xref: /linux/fs/ext4/inode.c (revision f2e74ecfba1b0d407f04b671a240cc65e309e529)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 					    struct inode *inode,
55 					    struct folio *folio,
56 					    unsigned from, unsigned to);
57 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 			      struct ext4_inode_info *ei)
60 {
61 	__u32 csum;
62 	__u16 dummy_csum = 0;
63 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 	unsigned int csum_size = sizeof(dummy_csum);
65 
66 	csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset);
67 	csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size);
68 	offset += csum_size;
69 	csum = ext4_chksum(csum, (__u8 *)raw + offset,
70 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
71 
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 		offset = offsetof(struct ext4_inode, i_checksum_hi);
74 		csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE,
75 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
76 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
77 			csum = ext4_chksum(csum, (__u8 *)&dummy_csum,
78 					   csum_size);
79 			offset += csum_size;
80 		}
81 		csum = ext4_chksum(csum, (__u8 *)raw + offset,
82 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
83 	}
84 
85 	return csum;
86 }
87 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
89 				  struct ext4_inode_info *ei)
90 {
91 	__u32 provided, calculated;
92 
93 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
94 	    cpu_to_le32(EXT4_OS_LINUX) ||
95 	    !ext4_has_feature_metadata_csum(inode->i_sb))
96 		return 1;
97 
98 	provided = le16_to_cpu(raw->i_checksum_lo);
99 	calculated = ext4_inode_csum(inode, raw, ei);
100 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
101 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
102 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
103 	else
104 		calculated &= 0xFFFF;
105 
106 	return provided == calculated;
107 }
108 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
110 			 struct ext4_inode_info *ei)
111 {
112 	__u32 csum;
113 
114 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
115 	    cpu_to_le32(EXT4_OS_LINUX) ||
116 	    !ext4_has_feature_metadata_csum(inode->i_sb))
117 		return;
118 
119 	csum = ext4_inode_csum(inode, raw, ei);
120 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
121 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
122 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
123 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
124 }
125 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)126 static inline int ext4_begin_ordered_truncate(struct inode *inode,
127 					      loff_t new_size)
128 {
129 	trace_ext4_begin_ordered_truncate(inode, new_size);
130 	/*
131 	 * If jinode is zero, then we never opened the file for
132 	 * writing, so there's no need to call
133 	 * jbd2_journal_begin_ordered_truncate() since there's no
134 	 * outstanding writes we need to flush.
135 	 */
136 	if (!EXT4_I(inode)->jinode)
137 		return 0;
138 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
139 						   EXT4_I(inode)->jinode,
140 						   new_size);
141 }
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!ext4_has_feature_ea_inode(inode->i_sb)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	dax_break_layout_final(inode);
181 
182 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 		ext4_evict_ea_inode(inode);
184 	if (inode->i_nlink) {
185 		truncate_inode_pages_final(&inode->i_data);
186 
187 		goto no_delete;
188 	}
189 
190 	if (is_bad_inode(inode))
191 		goto no_delete;
192 	dquot_initialize(inode);
193 
194 	if (ext4_should_order_data(inode))
195 		ext4_begin_ordered_truncate(inode, 0);
196 	truncate_inode_pages_final(&inode->i_data);
197 
198 	/*
199 	 * For inodes with journalled data, transaction commit could have
200 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
201 	 * extents converting worker could merge extents and also have dirtied
202 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
203 	 * we still need to remove the inode from the writeback lists.
204 	 */
205 	inode_io_list_del(inode);
206 
207 	/*
208 	 * Protect us against freezing - iput() caller didn't have to have any
209 	 * protection against it. When we are in a running transaction though,
210 	 * we are already protected against freezing and we cannot grab further
211 	 * protection due to lock ordering constraints.
212 	 */
213 	if (!ext4_journal_current_handle()) {
214 		sb_start_intwrite(inode->i_sb);
215 		freeze_protected = true;
216 	}
217 
218 	if (!IS_NOQUOTA(inode))
219 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
220 
221 	/*
222 	 * Block bitmap, group descriptor, and inode are accounted in both
223 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
224 	 */
225 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
226 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
227 	if (IS_ERR(handle)) {
228 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
229 		/*
230 		 * If we're going to skip the normal cleanup, we still need to
231 		 * make sure that the in-core orphan linked list is properly
232 		 * cleaned up.
233 		 */
234 		ext4_orphan_del(NULL, inode);
235 		if (freeze_protected)
236 			sb_end_intwrite(inode->i_sb);
237 		goto no_delete;
238 	}
239 
240 	if (IS_SYNC(inode))
241 		ext4_handle_sync(handle);
242 
243 	/*
244 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
245 	 * special handling of symlinks here because i_size is used to
246 	 * determine whether ext4_inode_info->i_data contains symlink data or
247 	 * block mappings. Setting i_size to 0 will remove its fast symlink
248 	 * status. Erase i_data so that it becomes a valid empty block map.
249 	 */
250 	if (ext4_inode_is_fast_symlink(inode))
251 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
252 	inode->i_size = 0;
253 	err = ext4_mark_inode_dirty(handle, inode);
254 	if (err) {
255 		ext4_warning(inode->i_sb,
256 			     "couldn't mark inode dirty (err %d)", err);
257 		goto stop_handle;
258 	}
259 	if (inode->i_blocks) {
260 		err = ext4_truncate(inode);
261 		if (err) {
262 			ext4_error_err(inode->i_sb, -err,
263 				       "couldn't truncate inode %lu (err %d)",
264 				       inode->i_ino, err);
265 			goto stop_handle;
266 		}
267 	}
268 
269 	/* Remove xattr references. */
270 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
271 				      extra_credits);
272 	if (err) {
273 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
274 stop_handle:
275 		ext4_journal_stop(handle);
276 		ext4_orphan_del(NULL, inode);
277 		if (freeze_protected)
278 			sb_end_intwrite(inode->i_sb);
279 		ext4_xattr_inode_array_free(ea_inode_array);
280 		goto no_delete;
281 	}
282 
283 	/*
284 	 * Kill off the orphan record which ext4_truncate created.
285 	 * AKPM: I think this can be inside the above `if'.
286 	 * Note that ext4_orphan_del() has to be able to cope with the
287 	 * deletion of a non-existent orphan - this is because we don't
288 	 * know if ext4_truncate() actually created an orphan record.
289 	 * (Well, we could do this if we need to, but heck - it works)
290 	 */
291 	ext4_orphan_del(handle, inode);
292 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
293 
294 	/*
295 	 * One subtle ordering requirement: if anything has gone wrong
296 	 * (transaction abort, IO errors, whatever), then we can still
297 	 * do these next steps (the fs will already have been marked as
298 	 * having errors), but we can't free the inode if the mark_dirty
299 	 * fails.
300 	 */
301 	if (ext4_mark_inode_dirty(handle, inode))
302 		/* If that failed, just do the required in-core inode clear. */
303 		ext4_clear_inode(inode);
304 	else
305 		ext4_free_inode(handle, inode);
306 	ext4_journal_stop(handle);
307 	if (freeze_protected)
308 		sb_end_intwrite(inode->i_sb);
309 	ext4_xattr_inode_array_free(ea_inode_array);
310 	return;
311 no_delete:
312 	/*
313 	 * Check out some where else accidentally dirty the evicting inode,
314 	 * which may probably cause inode use-after-free issues later.
315 	 */
316 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
317 
318 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
319 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
320 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
321 }
322 
323 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)324 qsize_t *ext4_get_reserved_space(struct inode *inode)
325 {
326 	return &EXT4_I(inode)->i_reserved_quota;
327 }
328 #endif
329 
330 /*
331  * Called with i_data_sem down, which is important since we can call
332  * ext4_discard_preallocations() from here.
333  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)334 void ext4_da_update_reserve_space(struct inode *inode,
335 					int used, int quota_claim)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
338 	struct ext4_inode_info *ei = EXT4_I(inode);
339 
340 	spin_lock(&ei->i_block_reservation_lock);
341 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
342 	if (unlikely(used > ei->i_reserved_data_blocks)) {
343 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
344 			 "with only %d reserved data blocks",
345 			 __func__, inode->i_ino, used,
346 			 ei->i_reserved_data_blocks);
347 		WARN_ON(1);
348 		used = ei->i_reserved_data_blocks;
349 	}
350 
351 	/* Update per-inode reservations */
352 	ei->i_reserved_data_blocks -= used;
353 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
354 
355 	spin_unlock(&ei->i_block_reservation_lock);
356 
357 	/* Update quota subsystem for data blocks */
358 	if (quota_claim)
359 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
360 	else {
361 		/*
362 		 * We did fallocate with an offset that is already delayed
363 		 * allocated. So on delayed allocated writeback we should
364 		 * not re-claim the quota for fallocated blocks.
365 		 */
366 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 	}
368 
369 	/*
370 	 * If we have done all the pending block allocations and if
371 	 * there aren't any writers on the inode, we can discard the
372 	 * inode's preallocations.
373 	 */
374 	if ((ei->i_reserved_data_blocks == 0) &&
375 	    !inode_is_open_for_write(inode))
376 		ext4_discard_preallocations(inode);
377 }
378 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)379 static int __check_block_validity(struct inode *inode, const char *func,
380 				unsigned int line,
381 				struct ext4_map_blocks *map)
382 {
383 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
384 
385 	if (journal && inode == journal->j_inode)
386 		return 0;
387 
388 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
389 		ext4_error_inode(inode, func, line, map->m_pblk,
390 				 "lblock %lu mapped to illegal pblock %llu "
391 				 "(length %d)", (unsigned long) map->m_lblk,
392 				 map->m_pblk, map->m_len);
393 		return -EFSCORRUPTED;
394 	}
395 	return 0;
396 }
397 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
399 		       ext4_lblk_t len)
400 {
401 	int ret;
402 
403 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
404 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
405 
406 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
407 	if (ret > 0)
408 		ret = 0;
409 
410 	return ret;
411 }
412 
413 /*
414  * For generic regular files, when updating the extent tree, Ext4 should
415  * hold the i_rwsem and invalidate_lock exclusively. This ensures
416  * exclusion against concurrent page faults, as well as reads and writes.
417  */
418 #ifdef CONFIG_EXT4_DEBUG
ext4_check_map_extents_env(struct inode * inode)419 void ext4_check_map_extents_env(struct inode *inode)
420 {
421 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
422 		return;
423 
424 	if (!S_ISREG(inode->i_mode) ||
425 	    IS_NOQUOTA(inode) || IS_VERITY(inode) ||
426 	    is_special_ino(inode->i_sb, inode->i_ino) ||
427 	    (inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) ||
428 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) ||
429 	    ext4_verity_in_progress(inode))
430 		return;
431 
432 	WARN_ON_ONCE(!inode_is_locked(inode) &&
433 		     !rwsem_is_locked(&inode->i_mapping->invalidate_lock));
434 }
435 #else
ext4_check_map_extents_env(struct inode * inode)436 void ext4_check_map_extents_env(struct inode *inode) {}
437 #endif
438 
439 #define check_block_validity(inode, map)	\
440 	__check_block_validity((inode), __func__, __LINE__, (map))
441 
442 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)443 static void ext4_map_blocks_es_recheck(handle_t *handle,
444 				       struct inode *inode,
445 				       struct ext4_map_blocks *es_map,
446 				       struct ext4_map_blocks *map,
447 				       int flags)
448 {
449 	int retval;
450 
451 	map->m_flags = 0;
452 	/*
453 	 * There is a race window that the result is not the same.
454 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
455 	 * is that we lookup a block mapping in extent status tree with
456 	 * out taking i_data_sem.  So at the time the unwritten extent
457 	 * could be converted.
458 	 */
459 	down_read(&EXT4_I(inode)->i_data_sem);
460 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
461 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
462 	} else {
463 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
464 	}
465 	up_read((&EXT4_I(inode)->i_data_sem));
466 
467 	/*
468 	 * We don't check m_len because extent will be collpased in status
469 	 * tree.  So the m_len might not equal.
470 	 */
471 	if (es_map->m_lblk != map->m_lblk ||
472 	    es_map->m_flags != map->m_flags ||
473 	    es_map->m_pblk != map->m_pblk) {
474 		printk("ES cache assertion failed for inode: %lu "
475 		       "es_cached ex [%d/%d/%llu/%x] != "
476 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
477 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
478 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
479 		       map->m_len, map->m_pblk, map->m_flags,
480 		       retval, flags);
481 	}
482 }
483 #endif /* ES_AGGRESSIVE_TEST */
484 
ext4_map_query_blocks_next_in_leaf(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,unsigned int orig_mlen)485 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle,
486 			struct inode *inode, struct ext4_map_blocks *map,
487 			unsigned int orig_mlen)
488 {
489 	struct ext4_map_blocks map2;
490 	unsigned int status, status2;
491 	int retval;
492 
493 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
494 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
495 
496 	WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF));
497 	WARN_ON_ONCE(orig_mlen <= map->m_len);
498 
499 	/* Prepare map2 for lookup in next leaf block */
500 	map2.m_lblk = map->m_lblk + map->m_len;
501 	map2.m_len = orig_mlen - map->m_len;
502 	map2.m_flags = 0;
503 	retval = ext4_ext_map_blocks(handle, inode, &map2, 0);
504 
505 	if (retval <= 0) {
506 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
507 				      map->m_pblk, status, false);
508 		return map->m_len;
509 	}
510 
511 	if (unlikely(retval != map2.m_len)) {
512 		ext4_warning(inode->i_sb,
513 			     "ES len assertion failed for inode "
514 			     "%lu: retval %d != map->m_len %d",
515 			     inode->i_ino, retval, map2.m_len);
516 		WARN_ON(1);
517 	}
518 
519 	status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ?
520 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
521 
522 	/*
523 	 * If map2 is contiguous with map, then let's insert it as a single
524 	 * extent in es cache and return the combined length of both the maps.
525 	 */
526 	if (map->m_pblk + map->m_len == map2.m_pblk &&
527 			status == status2) {
528 		ext4_es_insert_extent(inode, map->m_lblk,
529 				      map->m_len + map2.m_len, map->m_pblk,
530 				      status, false);
531 		map->m_len += map2.m_len;
532 	} else {
533 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
534 				      map->m_pblk, status, false);
535 	}
536 
537 	return map->m_len;
538 }
539 
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)540 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
541 				 struct ext4_map_blocks *map, int flags)
542 {
543 	unsigned int status;
544 	int retval;
545 	unsigned int orig_mlen = map->m_len;
546 
547 	flags &= EXT4_EX_QUERY_FILTER;
548 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
549 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
550 	else
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
552 
553 	if (retval <= 0)
554 		return retval;
555 
556 	if (unlikely(retval != map->m_len)) {
557 		ext4_warning(inode->i_sb,
558 			     "ES len assertion failed for inode "
559 			     "%lu: retval %d != map->m_len %d",
560 			     inode->i_ino, retval, map->m_len);
561 		WARN_ON(1);
562 	}
563 
564 	/*
565 	 * No need to query next in leaf:
566 	 * - if returned extent is not last in leaf or
567 	 * - if the last in leaf is the full requested range
568 	 */
569 	if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) ||
570 			map->m_len == orig_mlen) {
571 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
572 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
573 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
574 				      map->m_pblk, status, false);
575 		return retval;
576 	}
577 
578 	return ext4_map_query_blocks_next_in_leaf(handle, inode, map,
579 						  orig_mlen);
580 }
581 
ext4_map_create_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)582 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
583 				  struct ext4_map_blocks *map, int flags)
584 {
585 	struct extent_status es;
586 	unsigned int status;
587 	int err, retval = 0;
588 
589 	/*
590 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
591 	 * indicates that the blocks and quotas has already been
592 	 * checked when the data was copied into the page cache.
593 	 */
594 	if (map->m_flags & EXT4_MAP_DELAYED)
595 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
596 
597 	/*
598 	 * Here we clear m_flags because after allocating an new extent,
599 	 * it will be set again.
600 	 */
601 	map->m_flags &= ~EXT4_MAP_FLAGS;
602 
603 	/*
604 	 * We need to check for EXT4 here because migrate could have
605 	 * changed the inode type in between.
606 	 */
607 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
608 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
609 	} else {
610 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
611 
612 		/*
613 		 * We allocated new blocks which will result in i_data's
614 		 * format changing. Force the migrate to fail by clearing
615 		 * migrate flags.
616 		 */
617 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
618 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
619 	}
620 	if (retval <= 0)
621 		return retval;
622 
623 	if (unlikely(retval != map->m_len)) {
624 		ext4_warning(inode->i_sb,
625 			     "ES len assertion failed for inode %lu: "
626 			     "retval %d != map->m_len %d",
627 			     inode->i_ino, retval, map->m_len);
628 		WARN_ON(1);
629 	}
630 
631 	/*
632 	 * We have to zeroout blocks before inserting them into extent
633 	 * status tree. Otherwise someone could look them up there and
634 	 * use them before they are really zeroed. We also have to
635 	 * unmap metadata before zeroing as otherwise writeback can
636 	 * overwrite zeros with stale data from block device.
637 	 */
638 	if (flags & EXT4_GET_BLOCKS_ZERO &&
639 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
640 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
641 					 map->m_len);
642 		if (err)
643 			return err;
644 	}
645 
646 	/*
647 	 * If the extent has been zeroed out, we don't need to update
648 	 * extent status tree.
649 	 */
650 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
651 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
652 		if (ext4_es_is_written(&es))
653 			return retval;
654 	}
655 
656 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
657 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
658 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
659 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
660 
661 	return retval;
662 }
663 
664 /*
665  * The ext4_map_blocks() function tries to look up the requested blocks,
666  * and returns if the blocks are already mapped.
667  *
668  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
669  * and store the allocated blocks in the result buffer head and mark it
670  * mapped.
671  *
672  * If file type is extents based, it will call ext4_ext_map_blocks(),
673  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
674  * based files
675  *
676  * On success, it returns the number of blocks being mapped or allocated.
677  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
678  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
679  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
680  *
681  * It returns 0 if plain look up failed (blocks have not been allocated), in
682  * that case, @map is returned as unmapped but we still do fill map->m_len to
683  * indicate the length of a hole starting at map->m_lblk.
684  *
685  * It returns the error in case of allocation failure.
686  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)687 int ext4_map_blocks(handle_t *handle, struct inode *inode,
688 		    struct ext4_map_blocks *map, int flags)
689 {
690 	struct extent_status es;
691 	int retval;
692 	int ret = 0;
693 	unsigned int orig_mlen = map->m_len;
694 #ifdef ES_AGGRESSIVE_TEST
695 	struct ext4_map_blocks orig_map;
696 
697 	memcpy(&orig_map, map, sizeof(*map));
698 #endif
699 
700 	map->m_flags = 0;
701 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
702 		  flags, map->m_len, (unsigned long) map->m_lblk);
703 
704 	/*
705 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
706 	 */
707 	if (unlikely(map->m_len > INT_MAX))
708 		map->m_len = INT_MAX;
709 
710 	/* We can handle the block number less than EXT_MAX_BLOCKS */
711 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
712 		return -EFSCORRUPTED;
713 
714 	/*
715 	 * Callers from the context of data submission are the only exceptions
716 	 * for regular files that do not hold the i_rwsem or invalidate_lock.
717 	 * However, caching unrelated ranges is not permitted.
718 	 */
719 	if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720 		WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE));
721 	else
722 		ext4_check_map_extents_env(inode);
723 
724 	/* Lookup extent status tree firstly */
725 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
726 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
727 			map->m_pblk = ext4_es_pblock(&es) +
728 					map->m_lblk - es.es_lblk;
729 			map->m_flags |= ext4_es_is_written(&es) ?
730 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
731 			retval = es.es_len - (map->m_lblk - es.es_lblk);
732 			if (retval > map->m_len)
733 				retval = map->m_len;
734 			map->m_len = retval;
735 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
736 			map->m_pblk = 0;
737 			map->m_flags |= ext4_es_is_delayed(&es) ?
738 					EXT4_MAP_DELAYED : 0;
739 			retval = es.es_len - (map->m_lblk - es.es_lblk);
740 			if (retval > map->m_len)
741 				retval = map->m_len;
742 			map->m_len = retval;
743 			retval = 0;
744 		} else {
745 			BUG();
746 		}
747 
748 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
749 			return retval;
750 #ifdef ES_AGGRESSIVE_TEST
751 		ext4_map_blocks_es_recheck(handle, inode, map,
752 					   &orig_map, flags);
753 #endif
754 		if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) ||
755 				orig_mlen == map->m_len)
756 			goto found;
757 
758 		map->m_len = orig_mlen;
759 	}
760 	/*
761 	 * In the query cache no-wait mode, nothing we can do more if we
762 	 * cannot find extent in the cache.
763 	 */
764 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
765 		return 0;
766 
767 	/*
768 	 * Try to see if we can get the block without requesting a new
769 	 * file system block.
770 	 */
771 	down_read(&EXT4_I(inode)->i_data_sem);
772 	retval = ext4_map_query_blocks(handle, inode, map, flags);
773 	up_read((&EXT4_I(inode)->i_data_sem));
774 
775 found:
776 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
777 		ret = check_block_validity(inode, map);
778 		if (ret != 0)
779 			return ret;
780 	}
781 
782 	/* If it is only a block(s) look up */
783 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
784 		return retval;
785 
786 	/*
787 	 * Returns if the blocks have already allocated
788 	 *
789 	 * Note that if blocks have been preallocated
790 	 * ext4_ext_map_blocks() returns with buffer head unmapped
791 	 */
792 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
793 		/*
794 		 * If we need to convert extent to unwritten
795 		 * we continue and do the actual work in
796 		 * ext4_ext_map_blocks()
797 		 */
798 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
799 			return retval;
800 
801 
802 	ext4_fc_track_inode(handle, inode);
803 	/*
804 	 * New blocks allocate and/or writing to unwritten extent
805 	 * will possibly result in updating i_data, so we take
806 	 * the write lock of i_data_sem, and call get_block()
807 	 * with create == 1 flag.
808 	 */
809 	down_write(&EXT4_I(inode)->i_data_sem);
810 	retval = ext4_map_create_blocks(handle, inode, map, flags);
811 	up_write((&EXT4_I(inode)->i_data_sem));
812 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
813 		ret = check_block_validity(inode, map);
814 		if (ret != 0)
815 			return ret;
816 
817 		/*
818 		 * Inodes with freshly allocated blocks where contents will be
819 		 * visible after transaction commit must be on transaction's
820 		 * ordered data list.
821 		 */
822 		if (map->m_flags & EXT4_MAP_NEW &&
823 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
824 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
825 		    !ext4_is_quota_file(inode) &&
826 		    ext4_should_order_data(inode)) {
827 			loff_t start_byte =
828 				(loff_t)map->m_lblk << inode->i_blkbits;
829 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
830 
831 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
832 				ret = ext4_jbd2_inode_add_wait(handle, inode,
833 						start_byte, length);
834 			else
835 				ret = ext4_jbd2_inode_add_write(handle, inode,
836 						start_byte, length);
837 			if (ret)
838 				return ret;
839 		}
840 	}
841 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
842 				map->m_flags & EXT4_MAP_MAPPED))
843 		ext4_fc_track_range(handle, inode, map->m_lblk,
844 					map->m_lblk + map->m_len - 1);
845 	if (retval < 0)
846 		ext_debug(inode, "failed with err %d\n", retval);
847 	return retval;
848 }
849 
850 /*
851  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
852  * we have to be careful as someone else may be manipulating b_state as well.
853  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)854 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
855 {
856 	unsigned long old_state;
857 	unsigned long new_state;
858 
859 	flags &= EXT4_MAP_FLAGS;
860 
861 	/* Dummy buffer_head? Set non-atomically. */
862 	if (!bh->b_folio) {
863 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
864 		return;
865 	}
866 	/*
867 	 * Someone else may be modifying b_state. Be careful! This is ugly but
868 	 * once we get rid of using bh as a container for mapping information
869 	 * to pass to / from get_block functions, this can go away.
870 	 */
871 	old_state = READ_ONCE(bh->b_state);
872 	do {
873 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
874 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
875 }
876 
877 /*
878  * Make sure that the current journal transaction has enough credits to map
879  * one extent. Return -EAGAIN if it cannot extend the current running
880  * transaction.
881  */
ext4_journal_ensure_extent_credits(handle_t * handle,struct inode * inode)882 static inline int ext4_journal_ensure_extent_credits(handle_t *handle,
883 						     struct inode *inode)
884 {
885 	int credits;
886 	int ret;
887 
888 	/* Called from ext4_da_write_begin() which has no handle started? */
889 	if (!handle)
890 		return 0;
891 
892 	credits = ext4_chunk_trans_blocks(inode, 1);
893 	ret = __ext4_journal_ensure_credits(handle, credits, credits, 0);
894 	return ret <= 0 ? ret : -EAGAIN;
895 }
896 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)897 static int _ext4_get_block(struct inode *inode, sector_t iblock,
898 			   struct buffer_head *bh, int flags)
899 {
900 	struct ext4_map_blocks map;
901 	int ret = 0;
902 
903 	if (ext4_has_inline_data(inode))
904 		return -ERANGE;
905 
906 	map.m_lblk = iblock;
907 	map.m_len = bh->b_size >> inode->i_blkbits;
908 
909 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
910 			      flags);
911 	if (ret > 0) {
912 		map_bh(bh, inode->i_sb, map.m_pblk);
913 		ext4_update_bh_state(bh, map.m_flags);
914 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
915 		ret = 0;
916 	} else if (ret == 0) {
917 		/* hole case, need to fill in bh->b_size */
918 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
919 	}
920 	return ret;
921 }
922 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)923 int ext4_get_block(struct inode *inode, sector_t iblock,
924 		   struct buffer_head *bh, int create)
925 {
926 	return _ext4_get_block(inode, iblock, bh,
927 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
928 }
929 
930 /*
931  * Get block function used when preparing for buffered write if we require
932  * creating an unwritten extent if blocks haven't been allocated.  The extent
933  * will be converted to written after the IO is complete.
934  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)935 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
936 			     struct buffer_head *bh_result, int create)
937 {
938 	int ret = 0;
939 
940 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
941 		   inode->i_ino, create);
942 	ret = _ext4_get_block(inode, iblock, bh_result,
943 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
944 
945 	/*
946 	 * If the buffer is marked unwritten, mark it as new to make sure it is
947 	 * zeroed out correctly in case of partial writes. Otherwise, there is
948 	 * a chance of stale data getting exposed.
949 	 */
950 	if (ret == 0 && buffer_unwritten(bh_result))
951 		set_buffer_new(bh_result);
952 
953 	return ret;
954 }
955 
956 /* Maximum number of blocks we map for direct IO at once. */
957 #define DIO_MAX_BLOCKS 4096
958 
959 /*
960  * `handle' can be NULL if create is zero
961  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 				ext4_lblk_t block, int map_flags)
964 {
965 	struct ext4_map_blocks map;
966 	struct buffer_head *bh;
967 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
969 	int err;
970 
971 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
972 		    || handle != NULL || create == 0);
973 	ASSERT(create == 0 || !nowait);
974 
975 	map.m_lblk = block;
976 	map.m_len = 1;
977 	err = ext4_map_blocks(handle, inode, &map, map_flags);
978 
979 	if (err == 0)
980 		return create ? ERR_PTR(-ENOSPC) : NULL;
981 	if (err < 0)
982 		return ERR_PTR(err);
983 
984 	if (nowait)
985 		return sb_find_get_block(inode->i_sb, map.m_pblk);
986 
987 	/*
988 	 * Since bh could introduce extra ref count such as referred by
989 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
990 	 * as it may fail the migration when journal_head remains.
991 	 */
992 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
993 				inode->i_sb->s_blocksize);
994 
995 	if (unlikely(!bh))
996 		return ERR_PTR(-ENOMEM);
997 	if (map.m_flags & EXT4_MAP_NEW) {
998 		ASSERT(create != 0);
999 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1000 			    || (handle != NULL));
1001 
1002 		/*
1003 		 * Now that we do not always journal data, we should
1004 		 * keep in mind whether this should always journal the
1005 		 * new buffer as metadata.  For now, regular file
1006 		 * writes use ext4_get_block instead, so it's not a
1007 		 * problem.
