(&dn,
1779 					start_pgofs, map->m_pblk + ofs,
1780 					map->m_len - ofs);
1781 		}
1782 		if (map->m_next_extent)
1783 			*map->m_next_extent = is_hole ? pgofs + 1 : pgofs;
1784 	}
1785 	f2fs_put_dnode(&dn);
1786 unlock_out:
1787 	if (map->m_may_create) {
1788 		f2fs_map_unlock(sbi, flag);
1789 		f2fs_balance_fs(sbi, dn.node_changed);
1790 	}
1791 out:
1792 	trace_f2fs_map_blocks(inode, map, flag, err);
1793 	return err;
1794 }
1795 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1796 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1797 {
1798 	struct f2fs_map_blocks map;
1799 	block_t last_lblk;
1800 	int err;
1801 
1802 	if (pos + len > i_size_read(inode))
1803 		return false;
1804 
1805 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1806 	map.m_next_pgofs = NULL;
1807 	map.m_next_extent = NULL;
1808 	map.m_seg_type = NO_CHECK_TYPE;
1809 	map.m_may_create = false;
1810 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1811 
1812 	while (map.m_lblk < last_lblk) {
1813 		map.m_len = last_lblk - map.m_lblk;
1814 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1815 		if (err || map.m_len == 0)
1816 			return false;
1817 		map.m_lblk += map.m_len;
1818 	}
1819 	return true;
1820 }
1821 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1822 static int f2fs_xattr_fiemap(struct inode *inode,
1823 				struct fiemap_extent_info *fieinfo)
1824 {
1825 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1826 	struct node_info ni;
1827 	__u64 phys = 0, len;
1828 	__u32 flags;
1829 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1830 	int err = 0;
1831 
1832 	if (f2fs_has_inline_xattr(inode)) {
1833 		int offset;
1834 		struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1835 				inode->i_ino, false);
1836 
1837 		if (IS_ERR(folio))
1838 			return PTR_ERR(folio);
1839 
1840 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1841 		if (err) {
1842 			f2fs_folio_put(folio, true);
1843 			return err;
1844 		}
1845 
1846 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1847 		offset = offsetof(struct f2fs_inode, i_addr) +
1848 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1849 					get_inline_xattr_addrs(inode));
1850 
1851 		phys += offset;
1852 		len = inline_xattr_size(inode);
1853 
1854 		f2fs_folio_put(folio, true);
1855 
1856 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1857 
1858 		if (!xnid)
1859 			flags |= FIEMAP_EXTENT_LAST;
1860 
1861 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1862 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1863 		if (err)
1864 			return err;
1865 	}
1866 
1867 	if (xnid) {
1868 		struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1869 				xnid, false);
1870 
1871 		if (IS_ERR(folio))
1872 			return PTR_ERR(folio);
1873 
1874 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1875 		if (err) {
1876 			f2fs_folio_put(folio, true);
1877 			return err;
1878 		}
1879 
1880 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1881 		len = inode->i_sb->s_blocksize;
1882 
1883 		f2fs_folio_put(folio, true);
1884 
1885 		flags = FIEMAP_EXTENT_LAST;
1886 	}
1887 
1888 	if (phys) {
1889 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1890 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1891 	}
1892 
1893 	return (err < 0 ? err : 0);
1894 }
1895 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1896 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1897 		u64 start, u64 len)
1898 {
1899 	struct f2fs_map_blocks map;
1900 	sector_t start_blk, last_blk, blk_len, max_len;
1901 	pgoff_t next_pgofs;
1902 	u64 logical = 0, phys = 0, size = 0;
1903 	u32 flags = 0;
1904 	int ret = 0;
1905 	bool compr_cluster = false, compr_appended;
1906 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1907 	unsigned int count_in_cluster = 0;
1908 	loff_t maxbytes;
1909 
1910 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1911 		ret = f2fs_precache_extents(inode);
1912 		if (ret)
1913 			return ret;
1914 	}
1915 
1916 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1917 	if (ret)
1918 		return ret;
1919 
1920 	inode_lock_shared(inode);
1921 
1922 	maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1923 	if (start > maxbytes) {
1924 		ret = -EFBIG;
1925 		goto out;
1926 	}
1927 
1928 	if (len > maxbytes || (maxbytes - len) < start)
1929 		len = maxbytes - start;
1930 
1931 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1932 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1933 		goto out;
1934 	}
1935 
1936 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1937 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1938 		if (ret != -EAGAIN)
1939 			goto out;
1940 	}
1941 
1942 	start_blk = F2FS_BYTES_TO_BLK(start);
1943 	last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1944 	blk_len = last_blk - start_blk + 1;
1945 	max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1946 
1947 next:
1948 	memset(&map, 0, sizeof(map));
1949 	map.m_lblk = start_blk;
1950 	map.m_len = blk_len;
1951 	map.m_next_pgofs = &next_pgofs;
1952 	map.m_seg_type = NO_CHECK_TYPE;
1953 
1954 	if (compr_cluster) {
1955 		map.m_lblk += 1;
1956 		map.m_len = cluster_size - count_in_cluster;
1957 	}
1958 
1959 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1960 	if (ret)
1961 		goto out;
1962 
1963 	/* HOLE */
1964 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1965 		start_blk = next_pgofs;
1966 
1967 		if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1968 			goto prep_next;
1969 
1970 		flags |= FIEMAP_EXTENT_LAST;
1971 	}
1972 
1973 	/*
1974 	 * current extent may cross boundary of inquiry, increase len to
1975 	 * requery.
1976 	 */
1977 	if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1978 				map.m_lblk + map.m_len - 1 == last_blk &&
1979 				blk_len != max_len) {
1980 		blk_len = max_len;
1981 		goto next;
1982 	}
1983 
1984 	compr_appended = false;
1985 	/* In a case of compressed cluster, append this to the last extent */
1986 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1987 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1988 		compr_appended = true;
1989 		goto skip_fill;
1990 	}
1991 
1992 	if (size) {
1993 		flags |= FIEMAP_EXTENT_MERGED;
1994 		if (IS_ENCRYPTED(inode))
1995 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1996 
1997 		ret = fiemap_fill_next_extent(fieinfo, logical,
1998 				phys, size, flags);
1999 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2000 		if (ret)
2001 			goto out;
2002 		size = 0;
2003 	}
2004 
2005 	if (start_blk > last_blk)
2006 		goto out;
2007 
2008 skip_fill:
2009 	if (map.m_pblk == COMPRESS_ADDR) {
2010 		compr_cluster = true;
2011 		count_in_cluster = 1;
2012 	} else if (compr_appended) {
2013 		unsigned int appended_blks = cluster_size -
2014 						count_in_cluster + 1;
2015 		size += F2FS_BLK_TO_BYTES(appended_blks);
2016 		start_blk += appended_blks;
2017 		compr_cluster = false;
2018 	} else {
2019 		logical = F2FS_BLK_TO_BYTES(start_blk);
2020 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2021 			F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2022 		size = F2FS_BLK_TO_BYTES(map.m_len);
2023 		flags = 0;
2024 
2025 		if (compr_cluster) {
2026 			flags = FIEMAP_EXTENT_ENCODED;
2027 			count_in_cluster += map.m_len;
2028 			if (count_in_cluster == cluster_size) {
2029 				compr_cluster = false;
2030 				size += F2FS_BLKSIZE;
2031 			}
2032 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2033 			flags = FIEMAP_EXTENT_UNWRITTEN;
2034 		}
2035 
2036 		start_blk += F2FS_BYTES_TO_BLK(size);
2037 	}
2038 
2039 prep_next:
2040 	cond_resched();
2041 	if (fatal_signal_pending(current))
2042 		ret = -EINTR;
2043 	else
2044 		goto next;
2045 out:
2046 	if (ret == 1)
2047 		ret = 0;
2048 
2049 	inode_unlock_shared(inode);
2050 	return ret;
2051 }
2052 
f2fs_readpage_limit(struct inode * inode)2053 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2054 {
2055 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2056 		return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2057 
2058 	return i_size_read(inode);
2059 }
2060 
f2fs_ra_op_flags(struct readahead_control * rac)2061 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2062 {
2063 	return rac ? REQ_RAHEAD : 0;
2064 }
2065 
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2066 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2067 					unsigned nr_pages,
2068 					struct f2fs_map_blocks *map,
2069 					struct bio **bio_ret,
2070 					sector_t *last_block_in_bio,
2071 					struct readahead_control *rac)
2072 {
2073 	struct bio *bio = *bio_ret;
2074 	const unsigned int blocksize = F2FS_BLKSIZE;
2075 	sector_t block_in_file;
2076 	sector_t last_block;
2077 	sector_t last_block_in_file;
2078 	sector_t block_nr;
2079 	pgoff_t index = folio->index;
2080 	int ret = 0;
2081 
2082 	block_in_file = (sector_t)index;
2083 	last_block = block_in_file + nr_pages;
2084 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2085 							blocksize - 1);
2086 	if (last_block > last_block_in_file)
2087 		last_block = last_block_in_file;
2088 
2089 	/* just zeroing out page which is beyond EOF */
2090 	if (block_in_file >= last_block)
2091 		goto zero_out;
2092 	/*
2093 	 * Map blocks using the previous result first.
2094 	 */
2095 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2096 			block_in_file > map->m_lblk &&
2097 			block_in_file < (map->m_lblk + map->m_len))
2098 		goto got_it;
2099 
2100 	/*
2101 	 * Then do more f2fs_map_blocks() calls until we are
2102 	 * done with this page.
