xref: /linux/fs/xfs/libxfs/xfs_inode_buf.c (revision 0efdc097965bcf60d1db62f100ef544714714e88)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_ag.h"
14 #include "xfs_inode.h"
15 #include "xfs_errortag.h"
16 #include "xfs_error.h"
17 #include "xfs_icache.h"
18 #include "xfs_trans.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_dir2.h"
21 #include "xfs_health.h"
22 
23 #include <linux/iversion.h>
24 
25 /*
26  * If we are doing readahead on an inode buffer, we might be in log recovery
27  * reading an inode allocation buffer that hasn't yet been replayed, and hence
28  * has not had the inode cores stamped into it. Hence for readahead, the buffer
29  * may be potentially invalid.
30  *
31  * If the readahead buffer is invalid, we need to mark it with an error and
32  * clear the DONE status of the buffer so that a followup read will re-read it
33  * from disk. We don't report the error otherwise to avoid warnings during log
34  * recovery and we don't get unnecessary panics on debug kernels. We use EIO here
35  * because all we want to do is say readahead failed; there is no-one to report
36  * the error to, so this will distinguish it from a non-ra verifier failure.
37  * Changes to this readahead error behaviour also need to be reflected in
38  * xfs_dquot_buf_readahead_verify().
39  */
40 static void
xfs_inode_buf_verify(struct xfs_buf * bp,bool readahead)41 xfs_inode_buf_verify(
42 	struct xfs_buf	*bp,
43 	bool		readahead)
44 {
45 	struct xfs_mount *mp = bp->b_mount;
46 	int		i;
47 	int		ni;
48 
49 	/*
50 	 * Validate the magic number and version of every inode in the buffer
51 	 */
52 	ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
53 	for (i = 0; i < ni; i++) {
54 		struct xfs_dinode	*dip;
55 		xfs_agino_t		unlinked_ino;
56 		int			di_ok;
57 
58 		dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
59 		unlinked_ino = be32_to_cpu(dip->di_next_unlinked);
60 		di_ok = xfs_verify_magic16(bp, dip->di_magic) &&
61 			xfs_dinode_good_version(mp, dip->di_version) &&
62 			xfs_verify_agino_or_null(bp->b_pag, unlinked_ino);
63 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
64 						XFS_ERRTAG_ITOBP_INOTOBP))) {
65 			if (readahead) {
66 				bp->b_flags &= ~XBF_DONE;
67 				xfs_buf_ioerror(bp, -EIO);
68 				return;
69 			}
70 
71 #ifdef DEBUG
72 			xfs_alert(mp,
73 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
74 				(unsigned long long)xfs_buf_daddr(bp), i,
75 				be16_to_cpu(dip->di_magic));
76 #endif
77 			xfs_buf_verifier_error(bp, -EFSCORRUPTED,
78 					__func__, dip, sizeof(*dip),
79 					NULL);
80 			return;
81 		}
82 	}
83 }
84 
85 
86 static void
xfs_inode_buf_read_verify(struct xfs_buf * bp)87 xfs_inode_buf_read_verify(
88 	struct xfs_buf	*bp)
89 {
90 	xfs_inode_buf_verify(bp, false);
91 }
92 
93 static void
xfs_inode_buf_readahead_verify(struct xfs_buf * bp)94 xfs_inode_buf_readahead_verify(
95 	struct xfs_buf	*bp)
96 {
97 	xfs_inode_buf_verify(bp, true);
98 }
99 
100 static void
xfs_inode_buf_write_verify(struct xfs_buf * bp)101 xfs_inode_buf_write_verify(
102 	struct xfs_buf	*bp)
103 {
104 	xfs_inode_buf_verify(bp, false);
105 }
106 
107 const struct xfs_buf_ops xfs_inode_buf_ops = {
108 	.name = "xfs_inode",
109 	.magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
110 		     cpu_to_be16(XFS_DINODE_MAGIC) },
111 	.verify_read = xfs_inode_buf_read_verify,
112 	.verify_write = xfs_inode_buf_write_verify,
113 };
114 
115 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
116 	.name = "xfs_inode_ra",
117 	.magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
118 		     cpu_to_be16(XFS_DINODE_MAGIC) },
119 	.verify_read = xfs_inode_buf_readahead_verify,
120 	.verify_write = xfs_inode_buf_write_verify,
121 };
122 
123 
124 /*
125  * This routine is called to map an inode to the buffer containing the on-disk
126  * version of the inode.  It returns a pointer to the buffer containing the
127  * on-disk inode in the bpp parameter.
