1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_RT, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io,unsigned char reason)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 unsigned char reason)
31 {
32 f2fs_build_fault_attr(sbi, 0, 0);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 f2fs_handle_critical_error(sbi, reason);
36 }
37
38 /*
39 * We guarantee no failure on the returned page.
40 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42 {
43 struct address_space *mapping = META_MAPPING(sbi);
44 struct page *page;
45 repeat:
46 page = f2fs_grab_cache_page(mapping, index, false);
47 if (!page) {
48 cond_resched();
49 goto repeat;
50 }
51 f2fs_wait_on_page_writeback(page, META, true, true);
52 if (!PageUptodate(page))
53 SetPageUptodate(page);
54 return page;
55 }
56
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
58 bool is_meta)
59 {
60 struct address_space *mapping = META_MAPPING(sbi);
61 struct folio *folio;
62 struct f2fs_io_info fio = {
63 .sbi = sbi,
64 .type = META,
65 .op = REQ_OP_READ,
66 .op_flags = REQ_META | REQ_PRIO,
67 .old_blkaddr = index,
68 .new_blkaddr = index,
69 .encrypted_page = NULL,
70 .is_por = !is_meta ? 1 : 0,
71 };
72 int err;
73
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76 repeat:
77 folio = f2fs_grab_cache_folio(mapping, index, false);
78 if (IS_ERR(folio)) {
79 cond_resched();
80 goto repeat;
81 }
82 if (folio_test_uptodate(folio))
83 goto out;
84
85 fio.page = &folio->page;
86
87 err = f2fs_submit_page_bio(&fio);
88 if (err) {
89 f2fs_folio_put(folio, true);
90 return ERR_PTR(err);
91 }
92
93 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
94
95 folio_lock(folio);
96 if (unlikely(folio->mapping != mapping)) {
97 f2fs_folio_put(folio, true);
98 goto repeat;
99 }
100
101 if (unlikely(!folio_test_uptodate(folio))) {
102 f2fs_handle_page_eio(sbi, folio, META);
103 f2fs_folio_put(folio, true);
104 return ERR_PTR(-EIO);
105 }
106 out:
107 return &folio->page;
108 }
109
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112 return __get_meta_page(sbi, index, true);
113 }
114
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 struct page *page;
118 int count = 0;
119
120 retry:
121 page = __get_meta_page(sbi, index, true);
122 if (IS_ERR(page)) {
123 if (PTR_ERR(page) == -EIO &&
124 ++count <= DEFAULT_RETRY_IO_COUNT)
125 goto retry;
126 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
127 }
128 return page;
129 }
130
131 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
133 {
134 return __get_meta_page(sbi, index, false);
135 }
136
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138 int type)
139 {
140 struct seg_entry *se;
141 unsigned int segno, offset;
142 bool exist;
143
144 if (type == DATA_GENERIC)
145 return true;
146
147 segno = GET_SEGNO(sbi, blkaddr);
148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149 se = get_seg_entry(sbi, segno);
150
151 exist = f2fs_test_bit(offset, se->cur_valid_map);
152
153 /* skip data, if we already have an error in checkpoint. */
154 if (unlikely(f2fs_cp_error(sbi)))
155 return exist;
156
157 if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
158 (!exist && type == DATA_GENERIC_ENHANCE))
159 goto out_err;
160 if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
161 goto out_handle;
162 return exist;
163
164 out_err:
165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166 blkaddr, exist);
167 set_sbi_flag(sbi, SBI_NEED_FSCK);
168 dump_stack();
169 out_handle:
170 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
171 return exist;
172 }
173
__f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
175 block_t blkaddr, int type)
176 {
177 switch (type) {
178 case META_NAT:
179 break;
180 case META_SIT:
181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182 goto check_only;
183 break;
184 case META_SSA:
185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186 blkaddr < SM_I(sbi)->ssa_blkaddr))
187 goto check_only;
188 break;
189 case META_CP:
190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191 blkaddr < __start_cp_addr(sbi)))
192 goto check_only;
193 break;
194 case META_POR:
195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196 blkaddr < MAIN_BLKADDR(sbi)))
197 goto check_only;
198 break;
199 case DATA_GENERIC:
200 case DATA_GENERIC_ENHANCE:
201 case DATA_GENERIC_ENHANCE_READ:
202 case DATA_GENERIC_ENHANCE_UPDATE:
203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204 blkaddr < MAIN_BLKADDR(sbi))) {
205
206 /* Skip to emit an error message. */
207 if (unlikely(f2fs_cp_error(sbi)))
208 return false;
209
210 f2fs_warn(sbi, "access invalid blkaddr:%u",
211 blkaddr);
212 set_sbi_flag(sbi, SBI_NEED_FSCK);
213 dump_stack();
214 goto err;
215 } else {
216 return __is_bitmap_valid(sbi, blkaddr, type);
217 }
218 break;
219 case META_GENERIC:
220 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
221 blkaddr >= MAIN_BLKADDR(sbi)))
222 goto err;
223 break;
224 default:
225 BUG();
226 }
227
228 return true;
229 err:
230 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
231 check_only:
232 return false;
233 }
234
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
236 block_t blkaddr, int type)
237 {
238 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
239 return false;
240 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
241 }
242
f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info * sbi,block_t blkaddr,int type)243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
244 block_t blkaddr, int type)
245 {
246 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
247 }
248
249 /*
250 * Readahead CP/NAT/SIT/SSA/POR pages
251 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
253 int type, bool sync)
254 {
255 struct page *page;
256 block_t blkno = start;
257 struct f2fs_io_info fio = {
258 .sbi = sbi,
259 .type = META,
260 .op = REQ_OP_READ,
261 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
262 .encrypted_page = NULL,
263 .in_list = 0,
264 .is_por = (type == META_POR) ? 1 : 0,
265 };
266 struct blk_plug plug;
267 int err;
268
269 if (unlikely(type == META_POR))
270 fio.op_flags &= ~REQ_META;
271
272 blk_start_plug(&plug);
273 for (; nrpages-- > 0; blkno++) {
274
275 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
276 goto out;
277
278 switch (type) {
279 case META_NAT:
280 if (unlikely(blkno >=
281 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
282 blkno = 0;
283 /* get nat block addr */
284 fio.new_blkaddr = current_nat_addr(sbi,
285 blkno * NAT_ENTRY_PER_BLOCK);
286 break;
287 case META_SIT:
288 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
289 goto out;
290 /* get sit block addr */
291 fio.new_blkaddr = current_sit_addr(sbi,
292 blkno * SIT_ENTRY_PER_BLOCK);
293 break;
294 case META_SSA:
295 case META_CP:
296 case META_POR:
297 fio.new_blkaddr = blkno;
298 break;
299 default:
300 BUG();
301 }
302
303 page = f2fs_grab_cache_page(META_MAPPING(sbi),