2103 	 */
2104 	map->m_lblk = block_in_file;
2105 	map->m_len = last_block - block_in_file;
2106 
2107 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2108 	if (ret)
2109 		goto out;
2110 got_it:
2111 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2112 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2113 		folio_set_mappedtodisk(folio);
2114 
2115 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2116 						DATA_GENERIC_ENHANCE_READ)) {
2117 			ret = -EFSCORRUPTED;
2118 			goto out;
2119 		}
2120 	} else {
2121 zero_out:
2122 		folio_zero_segment(folio, 0, folio_size(folio));
2123 		if (f2fs_need_verity(inode, index) &&
2124 		    !fsverity_verify_folio(folio)) {
2125 			ret = -EIO;
2126 			goto out;
2127 		}
2128 		if (!folio_test_uptodate(folio))
2129 			folio_mark_uptodate(folio);
2130 		folio_unlock(folio);
2131 		goto out;
2132 	}
2133 
2134 	/*
2135 	 * This page will go to BIO.  Do we need to send this
2136 	 * BIO off first?
2137 	 */
2138 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2139 				       *last_block_in_bio, block_nr) ||
2140 		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2141 submit_and_realloc:
2142 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2143 		bio = NULL;
2144 	}
2145 	if (bio == NULL)
2146 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2147 				f2fs_ra_op_flags(rac), index,
2148 				false);
2149 
2150 	/*
2151 	 * If the page is under writeback, we need to wait for
2152 	 * its completion to see the correct decrypted data.
2153 	 */
2154 	f2fs_wait_on_block_writeback(inode, block_nr);
2155 
2156 	if (!bio_add_folio(bio, folio, blocksize, 0))
2157 		goto submit_and_realloc;
2158 
2159 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2160 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2161 							F2FS_BLKSIZE);
2162 	*last_block_in_bio = block_nr;
2163 out:
2164 	*bio_ret = bio;
2165 	return ret;
2166 }
2167 
2168 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2169 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2170 				unsigned nr_pages, sector_t *last_block_in_bio,
2171 				struct readahead_control *rac, bool for_write)
2172 {
2173 	struct dnode_of_data dn;
2174 	struct inode *inode = cc->inode;
2175 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2176 	struct bio *bio = *bio_ret;
2177 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2178 	sector_t last_block_in_file;
2179 	const unsigned int blocksize = F2FS_BLKSIZE;
2180 	struct decompress_io_ctx *dic = NULL;
2181 	struct extent_info ei = {};
2182 	bool from_dnode = true;
2183 	int i;
2184 	int ret = 0;
2185 
2186 	if (unlikely(f2fs_cp_error(sbi))) {
2187 		ret = -EIO;
2188 		from_dnode = false;
2189 		goto out_put_dnode;
2190 	}
2191 
2192 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2193 
2194 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2195 							blocksize - 1);
2196 
2197 	/* get rid of pages beyond EOF */
2198 	for (i = 0; i < cc->cluster_size; i++) {
2199 		struct page *page = cc->rpages[i];
2200 		struct folio *folio;
2201 
2202 		if (!page)
2203 			continue;
2204 
2205 		folio = page_folio(page);
2206 		if ((sector_t)folio->index >= last_block_in_file) {
2207 			folio_zero_segment(folio, 0, folio_size(folio));
2208 			if (!folio_test_uptodate(folio))
2209 				folio_mark_uptodate(folio);
2210 		} else if (!folio_test_uptodate(folio)) {
2211 			continue;
2212 		}
2213 		folio_unlock(folio);
2214 		if (for_write)
2215 			folio_put(folio);
2216 		cc->rpages[i] = NULL;
2217 		cc->nr_rpages--;
2218 	}
2219 
2220 	/* we are done since all pages are beyond EOF */
2221 	if (f2fs_cluster_is_empty(cc))
2222 		goto out;
2223 
2224 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2225 		from_dnode = false;
2226 
2227 	if (!from_dnode)
2228 		goto skip_reading_dnode;
2229 
2230 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2231 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2232 	if (ret)
2233 		goto out;
2234 
2235 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2236 
2237 skip_reading_dnode:
2238 	for (i = 1; i < cc->cluster_size; i++) {
2239 		block_t blkaddr;
2240 
2241 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2242 					dn.ofs_in_node + i) :
2243 					ei.blk + i - 1;
2244 
2245 		if (!__is_valid_data_blkaddr(blkaddr))
2246 			break;
2247 
2248 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2249 			ret = -EFAULT;
2250 			goto out_put_dnode;
2251 		}
2252 		cc->nr_cpages++;
2253 
2254 		if (!from_dnode && i >= ei.c_len)
2255 			break;
2256 	}
2257 
2258 	/* nothing to decompress */
2259 	if (cc->nr_cpages == 0) {
2260 		ret = 0;
2261 		goto out_put_dnode;
2262 	}
2263 
2264 	dic = f2fs_alloc_dic(cc);
2265 	if (IS_ERR(dic)) {
2266 		ret = PTR_ERR(dic);
2267 		goto out_put_dnode;
2268 	}
2269 
2270 	for (i = 0; i < cc->nr_cpages; i++) {
2271 		struct folio *folio = page_folio(dic->cpages[i]);
2272 		block_t blkaddr;
2273 		struct bio_post_read_ctx *ctx;
2274 
2275 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2276 					dn.ofs_in_node + i + 1) :
2277 					ei.blk + i;
2278 
2279 		f2fs_wait_on_block_writeback(inode, blkaddr);
2280 
2281 		if (f2fs_load_compressed_folio(sbi, folio, blkaddr)) {
2282 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2283 				f2fs_decompress_cluster(dic, true);
2284 				break;
2285 			}
2286 			continue;
2287 		}
2288 
2289 		if (bio && (!page_is_mergeable(sbi, bio,
2290 					*last_block_in_bio, blkaddr) ||
2291 		    !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2292 submit_and_realloc:
2293 			f2fs_submit_read_bio(sbi, bio, DATA);
2294 			bio = NULL;
2295 		}
2296 
2297 		if (!bio)
2298 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages - i,
2299 					f2fs_ra_op_flags(rac),
2300 					folio->index, for_write);
2301 
2302 		if (!bio_add_folio(bio, folio, blocksize, 0))
2303 			goto submit_and_realloc;
2304 
2305 		ctx = get_post_read_ctx(bio);
2306 		ctx->enabled_steps |= STEP_DECOMPRESS;
2307 		refcount_inc(&dic->refcnt);
2308 
2309 		inc_page_count(sbi, F2FS_RD_DATA);
2310 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2311 		*last_block_in_bio = blkaddr;
2312 	}
2313 
2314 	if (from_dnode)
2315 		f2fs_put_dnode(&dn);
2316 
2317 	*bio_ret = bio;
2318 	return 0;
2319 
2320 out_put_dnode:
2321 	if (from_dnode)
2322 		f2fs_put_dnode(&dn);
2323 out:
2324 	for (i = 0; i < cc->cluster_size; i++) {
2325 		if (cc->rpages[i]) {
2326 			ClearPageUptodate(cc->rpages[i]);
2327 			unlock_page(cc->rpages[i]);
2328 		}
2329 	}
2330 	*bio_ret = bio;
2331 	return ret;
2332 }
2333 #endif
2334 
2335 /*
2336  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2337  * Major change was from block_size == page_size in f2fs by default.