128  */
129 int
xfs_imap_to_bp(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_imap * imap,struct xfs_buf ** bpp)130 xfs_imap_to_bp(
131 	struct xfs_mount	*mp,
132 	struct xfs_trans	*tp,
133 	struct xfs_imap		*imap,
134 	struct xfs_buf		**bpp)
135 {
136 	int			error;
137 
138 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
139 			imap->im_len, XBF_UNMAPPED, bpp, &xfs_inode_buf_ops);
140 	if (xfs_metadata_is_sick(error))
141 		xfs_agno_mark_sick(mp, xfs_daddr_to_agno(mp, imap->im_blkno),
142 				XFS_SICK_AG_INODES);
143 	return error;
144 }
145 
xfs_inode_decode_bigtime(uint64_t ts)146 static inline struct timespec64 xfs_inode_decode_bigtime(uint64_t ts)
147 {
148 	struct timespec64	tv;
149 	uint32_t		n;
150 
151 	tv.tv_sec = xfs_bigtime_to_unix(div_u64_rem(ts, NSEC_PER_SEC, &n));
152 	tv.tv_nsec = n;
153 
154 	return tv;
155 }
156 
157 /* Convert an ondisk timestamp to an incore timestamp. */
158 struct timespec64
xfs_inode_from_disk_ts(struct xfs_dinode * dip,const xfs_timestamp_t ts)159 xfs_inode_from_disk_ts(
160 	struct xfs_dinode		*dip,
161 	const xfs_timestamp_t		ts)
162 {
163 	struct timespec64		tv;
164 	struct xfs_legacy_timestamp	*lts;
165 
166 	if (xfs_dinode_has_bigtime(dip))
167 		return xfs_inode_decode_bigtime(be64_to_cpu(ts));
168 
169 	lts = (struct xfs_legacy_timestamp *)&ts;
170 	tv.tv_sec = (int)be32_to_cpu(lts->t_sec);
171 	tv.tv_nsec = (int)be32_to_cpu(lts->t_nsec);
172 
173 	return tv;
174 }
175 
176 int
xfs_inode_from_disk(struct xfs_inode * ip,struct xfs_dinode * from)177 xfs_inode_from_disk(
178 	struct xfs_inode	*ip,
179 	struct xfs_dinode	*from)
180 {
181 	struct inode		*inode = VFS_I(ip);
182 	int			error;
183 	xfs_failaddr_t		fa;
184 
185 	ASSERT(ip->i_cowfp == NULL);
186 
187 	fa = xfs_dinode_verify(ip->i_mount, ip->i_ino, from);
188 	if (fa) {
189 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", from,
190 				sizeof(*from), fa);
191 		return -EFSCORRUPTED;
192 	}
193 
194 	/*
195 	 * First get the permanent information that is needed to allocate an
196 	 * inode. If the inode is unused, mode is zero and we shouldn't mess
197 	 * with the uninitialized part of it.
198 	 */
199 	if (!xfs_has_v3inodes(ip->i_mount))
200 		ip->i_flushiter = be16_to_cpu(from->di_flushiter);
201 	inode->i_generation = be32_to_cpu(from->di_gen);
202 	inode->i_mode = be16_to_cpu(from->di_mode);
203 	if (!inode->i_mode)
204 		return 0;
205 
206 	/*
207 	 * Convert v1 inodes immediately to v2 inode format as this is the
208 	 * minimum inode version format we support in the rest of the code.
209 	 * They will also be unconditionally written back to disk as v2 inodes.