304 fio.new_blkaddr, false);
305 if (!page)
306 continue;
307 if (PageUptodate(page)) {
308 f2fs_put_page(page, 1);
309 continue;
310 }
311
312 fio.page = page;
313 err = f2fs_submit_page_bio(&fio);
314 f2fs_put_page(page, err ? 1 : 0);
315
316 if (!err)
317 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
318 F2FS_BLKSIZE);
319 }
320 out:
321 blk_finish_plug(&plug);
322 return blkno - start;
323 }
324
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index,unsigned int ra_blocks)325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
326 unsigned int ra_blocks)
327 {
328 struct page *page;
329 bool readahead = false;
330
331 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
332 return;
333
334 page = find_get_page(META_MAPPING(sbi), index);
335 if (!page || !PageUptodate(page))
336 readahead = true;
337 f2fs_put_page(page, 0);
338
339 if (readahead)
340 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
341 }
342
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)343 static int __f2fs_write_meta_page(struct page *page,
344 struct writeback_control *wbc,
345 enum iostat_type io_type)
346 {
347 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
348 struct folio *folio = page_folio(page);
349
350 trace_f2fs_writepage(folio, META);
351
352 if (unlikely(f2fs_cp_error(sbi))) {
353 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
354 folio_clear_uptodate(folio);
355 dec_page_count(sbi, F2FS_DIRTY_META);
356 folio_unlock(folio);
357 return 0;
358 }
359 goto redirty_out;
360 }
361 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
362 goto redirty_out;
363 if (wbc->for_reclaim && folio->index < GET_SUM_BLOCK(sbi, 0))
364 goto redirty_out;
365
366 f2fs_do_write_meta_page(sbi, folio, io_type);
367 dec_page_count(sbi, F2FS_DIRTY_META);
368
369 if (wbc->for_reclaim)
370 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
371
372 folio_unlock(folio);
373
374 if (unlikely(f2fs_cp_error(sbi)))
375 f2fs_submit_merged_write(sbi, META);
376
377 return 0;
378
379 redirty_out:
380 redirty_page_for_writepage(wbc, page);
381 return AOP_WRITEPAGE_ACTIVATE;
382 }
383
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)384 static int f2fs_write_meta_pages(struct address_space *mapping,
385 struct writeback_control *wbc)
386 {
387 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
388 long diff, written;
389
390 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
391 goto skip_write;
392
393 /* collect a number of dirty meta pages and write together */
394 if (wbc->sync_mode != WB_SYNC_ALL &&
395 get_pages(sbi, F2FS_DIRTY_META) <
396 nr_pages_to_skip(sbi, META))
397 goto skip_write;
398
399 /* if locked failed, cp will flush dirty pages instead */
400 if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
401 goto skip_write;
402
403 trace_f2fs_writepages(mapping->host, wbc, META);
404 diff = nr_pages_to_write(sbi, META, wbc);
405 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
406 f2fs_up_write(&sbi->cp_global_sem);
407 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
408 return 0;
409
410 skip_write:
411 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
412 trace_f2fs_writepages(mapping->host, wbc, META);
413 return 0;
414 }
415
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)416 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
417 long nr_to_write, enum iostat_type io_type)
418 {
419 struct address_space *mapping = META_MAPPING(sbi);
420 pgoff_t index = 0, prev = ULONG_MAX;
421 struct folio_batch fbatch;
422 long nwritten = 0;
423 int nr_folios;
424 struct writeback_control wbc = {
425 .for_reclaim = 0,
426 };
427 struct blk_plug plug;
428
429 folio_batch_init(&fbatch);
430
431 blk_start_plug(&plug);
432
433 while ((nr_folios = filemap_get_folios_tag(mapping, &index,
434 (pgoff_t)-1,
435 PAGECACHE_TAG_DIRTY, &fbatch))) {
436 int i;
437
438 for (i = 0; i < nr_folios; i++) {
439 struct folio *folio = fbatch.folios[i];
440
441 if (nr_to_write != LONG_MAX && i != 0 &&
442 folio->index != prev +
443 folio_nr_pages(fbatch.folios[i-1])) {
444 folio_batch_release(&fbatch);
445 goto stop;
446 }
447
448 folio_lock(folio);
449
450 if (unlikely(folio->mapping != mapping)) {
451 continue_unlock:
452 folio_unlock(folio);
453 continue;
454 }
455 if (!folio_test_dirty(folio)) {
456 /* someone wrote it for us */
457 goto continue_unlock;
458 }
459
460 f2fs_wait_on_page_writeback(&folio->page, META,
461 true, true);
462
463 if (!folio_clear_dirty_for_io(folio))
464 goto continue_unlock;
465
466 if (__f2fs_write_meta_page(&folio->page, &wbc,
467 io_type)) {
468 folio_unlock(folio);
469 break;
470 }
471 nwritten += folio_nr_pages(folio);
472 prev = folio->index;
473 if (unlikely(nwritten >= nr_to_write))
474 break;
475 }
476 folio_batch_release(&fbatch);
477 cond_resched();
478 }
479 stop:
480 if (nwritten)
481 f2fs_submit_merged_write(sbi, type);
482
483 blk_finish_plug(&plug);
484
485 return nwritten;
486 }
487
f2fs_dirty_meta_folio(struct address_space * mapping,struct folio * folio)488 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
489 struct folio *folio)
490 {
491 trace_f2fs_set_page_dirty(folio, META);
492
493 if (!folio_test_uptodate(folio))
494 folio_mark_uptodate(folio);
495 if (filemap_dirty_folio(mapping, folio)) {
496 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
497 set_page_private_reference(&folio->page);
498 return true;
499 }
500 return false;
501 }
502
503 const struct address_space_operations f2fs_meta_aops = {
504 .writepages = f2fs_write_meta_pages,
505 .dirty_folio = f2fs_dirty_meta_folio,
506 .invalidate_folio = f2fs_invalidate_folio,
507 .release_folio = f2fs_release_folio,
508 .migrate_folio = filemap_migrate_folio,
509 };
510
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)511 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
512 unsigned int devidx, int type)
513 {
514 struct inode_management *im = &sbi->im[type];
515 struct ino_entry *e = NULL, *new = NULL;
516
517 if (type == FLUSH_INO) {
518 rcu_read_lock();
519 e = radix_tree_lookup(&im->ino_root, ino);
520 rcu_read_unlock();
521 }
522
523 retry:
524 if (!e)
525 new = f2fs_kmem_cache_alloc(ino_entry_slab,
526 GFP_NOFS, true, NULL);
527
528 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
529
530 spin_lock(&im->ino_lock);
531 e = radix_tree_lookup(&im->ino_root, ino);
532 if (!e) {
533 if (!new) {
534 spin_unlock(&im->ino_lock);
535 radix_tree_preload_end();
536 goto retry;
537 }
538 e = new;
539 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
540 f2fs_bug_on(sbi, 1);
541
542 memset(e, 0, sizeof(struct ino_entry));
543 e->ino = ino;
544
545 list_add_tail(&e->list, &im->ino_list);
546 if (type != ORPHAN_INO)
547 im->ino_num++;
548 }
549
550 if (type == FLUSH_INO)
551 f2fs_set_bit(devidx, (char *)&e->dirty_device);
552
553 spin_unlock(&im->ino_lock);
554 radix_tree_preload_end();
555
556 if (new && e != new)
