xref: /linux/fs/ext4/inode.c (revision 5c2a430e85994f4873ea5ec42091baa1153bc731)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 					    struct inode *inode,
55 					    struct folio *folio,
56 					    unsigned from, unsigned to);
57 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 			      struct ext4_inode_info *ei)
60 {
61 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
62 	__u32 csum;
63 	__u16 dummy_csum = 0;
64 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
65 	unsigned int csum_size = sizeof(dummy_csum);
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
68 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
69 	offset += csum_size;
70 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
71 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
72 
73 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
74 		offset = offsetof(struct ext4_inode, i_checksum_hi);
75 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
76 				   EXT4_GOOD_OLD_INODE_SIZE,
77 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
78 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
79 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
80 					   csum_size);
81 			offset += csum_size;
82 		}
83 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
84 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
85 	}
86 
87 	return csum;
88 }
89 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)90 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
91 				  struct ext4_inode_info *ei)
92 {
93 	__u32 provided, calculated;
94 
95 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
96 	    cpu_to_le32(EXT4_OS_LINUX) ||
97 	    !ext4_has_feature_metadata_csum(inode->i_sb))
98 		return 1;
99 
100 	provided = le16_to_cpu(raw->i_checksum_lo);
101 	calculated = ext4_inode_csum(inode, raw, ei);
102 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
103 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
104 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
105 	else
106 		calculated &= 0xFFFF;
107 
108 	return provided == calculated;
109 }
110 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)111 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
112 			 struct ext4_inode_info *ei)
113 {
114 	__u32 csum;
115 
116 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
117 	    cpu_to_le32(EXT4_OS_LINUX) ||
118 	    !ext4_has_feature_metadata_csum(inode->i_sb))
119 		return;
120 
121 	csum = ext4_inode_csum(inode, raw, ei);
122 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
123 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
124 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
125 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
126 }
127 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)128 static inline int ext4_begin_ordered_truncate(struct inode *inode,
129 					      loff_t new_size)
130 {
131 	trace_ext4_begin_ordered_truncate(inode, new_size);
132 	/*
133 	 * If jinode is zero, then we never opened the file for
134 	 * writing, so there's no need to call
135 	 * jbd2_journal_begin_ordered_truncate() since there's no
136 	 * outstanding writes we need to flush.
137 	 */
138 	if (!EXT4_I(inode)->jinode)
139 		return 0;
140 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
141 						   EXT4_I(inode)->jinode,
142 						   new_size);
143 }
144 
145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 				  int pextents);
147 
148 /*
149  * Test whether an inode is a fast symlink.
150  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151  */
ext4_inode_is_fast_symlink(struct inode * inode)152 int ext4_inode_is_fast_symlink(struct inode *inode)
153 {
154 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
155 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
156 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 
158 		if (ext4_has_inline_data(inode))
159 			return 0;
160 
161 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 	}
163 	return S_ISLNK(inode->i_mode) && inode->i_size &&
164 	       (inode->i_size < EXT4_N_BLOCKS * 4);
165 }
166 
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
ext4_evict_inode(struct inode * inode)170 void ext4_evict_inode(struct inode *inode)
171 {
172 	handle_t *handle;
173 	int err;
174 	/*
175 	 * Credits for final inode cleanup and freeing:
176 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
177 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
178 	 */
179 	int extra_credits = 6;
180 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
181 	bool freeze_protected = false;
182 
183 	trace_ext4_evict_inode(inode);
184 
185 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
186 		ext4_evict_ea_inode(inode);
187 	if (inode->i_nlink) {
188 		truncate_inode_pages_final(&inode->i_data);
189 
190 		goto no_delete;
191 	}
192 
193 	if (is_bad_inode(inode))
194 		goto no_delete;
195 	dquot_initialize(inode);
196 
197 	if (ext4_should_order_data(inode))
198 		ext4_begin_ordered_truncate(inode, 0);
199 	truncate_inode_pages_final(&inode->i_data);
200 
201 	/*
202 	 * For inodes with journalled data, transaction commit could have
203 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
204 	 * extents converting worker could merge extents and also have dirtied
205 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
206 	 * we still need to remove the inode from the writeback lists.
207 	 */
208 	if (!list_empty_careful(&inode->i_io_list))
209 		inode_io_list_del(inode);
210 
211 	/*
212 	 * Protect us against freezing - iput() caller didn't have to have any
213 	 * protection against it. When we are in a running transaction though,
214 	 * we are already protected against freezing and we cannot grab further
215 	 * protection due to lock ordering constraints.
216 	 */
217 	if (!ext4_journal_current_handle()) {
218 		sb_start_intwrite(inode->i_sb);
219 		freeze_protected = true;
220 	}
221 
222 	if (!IS_NOQUOTA(inode))
223 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
224 
225 	/*
226 	 * Block bitmap, group descriptor, and inode are accounted in both
227 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
228 	 */
229 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
230 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
231 	if (IS_ERR(handle)) {
232 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
233 		/*
234 		 * If we're going to skip the normal cleanup, we still need to
235 		 * make sure that the in-core orphan linked list is properly
236 		 * cleaned up.
237 		 */
238 		ext4_orphan_del(NULL, inode);
239 		if (freeze_protected)
240 			sb_end_intwrite(inode->i_sb);
241 		goto no_delete;
242 	}
243 
244 	if (IS_SYNC(inode))
245 		ext4_handle_sync(handle);
246 
247 	/*
248 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
249 	 * special handling of symlinks here because i_size is used to
250 	 * determine whether ext4_inode_info->i_data contains symlink data or
251 	 * block mappings. Setting i_size to 0 will remove its fast symlink
252 	 * status. Erase i_data so that it becomes a valid empty block map.
253 	 */
254 	if (ext4_inode_is_fast_symlink(inode))
255 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks) {
264 		err = ext4_truncate(inode);
265 		if (err) {
266 			ext4_error_err(inode->i_sb, -err,
267 				       "couldn't truncate inode %lu (err %d)",
268 				       inode->i_ino, err);
269 			goto stop_handle;
270 		}
271 	}
272 
273 	/* Remove xattr references. */
274 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
275 				      extra_credits);
276 	if (err) {
277 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
278 stop_handle:
279 		ext4_journal_stop(handle);
280 		ext4_orphan_del(NULL, inode);
281 		if (freeze_protected)
282 			sb_end_intwrite(inode->i_sb);
283 		ext4_xattr_inode_array_free(ea_inode_array);
284 		goto no_delete;
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	if (freeze_protected)
312 		sb_end_intwrite(inode->i_sb);
313 	ext4_xattr_inode_array_free(ea_inode_array);
314 	return;
315 no_delete:
316 	/*
317 	 * Check out some where else accidentally dirty the evicting inode,
318 	 * which may probably cause inode use-after-free issues later.
319 	 */
320 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
321 
322 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
323 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
324 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
325 }
326 
327 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)328 qsize_t *ext4_get_reserved_space(struct inode *inode)
329 {
330 	return &EXT4_I(inode)->i_reserved_quota;
331 }
332 #endif
333 
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)338 void ext4_da_update_reserve_space(struct inode *inode,
339 					int used, int quota_claim)
340 {
341 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 	struct ext4_inode_info *ei = EXT4_I(inode);
343 
344 	spin_lock(&ei->i_block_reservation_lock);
345 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 	if (unlikely(used > ei->i_reserved_data_blocks)) {
347 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 			 "with only %d reserved data blocks",
349 			 __func__, inode->i_ino, used,
350 			 ei->i_reserved_data_blocks);
351 		WARN_ON(1);
352 		used = ei->i_reserved_data_blocks;
353 	}
354 
355 	/* Update per-inode reservations */
356 	ei->i_reserved_data_blocks -= used;
357 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
358 
359 	spin_unlock(&ei->i_block_reservation_lock);
360 
361 	/* Update quota subsystem for data blocks */
362 	if (quota_claim)
363 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
364 	else {
365 		/*
366 		 * We did fallocate with an offset that is already delayed
367 		 * allocated. So on delayed allocated writeback we should
368 		 * not re-claim the quota for fallocated blocks.
369 		 */
370 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
371 	}
372 
373 	/*
374 	 * If we have done all the pending block allocations and if
375 	 * there aren't any writers on the inode, we can discard the
376 	 * inode's preallocations.
377 	 */
378 	if ((ei->i_reserved_data_blocks == 0) &&
379 	    !inode_is_open_for_write(inode))
380 		ext4_discard_preallocations(inode);
381 }
382 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)383 static int __check_block_validity(struct inode *inode, const char *func,
384 				unsigned int line,
385 				struct ext4_map_blocks *map)
386 {
387 	if (ext4_has_feature_journal(inode->i_sb) &&
388 	    (inode->i_ino ==
389 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
390 		return 0;
391 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
392 		ext4_error_inode(inode, func, line, map->m_pblk,
393 				 "lblock %lu mapped to illegal pblock %llu "
394 				 "(length %d)", (unsigned long) map->m_lblk,
395 				 map->m_pblk, map->m_len);
396 		return -EFSCORRUPTED;
397 	}
398 	return 0;
399 }
400 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)401 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
402 		       ext4_lblk_t len)
403 {
404 	int ret;
405 
406 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
407 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
408 
409 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
410 	if (ret > 0)
411 		ret = 0;
412 
413 	return ret;
414 }
415 
416 #define check_block_validity(inode, map)	\
417 	__check_block_validity((inode), __func__, __LINE__, (map))
418 
419 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)420 static void ext4_map_blocks_es_recheck(handle_t *handle,
421 				       struct inode *inode,
422 				       struct ext4_map_blocks *es_map,
423 				       struct ext4_map_blocks *map,
424 				       int flags)
425 {
426 	int retval;
427 
428 	map->m_flags = 0;
429 	/*
430 	 * There is a race window that the result is not the same.
431 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
432 	 * is that we lookup a block mapping in extent status tree with
433 	 * out taking i_data_sem.  So at the time the unwritten extent
434 	 * could be converted.
435 	 */
436 	down_read(&EXT4_I(inode)->i_data_sem);
437 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
439 	} else {
440 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
441 	}
442 	up_read((&EXT4_I(inode)->i_data_sem));
443 
444 	/*
445 	 * We don't check m_len because extent will be collpased in status
446 	 * tree.  So the m_len might not equal.
447 	 */
448 	if (es_map->m_lblk != map->m_lblk ||
449 	    es_map->m_flags != map->m_flags ||
450 	    es_map->m_pblk != map->m_pblk) {
451 		printk("ES cache assertion failed for inode: %lu "
452 		       "es_cached ex [%d/%d/%llu/%x] != "
453 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
454 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
455 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
456 		       map->m_len, map->m_pblk, map->m_flags,
457 		       retval, flags);
458 	}
459 }
460 #endif /* ES_AGGRESSIVE_TEST */
461 
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)462 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
463 				 struct ext4_map_blocks *map)
464 {
465 	unsigned int status;
466 	int retval;
467 
468 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
469 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
470 	else
471 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
472 
473 	if (retval <= 0)
474 		return retval;
475 
476 	if (unlikely(retval != map->m_len)) {
477 		ext4_warning(inode->i_sb,
478 			     "ES len assertion failed for inode "
479 			     "%lu: retval %d != map->m_len %d",
480 			     inode->i_ino, retval, map->m_len);
481 		WARN_ON(1);
482 	}
483 
484 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
485 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
486 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
487 			      map->m_pblk, status, false);
488 	return retval;
489 }
490 
ext4_map_create_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)491 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
492 				  struct ext4_map_blocks *map, int flags)
493 {
494 	struct extent_status es;
495 	unsigned int status;
496 	int err, retval = 0;
497 
498 	/*
499 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
500 	 * indicates that the blocks and quotas has already been
501 	 * checked when the data was copied into the page cache.
502 	 */
503 	if (map->m_flags & EXT4_MAP_DELAYED)
504 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
505 
506 	/*
507 	 * Here we clear m_flags because after allocating an new extent,
508 	 * it will be set again.
509 	 */
510 	map->m_flags &= ~EXT4_MAP_FLAGS;
511 
512 	/*
513 	 * We need to check for EXT4 here because migrate could have
514 	 * changed the inode type in between.
515 	 */
516 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
518 	} else {
519 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
520 
521 		/*
522 		 * We allocated new blocks which will result in i_data's
523 		 * format changing. Force the migrate to fail by clearing
524 		 * migrate flags.
525 		 */
526 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
527 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
528 	}
529 	if (retval <= 0)
530 		return retval;
531 
532 	if (unlikely(retval != map->m_len)) {
533 		ext4_warning(inode->i_sb,
534 			     "ES len assertion failed for inode %lu: "
535 			     "retval %d != map->m_len %d",
536 			     inode->i_ino, retval, map->m_len);
537 		WARN_ON(1);
538 	}
539 
540 	/*
541 	 * We have to zeroout blocks before inserting them into extent
542 	 * status tree. Otherwise someone could look them up there and
543 	 * use them before they are really zeroed. We also have to
544 	 * unmap metadata before zeroing as otherwise writeback can
545 	 * overwrite zeros with stale data from block device.
546 	 */
547 	if (flags & EXT4_GET_BLOCKS_ZERO &&
548 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
549 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
550 					 map->m_len);
551 		if (err)
552 			return err;
553 	}
554 
555 	/*
556 	 * If the extent has been zeroed out, we don't need to update
557 	 * extent status tree.
558 	 */
559 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
560 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
561 		if (ext4_es_is_written(&es))
562 			return retval;
563 	}
564 
565 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
568 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
569 
570 	return retval;
571 }
572 
573 /*
574  * The ext4_map_blocks() function tries to look up the requested blocks,
575  * and returns if the blocks are already mapped.
576  *
577  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
578  * and store the allocated blocks in the result buffer head and mark it
579  * mapped.
580  *
581  * If file type is extents based, it will call ext4_ext_map_blocks(),
582  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
583  * based files
584  *
585  * On success, it returns the number of blocks being mapped or allocated.
586  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
587  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
588  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
589  *
590  * It returns 0 if plain look up failed (blocks have not been allocated), in
591  * that case, @map is returned as unmapped but we still do fill map->m_len to
592  * indicate the length of a hole starting at map->m_lblk.
593  *
594  * It returns the error in case of allocation failure.