210 	 */
211 	if (unlikely(from->di_version == 1)) {
212 		set_nlink(inode, be16_to_cpu(from->di_onlink));
213 		ip->i_projid = 0;
214 	} else {
215 		set_nlink(inode, be32_to_cpu(from->di_nlink));
216 		ip->i_projid = (prid_t)be16_to_cpu(from->di_projid_hi) << 16 |
217 					be16_to_cpu(from->di_projid_lo);
218 	}
219 
220 	i_uid_write(inode, be32_to_cpu(from->di_uid));
221 	i_gid_write(inode, be32_to_cpu(from->di_gid));
222 
223 	/*
224 	 * Time is signed, so need to convert to signed 32 bit before
225 	 * storing in inode timestamp which may be 64 bit. Otherwise
226 	 * a time before epoch is converted to a time long after epoch
227 	 * on 64 bit systems.
228 	 */
229 	inode_set_atime_to_ts(inode,
230 			      xfs_inode_from_disk_ts(from, from->di_atime));
231 	inode_set_mtime_to_ts(inode,
232 			      xfs_inode_from_disk_ts(from, from->di_mtime));
233 	inode_set_ctime_to_ts(inode,
234 			      xfs_inode_from_disk_ts(from, from->di_ctime));
235 
236 	ip->i_disk_size = be64_to_cpu(from->di_size);
237 	ip->i_nblocks = be64_to_cpu(from->di_nblocks);
238 	ip->i_extsize = be32_to_cpu(from->di_extsize);
239 	ip->i_forkoff = from->di_forkoff;
240 	ip->i_diflags = be16_to_cpu(from->di_flags);
241 	ip->i_next_unlinked = be32_to_cpu(from->di_next_unlinked);
242 
243 	if (from->di_dmevmask || from->di_dmstate)
244 		xfs_iflags_set(ip, XFS_IPRESERVE_DM_FIELDS);
245 
246 	if (xfs_has_v3inodes(ip->i_mount)) {
247 		inode_set_iversion_queried(inode,
248 					   be64_to_cpu(from->di_changecount));
249 		ip->i_crtime = xfs_inode_from_disk_ts(from, from->di_crtime);
250 		ip->i_diflags2 = be64_to_cpu(from->di_flags2);
251 		ip->i_cowextsize = be32_to_cpu(from->di_cowextsize);
252 	}
253 
254 	error = xfs_iformat_data_fork(ip, from);
255 	if (error)
256 		return error;
257 	if (from->di_forkoff) {
258 		error = xfs_iformat_attr_fork(ip, from);
259 		if (error)
260 			goto out_destroy_data_fork;
261 	}
262 	if (xfs_is_reflink_inode(ip))
263 		xfs_ifork_init_cow(ip);
264 	return 0;
265 
266 out_destroy_data_fork:
267 	xfs_idestroy_fork(&ip->i_df);
268 	return error;
269 }
270 
271 /* Convert an incore timestamp to an ondisk timestamp. */
272 static inline xfs_timestamp_t
xfs_inode_to_disk_ts(struct xfs_inode * ip,const struct timespec64 tv)273 xfs_inode_to_disk_ts(
274 	struct xfs_inode		*ip,
275 	const struct timespec64		tv)
276 {
277 	struct xfs_legacy_timestamp	*lts;
278 	xfs_timestamp_t			ts;
279 
280 	if (xfs_inode_has_bigtime(ip))
281 		return cpu_to_be64(xfs_inode_encode_bigtime(tv));
282 
283 	lts = (struct xfs_legacy_timestamp *)&ts;
284 	lts->t_sec = cpu_to_be32(tv.tv_sec);
285 	lts->t_nsec = cpu_to_be32(tv.tv_nsec);
286 
287 	return ts;
288 }
289 
290 static inline void
xfs_inode_to_disk_iext_counters(struct xfs_inode * ip,struct xfs_dinode * to)291 xfs_inode_to_disk_iext_counters(
292 	struct xfs_inode	*ip,
293 	struct xfs_dinode	*to)
294 {
295 	if (xfs_inode_has_large_extent_counts(ip)) {
296 		to->di_big_nextents = cpu_to_be64(xfs_ifork_nextents(&ip->i_df));
297 		to->di_big_anextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_af));
298 		/*
299 		 * We might be upgrading the inode to use larger extent counters
300 		 * than was previously used. Hence zero the unused field.