1008 		 */
1009 		lock_buffer(bh);
1010 		BUFFER_TRACE(bh, "call get_create_access");
1011 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
1012 						     EXT4_JTR_NONE);
1013 		if (unlikely(err)) {
1014 			unlock_buffer(bh);
1015 			goto errout;
1016 		}
1017 		if (!buffer_uptodate(bh)) {
1018 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1019 			set_buffer_uptodate(bh);
1020 		}
1021 		unlock_buffer(bh);
1022 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1023 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1024 		if (unlikely(err))
1025 			goto errout;
1026 	} else
1027 		BUFFER_TRACE(bh, "not a new buffer");
1028 	return bh;
1029 errout:
1030 	brelse(bh);
1031 	return ERR_PTR(err);
1032 }
1033 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)1034 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1035 			       ext4_lblk_t block, int map_flags)
1036 {
1037 	struct buffer_head *bh;
1038 	int ret;
1039 
1040 	bh = ext4_getblk(handle, inode, block, map_flags);
1041 	if (IS_ERR(bh))
1042 		return bh;
1043 	if (!bh || ext4_buffer_uptodate(bh))
1044 		return bh;
1045 
1046 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
1047 	if (ret) {
1048 		put_bh(bh);
1049 		return ERR_PTR(ret);
1050 	}
1051 	return bh;
1052 }
1053 
1054 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)1055 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1056 		     bool wait, struct buffer_head **bhs)
1057 {
1058 	int i, err;
1059 
1060 	for (i = 0; i < bh_count; i++) {
1061 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1062 		if (IS_ERR(bhs[i])) {
1063 			err = PTR_ERR(bhs[i]);
1064 			bh_count = i;
1065 			goto out_brelse;
1066 		}
1067 	}
1068 
1069 	for (i = 0; i < bh_count; i++)
1070 		/* Note that NULL bhs[i] is valid because of holes. */
1071 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1072 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
1073 
1074 	if (!wait)
1075 		return 0;
1076 
1077 	for (i = 0; i < bh_count; i++)
1078 		if (bhs[i])
1079 			wait_on_buffer(bhs[i]);
1080 
1081 	for (i = 0; i < bh_count; i++) {
1082 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1083 			err = -EIO;
1084 			goto out_brelse;
1085 		}
1086 	}
1087 	return 0;
1088 
1089 out_brelse:
1090 	for (i = 0; i < bh_count; i++) {
1091 		brelse(bhs[i]);
1092 		bhs[i] = NULL;
1093 	}
1094 	return err;
1095 }
1096 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))1097 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
1098 			   struct buffer_head *head,
1099 			   unsigned from,
1100 			   unsigned to,
1101 			   int *partial,
1102 			   int (*fn)(handle_t *handle, struct inode *inode,
1103 				     struct buffer_head *bh))
1104 {
1105 	struct buffer_head *bh;
1106 	unsigned block_start, block_end;
1107 	unsigned blocksize = head->b_size;
1108 	int err, ret = 0;
1109 	struct buffer_head *next;
1110 
1111 	for (bh = head, block_start = 0;
1112 	     ret == 0 && (bh != head || !block_start);
1113 	     block_start = block_end, bh = next) {
1114 		next = bh->b_this_page;
1115 		block_end = block_start + blocksize;
1116 		if (block_end <= from || block_start >= to) {
1117 			if (partial && !buffer_uptodate(bh))
1118 				*partial = 1;
1119 			continue;
1120 		}
1121 		err = (*fn)(handle, inode, bh);
1122 		if (!ret)
1123 			ret = err;
1124 	}
1125 	return ret;
1126 }
1127 
1128 /*
1129  * Helper for handling dirtying of journalled data. We also mark the folio as
1130  * dirty so that writeback code knows about this page (and inode) contains
1131  * dirty data. ext4_writepages() then commits appropriate transaction to
1132  * make data stable.
1133  */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1134 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1135 {
1136 	struct folio *folio = bh->b_folio;
1137 	struct inode *inode = folio->mapping->host;
1138 
1139 	/* only regular files have a_ops */
1140 	if (S_ISREG(inode->i_mode))
1141 		folio_mark_dirty(folio);
1142 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1143 }
1144 
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1145 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1146 				struct buffer_head *bh)
1147 {
1148 	if (!buffer_mapped(bh) || buffer_freed(bh))
1149 		return 0;
1150 	BUFFER_TRACE(bh, "get write access");
1151 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1152 					    EXT4_JTR_NONE);
1153 }
1154 
ext4_block_write_begin(handle_t * handle,struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1155 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1156 			   loff_t pos, unsigned len,
1157 			   get_block_t *get_block)
1158 {
1159 	unsigned int from = offset_in_folio(folio, pos);
1160 	unsigned to = from + len;
1161 	struct inode *inode = folio->mapping->host;
1162 	unsigned block_start, block_end;
1163 	sector_t block;
1164 	int err = 0;
1165 	unsigned blocksize = inode->i_sb->s_blocksize;
1166 	unsigned bbits;
1167 	struct buffer_head *bh, *head, *wait[2];
1168 	int nr_wait = 0;
1169 	int i;
1170 	bool should_journal_data = ext4_should_journal_data(inode);
1171 
1172 	BUG_ON(!folio_test_locked(folio));
1173 	BUG_ON(to > folio_size(folio));
1174 	BUG_ON(from > to);
1175 
1176 	head = folio_buffers(folio);
1177 	if (!head)
1178 		head = create_empty_buffers(folio, blocksize, 0);
1179 	bbits = ilog2(blocksize);
1180 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1181 
1182 	for (bh = head, block_start = 0; bh != head || !block_start;
1183 	    block++, block_start = block_end, bh = bh->b_this_page) {
1184 		block_end = block_start + blocksize;
1185 		if (block_end <= from || block_start >= to) {
1186 			if (folio_test_uptodate(folio)) {
1187 				set_buffer_uptodate(bh);
1188 			}
1189 			continue;
1190 		}
1191 		if (WARN_ON_ONCE(buffer_new(bh)))
1192 			clear_buffer_new(bh);
1193 		if (!buffer_mapped(bh)) {
1194 			WARN_ON(bh->b_size != blocksize);
1195 			err = ext4_journal_ensure_extent_credits(handle, inode);
1196 			if (!err)
1197 				err = get_block(inode, block, bh, 1);
1198 			if (err)
1199 				break;
1200 			if (buffer_new(bh)) {
1201 				/*
1202 				 * We may be zeroing partial buffers or all new
1203 				 * buffers in case of failure. Prepare JBD2 for
1204 				 * that.
1205 				 */
1206 				if (should_journal_data)
1207 					do_journal_get_write_access(handle,
1208 								    inode, bh);
1209 				if (folio_test_uptodate(folio)) {
1210 					/*
1211 					 * Unlike __block_write_begin() we leave
1212 					 * dirtying of new uptodate buffers to
1213 					 * ->write_end() time or
1214 					 * folio_zero_new_buffers().
1215 					 */
1216 					set_buffer_uptodate(bh);
1217 					continue;
1218 				}
1219 				if (block_end > to || block_start < from)
1220 					folio_zero_segments(folio, to,
1221 							    block_end,
1222 							    block_start, from);
1223 				continue;
1224 			}
1225 		}
1226 		if (folio_test_uptodate(folio)) {
1227 			set_buffer_uptodate(bh);
1228 			continue;
1229 		}
1230 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1231 		    !buffer_unwritten(bh) &&
1232 		    (block_start < from || block_end > to)) {
1233 			ext4_read_bh_lock(bh, 0, false);
1234 			wait[nr_wait++] = bh;
1235 		}
1236 	}
1237 	/*
1238 	 * If we issued read requests, let them complete.
1239 	 */
1240 	for (i = 0; i < nr_wait; i++) {
1241 		wait_on_buffer(wait[i]);
1242 		if (!buffer_uptodate(wait[i]))
1243 			err = -EIO;
1244 	}
1245 	if (unlikely(err)) {
1246 		if (should_journal_data)
1247 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1248 							 from, to);
1249 		else
1250 			folio_zero_new_buffers(folio, from, to);
1251 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1252 		for (i = 0; i < nr_wait; i++) {
1253 			int err2;
1254 
1255 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1256 						blocksize, bh_offset(wait[i]));
1257 			if (err2) {
1258 				clear_buffer_uptodate(wait[i]);
1259 				err = err2;
1260 			}
1261 		}
1262 	}
1263 
1264 	return err;
1265 }
1266 
1267 /*
1268  * To preserve ordering, it is essential that the hole instantiation and
1269  * the data write be encapsulated in a single transaction.  We cannot
1270  * close off a transaction and start a new one between the ext4_get_block()
1271  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1272  * ext4_write_begin() is the right place.
1273  */
ext4_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)1274 static int ext4_write_begin(const struct kiocb *iocb,
1275 			    struct address_space *mapping,
1276 			    loff_t pos, unsigned len,
1277 			    struct folio **foliop, void **fsdata)
1278 {
1279 	struct inode *inode = mapping->host;
1280 	int ret, needed_blocks;
1281 	handle_t *handle;
1282 	int retries = 0;
1283 	struct folio *folio;
1284 	pgoff_t index;
1285 	unsigned from, to;
1286 
1287 	ret = ext4_emergency_state(inode->i_sb);
1288 	if (unlikely(ret))
1289 		return ret;
1290 
1291 	trace_ext4_write_begin(inode, pos, len);
1292 	/*
1293 	 * Reserve one block more for addition to orphan list in case
1294 	 * we allocate blocks but write fails for some reason
1295 	 */
1296 	needed_blocks = ext4_chunk_trans_extent(inode,
1297 			ext4_journal_blocks_per_folio(inode)) + 1;
1298 	index = pos >> PAGE_SHIFT;
1299 
1300 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1301 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1302 						    foliop);
1303 		if (ret < 0)
1304 			return ret;
1305 		if (ret == 1)
1306 			return 0;
1307 	}
1308 
1309 	/*
1310 	 * write_begin_get_folio() can take a long time if the
1311 	 * system is thrashing due to memory pressure, or if the folio
1312 	 * is being written back.  So grab it first before we start
1313 	 * the transaction handle.  This also allows us to allocate
1314 	 * the folio (if needed) without using GFP_NOFS.
1315 	 */
1316 retry_grab:
1317 	folio = write_begin_get_folio(iocb, mapping, index, len);
1318 	if (IS_ERR(folio))
1319 		return PTR_ERR(folio);
1320 
1321 	if (len > folio_next_pos(folio) - pos)
1322 		len = folio_next_pos(folio) - pos;
1323 
1324 	from = offset_in_folio(folio, pos);
1325 	to = from + len;
1326 
1327 	/*
1328 	 * The same as page allocation, we prealloc buffer heads before
1329 	 * starting the handle.
1330 	 */
1331 	if (!folio_buffers(folio))
1332 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1333 
1334 	folio_unlock(folio);
1335 
1336 retry_journal:
1337 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1338 	if (IS_ERR(handle)) {
1339 		folio_put(folio);
1340 		return PTR_ERR(handle);
1341 	}
1342 
1343 	folio_lock(folio);
1344 	if (folio->mapping != mapping) {
1345 		/* The folio got truncated from under us */
1346 		folio_unlock(folio);
1347 		folio_put(folio);
1348 		ext4_journal_stop(handle);
1349 		goto retry_grab;
1350 	}
1351 	/* In case writeback began while the folio was unlocked */
1352 	folio_wait_stable(folio);
1353 
1354 	if (ext4_should_dioread_nolock(inode))
1355 		ret = ext4_block_write_begin(handle, folio, pos, len,
1356 					     ext4_get_block_unwritten);
1357 	else
1358 		ret = ext4_block_write_begin(handle, folio, pos, len,
1359 					     ext4_get_block);
1360 	if (!ret && ext4_should_journal_data(inode)) {
1361 		ret = ext4_walk_page_buffers(handle, inode,
1362 					     folio_buffers(folio), from, to,
1363 					     NULL, do_journal_get_write_access);
1364 	}
1365 
1366 	if (ret) {
1367 		bool extended = (pos + len > inode->i_size) &&
1368 				!ext4_verity_in_progress(inode);
1369 
1370 		folio_unlock(folio);
1371 		/*
1372 		 * ext4_block_write_begin may have instantiated a few blocks
1373 		 * outside i_size.  Trim these off again. Don't need
1374 		 * i_size_read because we hold i_rwsem.
1375 		 *
1376 		 * Add inode to orphan list in case we crash before
1377 		 * truncate finishes
1378 		 */
1379 		if (extended && ext4_can_truncate(inode))
1380 			ext4_orphan_add(handle, inode);
1381 
1382 		ext4_journal_stop(handle);
1383 		if (extended) {
1384 			ext4_truncate_failed_write(inode);
1385 			/*
1386 			 * If truncate failed early the inode might
1387 			 * still be on the orphan list; we need to
1388 			 * make sure the inode is removed from the
1389 			 * orphan list in that case.
1390 			 */
1391 			if (inode->i_nlink)
1392 				ext4_orphan_del(NULL, inode);
1393 		}
1394 
1395 		if (ret == -EAGAIN ||
1396 		    (ret == -ENOSPC &&
1397 		     ext4_should_retry_alloc(inode->i_sb, &retries)))
1398 			goto retry_journal;
1399 		folio_put(folio);
1400 		return ret;
1401 	}
1402 	*foliop = folio;
1403 	return ret;
1404 }
1405 
1406 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1407 static int write_end_fn(handle_t *handle, struct inode *inode,
1408 			struct buffer_head *bh)
1409 {
1410 	int ret;
1411 	if (!buffer_mapped(bh) || buffer_freed(bh))
1412 		return 0;
1413 	set_buffer_uptodate(bh);
1414 	ret = ext4_dirty_journalled_data(handle, bh);
1415 	clear_buffer_meta(bh);
1416 	clear_buffer_prio(bh);
1417 	clear_buffer_new(bh);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * We need to pick up the new inode size which generic_commit_write gave us
1423  * `iocb` can be NULL - eg, when called from page_symlink().
1424  *
1425  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1426  * buffers are managed internally.
1427  */
ext4_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1428 static int ext4_write_end(const struct kiocb *iocb,
1429 			  struct address_space *mapping,
1430 			  loff_t pos, unsigned len, unsigned copied,
1431 			  struct folio *folio, void *fsdata)
1432 {
1433 	handle_t *handle = ext4_journal_current_handle();
1434 	struct inode *inode = mapping->host;
1435 	loff_t old_size = inode->i_size;
1436 	int ret = 0, ret2;
1437 	int i_size_changed = 0;
1438 	bool verity = ext4_verity_in_progress(inode);
1439 
1440 	trace_ext4_write_end(inode, pos, len, copied);
1441 
1442 	if (ext4_has_inline_data(inode) &&
1443 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1444 		return ext4_write_inline_data_end(inode, pos, len, copied,
1445 						  folio);
1446 
1447 	copied = block_write_end(pos, len, copied, folio);
1448 	/*
1449 	 * it's important to update i_size while still holding folio lock:
1450 	 * page writeout could otherwise come in and zero beyond i_size.
1451 	 *
1452 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1453 	 * blocks are being written past EOF, so skip the i_size update.
1454 	 */
1455 	if (!verity)
1456 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1457 	folio_unlock(folio);
1458 	folio_put(folio);
1459 
1460 	if (old_size < pos && !verity) {
1461 		pagecache_isize_extended(inode, old_size, pos);
1462 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1463 	}
1464 	/*
1465 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1466 	 * makes the holding time of folio lock longer. Second, it forces lock
1467 	 * ordering of folio lock and transaction start for journaling
1468 	 * filesystems.
1469 	 */
1470 	if (i_size_changed)
1471 		ret = ext4_mark_inode_dirty(handle, inode);
1472 
1473 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1474 		/* if we have allocated more blocks and copied
1475 		 * less. We will have blocks allocated outside
1476 		 * inode->i_size. So truncate them
1477 		 */
1478 		ext4_orphan_add(handle, inode);
1479 
1480 	ret2 = ext4_journal_stop(handle);
1481 	if (!ret)
1482 		ret = ret2;
1483 
1484 	if (pos + len > inode->i_size && !verity) {
1485 		ext4_truncate_failed_write(inode);
1486 		/*
1487 		 * If truncate failed early the inode might still be
1488 		 * on the orphan list; we need to make sure the inode
1489 		 * is removed from the orphan list in that case.
1490 		 */
1491 		if (inode->i_nlink)
1492 			ext4_orphan_del(NULL, inode);
1493 	}
1494 
1495 	return ret ? ret : copied;
1496 }
1497 
1498 /*
1499  * This is a private version of folio_zero_new_buffers() which doesn't
1500  * set the buffer to be dirty, since in data=journalled mode we need
1501  * to call ext4_dirty_journalled_data() instead.
1502  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1503 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1504 					    struct inode *inode,
1505 					    struct folio *folio,
1506 					    unsigned from, unsigned to)
1507 {
1508 	unsigned int block_start = 0, block_end;
1509 	struct buffer_head *head, *bh;
1510 
1511 	bh = head = folio_buffers(folio);
1512 	do {
1513 		block_end = block_start + bh->b_size;
1514 		if (buffer_new(bh)) {
1515 			if (block_end > from && block_start < to) {
1516 				if (!folio_test_uptodate(folio)) {
1517 					unsigned start, size;
1518 
1519 					start = max(from, block_start);
1520 					size = min(to, block_end) - start;
1521 
1522 					folio_zero_range(folio, start, size);
1523 				}
1524 				clear_buffer_new(bh);
1525 				write_end_fn(handle, inode, bh);
1526 			}
1527 		}
1528 		block_start = block_end;
1529 		bh = bh->b_this_page;
1530 	} while (bh != head);
1531 }
1532 
ext4_journalled_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1533 static int ext4_journalled_write_end(const struct kiocb *iocb,
1534 				     struct address_space *mapping,
1535 				     loff_t pos, unsigned len, unsigned copied,
1536 				     struct folio *folio, void *fsdata)
1537 {
1538 	handle_t *handle = ext4_journal_current_handle();
1539 	struct inode *inode = mapping->host;
1540 	loff_t old_size = inode->i_size;
1541 	int ret = 0, ret2;
1542 	int partial = 0;
1543 	unsigned from, to;
1544 	int size_changed = 0;
1545 	bool verity = ext4_verity_in_progress(inode);
1546 
1547 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1548 	from = pos & (PAGE_SIZE - 1);
1549 	to = from + len;
1550 
1551 	BUG_ON(!ext4_handle_valid(handle));
1552 
1553 	if (ext4_has_inline_data(inode))
1554 		return ext4_write_inline_data_end(inode, pos, len, copied,
1555 						  folio);
1556 
1557 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1558 		copied = 0;
1559 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1560 						 from, to);
1561 	} else {
1562 		if (unlikely(copied < len))
1563 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1564 							 from + copied, to);
1565 		ret = ext4_walk_page_buffers(handle, inode,
1566 					     folio_buffers(folio),
1567 					     from, from + copied, &partial,
1568 					     write_end_fn);
1569 		if (!partial)
1570 			folio_mark_uptodate(folio);
1571 	}
1572 	if (!verity)
1573 		size_changed = ext4_update_inode_size(inode, pos + copied);
1574 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1575 	folio_unlock(folio);
1576 	folio_put(folio);
1577 
1578 	if (old_size < pos && !verity) {
1579 		pagecache_isize_extended(inode, old_size, pos);
1580 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1581 	}
1582 
1583 	if (size_changed) {
1584 		ret2 = ext4_mark_inode_dirty(handle, inode);
1585 		if (!ret)
1586 			ret = ret2;
1587 	}
1588 
1589 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1590 		/* if we have allocated more blocks and copied
1591 		 * less. We will have blocks allocated outside
1592 		 * inode->i_size. So truncate them
1593 		 */
1594 		ext4_orphan_add(handle, inode);
1595 
1596 	ret2 = ext4_journal_stop(handle);
1597 	if (!ret)
1598 		ret = ret2;
1599 	if (pos + len > inode->i_size && !verity) {
1600 		ext4_truncate_failed_write(inode);
1601 		/*
1602 		 * If truncate failed early the inode might still be
1603 		 * on the orphan list; we need to make sure the inode
1604 		 * is removed from the orphan list in that case.
1605 		 */
1606 		if (inode->i_nlink)
1607 			ext4_orphan_del(NULL, inode);
1608 	}
1609 
1610 	return ret ? ret : copied;
1611 }
1612 
1613 /*
1614  * Reserve space for 'nr_resv' clusters
1615  */
ext4_da_reserve_space(struct inode * inode,int nr_resv)1616 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1617 {
1618 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1619 	struct ext4_inode_info *ei = EXT4_I(inode);
1620 	int ret;
1621 
1622 	/*
1623 	 * We will charge metadata quota at writeout time; this saves
1624 	 * us from metadata over-estimation, though we may go over by
1625 	 * a small amount in the end.  Here we just reserve for data.
1626 	 */
1627 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1628 	if (ret)
1629 		return ret;
1630 
1631 	spin_lock(&ei->i_block_reservation_lock);
1632 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1633 		spin_unlock(&ei->i_block_reservation_lock);
1634 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1635 		return -ENOSPC;
1636 	}
1637 	ei->i_reserved_data_blocks += nr_resv;
1638 	trace_ext4_da_reserve_space(inode, nr_resv);
1639 	spin_unlock(&ei->i_block_reservation_lock);
1640 
1641 	return 0;       /* success */
1642 }
1643 
ext4_da_release_space(struct inode * inode,int to_free)1644 void ext4_da_release_space(struct inode *inode, int to_free)
1645 {
1646 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1647 	struct ext4_inode_info *ei = EXT4_I(inode);
1648 
1649 	if (!to_free)
1650 		return;		/* Nothing to release, exit */
1651 
1652 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1653 
1654 	trace_ext4_da_release_space(inode, to_free);
1655 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1656 		/*
1657 		 * if there aren't enough reserved blocks, then the
1658 		 * counter is messed up somewhere.  Since this
1659 		 * function is called from invalidate page, it's
1660 		 * harmless to return without any action.
1661 		 */
1662 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1663 			 "ino %lu, to_free %d with only %d reserved "
1664 			 "data blocks", inode->i_ino, to_free,
1665 			 ei->i_reserved_data_blocks);
1666 		WARN_ON(1);
1667 		to_free = ei->i_reserved_data_blocks;
1668 	}
1669 	ei->i_reserved_data_blocks -= to_free;
1670 
1671 	/* update fs dirty data blocks counter */
1672 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1673 
1674 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1675 
1676 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1677 }
1678 
1679 /*
1680  * Delayed allocation stuff
1681  */
1682 
1683 struct mpage_da_data {
1684 	/* These are input fields for ext4_do_writepages() */
1685 	struct inode *inode;
1686 	struct writeback_control *wbc;
1687 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1688 
1689 	/* These are internal state of ext4_do_writepages() */
1690 	loff_t start_pos;	/* The start pos to write */
1691 	loff_t next_pos;	/* Current pos to examine */
1692 	loff_t end_pos;		/* Last pos to examine */
1693 
1694 	/*
1695 	 * Extent to map - this can be after start_pos because that can be
1696 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1697 	 * is delalloc or unwritten.
1698 	 */
1699 	struct ext4_map_blocks map;
1700 	struct ext4_io_submit io_submit;	/* IO submission data */
1701 	unsigned int do_map:1;
1702 	unsigned int scanned_until_end:1;
1703 	unsigned int journalled_more_data:1;
1704 };
1705 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1706 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1707 				       bool invalidate)
1708 {
1709 	unsigned nr, i;
1710 	pgoff_t index, end;
1711 	struct folio_batch fbatch;
1712 	struct inode *inode = mpd->inode;
1713 	struct address_space *mapping = inode->i_mapping;
1714 
1715 	/* This is necessary when next_pos == 0. */
1716 	if (mpd->start_pos >= mpd->next_pos)
1717 		return;
1718 
1719 	mpd->scanned_until_end = 0;
1720 	if (invalidate) {
1721 		ext4_lblk_t start, last;
1722 		start = EXT4_B_TO_LBLK(inode, mpd->start_pos);
1723 		last = mpd->next_pos >> inode->i_blkbits;
1724 
1725 		/*
1726 		 * avoid racing with extent status tree scans made by
1727 		 * ext4_insert_delayed_block()
1728 		 */
1729 		down_write(&EXT4_I(inode)->i_data_sem);
1730 		ext4_es_remove_extent(inode, start, last - start);
1731 		up_write(&EXT4_I(inode)->i_data_sem);
1732 	}
1733 
1734 	folio_batch_init(&fbatch);
1735 	index = mpd->start_pos >> PAGE_SHIFT;
1736 	end = mpd->next_pos >> PAGE_SHIFT;
1737 	while (index < end) {
1738 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1739 		if (nr == 0)
1740 			break;
1741 		for (i = 0; i < nr; i++) {
1742 			struct folio *folio = fbatch.folios[i];
1743 
1744 			if (folio_pos(folio) < mpd->start_pos)
1745 				continue;
1746 			if (folio_next_index(folio) > end)
1747 				continue;
1748 			BUG_ON(!folio_test_locked(folio));
1749 			BUG_ON(folio_test_writeback(folio));
1750 			if (invalidate) {
1751 				if (folio_mapped(folio))
1752 					folio_clear_dirty_for_io(folio);
1753 				block_invalidate_folio(folio, 0,
1754 						folio_size(folio));
1755 				folio_clear_uptodate(folio);
1756 			}
1757 			folio_unlock(folio);
1758 		}
1759 		folio_batch_release(&fbatch);
1760 	}
1761 }
1762 
ext4_print_free_blocks(struct inode * inode)1763 static void ext4_print_free_blocks(struct inode *inode)
1764 {
1765 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1766 	struct super_block *sb = inode->i_sb;
1767 	struct ext4_inode_info *ei = EXT4_I(inode);
1768 
1769 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1770 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1771 			ext4_count_free_clusters(sb)));
1772 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1773 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1774 	       (long long) EXT4_C2B(EXT4_SB(sb),
1775 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1776 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1777 	       (long long) EXT4_C2B(EXT4_SB(sb),
1778 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1779 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1780 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1781 		 ei->i_reserved_data_blocks);
1782 	return;
1783 }
1784 
1785 /*
1786  * Check whether the cluster containing lblk has been allocated or has
1787  * delalloc reservation.
1788  *
1789  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1790  * reservation, 2 if it's already been allocated, negative error code on
1791  * failure.
1792  */
ext4_clu_alloc_state(struct inode * inode,ext4_lblk_t lblk)1793 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1794 {
1795 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1796 	int ret;
1797 
1798 	/* Has delalloc reservation? */
1799 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1800 		return 1;
1801 
1802 	/* Already been allocated? */
1803 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1804 		return 2;
1805 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1806 	if (ret < 0)
1807 		return ret;
1808 	if (ret > 0)
1809 		return 2;
1810 
1811 	return 0;
1812 }
1813 
1814 /*
1815  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1816  *                              status tree, incrementing the reserved
1817  *                              cluster/block count or making pending
1818  *                              reservations where needed
1819  *
1820  * @inode - file containing the newly added block
1821  * @lblk - start logical block to be added
1822  * @len - length of blocks to be added
1823  *
1824  * Returns 0 on success, negative error code on failure.
1825  */
ext4_insert_delayed_blocks(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1826 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1827 				      ext4_lblk_t len)
1828 {
1829 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1830 	int ret;
1831 	bool lclu_allocated = false;
1832 	bool end_allocated = false;
1833 	ext4_lblk_t resv_clu;
1834 	ext4_lblk_t end = lblk + len - 1;
1835 
1836 	/*
1837 	 * If the cluster containing lblk or end is shared with a delayed,
1838 	 * written, or unwritten extent in a bigalloc file system, it's
1839 	 * already been accounted for and does not need to be reserved.
1840 	 * A pending reservation must be made for the cluster if it's
1841 	 * shared with a written or unwritten extent and doesn't already
1842 	 * have one.  Written and unwritten extents can be purged from the
1843 	 * extents status tree if the system is under memory pressure, so
1844 	 * it's necessary to examine the extent tree if a search of the
1845 	 * extents status tree doesn't get a match.