595  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)596 int ext4_map_blocks(handle_t *handle, struct inode *inode,
597 		    struct ext4_map_blocks *map, int flags)
598 {
599 	struct extent_status es;
600 	int retval;
601 	int ret = 0;
602 #ifdef ES_AGGRESSIVE_TEST
603 	struct ext4_map_blocks orig_map;
604 
605 	memcpy(&orig_map, map, sizeof(*map));
606 #endif
607 
608 	map->m_flags = 0;
609 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
610 		  flags, map->m_len, (unsigned long) map->m_lblk);
611 
612 	/*
613 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
614 	 */
615 	if (unlikely(map->m_len > INT_MAX))
616 		map->m_len = INT_MAX;
617 
618 	/* We can handle the block number less than EXT_MAX_BLOCKS */
619 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
620 		return -EFSCORRUPTED;
621 
622 	/* Lookup extent status tree firstly */
623 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
624 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
625 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
626 			map->m_pblk = ext4_es_pblock(&es) +
627 					map->m_lblk - es.es_lblk;
628 			map->m_flags |= ext4_es_is_written(&es) ?
629 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
630 			retval = es.es_len - (map->m_lblk - es.es_lblk);
631 			if (retval > map->m_len)
632 				retval = map->m_len;
633 			map->m_len = retval;
634 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
635 			map->m_pblk = 0;
636 			map->m_flags |= ext4_es_is_delayed(&es) ?
637 					EXT4_MAP_DELAYED : 0;
638 			retval = es.es_len - (map->m_lblk - es.es_lblk);
639 			if (retval > map->m_len)
640 				retval = map->m_len;
641 			map->m_len = retval;
642 			retval = 0;
643 		} else {
644 			BUG();
645 		}
646 
647 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
648 			return retval;
649 #ifdef ES_AGGRESSIVE_TEST
650 		ext4_map_blocks_es_recheck(handle, inode, map,
651 					   &orig_map, flags);
652 #endif
653 		goto found;
654 	}
655 	/*
656 	 * In the query cache no-wait mode, nothing we can do more if we
657 	 * cannot find extent in the cache.
658 	 */
659 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
660 		return 0;
661 
662 	/*
663 	 * Try to see if we can get the block without requesting a new
664 	 * file system block.
665 	 */
666 	down_read(&EXT4_I(inode)->i_data_sem);
667 	retval = ext4_map_query_blocks(handle, inode, map);
668 	up_read((&EXT4_I(inode)->i_data_sem));
669 
670 found:
671 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
672 		ret = check_block_validity(inode, map);
673 		if (ret != 0)
674 			return ret;
675 	}
676 
677 	/* If it is only a block(s) look up */
678 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
679 		return retval;
680 
681 	/*
682 	 * Returns if the blocks have already allocated
683 	 *
684 	 * Note that if blocks have been preallocated
685 	 * ext4_ext_map_blocks() returns with buffer head unmapped
686 	 */
687 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
688 		/*
689 		 * If we need to convert extent to unwritten
690 		 * we continue and do the actual work in
691 		 * ext4_ext_map_blocks()
692 		 */
693 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
694 			return retval;
695 
696 	/*
697 	 * New blocks allocate and/or writing to unwritten extent
698 	 * will possibly result in updating i_data, so we take
699 	 * the write lock of i_data_sem, and call get_block()
700 	 * with create == 1 flag.
701 	 */
702 	down_write(&EXT4_I(inode)->i_data_sem);
703 	retval = ext4_map_create_blocks(handle, inode, map, flags);
704 	up_write((&EXT4_I(inode)->i_data_sem));
705 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 		ret = check_block_validity(inode, map);
707 		if (ret != 0)
708 			return ret;
709 
710 		/*
711 		 * Inodes with freshly allocated blocks where contents will be
712 		 * visible after transaction commit must be on transaction's
713 		 * ordered data list.
714 		 */
715 		if (map->m_flags & EXT4_MAP_NEW &&
716 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
717 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
718 		    !ext4_is_quota_file(inode) &&
719 		    ext4_should_order_data(inode)) {
720 			loff_t start_byte =
721 				(loff_t)map->m_lblk << inode->i_blkbits;
722 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
723 
724 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
725 				ret = ext4_jbd2_inode_add_wait(handle, inode,
726 						start_byte, length);
727 			else
728 				ret = ext4_jbd2_inode_add_write(handle, inode,
729 						start_byte, length);
730 			if (ret)
731 				return ret;
732 		}
733 	}
734 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
735 				map->m_flags & EXT4_MAP_MAPPED))
736 		ext4_fc_track_range(handle, inode, map->m_lblk,
737 					map->m_lblk + map->m_len - 1);
738 	if (retval < 0)
739 		ext_debug(inode, "failed with err %d\n", retval);
740 	return retval;
741 }
742 
743 /*
744  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745  * we have to be careful as someone else may be manipulating b_state as well.
746  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749 	unsigned long old_state;
750 	unsigned long new_state;
751 
752 	flags &= EXT4_MAP_FLAGS;
753 
754 	/* Dummy buffer_head? Set non-atomically. */
755 	if (!bh->b_folio) {
756 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 		return;
758 	}
759 	/*
760 	 * Someone else may be modifying b_state. Be careful! This is ugly but
761 	 * once we get rid of using bh as a container for mapping information
762 	 * to pass to / from get_block functions, this can go away.
763 	 */
764 	old_state = READ_ONCE(bh->b_state);
765 	do {
766 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
768 }
769 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)770 static int _ext4_get_block(struct inode *inode, sector_t iblock,
771 			   struct buffer_head *bh, int flags)
772 {
773 	struct ext4_map_blocks map;
774 	int ret = 0;
775 
776 	if (ext4_has_inline_data(inode))
777 		return -ERANGE;
778 
779 	map.m_lblk = iblock;
780 	map.m_len = bh->b_size >> inode->i_blkbits;
781 
782 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
783 			      flags);
784 	if (ret > 0) {
785 		map_bh(bh, inode->i_sb, map.m_pblk);
786 		ext4_update_bh_state(bh, map.m_flags);
787 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
788 		ret = 0;
789 	} else if (ret == 0) {
790 		/* hole case, need to fill in bh->b_size */
791 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792 	}
793 	return ret;
794 }
795 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)796 int ext4_get_block(struct inode *inode, sector_t iblock,
797 		   struct buffer_head *bh, int create)
798 {
799 	return _ext4_get_block(inode, iblock, bh,
800 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
801 }
802 
803 /*
804  * Get block function used when preparing for buffered write if we require
805  * creating an unwritten extent if blocks haven't been allocated.  The extent
806  * will be converted to written after the IO is complete.
807  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
809 			     struct buffer_head *bh_result, int create)
810 {
811 	int ret = 0;
812 
813 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
814 		   inode->i_ino, create);
815 	ret = _ext4_get_block(inode, iblock, bh_result,
816 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
817 
818 	/*
819 	 * If the buffer is marked unwritten, mark it as new to make sure it is
820 	 * zeroed out correctly in case of partial writes. Otherwise, there is
821 	 * a chance of stale data getting exposed.
822 	 */
823 	if (ret == 0 && buffer_unwritten(bh_result))
824 		set_buffer_new(bh_result);
825 
826 	return ret;
827 }
828 
829 /* Maximum number of blocks we map for direct IO at once. */
830 #define DIO_MAX_BLOCKS 4096
831 
832 /*
833  * `handle' can be NULL if create is zero
834  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836 				ext4_lblk_t block, int map_flags)
837 {
838 	struct ext4_map_blocks map;
839 	struct buffer_head *bh;
840 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
842 	int err;
843 
844 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
845 		    || handle != NULL || create == 0);
846 	ASSERT(create == 0 || !nowait);
847 
848 	map.m_lblk = block;
849 	map.m_len = 1;
850 	err = ext4_map_blocks(handle, inode, &map, map_flags);
851 
852 	if (err == 0)
853 		return create ? ERR_PTR(-ENOSPC) : NULL;
854 	if (err < 0)
855 		return ERR_PTR(err);
856 
857 	if (nowait)
858 		return sb_find_get_block(inode->i_sb, map.m_pblk);
859 
860 	/*
861 	 * Since bh could introduce extra ref count such as referred by
862 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
863 	 * as it may fail the migration when journal_head remains.
864 	 */
865 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
866 				inode->i_sb->s_blocksize);
867 
868 	if (unlikely(!bh))
869 		return ERR_PTR(-ENOMEM);
870 	if (map.m_flags & EXT4_MAP_NEW) {
871 		ASSERT(create != 0);
872 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
873 			    || (handle != NULL));
874 
875 		/*
876 		 * Now that we do not always journal data, we should
877 		 * keep in mind whether this should always journal the
878 		 * new buffer as metadata.  For now, regular file
879 		 * writes use ext4_get_block instead, so it's not a
880 		 * problem.
881 		 */
882 		lock_buffer(bh);
883 		BUFFER_TRACE(bh, "call get_create_access");
884 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
885 						     EXT4_JTR_NONE);
886 		if (unlikely(err)) {
887 			unlock_buffer(bh);
888 			goto errout;
889 		}
890 		if (!buffer_uptodate(bh)) {
891 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
892 			set_buffer_uptodate(bh);
893 		}
894 		unlock_buffer(bh);
895 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
896 		err = ext4_handle_dirty_metadata(handle, inode, bh);
897 		if (unlikely(err))
898 			goto errout;
899 	} else
900 		BUFFER_TRACE(bh, "not a new buffer");
901 	return bh;
902 errout:
903 	brelse(bh);
904 	return ERR_PTR(err);
905 }
906 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)907 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
908 			       ext4_lblk_t block, int map_flags)
909 {
910 	struct buffer_head *bh;
911 	int ret;
912 
913 	bh = ext4_getblk(handle, inode, block, map_flags);
914 	if (IS_ERR(bh))
915 		return bh;
916 	if (!bh || ext4_buffer_uptodate(bh))
917 		return bh;
918 
919 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
920 	if (ret) {
921 		put_bh(bh);
922 		return ERR_PTR(ret);
923 	}
924 	return bh;
925 }
926 
927 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)928 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
929 		     bool wait, struct buffer_head **bhs)
930 {
931 	int i, err;
932 
933 	for (i = 0; i < bh_count; i++) {
934 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
935 		if (IS_ERR(bhs[i])) {
936 			err = PTR_ERR(bhs[i]);
937 			bh_count = i;
938 			goto out_brelse;
939 		}
940 	}
941 
942 	for (i = 0; i < bh_count; i++)
943 		/* Note that NULL bhs[i] is valid because of holes. */
944 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
945 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
946 
947 	if (!wait)
948 		return 0;
949 
950 	for (i = 0; i < bh_count; i++)
951 		if (bhs[i])
952 			wait_on_buffer(bhs[i]);
953 
954 	for (i = 0; i < bh_count; i++) {
955 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
956 			err = -EIO;
957 			goto out_brelse;
958 		}
959 	}
960 	return 0;
961 
962 out_brelse:
963 	for (i = 0; i < bh_count; i++) {
964 		brelse(bhs[i]);
965 		bhs[i] = NULL;
966 	}
967 	return err;
968 }
969 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))970 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
971 			   struct buffer_head *head,
972 			   unsigned from,
973 			   unsigned to,
974 			   int *partial,
975 			   int (*fn)(handle_t *handle, struct inode *inode,
976 				     struct buffer_head *bh))
977 {
978 	struct buffer_head *bh;
979 	unsigned block_start, block_end;
980 	unsigned blocksize = head->b_size;
981 	int err, ret = 0;
982 	struct buffer_head *next;
983 
984 	for (bh = head, block_start = 0;
985 	     ret == 0 && (bh != head || !block_start);
986 	     block_start = block_end, bh = next) {
987 		next = bh->b_this_page;
988 		block_end = block_start + blocksize;
989 		if (block_end <= from || block_start >= to) {
990 			if (partial && !buffer_uptodate(bh))
991 				*partial = 1;
992 			continue;
993 		}
994 		err = (*fn)(handle, inode, bh);
995 		if (!ret)
996 			ret = err;
997 	}
998 	return ret;
999 }
1000 
1001 /*
1002  * Helper for handling dirtying of journalled data. We also mark the folio as
1003  * dirty so that writeback code knows about this page (and inode) contains
1004  * dirty data. ext4_writepages() then commits appropriate transaction to
1005  * make data stable.
1006  */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1007 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1008 {
1009 	folio_mark_dirty(bh->b_folio);
1010 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1011 }
1012 
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1013 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1014 				struct buffer_head *bh)
1015 {
1016 	if (!buffer_mapped(bh) || buffer_freed(bh))
1017 		return 0;
1018 	BUFFER_TRACE(bh, "get write access");
1019 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1020 					    EXT4_JTR_NONE);
1021 }
1022 
ext4_block_write_begin(handle_t * handle,struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1023 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1024 			   loff_t pos, unsigned len,
1025 			   get_block_t *get_block)
1026 {
1027 	unsigned from = pos & (PAGE_SIZE - 1);
1028 	unsigned to = from + len;
1029 	struct inode *inode = folio->mapping->host;
1030 	unsigned block_start, block_end;
1031 	sector_t block;
1032 	int err = 0;
1033 	unsigned blocksize = inode->i_sb->s_blocksize;
1034 	unsigned bbits;
1035 	struct buffer_head *bh, *head, *wait[2];
1036 	int nr_wait = 0;
1037 	int i;
1038 	bool should_journal_data = ext4_should_journal_data(inode);
1039 
1040 	BUG_ON(!folio_test_locked(folio));
1041 	BUG_ON(from > PAGE_SIZE);
1042 	BUG_ON(to > PAGE_SIZE);
1043 	BUG_ON(from > to);
1044 
1045 	head = folio_buffers(folio);
1046 	if (!head)
1047 		head = create_empty_buffers(folio, blocksize, 0);
1048 	bbits = ilog2(blocksize);
1049 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1050 
1051 	for (bh = head, block_start = 0; bh != head || !block_start;
1052 	    block++, block_start = block_end, bh = bh->b_this_page) {
1053 		block_end = block_start + blocksize;
1054 		if (block_end <= from || block_start >= to) {
1055 			if (folio_test_uptodate(folio)) {
1056 				set_buffer_uptodate(bh);
1057 			}
1058 			continue;
1059 		}
1060 		if (buffer_new(bh))
1061 			clear_buffer_new(bh);
1062 		if (!buffer_mapped(bh)) {
1063 			WARN_ON(bh->b_size != blocksize);
1064 			err = get_block(inode, block, bh, 1);
1065 			if (err)
1066 				break;
1067 			if (buffer_new(bh)) {
1068 				/*
1069 				 * We may be zeroing partial buffers or all new
1070 				 * buffers in case of failure. Prepare JBD2 for
1071 				 * that.
1072 				 */
1073 				if (should_journal_data)
1074 					do_journal_get_write_access(handle,
1075 								    inode, bh);
1076 				if (folio_test_uptodate(folio)) {
1077 					/*
1078 					 * Unlike __block_write_begin() we leave
1079 					 * dirtying of new uptodate buffers to
1080 					 * ->write_end() time or
1081 					 * folio_zero_new_buffers().