301 		 */
302 		to->di_nrext64_pad = cpu_to_be16(0);
303 	} else {
304 		to->di_nextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_df));
305 		to->di_anextents = cpu_to_be16(xfs_ifork_nextents(&ip->i_af));
306 	}
307 }
308 
309 void
xfs_inode_to_disk(struct xfs_inode * ip,struct xfs_dinode * to,xfs_lsn_t lsn)310 xfs_inode_to_disk(
311 	struct xfs_inode	*ip,
312 	struct xfs_dinode	*to,
313 	xfs_lsn_t		lsn)
314 {
315 	struct inode		*inode = VFS_I(ip);
316 
317 	to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
318 	to->di_onlink = 0;
319 
320 	to->di_format = xfs_ifork_format(&ip->i_df);
321 	to->di_uid = cpu_to_be32(i_uid_read(inode));
322 	to->di_gid = cpu_to_be32(i_gid_read(inode));
323 	to->di_projid_lo = cpu_to_be16(ip->i_projid & 0xffff);
324 	to->di_projid_hi = cpu_to_be16(ip->i_projid >> 16);
325 
326 	to->di_atime = xfs_inode_to_disk_ts(ip, inode_get_atime(inode));
327 	to->di_mtime = xfs_inode_to_disk_ts(ip, inode_get_mtime(inode));
328 	to->di_ctime = xfs_inode_to_disk_ts(ip, inode_get_ctime(inode));
329 	to->di_nlink = cpu_to_be32(inode->i_nlink);
330 	to->di_gen = cpu_to_be32(inode->i_generation);
331 	to->di_mode = cpu_to_be16(inode->i_mode);
332 
333 	to->di_size = cpu_to_be64(ip->i_disk_size);
334 	to->di_nblocks = cpu_to_be64(ip->i_nblocks);
335 	to->di_extsize = cpu_to_be32(ip->i_extsize);
336 	to->di_forkoff = ip->i_forkoff;
337 	to->di_aformat = xfs_ifork_format(&ip->i_af);
338 	to->di_flags = cpu_to_be16(ip->i_diflags);
339 
340 	if (xfs_has_v3inodes(ip->i_mount)) {
341 		to->di_version = 3;
342 		to->di_changecount = cpu_to_be64(inode_peek_iversion(inode));
343 		to->di_crtime = xfs_inode_to_disk_ts(ip, ip->i_crtime);
344 		to->di_flags2 = cpu_to_be64(ip->i_diflags2);
345 		to->di_cowextsize = cpu_to_be32(ip->i_cowextsize);
346 		to->di_ino = cpu_to_be64(ip->i_ino);
347 		to->di_lsn = cpu_to_be64(lsn);
348 		memset(to->di_pad2, 0, sizeof(to->di_pad2));
349 		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
350 		to->di_v3_pad = 0;
351 	} else {
352 		to->di_version = 2;
353 		to->di_flushiter = cpu_to_be16(ip->i_flushiter);
354 		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
355 	}
356 
357 	xfs_inode_to_disk_iext_counters(ip, to);
358 }
359 
360 static xfs_failaddr_t
xfs_dinode_verify_fork(struct xfs_dinode * dip,struct xfs_mount * mp,int whichfork)361 xfs_dinode_verify_fork(
362 	struct xfs_dinode	*dip,
363 	struct xfs_mount	*mp,
364 	int			whichfork)
365 {
366 	xfs_extnum_t		di_nextents;
367 	xfs_extnum_t		max_extents;
368 	mode_t			mode = be16_to_cpu(dip->di_mode);
369 	uint32_t		fork_size = XFS_DFORK_SIZE(dip, mp, whichfork);
370 	uint32_t		fork_format = XFS_DFORK_FORMAT(dip, whichfork);
371 
372 	di_nextents = xfs_dfork_nextents(dip, whichfork);
373 
374 	/*
375 	 * For fork types that can contain local data, check that the fork
376 	 * format matches the size of local data contained within the fork.
377 	 */
378 	if (whichfork == XFS_DATA_FORK) {
379 		/*
380 		 * A directory small enough to fit in the inode must be stored
381 		 * in local format.  The directory sf <-> extents conversion
382 		 * code updates the directory size accordingly.  Directories
383 		 * being truncated have zero size and are not subject to this
384 		 * check.