1846 	 */
1847 	if (sbi->s_cluster_ratio == 1) {
1848 		ret = ext4_da_reserve_space(inode, len);
1849 		if (ret != 0)   /* ENOSPC */
1850 			return ret;
1851 	} else {   /* bigalloc */
1852 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1853 
1854 		ret = ext4_clu_alloc_state(inode, lblk);
1855 		if (ret < 0)
1856 			return ret;
1857 		if (ret > 0) {
1858 			resv_clu--;
1859 			lclu_allocated = (ret == 2);
1860 		}
1861 
1862 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1863 			ret = ext4_clu_alloc_state(inode, end);
1864 			if (ret < 0)
1865 				return ret;
1866 			if (ret > 0) {
1867 				resv_clu--;
1868 				end_allocated = (ret == 2);
1869 			}
1870 		}
1871 
1872 		if (resv_clu) {
1873 			ret = ext4_da_reserve_space(inode, resv_clu);
1874 			if (ret != 0)   /* ENOSPC */
1875 				return ret;
1876 		}
1877 	}
1878 
1879 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1880 				      end_allocated);
1881 	return 0;
1882 }
1883 
1884 /*
1885  * Looks up the requested blocks and sets the delalloc extent map.
1886  * First try to look up for the extent entry that contains the requested
1887  * blocks in the extent status tree without i_data_sem, then try to look
1888  * up for the ondisk extent mapping with i_data_sem in read mode,
1889  * finally hold i_data_sem in write mode, looks up again and add a
1890  * delalloc extent entry if it still couldn't find any extent. Pass out
1891  * the mapped extent through @map and return 0 on success.
1892  */
ext4_da_map_blocks(struct inode * inode,struct ext4_map_blocks * map)1893 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1894 {
1895 	struct extent_status es;
1896 	int retval;
1897 #ifdef ES_AGGRESSIVE_TEST
1898 	struct ext4_map_blocks orig_map;
1899 
1900 	memcpy(&orig_map, map, sizeof(*map));
1901 #endif
1902 
1903 	map->m_flags = 0;
1904 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1905 		  (unsigned long) map->m_lblk);
1906 
1907 	ext4_check_map_extents_env(inode);
1908 
1909 	/* Lookup extent status tree firstly */
1910 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1911 		map->m_len = min_t(unsigned int, map->m_len,
1912 				   es.es_len - (map->m_lblk - es.es_lblk));
1913 
1914 		if (ext4_es_is_hole(&es))
1915 			goto add_delayed;
1916 
1917 found:
1918 		/*
1919 		 * Delayed extent could be allocated by fallocate.
1920 		 * So we need to check it.
1921 		 */
1922 		if (ext4_es_is_delayed(&es)) {
1923 			map->m_flags |= EXT4_MAP_DELAYED;
1924 			return 0;
1925 		}
1926 
1927 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1928 		if (ext4_es_is_written(&es))
1929 			map->m_flags |= EXT4_MAP_MAPPED;
1930 		else if (ext4_es_is_unwritten(&es))
1931 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1932 		else
1933 			BUG();
1934 
1935 #ifdef ES_AGGRESSIVE_TEST
1936 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1937 #endif
1938 		return 0;
1939 	}
1940 
1941 	/*
1942 	 * Try to see if we can get the block without requesting a new
1943 	 * file system block.
1944 	 */
1945 	down_read(&EXT4_I(inode)->i_data_sem);
1946 	if (ext4_has_inline_data(inode))
1947 		retval = 0;
1948 	else
1949 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1950 	up_read(&EXT4_I(inode)->i_data_sem);
1951 	if (retval)
1952 		return retval < 0 ? retval : 0;
1953 
1954 add_delayed:
1955 	down_write(&EXT4_I(inode)->i_data_sem);
1956 	/*
1957 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1958 	 * and fallocate path (no folio lock) can race. Make sure we
1959 	 * lookup the extent status tree here again while i_data_sem
1960 	 * is held in write mode, before inserting a new da entry in
1961 	 * the extent status tree.
1962 	 */
1963 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1964 		map->m_len = min_t(unsigned int, map->m_len,
1965 				   es.es_len - (map->m_lblk - es.es_lblk));
1966 
1967 		if (!ext4_es_is_hole(&es)) {
1968 			up_write(&EXT4_I(inode)->i_data_sem);
1969 			goto found;
1970 		}
1971 	} else if (!ext4_has_inline_data(inode)) {
1972 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1973 		if (retval) {
1974 			up_write(&EXT4_I(inode)->i_data_sem);
1975 			return retval < 0 ? retval : 0;
1976 		}
1977 	}
1978 
1979 	map->m_flags |= EXT4_MAP_DELAYED;
1980 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1981 	up_write(&EXT4_I(inode)->i_data_sem);
1982 
1983 	return retval;
1984 }
1985 
1986 /*
1987  * This is a special get_block_t callback which is used by
1988  * ext4_da_write_begin().  It will either return mapped block or
1989  * reserve space for a single block.
1990  *
1991  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1992  * We also have b_blocknr = -1 and b_bdev initialized properly
1993  *
1994  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1995  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1996  * initialized properly.
1997  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1998 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1999 			   struct buffer_head *bh, int create)
2000 {
2001 	struct ext4_map_blocks map;
2002 	sector_t invalid_block = ~((sector_t) 0xffff);
2003 	int ret = 0;
2004 
2005 	BUG_ON(create == 0);
2006 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2007 
2008 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2009 		invalid_block = ~0;
2010 
2011 	map.m_lblk = iblock;
2012 	map.m_len = 1;
2013 
2014 	/*
2015 	 * first, we need to know whether the block is allocated already
2016 	 * preallocated blocks are unmapped but should treated
2017 	 * the same as allocated blocks.
2018 	 */
2019 	ret = ext4_da_map_blocks(inode, &map);
2020 	if (ret < 0)
2021 		return ret;
2022 
2023 	if (map.m_flags & EXT4_MAP_DELAYED) {
2024 		map_bh(bh, inode->i_sb, invalid_block);
2025 		set_buffer_new(bh);
2026 		set_buffer_delay(bh);
2027 		return 0;
2028 	}
2029 
2030 	map_bh(bh, inode->i_sb, map.m_pblk);
2031 	ext4_update_bh_state(bh, map.m_flags);
2032 
2033 	if (buffer_unwritten(bh)) {
2034 		/* A delayed write to unwritten bh should be marked
2035 		 * new and mapped.  Mapped ensures that we don't do
2036 		 * get_block multiple times when we write to the same
2037 		 * offset and new ensures that we do proper zero out
2038 		 * for partial write.
2039 		 */
2040 		set_buffer_new(bh);
2041 		set_buffer_mapped(bh);
2042 	}
2043 	return 0;
2044 }
2045 
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)2046 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
2047 {
2048 	mpd->start_pos += folio_size(folio);
2049 	mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2050 	folio_unlock(folio);
2051 }
2052 
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)2053 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
2054 {
2055 	size_t len;
2056 	loff_t size;
2057 	int err;
2058 
2059 	WARN_ON_ONCE(folio_pos(folio) != mpd->start_pos);
2060 	folio_clear_dirty_for_io(folio);
2061 	/*
2062 	 * We have to be very careful here!  Nothing protects writeback path
2063 	 * against i_size changes and the page can be writeably mapped into
2064 	 * page tables. So an application can be growing i_size and writing
2065 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
2066 	 * write-protects our page in page tables and the page cannot get
2067 	 * written to again until we release folio lock. So only after
2068 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
2069 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
2070 	 * on the barrier provided by folio_test_clear_dirty() in
2071 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
2072 	 * after page tables are updated.
2073 	 */
2074 	size = i_size_read(mpd->inode);
2075 	len = folio_size(folio);
2076 	if (folio_pos(folio) + len > size &&
2077 	    !ext4_verity_in_progress(mpd->inode))
2078 		len = size & (len - 1);
2079 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
2080 
2081 	return err;
2082 }
2083 
2084 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2085 
2086 /*
2087  * mballoc gives us at most this number of blocks...
2088  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2089  * The rest of mballoc seems to handle chunks up to full group size.
2090  */
2091 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2092 
2093 /*
2094  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2095  *
2096  * @mpd - extent of blocks
2097  * @lblk - logical number of the block in the file
2098  * @bh - buffer head we want to add to the extent
2099  *
2100  * The function is used to collect contig. blocks in the same state. If the
2101  * buffer doesn't require mapping for writeback and we haven't started the
2102  * extent of buffers to map yet, the function returns 'true' immediately - the
2103  * caller can write the buffer right away. Otherwise the function returns true
2104  * if the block has been added to the extent, false if the block couldn't be
2105  * added.
2106  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2107 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2108 				   struct buffer_head *bh)
2109 {
2110 	struct ext4_map_blocks *map = &mpd->map;
2111 
2112 	/* Buffer that doesn't need mapping for writeback? */
2113 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2114 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2115 		/* So far no extent to map => we write the buffer right away */
2116 		if (map->m_len == 0)
2117 			return true;
2118 		return false;
2119 	}
2120 
2121 	/* First block in the extent? */
2122 	if (map->m_len == 0) {
2123 		/* We cannot map unless handle is started... */
2124 		if (!mpd->do_map)
2125 			return false;
2126 		map->m_lblk = lblk;
2127 		map->m_len = 1;
2128 		map->m_flags = bh->b_state & BH_FLAGS;
2129 		return true;
2130 	}
2131 
2132 	/* Don't go larger than mballoc is willing to allocate */
2133 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2134 		return false;
2135 
2136 	/* Can we merge the block to our big extent? */
2137 	if (lblk == map->m_lblk + map->m_len &&
2138 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2139 		map->m_len++;
2140 		return true;
2141 	}
2142 	return false;
2143 }
2144 
2145 /*
2146  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2147  *
2148  * @mpd - extent of blocks for mapping
2149  * @head - the first buffer in the page
2150  * @bh - buffer we should start processing from
2151  * @lblk - logical number of the block in the file corresponding to @bh
2152  *
2153  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2154  * the page for IO if all buffers in this page were mapped and there's no
2155  * accumulated extent of buffers to map or add buffers in the page to the
2156  * extent of buffers to map. The function returns 1 if the caller can continue
2157  * by processing the next page, 0 if it should stop adding buffers to the
2158  * extent to map because we cannot extend it anymore. It can also return value
2159  * < 0 in case of error during IO submission.
2160  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2161 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2162 				   struct buffer_head *head,
2163 				   struct buffer_head *bh,
2164 				   ext4_lblk_t lblk)
2165 {
2166 	struct inode *inode = mpd->inode;
2167 	int err;
2168 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2169 							>> inode->i_blkbits;
2170 
2171 	if (ext4_verity_in_progress(inode))
2172 		blocks = EXT_MAX_BLOCKS;
2173 
2174 	do {
2175 		BUG_ON(buffer_locked(bh));
2176 
2177 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178 			/* Found extent to map? */
2179 			if (mpd->map.m_len)
2180 				return 0;
2181 			/* Buffer needs mapping and handle is not started? */
2182 			if (!mpd->do_map)
2183 				return 0;
2184 			/* Everything mapped so far and we hit EOF */
2185 			break;
2186 		}
2187 	} while (lblk++, (bh = bh->b_this_page) != head);
2188 	/* So far everything mapped? Submit the page for IO. */
2189 	if (mpd->map.m_len == 0) {
2190 		err = mpage_submit_folio(mpd, head->b_folio);
2191 		if (err < 0)
2192 			return err;
2193 		mpage_folio_done(mpd, head->b_folio);
2194 	}
2195 	if (lblk >= blocks) {
2196 		mpd->scanned_until_end = 1;
2197 		return 0;
2198 	}
2199 	return 1;
2200 }
2201 
2202 /*
2203  * mpage_process_folio - update folio buffers corresponding to changed extent
2204  *			 and may submit fully mapped page for IO
2205  * @mpd: description of extent to map, on return next extent to map
2206  * @folio: Contains these buffers.
2207  * @m_lblk: logical block mapping.
2208  * @m_pblk: corresponding physical mapping.
2209  * @map_bh: determines on return whether this page requires any further
2210  *		  mapping or not.
2211  *
2212  * Scan given folio buffers corresponding to changed extent and update buffer
2213  * state according to new extent state.
2214  * We map delalloc buffers to their physical location, clear unwritten bits.
2215  * If the given folio is not fully mapped, we update @mpd to the next extent in
2216  * the given folio that needs mapping & return @map_bh as true.
2217  */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2218 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2219 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2220 			      bool *map_bh)
2221 {
2222 	struct buffer_head *head, *bh;
2223 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2224 	ext4_lblk_t lblk = *m_lblk;
2225 	ext4_fsblk_t pblock = *m_pblk;
2226 	int err = 0;
2227 	int blkbits = mpd->inode->i_blkbits;
2228 	ssize_t io_end_size = 0;
2229 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2230 
2231 	bh = head = folio_buffers(folio);
2232 	do {
2233 		if (lblk < mpd->map.m_lblk)
2234 			continue;
2235 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2236 			/*
2237 			 * Buffer after end of mapped extent.
2238 			 * Find next buffer in the folio to map.
2239 			 */
2240 			mpd->map.m_len = 0;
2241 			mpd->map.m_flags = 0;
2242 			io_end_vec->size += io_end_size;
2243 
2244 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2245 			if (err > 0)
2246 				err = 0;
2247 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2248 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2249 				if (IS_ERR(io_end_vec)) {
2250 					err = PTR_ERR(io_end_vec);
2251 					goto out;
2252 				}
2253 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2254 			}
2255 			*map_bh = true;
2256 			goto out;
2257 		}
2258 		if (buffer_delay(bh)) {
2259 			clear_buffer_delay(bh);
2260 			bh->b_blocknr = pblock++;
2261 		}
2262 		clear_buffer_unwritten(bh);
2263 		io_end_size += (1 << blkbits);
2264 	} while (lblk++, (bh = bh->b_this_page) != head);
2265 
2266 	io_end_vec->size += io_end_size;
2267 	*map_bh = false;
2268 out:
2269 	*m_lblk = lblk;
2270 	*m_pblk = pblock;
2271 	return err;
2272 }
2273 
2274 /*
2275  * mpage_map_buffers - update buffers corresponding to changed extent and
2276  *		       submit fully mapped pages for IO
2277  *
2278  * @mpd - description of extent to map, on return next extent to map
2279  *
2280  * Scan buffers corresponding to changed extent (we expect corresponding pages
2281  * to be already locked) and update buffer state according to new extent state.
2282  * We map delalloc buffers to their physical location, clear unwritten bits,
2283  * and mark buffers as uninit when we perform writes to unwritten extents
2284  * and do extent conversion after IO is finished. If the last page is not fully
2285  * mapped, we update @map to the next extent in the last page that needs
2286  * mapping. Otherwise we submit the page for IO.
2287  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2288 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2289 {
2290 	struct folio_batch fbatch;
2291 	unsigned nr, i;
2292 	struct inode *inode = mpd->inode;
2293 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2294 	pgoff_t start, end;
2295 	ext4_lblk_t lblk;
2296 	ext4_fsblk_t pblock;
2297 	int err;
2298 	bool map_bh = false;
2299 
2300 	start = mpd->map.m_lblk >> bpp_bits;
2301 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2302 	pblock = mpd->map.m_pblk;
2303 
2304 	folio_batch_init(&fbatch);
2305 	while (start <= end) {
2306 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2307 		if (nr == 0)
2308 			break;
2309 		for (i = 0; i < nr; i++) {
2310 			struct folio *folio = fbatch.folios[i];
2311 
2312 			lblk = folio->index << bpp_bits;
2313 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2314 						 &map_bh);
2315 			/*
2316 			 * If map_bh is true, means page may require further bh
2317 			 * mapping, or maybe the page was submitted for IO.
2318 			 * So we return to call further extent mapping.
2319 			 */
2320 			if (err < 0 || map_bh)
2321 				goto out;
2322 			/* Page fully mapped - let IO run! */
2323 			err = mpage_submit_folio(mpd, folio);
2324 			if (err < 0)
2325 				goto out;
2326 			mpage_folio_done(mpd, folio);
2327 		}
2328 		folio_batch_release(&fbatch);
2329 	}
2330 	/* Extent fully mapped and matches with page boundary. We are done. */
2331 	mpd->map.m_len = 0;
2332 	mpd->map.m_flags = 0;
2333 	return 0;
2334 out:
2335 	folio_batch_release(&fbatch);
2336 	return err;
2337 }
2338 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2339 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2340 {
2341 	struct inode *inode = mpd->inode;
2342 	struct ext4_map_blocks *map = &mpd->map;
2343 	int get_blocks_flags;
2344 	int err, dioread_nolock;
2345 
2346 	/* Make sure transaction has enough credits for this extent */
2347 	err = ext4_journal_ensure_extent_credits(handle, inode);
2348 	if (err < 0)
2349 		return err;
2350 
2351 	trace_ext4_da_write_pages_extent(inode, map);
2352 	/*
2353 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2354 	 * to convert an unwritten extent to be initialized (in the case
2355 	 * where we have written into one or more preallocated blocks).  It is
2356 	 * possible that we're going to need more metadata blocks than
2357 	 * previously reserved. However we must not fail because we're in
2358 	 * writeback and there is nothing we can do about it so it might result
2359 	 * in data loss.  So use reserved blocks to allocate metadata if
2360 	 * possible. In addition, do not cache any unrelated extents, as it
2361 	 * only holds the folio lock but does not hold the i_rwsem or
2362 	 * invalidate_lock, which could corrupt the extent status tree.
2363 	 */
2364 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2365 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2366 			   EXT4_GET_BLOCKS_IO_SUBMIT |
2367 			   EXT4_EX_NOCACHE;
2368 
2369 	dioread_nolock = ext4_should_dioread_nolock(inode);
2370 	if (dioread_nolock)
2371 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2372 
2373 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2374 	if (err < 0)
2375 		return err;
2376 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2377 		if (!mpd->io_submit.io_end->handle &&
2378 		    ext4_handle_valid(handle)) {
2379 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2380 			handle->h_rsv_handle = NULL;
2381 		}
2382 		ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2383 	}
2384 
2385 	BUG_ON(map->m_len == 0);
2386 	return 0;
2387 }
2388 
2389 /*
2390  * This is used to submit mapped buffers in a single folio that is not fully
2391  * mapped for various reasons, such as insufficient space or journal credits.
2392  */
mpage_submit_partial_folio(struct mpage_da_data * mpd)2393 static int mpage_submit_partial_folio(struct mpage_da_data *mpd)
2394 {
2395 	struct inode *inode = mpd->inode;
2396 	struct folio *folio;
2397 	loff_t pos;
2398 	int ret;
2399 
2400 	folio = filemap_get_folio(inode->i_mapping,
2401 				  mpd->start_pos >> PAGE_SHIFT);
2402 	if (IS_ERR(folio))
2403 		return PTR_ERR(folio);
2404 	/*
2405 	 * The mapped position should be within the current processing folio
2406 	 * but must not be the folio start position.
2407 	 */
2408 	pos = ((loff_t)mpd->map.m_lblk) << inode->i_blkbits;
2409 	if (WARN_ON_ONCE((folio_pos(folio) == pos) ||
2410 			 !folio_contains(folio, pos >> PAGE_SHIFT)))
2411 		return -EINVAL;
2412 
2413 	ret = mpage_submit_folio(mpd, folio);
2414 	if (ret)
2415 		goto out;
2416 	/*
2417 	 * Update start_pos to prevent this folio from being released in
2418 	 * mpage_release_unused_pages(), it will be reset to the aligned folio
2419 	 * pos when this folio is written again in the next round. Additionally,
2420 	 * do not update wbc->nr_to_write here, as it will be updated once the
2421 	 * entire folio has finished processing.
2422 	 */
2423 	mpd->start_pos = pos;
2424 out:
2425 	folio_unlock(folio);
2426 	folio_put(folio);
2427 	return ret;
2428 }
2429 
2430 /*
2431  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2432  *				 mpd->len and submit pages underlying it for IO
2433  *
2434  * @handle - handle for journal operations
2435  * @mpd - extent to map
2436  * @give_up_on_write - we set this to true iff there is a fatal error and there
2437  *                     is no hope of writing the data. The caller should discard
2438  *                     dirty pages to avoid infinite loops.
2439  *
2440  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2441  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2442  * them to initialized or split the described range from larger unwritten
2443  * extent. Note that we need not map all the described range since allocation
2444  * can return less blocks or the range is covered by more unwritten extents. We
2445  * cannot map more because we are limited by reserved transaction credits. On
2446  * the other hand we always make sure that the last touched page is fully
2447  * mapped so that it can be written out (and thus forward progress is
2448  * guaranteed). After mapping we submit all mapped pages for IO.
2449  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2450 static int mpage_map_and_submit_extent(handle_t *handle,
2451 				       struct mpage_da_data *mpd,
2452 				       bool *give_up_on_write)
2453 {
2454 	struct inode *inode = mpd->inode;
2455 	struct ext4_map_blocks *map = &mpd->map;
2456 	int err;
2457 	loff_t disksize;
2458 	int progress = 0;
2459 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2460 	struct ext4_io_end_vec *io_end_vec;
2461 
2462 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2463 	if (IS_ERR(io_end_vec))
2464 		return PTR_ERR(io_end_vec);
2465 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2466 	do {
2467 		err = mpage_map_one_extent(handle, mpd);
2468 		if (err < 0) {
2469 			struct super_block *sb = inode->i_sb;
2470 
2471 			if (ext4_emergency_state(sb))
2472 				goto invalidate_dirty_pages;
2473 			/*
2474 			 * Let the uper layers retry transient errors.
2475 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2476 			 * is non-zero, a commit should free up blocks.
2477 			 */
2478 			if ((err == -ENOMEM) || (err == -EAGAIN) ||
2479 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2480 				/*
2481 				 * We may have already allocated extents for
2482 				 * some bhs inside the folio, issue the
2483 				 * corresponding data to prevent stale data.
2484 				 */
2485 				if (progress) {
2486 					if (mpage_submit_partial_folio(mpd))
2487 						goto invalidate_dirty_pages;
2488 					goto update_disksize;
2489 				}
2490 				return err;
2491 			}
2492 			ext4_msg(sb, KERN_CRIT,
2493 				 "Delayed block allocation failed for "
2494 				 "inode %lu at logical offset %llu with"
2495 				 " max blocks %u with error %d",
2496 				 inode->i_ino,
2497 				 (unsigned long long)map->m_lblk,
2498 				 (unsigned)map->m_len, -err);
2499 			ext4_msg(sb, KERN_CRIT,
2500 				 "This should not happen!! Data will "
2501 				 "be lost\n");
2502 			if (err == -ENOSPC)
2503 				ext4_print_free_blocks(inode);
2504 		invalidate_dirty_pages:
2505 			*give_up_on_write = true;
2506 			return err;
2507 		}
2508 		progress = 1;
2509 		/*
2510 		 * Update buffer state, submit mapped pages, and get us new
2511 		 * extent to map
2512 		 */
2513 		err = mpage_map_and_submit_buffers(mpd);
2514 		if (err < 0)
2515 			goto update_disksize;
2516 	} while (map->m_len);
2517 
2518 update_disksize:
2519 	/*
2520 	 * Update on-disk size after IO is submitted.  Races with
2521 	 * truncate are avoided by checking i_size under i_data_sem.
2522 	 */
2523 	disksize = mpd->start_pos;
2524 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2525 		int err2;
2526 		loff_t i_size;
2527 
2528 		down_write(&EXT4_I(inode)->i_data_sem);
2529 		i_size = i_size_read(inode);
2530 		if (disksize > i_size)
2531 			disksize = i_size;
2532 		if (disksize > EXT4_I(inode)->i_disksize)
2533 			EXT4_I(inode)->i_disksize = disksize;
2534 		up_write(&EXT4_I(inode)->i_data_sem);
2535 		err2 = ext4_mark_inode_dirty(handle, inode);
2536 		if (err2) {
2537 			ext4_error_err(inode->i_sb, -err2,
2538 				       "Failed to mark inode %lu dirty",
2539 				       inode->i_ino);
2540 		}
2541 		if (!err)
2542 			err = err2;
2543 	}
2544 	return err;
2545 }
2546 
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2547 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2548 				     size_t len)
2549 {
2550 	struct buffer_head *page_bufs = folio_buffers(folio);
2551 	struct inode *inode = folio->mapping->host;
2552 	int ret, err;
2553 
2554 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2555 				     NULL, do_journal_get_write_access);
2556 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2557 				     NULL, write_end_fn);
2558 	if (ret == 0)
2559 		ret = err;
2560 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2561 	if (ret == 0)
2562 		ret = err;
2563 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2564 
2565 	return ret;
2566 }
2567 
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2568 static int mpage_journal_page_buffers(handle_t *handle,
2569 				      struct mpage_da_data *mpd,
2570 				      struct folio *folio)
2571 {
2572 	struct inode *inode = mpd->inode;
2573 	loff_t size = i_size_read(inode);
2574 	size_t len = folio_size(folio);
2575 
2576 	folio_clear_checked(folio);
2577 	mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2578 
2579 	if (folio_pos(folio) + len > size &&
2580 	    !ext4_verity_in_progress(inode))
2581 		len = size & (len - 1);
2582 
2583 	return ext4_journal_folio_buffers(handle, folio, len);
2584 }
2585 
2586 /*
2587  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2588  * 				 needing mapping, submit mapped pages
2589  *
2590  * @mpd - where to look for pages
2591  *
2592  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2593  * IO immediately. If we cannot map blocks, we submit just already mapped
2594  * buffers in the page for IO and keep page dirty. When we can map blocks and
2595  * we find a page which isn't mapped we start accumulating extent of buffers
2596  * underlying these pages that needs mapping (formed by either delayed or
2597  * unwritten buffers). We also lock the pages containing these buffers. The
2598  * extent found is returned in @mpd structure (starting at mpd->lblk with
2599  * length mpd->len blocks).
2600  *
2601  * Note that this function can attach bios to one io_end structure which are
2602  * neither logically nor physically contiguous. Although it may seem as an
2603  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2604  * case as we need to track IO to all buffers underlying a page in one io_end.
2605  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2606 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2607 {
2608 	struct address_space *mapping = mpd->inode->i_mapping;
2609 	struct folio_batch fbatch;
2610 	unsigned int nr_folios;
2611 	pgoff_t index = mpd->start_pos >> PAGE_SHIFT;
2612 	pgoff_t end = mpd->end_pos >> PAGE_SHIFT;
2613 	xa_mark_t tag;
2614 	int i, err = 0;
2615 	int blkbits = mpd->inode->i_blkbits;
2616 	ext4_lblk_t lblk;
2617 	struct buffer_head *head;
2618 	handle_t *handle = NULL;
2619 	int bpp = ext4_journal_blocks_per_folio(mpd->inode);
2620 
2621 	tag = wbc_to_tag(mpd->wbc);
2622 
2623 	mpd->map.m_len = 0;
2624 	mpd->next_pos = mpd->start_pos;
2625 	if (ext4_should_journal_data(mpd->inode)) {
2626 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2627 					    bpp);
2628 		if (IS_ERR(handle))
2629 			return PTR_ERR(handle);
2630 	}
2631 	folio_batch_init(&fbatch);
2632 	while (index <= end) {
2633 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2634 				tag, &fbatch);
2635 		if (nr_folios == 0)
2636 			break;
2637 
2638 		for (i = 0; i < nr_folios; i++) {
2639 			struct folio *folio = fbatch.folios[i];
2640 
2641 			/*
2642 			 * Accumulated enough dirty pages? This doesn't apply
2643 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2644 			 * keep going because someone may be concurrently
2645 			 * dirtying pages, and we might have synced a lot of
2646 			 * newly appeared dirty pages, but have not synced all
2647 			 * of the old dirty pages.