557 kmem_cache_free(ino_entry_slab, new);
558 }
559
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)560 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
561 {
562 struct inode_management *im = &sbi->im[type];
563 struct ino_entry *e;
564
565 spin_lock(&im->ino_lock);
566 e = radix_tree_lookup(&im->ino_root, ino);
567 if (e) {
568 list_del(&e->list);
569 radix_tree_delete(&im->ino_root, ino);
570 im->ino_num--;
571 spin_unlock(&im->ino_lock);
572 kmem_cache_free(ino_entry_slab, e);
573 return;
574 }
575 spin_unlock(&im->ino_lock);
576 }
577
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)578 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
579 {
580 /* add new dirty ino entry into list */
581 __add_ino_entry(sbi, ino, 0, type);
582 }
583
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)584 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
585 {
586 /* remove dirty ino entry from list */
587 __remove_ino_entry(sbi, ino, type);
588 }
589
590 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)591 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
592 {
593 struct inode_management *im = &sbi->im[mode];
594 struct ino_entry *e;
595
596 spin_lock(&im->ino_lock);
597 e = radix_tree_lookup(&im->ino_root, ino);
598 spin_unlock(&im->ino_lock);
599 return e ? true : false;
600 }
601
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)602 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
603 {
604 struct ino_entry *e, *tmp;
605 int i;
606
607 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
608 struct inode_management *im = &sbi->im[i];
609
610 spin_lock(&im->ino_lock);
611 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
612 list_del(&e->list);
613 radix_tree_delete(&im->ino_root, e->ino);
614 kmem_cache_free(ino_entry_slab, e);
615 im->ino_num--;
616 }
617 spin_unlock(&im->ino_lock);
618 }
619 }
620
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)621 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
622 unsigned int devidx, int type)
623 {
624 __add_ino_entry(sbi, ino, devidx, type);
625 }
626
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)627 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
628 unsigned int devidx, int type)
629 {
630 struct inode_management *im = &sbi->im[type];
631 struct ino_entry *e;
632 bool is_dirty = false;
633
634 spin_lock(&im->ino_lock);
635 e = radix_tree_lookup(&im->ino_root, ino);
636 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
637 is_dirty = true;
638 spin_unlock(&im->ino_lock);
639 return is_dirty;
640 }
641
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)642 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
643 {
644 struct inode_management *im = &sbi->im[ORPHAN_INO];
645 int err = 0;
646
647 spin_lock(&im->ino_lock);
648
649 if (time_to_inject(sbi, FAULT_ORPHAN)) {
650 spin_unlock(&im->ino_lock);
651 return -ENOSPC;
652 }
653
654 if (unlikely(im->ino_num >= sbi->max_orphans))
655 err = -ENOSPC;
656 else
657 im->ino_num++;
658 spin_unlock(&im->ino_lock);
659
660 return err;
661 }
662
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)663 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
664 {
665 struct inode_management *im = &sbi->im[ORPHAN_INO];
666
667 spin_lock(&im->ino_lock);
668 f2fs_bug_on(sbi, im->ino_num == 0);
669 im->ino_num--;
670 spin_unlock(&im->ino_lock);
671 }
672
f2fs_add_orphan_inode(struct inode * inode)673 void f2fs_add_orphan_inode(struct inode *inode)
674 {
675 /* add new orphan ino entry into list */
676 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
677 f2fs_update_inode_page(inode);
678 }
679
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)680 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
681 {
682 /* remove orphan entry from orphan list */
683 __remove_ino_entry(sbi, ino, ORPHAN_INO);
684 }
685
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)686 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
687 {
688 struct inode *inode;
689 struct node_info ni;
690 int err;
691
692 inode = f2fs_iget_retry(sbi->sb, ino);
693 if (IS_ERR(inode)) {
694 /*
695 * there should be a bug that we can't find the entry
696 * to orphan inode.
697 */
698 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
699 return PTR_ERR(inode);
700 }
701
702 err = f2fs_dquot_initialize(inode);
703 if (err) {
704 iput(inode);
705 goto err_out;
706 }
707
708 clear_nlink(inode);
709
710 /* truncate all the data during iput */
711 iput(inode);
712
713 err = f2fs_get_node_info(sbi, ino, &ni, false);
714 if (err)
715 goto err_out;
716
717 /* ENOMEM was fully retried in f2fs_evict_inode. */
718 if (ni.blk_addr != NULL_ADDR) {
719 err = -EIO;
720 goto err_out;
721 }
722 return 0;
723
724 err_out:
725 set_sbi_flag(sbi, SBI_NEED_FSCK);
726 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
727 __func__, ino);
728 return err;
729 }
730
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)731 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
732 {
733 block_t start_blk, orphan_blocks, i, j;
734 int err = 0;
735
736 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
737 return 0;
738
739 if (f2fs_hw_is_readonly(sbi)) {
740 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
741 return 0;
742 }
743
744 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
745 f2fs_info(sbi, "orphan cleanup on readonly fs");
746
747 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
748 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
749
750 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
751
752 for (i = 0; i < orphan_blocks; i++) {
753 struct page *page;
754 struct f2fs_orphan_block *orphan_blk;
755
756 page = f2fs_get_meta_page(sbi, start_blk + i);
757 if (IS_ERR(page)) {
758 err = PTR_ERR(page);
759 goto out;
760 }
761
762 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
763 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
764 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
765
766 err = recover_orphan_inode(sbi, ino);
767 if (err) {
768 f2fs_put_page(page, 1);
769 goto out;
770 }
771 }
772 f2fs_put_page(page, 1);
773 }
774 /* clear Orphan Flag */
775 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
776 out:
777 set_sbi_flag(sbi, SBI_IS_RECOVERED);
778
779 return err;
780 }
781
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)782 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
783 {
784 struct list_head *head;
785 struct f2fs_orphan_block *orphan_blk = NULL;
786 unsigned int nentries = 0;
787 unsigned short index = 1;
788 unsigned short orphan_blocks;
789 struct page *page = NULL;
790 struct ino_entry *orphan = NULL;
791 struct inode_management *im = &sbi->im[ORPHAN_INO];
792
793 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
794
795 /*
796 * we don't need to do spin_lock(&im->ino_lock) here, since all the
797 * orphan inode operations are covered under f2fs_lock_op().