385 		 */
386 		if (S_ISDIR(mode)) {
387 			if (dip->di_size &&
388 			    be64_to_cpu(dip->di_size) <= fork_size &&
389 			    fork_format != XFS_DINODE_FMT_LOCAL)
390 				return __this_address;
391 		}
392 
393 		/*
394 		 * A symlink with a target small enough to fit in the inode can
395 		 * be stored in extents format if xattrs were added (thus
396 		 * converting the data fork from shortform to remote format)
397 		 * and then removed.
398 		 */
399 		if (S_ISLNK(mode)) {
400 			if (be64_to_cpu(dip->di_size) <= fork_size &&
401 			    fork_format != XFS_DINODE_FMT_EXTENTS &&
402 			    fork_format != XFS_DINODE_FMT_LOCAL)
403 				return __this_address;
404 		}
405 
406 		/*
407 		 * For all types, check that when the size says the fork should
408 		 * be in extent or btree format, the inode isn't claiming to be
409 		 * in local format.
410 		 */
411 		if (be64_to_cpu(dip->di_size) > fork_size &&
412 		    fork_format == XFS_DINODE_FMT_LOCAL)
413 			return __this_address;
414 	}
415 
416 	switch (fork_format) {
417 	case XFS_DINODE_FMT_LOCAL:
418 		/*
419 		 * No local regular files yet.
420 		 */
421 		if (S_ISREG(mode) && whichfork == XFS_DATA_FORK)
422 			return __this_address;
423 		if (di_nextents)
424 			return __this_address;
425 		break;
426 	case XFS_DINODE_FMT_EXTENTS:
427 		if (di_nextents > XFS_DFORK_MAXEXT(dip, mp, whichfork))
428 			return __this_address;
429 		break;
430 	case XFS_DINODE_FMT_BTREE:
431 		max_extents = xfs_iext_max_nextents(
432 					xfs_dinode_has_large_extent_counts(dip),
433 					whichfork);
434 		if (di_nextents > max_extents)
435 			return __this_address;
436 		break;
437 	default:
438 		return __this_address;
439 	}
440 	return NULL;
441 }
442 
443 static xfs_failaddr_t
xfs_dinode_verify_forkoff(struct xfs_dinode * dip,struct xfs_mount * mp)444 xfs_dinode_verify_forkoff(
445 	struct xfs_dinode	*dip,
446 	struct xfs_mount	*mp)
447 {
448 	if (!dip->di_forkoff)
449 		return NULL;
450 
451 	switch (dip->di_format)  {
452 	case XFS_DINODE_FMT_DEV:
453 		if (dip->di_forkoff != (roundup(sizeof(xfs_dev_t), 8) >> 3))
454 			return __this_address;
455 		break;
456 	case XFS_DINODE_FMT_LOCAL:	/* fall through ... */
457 	case XFS_DINODE_FMT_EXTENTS:    /* fall through ... */
458 	case XFS_DINODE_FMT_BTREE:
459 		if (dip->di_forkoff >= (XFS_LITINO(mp) >> 3))
460 			return __this_address;
461 		break;
462 	default:
463 		return __this_address;
464 	}
465 	return NULL;
466 }
467 
468 static xfs_failaddr_t
xfs_dinode_verify_nrext64(struct xfs_mount * mp,struct xfs_dinode * dip)469 xfs_dinode_verify_nrext64(
470 	struct xfs_mount	*mp,
471 	struct xfs_dinode	*dip)
472 {
473 	if (xfs_dinode_has_large_extent_counts(dip)) {
474 		if (!xfs_has_large_extent_counts(mp))
475 			return __this_address;
476 		if (dip->di_nrext64_pad != 0)
477 			return __this_address;
478 	} else if (dip->di_version >= 3) {
479 		if (dip->di_v3_pad != 0)
480 			return __this_address;
481 	}
482 
483 	return NULL;
484 }
485 
486 xfs_failaddr_t
xfs_dinode_verify(struct xfs_mount * mp,xfs_ino_t ino,struct xfs_dinode * dip)487 xfs_dinode_verify(
488 	struct xfs_mount	*mp,
489 	xfs_ino_t		ino,
490 	struct xfs_dinode	*dip)
491 {
492 	xfs_failaddr_t		fa;
493 	uint16_t		mode;
494 	uint16_t		flags;
495 	uint64_t		flags2;
496 	uint64_t		di_size;
497 	xfs_extnum_t		nextents;
498 	xfs_extnum_t		naextents;
499 	xfs_filblks_t		nblocks;
500 
501 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
502 		return __this_address;