2648 			 */
2649 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2650 			    mpd->wbc->nr_to_write <=
2651 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2652 				goto out;
2653 
2654 			/* If we can't merge this page, we are done. */
2655 			if (mpd->map.m_len > 0 &&
2656 			    mpd->next_pos != folio_pos(folio))
2657 				goto out;
2658 
2659 			if (handle) {
2660 				err = ext4_journal_ensure_credits(handle, bpp,
2661 								  0);
2662 				if (err < 0)
2663 					goto out;
2664 			}
2665 
2666 			folio_lock(folio);
2667 			/*
2668 			 * If the page is no longer dirty, or its mapping no
2669 			 * longer corresponds to inode we are writing (which
2670 			 * means it has been truncated or invalidated), or the
2671 			 * page is already under writeback and we are not doing
2672 			 * a data integrity writeback, skip the page
2673 			 */
2674 			if (!folio_test_dirty(folio) ||
2675 			    (folio_test_writeback(folio) &&
2676 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2677 			    unlikely(folio->mapping != mapping)) {
2678 				folio_unlock(folio);
2679 				continue;
2680 			}
2681 
2682 			folio_wait_writeback(folio);
2683 			BUG_ON(folio_test_writeback(folio));
2684 
2685 			/*
2686 			 * Should never happen but for buggy code in
2687 			 * other subsystems that call
2688 			 * set_page_dirty() without properly warning
2689 			 * the file system first.  See [1] for more
2690 			 * information.
2691 			 *
2692 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2693 			 */
2694 			if (!folio_buffers(folio)) {
2695 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2696 				folio_clear_dirty(folio);
2697 				folio_unlock(folio);
2698 				continue;
2699 			}
2700 
2701 			if (mpd->map.m_len == 0)
2702 				mpd->start_pos = folio_pos(folio);
2703 			mpd->next_pos = folio_next_pos(folio);
2704 			/*
2705 			 * Writeout when we cannot modify metadata is simple.
2706 			 * Just submit the page. For data=journal mode we
2707 			 * first handle writeout of the page for checkpoint and
2708 			 * only after that handle delayed page dirtying. This
2709 			 * makes sure current data is checkpointed to the final
2710 			 * location before possibly journalling it again which
2711 			 * is desirable when the page is frequently dirtied
2712 			 * through a pin.
2713 			 */
2714 			if (!mpd->can_map) {
2715 				err = mpage_submit_folio(mpd, folio);
2716 				if (err < 0)
2717 					goto out;
2718 				/* Pending dirtying of journalled data? */
2719 				if (folio_test_checked(folio)) {
2720 					err = mpage_journal_page_buffers(handle,
2721 						mpd, folio);
2722 					if (err < 0)
2723 						goto out;
2724 					mpd->journalled_more_data = 1;
2725 				}
2726 				mpage_folio_done(mpd, folio);
2727 			} else {
2728 				/* Add all dirty buffers to mpd */
2729 				lblk = ((ext4_lblk_t)folio->index) <<
2730 					(PAGE_SHIFT - blkbits);
2731 				head = folio_buffers(folio);
2732 				err = mpage_process_page_bufs(mpd, head, head,
2733 						lblk);
2734 				if (err <= 0)
2735 					goto out;
2736 				err = 0;
2737 			}
2738 		}
2739 		folio_batch_release(&fbatch);
2740 		cond_resched();
2741 	}
2742 	mpd->scanned_until_end = 1;
2743 	if (handle)
2744 		ext4_journal_stop(handle);
2745 	return 0;
2746 out:
2747 	folio_batch_release(&fbatch);
2748 	if (handle)
2749 		ext4_journal_stop(handle);
2750 	return err;
2751 }
2752 
ext4_do_writepages(struct mpage_da_data * mpd)2753 static int ext4_do_writepages(struct mpage_da_data *mpd)
2754 {
2755 	struct writeback_control *wbc = mpd->wbc;
2756 	pgoff_t	writeback_index = 0;
2757 	long nr_to_write = wbc->nr_to_write;
2758 	int range_whole = 0;
2759 	int cycled = 1;
2760 	handle_t *handle = NULL;
2761 	struct inode *inode = mpd->inode;
2762 	struct address_space *mapping = inode->i_mapping;
2763 	int needed_blocks, rsv_blocks = 0, ret = 0;
2764 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2765 	struct blk_plug plug;
2766 	bool give_up_on_write = false;
2767 
2768 	trace_ext4_writepages(inode, wbc);
2769 
2770 	/*
2771 	 * No pages to write? This is mainly a kludge to avoid starting
2772 	 * a transaction for special inodes like journal inode on last iput()
2773 	 * because that could violate lock ordering on umount
2774 	 */
2775 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2776 		goto out_writepages;
2777 
2778 	/*
2779 	 * If the filesystem has aborted, it is read-only, so return
2780 	 * right away instead of dumping stack traces later on that
2781 	 * will obscure the real source of the problem.  We test
2782 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2783 	 * the latter could be true if the filesystem is mounted
2784 	 * read-only, and in that case, ext4_writepages should
2785 	 * *never* be called, so if that ever happens, we would want
2786 	 * the stack trace.
2787 	 */
2788 	ret = ext4_emergency_state(mapping->host->i_sb);
2789 	if (unlikely(ret))
2790 		goto out_writepages;
2791 
2792 	/*
2793 	 * If we have inline data and arrive here, it means that
2794 	 * we will soon create the block for the 1st page, so
2795 	 * we'd better clear the inline data here.
2796 	 */
2797 	if (ext4_has_inline_data(inode)) {
2798 		/* Just inode will be modified... */
2799 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2800 		if (IS_ERR(handle)) {
2801 			ret = PTR_ERR(handle);
2802 			goto out_writepages;
2803 		}
2804 		BUG_ON(ext4_test_inode_state(inode,
2805 				EXT4_STATE_MAY_INLINE_DATA));
2806 		ext4_destroy_inline_data(handle, inode);
2807 		ext4_journal_stop(handle);
2808 	}
2809 
2810 	/*
2811 	 * data=journal mode does not do delalloc so we just need to writeout /
2812 	 * journal already mapped buffers. On the other hand we need to commit
2813 	 * transaction to make data stable. We expect all the data to be
2814 	 * already in the journal (the only exception are DMA pinned pages
2815 	 * dirtied behind our back) so we commit transaction here and run the
2816 	 * writeback loop to checkpoint them. The checkpointing is not actually
2817 	 * necessary to make data persistent *but* quite a few places (extent
2818 	 * shifting operations, fsverity, ...) depend on being able to drop
2819 	 * pagecache pages after calling filemap_write_and_wait() and for that
2820 	 * checkpointing needs to happen.
2821 	 */
2822 	if (ext4_should_journal_data(inode)) {
2823 		mpd->can_map = 0;
2824 		if (wbc->sync_mode == WB_SYNC_ALL)
2825 			ext4_fc_commit(sbi->s_journal,
2826 				       EXT4_I(inode)->i_datasync_tid);
2827 	}
2828 	mpd->journalled_more_data = 0;
2829 
2830 	if (ext4_should_dioread_nolock(inode)) {
2831 		int bpf = ext4_journal_blocks_per_folio(inode);
2832 		/*
2833 		 * We may need to convert up to one extent per block in
2834 		 * the folio and we may dirty the inode.
2835 		 */
2836 		rsv_blocks = 1 + ext4_ext_index_trans_blocks(inode, bpf);
2837 	}
2838 
2839 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2840 		range_whole = 1;
2841 
2842 	if (wbc->range_cyclic) {
2843 		writeback_index = mapping->writeback_index;
2844 		if (writeback_index)
2845 			cycled = 0;
2846 		mpd->start_pos = writeback_index << PAGE_SHIFT;
2847 		mpd->end_pos = LLONG_MAX;
2848 	} else {
2849 		mpd->start_pos = wbc->range_start;
2850 		mpd->end_pos = wbc->range_end;
2851 	}
2852 
2853 	ext4_io_submit_init(&mpd->io_submit, wbc);
2854 retry:
2855 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2856 		tag_pages_for_writeback(mapping, mpd->start_pos >> PAGE_SHIFT,
2857 					mpd->end_pos >> PAGE_SHIFT);
2858 	blk_start_plug(&plug);
2859 
2860 	/*
2861 	 * First writeback pages that don't need mapping - we can avoid
2862 	 * starting a transaction unnecessarily and also avoid being blocked
2863 	 * in the block layer on device congestion while having transaction
2864 	 * started.
2865 	 */
2866 	mpd->do_map = 0;
2867 	mpd->scanned_until_end = 0;
2868 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2869 	if (!mpd->io_submit.io_end) {
2870 		ret = -ENOMEM;
2871 		goto unplug;
2872 	}
2873 	ret = mpage_prepare_extent_to_map(mpd);
2874 	/* Unlock pages we didn't use */
2875 	mpage_release_unused_pages(mpd, false);
2876 	/* Submit prepared bio */
2877 	ext4_io_submit(&mpd->io_submit);
2878 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2879 	mpd->io_submit.io_end = NULL;
2880 	if (ret < 0)
2881 		goto unplug;
2882 
2883 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2884 		/* For each extent of pages we use new io_end */
2885 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2886 		if (!mpd->io_submit.io_end) {
2887 			ret = -ENOMEM;
2888 			break;
2889 		}
2890 
2891 		WARN_ON_ONCE(!mpd->can_map);
2892 		/*
2893 		 * We have two constraints: We find one extent to map and we
2894 		 * must always write out whole page (makes a difference when
2895 		 * blocksize < pagesize) so that we don't block on IO when we
2896 		 * try to write out the rest of the page. Journalled mode is
2897 		 * not supported by delalloc.
2898 		 */
2899 		BUG_ON(ext4_should_journal_data(inode));
2900 		/*
2901 		 * Calculate the number of credits needed to reserve for one
2902 		 * extent of up to MAX_WRITEPAGES_EXTENT_LEN blocks. It will
2903 		 * attempt to extend the transaction or start a new iteration
2904 		 * if the reserved credits are insufficient.
2905 		 */
2906 		needed_blocks = ext4_chunk_trans_blocks(inode,
2907 						MAX_WRITEPAGES_EXTENT_LEN);
2908 		/* start a new transaction */
2909 		handle = ext4_journal_start_with_reserve(inode,
2910 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2911 		if (IS_ERR(handle)) {
2912 			ret = PTR_ERR(handle);
2913 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2914 			       "%ld pages, ino %lu; err %d", __func__,
2915 				wbc->nr_to_write, inode->i_ino, ret);
2916 			/* Release allocated io_end */
2917 			ext4_put_io_end(mpd->io_submit.io_end);
2918 			mpd->io_submit.io_end = NULL;
2919 			break;
2920 		}
2921 		mpd->do_map = 1;
2922 
2923 		trace_ext4_da_write_folios_start(inode, mpd->start_pos,
2924 				mpd->next_pos, wbc);
2925 		ret = mpage_prepare_extent_to_map(mpd);
2926 		if (!ret && mpd->map.m_len)
2927 			ret = mpage_map_and_submit_extent(handle, mpd,
2928 					&give_up_on_write);
2929 		/*
2930 		 * Caution: If the handle is synchronous,
2931 		 * ext4_journal_stop() can wait for transaction commit
2932 		 * to finish which may depend on writeback of pages to
2933 		 * complete or on page lock to be released.  In that
2934 		 * case, we have to wait until after we have
2935 		 * submitted all the IO, released page locks we hold,
2936 		 * and dropped io_end reference (for extent conversion
2937 		 * to be able to complete) before stopping the handle.
2938 		 */
2939 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2940 			ext4_journal_stop(handle);
2941 			handle = NULL;
2942 			mpd->do_map = 0;
2943 		}
2944 		/* Unlock pages we didn't use */
2945 		mpage_release_unused_pages(mpd, give_up_on_write);
2946 		/* Submit prepared bio */
2947 		ext4_io_submit(&mpd->io_submit);
2948 
2949 		/*
2950 		 * Drop our io_end reference we got from init. We have
2951 		 * to be careful and use deferred io_end finishing if
2952 		 * we are still holding the transaction as we can
2953 		 * release the last reference to io_end which may end
2954 		 * up doing unwritten extent conversion.
2955 		 */
2956 		if (handle) {
2957 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2958 			ext4_journal_stop(handle);
2959 		} else
2960 			ext4_put_io_end(mpd->io_submit.io_end);
2961 		mpd->io_submit.io_end = NULL;
2962 		trace_ext4_da_write_folios_end(inode, mpd->start_pos,
2963 				mpd->next_pos, wbc, ret);
2964 
2965 		if (ret == -ENOSPC && sbi->s_journal) {
2966 			/*
2967 			 * Commit the transaction which would
2968 			 * free blocks released in the transaction
2969 			 * and try again
2970 			 */
2971 			jbd2_journal_force_commit_nested(sbi->s_journal);
2972 			ret = 0;
2973 			continue;
2974 		}
2975 		if (ret == -EAGAIN)
2976 			ret = 0;
2977 		/* Fatal error - ENOMEM, EIO... */
2978 		if (ret)
2979 			break;
2980 	}
2981 unplug:
2982 	blk_finish_plug(&plug);
2983 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2984 		cycled = 1;
2985 		mpd->end_pos = (writeback_index << PAGE_SHIFT) - 1;
2986 		mpd->start_pos = 0;
2987 		goto retry;
2988 	}
2989 
2990 	/* Update index */
2991 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2992 		/*
2993 		 * Set the writeback_index so that range_cyclic
2994 		 * mode will write it back later
2995 		 */
2996 		mapping->writeback_index = mpd->start_pos >> PAGE_SHIFT;
2997 
2998 out_writepages:
2999 	trace_ext4_writepages_result(inode, wbc, ret,
3000 				     nr_to_write - wbc->nr_to_write);
3001 	return ret;
3002 }
3003 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)3004 static int ext4_writepages(struct address_space *mapping,
3005 			   struct writeback_control *wbc)
3006 {
3007 	struct super_block *sb = mapping->host->i_sb;
3008 	struct mpage_da_data mpd = {
3009 		.inode = mapping->host,
3010 		.wbc = wbc,
3011 		.can_map = 1,
3012 	};
3013 	int ret;
3014 	int alloc_ctx;
3015 
3016 	ret = ext4_emergency_state(sb);
3017 	if (unlikely(ret))
3018 		return ret;
3019 
3020 	alloc_ctx = ext4_writepages_down_read(sb);
3021 	ret = ext4_do_writepages(&mpd);
3022 	/*
3023 	 * For data=journal writeback we could have come across pages marked
3024 	 * for delayed dirtying (PageChecked) which were just added to the
3025 	 * running transaction. Try once more to get them to stable storage.
3026 	 */
3027 	if (!ret && mpd.journalled_more_data)
3028 		ret = ext4_do_writepages(&mpd);
3029 	ext4_writepages_up_read(sb, alloc_ctx);
3030 
3031 	return ret;
3032 }
3033 
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)3034 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
3035 {
3036 	struct writeback_control wbc = {
3037 		.sync_mode = WB_SYNC_ALL,
3038 		.nr_to_write = LONG_MAX,
3039 		.range_start = jinode->i_dirty_start,
3040 		.range_end = jinode->i_dirty_end,
3041 	};
3042 	struct mpage_da_data mpd = {
3043 		.inode = jinode->i_vfs_inode,
3044 		.wbc = &wbc,
3045 		.can_map = 0,
3046 	};
3047 	return ext4_do_writepages(&mpd);
3048 }
3049 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)3050 static int ext4_dax_writepages(struct address_space *mapping,
3051 			       struct writeback_control *wbc)
3052 {
3053 	int ret;
3054 	long nr_to_write = wbc->nr_to_write;
3055 	struct inode *inode = mapping->host;
3056 	int alloc_ctx;
3057 
3058 	ret = ext4_emergency_state(inode->i_sb);
3059 	if (unlikely(ret))
3060 		return ret;
3061 
3062 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
3063 	trace_ext4_writepages(inode, wbc);
3064 
3065 	ret = dax_writeback_mapping_range(mapping,
3066 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
3067 	trace_ext4_writepages_result(inode, wbc, ret,
3068 				     nr_to_write - wbc->nr_to_write);
3069 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
3070 	return ret;
3071 }
3072 
ext4_nonda_switch(struct super_block * sb)3073 static int ext4_nonda_switch(struct super_block *sb)
3074 {
3075 	s64 free_clusters, dirty_clusters;
3076 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3077 
3078 	/*
3079 	 * switch to non delalloc mode if we are running low
3080 	 * on free block. The free block accounting via percpu
3081 	 * counters can get slightly wrong with percpu_counter_batch getting
3082 	 * accumulated on each CPU without updating global counters
3083 	 * Delalloc need an accurate free block accounting. So switch
3084 	 * to non delalloc when we are near to error range.
3085 	 */
3086 	free_clusters =
3087 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3088 	dirty_clusters =
3089 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3090 	/*
3091 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3092 	 */
3093 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3094 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3095 
3096 	if (2 * free_clusters < 3 * dirty_clusters ||
3097 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3098 		/*
3099 		 * free block count is less than 150% of dirty blocks
3100 		 * or free blocks is less than watermark
3101 		 */
3102 		return 1;
3103 	}
3104 	return 0;
3105 }
3106 
ext4_da_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3107 static int ext4_da_write_begin(const struct kiocb *iocb,
3108 			       struct address_space *mapping,
3109 			       loff_t pos, unsigned len,
3110 			       struct folio **foliop, void **fsdata)
3111 {
3112 	int ret, retries = 0;
3113 	struct folio *folio;
3114 	pgoff_t index;
3115 	struct inode *inode = mapping->host;
3116 
3117 	ret = ext4_emergency_state(inode->i_sb);
3118 	if (unlikely(ret))
3119 		return ret;
3120 
3121 	index = pos >> PAGE_SHIFT;
3122 
3123 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3124 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3125 		return ext4_write_begin(iocb, mapping, pos,
3126 					len, foliop, fsdata);
3127 	}
3128 	*fsdata = (void *)0;
3129 	trace_ext4_da_write_begin(inode, pos, len);
3130 
3131 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3132 		ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
3133 						     foliop, fsdata, true);
3134 		if (ret < 0)
3135 			return ret;
3136 		if (ret == 1)
3137 			return 0;
3138 	}
3139 
3140 retry:
3141 	folio = write_begin_get_folio(iocb, mapping, index, len);
3142 	if (IS_ERR(folio))
3143 		return PTR_ERR(folio);
3144 
3145 	if (len > folio_next_pos(folio) - pos)
3146 		len = folio_next_pos(folio) - pos;
3147 
3148 	ret = ext4_block_write_begin(NULL, folio, pos, len,
3149 				     ext4_da_get_block_prep);
3150 	if (ret < 0) {
3151 		folio_unlock(folio);
3152 		folio_put(folio);
3153 		/*
3154 		 * ext4_block_write_begin may have instantiated a few blocks
3155 		 * outside i_size.  Trim these off again. Don't need
3156 		 * i_size_read because we hold inode lock.
3157 		 */
3158 		if (pos + len > inode->i_size)
3159 			ext4_truncate_failed_write(inode);
3160 
3161 		if (ret == -ENOSPC &&
3162 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3163 			goto retry;
3164 		return ret;
3165 	}
3166 
3167 	*foliop = folio;
3168 	return ret;
3169 }
3170 
3171 /*
3172  * Check if we should update i_disksize
3173  * when write to the end of file but not require block allocation
3174  */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)3175 static int ext4_da_should_update_i_disksize(struct folio *folio,
3176 					    unsigned long offset)
3177 {
3178 	struct buffer_head *bh;
3179 	struct inode *inode = folio->mapping->host;
3180 	unsigned int idx;
3181 	int i;
3182 
3183 	bh = folio_buffers(folio);
3184 	idx = offset >> inode->i_blkbits;
3185 
3186 	for (i = 0; i < idx; i++)
3187 		bh = bh->b_this_page;
3188 
3189 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3190 		return 0;
3191 	return 1;
3192 }
3193 
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)3194 static int ext4_da_do_write_end(struct address_space *mapping,
3195 			loff_t pos, unsigned len, unsigned copied,
3196 			struct folio *folio)
3197 {
3198 	struct inode *inode = mapping->host;
3199 	loff_t old_size = inode->i_size;
3200 	bool disksize_changed = false;
3201 	loff_t new_i_size, zero_len = 0;
3202 	handle_t *handle;
3203 
3204 	if (unlikely(!folio_buffers(folio))) {
3205 		folio_unlock(folio);
3206 		folio_put(folio);
3207 		return -EIO;
3208 	}
3209 	/*
3210 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3211 	 * flag, which all that's needed to trigger page writeback.
3212 	 */
3213 	copied = block_write_end(pos, len, copied, folio);
3214 	new_i_size = pos + copied;
3215 
3216 	/*
3217 	 * It's important to update i_size while still holding folio lock,
3218 	 * because folio writeout could otherwise come in and zero beyond
3219 	 * i_size.
3220 	 *
3221 	 * Since we are holding inode lock, we are sure i_disksize <=
3222 	 * i_size. We also know that if i_disksize < i_size, there are
3223 	 * delalloc writes pending in the range up to i_size. If the end of
3224 	 * the current write is <= i_size, there's no need to touch
3225 	 * i_disksize since writeback will push i_disksize up to i_size
3226 	 * eventually. If the end of the current write is > i_size and
3227 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3228 	 * checked, we need to update i_disksize here as certain
3229 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3230 	 */
3231 	if (new_i_size > inode->i_size) {
3232 		unsigned long end;
3233 
3234 		i_size_write(inode, new_i_size);
3235 		end = offset_in_folio(folio, new_i_size - 1);
3236 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3237 			ext4_update_i_disksize(inode, new_i_size);
3238 			disksize_changed = true;
3239 		}
3240 	}
3241 
3242 	folio_unlock(folio);
3243 	folio_put(folio);
3244 
3245 	if (pos > old_size) {
3246 		pagecache_isize_extended(inode, old_size, pos);
3247 		zero_len = pos - old_size;
3248 	}
3249 
3250 	if (!disksize_changed && !zero_len)
3251 		return copied;
3252 
3253 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3254 	if (IS_ERR(handle))
3255 		return PTR_ERR(handle);
3256 	if (zero_len)
3257 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3258 	ext4_mark_inode_dirty(handle, inode);
3259 	ext4_journal_stop(handle);
3260 
3261 	return copied;
3262 }
3263 
ext4_da_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3264 static int ext4_da_write_end(const struct kiocb *iocb,
3265 			     struct address_space *mapping,
3266 			     loff_t pos, unsigned len, unsigned copied,
3267 			     struct folio *folio, void *fsdata)
3268 {
3269 	struct inode *inode = mapping->host;
3270 	int write_mode = (int)(unsigned long)fsdata;
3271 
3272 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3273 		return ext4_write_end(iocb, mapping, pos,
3274 				      len, copied, folio, fsdata);
3275 
3276 	trace_ext4_da_write_end(inode, pos, len, copied);
3277 
3278 	if (write_mode != CONVERT_INLINE_DATA &&
3279 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3280 	    ext4_has_inline_data(inode))
3281 		return ext4_write_inline_data_end(inode, pos, len, copied,
3282 						  folio);
3283 
3284 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3285 		copied = 0;
3286 
3287 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3288 }
3289 
3290 /*
3291  * Force all delayed allocation blocks to be allocated for a given inode.
3292  */
ext4_alloc_da_blocks(struct inode * inode)3293 int ext4_alloc_da_blocks(struct inode *inode)
3294 {
3295 	trace_ext4_alloc_da_blocks(inode);
3296 
3297 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3298 		return 0;
3299 
3300 	/*
3301 	 * We do something simple for now.  The filemap_flush() will
3302 	 * also start triggering a write of the data blocks, which is
3303 	 * not strictly speaking necessary (and for users of
3304 	 * laptop_mode, not even desirable).  However, to do otherwise
3305 	 * would require replicating code paths in:
3306 	 *
3307 	 * ext4_writepages() ->
3308 	 *    write_cache_pages() ---> (via passed in callback function)
3309 	 *        __mpage_da_writepage() -->
3310 	 *           mpage_add_bh_to_extent()
3311 	 *           mpage_da_map_blocks()
3312 	 *
3313 	 * The problem is that write_cache_pages(), located in
3314 	 * mm/page-writeback.c, marks pages clean in preparation for
3315 	 * doing I/O, which is not desirable if we're not planning on
3316 	 * doing I/O at all.
3317 	 *
3318 	 * We could call write_cache_pages(), and then redirty all of
3319 	 * the pages by calling redirty_page_for_writepage() but that
3320 	 * would be ugly in the extreme.  So instead we would need to
3321 	 * replicate parts of the code in the above functions,
3322 	 * simplifying them because we wouldn't actually intend to
3323 	 * write out the pages, but rather only collect contiguous
3324 	 * logical block extents, call the multi-block allocator, and
3325 	 * then update the buffer heads with the block allocations.
3326 	 *
3327 	 * For now, though, we'll cheat by calling filemap_flush(),
3328 	 * which will map the blocks, and start the I/O, but not
3329 	 * actually wait for the I/O to complete.
3330 	 */
3331 	return filemap_flush(inode->i_mapping);
3332 }
3333 
3334 /*
3335  * bmap() is special.  It gets used by applications such as lilo and by
3336  * the swapper to find the on-disk block of a specific piece of data.
3337  *
3338  * Naturally, this is dangerous if the block concerned is still in the
3339  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3340  * filesystem and enables swap, then they may get a nasty shock when the
3341  * data getting swapped to that swapfile suddenly gets overwritten by
3342  * the original zero's written out previously to the journal and
3343  * awaiting writeback in the kernel's buffer cache.
3344  *
3345  * So, if we see any bmap calls here on a modified, data-journaled file,
3346  * take extra steps to flush any blocks which might be in the cache.
3347  */
ext4_bmap(struct address_space * mapping,sector_t block)3348 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3349 {
3350 	struct inode *inode = mapping->host;
3351 	sector_t ret = 0;
3352 
3353 	inode_lock_shared(inode);
3354 	/*
3355 	 * We can get here for an inline file via the FIBMAP ioctl
3356 	 */
3357 	if (ext4_has_inline_data(inode))
3358 		goto out;
3359 
3360 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3361 	    (test_opt(inode->i_sb, DELALLOC) ||
3362 	     ext4_should_journal_data(inode))) {
3363 		/*
3364 		 * With delalloc or journalled data we want to sync the file so
3365 		 * that we can make sure we allocate blocks for file and data
3366 		 * is in place for the user to see it
3367 		 */
3368 		filemap_write_and_wait(mapping);
3369 	}
3370 
3371 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3372 
3373 out:
3374 	inode_unlock_shared(inode);
3375 	return ret;
3376 }
3377 
ext4_read_folio(struct file * file,struct folio * folio)3378 static int ext4_read_folio(struct file *file, struct folio *folio)
3379 {
3380 	int ret = -EAGAIN;
3381 	struct inode *inode = folio->mapping->host;
3382 
3383 	trace_ext4_read_folio(inode, folio);
3384 
3385 	if (ext4_has_inline_data(inode))
3386 		ret = ext4_readpage_inline(inode, folio);
3387 
3388 	if (ret == -EAGAIN)
3389 		return ext4_mpage_readpages(inode, NULL, folio);
3390 
3391 	return ret;
3392 }
3393 
ext4_readahead(struct readahead_control * rac)3394 static void ext4_readahead(struct readahead_control *rac)
3395 {
3396 	struct inode *inode = rac->mapping->host;
3397 
3398 	/* If the file has inline data, no need to do readahead. */
3399 	if (ext4_has_inline_data(inode))
3400 		return;
3401 
3402 	ext4_mpage_readpages(inode, rac, NULL);
3403 }
3404 
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3405 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3406 				size_t length)
3407 {
3408 	trace_ext4_invalidate_folio(folio, offset, length);
3409 
3410 	/* No journalling happens on data buffers when this function is used */
3411 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3412 
3413 	block_invalidate_folio(folio, offset, length);
3414 }
3415 
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3416 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3417 					    size_t offset, size_t length)
3418 {
3419 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3420 
3421 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3422 
3423 	/*
3424 	 * If it's a full truncate we just forget about the pending dirtying
3425 	 */
3426 	if (offset == 0 && length == folio_size(folio))
3427 		folio_clear_checked(folio);
3428 
3429 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3430 }
3431 
3432 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3433 static void ext4_journalled_invalidate_folio(struct folio *folio,
3434 					   size_t offset,
3435 					   size_t length)
3436 {
3437 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3438 }
3439 
ext4_release_folio(struct folio * folio,gfp_t wait)3440 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3441 {
3442 	struct inode *inode = folio->mapping->host;
3443 	journal_t *journal = EXT4_JOURNAL(inode);
3444 
3445 	trace_ext4_release_folio(inode, folio);
3446 
3447 	/* Page has dirty journalled data -> cannot release */
3448 	if (folio_test_checked(folio))
3449 		return false;
3450 	if (journal)
3451 		return jbd2_journal_try_to_free_buffers(journal, folio);
3452 	else
3453 		return try_to_free_buffers(folio);
3454 }
3455 
ext4_inode_datasync_dirty(struct inode * inode)3456 static bool ext4_inode_datasync_dirty(struct inode *inode)
3457 {
3458 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3459 
3460 	if (journal) {
3461 		if (jbd2_transaction_committed(journal,
3462 			EXT4_I(inode)->i_datasync_tid))
3463 			return false;
3464 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3465 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3466 		return true;
3467 	}
3468 
3469 	/* Any metadata buffers to write? */
3470 	if (!list_empty(&inode->i_mapping->i_private_list))
3471 		return true;
3472 	return inode_state_read_once(inode) & I_DIRTY_DATASYNC;
3473 }
3474 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3475 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3476 			   struct ext4_map_blocks *map, loff_t offset,
3477 			   loff_t length, unsigned int flags)
3478 {
3479 	u8 blkbits = inode->i_blkbits;
3480 
3481 	/*
3482 	 * Writes that span EOF might trigger an I/O size update on completion,
3483 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3484 	 * there is no other metadata changes being made or are pending.