798 * And, spin_lock should be avoided due to page operations below.
799 */
800 head = &im->ino_list;
801
802 /* loop for each orphan inode entry and write them in journal block */
803 list_for_each_entry(orphan, head, list) {
804 if (!page) {
805 page = f2fs_grab_meta_page(sbi, start_blk++);
806 orphan_blk =
807 (struct f2fs_orphan_block *)page_address(page);
808 memset(orphan_blk, 0, sizeof(*orphan_blk));
809 }
810
811 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
812
813 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
814 /*
815 * an orphan block is full of 1020 entries,
816 * then we need to flush current orphan blocks
817 * and bring another one in memory
818 */
819 orphan_blk->blk_addr = cpu_to_le16(index);
820 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
821 orphan_blk->entry_count = cpu_to_le32(nentries);
822 set_page_dirty(page);
823 f2fs_put_page(page, 1);
824 index++;
825 nentries = 0;
826 page = NULL;
827 }
828 }
829
830 if (page) {
831 orphan_blk->blk_addr = cpu_to_le16(index);
832 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
833 orphan_blk->entry_count = cpu_to_le32(nentries);
834 set_page_dirty(page);
835 f2fs_put_page(page, 1);
836 }
837 }
838
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)839 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
840 struct f2fs_checkpoint *ckpt)
841 {
842 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
843 __u32 chksum;
844
845 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
846 if (chksum_ofs < CP_CHKSUM_OFFSET) {
847 chksum_ofs += sizeof(chksum);
848 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
849 F2FS_BLKSIZE - chksum_ofs);
850 }
851 return chksum;
852 }
853
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)854 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
855 struct f2fs_checkpoint **cp_block, struct page **cp_page,
856 unsigned long long *version)
857 {
858 size_t crc_offset = 0;
859 __u32 crc;
860
861 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
862 if (IS_ERR(*cp_page))
863 return PTR_ERR(*cp_page);
864
865 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
866
867 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
868 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
869 crc_offset > CP_CHKSUM_OFFSET) {
870 f2fs_put_page(*cp_page, 1);
871 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
872 return -EINVAL;
873 }
874
875 crc = f2fs_checkpoint_chksum(sbi, *cp_block);
876 if (crc != cur_cp_crc(*cp_block)) {
877 f2fs_put_page(*cp_page, 1);
878 f2fs_warn(sbi, "invalid crc value");
879 return -EINVAL;
880 }
881
882 *version = cur_cp_version(*cp_block);
883 return 0;
884 }
885
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)886 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
887 block_t cp_addr, unsigned long long *version)
888 {
889 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
890 struct f2fs_checkpoint *cp_block = NULL;
891 unsigned long long cur_version = 0, pre_version = 0;
892 unsigned int cp_blocks;
893 int err;
894
895 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
896 &cp_page_1, version);
897 if (err)
898 return NULL;
899
900 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
901
902 if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
903 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
904 le32_to_cpu(cp_block->cp_pack_total_block_count));
905 goto invalid_cp;
906 }
907 pre_version = *version;
908
909 cp_addr += cp_blocks - 1;
910 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
911 &cp_page_2, version);
912 if (err)
913 goto invalid_cp;
914 cur_version = *version;
915
916 if (cur_version == pre_version) {
917 *version = cur_version;
918 f2fs_put_page(cp_page_2, 1);
919 return cp_page_1;
920 }
921 f2fs_put_page(cp_page_2, 1);
922 invalid_cp:
923 f2fs_put_page(cp_page_1, 1);
924 return NULL;
925 }
926
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)927 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
928 {
929 struct f2fs_checkpoint *cp_block;
930 struct f2fs_super_block *fsb = sbi->raw_super;
931 struct page *cp1, *cp2, *cur_page;
932 unsigned long blk_size = sbi->blocksize;
933 unsigned long long cp1_version = 0, cp2_version = 0;
934 unsigned long long cp_start_blk_no;
935 unsigned int cp_blks = 1 + __cp_payload(sbi);
936 block_t cp_blk_no;
937 int i;
938 int err;
939
940 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
941 GFP_KERNEL);
942 if (!sbi->ckpt)
943 return -ENOMEM;
944 /*
945 * Finding out valid cp block involves read both
946 * sets( cp pack 1 and cp pack 2)
947 */
948 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
949 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
950
951 /* The second checkpoint pack should start at the next segment */
952 cp_start_blk_no += ((unsigned long long)1) <<
953 le32_to_cpu(fsb->log_blocks_per_seg);
954 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
955
956 if (cp1 && cp2) {
957 if (ver_after(cp2_version, cp1_version))
958 cur_page = cp2;
959 else
960 cur_page = cp1;
961 } else if (cp1) {
962 cur_page = cp1;
963 } else if (cp2) {
964 cur_page = cp2;
965 } else {
966 err = -EFSCORRUPTED;
967 goto fail_no_cp;
968 }
969
970 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
971 memcpy(sbi->ckpt, cp_block, blk_size);
972
973 if (cur_page == cp1)
974 sbi->cur_cp_pack = 1;
975 else
976 sbi->cur_cp_pack = 2;
977
978 /* Sanity checking of checkpoint */
979 if (f2fs_sanity_check_ckpt(sbi)) {
980 err = -EFSCORRUPTED;
981 goto free_fail_no_cp;
982 }
983
984 if (cp_blks <= 1)
985 goto done;
986
987 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
988 if (cur_page == cp2)
989 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
990
991 for (i = 1; i < cp_blks; i++) {
992 void *sit_bitmap_ptr;
993 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
994
995 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
996 if (IS_ERR(cur_page)) {
997 err = PTR_ERR(cur_page);
998 goto free_fail_no_cp;
999 }
1000 sit_bitmap_ptr = page_address(cur_page);
1001 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1002 f2fs_put_page(cur_page, 1);
1003 }
1004 done:
1005 f2fs_put_page(cp1, 1);
1006 f2fs_put_page(cp2, 1);
1007 return 0;
1008
1009 free_fail_no_cp:
1010 f2fs_put_page(cp1, 1);
1011 f2fs_put_page(cp2, 1);
1012 fail_no_cp:
1013 kvfree(sbi->ckpt);
1014 return err;
1015 }
1016
__add_dirty_inode(struct inode * inode,enum inode_type type)1017 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1018 {
1019 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1020 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1021
1022 if (is_inode_flag_set(inode, flag))
1023 return;
1024
1025 set_inode_flag(inode, flag);
1026 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1027 stat_inc_dirty_inode(sbi, type);
1028 }
1029
__remove_dirty_inode(struct inode * inode,enum inode_type type)1030 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1031 {
1032 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1033
1034 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1035 return;
1036
1037 list_del_init(&F2FS_I(inode)->dirty_list);
1038 clear_inode_flag(inode, flag);
1039 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1040 }
1041
f2fs_update_dirty_folio(struct inode * inode,struct folio * folio)1042 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1043 {
1044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1046
1047 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1048 !S_ISLNK(inode->i_mode))
1049 return;
1050
1051 spin_lock(&sbi->inode_lock[type]);
1052 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1053 __add_dirty_inode(inode, type);
1054 inode_inc_dirty_pages(inode);
1055 spin_unlock(&sbi->inode_lock[type]);
1056
1057 set_page_private_reference(&folio->page);
1058 }
1059
f2fs_remove_dirty_inode(struct inode * inode)1060 void f2fs_remove_dirty_inode(struct inode *inode)
1061 {
1062 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1063 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1064
1065 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1066 !S_ISLNK(inode->i_mode))
1067 return;
1068
1069 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1070 return;
1071
1072 spin_lock(&sbi->inode_lock[type]);
1073 __remove_dirty_inode(inode, type);
1074 spin_unlock(&sbi->inode_lock[type]);
1075 }
1076
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1077 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1078 bool from_cp)
1079 {
1080 struct list_head *head;
1081 struct inode *inode;
1082 struct f2fs_inode_info *fi;
1083 bool is_dir = (type == DIR_INODE);
1084 unsigned long ino = 0;
1085
1086 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1087 get_pages(sbi, is_dir ?