2338  */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2339 static int f2fs_mpage_readpages(struct inode *inode,
2340 		struct readahead_control *rac, struct folio *folio)
2341 {
2342 	struct bio *bio = NULL;
2343 	sector_t last_block_in_bio = 0;
2344 	struct f2fs_map_blocks map;
2345 #ifdef CONFIG_F2FS_FS_COMPRESSION
2346 	struct compress_ctx cc = {
2347 		.inode = inode,
2348 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2349 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2350 		.cluster_idx = NULL_CLUSTER,
2351 		.rpages = NULL,
2352 		.cpages = NULL,
2353 		.nr_rpages = 0,
2354 		.nr_cpages = 0,
2355 	};
2356 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2357 	pgoff_t index;
2358 #endif
2359 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2360 	unsigned max_nr_pages = nr_pages;
2361 	int ret = 0;
2362 
2363 #ifdef CONFIG_F2FS_FS_COMPRESSION
2364 	if (f2fs_compressed_file(inode)) {
2365 		index = rac ? readahead_index(rac) : folio->index;
2366 		max_nr_pages = round_up(index + nr_pages, cc.cluster_size) -
2367 				round_down(index, cc.cluster_size);
2368 	}
2369 #endif
2370 
2371 	map.m_pblk = 0;
2372 	map.m_lblk = 0;
2373 	map.m_len = 0;
2374 	map.m_flags = 0;
2375 	map.m_next_pgofs = NULL;
2376 	map.m_next_extent = NULL;
2377 	map.m_seg_type = NO_CHECK_TYPE;
2378 	map.m_may_create = false;
2379 
2380 	for (; nr_pages; nr_pages--) {
2381 		if (rac) {
2382 			folio = readahead_folio(rac);
2383 			prefetchw(&folio->flags);
2384 		}
2385 
2386 #ifdef CONFIG_F2FS_FS_COMPRESSION
2387 		index = folio->index;
2388 
2389 		if (!f2fs_compressed_file(inode))
2390 			goto read_single_page;
2391 
2392 		/* there are remained compressed pages, submit them */
2393 		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2394 			ret = f2fs_read_multi_pages(&cc, &bio,
2395 						max_nr_pages,
2396 						&last_block_in_bio,
2397 						rac, false);
2398 			f2fs_destroy_compress_ctx(&cc, false);
2399 			if (ret)
2400 				goto set_error_page;
2401 		}
2402 		if (cc.cluster_idx == NULL_CLUSTER) {
2403 			if (nc_cluster_idx == index >> cc.log_cluster_size)
2404 				goto read_single_page;
2405 
2406 			ret = f2fs_is_compressed_cluster(inode, index);
2407 			if (ret < 0)
2408 				goto set_error_page;
2409 			else if (!ret) {
2410 				nc_cluster_idx =
2411 					index >> cc.log_cluster_size;
2412 				goto read_single_page;
2413 			}
2414 
2415 			nc_cluster_idx = NULL_CLUSTER;
2416 		}
2417 		ret = f2fs_init_compress_ctx(&cc);
2418 		if (ret)
2419 			goto set_error_page;
2420 
2421 		f2fs_compress_ctx_add_page(&cc, folio);
2422 
2423 		goto next_page;
2424 read_single_page:
2425 #endif
2426 
2427 		ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2428 					&bio, &last_block_in_bio, rac);
2429 		if (ret) {
2430 #ifdef CONFIG_F2FS_FS_COMPRESSION
2431 set_error_page:
2432 #endif
2433 			folio_zero_segment(folio, 0, folio_size(folio));
2434 			folio_unlock(folio);
2435 		}
2436 #ifdef CONFIG_F2FS_FS_COMPRESSION
2437 next_page:
2438 #endif
2439 
2440 #ifdef CONFIG_F2FS_FS_COMPRESSION
2441 		if (f2fs_compressed_file(inode)) {
2442 			/* last page */
2443 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2444 				ret = f2fs_read_multi_pages(&cc, &bio,
2445 							max_nr_pages,
2446 							&last_block_in_bio,
2447 							rac, false);
2448 				f2fs_destroy_compress_ctx(&cc, false);
2449 			}
2450 		}
2451 #endif
2452 	}
2453 	if (bio)
2454 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2455 	return ret;
2456 }
2457 
f2fs_read_data_folio(struct file * file,struct folio * folio)2458 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2459 {
2460 	struct inode *inode = folio->mapping->host;
2461 	int ret = -EAGAIN;
2462 
2463 	trace_f2fs_readpage(folio, DATA);
2464 
2465 	if (!f2fs_is_compress_backend_ready(inode)) {
2466 		folio_unlock(folio);
2467 		return -EOPNOTSUPP;
2468 	}
2469 
2470 	/* If the file has inline data, try to read it directly */
2471 	if (f2fs_has_inline_data(inode))
2472 		ret = f2fs_read_inline_data(inode, folio);
2473 	if (ret == -EAGAIN)
2474 		ret = f2fs_mpage_readpages(inode, NULL, folio);
2475 	return ret;
2476 }
2477 
f2fs_readahead(struct readahead_control * rac)2478 static void f2fs_readahead(struct readahead_control *rac)
2479 {
2480 	struct inode *inode = rac->mapping->host;
2481 
2482 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2483 
2484 	if (!f2fs_is_compress_backend_ready(inode))
2485 		return;
2486 
2487 	/* If the file has inline data, skip readahead */
2488 	if (f2fs_has_inline_data(inode))
2489 		return;
2490 
2491 	f2fs_mpage_readpages(inode, rac, NULL);
2492 }
2493 
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2494 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2495 {
2496 	struct inode *inode = fio_inode(fio);
2497 	struct folio *mfolio;
2498 	struct page *page;
2499 	gfp_t gfp_flags = GFP_NOFS;
2500 
2501 	if (!f2fs_encrypted_file(inode))
2502 		return 0;
2503 
2504 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2505 
2506 	if (fscrypt_inode_uses_inline_crypto(inode))
2507 		return 0;
2508 
2509 retry_encrypt:
2510 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page),
2511 					PAGE_SIZE, 0, gfp_flags);
2512 	if (IS_ERR(fio->encrypted_page)) {
2513 		/* flush pending IOs and wait for a while in the ENOMEM case */
2514 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2515 			f2fs_flush_merged_writes(fio->sbi);
2516 			memalloc_retry_wait(GFP_NOFS);
2517 			gfp_flags |= __GFP_NOFAIL;
2518 			goto retry_encrypt;
2519 		}
2520 		return PTR_ERR(fio->encrypted_page);
2521 	}
2522 
2523 	mfolio = filemap_lock_folio(META_MAPPING(fio->sbi), fio->old_blkaddr);
2524 	if (!IS_ERR(mfolio)) {
2525 		if (folio_test_uptodate(mfolio))
2526 			memcpy(folio_address(mfolio),
2527 				page_address(fio->encrypted_page), PAGE_SIZE);
2528 		f2fs_folio_put(mfolio, true);
2529 	}
2530 	return 0;
2531 }
2532 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2533 static inline bool check_inplace_update_policy(struct inode *inode,
2534 				struct f2fs_io_info *fio)
2535 {
2536 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2537 
2538 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2539 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2540 		return false;
2541 	if (IS_F2FS_IPU_FORCE(sbi))
2542 		return true;
2543 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2544 		return true;
2545 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2546 		return true;
2547 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2548 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2549 		return true;
2550 
2551 	/*
2552 	 * IPU for rewrite async pages
2553 	 */
2554 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2555 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2556 		return true;
2557 
2558 	/* this is only set during fdatasync */
2559 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2560 		return true;
2561 
2562 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2563 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2564 		return true;
2565 
2566 	return false;
2567 }
2568 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2569 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2570 {
2571 	/* swap file is migrating in aligned write mode */
2572 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2573 		return false;
2574 
2575 	if (f2fs_is_pinned_file(inode))
2576 		return true;
2577 
2578 	/* if this is cold file, we should overwrite to avoid fragmentation */
2579 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2580 		return true;
2581 
2582 	return check_inplace_update_policy(inode, fio);
2583 }
2584 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2585 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2586 {
2587 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2588 
2589 	/* The below cases were checked when setting it. */
2590 	if (f2fs_is_pinned_file(inode))
2591 		return false;
2592 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2593 		return true;
2594 	if (f2fs_lfs_mode(sbi))
2595 		return true;
2596 	if (S_ISDIR(inode->i_mode))
2597 		return true;
2598 	if (IS_NOQUOTA(inode))
2599 		return true;
2600 	if (f2fs_used_in_atomic_write(inode))
2601 		return true;
2602 	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2603 	if (f2fs_compressed_file(inode) &&
2604 		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2605 		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2606 		return true;
2607 
2608 	/* swap file is migrating in aligned write mode */
2609 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2610 		return true;
2611 
2612 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2613 		return true;
2614 
2615 	if (fio) {
2616 		if (page_private_gcing(fio->page))
2617 			return true;
2618 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2619 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2620 			return true;
2621 	}
2622 	return false;
2623 }
2624 
need_inplace_update(struct f2fs_io_info * fio)2625 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2626 {
2627 	struct inode *inode = fio_inode(fio);
2628 
2629 	if (f2fs_should_update_outplace(inode, fio))
2630 		return false;
2631 
2632 	return f2fs_should_update_inplace(inode, fio);
2633 }
2634 
f2fs_do_write_data_page(struct f2fs_io_info * fio)2635 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2636 {
2637 	struct folio *folio = fio->folio;
2638 	struct inode *inode = folio->mapping->host;
2639 	struct dnode_of_data dn;
2640 	struct node_info ni;
2641 	bool ipu_force = false;
2642 	bool atomic_commit;
2643 	int err = 0;
2644 
2645 	/* Use COW inode to make dnode_of_data for atomic write */
2646 	atomic_commit = f2fs_is_atomic_file(inode) &&
2647 				folio_test_f2fs_atomic(folio);
2648 	if (atomic_commit)
2649 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2650 	else
2651 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2652 
2653 	if (need_inplace_update(fio) &&
2654 	    f2fs_lookup_read_extent_cache_block(inode, folio->index,
2655 						&fio->old_blkaddr)) {
2656 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2657 						DATA_GENERIC_ENHANCE))
2658 			return -EFSCORRUPTED;
2659 
2660 		ipu_force = true;
2661 		fio->need_lock = LOCK_DONE;
2662 		goto got_it;
2663 	}
2664 
2665 	/* Deadlock due to between page->lock and f2fs_lock_op */
2666 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2667 		return -EAGAIN;
2668 
2669 	err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2670 	if (err)
2671 		goto out;
2672 
2673 	fio->old_blkaddr = dn.data_blkaddr;
2674 
2675 	/* This page is already truncated */
2676 	if (fio->old_blkaddr == NULL_ADDR) {
2677 		folio_clear_uptodate(folio);
2678 		folio_clear_f2fs_gcing(folio);
2679 		goto out_writepage;
2680 	}
2681 got_it:
2682 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2683 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2684 						DATA_GENERIC_ENHANCE)) {
2685 		err = -EFSCORRUPTED;
2686 		goto out_writepage;
2687 	}
2688 
2689 	/* wait for GCed page writeback via META_MAPPING */
2690 	if (fio->meta_gc)
2691 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2692 
2693 	/*
2694 	 * If current allocation needs SSR,
2695 	 * it had better in-place writes for updated data.