3485 	 */
3486 	iomap->flags = 0;
3487 	if (ext4_inode_datasync_dirty(inode) ||
3488 	    offset + length > i_size_read(inode))
3489 		iomap->flags |= IOMAP_F_DIRTY;
3490 
3491 	if (map->m_flags & EXT4_MAP_NEW)
3492 		iomap->flags |= IOMAP_F_NEW;
3493 
3494 	/* HW-offload atomics are always used */
3495 	if (flags & IOMAP_ATOMIC)
3496 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3497 
3498 	if (flags & IOMAP_DAX)
3499 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3500 	else
3501 		iomap->bdev = inode->i_sb->s_bdev;
3502 	iomap->offset = (u64) map->m_lblk << blkbits;
3503 	iomap->length = (u64) map->m_len << blkbits;
3504 
3505 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3506 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3507 		iomap->flags |= IOMAP_F_MERGED;
3508 
3509 	/*
3510 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3511 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3512 	 * set. In order for any allocated unwritten extents to be converted
3513 	 * into written extents correctly within the ->end_io() handler, we
3514 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3515 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3516 	 * been set first.
3517 	 */
3518 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3519 		iomap->type = IOMAP_UNWRITTEN;
3520 		iomap->addr = (u64) map->m_pblk << blkbits;
3521 		if (flags & IOMAP_DAX)
3522 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3523 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3524 		iomap->type = IOMAP_MAPPED;
3525 		iomap->addr = (u64) map->m_pblk << blkbits;
3526 		if (flags & IOMAP_DAX)
3527 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3528 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3529 		iomap->type = IOMAP_DELALLOC;
3530 		iomap->addr = IOMAP_NULL_ADDR;
3531 	} else {
3532 		iomap->type = IOMAP_HOLE;
3533 		iomap->addr = IOMAP_NULL_ADDR;
3534 	}
3535 }
3536 
ext4_map_blocks_atomic_write_slow(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)3537 static int ext4_map_blocks_atomic_write_slow(handle_t *handle,
3538 			struct inode *inode, struct ext4_map_blocks *map)
3539 {
3540 	ext4_lblk_t m_lblk = map->m_lblk;
3541 	unsigned int m_len = map->m_len;
3542 	unsigned int mapped_len = 0, m_flags = 0;
3543 	ext4_fsblk_t next_pblk;
3544 	bool check_next_pblk = false;
3545 	int ret = 0;
3546 
3547 	WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb));
3548 
3549 	/*
3550 	 * This is a slow path in case of mixed mapping. We use
3551 	 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single
3552 	 * contiguous mapped mapping. This will ensure any unwritten or hole
3553 	 * regions within the requested range is zeroed out and we return
3554 	 * a single contiguous mapped extent.
3555 	 */
3556 	m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3557 
3558 	do {
3559 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3560 		if (ret < 0 && ret != -ENOSPC)
3561 			goto out_err;
3562 		/*
3563 		 * This should never happen, but let's return an error code to
3564 		 * avoid an infinite loop in here.
3565 		 */
3566 		if (ret == 0) {
3567 			ret = -EFSCORRUPTED;
3568 			ext4_warning_inode(inode,
3569 				"ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d",
3570 				m_flags, ret);
3571 			goto out_err;
3572 		}
3573 		/*
3574 		 * With bigalloc we should never get ENOSPC nor discontiguous
3575 		 * physical extents.
3576 		 */
3577 		if ((check_next_pblk && next_pblk != map->m_pblk) ||
3578 				ret == -ENOSPC) {
3579 			ext4_warning_inode(inode,
3580 				"Non-contiguous allocation detected: expected %llu, got %llu, "
3581 				"or ext4_map_blocks() returned out of space ret: %d",
3582 				next_pblk, map->m_pblk, ret);
3583 			ret = -EFSCORRUPTED;
3584 			goto out_err;
3585 		}
3586 		next_pblk = map->m_pblk + map->m_len;
3587 		check_next_pblk = true;
3588 
3589 		mapped_len += map->m_len;
3590 		map->m_lblk += map->m_len;
3591 		map->m_len = m_len - mapped_len;
3592 	} while (mapped_len < m_len);
3593 
3594 	/*
3595 	 * We might have done some work in above loop, so we need to query the
3596 	 * start of the physical extent, based on the origin m_lblk and m_len.
3597 	 * Let's also ensure we were able to allocate the required range for
3598 	 * mixed mapping case.
3599 	 */
3600 	map->m_lblk = m_lblk;
3601 	map->m_len = m_len;
3602 	map->m_flags = 0;
3603 
3604 	ret = ext4_map_blocks(handle, inode, map,
3605 			      EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF);
3606 	if (ret != m_len) {
3607 		ext4_warning_inode(inode,
3608 			"allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n",
3609 			m_lblk, m_len, ret);
3610 		ret = -EINVAL;
3611 	}
3612 	return ret;
3613 
3614 out_err:
3615 	/* reset map before returning an error */
3616 	map->m_lblk = m_lblk;
3617 	map->m_len = m_len;
3618 	map->m_flags = 0;
3619 	return ret;
3620 }
3621 
3622 /*
3623  * ext4_map_blocks_atomic: Helper routine to ensure the entire requested
3624  * range in @map [lblk, lblk + len) is one single contiguous extent with no
3625  * mixed mappings.
3626  *
3627  * We first use m_flags passed to us by our caller (ext4_iomap_alloc()).
3628  * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying
3629  * physical extent for the requested range does not have a single contiguous
3630  * mapping type i.e. (Hole, Mapped, or Unwritten) throughout.
3631  * In that case we will loop over the requested range to allocate and zero out
3632  * the unwritten / holes in between, to get a single mapped extent from
3633  * [m_lblk, m_lblk +  m_len). Note that this is only possible because we know
3634  * this can be called only with bigalloc enabled filesystem where the underlying
3635  * cluster is already allocated. This avoids allocating discontiguous extents
3636  * in the slow path due to multiple calls to ext4_map_blocks().
3637  * The slow path is mostly non-performance critical path, so it should be ok to
3638  * loop using ext4_map_blocks() with appropriate flags to allocate & zero the
3639  * underlying short holes/unwritten extents within the requested range.
3640  */
ext4_map_blocks_atomic_write(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int m_flags,bool * force_commit)3641 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode,
3642 				struct ext4_map_blocks *map, int m_flags,
3643 				bool *force_commit)
3644 {
3645 	ext4_lblk_t m_lblk = map->m_lblk;
3646 	unsigned int m_len = map->m_len;
3647 	int ret = 0;
3648 
3649 	WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb));
3650 
3651 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3652 	if (ret < 0 || ret == m_len)
3653 		goto out;
3654 	/*
3655 	 * This is a mixed mapping case where we were not able to allocate
3656 	 * a single contiguous extent. In that case let's reset requested
3657 	 * mapping and call the slow path.
3658 	 */
3659 	map->m_lblk = m_lblk;
3660 	map->m_len = m_len;
3661 	map->m_flags = 0;
3662 
3663 	/*
3664 	 * slow path means we have mixed mapping, that means we will need
3665 	 * to force txn commit.
3666 	 */
3667 	*force_commit = true;
3668 	return ext4_map_blocks_atomic_write_slow(handle, inode, map);
3669 out:
3670 	return ret;
3671 }
3672 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3673 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3674 			    unsigned int flags)
3675 {
3676 	handle_t *handle;
3677 	u8 blkbits = inode->i_blkbits;
3678 	int ret, dio_credits, m_flags = 0, retries = 0;
3679 	bool force_commit = false;
3680 
3681 	/*
3682 	 * Trim the mapping request to the maximum value that we can map at
3683 	 * once for direct I/O.
3684 	 */
3685 	if (map->m_len > DIO_MAX_BLOCKS)
3686 		map->m_len = DIO_MAX_BLOCKS;
3687 
3688 	/*
3689 	 * journal credits estimation for atomic writes. We call
3690 	 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes,
3691 	 * then let's assume the no. of pextents required can be m_len i.e.
3692 	 * every alternate block can be unwritten and hole.
3693 	 */
3694 	if (flags & IOMAP_ATOMIC) {
3695 		unsigned int orig_mlen = map->m_len;
3696 
3697 		ret = ext4_map_blocks(NULL, inode, map, 0);
3698 		if (ret < 0)
3699 			return ret;
3700 		if (map->m_len < orig_mlen) {
3701 			map->m_len = orig_mlen;
3702 			dio_credits = ext4_meta_trans_blocks(inode, orig_mlen,
3703 							     map->m_len);
3704 		} else {
3705 			dio_credits = ext4_chunk_trans_blocks(inode,
3706 							      map->m_len);
3707 		}
3708 	} else {
3709 		dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3710 	}
3711 
3712 retry:
3713 	/*
3714 	 * Either we allocate blocks and then don't get an unwritten extent, so
3715 	 * in that case we have reserved enough credits. Or, the blocks are
3716 	 * already allocated and unwritten. In that case, the extent conversion
3717 	 * fits into the credits as well.
3718 	 */
3719 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3720 	if (IS_ERR(handle))
3721 		return PTR_ERR(handle);
3722 
3723 	/*
3724 	 * DAX and direct I/O are the only two operations that are currently
3725 	 * supported with IOMAP_WRITE.
3726 	 */
3727 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3728 	if (flags & IOMAP_DAX)
3729 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3730 	/*
3731 	 * We use i_size instead of i_disksize here because delalloc writeback
3732 	 * can complete at any point during the I/O and subsequently push the
3733 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3734 	 * happening and thus expose allocated blocks to direct I/O reads.
3735 	 */
3736 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3737 		m_flags = EXT4_GET_BLOCKS_CREATE;
3738 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3739 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3740 
3741 	if (flags & IOMAP_ATOMIC)
3742 		ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags,
3743 						   &force_commit);
3744 	else
3745 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3746 
3747 	/*
3748 	 * We cannot fill holes in indirect tree based inodes as that could
3749 	 * expose stale data in the case of a crash. Use the magic error code
3750 	 * to fallback to buffered I/O.
3751 	 */
3752 	if (!m_flags && !ret)
3753 		ret = -ENOTBLK;
3754 
3755 	ext4_journal_stop(handle);
3756 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3757 		goto retry;
3758 
3759 	/*
3760 	 * Force commit the current transaction if the allocation spans a mixed
3761 	 * mapping range. This ensures any pending metadata updates (like
3762 	 * unwritten to written extents conversion) in this range are in
3763 	 * consistent state with the file data blocks, before performing the
3764 	 * actual write I/O. If the commit fails, the whole I/O must be aborted
3765 	 * to prevent any possible torn writes.
3766 	 */
3767 	if (ret > 0 && force_commit) {
3768 		int ret2;
3769 
3770 		ret2 = ext4_force_commit(inode->i_sb);
3771 		if (ret2)
3772 			return ret2;
3773 	}
3774 
3775 	return ret;
3776 }
3777 
3778 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3779 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3780 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3781 {
3782 	int ret;
3783 	struct ext4_map_blocks map;
3784 	u8 blkbits = inode->i_blkbits;
3785 	unsigned int orig_mlen;
3786 
3787 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3788 		return -EINVAL;
3789 
3790 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3791 		return -ERANGE;
3792 
3793 	/*
3794 	 * Calculate the first and last logical blocks respectively.
3795 	 */
3796 	map.m_lblk = offset >> blkbits;
3797 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3798 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3799 	orig_mlen = map.m_len;
3800 
3801 	if (flags & IOMAP_WRITE) {
3802 		/*
3803 		 * We check here if the blocks are already allocated, then we
3804 		 * don't need to start a journal txn and we can directly return
3805 		 * the mapping information. This could boost performance
3806 		 * especially in multi-threaded overwrite requests.
3807 		 */
3808 		if (offset + length <= i_size_read(inode)) {
3809 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3810 			/*
3811 			 * For atomic writes the entire requested length should
3812 			 * be mapped.
3813 			 */
3814 			if (map.m_flags & EXT4_MAP_MAPPED) {
3815 				if ((!(flags & IOMAP_ATOMIC) && ret > 0) ||
3816 				   (flags & IOMAP_ATOMIC && ret >= orig_mlen))
3817 					goto out;
3818 			}
3819 			map.m_len = orig_mlen;
3820 		}
3821 		ret = ext4_iomap_alloc(inode, &map, flags);
3822 	} else {
3823 		/*
3824 		 * This can be called for overwrites path from
3825 		 * ext4_iomap_overwrite_begin().
3826 		 */
3827 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3828 	}
3829 
3830 	if (ret < 0)
3831 		return ret;
3832 out:
3833 	/*
3834 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3835 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3836 	 * limiting the length of the mapping returned.
3837 	 */
3838 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3839 
3840 	/*
3841 	 * Before returning to iomap, let's ensure the allocated mapping
3842 	 * covers the entire requested length for atomic writes.
3843 	 */
3844 	if (flags & IOMAP_ATOMIC) {
3845 		if (map.m_len < (length >> blkbits)) {
3846 			WARN_ON_ONCE(1);
3847 			return -EINVAL;
3848 		}
3849 	}
3850 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3851 
3852 	return 0;
3853 }
3854 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3855 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3856 		loff_t length, unsigned flags, struct iomap *iomap,
3857 		struct iomap *srcmap)
3858 {
3859 	int ret;
3860 
3861 	/*
3862 	 * Even for writes we don't need to allocate blocks, so just pretend
3863 	 * we are reading to save overhead of starting a transaction.
3864 	 */
3865 	flags &= ~IOMAP_WRITE;
3866 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3867 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3868 	return ret;
3869 }
3870 
3871 const struct iomap_ops ext4_iomap_ops = {
3872 	.iomap_begin		= ext4_iomap_begin,
3873 };
3874 
3875 const struct iomap_ops ext4_iomap_overwrite_ops = {
3876 	.iomap_begin		= ext4_iomap_overwrite_begin,
3877 };
3878 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3879 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3880 				   loff_t length, unsigned int flags,
3881 				   struct iomap *iomap, struct iomap *srcmap)
3882 {
3883 	int ret;
3884 	struct ext4_map_blocks map;
3885 	u8 blkbits = inode->i_blkbits;
3886 
3887 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3888 		return -EINVAL;
3889 
3890 	if (ext4_has_inline_data(inode)) {
3891 		ret = ext4_inline_data_iomap(inode, iomap);
3892 		if (ret != -EAGAIN) {
3893 			if (ret == 0 && offset >= iomap->length)
3894 				ret = -ENOENT;
3895 			return ret;
3896 		}
3897 	}
3898 
3899 	/*
3900 	 * Calculate the first and last logical block respectively.
3901 	 */
3902 	map.m_lblk = offset >> blkbits;
3903 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3904 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3905 
3906 	/*
3907 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3908 	 * So handle it here itself instead of querying ext4_map_blocks().
3909 	 * Since ext4_map_blocks() will warn about it and will return
3910 	 * -EIO error.
3911 	 */
3912 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3913 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3914 
3915 		if (offset >= sbi->s_bitmap_maxbytes) {
3916 			map.m_flags = 0;
3917 			goto set_iomap;
3918 		}
3919 	}
3920 
3921 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3922 	if (ret < 0)
3923 		return ret;
3924 set_iomap:
3925 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3926 
3927 	return 0;
3928 }
3929 
3930 const struct iomap_ops ext4_iomap_report_ops = {
3931 	.iomap_begin = ext4_iomap_begin_report,
3932 };
3933 
3934 /*
3935  * For data=journal mode, folio should be marked dirty only when it was
3936  * writeably mapped. When that happens, it was already attached to the
3937  * transaction and marked as jbddirty (we take care of this in
3938  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3939  * so we should have nothing to do here, except for the case when someone
3940  * had the page pinned and dirtied the page through this pin (e.g. by doing
3941  * direct IO to it). In that case we'd need to attach buffers here to the
3942  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3943  * folio and leave attached buffers clean, because the buffers' dirty state is
3944  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3945  * the journalling code will explode.  So what we do is to mark the folio
3946  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3947  * to the transaction appropriately.
3948  */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3949 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3950 		struct folio *folio)
3951 {
3952 	WARN_ON_ONCE(!folio_buffers(folio));
3953 	if (folio_maybe_dma_pinned(folio))
3954 		folio_set_checked(folio);
3955 	return filemap_dirty_folio(mapping, folio);
3956 }
3957 
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3958 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3959 {
3960 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3961 	WARN_ON_ONCE(!folio_buffers(folio));
3962 	return block_dirty_folio(mapping, folio);
3963 }
3964 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3965 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3966 				    struct file *file, sector_t *span)
3967 {
3968 	return iomap_swapfile_activate(sis, file, span,
3969 				       &ext4_iomap_report_ops);
3970 }
3971 
3972 static const struct address_space_operations ext4_aops = {
3973 	.read_folio		= ext4_read_folio,
3974 	.readahead		= ext4_readahead,
3975 	.writepages		= ext4_writepages,
3976 	.write_begin		= ext4_write_begin,
3977 	.write_end		= ext4_write_end,
3978 	.dirty_folio		= ext4_dirty_folio,
3979 	.bmap			= ext4_bmap,
3980 	.invalidate_folio	= ext4_invalidate_folio,
3981 	.release_folio		= ext4_release_folio,
3982 	.migrate_folio		= buffer_migrate_folio,
3983 	.is_partially_uptodate  = block_is_partially_uptodate,
3984 	.error_remove_folio	= generic_error_remove_folio,
3985 	.swap_activate		= ext4_iomap_swap_activate,
3986 };
3987 
3988 static const struct address_space_operations ext4_journalled_aops = {
3989 	.read_folio		= ext4_read_folio,
3990 	.readahead		= ext4_readahead,
3991 	.writepages		= ext4_writepages,
3992 	.write_begin		= ext4_write_begin,
3993 	.write_end		= ext4_journalled_write_end,
3994 	.dirty_folio		= ext4_journalled_dirty_folio,
3995 	.bmap			= ext4_bmap,
3996 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3997 	.release_folio		= ext4_release_folio,
3998 	.migrate_folio		= buffer_migrate_folio_norefs,
3999 	.is_partially_uptodate  = block_is_partially_uptodate,
4000 	.error_remove_folio	= generic_error_remove_folio,
4001 	.swap_activate		= ext4_iomap_swap_activate,
4002 };
4003 
4004 static const struct address_space_operations ext4_da_aops = {
4005 	.read_folio		= ext4_read_folio,
4006 	.readahead		= ext4_readahead,
4007 	.writepages		= ext4_writepages,
4008 	.write_begin		= ext4_da_write_begin,
4009 	.write_end		= ext4_da_write_end,
4010 	.dirty_folio		= ext4_dirty_folio,
4011 	.bmap			= ext4_bmap,
4012 	.invalidate_folio	= ext4_invalidate_folio,
4013 	.release_folio		= ext4_release_folio,
4014 	.migrate_folio		= buffer_migrate_folio,
4015 	.is_partially_uptodate  = block_is_partially_uptodate,
4016 	.error_remove_folio	= generic_error_remove_folio,
4017 	.swap_activate		= ext4_iomap_swap_activate,
4018 };
4019 
4020 static const struct address_space_operations ext4_dax_aops = {
4021 	.writepages		= ext4_dax_writepages,
4022 	.dirty_folio		= noop_dirty_folio,
4023 	.bmap			= ext4_bmap,
4024 	.swap_activate		= ext4_iomap_swap_activate,
4025 };
4026 
ext4_set_aops(struct inode * inode)4027 void ext4_set_aops(struct inode *inode)
4028 {
4029 	switch (ext4_inode_journal_mode(inode)) {
4030 	case EXT4_INODE_ORDERED_DATA_MODE:
4031 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4032 		break;
4033 	case EXT4_INODE_JOURNAL_DATA_MODE:
4034 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4035 		return;
4036 	default:
4037 		BUG();
4038 	}
4039 	if (IS_DAX(inode))
4040 		inode->i_mapping->a_ops = &ext4_dax_aops;
4041 	else if (test_opt(inode->i_sb, DELALLOC))
4042 		inode->i_mapping->a_ops = &ext4_da_aops;
4043 	else
4044 		inode->i_mapping->a_ops = &ext4_aops;
4045 }
4046 
4047 /*
4048  * Here we can't skip an unwritten buffer even though it usually reads zero
4049  * because it might have data in pagecache (eg, if called from ext4_zero_range,
4050  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
4051  * racing writeback can come later and flush the stale pagecache to disk.
4052  */
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4053 static int __ext4_block_zero_page_range(handle_t *handle,
4054 		struct address_space *mapping, loff_t from, loff_t length)
4055 {
4056 	unsigned int offset, blocksize, pos;
4057 	ext4_lblk_t iblock;
4058 	struct inode *inode = mapping->host;
4059 	struct buffer_head *bh;
4060 	struct folio *folio;
4061 	int err = 0;
4062 
4063 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
4064 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
4065 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
4066 	if (IS_ERR(folio))
4067 		return PTR_ERR(folio);
4068 
4069 	blocksize = inode->i_sb->s_blocksize;
4070 
4071 	iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4072 
4073 	bh = folio_buffers(folio);
4074 	if (!bh)
4075 		bh = create_empty_buffers(folio, blocksize, 0);
4076 
4077 	/* Find the buffer that contains "offset" */
4078 	offset = offset_in_folio(folio, from);
4079 	pos = blocksize;
4080 	while (offset >= pos) {
4081 		bh = bh->b_this_page;
4082 		iblock++;
4083 		pos += blocksize;
4084 	}
4085 	if (buffer_freed(bh)) {
4086 		BUFFER_TRACE(bh, "freed: skip");
4087 		goto unlock;
4088 	}
4089 	if (!buffer_mapped(bh)) {
4090 		BUFFER_TRACE(bh, "unmapped");
4091 		ext4_get_block(inode, iblock, bh, 0);
4092 		/* unmapped? It's a hole - nothing to do */
4093 		if (!buffer_mapped(bh)) {
4094 			BUFFER_TRACE(bh, "still unmapped");
4095 			goto unlock;
4096 		}
4097 	}
4098 
4099 	/* Ok, it's mapped. Make sure it's up-to-date */
4100 	if (folio_test_uptodate(folio))
4101 		set_buffer_uptodate(bh);
4102 
4103 	if (!buffer_uptodate(bh)) {
4104 		err = ext4_read_bh_lock(bh, 0, true);
4105 		if (err)
4106 			goto unlock;
4107 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4108 			/* We expect the key to be set. */
4109 			BUG_ON(!fscrypt_has_encryption_key(inode));
4110 			err = fscrypt_decrypt_pagecache_blocks(folio,
4111 							       blocksize,
4112 							       bh_offset(bh));
4113 			if (err) {
4114 				clear_buffer_uptodate(bh);
4115 				goto unlock;
4116 			}
4117 		}
4118 	}
4119 	if (ext4_should_journal_data(inode)) {
4120 		BUFFER_TRACE(bh, "get write access");
4121 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
4122 						    EXT4_JTR_NONE);
4123 		if (err)
4124 			goto unlock;
4125 	}
4126 	folio_zero_range(folio, offset, length);
4127 	BUFFER_TRACE(bh, "zeroed end of block");
4128 
4129 	if (ext4_should_journal_data(inode)) {
4130 		err = ext4_dirty_journalled_data(handle, bh);
4131 	} else {
4132 		err = 0;
4133 		mark_buffer_dirty(bh);
4134 		if (ext4_should_order_data(inode))
4135 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4136 					length);
4137 	}
4138 
4139 unlock:
4140 	folio_unlock(folio);
4141 	folio_put(folio);
4142 	return err;
4143 }
4144 
4145 /*
4146  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4147  * starting from file offset 'from'.  The range to be zero'd must
4148  * be contained with in one block.  If the specified range exceeds
4149  * the end of the block it will be shortened to end of the block
4150  * that corresponds to 'from'
4151  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4152 static int ext4_block_zero_page_range(handle_t *handle,
4153 		struct address_space *mapping, loff_t from, loff_t length)
4154 {
4155 	struct inode *inode = mapping->host;
4156 	unsigned offset = from & (PAGE_SIZE-1);
4157 	unsigned blocksize = inode->i_sb->s_blocksize;
4158 	unsigned max = blocksize - (offset & (blocksize - 1));
4159 
4160 	/*
4161 	 * correct length if it does not fall between
4162 	 * 'from' and the end of the block
4163 	 */
4164 	if (length > max || length < 0)
4165 		length = max;
4166 
4167 	if (IS_DAX(inode)) {
4168 		return dax_zero_range(inode, from, length, NULL,
4169 				      &ext4_iomap_ops);
4170 	}
4171 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4172 }
4173 
4174 /*
4175  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4176  * up to the end of the block which corresponds to `from'.
4177  * This required during truncate. We need to physically zero the tail end
4178  * of that block so it doesn't yield old data if the file is later grown.
4179  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)4180 static int ext4_block_truncate_page(handle_t *handle,
4181 		struct address_space *mapping, loff_t from)
4182 {
4183 	unsigned offset = from & (PAGE_SIZE-1);
4184 	unsigned length;
4185 	unsigned blocksize;
4186 	struct inode *inode = mapping->host;
4187 
4188 	/* If we are processing an encrypted inode during orphan list handling */
4189 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4190 		return 0;
4191 
4192 	blocksize = inode->i_sb->s_blocksize;
4193 	length = blocksize - (offset & (blocksize - 1));
4194 
4195 	return ext4_block_zero_page_range(handle, mapping, from, length);
4196 }
4197 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)4198 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4199 			     loff_t lstart, loff_t length)
4200 {
4201 	struct super_block *sb = inode->i_sb;
4202 	struct address_space *mapping = inode->i_mapping;
4203 	unsigned partial_start, partial_end;
4204 	ext4_fsblk_t start, end;
4205 	loff_t byte_end = (lstart + length - 1);
4206 	int err = 0;
4207 
4208 	partial_start = lstart & (sb->s_blocksize - 1);
4209 	partial_end = byte_end & (sb->s_blocksize - 1);
4210 
4211 	start = lstart >> sb->s_blocksize_bits;
4212 	end = byte_end >> sb->s_blocksize_bits;
4213 
4214 	/* Handle partial zero within the single block */
4215 	if (start == end &&
4216 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4217 		err = ext4_block_zero_page_range(handle, mapping,
4218 						 lstart, length);
4219 		return err;
4220 	}
4221 	/* Handle partial zero out on the start of the range */
4222 	if (partial_start) {
4223 		err = ext4_block_zero_page_range(handle, mapping,
4224 						 lstart, sb->s_blocksize);
4225 		if (err)
4226 			return err;
4227 	}
4228 	/* Handle partial zero out on the end of the range */
4229 	if (partial_end != sb->s_blocksize - 1)
4230 		err = ext4_block_zero_page_range(handle, mapping,
4231 						 byte_end - partial_end,
4232 						 partial_end + 1);
4233 	return err;
4234 }
4235 
ext4_can_truncate(struct inode * inode)4236 int ext4_can_truncate(struct inode *inode)
4237 {
4238 	if (S_ISREG(inode->i_mode))
4239 		return 1;
4240 	if (S_ISDIR(inode->i_mode))
4241 		return 1;
4242 	if (S_ISLNK(inode->i_mode))
4243 		return !ext4_inode_is_fast_symlink(inode);
4244 	return 0;
4245 }
4246 
4247 /*
4248  * We have to make sure i_disksize gets properly updated before we truncate
4249  * page cache due to hole punching or zero range. Otherwise i_disksize update
4250  * can get lost as it may have been postponed to submission of writeback but
4251  * that will never happen if we remove the folio containing i_size from the
4252  * page cache. Also if we punch hole within i_size but above i_disksize,
4253  * following ext4_page_mkwrite() may mistakenly allocate written blocks over
4254  * the hole and thus introduce allocated blocks beyond i_disksize which is
4255  * not allowed (e2fsck would complain in case of crash).