1082 					 */
1083 					set_buffer_uptodate(bh);
1084 					continue;
1085 				}
1086 				if (block_end > to || block_start < from)
1087 					folio_zero_segments(folio, to,
1088 							    block_end,
1089 							    block_start, from);
1090 				continue;
1091 			}
1092 		}
1093 		if (folio_test_uptodate(folio)) {
1094 			set_buffer_uptodate(bh);
1095 			continue;
1096 		}
1097 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098 		    !buffer_unwritten(bh) &&
1099 		    (block_start < from || block_end > to)) {
1100 			ext4_read_bh_lock(bh, 0, false);
1101 			wait[nr_wait++] = bh;
1102 		}
1103 	}
1104 	/*
1105 	 * If we issued read requests, let them complete.
1106 	 */
1107 	for (i = 0; i < nr_wait; i++) {
1108 		wait_on_buffer(wait[i]);
1109 		if (!buffer_uptodate(wait[i]))
1110 			err = -EIO;
1111 	}
1112 	if (unlikely(err)) {
1113 		if (should_journal_data)
1114 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1115 							 from, to);
1116 		else
1117 			folio_zero_new_buffers(folio, from, to);
1118 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1119 		for (i = 0; i < nr_wait; i++) {
1120 			int err2;
1121 
1122 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1123 						blocksize, bh_offset(wait[i]));
1124 			if (err2) {
1125 				clear_buffer_uptodate(wait[i]);
1126 				err = err2;
1127 			}
1128 		}
1129 	}
1130 
1131 	return err;
1132 }
1133 
1134 /*
1135  * To preserve ordering, it is essential that the hole instantiation and
1136  * the data write be encapsulated in a single transaction.  We cannot
1137  * close off a transaction and start a new one between the ext4_get_block()
1138  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1139  * ext4_write_begin() is the right place.
1140  */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)1141 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1142 			    loff_t pos, unsigned len,
1143 			    struct folio **foliop, void **fsdata)
1144 {
1145 	struct inode *inode = mapping->host;
1146 	int ret, needed_blocks;
1147 	handle_t *handle;
1148 	int retries = 0;
1149 	struct folio *folio;
1150 	pgoff_t index;
1151 	unsigned from, to;
1152 
1153 	ret = ext4_emergency_state(inode->i_sb);
1154 	if (unlikely(ret))
1155 		return ret;
1156 
1157 	trace_ext4_write_begin(inode, pos, len);
1158 	/*
1159 	 * Reserve one block more for addition to orphan list in case
1160 	 * we allocate blocks but write fails for some reason
1161 	 */
1162 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1163 	index = pos >> PAGE_SHIFT;
1164 	from = pos & (PAGE_SIZE - 1);
1165 	to = from + len;
1166 
1167 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1168 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1169 						    foliop);
1170 		if (ret < 0)
1171 			return ret;
1172 		if (ret == 1)
1173 			return 0;
1174 	}
1175 
1176 	/*
1177 	 * __filemap_get_folio() can take a long time if the
1178 	 * system is thrashing due to memory pressure, or if the folio
1179 	 * is being written back.  So grab it first before we start
1180 	 * the transaction handle.  This also allows us to allocate
1181 	 * the folio (if needed) without using GFP_NOFS.
1182 	 */
1183 retry_grab:
1184 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1185 					mapping_gfp_mask(mapping));
1186 	if (IS_ERR(folio))
1187 		return PTR_ERR(folio);
1188 	/*
1189 	 * The same as page allocation, we prealloc buffer heads before
1190 	 * starting the handle.
1191 	 */
1192 	if (!folio_buffers(folio))
1193 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1194 
1195 	folio_unlock(folio);
1196 
1197 retry_journal:
1198 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1199 	if (IS_ERR(handle)) {
1200 		folio_put(folio);
1201 		return PTR_ERR(handle);
1202 	}
1203 
1204 	folio_lock(folio);
1205 	if (folio->mapping != mapping) {
1206 		/* The folio got truncated from under us */
1207 		folio_unlock(folio);
1208 		folio_put(folio);
1209 		ext4_journal_stop(handle);
1210 		goto retry_grab;
1211 	}
1212 	/* In case writeback began while the folio was unlocked */
1213 	folio_wait_stable(folio);
1214 
1215 	if (ext4_should_dioread_nolock(inode))
1216 		ret = ext4_block_write_begin(handle, folio, pos, len,
1217 					     ext4_get_block_unwritten);
1218 	else
1219 		ret = ext4_block_write_begin(handle, folio, pos, len,
1220 					     ext4_get_block);
1221 	if (!ret && ext4_should_journal_data(inode)) {
1222 		ret = ext4_walk_page_buffers(handle, inode,
1223 					     folio_buffers(folio), from, to,
1224 					     NULL, do_journal_get_write_access);
1225 	}
1226 
1227 	if (ret) {
1228 		bool extended = (pos + len > inode->i_size) &&
1229 				!ext4_verity_in_progress(inode);
1230 
1231 		folio_unlock(folio);
1232 		/*
1233 		 * ext4_block_write_begin may have instantiated a few blocks
1234 		 * outside i_size.  Trim these off again. Don't need
1235 		 * i_size_read because we hold i_rwsem.
1236 		 *
1237 		 * Add inode to orphan list in case we crash before
1238 		 * truncate finishes
1239 		 */
1240 		if (extended && ext4_can_truncate(inode))
1241 			ext4_orphan_add(handle, inode);
1242 
1243 		ext4_journal_stop(handle);
1244 		if (extended) {
1245 			ext4_truncate_failed_write(inode);
1246 			/*
1247 			 * If truncate failed early the inode might
1248 			 * still be on the orphan list; we need to
1249 			 * make sure the inode is removed from the
1250 			 * orphan list in that case.
1251 			 */
1252 			if (inode->i_nlink)
1253 				ext4_orphan_del(NULL, inode);
1254 		}
1255 
1256 		if (ret == -ENOSPC &&
1257 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1258 			goto retry_journal;
1259 		folio_put(folio);
1260 		return ret;
1261 	}
1262 	*foliop = folio;
1263 	return ret;
1264 }
1265 
1266 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1267 static int write_end_fn(handle_t *handle, struct inode *inode,
1268 			struct buffer_head *bh)
1269 {
1270 	int ret;
1271 	if (!buffer_mapped(bh) || buffer_freed(bh))
1272 		return 0;
1273 	set_buffer_uptodate(bh);
1274 	ret = ext4_dirty_journalled_data(handle, bh);
1275 	clear_buffer_meta(bh);
1276 	clear_buffer_prio(bh);
1277 	return ret;
1278 }
1279 
1280 /*
1281  * We need to pick up the new inode size which generic_commit_write gave us
1282  * `file' can be NULL - eg, when called from page_symlink().
1283  *
1284  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1285  * buffers are managed internally.
1286  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1287 static int ext4_write_end(struct file *file,
1288 			  struct address_space *mapping,
1289 			  loff_t pos, unsigned len, unsigned copied,
1290 			  struct folio *folio, void *fsdata)
1291 {
1292 	handle_t *handle = ext4_journal_current_handle();
1293 	struct inode *inode = mapping->host;
1294 	loff_t old_size = inode->i_size;
1295 	int ret = 0, ret2;
1296 	int i_size_changed = 0;
1297 	bool verity = ext4_verity_in_progress(inode);
1298 
1299 	trace_ext4_write_end(inode, pos, len, copied);
1300 
1301 	if (ext4_has_inline_data(inode) &&
1302 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1303 		return ext4_write_inline_data_end(inode, pos, len, copied,
1304 						  folio);
1305 
1306 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1307 	/*
1308 	 * it's important to update i_size while still holding folio lock:
1309 	 * page writeout could otherwise come in and zero beyond i_size.
1310 	 *
1311 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1312 	 * blocks are being written past EOF, so skip the i_size update.
1313 	 */
1314 	if (!verity)
1315 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1316 	folio_unlock(folio);
1317 	folio_put(folio);
1318 
1319 	if (old_size < pos && !verity) {
1320 		pagecache_isize_extended(inode, old_size, pos);
1321 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1322 	}
1323 	/*
1324 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1325 	 * makes the holding time of folio lock longer. Second, it forces lock
1326 	 * ordering of folio lock and transaction start for journaling
1327 	 * filesystems.
1328 	 */
1329 	if (i_size_changed)
1330 		ret = ext4_mark_inode_dirty(handle, inode);
1331 
1332 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1333 		/* if we have allocated more blocks and copied
1334 		 * less. We will have blocks allocated outside
1335 		 * inode->i_size. So truncate them
1336 		 */
1337 		ext4_orphan_add(handle, inode);
1338 
1339 	ret2 = ext4_journal_stop(handle);
1340 	if (!ret)
1341 		ret = ret2;
1342 
1343 	if (pos + len > inode->i_size && !verity) {
1344 		ext4_truncate_failed_write(inode);
1345 		/*
1346 		 * If truncate failed early the inode might still be
1347 		 * on the orphan list; we need to make sure the inode
1348 		 * is removed from the orphan list in that case.
1349 		 */
1350 		if (inode->i_nlink)
1351 			ext4_orphan_del(NULL, inode);
1352 	}
1353 
1354 	return ret ? ret : copied;
1355 }
1356 
1357 /*
1358  * This is a private version of folio_zero_new_buffers() which doesn't
1359  * set the buffer to be dirty, since in data=journalled mode we need
1360  * to call ext4_dirty_journalled_data() instead.
1361  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1362 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1363 					    struct inode *inode,
1364 					    struct folio *folio,
1365 					    unsigned from, unsigned to)
1366 {
1367 	unsigned int block_start = 0, block_end;
1368 	struct buffer_head *head, *bh;
1369 
1370 	bh = head = folio_buffers(folio);
1371 	do {
1372 		block_end = block_start + bh->b_size;
1373 		if (buffer_new(bh)) {
1374 			if (block_end > from && block_start < to) {
1375 				if (!folio_test_uptodate(folio)) {
1376 					unsigned start, size;
1377 
1378 					start = max(from, block_start);
1379 					size = min(to, block_end) - start;
1380 
1381 					folio_zero_range(folio, start, size);
1382 				}
1383 				clear_buffer_new(bh);
1384 				write_end_fn(handle, inode, bh);
1385 			}
1386 		}
1387 		block_start = block_end;
1388 		bh = bh->b_this_page;
1389 	} while (bh != head);
1390 }
1391 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1392 static int ext4_journalled_write_end(struct file *file,
1393 				     struct address_space *mapping,
1394 				     loff_t pos, unsigned len, unsigned copied,
1395 				     struct folio *folio, void *fsdata)
1396 {
1397 	handle_t *handle = ext4_journal_current_handle();
1398 	struct inode *inode = mapping->host;
1399 	loff_t old_size = inode->i_size;
1400 	int ret = 0, ret2;
1401 	int partial = 0;
1402 	unsigned from, to;
1403 	int size_changed = 0;
1404 	bool verity = ext4_verity_in_progress(inode);
1405 
1406 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1407 	from = pos & (PAGE_SIZE - 1);
1408 	to = from + len;
1409 
1410 	BUG_ON(!ext4_handle_valid(handle));
1411 
1412 	if (ext4_has_inline_data(inode))
1413 		return ext4_write_inline_data_end(inode, pos, len, copied,
1414 						  folio);
1415 
1416 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1417 		copied = 0;
1418 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1419 						 from, to);
1420 	} else {
1421 		if (unlikely(copied < len))
1422 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1423 							 from + copied, to);
1424 		ret = ext4_walk_page_buffers(handle, inode,
1425 					     folio_buffers(folio),
1426 					     from, from + copied, &partial,
1427 					     write_end_fn);
1428 		if (!partial)
1429 			folio_mark_uptodate(folio);
1430 	}
1431 	if (!verity)
1432 		size_changed = ext4_update_inode_size(inode, pos + copied);
1433 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1434 	folio_unlock(folio);
1435 	folio_put(folio);
1436 
1437 	if (old_size < pos && !verity) {
1438 		pagecache_isize_extended(inode, old_size, pos);
1439 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1440 	}
1441 
1442 	if (size_changed) {
1443 		ret2 = ext4_mark_inode_dirty(handle, inode);
1444 		if (!ret)
1445 			ret = ret2;
1446 	}
1447 
1448 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1449 		/* if we have allocated more blocks and copied
1450 		 * less. We will have blocks allocated outside
1451 		 * inode->i_size. So truncate them
1452 		 */
1453 		ext4_orphan_add(handle, inode);
1454 
1455 	ret2 = ext4_journal_stop(handle);
1456 	if (!ret)
1457 		ret = ret2;
1458 	if (pos + len > inode->i_size && !verity) {
1459 		ext4_truncate_failed_write(inode);
1460 		/*
1461 		 * If truncate failed early the inode might still be
1462 		 * on the orphan list; we need to make sure the inode
1463 		 * is removed from the orphan list in that case.
1464 		 */
1465 		if (inode->i_nlink)
1466 			ext4_orphan_del(NULL, inode);
1467 	}
1468 
1469 	return ret ? ret : copied;
1470 }
1471 
1472 /*
1473  * Reserve space for 'nr_resv' clusters
1474  */
ext4_da_reserve_space(struct inode * inode,int nr_resv)1475 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1476 {
1477 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478 	struct ext4_inode_info *ei = EXT4_I(inode);
1479 	int ret;
1480 
1481 	/*
1482 	 * We will charge metadata quota at writeout time; this saves
1483 	 * us from metadata over-estimation, though we may go over by
1484 	 * a small amount in the end.  Here we just reserve for data.
1485 	 */
1486 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1487 	if (ret)
1488 		return ret;
1489 
1490 	spin_lock(&ei->i_block_reservation_lock);
1491 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1492 		spin_unlock(&ei->i_block_reservation_lock);
1493 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1494 		return -ENOSPC;
1495 	}
1496 	ei->i_reserved_data_blocks += nr_resv;
1497 	trace_ext4_da_reserve_space(inode, nr_resv);
1498 	spin_unlock(&ei->i_block_reservation_lock);
1499 
1500 	return 0;       /* success */
1501 }
1502 
ext4_da_release_space(struct inode * inode,int to_free)1503 void ext4_da_release_space(struct inode *inode, int to_free)
1504 {
1505 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1506 	struct ext4_inode_info *ei = EXT4_I(inode);
1507 
1508 	if (!to_free)
1509 		return;		/* Nothing to release, exit */
1510 
1511 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1512 
1513 	trace_ext4_da_release_space(inode, to_free);
1514 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1515 		/*
1516 		 * if there aren't enough reserved blocks, then the
1517 		 * counter is messed up somewhere.  Since this
1518 		 * function is called from invalidate page, it's
1519 		 * harmless to return without any action.