2696 	 */
2697 	if (ipu_force ||
2698 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2699 					need_inplace_update(fio))) {
2700 		err = f2fs_encrypt_one_page(fio);
2701 		if (err)
2702 			goto out_writepage;
2703 
2704 		folio_start_writeback(folio);
2705 		f2fs_put_dnode(&dn);
2706 		if (fio->need_lock == LOCK_REQ)
2707 			f2fs_unlock_op(fio->sbi);
2708 		err = f2fs_inplace_write_data(fio);
2709 		if (err) {
2710 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2711 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2712 			folio_end_writeback(folio);
2713 		} else {
2714 			set_inode_flag(inode, FI_UPDATE_WRITE);
2715 		}
2716 		trace_f2fs_do_write_data_page(folio, IPU);
2717 		return err;
2718 	}
2719 
2720 	if (fio->need_lock == LOCK_RETRY) {
2721 		if (!f2fs_trylock_op(fio->sbi)) {
2722 			err = -EAGAIN;
2723 			goto out_writepage;
2724 		}
2725 		fio->need_lock = LOCK_REQ;
2726 	}
2727 
2728 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2729 	if (err)
2730 		goto out_writepage;
2731 
2732 	fio->version = ni.version;
2733 
2734 	err = f2fs_encrypt_one_page(fio);
2735 	if (err)
2736 		goto out_writepage;
2737 
2738 	folio_start_writeback(folio);
2739 
2740 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2741 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2742 
2743 	/* LFS mode write path */
2744 	f2fs_outplace_write_data(&dn, fio);
2745 	trace_f2fs_do_write_data_page(folio, OPU);
2746 	set_inode_flag(inode, FI_APPEND_WRITE);
2747 	if (atomic_commit)
2748 		folio_clear_f2fs_atomic(folio);
2749 out_writepage:
2750 	f2fs_put_dnode(&dn);
2751 out:
2752 	if (fio->need_lock == LOCK_REQ)
2753 		f2fs_unlock_op(fio->sbi);
2754 	return err;
2755 }
2756 
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2757 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2758 				struct bio **bio,
2759 				sector_t *last_block,
2760 				struct writeback_control *wbc,
2761 				enum iostat_type io_type,
2762 				int compr_blocks,
2763 				bool allow_balance)
2764 {
2765 	struct inode *inode = folio->mapping->host;
2766 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2767 	loff_t i_size = i_size_read(inode);
2768 	const pgoff_t end_index = ((unsigned long long)i_size)
2769 							>> PAGE_SHIFT;
2770 	loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2771 	unsigned offset = 0;
2772 	bool need_balance_fs = false;
2773 	bool quota_inode = IS_NOQUOTA(inode);
2774 	int err = 0;
2775 	struct f2fs_io_info fio = {
2776 		.sbi = sbi,
2777 		.ino = inode->i_ino,
2778 		.type = DATA,
2779 		.op = REQ_OP_WRITE,
2780 		.op_flags = wbc_to_write_flags(wbc),
2781 		.old_blkaddr = NULL_ADDR,
2782 		.folio = folio,
2783 		.encrypted_page = NULL,
2784 		.submitted = 0,
2785 		.compr_blocks = compr_blocks,
2786 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2787 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2788 		.io_type = io_type,
2789 		.io_wbc = wbc,
2790 		.bio = bio,
2791 		.last_block = last_block,
2792 	};
2793 
2794 	trace_f2fs_writepage(folio, DATA);
2795 
2796 	/* we should bypass data pages to proceed the kworker jobs */
2797 	if (unlikely(f2fs_cp_error(sbi))) {
2798 		mapping_set_error(folio->mapping, -EIO);
2799 		/*
2800 		 * don't drop any dirty dentry pages for keeping lastest
2801 		 * directory structure.
2802 		 */
2803 		if (S_ISDIR(inode->i_mode) &&
2804 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2805 			goto redirty_out;
2806 
2807 		/* keep data pages in remount-ro mode */
2808 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2809 			goto redirty_out;
2810 		goto out;
2811 	}
2812 
2813 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2814 		goto redirty_out;
2815 
2816 	if (folio->index < end_index ||
2817 			f2fs_verity_in_progress(inode) ||
2818 			compr_blocks)
2819 		goto write;
2820 
2821 	/*
2822 	 * If the offset is out-of-range of file size,
2823 	 * this page does not have to be written to disk.
2824 	 */
2825 	offset = i_size & (PAGE_SIZE - 1);
2826 	if ((folio->index >= end_index + 1) || !offset)
2827 		goto out;
2828 
2829 	folio_zero_segment(folio, offset, folio_size(folio));
2830 write:
2831 	/* Dentry/quota blocks are controlled by checkpoint */
2832 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2833 		/*
2834 		 * We need to wait for node_write to avoid block allocation during
2835 		 * checkpoint. This can only happen to quota writes which can cause
2836 		 * the below discard race condition.
2837 		 */
2838 		if (quota_inode)
2839 			f2fs_down_read(&sbi->node_write);
2840 
2841 		fio.need_lock = LOCK_DONE;
2842 		err = f2fs_do_write_data_page(&fio);
2843 
2844 		if (quota_inode)
2845 			f2fs_up_read(&sbi->node_write);
2846 
2847 		goto done;
2848 	}
2849 
2850 	need_balance_fs = true;
2851 	err = -EAGAIN;
2852 	if (f2fs_has_inline_data(inode)) {
2853 		err = f2fs_write_inline_data(inode, folio);
2854 		if (!err)
2855 			goto out;
2856 	}
2857 
2858 	if (err == -EAGAIN) {
2859 		err = f2fs_do_write_data_page(&fio);
2860 		if (err == -EAGAIN) {
2861 			f2fs_bug_on(sbi, compr_blocks);
2862 			fio.need_lock = LOCK_REQ;
2863 			err = f2fs_do_write_data_page(&fio);
2864 		}
2865 	}
2866 
2867 	if (err) {
2868 		file_set_keep_isize(inode);
2869 	} else {
2870 		spin_lock(&F2FS_I(inode)->i_size_lock);
2871 		if (F2FS_I(inode)->last_disk_size < psize)
2872 			F2FS_I(inode)->last_disk_size = psize;
2873 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2874 	}
2875 
2876 done:
2877 	if (err && err != -ENOENT)
2878 		goto redirty_out;
2879 
2880 out:
2881 	inode_dec_dirty_pages(inode);
2882 	if (err) {
2883 		folio_clear_uptodate(folio);
2884 		folio_clear_f2fs_gcing(folio);
2885 	}
2886 	folio_unlock(folio);
2887 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2888 			!F2FS_I(inode)->wb_task && allow_balance)
2889 		f2fs_balance_fs(sbi, need_balance_fs);
2890 
2891 	if (unlikely(f2fs_cp_error(sbi))) {
2892 		f2fs_submit_merged_write(sbi, DATA);
2893 		if (bio && *bio)
2894 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2895 		submitted = NULL;
2896 	}
2897 
2898 	if (submitted)
2899 		*submitted = fio.submitted;
2900 
2901 	return 0;
2902 
2903 redirty_out:
2904 	folio_redirty_for_writepage(wbc, folio);
2905 	/*
2906 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2907 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2908 	 * file_write_and_wait_range() will see EIO error, which is critical
2909 	 * to return value of fsync() followed by atomic_write failure to user.
2910 	 */
2911 	folio_unlock(folio);
2912 	if (!err)
2913 		return 1;
2914 	return err;
2915 }
2916 
2917 /*
2918  * This function was copied from write_cache_pages from mm/page-writeback.c.
2919  * The major change is making write step of cold data page separately from
2920  * warm/hot data page.
2921  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2922 static int f2fs_write_cache_pages(struct address_space *mapping,
2923 					struct writeback_control *wbc,
2924 					enum iostat_type io_type)
2925 {
2926 	int ret = 0;
2927 	int done = 0, retry = 0;
2928 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2929 	struct page **pages = pages_local;
2930 	struct folio_batch fbatch;
2931 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2932 	struct bio *bio = NULL;
2933 	sector_t last_block;
2934 #ifdef CONFIG_F2FS_FS_COMPRESSION
2935 	struct inode *inode = mapping->host;
2936 	struct compress_ctx cc = {
2937 		.inode = inode,
2938 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2939 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2940 		.cluster_idx = NULL_CLUSTER,
2941 		.rpages = NULL,
2942 		.nr_rpages = 0,
2943 		.cpages = NULL,
2944 		.valid_nr_cpages = 0,
2945 		.rbuf = NULL,
2946 		.cbuf = NULL,
2947 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2948 		.private = NULL,
2949 	};
2950 #endif
2951 	int nr_folios, p, idx;
2952 	int nr_pages;
2953 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2954 	pgoff_t index;
2955 	pgoff_t end;		/* Inclusive */
2956 	pgoff_t done_index;
2957 	int range_whole = 0;
2958 	xa_mark_t tag;
2959 	int nwritten = 0;
2960 	int submitted = 0;
2961 	int i;
2962 
2963 #ifdef CONFIG_F2FS_FS_COMPRESSION
2964 	if (f2fs_compressed_file(inode) &&
2965 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2966 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2967 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2968 		max_pages = 1 << cc.log_cluster_size;
2969 	}
2970 #endif
2971 
2972 	folio_batch_init(&fbatch);
2973 
2974 	if (get_dirty_pages(mapping->host) <=
2975 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2976 		set_inode_flag(mapping->host, FI_HOT_DATA);
2977 	else
2978 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2979 
2980 	if (wbc->range_cyclic) {
2981 		index = mapping->writeback_index; /* prev offset */
2982 		end = -1;
2983 	} else {
2984 		index = wbc->range_start >> PAGE_SHIFT;
2985 		end = wbc->range_end >> PAGE_SHIFT;
2986 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2987 			range_whole = 1;
2988 	}
2989 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2990 		tag = PAGECACHE_TAG_TOWRITE;
2991 	else
2992 		tag = PAGECACHE_TAG_DIRTY;
2993 retry:
2994 	retry = 0;
2995 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2996 		tag_pages_for_writeback(mapping, index, end);
2997 	done_index = index;
2998 	while (!done && !retry && (index <= end)) {
2999 		nr_pages = 0;
3000 again:
3001 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3002 				tag, &fbatch);
3003 		if (nr_folios == 0) {
3004 			if (nr_pages)
3005 				goto write;
3006 			break;
3007 		}
3008 
3009 		for (i = 0; i < nr_folios; i++) {
3010 			struct folio *folio = fbatch.folios[i];