4256  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)4257 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4258 				      loff_t len)
4259 {
4260 	handle_t *handle;
4261 	int ret;
4262 
4263 	loff_t size = i_size_read(inode);
4264 
4265 	WARN_ON(!inode_is_locked(inode));
4266 	if (offset > size)
4267 		return 0;
4268 
4269 	if (offset + len < size)
4270 		size = offset + len;
4271 	if (EXT4_I(inode)->i_disksize >= size)
4272 		return 0;
4273 
4274 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4275 	if (IS_ERR(handle))
4276 		return PTR_ERR(handle);
4277 	ext4_update_i_disksize(inode, size);
4278 	ret = ext4_mark_inode_dirty(handle, inode);
4279 	ext4_journal_stop(handle);
4280 
4281 	return ret;
4282 }
4283 
ext4_truncate_folio(struct inode * inode,loff_t start,loff_t end)4284 static inline void ext4_truncate_folio(struct inode *inode,
4285 				       loff_t start, loff_t end)
4286 {
4287 	unsigned long blocksize = i_blocksize(inode);
4288 	struct folio *folio;
4289 
4290 	/* Nothing to be done if no complete block needs to be truncated. */
4291 	if (round_up(start, blocksize) >= round_down(end, blocksize))
4292 		return;
4293 
4294 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
4295 	if (IS_ERR(folio))
4296 		return;
4297 
4298 	if (folio_mkclean(folio))
4299 		folio_mark_dirty(folio);
4300 	folio_unlock(folio);
4301 	folio_put(folio);
4302 }
4303 
ext4_truncate_page_cache_block_range(struct inode * inode,loff_t start,loff_t end)4304 int ext4_truncate_page_cache_block_range(struct inode *inode,
4305 					 loff_t start, loff_t end)
4306 {
4307 	unsigned long blocksize = i_blocksize(inode);
4308 	int ret;
4309 
4310 	/*
4311 	 * For journalled data we need to write (and checkpoint) pages
4312 	 * before discarding page cache to avoid inconsitent data on disk
4313 	 * in case of crash before freeing or unwritten converting trans
4314 	 * is committed.
4315 	 */
4316 	if (ext4_should_journal_data(inode)) {
4317 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
4318 						   end - 1);
4319 		if (ret)
4320 			return ret;
4321 		goto truncate_pagecache;
4322 	}
4323 
4324 	/*
4325 	 * If the block size is less than the page size, the file's mapped
4326 	 * blocks within one page could be freed or converted to unwritten.
4327 	 * So it's necessary to remove writable userspace mappings, and then
4328 	 * ext4_page_mkwrite() can be called during subsequent write access
4329 	 * to these partial folios.
4330 	 */
4331 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
4332 	    blocksize < PAGE_SIZE && start < inode->i_size) {
4333 		loff_t page_boundary = round_up(start, PAGE_SIZE);
4334 
4335 		ext4_truncate_folio(inode, start, min(page_boundary, end));
4336 		if (end > page_boundary)
4337 			ext4_truncate_folio(inode,
4338 					    round_down(end, PAGE_SIZE), end);
4339 	}
4340 
4341 truncate_pagecache:
4342 	truncate_pagecache_range(inode, start, end - 1);
4343 	return 0;
4344 }
4345 
ext4_wait_dax_page(struct inode * inode)4346 static void ext4_wait_dax_page(struct inode *inode)
4347 {
4348 	filemap_invalidate_unlock(inode->i_mapping);
4349 	schedule();
4350 	filemap_invalidate_lock(inode->i_mapping);
4351 }
4352 
ext4_break_layouts(struct inode * inode)4353 int ext4_break_layouts(struct inode *inode)
4354 {
4355 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4356 		return -EINVAL;
4357 
4358 	return dax_break_layout_inode(inode, ext4_wait_dax_page);
4359 }
4360 
4361 /*
4362  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4363  * associated with the given offset and length
4364  *
4365  * @inode:  File inode
4366  * @offset: The offset where the hole will begin
4367  * @len:    The length of the hole
4368  *
4369  * Returns: 0 on success or negative on failure
4370  */
4371 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4372 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4373 {
4374 	struct inode *inode = file_inode(file);
4375 	struct super_block *sb = inode->i_sb;
4376 	ext4_lblk_t start_lblk, end_lblk;
4377 	loff_t max_end = sb->s_maxbytes;
4378 	loff_t end = offset + length;
4379 	handle_t *handle;
4380 	unsigned int credits;
4381 	int ret;
4382 
4383 	trace_ext4_punch_hole(inode, offset, length, 0);
4384 	WARN_ON_ONCE(!inode_is_locked(inode));
4385 
4386 	/*
4387 	 * For indirect-block based inodes, make sure that the hole within
4388 	 * one block before last range.
4389 	 */
4390 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4391 		max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4392 
4393 	/* No need to punch hole beyond i_size */
4394 	if (offset >= inode->i_size || offset >= max_end)
4395 		return 0;
4396 
4397 	/*
4398 	 * If the hole extends beyond i_size, set the hole to end after
4399 	 * the page that contains i_size.
4400 	 */
4401 	if (end > inode->i_size)
4402 		end = round_up(inode->i_size, PAGE_SIZE);
4403 	if (end > max_end)
4404 		end = max_end;
4405 	length = end - offset;
4406 
4407 	/*
4408 	 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4409 	 * block.
4410 	 */
4411 	if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4412 		ret = ext4_inode_attach_jinode(inode);
4413 		if (ret < 0)
4414 			return ret;
4415 	}
4416 
4417 
4418 	ret = ext4_update_disksize_before_punch(inode, offset, length);
4419 	if (ret)
4420 		return ret;
4421 
4422 	/* Now release the pages and zero block aligned part of pages*/
4423 	ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4424 	if (ret)
4425 		return ret;
4426 
4427 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4428 		credits = ext4_chunk_trans_extent(inode, 2);
4429 	else
4430 		credits = ext4_blocks_for_truncate(inode);
4431 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4432 	if (IS_ERR(handle)) {
4433 		ret = PTR_ERR(handle);
4434 		ext4_std_error(sb, ret);
4435 		return ret;
4436 	}
4437 
4438 	ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4439 	if (ret)
4440 		goto out_handle;
4441 
4442 	/* If there are blocks to remove, do it */
4443 	start_lblk = EXT4_B_TO_LBLK(inode, offset);
4444 	end_lblk = end >> inode->i_blkbits;
4445 
4446 	if (end_lblk > start_lblk) {
4447 		ext4_lblk_t hole_len = end_lblk - start_lblk;
4448 
4449 		ext4_fc_track_inode(handle, inode);
4450 		ext4_check_map_extents_env(inode);
4451 		down_write(&EXT4_I(inode)->i_data_sem);
4452 		ext4_discard_preallocations(inode);
4453 
4454 		ext4_es_remove_extent(inode, start_lblk, hole_len);
4455 
4456 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4457 			ret = ext4_ext_remove_space(inode, start_lblk,
4458 						    end_lblk - 1);
4459 		else
4460 			ret = ext4_ind_remove_space(handle, inode, start_lblk,
4461 						    end_lblk);
4462 		if (ret) {
4463 			up_write(&EXT4_I(inode)->i_data_sem);
4464 			goto out_handle;
4465 		}
4466 
4467 		ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4468 				      EXTENT_STATUS_HOLE, 0);
4469 		up_write(&EXT4_I(inode)->i_data_sem);
4470 	}
4471 	ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4472 
4473 	ret = ext4_mark_inode_dirty(handle, inode);
4474 	if (unlikely(ret))
4475 		goto out_handle;
4476 
4477 	ext4_update_inode_fsync_trans(handle, inode, 1);
4478 	if (IS_SYNC(inode))
4479 		ext4_handle_sync(handle);
4480 out_handle:
4481 	ext4_journal_stop(handle);
4482 	return ret;
4483 }
4484 
ext4_inode_attach_jinode(struct inode * inode)4485 int ext4_inode_attach_jinode(struct inode *inode)
4486 {
4487 	struct ext4_inode_info *ei = EXT4_I(inode);
4488 	struct jbd2_inode *jinode;
4489 
4490 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4491 		return 0;
4492 
4493 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4494 	spin_lock(&inode->i_lock);
4495 	if (!ei->jinode) {
4496 		if (!jinode) {
4497 			spin_unlock(&inode->i_lock);
4498 			return -ENOMEM;
4499 		}
4500 		ei->jinode = jinode;
4501 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4502 		jinode = NULL;
4503 	}
4504 	spin_unlock(&inode->i_lock);
4505 	if (unlikely(jinode != NULL))
4506 		jbd2_free_inode(jinode);
4507 	return 0;
4508 }
4509 
4510 /*
4511  * ext4_truncate()
4512  *
4513  * We block out ext4_get_block() block instantiations across the entire
4514  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4515  * simultaneously on behalf of the same inode.
4516  *
4517  * As we work through the truncate and commit bits of it to the journal there
4518  * is one core, guiding principle: the file's tree must always be consistent on
4519  * disk.  We must be able to restart the truncate after a crash.
4520  *
4521  * The file's tree may be transiently inconsistent in memory (although it
4522  * probably isn't), but whenever we close off and commit a journal transaction,
4523  * the contents of (the filesystem + the journal) must be consistent and
4524  * restartable.  It's pretty simple, really: bottom up, right to left (although
4525  * left-to-right works OK too).
4526  *
4527  * Note that at recovery time, journal replay occurs *before* the restart of
4528  * truncate against the orphan inode list.
4529  *
4530  * The committed inode has the new, desired i_size (which is the same as
4531  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4532  * that this inode's truncate did not complete and it will again call
4533  * ext4_truncate() to have another go.  So there will be instantiated blocks
4534  * to the right of the truncation point in a crashed ext4 filesystem.  But
4535  * that's fine - as long as they are linked from the inode, the post-crash
4536  * ext4_truncate() run will find them and release them.
4537  */
ext4_truncate(struct inode * inode)4538 int ext4_truncate(struct inode *inode)
4539 {
4540 	struct ext4_inode_info *ei = EXT4_I(inode);
4541 	unsigned int credits;
4542 	int err = 0, err2;
4543 	handle_t *handle;
4544 	struct address_space *mapping = inode->i_mapping;
4545 
4546 	/*
4547 	 * There is a possibility that we're either freeing the inode
4548 	 * or it's a completely new inode. In those cases we might not
4549 	 * have i_rwsem locked because it's not necessary.
4550 	 */
4551 	if (!(inode_state_read_once(inode) & (I_NEW | I_FREEING)))
4552 		WARN_ON(!inode_is_locked(inode));
4553 	trace_ext4_truncate_enter(inode);
4554 
4555 	if (!ext4_can_truncate(inode))
4556 		goto out_trace;
4557 
4558 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4559 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4560 
4561 	if (ext4_has_inline_data(inode)) {
4562 		int has_inline = 1;
4563 
4564 		err = ext4_inline_data_truncate(inode, &has_inline);
4565 		if (err || has_inline)
4566 			goto out_trace;
4567 	}
4568 
4569 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4570 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4571 		err = ext4_inode_attach_jinode(inode);
4572 		if (err)
4573 			goto out_trace;
4574 	}
4575 
4576 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4577 		credits = ext4_chunk_trans_extent(inode, 1);
4578 	else
4579 		credits = ext4_blocks_for_truncate(inode);
4580 
4581 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4582 	if (IS_ERR(handle)) {
4583 		err = PTR_ERR(handle);
4584 		goto out_trace;
4585 	}
4586 
4587 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4588 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4589 
4590 	/*
4591 	 * We add the inode to the orphan list, so that if this
4592 	 * truncate spans multiple transactions, and we crash, we will
4593 	 * resume the truncate when the filesystem recovers.  It also
4594 	 * marks the inode dirty, to catch the new size.
4595 	 *
4596 	 * Implication: the file must always be in a sane, consistent
4597 	 * truncatable state while each transaction commits.
4598 	 */
4599 	err = ext4_orphan_add(handle, inode);
4600 	if (err)
4601 		goto out_stop;
4602 
4603 	ext4_fc_track_inode(handle, inode);
4604 	ext4_check_map_extents_env(inode);
4605 
4606 	down_write(&EXT4_I(inode)->i_data_sem);
4607 	ext4_discard_preallocations(inode);
4608 
4609 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4610 		err = ext4_ext_truncate(handle, inode);
4611 	else
4612 		ext4_ind_truncate(handle, inode);
4613 
4614 	up_write(&ei->i_data_sem);
4615 	if (err)
4616 		goto out_stop;
4617 
4618 	if (IS_SYNC(inode))
4619 		ext4_handle_sync(handle);
4620 
4621 out_stop:
4622 	/*
4623 	 * If this was a simple ftruncate() and the file will remain alive,
4624 	 * then we need to clear up the orphan record which we created above.
4625 	 * However, if this was a real unlink then we were called by
4626 	 * ext4_evict_inode(), and we allow that function to clean up the
4627 	 * orphan info for us.
4628 	 */
4629 	if (inode->i_nlink)
4630 		ext4_orphan_del(handle, inode);
4631 
4632 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4633 	err2 = ext4_mark_inode_dirty(handle, inode);
4634 	if (unlikely(err2 && !err))
4635 		err = err2;
4636 	ext4_journal_stop(handle);
4637 
4638 out_trace:
4639 	trace_ext4_truncate_exit(inode);
4640 	return err;
4641 }
4642 
ext4_inode_peek_iversion(const struct inode * inode)4643 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4644 {
4645 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4646 		return inode_peek_iversion_raw(inode);
4647 	else
4648 		return inode_peek_iversion(inode);
4649 }
4650 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4651 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4652 				 struct ext4_inode_info *ei)
4653 {
4654 	struct inode *inode = &(ei->vfs_inode);
4655 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4656 	struct super_block *sb = inode->i_sb;
4657 
4658 	if (i_blocks <= ~0U) {
4659 		/*
4660 		 * i_blocks can be represented in a 32 bit variable
4661 		 * as multiple of 512 bytes
4662 		 */
4663 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4664 		raw_inode->i_blocks_high = 0;
4665 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4666 		return 0;
4667 	}
4668 
4669 	/*
4670 	 * This should never happen since sb->s_maxbytes should not have
4671 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4672 	 * feature in ext4_fill_super().
4673 	 */
4674 	if (!ext4_has_feature_huge_file(sb))
4675 		return -EFSCORRUPTED;
4676 
4677 	if (i_blocks <= 0xffffffffffffULL) {
4678 		/*
4679 		 * i_blocks can be represented in a 48 bit variable
4680 		 * as multiple of 512 bytes
4681 		 */
4682 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4683 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4684 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4685 	} else {
4686 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4687 		/* i_block is stored in file system block size */
4688 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4689 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4690 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4691 	}
4692 	return 0;
4693 }
4694 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4695 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4696 {
4697 	struct ext4_inode_info *ei = EXT4_I(inode);
4698 	uid_t i_uid;
4699 	gid_t i_gid;
4700 	projid_t i_projid;
4701 	int block;
4702 	int err;
4703 
4704 	err = ext4_inode_blocks_set(raw_inode, ei);
4705 
4706 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4707 	i_uid = i_uid_read(inode);
4708 	i_gid = i_gid_read(inode);
4709 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4710 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4711 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4712 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4713 		/*
4714 		 * Fix up interoperability with old kernels. Otherwise,
4715 		 * old inodes get re-used with the upper 16 bits of the
4716 		 * uid/gid intact.
4717 		 */
4718 		if (ei->i_dtime && !ext4_inode_orphan_tracked(inode)) {
4719 			raw_inode->i_uid_high = 0;
4720 			raw_inode->i_gid_high = 0;
4721 		} else {
4722 			raw_inode->i_uid_high =
4723 				cpu_to_le16(high_16_bits(i_uid));
4724 			raw_inode->i_gid_high =
4725 				cpu_to_le16(high_16_bits(i_gid));
4726 		}
4727 	} else {
4728 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4729 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4730 		raw_inode->i_uid_high = 0;
4731 		raw_inode->i_gid_high = 0;
4732 	}
4733 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4734 
4735 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4736 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4737 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4738 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4739 
4740 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4741 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4742 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4743 		raw_inode->i_file_acl_high =
4744 			cpu_to_le16(ei->i_file_acl >> 32);
4745 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4746 	ext4_isize_set(raw_inode, ei->i_disksize);
4747 
4748 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4749 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4750 		if (old_valid_dev(inode->i_rdev)) {
4751 			raw_inode->i_block[0] =
4752 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4753 			raw_inode->i_block[1] = 0;
4754 		} else {
4755 			raw_inode->i_block[0] = 0;
4756 			raw_inode->i_block[1] =
4757 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4758 			raw_inode->i_block[2] = 0;
4759 		}
4760 	} else if (!ext4_has_inline_data(inode)) {
4761 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4762 			raw_inode->i_block[block] = ei->i_data[block];
4763 	}
4764 
4765 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4766 		u64 ivers = ext4_inode_peek_iversion(inode);
4767 
4768 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4769 		if (ei->i_extra_isize) {
4770 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4771 				raw_inode->i_version_hi =
4772 					cpu_to_le32(ivers >> 32);
4773 			raw_inode->i_extra_isize =
4774 				cpu_to_le16(ei->i_extra_isize);
4775 		}
4776 	}
4777 
4778 	if (i_projid != EXT4_DEF_PROJID &&
4779 	    !ext4_has_feature_project(inode->i_sb))
4780 		err = err ?: -EFSCORRUPTED;
4781 
4782 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4783 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4784 		raw_inode->i_projid = cpu_to_le32(i_projid);
4785 
4786 	ext4_inode_csum_set(inode, raw_inode, ei);
4787 	return err;
4788 }
4789 
4790 /*
4791  * ext4_get_inode_loc returns with an extra refcount against the inode's
4792  * underlying buffer_head on success. If we pass 'inode' and it does not
4793  * have in-inode xattr, we have all inode data in memory that is needed
4794  * to recreate the on-disk version of this inode.
4795  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4796 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4797 				struct inode *inode, struct ext4_iloc *iloc,
4798 				ext4_fsblk_t *ret_block)
4799 {
4800 	struct ext4_group_desc	*gdp;
4801 	struct buffer_head	*bh;
4802 	ext4_fsblk_t		block;
4803 	struct blk_plug		plug;
4804 	int			inodes_per_block, inode_offset;
4805 
4806 	iloc->bh = NULL;
4807 	if (ino < EXT4_ROOT_INO ||
4808 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4809 		return -EFSCORRUPTED;
4810 
4811 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4812 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4813 	if (!gdp)
4814 		return -EIO;
4815 
4816 	/*
4817 	 * Figure out the offset within the block group inode table
4818 	 */
4819 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4820 	inode_offset = ((ino - 1) %
4821 			EXT4_INODES_PER_GROUP(sb));
4822 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4823 
4824 	block = ext4_inode_table(sb, gdp);
4825 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4826 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4827 		ext4_error(sb, "Invalid inode table block %llu in "
4828 			   "block_group %u", block, iloc->block_group);
4829 		return -EFSCORRUPTED;
4830 	}
4831 	block += (inode_offset / inodes_per_block);
4832 
4833 	bh = sb_getblk(sb, block);
4834 	if (unlikely(!bh))
4835 		return -ENOMEM;
4836 	if (ext4_buffer_uptodate(bh))
4837 		goto has_buffer;
4838 
4839 	lock_buffer(bh);
4840 	if (ext4_buffer_uptodate(bh)) {
4841 		/* Someone brought it uptodate while we waited */
4842 		unlock_buffer(bh);
4843 		goto has_buffer;
4844 	}
4845 
4846 	/*
4847 	 * If we have all information of the inode in memory and this
4848 	 * is the only valid inode in the block, we need not read the
4849 	 * block.
4850 	 */
4851 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4852 		struct buffer_head *bitmap_bh;
4853 		int i, start;
4854 
4855 		start = inode_offset & ~(inodes_per_block - 1);
4856 
4857 		/* Is the inode bitmap in cache? */
4858 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4859 		if (unlikely(!bitmap_bh))
4860 			goto make_io;
4861 
4862 		/*
4863 		 * If the inode bitmap isn't in cache then the
4864 		 * optimisation may end up performing two reads instead
4865 		 * of one, so skip it.
4866 		 */
4867 		if (!buffer_uptodate(bitmap_bh)) {
4868 			brelse(bitmap_bh);
4869 			goto make_io;
4870 		}
4871 		for (i = start; i < start + inodes_per_block; i++) {
4872 			if (i == inode_offset)
4873 				continue;
4874 			if (ext4_test_bit(i, bitmap_bh->b_data))
4875 				break;
4876 		}
4877 		brelse(bitmap_bh);
4878 		if (i == start + inodes_per_block) {
4879 			struct ext4_inode *raw_inode =
4880 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4881 
4882 			/* all other inodes are free, so skip I/O */
4883 			memset(bh->b_data, 0, bh->b_size);
4884 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4885 				ext4_fill_raw_inode(inode, raw_inode);
4886 			set_buffer_uptodate(bh);
4887 			unlock_buffer(bh);
4888 			goto has_buffer;
4889 		}
4890 	}
4891 
4892 make_io:
4893 	/*
4894 	 * If we need to do any I/O, try to pre-readahead extra
4895 	 * blocks from the inode table.
4896 	 */
4897 	blk_start_plug(&plug);
4898 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4899 		ext4_fsblk_t b, end, table;
4900 		unsigned num;
4901 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4902 
4903 		table = ext4_inode_table(sb, gdp);
4904 		/* s_inode_readahead_blks is always a power of 2 */
4905 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4906 		if (table > b)
4907 			b = table;
4908 		end = b + ra_blks;
4909 		num = EXT4_INODES_PER_GROUP(sb);
4910 		if (ext4_has_group_desc_csum(sb))
4911 			num -= ext4_itable_unused_count(sb, gdp);
4912 		table += num / inodes_per_block;
4913 		if (end > table)
4914 			end = table;
4915 		while (b <= end)
4916 			ext4_sb_breadahead_unmovable(sb, b++);
4917 	}
4918 
4919 	/*
4920 	 * There are other valid inodes in the buffer, this inode
4921 	 * has in-inode xattrs, or we don't have this inode in memory.
4922 	 * Read the block from disk.
4923 	 */
4924 	trace_ext4_load_inode(sb, ino);
4925 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4926 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4927 	blk_finish_plug(&plug);
4928 	wait_on_buffer(bh);
4929 	if (!buffer_uptodate(bh)) {
4930 		if (ret_block)
4931 			*ret_block = block;
4932 		brelse(bh);
4933 		return -EIO;
4934 	}
4935 has_buffer:
4936 	iloc->bh = bh;
4937 	return 0;
4938 }
4939 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4940 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4941 					struct ext4_iloc *iloc)
4942 {
4943 	ext4_fsblk_t err_blk = 0;
4944 	int ret;
4945 
4946 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4947 					&err_blk);
4948 
4949 	if (ret == -EIO)
4950 		ext4_error_inode_block(inode, err_blk, EIO,
4951 					"unable to read itable block");
4952 
4953 	return ret;
4954 }
4955 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4956 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4957 {
4958 	ext4_fsblk_t err_blk = 0;
4959 	int ret;
4960 
4961 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4962 					&err_blk);
4963 
4964 	if (ret == -EIO)
4965 		ext4_error_inode_block(inode, err_blk, EIO,
4966 					"unable to read itable block");
4967 
4968 	return ret;
4969 }
4970 
4971 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4972 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4973 			  struct ext4_iloc *iloc)
4974 {
4975 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4976 }
4977 
ext4_should_enable_dax(struct inode * inode)4978 static bool ext4_should_enable_dax(struct inode *inode)
4979 {
4980 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4981 
4982 	if (test_opt2(inode->i_sb, DAX_NEVER))
4983 		return false;
4984 	if (!S_ISREG(inode->i_mode))
4985 		return false;
4986 	if (ext4_should_journal_data(inode))
4987 		return false;
4988 	if (ext4_has_inline_data(inode))
4989 		return false;
4990 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4991 		return false;
4992 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4993 		return false;
4994 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4995 		return false;
4996 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4997 		return true;
4998 
4999 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
5000 }
5001 
ext4_set_inode_flags(struct inode * inode,bool init)5002 void ext4_set_inode_flags(struct inode *inode, bool init)
5003 {
5004 	unsigned int flags = EXT4_I(inode)->i_flags;
5005 	unsigned int new_fl = 0;
5006 
5007 	WARN_ON_ONCE(IS_DAX(inode) && init);
5008 
5009 	if (flags & EXT4_SYNC_FL)
5010 		new_fl |= S_SYNC;
5011 	if (flags & EXT4_APPEND_FL)
5012 		new_fl |= S_APPEND;
5013 	if (flags & EXT4_IMMUTABLE_FL)
5014 		new_fl |= S_IMMUTABLE;
5015 	if (flags & EXT4_NOATIME_FL)
5016 		new_fl |= S_NOATIME;
5017 	if (flags & EXT4_DIRSYNC_FL)
5018 		new_fl |= S_DIRSYNC;
5019 
5020 	/* Because of the way inode_set_flags() works we must preserve S_DAX
5021 	 * here if already set. */
5022 	new_fl |= (inode->i_flags & S_DAX);
5023 	if (init && ext4_should_enable_dax(inode))
5024 		new_fl |= S_DAX;
5025 
5026 	if (flags & EXT4_ENCRYPT_FL)
5027 		new_fl |= S_ENCRYPTED;
5028 	if (flags & EXT4_CASEFOLD_FL)
5029 		new_fl |= S_CASEFOLD;
5030 	if (flags & EXT4_VERITY_FL)
5031 		new_fl |= S_VERITY;
5032 	inode_set_flags(inode, new_fl,
5033 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
5034 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
5035 }
5036 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5037 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5038 				  struct ext4_inode_info *ei)
5039 {
5040 	blkcnt_t i_blocks ;
5041 	struct inode *inode = &(ei->vfs_inode);
5042 	struct super_block *sb = inode->i_sb;
5043 
5044 	if (ext4_has_feature_huge_file(sb)) {
5045 		/* we are using combined 48 bit field */
5046 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5047 					le32_to_cpu(raw_inode->i_blocks_lo);
5048 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5049 			/* i_blocks represent file system block size */
5050 			return i_blocks  << (inode->i_blkbits - 9);
5051 		} else {
5052 			return i_blocks;
5053 		}
5054 	} else {
5055 		return le32_to_cpu(raw_inode->i_blocks_lo);
5056 	}
5057 }
5058 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5059 static inline int ext4_iget_extra_inode(struct inode *inode,
5060 					 struct ext4_inode *raw_inode,
5061 					 struct ext4_inode_info *ei)
5062 {
5063 	__le32 *magic = (void *)raw_inode +
5064 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
5065 
5066 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
5067 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
5068 		int err;
5069 
5070 		err = xattr_check_inode(inode, IHDR(inode, raw_inode),
5071 					ITAIL(inode, raw_inode));
5072 		if (err)
5073 			return err;
5074 
5075 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5076 		err = ext4_find_inline_data_nolock(inode);
5077 		if (!err && ext4_has_inline_data(inode))
5078 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
5079 		return err;
5080 	} else
5081 		EXT4_I(inode)->i_inline_off = 0;
5082 	return 0;
5083 }
5084 
ext4_get_projid(struct inode * inode,kprojid_t * projid)5085 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
5086 {
5087 	if (!ext4_has_feature_project(inode->i_sb))
5088 		return -EOPNOTSUPP;
5089 	*projid = EXT4_I(inode)->i_projid;
5090 	return 0;
5091 }
5092 
5093 /*
5094  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
5095  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
5096  * set.