1520 		 */
1521 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1522 			 "ino %lu, to_free %d with only %d reserved "
1523 			 "data blocks", inode->i_ino, to_free,
1524 			 ei->i_reserved_data_blocks);
1525 		WARN_ON(1);
1526 		to_free = ei->i_reserved_data_blocks;
1527 	}
1528 	ei->i_reserved_data_blocks -= to_free;
1529 
1530 	/* update fs dirty data blocks counter */
1531 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1532 
1533 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1534 
1535 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1536 }
1537 
1538 /*
1539  * Delayed allocation stuff
1540  */
1541 
1542 struct mpage_da_data {
1543 	/* These are input fields for ext4_do_writepages() */
1544 	struct inode *inode;
1545 	struct writeback_control *wbc;
1546 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1547 
1548 	/* These are internal state of ext4_do_writepages() */
1549 	pgoff_t first_page;	/* The first page to write */
1550 	pgoff_t next_page;	/* Current page to examine */
1551 	pgoff_t last_page;	/* Last page to examine */
1552 	/*
1553 	 * Extent to map - this can be after first_page because that can be
1554 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1555 	 * is delalloc or unwritten.
1556 	 */
1557 	struct ext4_map_blocks map;
1558 	struct ext4_io_submit io_submit;	/* IO submission data */
1559 	unsigned int do_map:1;
1560 	unsigned int scanned_until_end:1;
1561 	unsigned int journalled_more_data:1;
1562 };
1563 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1564 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1565 				       bool invalidate)
1566 {
1567 	unsigned nr, i;
1568 	pgoff_t index, end;
1569 	struct folio_batch fbatch;
1570 	struct inode *inode = mpd->inode;
1571 	struct address_space *mapping = inode->i_mapping;
1572 
1573 	/* This is necessary when next_page == 0. */
1574 	if (mpd->first_page >= mpd->next_page)
1575 		return;
1576 
1577 	mpd->scanned_until_end = 0;
1578 	index = mpd->first_page;
1579 	end   = mpd->next_page - 1;
1580 	if (invalidate) {
1581 		ext4_lblk_t start, last;
1582 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1583 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1584 
1585 		/*
1586 		 * avoid racing with extent status tree scans made by
1587 		 * ext4_insert_delayed_block()
1588 		 */
1589 		down_write(&EXT4_I(inode)->i_data_sem);
1590 		ext4_es_remove_extent(inode, start, last - start + 1);
1591 		up_write(&EXT4_I(inode)->i_data_sem);
1592 	}
1593 
1594 	folio_batch_init(&fbatch);
1595 	while (index <= end) {
1596 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1597 		if (nr == 0)
1598 			break;
1599 		for (i = 0; i < nr; i++) {
1600 			struct folio *folio = fbatch.folios[i];
1601 
1602 			if (folio->index < mpd->first_page)
1603 				continue;
1604 			if (folio_next_index(folio) - 1 > end)
1605 				continue;
1606 			BUG_ON(!folio_test_locked(folio));
1607 			BUG_ON(folio_test_writeback(folio));
1608 			if (invalidate) {
1609 				if (folio_mapped(folio))
1610 					folio_clear_dirty_for_io(folio);
1611 				block_invalidate_folio(folio, 0,
1612 						folio_size(folio));
1613 				folio_clear_uptodate(folio);
1614 			}
1615 			folio_unlock(folio);
1616 		}
1617 		folio_batch_release(&fbatch);
1618 	}
1619 }
1620 
ext4_print_free_blocks(struct inode * inode)1621 static void ext4_print_free_blocks(struct inode *inode)
1622 {
1623 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1624 	struct super_block *sb = inode->i_sb;
1625 	struct ext4_inode_info *ei = EXT4_I(inode);
1626 
1627 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1628 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1629 			ext4_count_free_clusters(sb)));
1630 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1631 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1632 	       (long long) EXT4_C2B(EXT4_SB(sb),
1633 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1634 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1635 	       (long long) EXT4_C2B(EXT4_SB(sb),
1636 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1637 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1638 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1639 		 ei->i_reserved_data_blocks);
1640 	return;
1641 }
1642 
1643 /*
1644  * Check whether the cluster containing lblk has been allocated or has
1645  * delalloc reservation.
1646  *
1647  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1648  * reservation, 2 if it's already been allocated, negative error code on
1649  * failure.
1650  */
ext4_clu_alloc_state(struct inode * inode,ext4_lblk_t lblk)1651 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1652 {
1653 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1654 	int ret;
1655 
1656 	/* Has delalloc reservation? */
1657 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1658 		return 1;
1659 
1660 	/* Already been allocated? */
1661 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1662 		return 2;
1663 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1664 	if (ret < 0)
1665 		return ret;
1666 	if (ret > 0)
1667 		return 2;
1668 
1669 	return 0;
1670 }
1671 
1672 /*
1673  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1674  *                              status tree, incrementing the reserved
1675  *                              cluster/block count or making pending
1676  *                              reservations where needed
1677  *
1678  * @inode - file containing the newly added block
1679  * @lblk - start logical block to be added
1680  * @len - length of blocks to be added
1681  *
1682  * Returns 0 on success, negative error code on failure.
1683  */
ext4_insert_delayed_blocks(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1684 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1685 				      ext4_lblk_t len)
1686 {
1687 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1688 	int ret;
1689 	bool lclu_allocated = false;
1690 	bool end_allocated = false;
1691 	ext4_lblk_t resv_clu;
1692 	ext4_lblk_t end = lblk + len - 1;
1693 
1694 	/*
1695 	 * If the cluster containing lblk or end is shared with a delayed,
1696 	 * written, or unwritten extent in a bigalloc file system, it's
1697 	 * already been accounted for and does not need to be reserved.
1698 	 * A pending reservation must be made for the cluster if it's
1699 	 * shared with a written or unwritten extent and doesn't already
1700 	 * have one.  Written and unwritten extents can be purged from the
1701 	 * extents status tree if the system is under memory pressure, so
1702 	 * it's necessary to examine the extent tree if a search of the
1703 	 * extents status tree doesn't get a match.
1704 	 */
1705 	if (sbi->s_cluster_ratio == 1) {
1706 		ret = ext4_da_reserve_space(inode, len);
1707 		if (ret != 0)   /* ENOSPC */
1708 			return ret;
1709 	} else {   /* bigalloc */
1710 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1711 
1712 		ret = ext4_clu_alloc_state(inode, lblk);
1713 		if (ret < 0)
1714 			return ret;
1715 		if (ret > 0) {
1716 			resv_clu--;
1717 			lclu_allocated = (ret == 2);
1718 		}
1719 
1720 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1721 			ret = ext4_clu_alloc_state(inode, end);
1722 			if (ret < 0)
1723 				return ret;
1724 			if (ret > 0) {
1725 				resv_clu--;
1726 				end_allocated = (ret == 2);
1727 			}
1728 		}
1729 
1730 		if (resv_clu) {
1731 			ret = ext4_da_reserve_space(inode, resv_clu);
1732 			if (ret != 0)   /* ENOSPC */
1733 				return ret;
1734 		}
1735 	}
1736 
1737 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1738 				      end_allocated);
1739 	return 0;
1740 }
1741 
1742 /*
1743  * Looks up the requested blocks and sets the delalloc extent map.
1744  * First try to look up for the extent entry that contains the requested
1745  * blocks in the extent status tree without i_data_sem, then try to look
1746  * up for the ondisk extent mapping with i_data_sem in read mode,
1747  * finally hold i_data_sem in write mode, looks up again and add a
1748  * delalloc extent entry if it still couldn't find any extent. Pass out
1749  * the mapped extent through @map and return 0 on success.
1750  */
ext4_da_map_blocks(struct inode * inode,struct ext4_map_blocks * map)1751 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1752 {
1753 	struct extent_status es;
1754 	int retval;
1755 #ifdef ES_AGGRESSIVE_TEST
1756 	struct ext4_map_blocks orig_map;
1757 
1758 	memcpy(&orig_map, map, sizeof(*map));
1759 #endif
1760 
1761 	map->m_flags = 0;
1762 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1763 		  (unsigned long) map->m_lblk);
1764 
1765 	/* Lookup extent status tree firstly */
1766 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1767 		map->m_len = min_t(unsigned int, map->m_len,
1768 				   es.es_len - (map->m_lblk - es.es_lblk));
1769 
1770 		if (ext4_es_is_hole(&es))
1771 			goto add_delayed;
1772 
1773 found:
1774 		/*
1775 		 * Delayed extent could be allocated by fallocate.
1776 		 * So we need to check it.
1777 		 */
1778 		if (ext4_es_is_delayed(&es)) {
1779 			map->m_flags |= EXT4_MAP_DELAYED;
1780 			return 0;
1781 		}
1782 
1783 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1784 		if (ext4_es_is_written(&es))
1785 			map->m_flags |= EXT4_MAP_MAPPED;
1786 		else if (ext4_es_is_unwritten(&es))
1787 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1788 		else
1789 			BUG();
1790 
1791 #ifdef ES_AGGRESSIVE_TEST
1792 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1793 #endif
1794 		return 0;
1795 	}
1796 
1797 	/*
1798 	 * Try to see if we can get the block without requesting a new
1799 	 * file system block.
1800 	 */
1801 	down_read(&EXT4_I(inode)->i_data_sem);
1802 	if (ext4_has_inline_data(inode))
1803 		retval = 0;
1804 	else
1805 		retval = ext4_map_query_blocks(NULL, inode, map);
1806 	up_read(&EXT4_I(inode)->i_data_sem);
1807 	if (retval)
1808 		return retval < 0 ? retval : 0;
1809 
1810 add_delayed:
1811 	down_write(&EXT4_I(inode)->i_data_sem);
1812 	/*
1813 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1814 	 * and fallocate path (no folio lock) can race. Make sure we
1815 	 * lookup the extent status tree here again while i_data_sem
1816 	 * is held in write mode, before inserting a new da entry in
1817 	 * the extent status tree.
1818 	 */
1819 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1820 		map->m_len = min_t(unsigned int, map->m_len,
1821 				   es.es_len - (map->m_lblk - es.es_lblk));
1822 
1823 		if (!ext4_es_is_hole(&es)) {
1824 			up_write(&EXT4_I(inode)->i_data_sem);
1825 			goto found;
1826 		}
1827 	} else if (!ext4_has_inline_data(inode)) {
1828 		retval = ext4_map_query_blocks(NULL, inode, map);
1829 		if (retval) {
1830 			up_write(&EXT4_I(inode)->i_data_sem);
1831 			return retval < 0 ? retval : 0;
1832 		}
1833 	}
1834 
1835 	map->m_flags |= EXT4_MAP_DELAYED;
1836 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1837 	up_write(&EXT4_I(inode)->i_data_sem);
1838 
1839 	return retval;
1840 }
1841 
1842 /*
1843  * This is a special get_block_t callback which is used by
1844  * ext4_da_write_begin().  It will either return mapped block or
1845  * reserve space for a single block.
1846  *
1847  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1848  * We also have b_blocknr = -1 and b_bdev initialized properly
1849  *
1850  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1851  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1852  * initialized properly.
1853  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1854 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1855 			   struct buffer_head *bh, int create)
1856 {
1857 	struct ext4_map_blocks map;
1858 	sector_t invalid_block = ~((sector_t) 0xffff);
1859 	int ret = 0;
1860 
1861 	BUG_ON(create == 0);
1862 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1863 
1864 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1865 		invalid_block = ~0;
1866 
1867 	map.m_lblk = iblock;
1868 	map.m_len = 1;
1869 
1870 	/*
1871 	 * first, we need to know whether the block is allocated already
1872 	 * preallocated blocks are unmapped but should treated
1873 	 * the same as allocated blocks.
1874 	 */
1875 	ret = ext4_da_map_blocks(inode, &map);
1876 	if (ret < 0)
1877 		return ret;
1878 
1879 	if (map.m_flags & EXT4_MAP_DELAYED) {
1880 		map_bh(bh, inode->i_sb, invalid_block);
1881 		set_buffer_new(bh);
1882 		set_buffer_delay(bh);
1883 		return 0;
1884 	}
1885 
1886 	map_bh(bh, inode->i_sb, map.m_pblk);
1887 	ext4_update_bh_state(bh, map.m_flags);
1888 
1889 	if (buffer_unwritten(bh)) {
1890 		/* A delayed write to unwritten bh should be marked
1891 		 * new and mapped.  Mapped ensures that we don't do
1892 		 * get_block multiple times when we write to the same
1893 		 * offset and new ensures that we do proper zero out
1894 		 * for partial write.
1895 		 */
1896 		set_buffer_new(bh);
1897 		set_buffer_mapped(bh);
1898 	}
1899 	return 0;
1900 }
1901 
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1902 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1903 {
1904 	mpd->first_page += folio_nr_pages(folio);
1905 	folio_unlock(folio);
1906 }
1907 
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1908 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1909 {
1910 	size_t len;
1911 	loff_t size;
1912 	int err;
1913 
1914 	BUG_ON(folio->index != mpd->first_page);
1915 	folio_clear_dirty_for_io(folio);
1916 	/*
1917 	 * We have to be very careful here!  Nothing protects writeback path
1918 	 * against i_size changes and the page can be writeably mapped into
1919 	 * page tables. So an application can be growing i_size and writing
1920 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1921 	 * write-protects our page in page tables and the page cannot get
1922 	 * written to again until we release folio lock. So only after
1923 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1924 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1925 	 * on the barrier provided by folio_test_clear_dirty() in
1926 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1927 	 * after page tables are updated.
1928 	 */
1929 	size = i_size_read(mpd->inode);
1930 	len = folio_size(folio);
1931 	if (folio_pos(folio) + len > size &&
1932 	    !ext4_verity_in_progress(mpd->inode))
1933 		len = size & (len - 1);
1934 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1935 	if (!err)
1936 		mpd->wbc->nr_to_write--;
1937 
1938 	return err;
1939 }
1940 
1941 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1942 
1943 /*
1944  * mballoc gives us at most this number of blocks...
1945  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1946  * The rest of mballoc seems to handle chunks up to full group size.
1947  */
1948 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1949 
1950 /*
1951  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1952  *
1953  * @mpd - extent of blocks
1954  * @lblk - logical number of the block in the file
1955  * @bh - buffer head we want to add to the extent
1956  *
1957  * The function is used to collect contig. blocks in the same state. If the
1958  * buffer doesn't require mapping for writeback and we haven't started the
1959  * extent of buffers to map yet, the function returns 'true' immediately - the
1960  * caller can write the buffer right away. Otherwise the function returns true
1961  * if the block has been added to the extent, false if the block couldn't be
1962  * added.