3011 
3012 			idx = 0;
3013 			p = folio_nr_pages(folio);
3014 add_more:
3015 			pages[nr_pages] = folio_page(folio, idx);
3016 			folio_get(folio);
3017 			if (++nr_pages == max_pages) {
3018 				index = folio->index + idx + 1;
3019 				folio_batch_release(&fbatch);
3020 				goto write;
3021 			}
3022 			if (++idx < p)
3023 				goto add_more;
3024 		}
3025 		folio_batch_release(&fbatch);
3026 		goto again;
3027 write:
3028 		for (i = 0; i < nr_pages; i++) {
3029 			struct page *page = pages[i];
3030 			struct folio *folio = page_folio(page);
3031 			bool need_readd;
3032 readd:
3033 			need_readd = false;
3034 #ifdef CONFIG_F2FS_FS_COMPRESSION
3035 			if (f2fs_compressed_file(inode)) {
3036 				void *fsdata = NULL;
3037 				struct page *pagep;
3038 				int ret2;
3039 
3040 				ret = f2fs_init_compress_ctx(&cc);
3041 				if (ret) {
3042 					done = 1;
3043 					break;
3044 				}
3045 
3046 				if (!f2fs_cluster_can_merge_page(&cc,
3047 								folio->index)) {
3048 					ret = f2fs_write_multi_pages(&cc,
3049 						&submitted, wbc, io_type);
3050 					if (!ret)
3051 						need_readd = true;
3052 					goto result;
3053 				}
3054 
3055 				if (unlikely(f2fs_cp_error(sbi)))
3056 					goto lock_folio;
3057 
3058 				if (!f2fs_cluster_is_empty(&cc))
3059 					goto lock_folio;
3060 
3061 				if (f2fs_all_cluster_page_ready(&cc,
3062 					pages, i, nr_pages, true))
3063 					goto lock_folio;
3064 
3065 				ret2 = f2fs_prepare_compress_overwrite(
3066 							inode, &pagep,
3067 							folio->index, &fsdata);
3068 				if (ret2 < 0) {
3069 					ret = ret2;
3070 					done = 1;
3071 					break;
3072 				} else if (ret2 &&
3073 					(!f2fs_compress_write_end(inode,
3074 						fsdata, folio->index, 1) ||
3075 					 !f2fs_all_cluster_page_ready(&cc,
3076 						pages, i, nr_pages,
3077 						false))) {
3078 					retry = 1;
3079 					break;
3080 				}
3081 			}
3082 #endif
3083 			/* give a priority to WB_SYNC threads */
3084 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3085 					wbc->sync_mode == WB_SYNC_NONE) {
3086 				done = 1;
3087 				break;
3088 			}
3089 #ifdef CONFIG_F2FS_FS_COMPRESSION
3090 lock_folio:
3091 #endif
3092 			done_index = folio->index;
3093 retry_write:
3094 			folio_lock(folio);
3095 
3096 			if (unlikely(folio->mapping != mapping)) {
3097 continue_unlock:
3098 				folio_unlock(folio);
3099 				continue;
3100 			}
3101 
3102 			if (!folio_test_dirty(folio)) {
3103 				/* someone wrote it for us */
3104 				goto continue_unlock;
3105 			}
3106 
3107 			if (folio_test_writeback(folio)) {
3108 				if (wbc->sync_mode == WB_SYNC_NONE)
3109 					goto continue_unlock;
3110 				f2fs_folio_wait_writeback(folio, DATA, true, true);
3111 			}
3112 
3113 			if (!folio_clear_dirty_for_io(folio))
3114 				goto continue_unlock;
3115 
3116 #ifdef CONFIG_F2FS_FS_COMPRESSION
3117 			if (f2fs_compressed_file(inode)) {
3118 				folio_get(folio);
3119 				f2fs_compress_ctx_add_page(&cc, folio);
3120 				continue;
3121 			}
3122 #endif
3123 			submitted = 0;
3124 			ret = f2fs_write_single_data_page(folio,
3125 					&submitted, &bio, &last_block,
3126 					wbc, io_type, 0, true);
3127 #ifdef CONFIG_F2FS_FS_COMPRESSION
3128 result:
3129 #endif
3130 			nwritten += submitted;
3131 			wbc->nr_to_write -= submitted;
3132 
3133 			if (unlikely(ret)) {
3134 				/*
3135 				 * keep nr_to_write, since vfs uses this to
3136 				 * get # of written pages.
3137 				 */
3138 				if (ret == 1) {
3139 					ret = 0;
3140 					goto next;
3141 				} else if (ret == -EAGAIN) {
3142 					ret = 0;
3143 					if (wbc->sync_mode == WB_SYNC_ALL) {
3144 						f2fs_io_schedule_timeout(
3145 							DEFAULT_IO_TIMEOUT);
3146 						goto retry_write;
3147 					}
3148 					goto next;
3149 				}
3150 				done_index = folio_next_index(folio);
3151 				done = 1;
3152 				break;
3153 			}
3154 
3155 			if (wbc->nr_to_write <= 0 &&
3156 					wbc->sync_mode == WB_SYNC_NONE) {
3157 				done = 1;
3158 				break;
3159 			}
3160 next:
3161 			if (need_readd)
3162 				goto readd;
3163 		}
3164 		release_pages(pages, nr_pages);
3165 		cond_resched();
3166 	}
3167 #ifdef CONFIG_F2FS_FS_COMPRESSION
3168 	/* flush remained pages in compress cluster */
3169 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3170 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3171 		nwritten += submitted;
3172 		wbc->nr_to_write -= submitted;
3173 		if (ret) {
3174 			done = 1;
3175 			retry = 0;
3176 		}
3177 	}
3178 	if (f2fs_compressed_file(inode))
3179 		f2fs_destroy_compress_ctx(&cc, false);
3180 #endif
3181 	if (retry) {
3182 		index = 0;
3183 		end = -1;
3184 		goto retry;
3185 	}
3186 	if (wbc->range_cyclic && !done)
3187 		done_index = 0;
3188 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3189 		mapping->writeback_index = done_index;
3190 
3191 	if (nwritten)
3192 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3193 								NULL, 0, DATA);
3194 	/* submit cached bio of IPU write */
3195 	if (bio)
3196 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3197 
3198 #ifdef CONFIG_F2FS_FS_COMPRESSION
3199 	if (pages != pages_local)
3200 		kfree(pages);
3201 #endif
3202 
3203 	return ret;
3204 }
3205 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3206 static inline bool __should_serialize_io(struct inode *inode,
3207 					struct writeback_control *wbc)
3208 {
3209 	/* to avoid deadlock in path of data flush */
3210 	if (F2FS_I(inode)->wb_task)
3211 		return false;
3212 
3213 	if (!S_ISREG(inode->i_mode))
3214 		return false;
3215 	if (IS_NOQUOTA(inode))
3216 		return false;
3217 
3218 	if (f2fs_need_compress_data(inode))
3219 		return true;
3220 	if (wbc->sync_mode != WB_SYNC_ALL)
3221 		return true;
3222 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3223 		return true;
3224 	return false;
3225 }
3226 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3227 static int __f2fs_write_data_pages(struct address_space *mapping,
3228 						struct writeback_control *wbc,
3229 						enum iostat_type io_type)
3230 {
3231 	struct inode *inode = mapping->host;
3232 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3233 	struct blk_plug plug;
3234 	int ret;
3235 	bool locked = false;
3236 
3237 	/* skip writing if there is no dirty page in this inode */
3238 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3239 		return 0;
3240 
3241 	/* during POR, we don't need to trigger writepage at all. */
3242 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3243 		goto skip_write;
3244 
3245 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3246 			wbc->sync_mode == WB_SYNC_NONE &&
3247 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3248 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3249 		goto skip_write;
3250 
3251 	/* skip writing in file defragment preparing stage */
3252 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3253 		goto skip_write;
3254 
3255 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3256 
3257 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3258 	if (wbc->sync_mode == WB_SYNC_ALL)
3259 		atomic_inc(&sbi->wb_sync_req[DATA]);
3260 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3261 		/* to avoid potential deadlock */
3262 		if (current->plug)
3263 			blk_finish_plug(current->plug);
3264 		goto skip_write;
3265 	}
3266 
3267 	if (__should_serialize_io(inode, wbc)) {
3268 		mutex_lock(&sbi->writepages);
3269 		locked = true;
3270 	}
3271 
3272 	blk_start_plug(&plug);
3273 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3274 	blk_finish_plug(&plug);
3275 
3276 	if (locked)
3277 		mutex_unlock(&sbi->writepages);
3278 
3279 	if (wbc->sync_mode == WB_SYNC_ALL)
3280 		atomic_dec(&sbi->wb_sync_req[DATA]);
3281 	/*
3282 	 * if some pages were truncated, we cannot guarantee its mapping->host
3283 	 * to detect pending bios.
3284 	 */
3285 
3286 	f2fs_remove_dirty_inode(inode);
3287 	return ret;
3288 
3289 skip_write:
3290 	wbc->pages_skipped += get_dirty_pages(inode);
3291 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3292 	return 0;
3293 }
3294 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3295 static int f2fs_write_data_pages(struct address_space *mapping,
3296 			    struct writeback_control *wbc)
3297 {
3298 	struct inode *inode = mapping->host;
3299 
3300 	return __f2fs_write_data_pages(mapping, wbc,
3301 			F2FS_I(inode)->cp_task == current ?
3302 			FS_CP_DATA_IO : FS_DATA_IO);
3303 }
3304 
f2fs_write_failed(struct inode * inode,loff_t to)3305 void f2fs_write_failed(struct inode *inode, loff_t to)
3306 {
3307 	loff_t i_size = i_size_read(inode);
3308 
3309 	if (IS_NOQUOTA(inode))
3310 		return;
3311 
3312 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3313 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3314 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3315 		filemap_invalidate_lock(inode->i_mapping);
3316 
3317 		truncate_pagecache(inode, i_size);
3318 		f2fs_truncate_blocks(inode, i_size, true);
3319 
3320 		filemap_invalidate_unlock(inode->i_mapping);
3321 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3322 	}
3323 }
3324 
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3325 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3326 			struct folio *folio, loff_t pos, unsigned int len,
3327 			block_t *blk_addr, bool *node_changed)
3328 {
3329 	struct inode *inode = folio->mapping->host;
3330 	pgoff_t index = folio->index;
3331 	struct dnode_of_data dn;
3332 	struct folio *ifolio;
3333 	bool locked = false;
3334 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3335 	int err = 0;
3336 
3337 	/*
3338 	 * If a whole page is being written and we already preallocated all the
3339 	 * blocks, then there is no need to get a block address now.