503 
504 	/* Verify v3 integrity information first */
505 	if (dip->di_version >= 3) {
506 		if (!xfs_has_v3inodes(mp))
507 			return __this_address;
508 		if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
509 				      XFS_DINODE_CRC_OFF))
510 			return __this_address;
511 		if (be64_to_cpu(dip->di_ino) != ino)
512 			return __this_address;
513 		if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
514 			return __this_address;
515 	}
516 
517 	/*
518 	 * Historical note: xfsprogs in the 3.2 era set up its incore inodes to
519 	 * have di_nlink track the link count, even if the actual filesystem
520 	 * only supported V1 inodes (i.e. di_onlink).  When writing out the
521 	 * ondisk inode, it would set both the ondisk di_nlink and di_onlink to
522 	 * the the incore di_nlink value, which is why we cannot check for
523 	 * di_nlink==0 on a V1 inode.  V2/3 inodes would get written out with
524 	 * di_onlink==0, so we can check that.
525 	 */
526 	if (dip->di_version >= 2) {
527 		if (dip->di_onlink)
528 			return __this_address;
529 	}
530 
531 	/* don't allow invalid i_size */
532 	di_size = be64_to_cpu(dip->di_size);
533 	if (di_size & (1ULL << 63))
534 		return __this_address;
535 
536 	mode = be16_to_cpu(dip->di_mode);
537 	if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
538 		return __this_address;
539 
540 	/*
541 	 * No zero-length symlinks/dirs unless they're unlinked and hence being
542 	 * inactivated.
543 	 */
544 	if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0) {
545 		if (dip->di_version > 1) {
546 			if (dip->di_nlink)
547 				return __this_address;
548 		} else {
549 			if (dip->di_onlink)
550 				return __this_address;
551 		}
552 	}
553 
554 	fa = xfs_dinode_verify_nrext64(mp, dip);
555 	if (fa)
556 		return fa;
557 
558 	nextents = xfs_dfork_data_extents(dip);
559 	naextents = xfs_dfork_attr_extents(dip);
560 	nblocks = be64_to_cpu(dip->di_nblocks);
561 
562 	/* Fork checks carried over from xfs_iformat_fork */
563 	if (mode && nextents + naextents > nblocks)
564 		return __this_address;
565 
566 	if (nextents + naextents == 0 && nblocks != 0)
567 		return __this_address;
568 
569 	if (S_ISDIR(mode) && nextents > mp->m_dir_geo->max_extents)
570 		return __this_address;
571 
572 	if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize)
573 		return __this_address;
574 
575 	flags = be16_to_cpu(dip->di_flags);
576 
577 	if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp)
578 		return __this_address;
579 
580 	/* check for illegal values of forkoff */
581 	fa = xfs_dinode_verify_forkoff(dip, mp);
582 	if (fa)
583 		return fa;
584 
585 	/* Do we have appropriate data fork formats for the mode? */
586 	switch (mode & S_IFMT) {
587 	case S_IFIFO:
588 	case S_IFCHR:
589 	case S_IFBLK:
590 	case S_IFSOCK:
591 		if (dip->di_format != XFS_DINODE_FMT_DEV)
592 			return __this_address;
593 		break;
594 	case S_IFREG:
595 	case S_IFLNK:
596 	case S_IFDIR:
597 		fa = xfs_dinode_verify_fork(dip, mp, XFS_DATA_FORK);
598 		if (fa)
599 			return fa;
600 		break;
601 	case 0:
602 		/* Uninitialized inode ok. */
603 		break;
604 	default:
605 		return __this_address;
606 	}
607 
608 	if (dip->di_forkoff) {
609 		fa = xfs_dinode_verify_fork(dip, mp, XFS_ATTR_FORK);
610 		if (fa)
611 			return fa;
612 	} else {
613 		/*
614 		 * If there is no fork offset, this may be a freshly-made inode
615 		 * in a new disk cluster, in which case di_aformat is zeroed.