1963  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1964 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1965 				   struct buffer_head *bh)
1966 {
1967 	struct ext4_map_blocks *map = &mpd->map;
1968 
1969 	/* Buffer that doesn't need mapping for writeback? */
1970 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1971 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1972 		/* So far no extent to map => we write the buffer right away */
1973 		if (map->m_len == 0)
1974 			return true;
1975 		return false;
1976 	}
1977 
1978 	/* First block in the extent? */
1979 	if (map->m_len == 0) {
1980 		/* We cannot map unless handle is started... */
1981 		if (!mpd->do_map)
1982 			return false;
1983 		map->m_lblk = lblk;
1984 		map->m_len = 1;
1985 		map->m_flags = bh->b_state & BH_FLAGS;
1986 		return true;
1987 	}
1988 
1989 	/* Don't go larger than mballoc is willing to allocate */
1990 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1991 		return false;
1992 
1993 	/* Can we merge the block to our big extent? */
1994 	if (lblk == map->m_lblk + map->m_len &&
1995 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1996 		map->m_len++;
1997 		return true;
1998 	}
1999 	return false;
2000 }
2001 
2002 /*
2003  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2004  *
2005  * @mpd - extent of blocks for mapping
2006  * @head - the first buffer in the page
2007  * @bh - buffer we should start processing from
2008  * @lblk - logical number of the block in the file corresponding to @bh
2009  *
2010  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2011  * the page for IO if all buffers in this page were mapped and there's no
2012  * accumulated extent of buffers to map or add buffers in the page to the
2013  * extent of buffers to map. The function returns 1 if the caller can continue
2014  * by processing the next page, 0 if it should stop adding buffers to the
2015  * extent to map because we cannot extend it anymore. It can also return value
2016  * < 0 in case of error during IO submission.
2017  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2018 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2019 				   struct buffer_head *head,
2020 				   struct buffer_head *bh,
2021 				   ext4_lblk_t lblk)
2022 {
2023 	struct inode *inode = mpd->inode;
2024 	int err;
2025 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2026 							>> inode->i_blkbits;
2027 
2028 	if (ext4_verity_in_progress(inode))
2029 		blocks = EXT_MAX_BLOCKS;
2030 
2031 	do {
2032 		BUG_ON(buffer_locked(bh));
2033 
2034 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2035 			/* Found extent to map? */
2036 			if (mpd->map.m_len)
2037 				return 0;
2038 			/* Buffer needs mapping and handle is not started? */
2039 			if (!mpd->do_map)
2040 				return 0;
2041 			/* Everything mapped so far and we hit EOF */
2042 			break;
2043 		}
2044 	} while (lblk++, (bh = bh->b_this_page) != head);
2045 	/* So far everything mapped? Submit the page for IO. */
2046 	if (mpd->map.m_len == 0) {
2047 		err = mpage_submit_folio(mpd, head->b_folio);
2048 		if (err < 0)
2049 			return err;
2050 		mpage_folio_done(mpd, head->b_folio);
2051 	}
2052 	if (lblk >= blocks) {
2053 		mpd->scanned_until_end = 1;
2054 		return 0;
2055 	}
2056 	return 1;
2057 }
2058 
2059 /*
2060  * mpage_process_folio - update folio buffers corresponding to changed extent
2061  *			 and may submit fully mapped page for IO
2062  * @mpd: description of extent to map, on return next extent to map
2063  * @folio: Contains these buffers.
2064  * @m_lblk: logical block mapping.
2065  * @m_pblk: corresponding physical mapping.
2066  * @map_bh: determines on return whether this page requires any further
2067  *		  mapping or not.
2068  *
2069  * Scan given folio buffers corresponding to changed extent and update buffer
2070  * state according to new extent state.
2071  * We map delalloc buffers to their physical location, clear unwritten bits.
2072  * If the given folio is not fully mapped, we update @mpd to the next extent in
2073  * the given folio that needs mapping & return @map_bh as true.
2074  */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2075 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2076 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2077 			      bool *map_bh)
2078 {
2079 	struct buffer_head *head, *bh;
2080 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2081 	ext4_lblk_t lblk = *m_lblk;
2082 	ext4_fsblk_t pblock = *m_pblk;
2083 	int err = 0;
2084 	int blkbits = mpd->inode->i_blkbits;
2085 	ssize_t io_end_size = 0;
2086 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2087 
2088 	bh = head = folio_buffers(folio);
2089 	do {
2090 		if (lblk < mpd->map.m_lblk)
2091 			continue;
2092 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2093 			/*
2094 			 * Buffer after end of mapped extent.
2095 			 * Find next buffer in the folio to map.
2096 			 */
2097 			mpd->map.m_len = 0;
2098 			mpd->map.m_flags = 0;
2099 			io_end_vec->size += io_end_size;
2100 
2101 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2102 			if (err > 0)
2103 				err = 0;
2104 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2105 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2106 				if (IS_ERR(io_end_vec)) {
2107 					err = PTR_ERR(io_end_vec);
2108 					goto out;
2109 				}
2110 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2111 			}
2112 			*map_bh = true;
2113 			goto out;
2114 		}
2115 		if (buffer_delay(bh)) {
2116 			clear_buffer_delay(bh);
2117 			bh->b_blocknr = pblock++;
2118 		}
2119 		clear_buffer_unwritten(bh);
2120 		io_end_size += (1 << blkbits);
2121 	} while (lblk++, (bh = bh->b_this_page) != head);
2122 
2123 	io_end_vec->size += io_end_size;
2124 	*map_bh = false;
2125 out:
2126 	*m_lblk = lblk;
2127 	*m_pblk = pblock;
2128 	return err;
2129 }
2130 
2131 /*
2132  * mpage_map_buffers - update buffers corresponding to changed extent and
2133  *		       submit fully mapped pages for IO
2134  *
2135  * @mpd - description of extent to map, on return next extent to map
2136  *
2137  * Scan buffers corresponding to changed extent (we expect corresponding pages
2138  * to be already locked) and update buffer state according to new extent state.
2139  * We map delalloc buffers to their physical location, clear unwritten bits,
2140  * and mark buffers as uninit when we perform writes to unwritten extents
2141  * and do extent conversion after IO is finished. If the last page is not fully
2142  * mapped, we update @map to the next extent in the last page that needs
2143  * mapping. Otherwise we submit the page for IO.
2144  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2145 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2146 {
2147 	struct folio_batch fbatch;
2148 	unsigned nr, i;
2149 	struct inode *inode = mpd->inode;
2150 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2151 	pgoff_t start, end;
2152 	ext4_lblk_t lblk;
2153 	ext4_fsblk_t pblock;
2154 	int err;
2155 	bool map_bh = false;
2156 
2157 	start = mpd->map.m_lblk >> bpp_bits;
2158 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2159 	lblk = start << bpp_bits;
2160 	pblock = mpd->map.m_pblk;
2161 
2162 	folio_batch_init(&fbatch);
2163 	while (start <= end) {
2164 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2165 		if (nr == 0)
2166 			break;
2167 		for (i = 0; i < nr; i++) {
2168 			struct folio *folio = fbatch.folios[i];
2169 
2170 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2171 						 &map_bh);
2172 			/*
2173 			 * If map_bh is true, means page may require further bh
2174 			 * mapping, or maybe the page was submitted for IO.
2175 			 * So we return to call further extent mapping.
2176 			 */
2177 			if (err < 0 || map_bh)
2178 				goto out;
2179 			/* Page fully mapped - let IO run! */
2180 			err = mpage_submit_folio(mpd, folio);
2181 			if (err < 0)
2182 				goto out;
2183 			mpage_folio_done(mpd, folio);
2184 		}
2185 		folio_batch_release(&fbatch);
2186 	}
2187 	/* Extent fully mapped and matches with page boundary. We are done. */
2188 	mpd->map.m_len = 0;
2189 	mpd->map.m_flags = 0;
2190 	return 0;
2191 out:
2192 	folio_batch_release(&fbatch);
2193 	return err;
2194 }
2195 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2196 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2197 {
2198 	struct inode *inode = mpd->inode;
2199 	struct ext4_map_blocks *map = &mpd->map;
2200 	int get_blocks_flags;
2201 	int err, dioread_nolock;
2202 
2203 	trace_ext4_da_write_pages_extent(inode, map);
2204 	/*
2205 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2206 	 * to convert an unwritten extent to be initialized (in the case
2207 	 * where we have written into one or more preallocated blocks).  It is
2208 	 * possible that we're going to need more metadata blocks than
2209 	 * previously reserved. However we must not fail because we're in
2210 	 * writeback and there is nothing we can do about it so it might result
2211 	 * in data loss.  So use reserved blocks to allocate metadata if
2212 	 * possible.
2213 	 */
2214 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2215 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2216 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2217 	dioread_nolock = ext4_should_dioread_nolock(inode);
2218 	if (dioread_nolock)
2219 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2220 
2221 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2222 	if (err < 0)
2223 		return err;
2224 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2225 		if (!mpd->io_submit.io_end->handle &&
2226 		    ext4_handle_valid(handle)) {
2227 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2228 			handle->h_rsv_handle = NULL;
2229 		}
2230 		ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2231 	}
2232 
2233 	BUG_ON(map->m_len == 0);
2234 	return 0;
2235 }
2236 
2237 /*
2238  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2239  *				 mpd->len and submit pages underlying it for IO
2240  *
2241  * @handle - handle for journal operations
2242  * @mpd - extent to map
2243  * @give_up_on_write - we set this to true iff there is a fatal error and there
2244  *                     is no hope of writing the data. The caller should discard
2245  *                     dirty pages to avoid infinite loops.
2246  *
2247  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2248  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2249  * them to initialized or split the described range from larger unwritten
2250  * extent. Note that we need not map all the described range since allocation
2251  * can return less blocks or the range is covered by more unwritten extents. We
2252  * cannot map more because we are limited by reserved transaction credits. On
2253  * the other hand we always make sure that the last touched page is fully
2254  * mapped so that it can be written out (and thus forward progress is
2255  * guaranteed). After mapping we submit all mapped pages for IO.
2256  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2257 static int mpage_map_and_submit_extent(handle_t *handle,
2258 				       struct mpage_da_data *mpd,
2259 				       bool *give_up_on_write)
2260 {
2261 	struct inode *inode = mpd->inode;
2262 	struct ext4_map_blocks *map = &mpd->map;
2263 	int err;
2264 	loff_t disksize;
2265 	int progress = 0;
2266 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2267 	struct ext4_io_end_vec *io_end_vec;
2268 
2269 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2270 	if (IS_ERR(io_end_vec))
2271 		return PTR_ERR(io_end_vec);
2272 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2273 	do {
2274 		err = mpage_map_one_extent(handle, mpd);
2275 		if (err < 0) {
2276 			struct super_block *sb = inode->i_sb;
2277 
2278 			if (ext4_emergency_state(sb))
2279 				goto invalidate_dirty_pages;
2280 			/*
2281 			 * Let the uper layers retry transient errors.
2282 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2283 			 * is non-zero, a commit should free up blocks.
2284 			 */
2285 			if ((err == -ENOMEM) ||
2286 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2287 				if (progress)
2288 					goto update_disksize;
2289 				return err;
2290 			}
2291 			ext4_msg(sb, KERN_CRIT,
2292 				 "Delayed block allocation failed for "
2293 				 "inode %lu at logical offset %llu with"
2294 				 " max blocks %u with error %d",
2295 				 inode->i_ino,
2296 				 (unsigned long long)map->m_lblk,
2297 				 (unsigned)map->m_len, -err);
2298 			ext4_msg(sb, KERN_CRIT,
2299 				 "This should not happen!! Data will "
2300 				 "be lost\n");
2301 			if (err == -ENOSPC)
2302 				ext4_print_free_blocks(inode);
2303 		invalidate_dirty_pages:
2304 			*give_up_on_write = true;
2305 			return err;
2306 		}
2307 		progress = 1;
2308 		/*
2309 		 * Update buffer state, submit mapped pages, and get us new
2310 		 * extent to map
2311 		 */
2312 		err = mpage_map_and_submit_buffers(mpd);
2313 		if (err < 0)
2314 			goto update_disksize;
2315 	} while (map->m_len);
2316 
2317 update_disksize:
2318 	/*
2319 	 * Update on-disk size after IO is submitted.  Races with
2320 	 * truncate are avoided by checking i_size under i_data_sem.
2321 	 */
2322 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2323 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2324 		int err2;
2325 		loff_t i_size;
2326 
2327 		down_write(&EXT4_I(inode)->i_data_sem);
2328 		i_size = i_size_read(inode);
2329 		if (disksize > i_size)
2330 			disksize = i_size;
2331 		if (disksize > EXT4_I(inode)->i_disksize)
2332 			EXT4_I(inode)->i_disksize = disksize;
2333 		up_write(&EXT4_I(inode)->i_data_sem);
2334 		err2 = ext4_mark_inode_dirty(handle, inode);
2335 		if (err2) {
2336 			ext4_error_err(inode->i_sb, -err2,
2337 				       "Failed to mark inode %lu dirty",
2338 				       inode->i_ino);
2339 		}
2340 		if (!err)
2341 			err = err2;
2342 	}
2343 	return err;
2344 }
2345 
2346 /*
2347  * Calculate the total number of credits to reserve for one writepages
2348  * iteration. This is called from ext4_writepages(). We map an extent of
2349  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2350  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2351  * bpp - 1 blocks in bpp different extents.
2352  */
ext4_da_writepages_trans_blocks(struct inode * inode)2353 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2354 {
2355 	int bpp = ext4_journal_blocks_per_page(inode);
2356 
2357 	return ext4_meta_trans_blocks(inode,
2358 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2359 }
2360 
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2361 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2362 				     size_t len)
2363 {
2364 	struct buffer_head *page_bufs = folio_buffers(folio);
2365 	struct inode *inode = folio->mapping->host;
2366 	int ret, err;
2367 
2368 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369 				     NULL, do_journal_get_write_access);
2370 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2371 				     NULL, write_end_fn);
2372 	if (ret == 0)
2373 		ret = err;
2374 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2375 	if (ret == 0)
2376 		ret = err;
2377 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2378 
2379 	return ret;
2380 }
2381 
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2382 static int mpage_journal_page_buffers(handle_t *handle,
2383 				      struct mpage_da_data *mpd,
2384 				      struct folio *folio)
2385 {
2386 	struct inode *inode = mpd->inode;
2387 	loff_t size = i_size_read(inode);
2388 	size_t len = folio_size(folio);
2389 
2390 	folio_clear_checked(folio);
2391 	mpd->wbc->nr_to_write--;
2392 
2393 	if (folio_pos(folio) + len > size &&
2394 	    !ext4_verity_in_progress(inode))
2395 		len = size & (len - 1);
2396 
2397 	return ext4_journal_folio_buffers(handle, folio, len);
2398 }
2399 
2400 /*
2401  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2402  * 				 needing mapping, submit mapped pages
2403  *
2404  * @mpd - where to look for pages
2405  *
2406  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2407  * IO immediately. If we cannot map blocks, we submit just already mapped
2408  * buffers in the page for IO and keep page dirty. When we can map blocks and
2409  * we find a page which isn't mapped we start accumulating extent of buffers
2410  * underlying these pages that needs mapping (formed by either delayed or
2411  * unwritten buffers). We also lock the pages containing these buffers. The
2412  * extent found is returned in @mpd structure (starting at mpd->lblk with
2413  * length mpd->len blocks).