3340 	 */
3341 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3342 		return 0;
3343 
3344 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3345 	if (f2fs_has_inline_data(inode)) {
3346 		if (pos + len > MAX_INLINE_DATA(inode))
3347 			flag = F2FS_GET_BLOCK_DEFAULT;
3348 		f2fs_map_lock(sbi, flag);
3349 		locked = true;
3350 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3351 		f2fs_map_lock(sbi, flag);
3352 		locked = true;
3353 	}
3354 
3355 restart:
3356 	/* check inline_data */
3357 	ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3358 	if (IS_ERR(ifolio)) {
3359 		err = PTR_ERR(ifolio);
3360 		goto unlock_out;
3361 	}
3362 
3363 	set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3364 
3365 	if (f2fs_has_inline_data(inode)) {
3366 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3367 			f2fs_do_read_inline_data(folio, ifolio);
3368 			set_inode_flag(inode, FI_DATA_EXIST);
3369 			if (inode->i_nlink)
3370 				folio_set_f2fs_inline(ifolio);
3371 			goto out;
3372 		}
3373 		err = f2fs_convert_inline_folio(&dn, folio);
3374 		if (err || dn.data_blkaddr != NULL_ADDR)
3375 			goto out;
3376 	}
3377 
3378 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3379 						 &dn.data_blkaddr)) {
3380 		if (IS_DEVICE_ALIASING(inode)) {
3381 			err = -ENODATA;
3382 			goto out;
3383 		}
3384 
3385 		if (locked) {
3386 			err = f2fs_reserve_block(&dn, index);
3387 			goto out;
3388 		}
3389 
3390 		/* hole case */
3391 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3392 		if (!err && dn.data_blkaddr != NULL_ADDR)
3393 			goto out;
3394 		f2fs_put_dnode(&dn);
3395 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3396 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3397 		locked = true;
3398 		goto restart;
3399 	}
3400 out:
3401 	if (!err) {
3402 		/* convert_inline_page can make node_changed */
3403 		*blk_addr = dn.data_blkaddr;
3404 		*node_changed = dn.node_changed;
3405 	}
3406 	f2fs_put_dnode(&dn);
3407 unlock_out:
3408 	if (locked)
3409 		f2fs_map_unlock(sbi, flag);
3410 	return err;
3411 }
3412 
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3413 static int __find_data_block(struct inode *inode, pgoff_t index,
3414 				block_t *blk_addr)
3415 {
3416 	struct dnode_of_data dn;
3417 	struct folio *ifolio;
3418 	int err = 0;
3419 
3420 	ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino);
3421 	if (IS_ERR(ifolio))
3422 		return PTR_ERR(ifolio);
3423 
3424 	set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3425 
3426 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3427 						 &dn.data_blkaddr)) {
3428 		/* hole case */
3429 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3430 		if (err) {
3431 			dn.data_blkaddr = NULL_ADDR;
3432 			err = 0;
3433 		}
3434 	}
3435 	*blk_addr = dn.data_blkaddr;
3436 	f2fs_put_dnode(&dn);
3437 	return err;
3438 }
3439 
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3440 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3441 				block_t *blk_addr, bool *node_changed)
3442 {
3443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3444 	struct dnode_of_data dn;
3445 	struct folio *ifolio;
3446 	int err = 0;
3447 
3448 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3449 
3450 	ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3451 	if (IS_ERR(ifolio)) {
3452 		err = PTR_ERR(ifolio);
3453 		goto unlock_out;
3454 	}
3455 	set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3456 
3457 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3458 						&dn.data_blkaddr))
3459 		err = f2fs_reserve_block(&dn, index);
3460 
3461 	*blk_addr = dn.data_blkaddr;
3462 	*node_changed = dn.node_changed;
3463 	f2fs_put_dnode(&dn);
3464 
3465 unlock_out:
3466 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3467 	return err;
3468 }
3469 
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3470 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3471 			struct folio *folio, loff_t pos, unsigned int len,
3472 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3473 {
3474 	struct inode *inode = folio->mapping->host;
3475 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3476 	pgoff_t index = folio->index;
3477 	int err = 0;
3478 	block_t ori_blk_addr = NULL_ADDR;
3479 
3480 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3481 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3482 		goto reserve_block;
3483 
3484 	/* Look for the block in COW inode first */
3485 	err = __find_data_block(cow_inode, index, blk_addr);
3486 	if (err) {
3487 		return err;
3488 	} else if (*blk_addr != NULL_ADDR) {
3489 		*use_cow = true;
3490 		return 0;
3491 	}
3492 
3493 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3494 		goto reserve_block;
3495 
3496 	/* Look for the block in the original inode */
3497 	err = __find_data_block(inode, index, &ori_blk_addr);
3498 	if (err)
3499 		return err;
3500 
3501 reserve_block:
3502 	/* Finally, we should reserve a new block in COW inode for the update */
3503 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3504 	if (err)
3505 		return err;
3506 	inc_atomic_write_cnt(inode);
3507 
3508 	if (ori_blk_addr != NULL_ADDR)
3509 		*blk_addr = ori_blk_addr;
3510 	return 0;
3511 }
3512 
f2fs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3513 static int f2fs_write_begin(const struct kiocb *iocb,
3514 			    struct address_space *mapping,
3515 			    loff_t pos, unsigned len, struct folio **foliop,
3516 			    void **fsdata)
3517 {
3518 	struct inode *inode = mapping->host;
3519 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3520 	struct folio *folio;
3521 	pgoff_t index = pos >> PAGE_SHIFT;
3522 	bool need_balance = false;
3523 	bool use_cow = false;
3524 	block_t blkaddr = NULL_ADDR;
3525 	int err = 0;
3526 
3527 	trace_f2fs_write_begin(inode, pos, len);
3528 
3529 	if (!f2fs_is_checkpoint_ready(sbi)) {
3530 		err = -ENOSPC;
3531 		goto fail;
3532 	}
3533 
3534 	/*
3535 	 * We should check this at this moment to avoid deadlock on inode page
3536 	 * and #0 page. The locking rule for inline_data conversion should be:
3537 	 * folio_lock(folio #0) -> folio_lock(inode_page)
3538 	 */
3539 	if (index != 0) {
3540 		err = f2fs_convert_inline_inode(inode);
3541 		if (err)
3542 			goto fail;
3543 	}
3544 
3545 #ifdef CONFIG_F2FS_FS_COMPRESSION
3546 	if (f2fs_compressed_file(inode)) {
3547 		int ret;
3548 		struct page *page;
3549 
3550 		*fsdata = NULL;
3551 
3552 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3553 			goto repeat;
3554 
3555 		ret = f2fs_prepare_compress_overwrite(inode, &page,
3556 							index, fsdata);
3557 		if (ret < 0) {
3558 			err = ret;
3559 			goto fail;
3560 		} else if (ret) {
3561 			*foliop = page_folio(page);
3562 			return 0;
3563 		}
3564 	}
3565 #endif
3566 
3567 repeat:
3568 	/*
3569 	 * Do not use FGP_STABLE to avoid deadlock.
3570 	 * Will wait that below with our IO control.
3571 	 */
3572 	folio = __filemap_get_folio(mapping, index,
3573 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3574 	if (IS_ERR(folio)) {
3575 		err = PTR_ERR(folio);
3576 		goto fail;
3577 	}
3578 
3579 	/* TODO: cluster can be compressed due to race with .writepage */
3580 
3581 	*foliop = folio;
3582 
3583 	if (f2fs_is_atomic_file(inode))
3584 		err = prepare_atomic_write_begin(sbi, folio, pos, len,
3585 					&blkaddr, &need_balance, &use_cow);
3586 	else
3587 		err = prepare_write_begin(sbi, folio, pos, len,
3588 					&blkaddr, &need_balance);
3589 	if (err)
3590 		goto put_folio;
3591 
3592 	if (need_balance && !IS_NOQUOTA(inode) &&
3593 			has_not_enough_free_secs(sbi, 0, 0)) {
3594 		folio_unlock(folio);
3595 		f2fs_balance_fs(sbi, true);
3596 		folio_lock(folio);
3597 		if (folio->mapping != mapping) {
3598 			/* The folio got truncated from under us */
3599 			folio_unlock(folio);
3600 			folio_put(folio);
3601 			goto repeat;
3602 		}
3603 	}
3604 
3605 	f2fs_folio_wait_writeback(folio, DATA, false, true);
3606 
3607 	if (len == folio_size(folio) || folio_test_uptodate(folio))
3608 		return 0;
3609 
3610 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3611 	    !f2fs_verity_in_progress(inode)) {
3612 		folio_zero_segment(folio, len, folio_size(folio));
3613 		return 0;
3614 	}
3615 
3616 	if (blkaddr == NEW_ADDR) {
3617 		folio_zero_segment(folio, 0, folio_size(folio));
3618 		folio_mark_uptodate(folio);
3619 	} else {
3620 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3621 				DATA_GENERIC_ENHANCE_READ)) {
3622 			err = -EFSCORRUPTED;
3623 			goto put_folio;
3624 		}
3625 		f2fs_submit_page_read(use_cow ?