616 		 * Otherwise, such an inode must be in EXTENTS format; this goes
617 		 * for freed inodes as well.
618 		 */
619 		switch (dip->di_aformat) {
620 		case 0:
621 		case XFS_DINODE_FMT_EXTENTS:
622 			break;
623 		default:
624 			return __this_address;
625 		}
626 		if (naextents)
627 			return __this_address;
628 	}
629 
630 	/* extent size hint validation */
631 	fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize),
632 			mode, flags);
633 	if (fa)
634 		return fa;
635 
636 	/* only version 3 or greater inodes are extensively verified here */
637 	if (dip->di_version < 3)
638 		return NULL;
639 
640 	flags2 = be64_to_cpu(dip->di_flags2);
641 
642 	/* don't allow reflink/cowextsize if we don't have reflink */
643 	if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
644 	     !xfs_has_reflink(mp))
645 		return __this_address;
646 
647 	/* only regular files get reflink */
648 	if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG)
649 		return __this_address;
650 
651 	/* don't let reflink and realtime mix */
652 	if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME))
653 		return __this_address;
654 
655 	/* COW extent size hint validation */
656 	fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize),
657 			mode, flags, flags2);
658 	if (fa)
659 		return fa;
660 
661 	/* bigtime iflag can only happen on bigtime filesystems */
662 	if (xfs_dinode_has_bigtime(dip) &&
663 	    !xfs_has_bigtime(mp))
664 		return __this_address;
665 
666 	return NULL;
667 }
668 
669 void
xfs_dinode_calc_crc(struct xfs_mount * mp,struct xfs_dinode * dip)670 xfs_dinode_calc_crc(
671 	struct xfs_mount	*mp,
672 	struct xfs_dinode	*dip)
673 {
674 	uint32_t		crc;
675 
676 	if (dip->di_version < 3)
677 		return;
678 
679 	ASSERT(xfs_has_crc(mp));
680 	crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize,
681 			      XFS_DINODE_CRC_OFF);
682 	dip->di_crc = xfs_end_cksum(crc);
683 }
684 
685 /*
686  * Validate di_extsize hint.
687  *
688  * 1. Extent size hint is only valid for directories and regular files.
689  * 2. FS_XFLAG_EXTSIZE is only valid for regular files.
690  * 3. FS_XFLAG_EXTSZINHERIT is only valid for directories.
691  * 4. Hint cannot be larger than MAXTEXTLEN.
692  * 5. Can be changed on directories at any time.
693  * 6. Hint value of 0 turns off hints, clears inode flags.
694  * 7. Extent size must be a multiple of the appropriate block size.
695  *    For realtime files, this is the rt extent size.
696  * 8. For non-realtime files, the extent size hint must be limited
697  *    to half the AG size to avoid alignment extending the extent beyond the
698  *    limits of the AG.
699  */
700 xfs_failaddr_t
xfs_inode_validate_extsize(struct xfs_mount * mp,uint32_t extsize,uint16_t mode,uint16_t flags)701 xfs_inode_validate_extsize(
702 	struct xfs_mount		*mp,
703 	uint32_t			extsize,
704 	uint16_t			mode,
705 	uint16_t			flags)
706 {
707 	bool				rt_flag;
708 	bool				hint_flag;
709 	bool				inherit_flag;
710 	uint32_t			extsize_bytes;
711 	uint32_t			blocksize_bytes;
712 
713 	rt_flag = (flags & XFS_DIFLAG_REALTIME);
714 	hint_flag = (flags & XFS_DIFLAG_EXTSIZE);
715 	inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT);
716 	extsize_bytes = XFS_FSB_TO_B(mp, extsize);
717 
718 	/*
719 	 * This comment describes a historic gap in this verifier function.