1088 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1089 retry:
1090 if (unlikely(f2fs_cp_error(sbi))) {
1091 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1092 get_pages(sbi, is_dir ?
1093 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1094 return -EIO;
1095 }
1096
1097 spin_lock(&sbi->inode_lock[type]);
1098
1099 head = &sbi->inode_list[type];
1100 if (list_empty(head)) {
1101 spin_unlock(&sbi->inode_lock[type]);
1102 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1103 get_pages(sbi, is_dir ?
1104 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1105 return 0;
1106 }
1107 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1108 inode = igrab(&fi->vfs_inode);
1109 spin_unlock(&sbi->inode_lock[type]);
1110 if (inode) {
1111 unsigned long cur_ino = inode->i_ino;
1112
1113 if (from_cp)
1114 F2FS_I(inode)->cp_task = current;
1115 F2FS_I(inode)->wb_task = current;
1116
1117 filemap_fdatawrite(inode->i_mapping);
1118
1119 F2FS_I(inode)->wb_task = NULL;
1120 if (from_cp)
1121 F2FS_I(inode)->cp_task = NULL;
1122
1123 iput(inode);
1124 /* We need to give cpu to another writers. */
1125 if (ino == cur_ino)
1126 cond_resched();
1127 else
1128 ino = cur_ino;
1129 } else {
1130 /*
1131 * We should submit bio, since it exists several
1132 * writebacking dentry pages in the freeing inode.
1133 */
1134 f2fs_submit_merged_write(sbi, DATA);
1135 cond_resched();
1136 }
1137 goto retry;
1138 }
1139
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1140 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1141 {
1142 struct list_head *head = &sbi->inode_list[DIRTY_META];
1143 struct inode *inode;
1144 struct f2fs_inode_info *fi;
1145 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1146
1147 while (total--) {
1148 if (unlikely(f2fs_cp_error(sbi)))
1149 return -EIO;
1150
1151 spin_lock(&sbi->inode_lock[DIRTY_META]);
1152 if (list_empty(head)) {
1153 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1154 return 0;
1155 }
1156 fi = list_first_entry(head, struct f2fs_inode_info,
1157 gdirty_list);
1158 inode = igrab(&fi->vfs_inode);
1159 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1160 if (inode) {
1161 sync_inode_metadata(inode, 0);
1162
1163 /* it's on eviction */
1164 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1165 f2fs_update_inode_page(inode);
1166 iput(inode);
1167 }
1168 }
1169 return 0;
1170 }
1171
__prepare_cp_block(struct f2fs_sb_info * sbi)1172 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1173 {
1174 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1175 struct f2fs_nm_info *nm_i = NM_I(sbi);
1176 nid_t last_nid = nm_i->next_scan_nid;
1177
1178 next_free_nid(sbi, &last_nid);
1179 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1180 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1181 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1182 ckpt->next_free_nid = cpu_to_le32(last_nid);
1183
1184 /* update user_block_counts */
1185 sbi->last_valid_block_count = sbi->total_valid_block_count;
1186 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1187 percpu_counter_set(&sbi->rf_node_block_count, 0);
1188 }
1189
__need_flush_quota(struct f2fs_sb_info * sbi)1190 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1191 {
1192 bool ret = false;
1193
1194 if (!is_journalled_quota(sbi))
1195 return false;
1196
1197 if (!f2fs_down_write_trylock(&sbi->quota_sem))
1198 return true;
1199 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1200 ret = false;
1201 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1202 ret = false;
1203 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1204 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1205 ret = true;
1206 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1207 ret = true;
1208 }
1209 f2fs_up_write(&sbi->quota_sem);
1210 return ret;
1211 }
1212
1213 /*
1214 * Freeze all the FS-operations for checkpoint.
1215 */
block_operations(struct f2fs_sb_info * sbi)1216 static int block_operations(struct f2fs_sb_info *sbi)
1217 {
1218 struct writeback_control wbc = {
1219 .sync_mode = WB_SYNC_ALL,
1220 .nr_to_write = LONG_MAX,
1221 .for_reclaim = 0,
1222 };
1223 int err = 0, cnt = 0;
1224
1225 /*
1226 * Let's flush inline_data in dirty node pages.
1227 */
1228 f2fs_flush_inline_data(sbi);
1229
1230 retry_flush_quotas:
1231 f2fs_lock_all(sbi);
1232 if (__need_flush_quota(sbi)) {
1233 bool need_lock = sbi->umount_lock_holder != current;
1234
1235 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1236 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1237 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1238 goto retry_flush_dents;
1239 }
1240 f2fs_unlock_all(sbi);
1241
1242 /* don't grab s_umount lock during mount/umount/remount/freeze/quotactl */
1243 if (!need_lock) {
1244 f2fs_do_quota_sync(sbi->sb, -1);
1245 } else if (down_read_trylock(&sbi->sb->s_umount)) {
1246 f2fs_do_quota_sync(sbi->sb, -1);
1247 up_read(&sbi->sb->s_umount);
1248 }
1249 cond_resched();
1250 goto retry_flush_quotas;
1251 }
1252
1253 retry_flush_dents:
1254 /* write all the dirty dentry pages */
1255 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1256 f2fs_unlock_all(sbi);
1257 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1258 if (err)
1259 return err;
1260 cond_resched();
1261 goto retry_flush_quotas;
1262 }
1263
1264 /*
1265 * POR: we should ensure that there are no dirty node pages
1266 * until finishing nat/sit flush. inode->i_blocks can be updated.