3626 				F2FS_I(inode)->cow_inode : inode,
3627 				folio, blkaddr, 0, true);
3628 
3629 		folio_lock(folio);
3630 		if (unlikely(folio->mapping != mapping)) {
3631 			folio_unlock(folio);
3632 			folio_put(folio);
3633 			goto repeat;
3634 		}
3635 		if (unlikely(!folio_test_uptodate(folio))) {
3636 			err = -EIO;
3637 			goto put_folio;
3638 		}
3639 	}
3640 	return 0;
3641 
3642 put_folio:
3643 	folio_unlock(folio);
3644 	folio_put(folio);
3645 fail:
3646 	f2fs_write_failed(inode, pos + len);
3647 	return err;
3648 }
3649 
f2fs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3650 static int f2fs_write_end(const struct kiocb *iocb,
3651 			struct address_space *mapping,
3652 			loff_t pos, unsigned len, unsigned copied,
3653 			struct folio *folio, void *fsdata)
3654 {
3655 	struct inode *inode = folio->mapping->host;
3656 
3657 	trace_f2fs_write_end(inode, pos, len, copied);
3658 
3659 	/*
3660 	 * This should be come from len == PAGE_SIZE, and we expect copied
3661 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3662 	 * let generic_perform_write() try to copy data again through copied=0.
3663 	 */
3664 	if (!folio_test_uptodate(folio)) {
3665 		if (unlikely(copied != len))
3666 			copied = 0;
3667 		else
3668 			folio_mark_uptodate(folio);
3669 	}
3670 
3671 #ifdef CONFIG_F2FS_FS_COMPRESSION
3672 	/* overwrite compressed file */
3673 	if (f2fs_compressed_file(inode) && fsdata) {
3674 		f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3675 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3676 
3677 		if (pos + copied > i_size_read(inode) &&
3678 				!f2fs_verity_in_progress(inode))
3679 			f2fs_i_size_write(inode, pos + copied);
3680 		return copied;
3681 	}
3682 #endif
3683 
3684 	if (!copied)
3685 		goto unlock_out;
3686 
3687 	folio_mark_dirty(folio);
3688 
3689 	if (f2fs_is_atomic_file(inode))
3690 		folio_set_f2fs_atomic(folio);
3691 
3692 	if (pos + copied > i_size_read(inode) &&
3693 	    !f2fs_verity_in_progress(inode)) {
3694 		f2fs_i_size_write(inode, pos + copied);
3695 		if (f2fs_is_atomic_file(inode))
3696 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3697 					pos + copied);
3698 	}
3699 unlock_out:
3700 	folio_unlock(folio);
3701 	folio_put(folio);
3702 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3703 	return copied;
3704 }
3705 
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3706 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3707 {
3708 	struct inode *inode = folio->mapping->host;
3709 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710 
3711 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3712 				(offset || length != folio_size(folio)))
3713 		return;
3714 
3715 	if (folio_test_dirty(folio)) {
3716 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3717 			dec_page_count(sbi, F2FS_DIRTY_META);
3718 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3719 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3720 		} else {
3721 			inode_dec_dirty_pages(inode);
3722 			f2fs_remove_dirty_inode(inode);
3723 		}
3724 	}
3725 	folio_detach_private(folio);
3726 }
3727 
f2fs_release_folio(struct folio * folio,gfp_t wait)3728 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3729 {
3730 	/* If this is dirty folio, keep private data */
3731 	if (folio_test_dirty(folio))
3732 		return false;
3733 
3734 	folio_detach_private(folio);
3735 	return true;
3736 }
3737 
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3738 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3739 		struct folio *folio)
3740 {
3741 	struct inode *inode = mapping->host;
3742 
3743 	trace_f2fs_set_page_dirty(folio, DATA);
3744 
3745 	if (!folio_test_uptodate(folio))
3746 		folio_mark_uptodate(folio);
3747 	BUG_ON(folio_test_swapcache(folio));
3748 
3749 	if (filemap_dirty_folio(mapping, folio)) {
3750 		f2fs_update_dirty_folio(inode, folio);
3751 		return true;
3752 	}
3753 	return false;
3754 }
3755 
3756 
f2fs_bmap_compress(struct inode * inode,sector_t block)3757 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3758 {
3759 #ifdef CONFIG_F2FS_FS_COMPRESSION
3760 	struct dnode_of_data dn;
3761 	sector_t start_idx, blknr = 0;
3762 	int ret;
3763 
3764 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3765 
3766 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3767 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3768 	if (ret)
3769 		return 0;
3770 
3771 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3772 		dn.ofs_in_node += block - start_idx;
3773 		blknr = f2fs_data_blkaddr(&dn);
3774 		if (!__is_valid_data_blkaddr(blknr))
3775 			blknr = 0;
3776 	}
3777 
3778 	f2fs_put_dnode(&dn);
3779 	return blknr;
3780 #else
3781 	return 0;
3782 #endif
3783 }
3784 
3785 
f2fs_bmap(struct address_space * mapping,sector_t block)3786 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3787 {
3788 	struct inode *inode = mapping->host;
3789 	sector_t blknr = 0;
3790 
3791 	if (f2fs_has_inline_data(inode))
3792 		goto out;
3793 
3794 	/* make sure allocating whole blocks */
3795 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3796 		filemap_write_and_wait(mapping);
3797 
3798 	/* Block number less than F2FS MAX BLOCKS */
3799 	if (unlikely(block >= max_file_blocks(inode)))
3800 		goto out;
3801 
3802 	if (f2fs_compressed_file(inode)) {
3803 		blknr = f2fs_bmap_compress(inode, block);
3804 	} else {
3805 		struct f2fs_map_blocks map;
3806 
3807 		memset(&map, 0, sizeof(map));
3808 		map.m_lblk = block;
3809 		map.m_len = 1;
3810 		map.m_next_pgofs = NULL;
3811 		map.m_seg_type = NO_CHECK_TYPE;
3812 
3813 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3814 			blknr = map.m_pblk;
3815 	}
3816 out:
3817 	trace_f2fs_bmap(inode, block, blknr);
3818 	return blknr;
3819 }
3820 
3821 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3822 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3823 							unsigned int blkcnt)
3824 {
3825 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3826 	unsigned int blkofs;
3827 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3828 	unsigned int end_blk = start_blk + blkcnt - 1;
3829 	unsigned int secidx = start_blk / blk_per_sec;
3830 	unsigned int end_sec;
3831 	int ret = 0;
3832 
3833 	if (!blkcnt)
3834 		return 0;
3835 	end_sec = end_blk / blk_per_sec;
3836 
3837 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3838 	filemap_invalidate_lock(inode->i_mapping);
3839 
3840 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3841 	set_inode_flag(inode, FI_OPU_WRITE);
3842 
3843 	for (; secidx <= end_sec; secidx++) {
3844 		unsigned int blkofs_end = secidx == end_sec ?
3845 				end_blk % blk_per_sec : blk_per_sec - 1;
3846 
3847 		f2fs_down_write(&sbi->pin_sem);
3848 
3849 		ret = f2fs_allocate_pinning_section(sbi);
3850 		if (ret) {
3851 			f2fs_up_write(&sbi->pin_sem);
3852 			break;
3853 		}
3854 
3855 		set_inode_flag(inode, FI_SKIP_WRITES);
3856 
3857 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3858 			struct folio *folio;
3859 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3860 
3861 			folio = f2fs_get_lock_data_folio(inode, blkidx, true);
3862 			if (IS_ERR(folio)) {
3863 				f2fs_up_write(&sbi->pin_sem);
3864 				ret = PTR_ERR(folio);
3865 				goto done;
3866 			}
3867 
3868 			folio_mark_dirty(folio);
3869 			f2fs_folio_put(folio, true);
3870 		}
3871 
3872 		clear_inode_flag(inode, FI_SKIP_WRITES);
3873 
3874 		ret = filemap_fdatawrite(inode->i_mapping);
3875 
3876 		f2fs_up_write(&sbi->pin_sem);
3877 
3878 		if (ret)
3879 			break;
3880 	}
3881 
3882 done:
3883 	clear_inode_flag(inode, FI_SKIP_WRITES);
3884 	clear_inode_flag(inode, FI_OPU_WRITE);
3885 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3886 
3887 	filemap_invalidate_unlock(inode->i_mapping);
3888 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3889 
3890 	return ret;
3891 }
3892 
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3893 static int check_swap_activate(struct swap_info_struct *sis,
3894 				struct file *swap_file, sector_t *span)
3895 {
3896 	struct address_space *mapping = swap_file->f_mapping;
3897 	struct inode *inode = mapping->host;
3898 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3899 	block_t cur_lblock;
3900 	block_t last_lblock;
3901 	block_t pblock;
3902 	block_t lowest_pblock = -1;
3903 	block_t highest_pblock = 0;
3904 	int nr_extents = 0;
3905 	unsigned int nr_pblocks;
3906 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3907 	unsigned int not_aligned = 0;
3908 	int ret = 0;
3909 
3910 	/*
3911 	 * Map all the blocks into the extent list.  This code doesn't try
3912 	 * to be very smart.