5097  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)5098 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
5099 {
5100 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5101 		inode_set_iversion_raw(inode, val);
5102 	else
5103 		inode_set_iversion_queried(inode, val);
5104 }
5105 
check_igot_inode(struct inode * inode,ext4_iget_flags flags,const char * function,unsigned int line)5106 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
5107 			    const char *function, unsigned int line)
5108 {
5109 	const char *err_str;
5110 
5111 	if (flags & EXT4_IGET_EA_INODE) {
5112 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5113 			err_str = "missing EA_INODE flag";
5114 			goto error;
5115 		}
5116 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5117 		    EXT4_I(inode)->i_file_acl) {
5118 			err_str = "ea_inode with extended attributes";
5119 			goto error;
5120 		}
5121 	} else {
5122 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5123 			/*
5124 			 * open_by_handle_at() could provide an old inode number
5125 			 * that has since been reused for an ea_inode; this does
5126 			 * not indicate filesystem corruption
5127 			 */
5128 			if (flags & EXT4_IGET_HANDLE)
5129 				return -ESTALE;
5130 			err_str = "unexpected EA_INODE flag";
5131 			goto error;
5132 		}
5133 	}
5134 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5135 		err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
5136 		goto error;
5137 	}
5138 	return 0;
5139 
5140 error:
5141 	ext4_error_inode(inode, function, line, 0, "%s", err_str);
5142 	return -EFSCORRUPTED;
5143 }
5144 
ext4_should_enable_large_folio(struct inode * inode)5145 static bool ext4_should_enable_large_folio(struct inode *inode)
5146 {
5147 	struct super_block *sb = inode->i_sb;
5148 
5149 	if (!S_ISREG(inode->i_mode))
5150 		return false;
5151 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
5152 	    ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA))
5153 		return false;
5154 	if (ext4_has_feature_verity(sb))
5155 		return false;
5156 	if (ext4_has_feature_encrypt(sb))
5157 		return false;
5158 
5159 	return true;
5160 }
5161 
5162 /*
5163  * Limit the maximum folio order to 2048 blocks to prevent overestimation
5164  * of reserve handle credits during the folio writeback in environments
5165  * where the PAGE_SIZE exceeds 4KB.
5166  */
5167 #define EXT4_MAX_PAGECACHE_ORDER(i)		\
5168 		umin(MAX_PAGECACHE_ORDER, (11 + (i)->i_blkbits - PAGE_SHIFT))
ext4_set_inode_mapping_order(struct inode * inode)5169 void ext4_set_inode_mapping_order(struct inode *inode)
5170 {
5171 	if (!ext4_should_enable_large_folio(inode))
5172 		return;
5173 
5174 	mapping_set_folio_order_range(inode->i_mapping, 0,
5175 				      EXT4_MAX_PAGECACHE_ORDER(inode));
5176 }
5177 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)5178 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
5179 			  ext4_iget_flags flags, const char *function,
5180 			  unsigned int line)
5181 {
5182 	struct ext4_iloc iloc;
5183 	struct ext4_inode *raw_inode;
5184 	struct ext4_inode_info *ei;
5185 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5186 	struct inode *inode;
5187 	journal_t *journal = EXT4_SB(sb)->s_journal;
5188 	long ret;
5189 	loff_t size;
5190 	int block;
5191 	uid_t i_uid;
5192 	gid_t i_gid;
5193 	projid_t i_projid;
5194 
5195 	if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) ||
5196 	    (ino < EXT4_ROOT_INO) ||
5197 	    (ino > le32_to_cpu(es->s_inodes_count))) {
5198 		if (flags & EXT4_IGET_HANDLE)
5199 			return ERR_PTR(-ESTALE);
5200 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
5201 			     "inode #%lu: comm %s: iget: illegal inode #",
5202 			     ino, current->comm);
5203 		return ERR_PTR(-EFSCORRUPTED);
5204 	}
5205 
5206 	inode = iget_locked(sb, ino);
5207 	if (!inode)
5208 		return ERR_PTR(-ENOMEM);
5209 	if (!(inode_state_read_once(inode) & I_NEW)) {
5210 		ret = check_igot_inode(inode, flags, function, line);
5211 		if (ret) {
5212 			iput(inode);
5213 			return ERR_PTR(ret);
5214 		}
5215 		return inode;
5216 	}
5217 
5218 	ei = EXT4_I(inode);
5219 	iloc.bh = NULL;
5220 
5221 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
5222 	if (ret < 0)
5223 		goto bad_inode;
5224 	raw_inode = ext4_raw_inode(&iloc);
5225 
5226 	if ((flags & EXT4_IGET_HANDLE) &&
5227 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
5228 		ret = -ESTALE;
5229 		goto bad_inode;
5230 	}
5231 
5232 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5233 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5234 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5235 			EXT4_INODE_SIZE(inode->i_sb) ||
5236 		    (ei->i_extra_isize & 3)) {
5237 			ext4_error_inode(inode, function, line, 0,
5238 					 "iget: bad extra_isize %u "
5239 					 "(inode size %u)",
5240 					 ei->i_extra_isize,
5241 					 EXT4_INODE_SIZE(inode->i_sb));
5242 			ret = -EFSCORRUPTED;
5243 			goto bad_inode;
5244 		}
5245 	} else
5246 		ei->i_extra_isize = 0;
5247 
5248 	/* Precompute checksum seed for inode metadata */
5249 	if (ext4_has_feature_metadata_csum(sb)) {
5250 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5251 		__u32 csum;
5252 		__le32 inum = cpu_to_le32(inode->i_ino);
5253 		__le32 gen = raw_inode->i_generation;
5254 		csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum,
5255 				   sizeof(inum));
5256 		ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen));
5257 	}
5258 
5259 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
5260 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
5261 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
5262 		ext4_error_inode_err(inode, function, line, 0,
5263 				EFSBADCRC, "iget: checksum invalid");
5264 		ret = -EFSBADCRC;
5265 		goto bad_inode;
5266 	}
5267 
5268 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5269 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5270 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5271 	if (ext4_has_feature_project(sb) &&
5272 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5273 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5274 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5275 	else
5276 		i_projid = EXT4_DEF_PROJID;
5277 
5278 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5279 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5280 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5281 	}
5282 	i_uid_write(inode, i_uid);
5283 	i_gid_write(inode, i_gid);
5284 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5285 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5286 
5287 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
5288 	ei->i_inline_off = 0;
5289 	ei->i_dir_start_lookup = 0;
5290 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5291 	/* We now have enough fields to check if the inode was active or not.
5292 	 * This is needed because nfsd might try to access dead inodes
5293 	 * the test is that same one that e2fsck uses
5294 	 * NeilBrown 1999oct15
5295 	 */
5296 	if (inode->i_nlink == 0) {
5297 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5298 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5299 		    ino != EXT4_BOOT_LOADER_INO) {
5300 			/* this inode is deleted or unallocated */
5301 			if (flags & EXT4_IGET_SPECIAL) {
5302 				ext4_error_inode(inode, function, line, 0,
5303 						 "iget: special inode unallocated");
5304 				ret = -EFSCORRUPTED;
5305 			} else
5306 				ret = -ESTALE;
5307 			goto bad_inode;
5308 		}
5309 		/* The only unlinked inodes we let through here have
5310 		 * valid i_mode and are being read by the orphan
5311 		 * recovery code: that's fine, we're about to complete
5312 		 * the process of deleting those.
5313 		 * OR it is the EXT4_BOOT_LOADER_INO which is
5314 		 * not initialized on a new filesystem. */
5315 	}
5316 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5317 	ext4_set_inode_flags(inode, true);
5318 	/* Detect invalid flag combination - can't have both inline data and extents */
5319 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) &&
5320 	    ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5321 		ext4_error_inode(inode, function, line, 0,
5322 			"inode has both inline data and extents flags");
5323 		ret = -EFSCORRUPTED;
5324 		goto bad_inode;
5325 	}
5326 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5327 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5328 	if (ext4_has_feature_64bit(sb))
5329 		ei->i_file_acl |=
5330 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5331 	inode->i_size = ext4_isize(sb, raw_inode);
5332 	size = i_size_read(inode);
5333 	if (size < 0 || size > ext4_get_maxbytes(inode)) {
5334 		ext4_error_inode(inode, function, line, 0,
5335 				 "iget: bad i_size value: %lld", size);
5336 		ret = -EFSCORRUPTED;
5337 		goto bad_inode;
5338 	}
5339 	/*
5340 	 * If dir_index is not enabled but there's dir with INDEX flag set,
5341 	 * we'd normally treat htree data as empty space. But with metadata
5342 	 * checksumming that corrupts checksums so forbid that.
5343 	 */
5344 	if (!ext4_has_feature_dir_index(sb) &&
5345 	    ext4_has_feature_metadata_csum(sb) &&
5346 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5347 		ext4_error_inode(inode, function, line, 0,
5348 			 "iget: Dir with htree data on filesystem without dir_index feature.");
5349 		ret = -EFSCORRUPTED;
5350 		goto bad_inode;
5351 	}
5352 	ei->i_disksize = inode->i_size;
5353 #ifdef CONFIG_QUOTA
5354 	ei->i_reserved_quota = 0;
5355 #endif
5356 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5357 	ei->i_block_group = iloc.block_group;
5358 	ei->i_last_alloc_group = ~0;
5359 	/*
5360 	 * NOTE! The in-memory inode i_data array is in little-endian order
5361 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5362 	 */
5363 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5364 		ei->i_data[block] = raw_inode->i_block[block];
5365 	INIT_LIST_HEAD(&ei->i_orphan);
5366 	ext4_fc_init_inode(&ei->vfs_inode);
5367 
5368 	/*
5369 	 * Set transaction id's of transactions that have to be committed
5370 	 * to finish f[data]sync. We set them to currently running transaction
5371 	 * as we cannot be sure that the inode or some of its metadata isn't
5372 	 * part of the transaction - the inode could have been reclaimed and
5373 	 * now it is reread from disk.
5374 	 */
5375 	if (journal) {
5376 		transaction_t *transaction;
5377 		tid_t tid;
5378 
5379 		read_lock(&journal->j_state_lock);
5380 		if (journal->j_running_transaction)
5381 			transaction = journal->j_running_transaction;
5382 		else
5383 			transaction = journal->j_committing_transaction;
5384 		if (transaction)
5385 			tid = transaction->t_tid;
5386 		else
5387 			tid = journal->j_commit_sequence;
5388 		read_unlock(&journal->j_state_lock);
5389 		ei->i_sync_tid = tid;
5390 		ei->i_datasync_tid = tid;
5391 	}
5392 
5393 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5394 		if (ei->i_extra_isize == 0) {
5395 			/* The extra space is currently unused. Use it. */
5396 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5397 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5398 					    EXT4_GOOD_OLD_INODE_SIZE;
5399 		} else {
5400 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5401 			if (ret)
5402 				goto bad_inode;
5403 		}
5404 	}
5405 
5406 	EXT4_INODE_GET_CTIME(inode, raw_inode);
5407 	EXT4_INODE_GET_ATIME(inode, raw_inode);
5408 	EXT4_INODE_GET_MTIME(inode, raw_inode);
5409 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5410 
5411 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5412 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5413 
5414 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5415 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5416 				ivers |=
5417 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5418 		}
5419 		ext4_inode_set_iversion_queried(inode, ivers);
5420 	}
5421 
5422 	ret = 0;
5423 	if (ei->i_file_acl &&
5424 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5425 		ext4_error_inode(inode, function, line, 0,
5426 				 "iget: bad extended attribute block %llu",
5427 				 ei->i_file_acl);
5428 		ret = -EFSCORRUPTED;
5429 		goto bad_inode;
5430 	} else if (!ext4_has_inline_data(inode)) {
5431 		/* validate the block references in the inode */
5432 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5433 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5434 			(S_ISLNK(inode->i_mode) &&
5435 			!ext4_inode_is_fast_symlink(inode)))) {
5436 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5437 				ret = ext4_ext_check_inode(inode);
5438 			else
5439 				ret = ext4_ind_check_inode(inode);
5440 		}
5441 	}
5442 	if (ret)
5443 		goto bad_inode;
5444 
5445 	if (S_ISREG(inode->i_mode)) {
5446 		inode->i_op = &ext4_file_inode_operations;
5447 		inode->i_fop = &ext4_file_operations;
5448 		ext4_set_aops(inode);
5449 	} else if (S_ISDIR(inode->i_mode)) {
5450 		inode->i_op = &ext4_dir_inode_operations;
5451 		inode->i_fop = &ext4_dir_operations;
5452 	} else if (S_ISLNK(inode->i_mode)) {
5453 		/* VFS does not allow setting these so must be corruption */
5454 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5455 			ext4_error_inode(inode, function, line, 0,
5456 					 "iget: immutable or append flags "
5457 					 "not allowed on symlinks");
5458 			ret = -EFSCORRUPTED;
5459 			goto bad_inode;
5460 		}
5461 		if (IS_ENCRYPTED(inode)) {
5462 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5463 		} else if (ext4_inode_is_fast_symlink(inode)) {
5464 			inode->i_op = &ext4_fast_symlink_inode_operations;
5465 			if (inode->i_size == 0 ||
5466 			    inode->i_size >= sizeof(ei->i_data) ||
5467 			    strnlen((char *)ei->i_data, inode->i_size + 1) !=
5468 								inode->i_size) {
5469 				ext4_error_inode(inode, function, line, 0,
5470 					"invalid fast symlink length %llu",
5471 					 (unsigned long long)inode->i_size);
5472 				ret = -EFSCORRUPTED;
5473 				goto bad_inode;
5474 			}
5475 			inode_set_cached_link(inode, (char *)ei->i_data,
5476 					      inode->i_size);
5477 		} else {
5478 			inode->i_op = &ext4_symlink_inode_operations;
5479 		}
5480 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5481 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5482 		inode->i_op = &ext4_special_inode_operations;
5483 		if (raw_inode->i_block[0])
5484 			init_special_inode(inode, inode->i_mode,
5485 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5486 		else
5487 			init_special_inode(inode, inode->i_mode,
5488 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5489 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5490 		make_bad_inode(inode);
5491 	} else {
5492 		ret = -EFSCORRUPTED;
5493 		ext4_error_inode(inode, function, line, 0,
5494 				 "iget: bogus i_mode (%o)", inode->i_mode);
5495 		goto bad_inode;
5496 	}
5497 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5498 		ext4_error_inode(inode, function, line, 0,
5499 				 "casefold flag without casefold feature");
5500 		ret = -EFSCORRUPTED;
5501 		goto bad_inode;
5502 	}
5503 
5504 	ext4_set_inode_mapping_order(inode);
5505 
5506 	ret = check_igot_inode(inode, flags, function, line);
5507 	/*
5508 	 * -ESTALE here means there is nothing inherently wrong with the inode,
5509 	 * it's just not an inode we can return for an fhandle lookup.
5510 	 */
5511 	if (ret == -ESTALE) {
5512 		brelse(iloc.bh);
5513 		unlock_new_inode(inode);
5514 		iput(inode);
5515 		return ERR_PTR(-ESTALE);
5516 	}
5517 	if (ret)
5518 		goto bad_inode;
5519 	brelse(iloc.bh);
5520 
5521 	unlock_new_inode(inode);
5522 	return inode;
5523 
5524 bad_inode:
5525 	brelse(iloc.bh);
5526 	iget_failed(inode);
5527 	return ERR_PTR(ret);
5528 }
5529 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5530 static void __ext4_update_other_inode_time(struct super_block *sb,
5531 					   unsigned long orig_ino,
5532 					   unsigned long ino,
5533 					   struct ext4_inode *raw_inode)
5534 {
5535 	struct inode *inode;
5536 
5537 	inode = find_inode_by_ino_rcu(sb, ino);
5538 	if (!inode)
5539 		return;
5540 
5541 	if (!inode_is_dirtytime_only(inode))
5542 		return;
5543 
5544 	spin_lock(&inode->i_lock);
5545 	if (inode_is_dirtytime_only(inode)) {
5546 		struct ext4_inode_info	*ei = EXT4_I(inode);
5547 
5548 		inode_state_clear(inode, I_DIRTY_TIME);
5549 		spin_unlock(&inode->i_lock);
5550 
5551 		spin_lock(&ei->i_raw_lock);
5552 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5553 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5554 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5555 		ext4_inode_csum_set(inode, raw_inode, ei);
5556 		spin_unlock(&ei->i_raw_lock);
5557 		trace_ext4_other_inode_update_time(inode, orig_ino);
5558 		return;
5559 	}
5560 	spin_unlock(&inode->i_lock);
5561 }
5562 
5563 /*
5564  * Opportunistically update the other time fields for other inodes in
5565  * the same inode table block.
5566  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5567 static void ext4_update_other_inodes_time(struct super_block *sb,
5568 					  unsigned long orig_ino, char *buf)
5569 {
5570 	unsigned long ino;
5571 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5572 	int inode_size = EXT4_INODE_SIZE(sb);
5573 
5574 	/*
5575 	 * Calculate the first inode in the inode table block.  Inode
5576 	 * numbers are one-based.  That is, the first inode in a block
5577 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5578 	 */
5579 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5580 	rcu_read_lock();
5581 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5582 		if (ino == orig_ino)
5583 			continue;
5584 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5585 					       (struct ext4_inode *)buf);
5586 	}
5587 	rcu_read_unlock();
5588 }
5589 
5590 /*
5591  * Post the struct inode info into an on-disk inode location in the
5592  * buffer-cache.  This gobbles the caller's reference to the
5593  * buffer_head in the inode location struct.
5594  *
5595  * The caller must have write access to iloc->bh.
5596  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5597 static int ext4_do_update_inode(handle_t *handle,
5598 				struct inode *inode,
5599 				struct ext4_iloc *iloc)
5600 {
5601 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5602 	struct ext4_inode_info *ei = EXT4_I(inode);
5603 	struct buffer_head *bh = iloc->bh;
5604 	struct super_block *sb = inode->i_sb;
5605 	int err;
5606 	int need_datasync = 0, set_large_file = 0;
5607 
5608 	spin_lock(&ei->i_raw_lock);
5609 
5610 	/*
5611 	 * For fields not tracked in the in-memory inode, initialise them
5612 	 * to zero for new inodes.
5613 	 */
5614 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5615 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5616 
5617 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5618 		need_datasync = 1;
5619 	if (ei->i_disksize > 0x7fffffffULL) {
5620 		if (!ext4_has_feature_large_file(sb) ||
5621 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5622 			set_large_file = 1;
5623 	}
5624 
5625 	err = ext4_fill_raw_inode(inode, raw_inode);
5626 	spin_unlock(&ei->i_raw_lock);
5627 	if (err) {
5628 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5629 		goto out_brelse;
5630 	}
5631 
5632 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5633 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5634 					      bh->b_data);
5635 
5636 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5637 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5638 	if (err)
5639 		goto out_error;
5640 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5641 	if (set_large_file) {
5642 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5643 		err = ext4_journal_get_write_access(handle, sb,
5644 						    EXT4_SB(sb)->s_sbh,
5645 						    EXT4_JTR_NONE);
5646 		if (err)
5647 			goto out_error;
5648 		lock_buffer(EXT4_SB(sb)->s_sbh);
5649 		ext4_set_feature_large_file(sb);
5650 		ext4_superblock_csum_set(sb);
5651 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5652 		ext4_handle_sync(handle);
5653 		err = ext4_handle_dirty_metadata(handle, NULL,
5654 						 EXT4_SB(sb)->s_sbh);
5655 	}
5656 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5657 out_error:
5658 	ext4_std_error(inode->i_sb, err);
5659 out_brelse:
5660 	brelse(bh);
5661 	return err;
5662 }
5663 
5664 /*
5665  * ext4_write_inode()
5666  *
5667  * We are called from a few places:
5668  *
5669  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5670  *   Here, there will be no transaction running. We wait for any running
5671  *   transaction to commit.
5672  *
5673  * - Within flush work (sys_sync(), kupdate and such).
5674  *   We wait on commit, if told to.
5675  *
5676  * - Within iput_final() -> write_inode_now()
5677  *   We wait on commit, if told to.
5678  *
5679  * In all cases it is actually safe for us to return without doing anything,
5680  * because the inode has been copied into a raw inode buffer in
5681  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5682  * writeback.
5683  *
5684  * Note that we are absolutely dependent upon all inode dirtiers doing the
5685  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5686  * which we are interested.
5687  *
5688  * It would be a bug for them to not do this.  The code:
5689  *
5690  *	mark_inode_dirty(inode)
5691  *	stuff();
5692  *	inode->i_size = expr;
5693  *
5694  * is in error because write_inode() could occur while `stuff()' is running,
5695  * and the new i_size will be lost.  Plus the inode will no longer be on the
5696  * superblock's dirty inode list.
5697  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5698 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5699 {
5700 	int err;
5701 
5702 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5703 		return 0;
5704 
5705 	err = ext4_emergency_state(inode->i_sb);
5706 	if (unlikely(err))
5707 		return err;
5708 
5709 	if (EXT4_SB(inode->i_sb)->s_journal) {
5710 		if (ext4_journal_current_handle()) {
5711 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5712 			dump_stack();
5713 			return -EIO;
5714 		}
5715 
5716 		/*
5717 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5718 		 * ext4_sync_fs() will force the commit after everything is
5719 		 * written.
5720 		 */
5721 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5722 			return 0;
5723 
5724 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5725 						EXT4_I(inode)->i_sync_tid);
5726 	} else {
5727 		struct ext4_iloc iloc;
5728 
5729 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5730 		if (err)
5731 			return err;
5732 		/*
5733 		 * sync(2) will flush the whole buffer cache. No need to do
5734 		 * it here separately for each inode.
5735 		 */
5736 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5737 			sync_dirty_buffer(iloc.bh);
5738 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5739 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5740 					       "IO error syncing inode");
5741 			err = -EIO;
5742 		}
5743 		brelse(iloc.bh);
5744 	}
5745 	return err;
5746 }
5747 
5748 /*
5749  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5750  * buffers that are attached to a folio straddling i_size and are undergoing
5751  * commit. In that case we have to wait for commit to finish and try again.
5752  */
ext4_wait_for_tail_page_commit(struct inode * inode)5753 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5754 {
5755 	unsigned offset;
5756 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5757 	tid_t commit_tid;
5758 	int ret;
5759 	bool has_transaction;
5760 
5761 	offset = inode->i_size & (PAGE_SIZE - 1);
5762 	/*
5763 	 * If the folio is fully truncated, we don't need to wait for any commit
5764 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5765 	 * strip all buffers from the folio but keep the folio dirty which can then
5766 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5767 	 * buffers). Also we don't need to wait for any commit if all buffers in
5768 	 * the folio remain valid. This is most beneficial for the common case of
5769 	 * blocksize == PAGESIZE.
5770 	 */
5771 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5772 		return;
5773 	while (1) {
5774 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5775 				      inode->i_size >> PAGE_SHIFT);
5776 		if (IS_ERR(folio))
5777 			return;
5778 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5779 						folio_size(folio) - offset);
5780 		folio_unlock(folio);
5781 		folio_put(folio);
5782 		if (ret != -EBUSY)
5783 			return;
5784 		has_transaction = false;
5785 		read_lock(&journal->j_state_lock);
5786 		if (journal->j_committing_transaction) {
5787 			commit_tid = journal->j_committing_transaction->t_tid;
5788 			has_transaction = true;
5789 		}
5790 		read_unlock(&journal->j_state_lock);
5791 		if (has_transaction)
5792 			jbd2_log_wait_commit(journal, commit_tid);
5793 	}
5794 }
5795 
5796 /*
5797  * ext4_setattr()
5798  *
5799  * Called from notify_change.
5800  *
5801  * We want to trap VFS attempts to truncate the file as soon as
5802  * possible.  In particular, we want to make sure that when the VFS
5803  * shrinks i_size, we put the inode on the orphan list and modify
5804  * i_disksize immediately, so that during the subsequent flushing of
5805  * dirty pages and freeing of disk blocks, we can guarantee that any
5806  * commit will leave the blocks being flushed in an unused state on
5807  * disk.  (On recovery, the inode will get truncated and the blocks will
5808  * be freed, so we have a strong guarantee that no future commit will
5809  * leave these blocks visible to the user.)
5810  *
5811  * Another thing we have to assure is that if we are in ordered mode
5812  * and inode is still attached to the committing transaction, we must
5813  * we start writeout of all the dirty pages which are being truncated.
5814  * This way we are sure that all the data written in the previous
5815  * transaction are already on disk (truncate waits for pages under
5816  * writeback).
5817  *
5818  * Called with inode->i_rwsem down.
5819  */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5820 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5821 		 struct iattr *attr)
5822 {
5823 	struct inode *inode = d_inode(dentry);
5824 	int error, rc = 0;
5825 	int orphan = 0;
5826 	const unsigned int ia_valid = attr->ia_valid;
5827 	bool inc_ivers = true;
5828 
5829 	error = ext4_emergency_state(inode->i_sb);
5830 	if (unlikely(error))
5831 		return error;
5832 
5833 	if (unlikely(IS_IMMUTABLE(inode)))
5834 		return -EPERM;
5835 
5836 	if (unlikely(IS_APPEND(inode) &&
5837 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5838 				  ATTR_GID | ATTR_TIMES_SET))))
5839 		return -EPERM;
5840 
5841 	error = setattr_prepare(idmap, dentry, attr);
5842 	if (error)
5843 		return error;
5844 
5845 	error = fscrypt_prepare_setattr(dentry, attr);
5846 	if (error)
5847 		return error;
5848 
5849 	error = fsverity_prepare_setattr(dentry, attr);
5850 	if (error)
5851 		return error;
5852 
5853 	if (is_quota_modification(idmap, inode, attr)) {
5854 		error = dquot_initialize(inode);
5855 		if (error)
5856 			return error;
5857 	}
5858 
5859 	if (i_uid_needs_update(idmap, attr, inode) ||
5860 	    i_gid_needs_update(idmap, attr, inode)) {
5861 		handle_t *handle;
5862 
5863 		/* (user+group)*(old+new) structure, inode write (sb,
5864 		 * inode block, ? - but truncate inode update has it) */
5865 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5866 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5867 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5868 		if (IS_ERR(handle)) {
5869 			error = PTR_ERR(handle);
5870 			goto err_out;
5871 		}
5872 
5873 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5874 		 * counts xattr inode references.
5875 		 */
5876 		down_read(&EXT4_I(inode)->xattr_sem);
5877 		error = dquot_transfer(idmap, inode, attr);
5878 		up_read(&EXT4_I(inode)->xattr_sem);
5879 
5880 		if (error) {
5881 			ext4_journal_stop(handle);
5882 			return error;
5883 		}
5884 		/* Update corresponding info in inode so that everything is in
5885 		 * one transaction */
5886 		i_uid_update(idmap, attr, inode);
5887 		i_gid_update(idmap, attr, inode);
5888 		error = ext4_mark_inode_dirty(handle, inode);
5889 		ext4_journal_stop(handle);
5890 		if (unlikely(error)) {
5891 			return error;
5892 		}
5893 	}
5894 
5895 	if (attr->ia_valid & ATTR_SIZE) {
5896 		handle_t *handle;
5897 		loff_t oldsize = inode->i_size;
5898 		loff_t old_disksize;
5899 		int shrink = (attr->ia_size < inode->i_size);
5900 
5901 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5902 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5903 
5904 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5905 				return -EFBIG;
5906 			}
5907 		}
5908 		if (!S_ISREG(inode->i_mode)) {
5909 			return -EINVAL;
5910 		}
5911 
5912 		if (attr->ia_size == inode->i_size)
5913 			inc_ivers = false;
5914 
5915 		if (shrink) {
5916 			if (ext4_should_order_data(inode)) {
5917 				error = ext4_begin_ordered_truncate(inode,
5918 							    attr->ia_size);
5919 				if (error)
5920 					goto err_out;
5921 			}
5922 			/*
5923 			 * Blocks are going to be removed from the inode. Wait
5924 			 * for dio in flight.