1267 */
1268 f2fs_down_write(&sbi->node_change);
1269
1270 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1271 f2fs_up_write(&sbi->node_change);
1272 f2fs_unlock_all(sbi);
1273 err = f2fs_sync_inode_meta(sbi);
1274 if (err)
1275 return err;
1276 cond_resched();
1277 goto retry_flush_quotas;
1278 }
1279
1280 retry_flush_nodes:
1281 f2fs_down_write(&sbi->node_write);
1282
1283 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1284 f2fs_up_write(&sbi->node_write);
1285 atomic_inc(&sbi->wb_sync_req[NODE]);
1286 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1287 atomic_dec(&sbi->wb_sync_req[NODE]);
1288 if (err) {
1289 f2fs_up_write(&sbi->node_change);
1290 f2fs_unlock_all(sbi);
1291 return err;
1292 }
1293 cond_resched();
1294 goto retry_flush_nodes;
1295 }
1296
1297 /*
1298 * sbi->node_change is used only for AIO write_begin path which produces
1299 * dirty node blocks and some checkpoint values by block allocation.
1300 */
1301 __prepare_cp_block(sbi);
1302 f2fs_up_write(&sbi->node_change);
1303 return err;
1304 }
1305
unblock_operations(struct f2fs_sb_info * sbi)1306 static void unblock_operations(struct f2fs_sb_info *sbi)
1307 {
1308 f2fs_up_write(&sbi->node_write);
1309 f2fs_unlock_all(sbi);
1310 }
1311
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1312 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1313 {
1314 DEFINE_WAIT(wait);
1315
1316 for (;;) {
1317 if (!get_pages(sbi, type))
1318 break;
1319
1320 if (unlikely(f2fs_cp_error(sbi) &&
1321 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1322 break;
1323
1324 if (type == F2FS_DIRTY_META)
1325 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1326 FS_CP_META_IO);
1327 else if (type == F2FS_WB_CP_DATA)
1328 f2fs_submit_merged_write(sbi, DATA);
1329
1330 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1331 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1332 }
1333 finish_wait(&sbi->cp_wait, &wait);
1334 }
1335
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1336 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1337 {
1338 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1339 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1340 unsigned long flags;
1341
1342 spin_lock_irqsave(&sbi->cp_lock, flags);
1343
1344 if ((cpc->reason & CP_UMOUNT) &&
1345 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1346 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1347 disable_nat_bits(sbi, false);
1348
1349 if (cpc->reason & CP_TRIMMED)
1350 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1351 else
1352 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1353
1354 if (cpc->reason & CP_UMOUNT)
1355 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1356 else
1357 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1358
1359 if (cpc->reason & CP_FASTBOOT)
1360 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1361 else
1362 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1363
1364 if (orphan_num)
1365 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1366 else
1367 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1368
1369 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1370 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1371
1372 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1373 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1374 else
1375 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1376
1377 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1378 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1379 else
1380 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1381
1382 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1383 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1384 else
1385 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1386
1387 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1388 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1389 else
1390 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1391
1392 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1393 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1394
1395 /* set this flag to activate crc|cp_ver for recovery */
1396 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1397 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1398
1399 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1400 }
1401
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1402 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1403 void *src, block_t blk_addr)
1404 {
1405 struct writeback_control wbc = {
1406 .for_reclaim = 0,
1407 };
1408
1409 /*
1410 * filemap_get_folios_tag and lock_page again will take
1411 * some extra time. Therefore, f2fs_update_meta_pages and
1412 * f2fs_sync_meta_pages are combined in this function.
1413 */
1414 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1415 int err;
1416
1417 f2fs_wait_on_page_writeback(page, META, true, true);
1418
1419 memcpy(page_address(page), src, PAGE_SIZE);
1420
1421 set_page_dirty(page);
1422 if (unlikely(!clear_page_dirty_for_io(page)))
1423 f2fs_bug_on(sbi, 1);
1424
1425 /* writeout cp pack 2 page */
1426 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1427 if (unlikely(err && f2fs_cp_error(sbi))) {
1428 f2fs_put_page(page, 1);
1429 return;
1430 }
1431
1432 f2fs_bug_on(sbi, err);
1433 f2fs_put_page(page, 0);
1434
1435 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1436 f2fs_submit_merged_write(sbi, META_FLUSH);
1437 }
1438
get_sectors_written(struct block_device * bdev)1439 static inline u64 get_sectors_written(struct block_device *bdev)
1440 {
1441 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1442 }
1443
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1444 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1445 {
1446 if (f2fs_is_multi_device(sbi)) {
1447 u64 sectors = 0;
1448 int i;
1449
1450 for (i = 0; i < sbi->s_ndevs; i++)
1451 sectors += get_sectors_written(FDEV(i).bdev);
1452
1453 return sectors;
1454 }
1455
1456 return get_sectors_written(sbi->sb->s_bdev);
1457 }
1458
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1459 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1460 {
1461 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1462 struct f2fs_nm_info *nm_i = NM_I(sbi);
1463 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1464 block_t start_blk;
1465 unsigned int data_sum_blocks, orphan_blocks;
1466 __u32 crc32 = 0;
1467 int i;
1468 int cp_payload_blks = __cp_payload(sbi);
1469 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1470 u64 kbytes_written;
1471 int err;
1472
1473 /* Flush all the NAT/SIT pages */
1474 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1475
1476 /* start to update checkpoint, cp ver is already updated previously */
1477 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1478 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1479 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1480 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1481
1482 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1483 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1484 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1485 }
1486 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1487 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1488