3913 	 */
3914 	cur_lblock = 0;
3915 	last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3916 
3917 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3918 		struct f2fs_map_blocks map;
3919 retry:
3920 		cond_resched();
3921 
3922 		memset(&map, 0, sizeof(map));
3923 		map.m_lblk = cur_lblock;
3924 		map.m_len = last_lblock - cur_lblock;
3925 		map.m_next_pgofs = NULL;
3926 		map.m_next_extent = NULL;
3927 		map.m_seg_type = NO_CHECK_TYPE;
3928 		map.m_may_create = false;
3929 
3930 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3931 		if (ret)
3932 			goto out;
3933 
3934 		/* hole */
3935 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3936 			f2fs_err(sbi, "Swapfile has holes");
3937 			ret = -EINVAL;
3938 			goto out;
3939 		}
3940 
3941 		pblock = map.m_pblk;
3942 		nr_pblocks = map.m_len;
3943 
3944 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3945 				nr_pblocks % blks_per_sec ||
3946 				f2fs_is_sequential_zone_area(sbi, pblock)) {
3947 			bool last_extent = false;
3948 
3949 			not_aligned++;
3950 
3951 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3952 			if (cur_lblock + nr_pblocks > sis->max)
3953 				nr_pblocks -= blks_per_sec;
3954 
3955 			/* this extent is last one */
3956 			if (!nr_pblocks) {
3957 				nr_pblocks = last_lblock - cur_lblock;
3958 				last_extent = true;
3959 			}
3960 
3961 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3962 							nr_pblocks);
3963 			if (ret) {
3964 				if (ret == -ENOENT)
3965 					ret = -EINVAL;
3966 				goto out;
3967 			}
3968 
3969 			if (!last_extent)
3970 				goto retry;
3971 		}
3972 
3973 		if (cur_lblock + nr_pblocks >= sis->max)
3974 			nr_pblocks = sis->max - cur_lblock;
3975 
3976 		if (cur_lblock) {	/* exclude the header page */
3977 			if (pblock < lowest_pblock)
3978 				lowest_pblock = pblock;
3979 			if (pblock + nr_pblocks - 1 > highest_pblock)
3980 				highest_pblock = pblock + nr_pblocks - 1;
3981 		}
3982 
3983 		/*
3984 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3985 		 */
3986 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3987 		if (ret < 0)
3988 			goto out;
3989 		nr_extents += ret;
3990 		cur_lblock += nr_pblocks;
3991 	}
3992 	ret = nr_extents;
3993 	*span = 1 + highest_pblock - lowest_pblock;
3994 	if (cur_lblock == 0)
3995 		cur_lblock = 1;	/* force Empty message */
3996 	sis->max = cur_lblock;
3997 	sis->pages = cur_lblock - 1;
3998 out:
3999 	if (not_aligned)
4000 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4001 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4002 	return ret;
4003 }
4004 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4005 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4006 				sector_t *span)
4007 {
4008 	struct inode *inode = file_inode(file);
4009 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4010 	int ret;
4011 
4012 	if (!S_ISREG(inode->i_mode))
4013 		return -EINVAL;
4014 
4015 	if (f2fs_readonly(sbi->sb))
4016 		return -EROFS;
4017 
4018 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4019 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4020 		return -EINVAL;
4021 	}
4022 
4023 	ret = f2fs_convert_inline_inode(inode);
4024 	if (ret)
4025 		return ret;
4026 
4027 	if (!f2fs_disable_compressed_file(inode))
4028 		return -EINVAL;
4029 
4030 	ret = filemap_fdatawrite(inode->i_mapping);
4031 	if (ret < 0)
4032 		return ret;
4033 
4034 	f2fs_precache_extents(inode);
4035 
4036 	ret = check_swap_activate(sis, file, span);
4037 	if (ret < 0)
4038 		return ret;
4039 
4040 	stat_inc_swapfile_inode(inode);
4041 	set_inode_flag(inode, FI_PIN_FILE);
4042 	f2fs_update_time(sbi, REQ_TIME);
4043 	return ret;
4044 }
4045 
f2fs_swap_deactivate(struct file * file)4046 static void f2fs_swap_deactivate(struct file *file)
4047 {
4048 	struct inode *inode = file_inode(file);
4049 
4050 	stat_dec_swapfile_inode(inode);
4051 	clear_inode_flag(inode, FI_PIN_FILE);
4052 }
4053 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4054 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4055 				sector_t *span)
4056 {
4057 	return -EOPNOTSUPP;
4058 }
4059 
f2fs_swap_deactivate(struct file * file)4060 static void f2fs_swap_deactivate(struct file *file)
4061 {
4062 }
4063 #endif
4064 
4065 const struct address_space_operations f2fs_dblock_aops = {
4066 	.read_folio	= f2fs_read_data_folio,
4067 	.readahead	= f2fs_readahead,
4068 	.writepages	= f2fs_write_data_pages,
4069 	.write_begin	= f2fs_write_begin,
4070 	.write_end	= f2fs_write_end,
4071 	.dirty_folio	= f2fs_dirty_data_folio,
4072 	.migrate_folio	= filemap_migrate_folio,
4073 	.invalidate_folio = f2fs_invalidate_folio,
4074 	.release_folio	= f2fs_release_folio,
4075 	.bmap		= f2fs_bmap,
4076 	.swap_activate  = f2fs_swap_activate,
4077 	.swap_deactivate = f2fs_swap_deactivate,
4078 };
4079 
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4080 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4081 {
4082 	struct address_space *mapping = folio->mapping;
4083 	unsigned long flags;
4084 
4085 	xa_lock_irqsave(&mapping->i_pages, flags);
4086 	__xa_clear_mark(&mapping->i_pages, folio->index,
4087 						PAGECACHE_TAG_DIRTY);
4088 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4089 }
4090 
f2fs_init_post_read_processing(void)4091 int __init f2fs_init_post_read_processing(void)
4092 {
4093 	bio_post_read_ctx_cache =
4094 		kmem_cache_create("f2fs_bio_post_read_ctx",
4095 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4096 	if (!bio_post_read_ctx_cache)
4097 		goto fail;
4098 	bio_post_read_ctx_pool =
4099 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4100 					 bio_post_read_ctx_cache);
4101 	if (!bio_post_read_ctx_pool)
4102 		goto fail_free_cache;
4103 	return 0;
4104 
4105 fail_free_cache:
4106 	kmem_cache_destroy(bio_post_read_ctx_cache);
4107 fail:
4108 	return -ENOMEM;
4109 }
4110 
f2fs_destroy_post_read_processing(void)4111 void f2fs_destroy_post_read_processing(void)
4112 {
4113 	mempool_destroy(bio_post_read_ctx_pool);
4114 	kmem_cache_destroy(bio_post_read_ctx_cache);
4115 }
4116 
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4117 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4118 {
4119 	if (!f2fs_sb_has_encrypt(sbi) &&
4120 		!f2fs_sb_has_verity(sbi) &&
4121 		!f2fs_sb_has_compression(sbi))
4122 		return 0;
4123 
4124 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4125 						 WQ_UNBOUND | WQ_HIGHPRI,
4126 						 num_online_cpus());
4127 	return sbi->post_read_wq ? 0 : -ENOMEM;
4128 }
4129 
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4130 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4131 {
4132 	if (sbi->post_read_wq)
4133 		destroy_workqueue(sbi->post_read_wq);
4134 }
4135 
f2fs_init_bio_entry_cache(void)4136 int __init f2fs_init_bio_entry_cache(void)
4137 {
4138 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4139 			sizeof(struct bio_entry));
4140 	return bio_entry_slab ? 0 : -ENOMEM;
4141 }
4142 
f2fs_destroy_bio_entry_cache(void)4143 void f2fs_destroy_bio_entry_cache(void)
4144 {
4145 	kmem_cache_destroy(bio_entry_slab);
4146 }
4147 
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4148 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4149 			    unsigned int flags, struct iomap *iomap,
4150 			    struct iomap *srcmap)
4151 {
4152 	struct f2fs_map_blocks map = { NULL, };
4153 	pgoff_t next_pgofs = 0;
4154 	int err;
4155 
4156 	map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4157 	map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4158 	map.m_next_pgofs = &next_pgofs;
4159 	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4160 						inode->i_write_hint);
4161 	if (flags & IOMAP_WRITE && iomap->private) {
4162 		map.m_last_pblk = (unsigned long)iomap->private;
4163 		iomap->private = NULL;
4164 	}
4165 
4166 	/*
4167 	 * If the blocks being overwritten are already allocated,
4168 	 * f2fs_map_lock and f2fs_balance_fs are not necessary.
4169 	 */
4170 	if ((flags & IOMAP_WRITE) &&
4171 		!f2fs_overwrite_io(inode, offset, length))
4172 		map.m_may_create = true;
4173 
4174 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4175 	if (err)
4176 		return err;
4177 
4178 	iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4179 
4180 	/*
4181 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4182 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4183 	 * limiting the length of the mapping returned.
4184 	 */
4185 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4186 
4187 	/*
4188 	 * We should never see delalloc or compressed extents here based on
4189 	 * prior flushing and checks.
4190 	 */
4191 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4192 		return -EINVAL;
4193 
4194 	if (map.m_flags & F2FS_MAP_MAPPED) {
4195 		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4196 			return -EINVAL;
4197 
4198 		iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4199 		iomap->type = IOMAP_MAPPED;
4200 		iomap->flags |= IOMAP_F_MERGED;
4201 		iomap->bdev = map.m_bdev;
4202 		iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4203 
4204 		if (flags & IOMAP_WRITE && map.m_last_pblk)
4205 			iomap->private = (void *)map.m_last_pblk;
4206 	} else {
4207 		if (flags & IOMAP_WRITE)
4208 			return -ENOTBLK;
4209 
4210 		if (map.m_pblk == NULL_ADDR) {
4211 			iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4212 							iomap->offset;
4213 			iomap->type = IOMAP_HOLE;
4214 		} else if (map.m_pblk == NEW_ADDR) {
4215 			iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4216 			iomap->type = IOMAP_UNWRITTEN;
4217 		} else {
4218 			f2fs_bug_on(F2FS_I_SB(inode), 1);
4219 		}
4220 		iomap->addr = IOMAP_NULL_ADDR;
4221 	}
4222 
4223 	if (map.m_flags & F2FS_MAP_NEW)
4224 		iomap->flags |= IOMAP_F_NEW;
4225 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4226 	    offset + length > i_size_read(inode))
4227 		iomap->flags |= IOMAP_F_DIRTY;
4228 
4229 	return 0;
4230 }
4231 
4232 const struct iomap_ops f2fs_iomap_ops = {
4233 	.iomap_begin	= f2fs_iomap_begin,
4234 };
4235