2414  *
2415  * Note that this function can attach bios to one io_end structure which are
2416  * neither logically nor physically contiguous. Although it may seem as an
2417  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2418  * case as we need to track IO to all buffers underlying a page in one io_end.
2419  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2420 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2421 {
2422 	struct address_space *mapping = mpd->inode->i_mapping;
2423 	struct folio_batch fbatch;
2424 	unsigned int nr_folios;
2425 	pgoff_t index = mpd->first_page;
2426 	pgoff_t end = mpd->last_page;
2427 	xa_mark_t tag;
2428 	int i, err = 0;
2429 	int blkbits = mpd->inode->i_blkbits;
2430 	ext4_lblk_t lblk;
2431 	struct buffer_head *head;
2432 	handle_t *handle = NULL;
2433 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2434 
2435 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2436 		tag = PAGECACHE_TAG_TOWRITE;
2437 	else
2438 		tag = PAGECACHE_TAG_DIRTY;
2439 
2440 	mpd->map.m_len = 0;
2441 	mpd->next_page = index;
2442 	if (ext4_should_journal_data(mpd->inode)) {
2443 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2444 					    bpp);
2445 		if (IS_ERR(handle))
2446 			return PTR_ERR(handle);
2447 	}
2448 	folio_batch_init(&fbatch);
2449 	while (index <= end) {
2450 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2451 				tag, &fbatch);
2452 		if (nr_folios == 0)
2453 			break;
2454 
2455 		for (i = 0; i < nr_folios; i++) {
2456 			struct folio *folio = fbatch.folios[i];
2457 
2458 			/*
2459 			 * Accumulated enough dirty pages? This doesn't apply
2460 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2461 			 * keep going because someone may be concurrently
2462 			 * dirtying pages, and we might have synced a lot of
2463 			 * newly appeared dirty pages, but have not synced all
2464 			 * of the old dirty pages.
2465 			 */
2466 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2467 			    mpd->wbc->nr_to_write <=
2468 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2469 				goto out;
2470 
2471 			/* If we can't merge this page, we are done. */
2472 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2473 				goto out;
2474 
2475 			if (handle) {
2476 				err = ext4_journal_ensure_credits(handle, bpp,
2477 								  0);
2478 				if (err < 0)
2479 					goto out;
2480 			}
2481 
2482 			folio_lock(folio);
2483 			/*
2484 			 * If the page is no longer dirty, or its mapping no
2485 			 * longer corresponds to inode we are writing (which
2486 			 * means it has been truncated or invalidated), or the
2487 			 * page is already under writeback and we are not doing
2488 			 * a data integrity writeback, skip the page
2489 			 */
2490 			if (!folio_test_dirty(folio) ||
2491 			    (folio_test_writeback(folio) &&
2492 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2493 			    unlikely(folio->mapping != mapping)) {
2494 				folio_unlock(folio);
2495 				continue;
2496 			}
2497 
2498 			folio_wait_writeback(folio);
2499 			BUG_ON(folio_test_writeback(folio));
2500 
2501 			/*
2502 			 * Should never happen but for buggy code in
2503 			 * other subsystems that call
2504 			 * set_page_dirty() without properly warning
2505 			 * the file system first.  See [1] for more
2506 			 * information.
2507 			 *
2508 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2509 			 */
2510 			if (!folio_buffers(folio)) {
2511 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2512 				folio_clear_dirty(folio);
2513 				folio_unlock(folio);
2514 				continue;
2515 			}
2516 
2517 			if (mpd->map.m_len == 0)
2518 				mpd->first_page = folio->index;
2519 			mpd->next_page = folio_next_index(folio);
2520 			/*
2521 			 * Writeout when we cannot modify metadata is simple.
2522 			 * Just submit the page. For data=journal mode we
2523 			 * first handle writeout of the page for checkpoint and
2524 			 * only after that handle delayed page dirtying. This
2525 			 * makes sure current data is checkpointed to the final
2526 			 * location before possibly journalling it again which
2527 			 * is desirable when the page is frequently dirtied
2528 			 * through a pin.
2529 			 */
2530 			if (!mpd->can_map) {
2531 				err = mpage_submit_folio(mpd, folio);
2532 				if (err < 0)
2533 					goto out;
2534 				/* Pending dirtying of journalled data? */
2535 				if (folio_test_checked(folio)) {
2536 					err = mpage_journal_page_buffers(handle,
2537 						mpd, folio);
2538 					if (err < 0)
2539 						goto out;
2540 					mpd->journalled_more_data = 1;
2541 				}
2542 				mpage_folio_done(mpd, folio);
2543 			} else {
2544 				/* Add all dirty buffers to mpd */
2545 				lblk = ((ext4_lblk_t)folio->index) <<
2546 					(PAGE_SHIFT - blkbits);
2547 				head = folio_buffers(folio);
2548 				err = mpage_process_page_bufs(mpd, head, head,
2549 						lblk);
2550 				if (err <= 0)
2551 					goto out;
2552 				err = 0;
2553 			}
2554 		}
2555 		folio_batch_release(&fbatch);
2556 		cond_resched();
2557 	}
2558 	mpd->scanned_until_end = 1;
2559 	if (handle)
2560 		ext4_journal_stop(handle);
2561 	return 0;
2562 out:
2563 	folio_batch_release(&fbatch);
2564 	if (handle)
2565 		ext4_journal_stop(handle);
2566 	return err;
2567 }
2568 
ext4_do_writepages(struct mpage_da_data * mpd)2569 static int ext4_do_writepages(struct mpage_da_data *mpd)
2570 {
2571 	struct writeback_control *wbc = mpd->wbc;
2572 	pgoff_t	writeback_index = 0;
2573 	long nr_to_write = wbc->nr_to_write;
2574 	int range_whole = 0;
2575 	int cycled = 1;
2576 	handle_t *handle = NULL;
2577 	struct inode *inode = mpd->inode;
2578 	struct address_space *mapping = inode->i_mapping;
2579 	int needed_blocks, rsv_blocks = 0, ret = 0;
2580 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2581 	struct blk_plug plug;
2582 	bool give_up_on_write = false;
2583 
2584 	trace_ext4_writepages(inode, wbc);
2585 
2586 	/*
2587 	 * No pages to write? This is mainly a kludge to avoid starting
2588 	 * a transaction for special inodes like journal inode on last iput()
2589 	 * because that could violate lock ordering on umount
2590 	 */
2591 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2592 		goto out_writepages;
2593 
2594 	/*
2595 	 * If the filesystem has aborted, it is read-only, so return
2596 	 * right away instead of dumping stack traces later on that
2597 	 * will obscure the real source of the problem.  We test
2598 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2599 	 * the latter could be true if the filesystem is mounted
2600 	 * read-only, and in that case, ext4_writepages should
2601 	 * *never* be called, so if that ever happens, we would want
2602 	 * the stack trace.
2603 	 */
2604 	ret = ext4_emergency_state(mapping->host->i_sb);
2605 	if (unlikely(ret))
2606 		goto out_writepages;
2607 
2608 	/*
2609 	 * If we have inline data and arrive here, it means that
2610 	 * we will soon create the block for the 1st page, so
2611 	 * we'd better clear the inline data here.
2612 	 */
2613 	if (ext4_has_inline_data(inode)) {
2614 		/* Just inode will be modified... */
2615 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2616 		if (IS_ERR(handle)) {
2617 			ret = PTR_ERR(handle);
2618 			goto out_writepages;
2619 		}
2620 		BUG_ON(ext4_test_inode_state(inode,
2621 				EXT4_STATE_MAY_INLINE_DATA));
2622 		ext4_destroy_inline_data(handle, inode);
2623 		ext4_journal_stop(handle);
2624 	}
2625 
2626 	/*
2627 	 * data=journal mode does not do delalloc so we just need to writeout /
2628 	 * journal already mapped buffers. On the other hand we need to commit
2629 	 * transaction to make data stable. We expect all the data to be
2630 	 * already in the journal (the only exception are DMA pinned pages
2631 	 * dirtied behind our back) so we commit transaction here and run the
2632 	 * writeback loop to checkpoint them. The checkpointing is not actually
2633 	 * necessary to make data persistent *but* quite a few places (extent
2634 	 * shifting operations, fsverity, ...) depend on being able to drop
2635 	 * pagecache pages after calling filemap_write_and_wait() and for that
2636 	 * checkpointing needs to happen.
2637 	 */
2638 	if (ext4_should_journal_data(inode)) {
2639 		mpd->can_map = 0;
2640 		if (wbc->sync_mode == WB_SYNC_ALL)
2641 			ext4_fc_commit(sbi->s_journal,
2642 				       EXT4_I(inode)->i_datasync_tid);
2643 	}
2644 	mpd->journalled_more_data = 0;
2645 
2646 	if (ext4_should_dioread_nolock(inode)) {
2647 		/*
2648 		 * We may need to convert up to one extent per block in
2649 		 * the page and we may dirty the inode.
2650 		 */
2651 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2652 						PAGE_SIZE >> inode->i_blkbits);
2653 	}
2654 
2655 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2656 		range_whole = 1;
2657 
2658 	if (wbc->range_cyclic) {
2659 		writeback_index = mapping->writeback_index;
2660 		if (writeback_index)
2661 			cycled = 0;
2662 		mpd->first_page = writeback_index;
2663 		mpd->last_page = -1;
2664 	} else {
2665 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2666 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2667 	}
2668 
2669 	ext4_io_submit_init(&mpd->io_submit, wbc);
2670 retry:
2671 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2672 		tag_pages_for_writeback(mapping, mpd->first_page,
2673 					mpd->last_page);
2674 	blk_start_plug(&plug);
2675 
2676 	/*
2677 	 * First writeback pages that don't need mapping - we can avoid
2678 	 * starting a transaction unnecessarily and also avoid being blocked
2679 	 * in the block layer on device congestion while having transaction
2680 	 * started.
2681 	 */
2682 	mpd->do_map = 0;
2683 	mpd->scanned_until_end = 0;
2684 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2685 	if (!mpd->io_submit.io_end) {
2686 		ret = -ENOMEM;
2687 		goto unplug;
2688 	}
2689 	ret = mpage_prepare_extent_to_map(mpd);
2690 	/* Unlock pages we didn't use */
2691 	mpage_release_unused_pages(mpd, false);
2692 	/* Submit prepared bio */
2693 	ext4_io_submit(&mpd->io_submit);
2694 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2695 	mpd->io_submit.io_end = NULL;
2696 	if (ret < 0)
2697 		goto unplug;
2698 
2699 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2700 		/* For each extent of pages we use new io_end */
2701 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2702 		if (!mpd->io_submit.io_end) {
2703 			ret = -ENOMEM;
2704 			break;
2705 		}
2706 
2707 		WARN_ON_ONCE(!mpd->can_map);
2708 		/*
2709 		 * We have two constraints: We find one extent to map and we
2710 		 * must always write out whole page (makes a difference when
2711 		 * blocksize < pagesize) so that we don't block on IO when we
2712 		 * try to write out the rest of the page. Journalled mode is
2713 		 * not supported by delalloc.
2714 		 */
2715 		BUG_ON(ext4_should_journal_data(inode));
2716 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2717 
2718 		/* start a new transaction */
2719 		handle = ext4_journal_start_with_reserve(inode,
2720 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2721 		if (IS_ERR(handle)) {
2722 			ret = PTR_ERR(handle);
2723 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2724 			       "%ld pages, ino %lu; err %d", __func__,
2725 				wbc->nr_to_write, inode->i_ino, ret);
2726 			/* Release allocated io_end */
2727 			ext4_put_io_end(mpd->io_submit.io_end);
2728 			mpd->io_submit.io_end = NULL;
2729 			break;
2730 		}
2731 		mpd->do_map = 1;
2732 
2733 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2734 		ret = mpage_prepare_extent_to_map(mpd);
2735 		if (!ret && mpd->map.m_len)
2736 			ret = mpage_map_and_submit_extent(handle, mpd,
2737 					&give_up_on_write);
2738 		/*
2739 		 * Caution: If the handle is synchronous,
2740 		 * ext4_journal_stop() can wait for transaction commit
2741 		 * to finish which may depend on writeback of pages to
2742 		 * complete or on page lock to be released.  In that
2743 		 * case, we have to wait until after we have
2744 		 * submitted all the IO, released page locks we hold,
2745 		 * and dropped io_end reference (for extent conversion
2746 		 * to be able to complete) before stopping the handle.
2747 		 */
2748 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2749 			ext4_journal_stop(handle);
2750 			handle = NULL;
2751 			mpd->do_map = 0;
2752 		}
2753 		/* Unlock pages we didn't use */
2754 		mpage_release_unused_pages(mpd, give_up_on_write);
2755 		/* Submit prepared bio */
2756 		ext4_io_submit(&mpd->io_submit);
2757 
2758 		/*
2759 		 * Drop our io_end reference we got from init. We have
2760 		 * to be careful and use deferred io_end finishing if
2761 		 * we are still holding the transaction as we can
2762 		 * release the last reference to io_end which may end
2763 		 * up doing unwritten extent conversion.