1489 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1490 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1491 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1492 }
1493
1494 /* 2 cp + n data seg summary + orphan inode blocks */
1495 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1496 spin_lock_irqsave(&sbi->cp_lock, flags);
1497 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1498 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1499 else
1500 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1501 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1502
1503 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1504 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1505 orphan_blocks);
1506
1507 if (__remain_node_summaries(cpc->reason))
1508 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1509 cp_payload_blks + data_sum_blocks +
1510 orphan_blocks + NR_CURSEG_NODE_TYPE);
1511 else
1512 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1513 cp_payload_blks + data_sum_blocks +
1514 orphan_blocks);
1515
1516 /* update ckpt flag for checkpoint */
1517 update_ckpt_flags(sbi, cpc);
1518
1519 /* update SIT/NAT bitmap */
1520 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1521 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1522
1523 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1524 *((__le32 *)((unsigned char *)ckpt +
1525 le32_to_cpu(ckpt->checksum_offset)))
1526 = cpu_to_le32(crc32);
1527
1528 start_blk = __start_cp_next_addr(sbi);
1529
1530 /* write nat bits */
1531 if (enabled_nat_bits(sbi, cpc)) {
1532 __u64 cp_ver = cur_cp_version(ckpt);
1533 block_t blk;
1534
1535 cp_ver |= ((__u64)crc32 << 32);
1536 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1537
1538 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
1539 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1540 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1541 F2FS_BLK_TO_BYTES(i), blk + i);
1542 }
1543
1544 /* write out checkpoint buffer at block 0 */
1545 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1546
1547 for (i = 1; i < 1 + cp_payload_blks; i++)
1548 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1549 start_blk++);
1550
1551 if (orphan_num) {
1552 write_orphan_inodes(sbi, start_blk);
1553 start_blk += orphan_blocks;
1554 }
1555
1556 f2fs_write_data_summaries(sbi, start_blk);
1557 start_blk += data_sum_blocks;
1558
1559 /* Record write statistics in the hot node summary */
1560 kbytes_written = sbi->kbytes_written;
1561 kbytes_written += (f2fs_get_sectors_written(sbi) -
1562 sbi->sectors_written_start) >> 1;
1563 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1564
1565 if (__remain_node_summaries(cpc->reason)) {
1566 f2fs_write_node_summaries(sbi, start_blk);
1567 start_blk += NR_CURSEG_NODE_TYPE;
1568 }
1569
1570 /* Here, we have one bio having CP pack except cp pack 2 page */
1571 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1572 /* Wait for all dirty meta pages to be submitted for IO */
1573 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1574
1575 /* wait for previous submitted meta pages writeback */
1576 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1577
1578 /* flush all device cache */
1579 err = f2fs_flush_device_cache(sbi);
1580 if (err)
1581 return err;
1582
1583 /* barrier and flush checkpoint cp pack 2 page if it can */
1584 commit_checkpoint(sbi, ckpt, start_blk);
1585 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1586
1587 /*
1588 * invalidate intermediate page cache borrowed from meta inode which are
1589 * used for migration of encrypted, verity or compressed inode's blocks.
1590 */
1591 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1592 f2fs_sb_has_compression(sbi))
1593 f2fs_bug_on(sbi,
1594 invalidate_inode_pages2_range(META_MAPPING(sbi),
1595 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
1596
1597 f2fs_release_ino_entry(sbi, false);
1598
1599 f2fs_reset_fsync_node_info(sbi);
1600
1601 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1602 clear_sbi_flag(sbi, SBI_NEED_CP);
1603 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1604
1605 spin_lock(&sbi->stat_lock);
1606 sbi->unusable_block_count = 0;
1607 spin_unlock(&sbi->stat_lock);
1608
1609 __set_cp_next_pack(sbi);
1610
1611 /*
1612 * redirty superblock if metadata like node page or inode cache is
1613 * updated during writing checkpoint.
1614 */
1615 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1616 get_pages(sbi, F2FS_DIRTY_IMETA))
1617 set_sbi_flag(sbi, SBI_IS_DIRTY);
1618
1619 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1620
1621 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1622 }
1623
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1624 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1625 {
1626 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1627 unsigned long long ckpt_ver;
1628 int err = 0;
1629
1630 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1631 return -EROFS;
1632
1633 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1634 if (cpc->reason != CP_PAUSE)
1635 return 0;
1636 f2fs_warn(sbi, "Start checkpoint disabled!");
1637 }
1638 if (cpc->reason != CP_RESIZE)
1639 f2fs_down_write(&sbi->cp_global_sem);
1640
1641 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1642 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1643 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1644 goto out;
1645 if (unlikely(f2fs_cp_error(sbi))) {
1646 err = -EIO;
1647 goto out;
1648 }
1649
1650 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1651
1652 err = block_operations(sbi);
1653 if (err)
1654 goto out;
1655
1656 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1657
1658 f2fs_flush_merged_writes(sbi);
1659
1660 /* this is the case of multiple fstrims without any changes */
1661 if (cpc->reason & CP_DISCARD) {
1662 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1663 unblock_operations(sbi);
1664 goto out;
1665 }
1666
1667 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1668 SIT_I(sbi)->dirty_sentries == 0 &&
1669 prefree_segments(sbi) == 0) {
1670 f2fs_flush_sit_entries(sbi, cpc);
1671 f2fs_clear_prefree_segments(sbi, cpc);
1672 unblock_operations(sbi);
1673 goto out;
1674 }
1675 }
1676
1677 /*
1678 * update checkpoint pack index
1679 * Increase the version number so that
1680 * SIT entries and seg summaries are written at correct place
1681 */
1682 ckpt_ver = cur_cp_version(ckpt);
1683 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1684
1685 /* write cached NAT/SIT entries to NAT/SIT area */
1686 err = f2fs_flush_nat_entries(sbi, cpc);
1687 if (err) {
1688 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1689 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1690 goto stop;
1691 }
1692
1693 f2fs_flush_sit_entries(sbi, cpc);
1694
1695 /* save inmem log status */
1696 f2fs_save_inmem_curseg(sbi);
1697
1698 err = do_checkpoint(sbi, cpc);
1699 if (err) {
1700 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1701 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1702 f2fs_release_discard_addrs(sbi);
1703 } else {
1704 f2fs_clear_prefree_segments(sbi, cpc);
1705 }
1706
1707 f2fs_restore_inmem_curseg(sbi);
1708 f2fs_reinit_atgc_curseg(sbi);
1709 stat_inc_cp_count(sbi);
1710 stop:
1711 unblock_operations(sbi);
1712
1713 if (cpc->reason & CP_RECOVERY)