5925 			 */
5926 			inode_dio_wait(inode);
5927 		}
5928 
5929 		filemap_invalidate_lock(inode->i_mapping);
5930 
5931 		rc = ext4_break_layouts(inode);
5932 		if (rc) {
5933 			filemap_invalidate_unlock(inode->i_mapping);
5934 			goto err_out;
5935 		}
5936 
5937 		if (attr->ia_size != inode->i_size) {
5938 			/* attach jbd2 jinode for EOF folio tail zeroing */
5939 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5940 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5941 				error = ext4_inode_attach_jinode(inode);
5942 				if (error)
5943 					goto out_mmap_sem;
5944 			}
5945 
5946 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5947 			if (IS_ERR(handle)) {
5948 				error = PTR_ERR(handle);
5949 				goto out_mmap_sem;
5950 			}
5951 			if (ext4_handle_valid(handle) && shrink) {
5952 				error = ext4_orphan_add(handle, inode);
5953 				orphan = 1;
5954 			}
5955 			/*
5956 			 * Update c/mtime and tail zero the EOF folio on
5957 			 * truncate up. ext4_truncate() handles the shrink case
5958 			 * below.
5959 			 */
5960 			if (!shrink) {
5961 				inode_set_mtime_to_ts(inode,
5962 						      inode_set_ctime_current(inode));
5963 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5964 					ext4_block_truncate_page(handle,
5965 							inode->i_mapping, oldsize);
5966 			}
5967 
5968 			if (shrink)
5969 				ext4_fc_track_range(handle, inode,
5970 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5971 					inode->i_sb->s_blocksize_bits,
5972 					EXT_MAX_BLOCKS - 1);
5973 			else
5974 				ext4_fc_track_range(
5975 					handle, inode,
5976 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5977 					inode->i_sb->s_blocksize_bits,
5978 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5979 					inode->i_sb->s_blocksize_bits);
5980 
5981 			down_write(&EXT4_I(inode)->i_data_sem);
5982 			old_disksize = EXT4_I(inode)->i_disksize;
5983 			EXT4_I(inode)->i_disksize = attr->ia_size;
5984 
5985 			/*
5986 			 * We have to update i_size under i_data_sem together
5987 			 * with i_disksize to avoid races with writeback code
5988 			 * running ext4_wb_update_i_disksize().
5989 			 */
5990 			if (!error)
5991 				i_size_write(inode, attr->ia_size);
5992 			else
5993 				EXT4_I(inode)->i_disksize = old_disksize;
5994 			up_write(&EXT4_I(inode)->i_data_sem);
5995 			rc = ext4_mark_inode_dirty(handle, inode);
5996 			if (!error)
5997 				error = rc;
5998 			ext4_journal_stop(handle);
5999 			if (error)
6000 				goto out_mmap_sem;
6001 			if (!shrink) {
6002 				pagecache_isize_extended(inode, oldsize,
6003 							 inode->i_size);
6004 			} else if (ext4_should_journal_data(inode)) {
6005 				ext4_wait_for_tail_page_commit(inode);
6006 			}
6007 		}
6008 
6009 		/*
6010 		 * Truncate pagecache after we've waited for commit
6011 		 * in data=journal mode to make pages freeable.
6012 		 */
6013 		truncate_pagecache(inode, inode->i_size);
6014 		/*
6015 		 * Call ext4_truncate() even if i_size didn't change to
6016 		 * truncate possible preallocated blocks.
6017 		 */
6018 		if (attr->ia_size <= oldsize) {
6019 			rc = ext4_truncate(inode);
6020 			if (rc)
6021 				error = rc;
6022 		}
6023 out_mmap_sem:
6024 		filemap_invalidate_unlock(inode->i_mapping);
6025 	}
6026 
6027 	if (!error) {
6028 		if (inc_ivers)
6029 			inode_inc_iversion(inode);
6030 		setattr_copy(idmap, inode, attr);
6031 		mark_inode_dirty(inode);
6032 	}
6033 
6034 	/*
6035 	 * If the call to ext4_truncate failed to get a transaction handle at
6036 	 * all, we need to clean up the in-core orphan list manually.
6037 	 */
6038 	if (orphan && inode->i_nlink)
6039 		ext4_orphan_del(NULL, inode);
6040 
6041 	if (!error && (ia_valid & ATTR_MODE))
6042 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
6043 
6044 err_out:
6045 	if  (error)
6046 		ext4_std_error(inode->i_sb, error);
6047 	if (!error)
6048 		error = rc;
6049 	return error;
6050 }
6051 
ext4_dio_alignment(struct inode * inode)6052 u32 ext4_dio_alignment(struct inode *inode)
6053 {
6054 	if (fsverity_active(inode))
6055 		return 0;
6056 	if (ext4_should_journal_data(inode))
6057 		return 0;
6058 	if (ext4_has_inline_data(inode))
6059 		return 0;
6060 	if (IS_ENCRYPTED(inode)) {
6061 		if (!fscrypt_dio_supported(inode))
6062 			return 0;
6063 		return i_blocksize(inode);
6064 	}
6065 	return 1; /* use the iomap defaults */
6066 }
6067 
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)6068 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
6069 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
6070 {
6071 	struct inode *inode = d_inode(path->dentry);
6072 	struct ext4_inode *raw_inode;
6073 	struct ext4_inode_info *ei = EXT4_I(inode);
6074 	unsigned int flags;
6075 
6076 	if ((request_mask & STATX_BTIME) &&
6077 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
6078 		stat->result_mask |= STATX_BTIME;
6079 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
6080 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
6081 	}
6082 
6083 	/*
6084 	 * Return the DIO alignment restrictions if requested.  We only return
6085 	 * this information when requested, since on encrypted files it might
6086 	 * take a fair bit of work to get if the file wasn't opened recently.
6087 	 */
6088 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
6089 		u32 dio_align = ext4_dio_alignment(inode);
6090 
6091 		stat->result_mask |= STATX_DIOALIGN;
6092 		if (dio_align == 1) {
6093 			struct block_device *bdev = inode->i_sb->s_bdev;
6094 
6095 			/* iomap defaults */
6096 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
6097 			stat->dio_offset_align = bdev_logical_block_size(bdev);
6098 		} else {
6099 			stat->dio_mem_align = dio_align;
6100 			stat->dio_offset_align = dio_align;
6101 		}
6102 	}
6103 
6104 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
6105 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6106 		unsigned int awu_min = 0, awu_max = 0;
6107 
6108 		if (ext4_inode_can_atomic_write(inode)) {
6109 			awu_min = sbi->s_awu_min;
6110 			awu_max = sbi->s_awu_max;
6111 		}
6112 
6113 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0);
6114 	}
6115 
6116 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
6117 	if (flags & EXT4_APPEND_FL)
6118 		stat->attributes |= STATX_ATTR_APPEND;
6119 	if (flags & EXT4_COMPR_FL)
6120 		stat->attributes |= STATX_ATTR_COMPRESSED;
6121 	if (flags & EXT4_ENCRYPT_FL)
6122 		stat->attributes |= STATX_ATTR_ENCRYPTED;
6123 	if (flags & EXT4_IMMUTABLE_FL)
6124 		stat->attributes |= STATX_ATTR_IMMUTABLE;
6125 	if (flags & EXT4_NODUMP_FL)
6126 		stat->attributes |= STATX_ATTR_NODUMP;
6127 	if (flags & EXT4_VERITY_FL)
6128 		stat->attributes |= STATX_ATTR_VERITY;
6129 
6130 	stat->attributes_mask |= (STATX_ATTR_APPEND |
6131 				  STATX_ATTR_COMPRESSED |
6132 				  STATX_ATTR_ENCRYPTED |
6133 				  STATX_ATTR_IMMUTABLE |
6134 				  STATX_ATTR_NODUMP |
6135 				  STATX_ATTR_VERITY);
6136 
6137 	generic_fillattr(idmap, request_mask, inode, stat);
6138 	return 0;
6139 }
6140 
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)6141 int ext4_file_getattr(struct mnt_idmap *idmap,
6142 		      const struct path *path, struct kstat *stat,
6143 		      u32 request_mask, unsigned int query_flags)
6144 {
6145 	struct inode *inode = d_inode(path->dentry);
6146 	u64 delalloc_blocks;
6147 
6148 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
6149 
6150 	/*
6151 	 * If there is inline data in the inode, the inode will normally not
6152 	 * have data blocks allocated (it may have an external xattr block).
6153 	 * Report at least one sector for such files, so tools like tar, rsync,
6154 	 * others don't incorrectly think the file is completely sparse.
6155 	 */
6156 	if (unlikely(ext4_has_inline_data(inode)))
6157 		stat->blocks += (stat->size + 511) >> 9;
6158 
6159 	/*
6160 	 * We can't update i_blocks if the block allocation is delayed
6161 	 * otherwise in the case of system crash before the real block
6162 	 * allocation is done, we will have i_blocks inconsistent with
6163 	 * on-disk file blocks.
6164 	 * We always keep i_blocks updated together with real
6165 	 * allocation. But to not confuse with user, stat
6166 	 * will return the blocks that include the delayed allocation
6167 	 * blocks for this file.
6168 	 */
6169 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
6170 				   EXT4_I(inode)->i_reserved_data_blocks);
6171 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
6172 	return 0;
6173 }
6174 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)6175 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
6176 				   int pextents)
6177 {
6178 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
6179 		return ext4_ind_trans_blocks(inode, lblocks);
6180 	return ext4_ext_index_trans_blocks(inode, pextents);
6181 }
6182 
6183 /*
6184  * Account for index blocks, block groups bitmaps and block group
6185  * descriptor blocks if modify datablocks and index blocks
6186  * worse case, the indexs blocks spread over different block groups
6187  *
6188  * If datablocks are discontiguous, they are possible to spread over
6189  * different block groups too. If they are contiguous, with flexbg,
6190  * they could still across block group boundary.
6191  *
6192  * Also account for superblock, inode, quota and xattr blocks
6193  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)6194 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents)
6195 {
6196 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
6197 	int gdpblocks;
6198 	int idxblocks;
6199 	int ret;
6200 
6201 	/*
6202 	 * How many index and leaf blocks need to touch to map @lblocks
6203 	 * logical blocks to @pextents physical extents?
6204 	 */
6205 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
6206 
6207 	/*
6208 	 * Now let's see how many group bitmaps and group descriptors need
6209 	 * to account
6210 	 */
6211 	groups = idxblocks + pextents;
6212 	gdpblocks = groups;
6213 	if (groups > ngroups)
6214 		groups = ngroups;
6215 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
6216 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
6217 
6218 	/* bitmaps and block group descriptor blocks */
6219 	ret = idxblocks + groups + gdpblocks;
6220 
6221 	/* Blocks for super block, inode, quota and xattr blocks */
6222 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
6223 
6224 	return ret;
6225 }
6226 
6227 /*
6228  * Calculate the journal credits for modifying the number of blocks
6229  * in a single extent within one transaction. 'nrblocks' is used only
6230  * for non-extent inodes. For extent type inodes, 'nrblocks' can be
6231  * zero if the exact number of blocks is unknown.
6232  */
ext4_chunk_trans_extent(struct inode * inode,int nrblocks)6233 int ext4_chunk_trans_extent(struct inode *inode, int nrblocks)
6234 {
6235 	int ret;
6236 
6237 	ret = ext4_meta_trans_blocks(inode, nrblocks, 1);
6238 	/* Account for data blocks for journalled mode */
6239 	if (ext4_should_journal_data(inode))
6240 		ret += nrblocks;
6241 	return ret;
6242 }
6243 
6244 /*
6245  * Calculate the journal credits for a chunk of data modification.
6246  *
6247  * This is called from DIO, fallocate or whoever calling
6248  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
6249  *
6250  * journal buffers for data blocks are not included here, as DIO
6251  * and fallocate do no need to journal data buffers.
6252  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)6253 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
6254 {
6255 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
6256 }
6257 
6258 /*
6259  * The caller must have previously called ext4_reserve_inode_write().
6260  * Give this, we know that the caller already has write access to iloc->bh.
6261  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)6262 int ext4_mark_iloc_dirty(handle_t *handle,
6263 			 struct inode *inode, struct ext4_iloc *iloc)
6264 {
6265 	int err = 0;
6266 
6267 	err = ext4_emergency_state(inode->i_sb);
6268 	if (unlikely(err)) {
6269 		put_bh(iloc->bh);
6270 		return err;
6271 	}
6272 	ext4_fc_track_inode(handle, inode);
6273 
6274 	/* the do_update_inode consumes one bh->b_count */
6275 	get_bh(iloc->bh);
6276 
6277 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6278 	err = ext4_do_update_inode(handle, inode, iloc);
6279 	put_bh(iloc->bh);
6280 	return err;
6281 }
6282 
6283 /*
6284  * On success, We end up with an outstanding reference count against
6285  * iloc->bh.  This _must_ be cleaned up later.
6286  */
6287 
6288 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)6289 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6290 			 struct ext4_iloc *iloc)
6291 {
6292 	int err;
6293 
6294 	err = ext4_emergency_state(inode->i_sb);
6295 	if (unlikely(err))
6296 		return err;
6297 
6298 	err = ext4_get_inode_loc(inode, iloc);
6299 	if (!err) {
6300 		BUFFER_TRACE(iloc->bh, "get_write_access");
6301 		err = ext4_journal_get_write_access(handle, inode->i_sb,
6302 						    iloc->bh, EXT4_JTR_NONE);
6303 		if (err) {
6304 			brelse(iloc->bh);
6305 			iloc->bh = NULL;
6306 		}
6307 		ext4_fc_track_inode(handle, inode);
6308 	}
6309 	ext4_std_error(inode->i_sb, err);
6310 	return err;
6311 }
6312 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)6313 static int __ext4_expand_extra_isize(struct inode *inode,
6314 				     unsigned int new_extra_isize,
6315 				     struct ext4_iloc *iloc,
6316 				     handle_t *handle, int *no_expand)
6317 {
6318 	struct ext4_inode *raw_inode;
6319 	struct ext4_xattr_ibody_header *header;
6320 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6321 	struct ext4_inode_info *ei = EXT4_I(inode);
6322 	int error;
6323 
6324 	/* this was checked at iget time, but double check for good measure */
6325 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6326 	    (ei->i_extra_isize & 3)) {
6327 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6328 				 ei->i_extra_isize,
6329 				 EXT4_INODE_SIZE(inode->i_sb));
6330 		return -EFSCORRUPTED;
6331 	}
6332 	if ((new_extra_isize < ei->i_extra_isize) ||
6333 	    (new_extra_isize < 4) ||
6334 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6335 		return -EINVAL;	/* Should never happen */
6336 
6337 	raw_inode = ext4_raw_inode(iloc);
6338 
6339 	header = IHDR(inode, raw_inode);
6340 
6341 	/* No extended attributes present */
6342 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6343 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6344 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6345 		       EXT4_I(inode)->i_extra_isize, 0,
6346 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
6347 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
6348 		return 0;
6349 	}
6350 
6351 	/*
6352 	 * We may need to allocate external xattr block so we need quotas
6353 	 * initialized. Here we can be called with various locks held so we
6354 	 * cannot affort to initialize quotas ourselves. So just bail.
6355 	 */
6356 	if (dquot_initialize_needed(inode))
6357 		return -EAGAIN;
6358 
6359 	/* try to expand with EAs present */
6360 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6361 					   raw_inode, handle);
6362 	if (error) {
6363 		/*
6364 		 * Inode size expansion failed; don't try again
6365 		 */
6366 		*no_expand = 1;
6367 	}
6368 
6369 	return error;
6370 }
6371 
6372 /*
6373  * Expand an inode by new_extra_isize bytes.
6374  * Returns 0 on success or negative error number on failure.
6375  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)6376 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6377 					  unsigned int new_extra_isize,
6378 					  struct ext4_iloc iloc,
6379 					  handle_t *handle)
6380 {
6381 	int no_expand;
6382 	int error;
6383 
6384 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6385 		return -EOVERFLOW;
6386 
6387 	/*
6388 	 * In nojournal mode, we can immediately attempt to expand
6389 	 * the inode.  When journaled, we first need to obtain extra
6390 	 * buffer credits since we may write into the EA block
6391 	 * with this same handle. If journal_extend fails, then it will
6392 	 * only result in a minor loss of functionality for that inode.
6393 	 * If this is felt to be critical, then e2fsck should be run to
6394 	 * force a large enough s_min_extra_isize.
6395 	 */
6396 	if (ext4_journal_extend(handle,
6397 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
6398 		return -ENOSPC;
6399 
6400 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6401 		return -EBUSY;
6402 
6403 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6404 					  handle, &no_expand);
6405 	ext4_write_unlock_xattr(inode, &no_expand);
6406 
6407 	return error;
6408 }
6409 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6410 int ext4_expand_extra_isize(struct inode *inode,
6411 			    unsigned int new_extra_isize,
6412 			    struct ext4_iloc *iloc)
6413 {
6414 	handle_t *handle;
6415 	int no_expand;
6416 	int error, rc;
6417 
6418 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6419 		brelse(iloc->bh);
6420 		return -EOVERFLOW;
6421 	}
6422 
6423 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6424 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6425 	if (IS_ERR(handle)) {
6426 		error = PTR_ERR(handle);
6427 		brelse(iloc->bh);
6428 		return error;
6429 	}
6430 
6431 	ext4_write_lock_xattr(inode, &no_expand);
6432 
6433 	BUFFER_TRACE(iloc->bh, "get_write_access");
6434 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6435 					      EXT4_JTR_NONE);
6436 	if (error) {
6437 		brelse(iloc->bh);
6438 		goto out_unlock;
6439 	}
6440 
6441 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6442 					  handle, &no_expand);
6443 
6444 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6445 	if (!error)
6446 		error = rc;
6447 
6448 out_unlock:
6449 	ext4_write_unlock_xattr(inode, &no_expand);
6450 	ext4_journal_stop(handle);
6451 	return error;
6452 }
6453 
6454 /*
6455  * What we do here is to mark the in-core inode as clean with respect to inode
6456  * dirtiness (it may still be data-dirty).
6457  * This means that the in-core inode may be reaped by prune_icache
6458  * without having to perform any I/O.  This is a very good thing,
6459  * because *any* task may call prune_icache - even ones which
6460  * have a transaction open against a different journal.
6461  *
6462  * Is this cheating?  Not really.  Sure, we haven't written the
6463  * inode out, but prune_icache isn't a user-visible syncing function.
6464  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6465  * we start and wait on commits.
6466  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6467 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6468 				const char *func, unsigned int line)
6469 {
6470 	struct ext4_iloc iloc;
6471 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6472 	int err;
6473 
6474 	might_sleep();
6475 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6476 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6477 	if (err)
6478 		goto out;
6479 
6480 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6481 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6482 					       iloc, handle);
6483 
6484 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6485 out:
6486 	if (unlikely(err))
6487 		ext4_error_inode_err(inode, func, line, 0, err,
6488 					"mark_inode_dirty error");
6489 	return err;
6490 }
6491 
6492 /*
6493  * ext4_dirty_inode() is called from __mark_inode_dirty()
6494  *
6495  * We're really interested in the case where a file is being extended.
6496  * i_size has been changed by generic_commit_write() and we thus need
6497  * to include the updated inode in the current transaction.
6498  *
6499  * Also, dquot_alloc_block() will always dirty the inode when blocks
6500  * are allocated to the file.
6501  *
6502  * If the inode is marked synchronous, we don't honour that here - doing
6503  * so would cause a commit on atime updates, which we don't bother doing.
6504  * We handle synchronous inodes at the highest possible level.
6505  */
ext4_dirty_inode(struct inode * inode,int flags)6506 void ext4_dirty_inode(struct inode *inode, int flags)
6507 {
6508 	handle_t *handle;
6509 
6510 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6511 	if (IS_ERR(handle))
6512 		return;
6513 	ext4_mark_inode_dirty(handle, inode);
6514 	ext4_journal_stop(handle);
6515 }
6516 
ext4_change_inode_journal_flag(struct inode * inode,int val)6517 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6518 {
6519 	journal_t *journal;
6520 	handle_t *handle;
6521 	int err;
6522 	int alloc_ctx;
6523 
6524 	/*
6525 	 * We have to be very careful here: changing a data block's
6526 	 * journaling status dynamically is dangerous.  If we write a
6527 	 * data block to the journal, change the status and then delete
6528 	 * that block, we risk forgetting to revoke the old log record
6529 	 * from the journal and so a subsequent replay can corrupt data.
6530 	 * So, first we make sure that the journal is empty and that
6531 	 * nobody is changing anything.
6532 	 */
6533 
6534 	journal = EXT4_JOURNAL(inode);
6535 	if (!journal)
6536 		return 0;
6537 	if (is_journal_aborted(journal))
6538 		return -EROFS;
6539 
6540 	/* Wait for all existing dio workers */
6541 	inode_dio_wait(inode);
6542 
6543 	/*
6544 	 * Before flushing the journal and switching inode's aops, we have
6545 	 * to flush all dirty data the inode has. There can be outstanding
6546 	 * delayed allocations, there can be unwritten extents created by
6547 	 * fallocate or buffered writes in dioread_nolock mode covered by
6548 	 * dirty data which can be converted only after flushing the dirty
6549 	 * data (and journalled aops don't know how to handle these cases).
6550 	 */
6551 	if (val) {
6552 		filemap_invalidate_lock(inode->i_mapping);
6553 		err = filemap_write_and_wait(inode->i_mapping);
6554 		if (err < 0) {
6555 			filemap_invalidate_unlock(inode->i_mapping);
6556 			return err;
6557 		}
6558 	}
6559 
6560 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6561 	jbd2_journal_lock_updates(journal);
6562 
6563 	/*
6564 	 * OK, there are no updates running now, and all cached data is
6565 	 * synced to disk.  We are now in a completely consistent state
6566 	 * which doesn't have anything in the journal, and we know that
6567 	 * no filesystem updates are running, so it is safe to modify
6568 	 * the inode's in-core data-journaling state flag now.
6569 	 */
6570 
6571 	if (val)
6572 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6573 	else {
6574 		err = jbd2_journal_flush(journal, 0);
6575 		if (err < 0) {
6576 			jbd2_journal_unlock_updates(journal);
6577 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6578 			return err;
6579 		}
6580 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6581 	}
6582 	ext4_set_aops(inode);
6583 
6584 	jbd2_journal_unlock_updates(journal);
6585 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6586 
6587 	if (val)
6588 		filemap_invalidate_unlock(inode->i_mapping);
6589 
6590 	/* Finally we can mark the inode as dirty. */
6591 
6592 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6593 	if (IS_ERR(handle))
6594 		return PTR_ERR(handle);
6595 
6596 	ext4_fc_mark_ineligible(inode->i_sb,
6597 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6598 	err = ext4_mark_inode_dirty(handle, inode);
6599 	ext4_handle_sync(handle);
6600 	ext4_journal_stop(handle);
6601 	ext4_std_error(inode->i_sb, err);
6602 
6603 	return err;
6604 }
6605 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6606 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6607 			    struct buffer_head *bh)
6608 {
6609 	return !buffer_mapped(bh);
6610 }
6611 
ext4_block_page_mkwrite(struct inode * inode,struct folio * folio,get_block_t get_block)6612 static int ext4_block_page_mkwrite(struct inode *inode, struct folio *folio,
6613 				   get_block_t get_block)
6614 {
6615 	handle_t *handle;
6616 	loff_t size;
6617 	unsigned long len;
6618 	int credits;
6619 	int ret;
6620 
6621 	credits = ext4_chunk_trans_extent(inode,
6622 			ext4_journal_blocks_per_folio(inode));
6623 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, credits);
6624 	if (IS_ERR(handle))
6625 		return PTR_ERR(handle);
6626 
6627 	folio_lock(folio);
6628 	size = i_size_read(inode);
6629 	/* Page got truncated from under us? */
6630 	if (folio->mapping != inode->i_mapping || folio_pos(folio) > size) {
6631 		ret = -EFAULT;
6632 		goto out_error;
6633 	}
6634 
6635 	len = folio_size(folio);
6636 	if (folio_pos(folio) + len > size)
6637 		len = size - folio_pos(folio);
6638 
6639 	ret = ext4_block_write_begin(handle, folio, 0, len, get_block);
6640 	if (ret)
6641 		goto out_error;
6642 
6643 	if (!ext4_should_journal_data(inode)) {
6644 		block_commit_write(folio, 0, len);
6645 		folio_mark_dirty(folio);
6646 	} else {
6647 		ret = ext4_journal_folio_buffers(handle, folio, len);
6648 		if (ret)
6649 			goto out_error;
6650 	}
6651 	ext4_journal_stop(handle);
6652 	folio_wait_stable(folio);
6653 	return ret;
6654 
6655 out_error:
6656 	folio_unlock(folio);
6657 	ext4_journal_stop(handle);
6658 	return ret;
6659 }
6660 
ext4_page_mkwrite(struct vm_fault * vmf)6661 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6662 {
6663 	struct vm_area_struct *vma = vmf->vma;
6664 	struct folio *folio = page_folio(vmf->page);
6665 	loff_t size;
6666 	unsigned long len;
6667 	int err;
6668 	vm_fault_t ret;
6669 	struct file *file = vma->vm_file;
6670 	struct inode *inode = file_inode(file);
6671 	struct address_space *mapping = inode->i_mapping;
6672 	get_block_t *get_block = ext4_get_block;
6673 	int retries = 0;
6674 
6675 	if (unlikely(IS_IMMUTABLE(inode)))
6676 		return VM_FAULT_SIGBUS;
6677 
6678 	sb_start_pagefault(inode->i_sb);
6679 	file_update_time(vma->vm_file);
6680 
6681 	filemap_invalidate_lock_shared(mapping);
6682 
6683 	err = ext4_convert_inline_data(inode);
6684 	if (err)
6685 		goto out_ret;
6686 
6687 	/*
6688 	 * On data journalling we skip straight to the transaction handle:
6689 	 * there's no delalloc; page truncated will be checked later; the
6690 	 * early return w/ all buffers mapped (calculates size/len) can't
6691 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6692 	 */
6693 	if (ext4_should_journal_data(inode))
6694 		goto retry_alloc;
6695 
6696 	/* Delalloc case is easy... */
6697 	if (test_opt(inode->i_sb, DELALLOC) &&
6698 	    !ext4_nonda_switch(inode->i_sb)) {
6699 		do {
6700 			err = block_page_mkwrite(vma, vmf,
6701 						   ext4_da_get_block_prep);
6702 		} while (err == -ENOSPC &&
6703 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6704 		goto out_ret;
6705 	}
6706 
6707 	folio_lock(folio);
6708 	size = i_size_read(inode);
6709 	/* Page got truncated from under us? */
6710 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6711 		folio_unlock(folio);
6712 		ret = VM_FAULT_NOPAGE;
6713 		goto out;
6714 	}
6715 
6716 	len = folio_size(folio);
6717 	if (folio_pos(folio) + len > size)
6718 		len = size - folio_pos(folio);
6719 	/*
6720 	 * Return if we have all the buffers mapped. This avoids the need to do
6721 	 * journal_start/journal_stop which can block and take a long time
6722 	 *
6723 	 * This cannot be done for data journalling, as we have to add the
6724 	 * inode to the transaction's list to writeprotect pages on commit.
6725 	 */
6726 	if (folio_buffers(folio)) {
6727 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6728 					    0, len, NULL,
6729 					    ext4_bh_unmapped)) {
6730 			/* Wait so that we don't change page under IO */
6731 			folio_wait_stable(folio);
6732 			ret = VM_FAULT_LOCKED;
6733 			goto out;
6734 		}
6735 	}
6736 	folio_unlock(folio);
6737 	/* OK, we need to fill the hole... */
6738 	if (ext4_should_dioread_nolock(inode))
6739 		get_block = ext4_get_block_unwritten;
6740 retry_alloc:
6741 	/* Start journal and allocate blocks */
6742 	err = ext4_block_page_mkwrite(inode, folio, get_block);
6743 	if (err == -EAGAIN ||
6744 	    (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)))
6745 		goto retry_alloc;
6746 out_ret:
6747 	ret = vmf_fs_error(err);
6748 out:
6749 	filemap_invalidate_unlock_shared(mapping);
6750 	sb_end_pagefault(inode->i_sb);
6751 	return ret;
6752 }
6753