2764 		 */
2765 		if (handle) {
2766 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2767 			ext4_journal_stop(handle);
2768 		} else
2769 			ext4_put_io_end(mpd->io_submit.io_end);
2770 		mpd->io_submit.io_end = NULL;
2771 
2772 		if (ret == -ENOSPC && sbi->s_journal) {
2773 			/*
2774 			 * Commit the transaction which would
2775 			 * free blocks released in the transaction
2776 			 * and try again
2777 			 */
2778 			jbd2_journal_force_commit_nested(sbi->s_journal);
2779 			ret = 0;
2780 			continue;
2781 		}
2782 		/* Fatal error - ENOMEM, EIO... */
2783 		if (ret)
2784 			break;
2785 	}
2786 unplug:
2787 	blk_finish_plug(&plug);
2788 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2789 		cycled = 1;
2790 		mpd->last_page = writeback_index - 1;
2791 		mpd->first_page = 0;
2792 		goto retry;
2793 	}
2794 
2795 	/* Update index */
2796 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2797 		/*
2798 		 * Set the writeback_index so that range_cyclic
2799 		 * mode will write it back later
2800 		 */
2801 		mapping->writeback_index = mpd->first_page;
2802 
2803 out_writepages:
2804 	trace_ext4_writepages_result(inode, wbc, ret,
2805 				     nr_to_write - wbc->nr_to_write);
2806 	return ret;
2807 }
2808 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2809 static int ext4_writepages(struct address_space *mapping,
2810 			   struct writeback_control *wbc)
2811 {
2812 	struct super_block *sb = mapping->host->i_sb;
2813 	struct mpage_da_data mpd = {
2814 		.inode = mapping->host,
2815 		.wbc = wbc,
2816 		.can_map = 1,
2817 	};
2818 	int ret;
2819 	int alloc_ctx;
2820 
2821 	ret = ext4_emergency_state(sb);
2822 	if (unlikely(ret))
2823 		return ret;
2824 
2825 	alloc_ctx = ext4_writepages_down_read(sb);
2826 	ret = ext4_do_writepages(&mpd);
2827 	/*
2828 	 * For data=journal writeback we could have come across pages marked
2829 	 * for delayed dirtying (PageChecked) which were just added to the
2830 	 * running transaction. Try once more to get them to stable storage.
2831 	 */
2832 	if (!ret && mpd.journalled_more_data)
2833 		ret = ext4_do_writepages(&mpd);
2834 	ext4_writepages_up_read(sb, alloc_ctx);
2835 
2836 	return ret;
2837 }
2838 
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2839 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2840 {
2841 	struct writeback_control wbc = {
2842 		.sync_mode = WB_SYNC_ALL,
2843 		.nr_to_write = LONG_MAX,
2844 		.range_start = jinode->i_dirty_start,
2845 		.range_end = jinode->i_dirty_end,
2846 	};
2847 	struct mpage_da_data mpd = {
2848 		.inode = jinode->i_vfs_inode,
2849 		.wbc = &wbc,
2850 		.can_map = 0,
2851 	};
2852 	return ext4_do_writepages(&mpd);
2853 }
2854 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2855 static int ext4_dax_writepages(struct address_space *mapping,
2856 			       struct writeback_control *wbc)
2857 {
2858 	int ret;
2859 	long nr_to_write = wbc->nr_to_write;
2860 	struct inode *inode = mapping->host;
2861 	int alloc_ctx;
2862 
2863 	ret = ext4_emergency_state(inode->i_sb);
2864 	if (unlikely(ret))
2865 		return ret;
2866 
2867 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2868 	trace_ext4_writepages(inode, wbc);
2869 
2870 	ret = dax_writeback_mapping_range(mapping,
2871 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2872 	trace_ext4_writepages_result(inode, wbc, ret,
2873 				     nr_to_write - wbc->nr_to_write);
2874 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2875 	return ret;
2876 }
2877 
ext4_nonda_switch(struct super_block * sb)2878 static int ext4_nonda_switch(struct super_block *sb)
2879 {
2880 	s64 free_clusters, dirty_clusters;
2881 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2882 
2883 	/*
2884 	 * switch to non delalloc mode if we are running low
2885 	 * on free block. The free block accounting via percpu
2886 	 * counters can get slightly wrong with percpu_counter_batch getting
2887 	 * accumulated on each CPU without updating global counters
2888 	 * Delalloc need an accurate free block accounting. So switch
2889 	 * to non delalloc when we are near to error range.
2890 	 */
2891 	free_clusters =
2892 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2893 	dirty_clusters =
2894 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2895 	/*
2896 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2897 	 */
2898 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2899 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2900 
2901 	if (2 * free_clusters < 3 * dirty_clusters ||
2902 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2903 		/*
2904 		 * free block count is less than 150% of dirty blocks
2905 		 * or free blocks is less than watermark
2906 		 */
2907 		return 1;
2908 	}
2909 	return 0;
2910 }
2911 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)2912 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2913 			       loff_t pos, unsigned len,
2914 			       struct folio **foliop, void **fsdata)
2915 {
2916 	int ret, retries = 0;
2917 	struct folio *folio;
2918 	pgoff_t index;
2919 	struct inode *inode = mapping->host;
2920 
2921 	ret = ext4_emergency_state(inode->i_sb);
2922 	if (unlikely(ret))
2923 		return ret;
2924 
2925 	index = pos >> PAGE_SHIFT;
2926 
2927 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2928 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2929 		return ext4_write_begin(file, mapping, pos,
2930 					len, foliop, fsdata);
2931 	}
2932 	*fsdata = (void *)0;
2933 	trace_ext4_da_write_begin(inode, pos, len);
2934 
2935 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2936 		ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
2937 						     foliop, fsdata, true);
2938 		if (ret < 0)
2939 			return ret;
2940 		if (ret == 1)
2941 			return 0;
2942 	}
2943 
2944 retry:
2945 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2946 			mapping_gfp_mask(mapping));
2947 	if (IS_ERR(folio))
2948 		return PTR_ERR(folio);
2949 
2950 	ret = ext4_block_write_begin(NULL, folio, pos, len,
2951 				     ext4_da_get_block_prep);
2952 	if (ret < 0) {
2953 		folio_unlock(folio);
2954 		folio_put(folio);
2955 		/*
2956 		 * block_write_begin may have instantiated a few blocks
2957 		 * outside i_size.  Trim these off again. Don't need
2958 		 * i_size_read because we hold inode lock.
2959 		 */
2960 		if (pos + len > inode->i_size)
2961 			ext4_truncate_failed_write(inode);
2962 
2963 		if (ret == -ENOSPC &&
2964 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2965 			goto retry;
2966 		return ret;
2967 	}
2968 
2969 	*foliop = folio;
2970 	return ret;
2971 }
2972 
2973 /*
2974  * Check if we should update i_disksize
2975  * when write to the end of file but not require block allocation
2976  */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2977 static int ext4_da_should_update_i_disksize(struct folio *folio,
2978 					    unsigned long offset)
2979 {
2980 	struct buffer_head *bh;
2981 	struct inode *inode = folio->mapping->host;
2982 	unsigned int idx;
2983 	int i;
2984 
2985 	bh = folio_buffers(folio);
2986 	idx = offset >> inode->i_blkbits;
2987 
2988 	for (i = 0; i < idx; i++)
2989 		bh = bh->b_this_page;
2990 
2991 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2992 		return 0;
2993 	return 1;
2994 }
2995 
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2996 static int ext4_da_do_write_end(struct address_space *mapping,
2997 			loff_t pos, unsigned len, unsigned copied,
2998 			struct folio *folio)
2999 {
3000 	struct inode *inode = mapping->host;
3001 	loff_t old_size = inode->i_size;
3002 	bool disksize_changed = false;
3003 	loff_t new_i_size, zero_len = 0;
3004 	handle_t *handle;
3005 
3006 	if (unlikely(!folio_buffers(folio))) {
3007 		folio_unlock(folio);
3008 		folio_put(folio);
3009 		return -EIO;
3010 	}
3011 	/*
3012 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3013 	 * flag, which all that's needed to trigger page writeback.
3014 	 */
3015 	copied = block_write_end(NULL, mapping, pos, len, copied,
3016 			folio, NULL);
3017 	new_i_size = pos + copied;
3018 
3019 	/*
3020 	 * It's important to update i_size while still holding folio lock,
3021 	 * because folio writeout could otherwise come in and zero beyond
3022 	 * i_size.
3023 	 *
3024 	 * Since we are holding inode lock, we are sure i_disksize <=
3025 	 * i_size. We also know that if i_disksize < i_size, there are
3026 	 * delalloc writes pending in the range up to i_size. If the end of
3027 	 * the current write is <= i_size, there's no need to touch
3028 	 * i_disksize since writeback will push i_disksize up to i_size
3029 	 * eventually. If the end of the current write is > i_size and
3030 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3031 	 * checked, we need to update i_disksize here as certain
3032 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3033 	 */
3034 	if (new_i_size > inode->i_size) {
3035 		unsigned long end;
3036 
3037 		i_size_write(inode, new_i_size);
3038 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3039 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3040 			ext4_update_i_disksize(inode, new_i_size);
3041 			disksize_changed = true;
3042 		}
3043 	}
3044 
3045 	folio_unlock(folio);
3046 	folio_put(folio);
3047 
3048 	if (pos > old_size) {
3049 		pagecache_isize_extended(inode, old_size, pos);
3050 		zero_len = pos - old_size;
3051 	}
3052 
3053 	if (!disksize_changed && !zero_len)
3054 		return copied;
3055 
3056 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3057 	if (IS_ERR(handle))
3058 		return PTR_ERR(handle);
3059 	if (zero_len)
3060 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3061 	ext4_mark_inode_dirty(handle, inode);
3062 	ext4_journal_stop(handle);
3063 
3064 	return copied;
3065 }
3066 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3067 static int ext4_da_write_end(struct file *file,
3068 			     struct address_space *mapping,
3069 			     loff_t pos, unsigned len, unsigned copied,
3070 			     struct folio *folio, void *fsdata)
3071 {
3072 	struct inode *inode = mapping->host;
3073 	int write_mode = (int)(unsigned long)fsdata;
3074 
3075 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3076 		return ext4_write_end(file, mapping, pos,
3077 				      len, copied, folio, fsdata);
3078 
3079 	trace_ext4_da_write_end(inode, pos, len, copied);
3080 
3081 	if (write_mode != CONVERT_INLINE_DATA &&
3082 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3083 	    ext4_has_inline_data(inode))
3084 		return ext4_write_inline_data_end(inode, pos, len, copied,
3085 						  folio);
3086 
3087 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3088 		copied = 0;
3089 
3090 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3091 }
3092 
3093 /*
3094  * Force all delayed allocation blocks to be allocated for a given inode.
3095  */
ext4_alloc_da_blocks(struct inode * inode)3096 int ext4_alloc_da_blocks(struct inode *inode)
3097 {
3098 	trace_ext4_alloc_da_blocks(inode);
3099 
3100 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3101 		return 0;
3102 
3103 	/*
3104 	 * We do something simple for now.  The filemap_flush() will
3105 	 * also start triggering a write of the data blocks, which is
3106 	 * not strictly speaking necessary (and for users of
3107 	 * laptop_mode, not even desirable).  However, to do otherwise
3108 	 * would require replicating code paths in:
3109 	 *
3110 	 * ext4_writepages() ->
3111 	 *    write_cache_pages() ---> (via passed in callback function)
3112 	 *        __mpage_da_writepage() -->
3113 	 *           mpage_add_bh_to_extent()
3114 	 *           mpage_da_map_blocks()
3115 	 *
3116 	 * The problem is that write_cache_pages(), located in
3117 	 * mm/page-writeback.c, marks pages clean in preparation for
3118 	 * doing I/O, which is not desirable if we're not planning on
3119 	 * doing I/O at all.
3120 	 *
3121 	 * We could call write_cache_pages(), and then redirty all of
3122 	 * the pages by calling redirty_page_for_writepage() but that
3123 	 * would be ugly in the extreme.  So instead we would need to
3124 	 * replicate parts of the code in the above functions,
3125 	 * simplifying them because we wouldn't actually intend to
3126 	 * write out the pages, but rather only collect contiguous
3127 	 * logical block extents, call the multi-block allocator, and
3128 	 * then update the buffer heads with the block allocations.
3129 	 *
3130 	 * For now, though, we'll cheat by calling filemap_flush(),
3131 	 * which will map the blocks, and start the I/O, but not
3132 	 * actually wait for the I/O to complete.
3133 	 */
3134 	return filemap_flush(inode->i_mapping);
3135 }
3136 
3137 /*
3138  * bmap() is special.  It gets used by applications such as lilo and by
3139  * the swapper to find the on-disk block of a specific piece of data.
3140  *
3141  * Naturally, this is dangerous if the block concerned is still in the
3142  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3143  * filesystem and enables swap, then they may get a nasty shock when the
3144  * data getting swapped to that swapfile suddenly gets overwritten by
3145  * the original zero's written out previously to the journal and
3146  * awaiting writeback in the kernel's buffer cache.
3147  *
3148  * So, if we see any bmap calls here on a modified, data-journaled file,
3149  * take extra steps to flush any blocks which might be in the cache.
3150  */
ext4_bmap(struct address_space * mapping,sector_t block)3151 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3152 {
3153 	struct inode *inode = mapping->host;
3154 	sector_t ret = 0;
3155 
3156 	inode_lock_shared(inode);
3157 	/*
3158 	 * We can get here for an inline file via the FIBMAP ioctl
3159 	 */
3160 	if (ext4_has_inline_data(inode))
3161 		goto out;
3162 
3163 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3164 	    (test_opt(inode->i_sb, DELALLOC) ||
3165 	     ext4_should_journal_data(inode))) {
3166 		/*
3167 		 * With delalloc or journalled data we want to sync the file so
3168 		 * that we can make sure we allocate blocks for file and data
3169 		 * is in place for the user to see it
3170 		 */
3171 		filemap_write_and_wait(mapping);
3172 	}
3173 
3174 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3175 
3176 out:
3177 	inode_unlock_shared(inode);
3178 	return ret;
3179 }
3180 
ext4_read_folio(struct file * file,struct folio * folio)3181 static int ext4_read_folio(struct file *file, struct folio *folio)
3182 {
3183 	int ret = -EAGAIN;
3184 	struct inode *inode = folio->mapping->host;
3185 
3186 	trace_ext4_read_folio(inode, folio);
3187 
3188 	if (ext4_has_inline_data(inode))
3189 		ret = ext4_readpage_inline(inode, folio);
3190 
3191 	if (ret == -EAGAIN)
3192 		return ext4_mpage_readpages(inode, NULL, folio);
3193 
3194 	return ret;
3195 }
3196 
ext4_readahead(struct readahead_control * rac)3197 static void ext4_readahead(struct readahead_control *rac)
3198 {
3199 	struct inode *inode = rac->mapping->host;
3200 
3201 	/* If the file has inline data, no need to do readahead. */
3202 	if (ext4_has_inline_data(inode))
3203 		return;
3204 
3205 	ext4_mpage_readpages(inode, rac, NULL);
3206 }
3207 
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3208 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3209 				size_t length)
3210 {
3211 	trace_ext4_invalidate_folio(folio, offset, length);
3212 
3213 	/* No journalling happens on data buffers when this function is used */
3214 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3215 
3216 	block_invalidate_folio(folio, offset, length);
3217 }
3218 
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3219 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3220 					    size_t offset, size_t length)
3221 {
3222 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3223 
3224 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3225 
3226 	/*
3227 	 * If it's a full truncate we just forget about the pending dirtying
3228 	 */
3229 	if (offset == 0 && length == folio_size(folio))
3230 		folio_clear_checked(folio);
3231 
3232 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3233 }
3234 
3235 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3236 static void ext4_journalled_invalidate_folio(struct folio *folio,
3237 					   size_t offset,
3238 					   size_t length)
3239 {
3240 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3241 }
3242 
ext4_release_folio(struct folio * folio,gfp_t wait)3243 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3244 {
3245 	struct inode *inode = folio->mapping->host;
3246 	journal_t *journal = EXT4_JOURNAL(inode);
3247 
3248 	trace_ext4_release_folio(inode, folio);
3249 
3250 	/* Page has dirty journalled data -> cannot release */
3251 	if (folio_test_checked(folio))
3252 		return false;
3253 	if (journal)
3254 		return jbd2_journal_try_to_free_buffers(journal, folio);
3255 	else
3256 		return try_to_free_buffers(folio);
3257 }
3258 
ext4_inode_datasync_dirty(struct inode * inode)3259 static bool ext4_inode_datasync_dirty(struct inode *inode)
3260 {
3261 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3262 
3263 	if (journal) {
3264 		if (jbd2_transaction_committed(journal,
3265 			EXT4_I(inode)->i_datasync_tid))
3266 			return false;
3267 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3268 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3269 		return true;
3270 	}
3271 
3272 	/* Any metadata buffers to write? */
3273 	if (!list_empty(&inode->i_mapping->i_private_list))
3274 		return true;
3275 	return inode->i_state & I_DIRTY_DATASYNC;
3276 }
3277 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3278 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3279 			   struct ext4_map_blocks *map, loff_t offset,
3280 			   loff_t length, unsigned int flags)
3281 {
3282 	u8 blkbits = inode->i_blkbits;
3283 
3284 	/*
3285 	 * Writes that span EOF might trigger an I/O size update on completion,
3286 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3287 	 * there is no other metadata changes being made or are pending.