1714 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1715
1716 /* update CP_TIME to trigger checkpoint periodically */
1717 f2fs_update_time(sbi, CP_TIME);
1718 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1719 out:
1720 if (cpc->reason != CP_RESIZE)
1721 f2fs_up_write(&sbi->cp_global_sem);
1722 return err;
1723 }
1724
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1725 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1726 {
1727 int i;
1728
1729 for (i = 0; i < MAX_INO_ENTRY; i++) {
1730 struct inode_management *im = &sbi->im[i];
1731
1732 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1733 spin_lock_init(&im->ino_lock);
1734 INIT_LIST_HEAD(&im->ino_list);
1735 im->ino_num = 0;
1736 }
1737
1738 sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
1739 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1740 F2FS_ORPHANS_PER_BLOCK;
1741 }
1742
f2fs_create_checkpoint_caches(void)1743 int __init f2fs_create_checkpoint_caches(void)
1744 {
1745 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1746 sizeof(struct ino_entry));
1747 if (!ino_entry_slab)
1748 return -ENOMEM;
1749 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1750 sizeof(struct inode_entry));
1751 if (!f2fs_inode_entry_slab) {
1752 kmem_cache_destroy(ino_entry_slab);
1753 return -ENOMEM;
1754 }
1755 return 0;
1756 }
1757
f2fs_destroy_checkpoint_caches(void)1758 void f2fs_destroy_checkpoint_caches(void)
1759 {
1760 kmem_cache_destroy(ino_entry_slab);
1761 kmem_cache_destroy(f2fs_inode_entry_slab);
1762 }
1763
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1764 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1765 {
1766 struct cp_control cpc = { .reason = CP_SYNC, };
1767 int err;
1768
1769 f2fs_down_write(&sbi->gc_lock);
1770 err = f2fs_write_checkpoint(sbi, &cpc);
1771 f2fs_up_write(&sbi->gc_lock);
1772
1773 return err;
1774 }
1775
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1776 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1777 {
1778 struct ckpt_req_control *cprc = &sbi->cprc_info;
1779 struct ckpt_req *req, *next;
1780 struct llist_node *dispatch_list;
1781 u64 sum_diff = 0, diff, count = 0;
1782 int ret;
1783
1784 dispatch_list = llist_del_all(&cprc->issue_list);
1785 if (!dispatch_list)
1786 return;
1787 dispatch_list = llist_reverse_order(dispatch_list);
1788
1789 ret = __write_checkpoint_sync(sbi);
1790 atomic_inc(&cprc->issued_ckpt);
1791
1792 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1793 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1794 req->ret = ret;
1795 complete(&req->wait);
1796
1797 sum_diff += diff;
1798 count++;
1799 }
1800 atomic_sub(count, &cprc->queued_ckpt);
1801 atomic_add(count, &cprc->total_ckpt);
1802
1803 spin_lock(&cprc->stat_lock);
1804 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1805 if (cprc->peak_time < cprc->cur_time)
1806 cprc->peak_time = cprc->cur_time;
1807 spin_unlock(&cprc->stat_lock);
1808 }
1809
issue_checkpoint_thread(void * data)1810 static int issue_checkpoint_thread(void *data)
1811 {
1812 struct f2fs_sb_info *sbi = data;
1813 struct ckpt_req_control *cprc = &sbi->cprc_info;
1814 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1815 repeat:
1816 if (kthread_should_stop())
1817 return 0;
1818
1819 if (!llist_empty(&cprc->issue_list))
1820 __checkpoint_and_complete_reqs(sbi);
1821
1822 wait_event_interruptible(*q,
1823 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1824 goto repeat;
1825 }
1826
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1827 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1828 struct ckpt_req *wait_req)
1829 {
1830 struct ckpt_req_control *cprc = &sbi->cprc_info;
1831
1832 if (!llist_empty(&cprc->issue_list)) {
1833 __checkpoint_and_complete_reqs(sbi);
1834 } else {
1835 /* already dispatched by issue_checkpoint_thread */
1836 if (wait_req)
1837 wait_for_completion(&wait_req->wait);
1838 }
1839 }
1840
init_ckpt_req(struct ckpt_req * req)1841 static void init_ckpt_req(struct ckpt_req *req)
1842 {
1843 memset(req, 0, sizeof(struct ckpt_req));
1844
1845 init_completion(&req->wait);
1846 req->queue_time = ktime_get();
1847 }
1848
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1849 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1850 {
1851 struct ckpt_req_control *cprc = &sbi->cprc_info;
1852 struct ckpt_req req;
1853 struct cp_control cpc;
1854
1855 cpc.reason = __get_cp_reason(sbi);
1856 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC ||
1857 sbi->umount_lock_holder == current) {
1858 int ret;
1859
1860 f2fs_down_write(&sbi->gc_lock);
1861 ret = f2fs_write_checkpoint(sbi, &cpc);
1862 f2fs_up_write(&sbi->gc_lock);
1863
1864 return ret;
1865 }
1866
1867 if (!cprc->f2fs_issue_ckpt)
1868 return __write_checkpoint_sync(sbi);
1869
1870 init_ckpt_req(&req);
1871
1872 llist_add(&req.llnode, &cprc->issue_list);
1873 atomic_inc(&cprc->queued_ckpt);
1874
1875 /*
1876 * update issue_list before we wake up issue_checkpoint thread,
1877 * this smp_mb() pairs with another barrier in ___wait_event(),
1878 * see more details in comments of waitqueue_active().
1879 */
1880 smp_mb();
1881
1882 if (waitqueue_active(&cprc->ckpt_wait_queue))
1883 wake_up(&cprc->ckpt_wait_queue);
1884
1885 if (cprc->f2fs_issue_ckpt)
1886 wait_for_completion(&req.wait);
1887 else
1888 flush_remained_ckpt_reqs(sbi, &req);
1889
1890 return req.ret;
1891 }
1892
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1893 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1894 {
1895 dev_t dev = sbi->sb->s_bdev->bd_dev;
1896 struct ckpt_req_control *cprc = &sbi->cprc_info;
1897
1898 if (cprc->f2fs_issue_ckpt)
1899 return 0;
1900
1901 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1902 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1903 if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1904 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1905
1906 cprc->f2fs_issue_ckpt = NULL;
1907 return err;
1908 }
1909
1910 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1911
1912 return 0;
1913 }
1914
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1915 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1916 {
1917 struct ckpt_req_control *cprc = &sbi->cprc_info;
1918 struct task_struct *ckpt_task;
1919
1920 if (!cprc->f2fs_issue_ckpt)
1921 return;
1922
1923 ckpt_task = cprc->f2fs_issue_ckpt;
1924 cprc->f2fs_issue_ckpt = NULL;
1925 kthread_stop(ckpt_task);
1926
1927 f2fs_flush_ckpt_thread(sbi);
1928 }
1929
f2fs_flush_ckpt_thread(struct f2fs_sb_info * sbi)1930 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1931 {
1932 struct ckpt_req_control *cprc = &sbi->cprc_info;
1933
1934 flush_remained_ckpt_reqs(sbi, NULL);
1935
1936 /* Let's wait for the previous dispatched checkpoint. */
1937 while (atomic_read(&cprc->queued_ckpt))
1938 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1939 }
1940
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1941 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1942 {
1943 struct ckpt_req_control *cprc = &sbi->cprc_info;
1944
1945 atomic_set(&cprc->issued_ckpt, 0);
1946 atomic_set(&cprc->total_ckpt, 0);
1947 atomic_set(&cprc->queued_ckpt, 0);
1948 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1949 init_waitqueue_head(&cprc->ckpt_wait_queue);
1950 init_llist_head(&cprc->issue_list);
1951 spin_lock_init(&cprc->stat_lock);
1952 }
1953