720 	 *
721 	 * For a directory with both RTINHERIT and EXTSZINHERIT flags set, this
722 	 * function has never checked that the extent size hint is an integer
723 	 * multiple of the realtime extent size.  Since we allow users to set
724 	 * this combination  on non-rt filesystems /and/ to change the rt
725 	 * extent size when adding a rt device to a filesystem, the net effect
726 	 * is that users can configure a filesystem anticipating one rt
727 	 * geometry and change their minds later.  Directories do not use the
728 	 * extent size hint, so this is harmless for them.
729 	 *
730 	 * If a directory with a misaligned extent size hint is allowed to
731 	 * propagate that hint into a new regular realtime file, the result
732 	 * is that the inode cluster buffer verifier will trigger a corruption
733 	 * shutdown the next time it is run, because the verifier has always
734 	 * enforced the alignment rule for regular files.
735 	 *
736 	 * Because we allow administrators to set a new rt extent size when
737 	 * adding a rt section, we cannot add a check to this verifier because
738 	 * that will result a new source of directory corruption errors when
739 	 * reading an existing filesystem.  Instead, we rely on callers to
740 	 * decide when alignment checks are appropriate, and fix things up as
741 	 * needed.
742 	 */
743 
744 	if (rt_flag)
745 		blocksize_bytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
746 	else
747 		blocksize_bytes = mp->m_sb.sb_blocksize;
748 
749 	if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode)))
750 		return __this_address;
751 
752 	if (hint_flag && !S_ISREG(mode))
753 		return __this_address;
754 
755 	if (inherit_flag && !S_ISDIR(mode))
756 		return __this_address;
757 
758 	if ((hint_flag || inherit_flag) && extsize == 0)
759 		return __this_address;
760 
761 	/* free inodes get flags set to zero but extsize remains */
762 	if (mode && !(hint_flag || inherit_flag) && extsize != 0)
763 		return __this_address;
764 
765 	if (extsize_bytes % blocksize_bytes)
766 		return __this_address;
767 
768 	if (extsize > XFS_MAX_BMBT_EXTLEN)
769 		return __this_address;
770 
771 	if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2)
772 		return __this_address;
773 
774 	return NULL;
775 }
776 
777 /*
778  * Validate di_cowextsize hint.
779  *
780  * 1. CoW extent size hint can only be set if reflink is enabled on the fs.
781  *    The inode does not have to have any shared blocks, but it must be a v3.
782  * 2. FS_XFLAG_COWEXTSIZE is only valid for directories and regular files;
783  *    for a directory, the hint is propagated to new files.
784  * 3. Can be changed on files & directories at any time.
785  * 4. Hint value of 0 turns off hints, clears inode flags.
786  * 5. Extent size must be a multiple of the appropriate block size.
787  * 6. The extent size hint must be limited to half the AG size to avoid
788  *    alignment extending the extent beyond the limits of the AG.
789  */
790 xfs_failaddr_t
xfs_inode_validate_cowextsize(struct xfs_mount * mp,uint32_t cowextsize,uint16_t mode,uint16_t flags,uint64_t flags2)791 xfs_inode_validate_cowextsize(
792 	struct xfs_mount		*mp,
793 	uint32_t			cowextsize,
794 	uint16_t			mode,
795 	uint16_t			flags,
796 	uint64_t			flags2)
797 {
798 	bool				rt_flag;
799 	bool				hint_flag;
800 	uint32_t			cowextsize_bytes;
801 
802 	rt_flag = (flags & XFS_DIFLAG_REALTIME);
803 	hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE);
804 	cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize);
805 
806 	if (hint_flag && !xfs_has_reflink(mp))
807 		return __this_address;
808 
809 	if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode)))
810 		return __this_address;
811 
812 	if (hint_flag && cowextsize == 0)
813 		return __this_address;
814 
815 	/* free inodes get flags set to zero but cowextsize remains */
816 	if (mode && !hint_flag && cowextsize != 0)
817 		return __this_address;
818 
819 	if (hint_flag && rt_flag)
820 		return __this_address;
821 
822 	if (cowextsize_bytes % mp->m_sb.sb_blocksize)
823 		return __this_address;
824 
825 	if (cowextsize > XFS_MAX_BMBT_EXTLEN)
826 		return __this_address;
827 
828 	if (cowextsize > mp->m_sb.sb_agblocks / 2)
829 		return __this_address;
830 
831 	return NULL;
832 }
833