3288 	 */
3289 	iomap->flags = 0;
3290 	if (ext4_inode_datasync_dirty(inode) ||
3291 	    offset + length > i_size_read(inode))
3292 		iomap->flags |= IOMAP_F_DIRTY;
3293 
3294 	if (map->m_flags & EXT4_MAP_NEW)
3295 		iomap->flags |= IOMAP_F_NEW;
3296 
3297 	/* HW-offload atomics are always used */
3298 	if (flags & IOMAP_ATOMIC)
3299 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3300 
3301 	if (flags & IOMAP_DAX)
3302 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3303 	else
3304 		iomap->bdev = inode->i_sb->s_bdev;
3305 	iomap->offset = (u64) map->m_lblk << blkbits;
3306 	iomap->length = (u64) map->m_len << blkbits;
3307 
3308 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3309 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3310 		iomap->flags |= IOMAP_F_MERGED;
3311 
3312 	/*
3313 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3314 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3315 	 * set. In order for any allocated unwritten extents to be converted
3316 	 * into written extents correctly within the ->end_io() handler, we
3317 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3318 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3319 	 * been set first.
3320 	 */
3321 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3322 		iomap->type = IOMAP_UNWRITTEN;
3323 		iomap->addr = (u64) map->m_pblk << blkbits;
3324 		if (flags & IOMAP_DAX)
3325 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3326 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3327 		iomap->type = IOMAP_MAPPED;
3328 		iomap->addr = (u64) map->m_pblk << blkbits;
3329 		if (flags & IOMAP_DAX)
3330 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3331 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3332 		iomap->type = IOMAP_DELALLOC;
3333 		iomap->addr = IOMAP_NULL_ADDR;
3334 	} else {
3335 		iomap->type = IOMAP_HOLE;
3336 		iomap->addr = IOMAP_NULL_ADDR;
3337 	}
3338 }
3339 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3340 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3341 			    unsigned int flags)
3342 {
3343 	handle_t *handle;
3344 	u8 blkbits = inode->i_blkbits;
3345 	int ret, dio_credits, m_flags = 0, retries = 0;
3346 
3347 	/*
3348 	 * Trim the mapping request to the maximum value that we can map at
3349 	 * once for direct I/O.
3350 	 */
3351 	if (map->m_len > DIO_MAX_BLOCKS)
3352 		map->m_len = DIO_MAX_BLOCKS;
3353 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3354 
3355 retry:
3356 	/*
3357 	 * Either we allocate blocks and then don't get an unwritten extent, so
3358 	 * in that case we have reserved enough credits. Or, the blocks are
3359 	 * already allocated and unwritten. In that case, the extent conversion
3360 	 * fits into the credits as well.
3361 	 */
3362 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3363 	if (IS_ERR(handle))
3364 		return PTR_ERR(handle);
3365 
3366 	/*
3367 	 * DAX and direct I/O are the only two operations that are currently
3368 	 * supported with IOMAP_WRITE.
3369 	 */
3370 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3371 	if (flags & IOMAP_DAX)
3372 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3373 	/*
3374 	 * We use i_size instead of i_disksize here because delalloc writeback
3375 	 * can complete at any point during the I/O and subsequently push the
3376 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3377 	 * happening and thus expose allocated blocks to direct I/O reads.
3378 	 */
3379 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3380 		m_flags = EXT4_GET_BLOCKS_CREATE;
3381 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3382 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3383 
3384 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3385 
3386 	/*
3387 	 * We cannot fill holes in indirect tree based inodes as that could
3388 	 * expose stale data in the case of a crash. Use the magic error code
3389 	 * to fallback to buffered I/O.
3390 	 */
3391 	if (!m_flags && !ret)
3392 		ret = -ENOTBLK;
3393 
3394 	ext4_journal_stop(handle);
3395 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3396 		goto retry;
3397 
3398 	return ret;
3399 }
3400 
3401 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3402 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3403 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3404 {
3405 	int ret;
3406 	struct ext4_map_blocks map;
3407 	u8 blkbits = inode->i_blkbits;
3408 
3409 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3410 		return -EINVAL;
3411 
3412 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3413 		return -ERANGE;
3414 
3415 	/*
3416 	 * Calculate the first and last logical blocks respectively.
3417 	 */
3418 	map.m_lblk = offset >> blkbits;
3419 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3420 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3421 
3422 	if (flags & IOMAP_WRITE) {
3423 		/*
3424 		 * We check here if the blocks are already allocated, then we
3425 		 * don't need to start a journal txn and we can directly return
3426 		 * the mapping information. This could boost performance
3427 		 * especially in multi-threaded overwrite requests.
3428 		 */
3429 		if (offset + length <= i_size_read(inode)) {
3430 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3431 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3432 				goto out;
3433 		}
3434 		ret = ext4_iomap_alloc(inode, &map, flags);
3435 	} else {
3436 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3437 	}
3438 
3439 	if (ret < 0)
3440 		return ret;
3441 out:
3442 	/*
3443 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3444 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3445 	 * limiting the length of the mapping returned.
3446 	 */
3447 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3448 
3449 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3450 
3451 	return 0;
3452 }
3453 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3454 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3455 		loff_t length, unsigned flags, struct iomap *iomap,
3456 		struct iomap *srcmap)
3457 {
3458 	int ret;
3459 
3460 	/*
3461 	 * Even for writes we don't need to allocate blocks, so just pretend
3462 	 * we are reading to save overhead of starting a transaction.
3463 	 */
3464 	flags &= ~IOMAP_WRITE;
3465 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3466 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3467 	return ret;
3468 }
3469 
ext4_want_directio_fallback(unsigned flags,ssize_t written)3470 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3471 {
3472 	/* must be a directio to fall back to buffered */
3473 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3474 		    (IOMAP_WRITE | IOMAP_DIRECT))
3475 		return false;
3476 
3477 	/* atomic writes are all-or-nothing */
3478 	if (flags & IOMAP_ATOMIC)
3479 		return false;
3480 
3481 	/* can only try again if we wrote nothing */
3482 	return written == 0;
3483 }
3484 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3485 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3486 			  ssize_t written, unsigned flags, struct iomap *iomap)
3487 {
3488 	/*
3489 	 * Check to see whether an error occurred while writing out the data to
3490 	 * the allocated blocks. If so, return the magic error code for
3491 	 * non-atomic write so that we fallback to buffered I/O and attempt to
3492 	 * complete the remainder of the I/O.
3493 	 * For non-atomic writes, any blocks that may have been
3494 	 * allocated in preparation for the direct I/O will be reused during
3495 	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3496 	 */
3497 	if (ext4_want_directio_fallback(flags, written))
3498 		return -ENOTBLK;
3499 
3500 	return 0;
3501 }
3502 
3503 const struct iomap_ops ext4_iomap_ops = {
3504 	.iomap_begin		= ext4_iomap_begin,
3505 	.iomap_end		= ext4_iomap_end,
3506 };
3507 
3508 const struct iomap_ops ext4_iomap_overwrite_ops = {
3509 	.iomap_begin		= ext4_iomap_overwrite_begin,
3510 	.iomap_end		= ext4_iomap_end,
3511 };
3512 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3513 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3514 				   loff_t length, unsigned int flags,
3515 				   struct iomap *iomap, struct iomap *srcmap)
3516 {
3517 	int ret;
3518 	struct ext4_map_blocks map;
3519 	u8 blkbits = inode->i_blkbits;
3520 
3521 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3522 		return -EINVAL;
3523 
3524 	if (ext4_has_inline_data(inode)) {
3525 		ret = ext4_inline_data_iomap(inode, iomap);
3526 		if (ret != -EAGAIN) {
3527 			if (ret == 0 && offset >= iomap->length)
3528 				ret = -ENOENT;
3529 			return ret;
3530 		}
3531 	}
3532 
3533 	/*
3534 	 * Calculate the first and last logical block respectively.
3535 	 */
3536 	map.m_lblk = offset >> blkbits;
3537 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3538 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3539 
3540 	/*
3541 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3542 	 * So handle it here itself instead of querying ext4_map_blocks().
3543 	 * Since ext4_map_blocks() will warn about it and will return
3544 	 * -EIO error.
3545 	 */
3546 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3547 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3548 
3549 		if (offset >= sbi->s_bitmap_maxbytes) {
3550 			map.m_flags = 0;
3551 			goto set_iomap;
3552 		}
3553 	}
3554 
3555 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3556 	if (ret < 0)
3557 		return ret;
3558 set_iomap:
3559 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3560 
3561 	return 0;
3562 }
3563 
3564 const struct iomap_ops ext4_iomap_report_ops = {
3565 	.iomap_begin = ext4_iomap_begin_report,
3566 };
3567 
3568 /*
3569  * For data=journal mode, folio should be marked dirty only when it was
3570  * writeably mapped. When that happens, it was already attached to the
3571  * transaction and marked as jbddirty (we take care of this in
3572  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3573  * so we should have nothing to do here, except for the case when someone
3574  * had the page pinned and dirtied the page through this pin (e.g. by doing
3575  * direct IO to it). In that case we'd need to attach buffers here to the
3576  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3577  * folio and leave attached buffers clean, because the buffers' dirty state is
3578  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3579  * the journalling code will explode.  So what we do is to mark the folio
3580  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3581  * to the transaction appropriately.
3582  */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3583 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3584 		struct folio *folio)
3585 {
3586 	WARN_ON_ONCE(!folio_buffers(folio));
3587 	if (folio_maybe_dma_pinned(folio))
3588 		folio_set_checked(folio);
3589 	return filemap_dirty_folio(mapping, folio);
3590 }
3591 
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3592 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3593 {
3594 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3595 	WARN_ON_ONCE(!folio_buffers(folio));
3596 	return block_dirty_folio(mapping, folio);
3597 }
3598 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3599 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3600 				    struct file *file, sector_t *span)
3601 {
3602 	return iomap_swapfile_activate(sis, file, span,
3603 				       &ext4_iomap_report_ops);
3604 }
3605 
3606 static const struct address_space_operations ext4_aops = {
3607 	.read_folio		= ext4_read_folio,
3608 	.readahead		= ext4_readahead,
3609 	.writepages		= ext4_writepages,
3610 	.write_begin		= ext4_write_begin,
3611 	.write_end		= ext4_write_end,
3612 	.dirty_folio		= ext4_dirty_folio,
3613 	.bmap			= ext4_bmap,
3614 	.invalidate_folio	= ext4_invalidate_folio,
3615 	.release_folio		= ext4_release_folio,
3616 	.migrate_folio		= buffer_migrate_folio,
3617 	.is_partially_uptodate  = block_is_partially_uptodate,
3618 	.error_remove_folio	= generic_error_remove_folio,
3619 	.swap_activate		= ext4_iomap_swap_activate,
3620 };
3621 
3622 static const struct address_space_operations ext4_journalled_aops = {
3623 	.read_folio		= ext4_read_folio,
3624 	.readahead		= ext4_readahead,
3625 	.writepages		= ext4_writepages,
3626 	.write_begin		= ext4_write_begin,
3627 	.write_end		= ext4_journalled_write_end,
3628 	.dirty_folio		= ext4_journalled_dirty_folio,
3629 	.bmap			= ext4_bmap,
3630 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3631 	.release_folio		= ext4_release_folio,
3632 	.migrate_folio		= buffer_migrate_folio_norefs,
3633 	.is_partially_uptodate  = block_is_partially_uptodate,
3634 	.error_remove_folio	= generic_error_remove_folio,
3635 	.swap_activate		= ext4_iomap_swap_activate,
3636 };
3637 
3638 static const struct address_space_operations ext4_da_aops = {
3639 	.read_folio		= ext4_read_folio,
3640 	.readahead		= ext4_readahead,
3641 	.writepages		= ext4_writepages,
3642 	.write_begin		= ext4_da_write_begin,
3643 	.write_end		= ext4_da_write_end,
3644 	.dirty_folio		= ext4_dirty_folio,
3645 	.bmap			= ext4_bmap,
3646 	.invalidate_folio	= ext4_invalidate_folio,
3647 	.release_folio		= ext4_release_folio,
3648 	.migrate_folio		= buffer_migrate_folio,
3649 	.is_partially_uptodate  = block_is_partially_uptodate,
3650 	.error_remove_folio	= generic_error_remove_folio,
3651 	.swap_activate		= ext4_iomap_swap_activate,
3652 };
3653 
3654 static const struct address_space_operations ext4_dax_aops = {
3655 	.writepages		= ext4_dax_writepages,
3656 	.dirty_folio		= noop_dirty_folio,
3657 	.bmap			= ext4_bmap,
3658 	.swap_activate		= ext4_iomap_swap_activate,
3659 };
3660 
ext4_set_aops(struct inode * inode)3661 void ext4_set_aops(struct inode *inode)
3662 {
3663 	switch (ext4_inode_journal_mode(inode)) {
3664 	case EXT4_INODE_ORDERED_DATA_MODE:
3665 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3666 		break;
3667 	case EXT4_INODE_JOURNAL_DATA_MODE:
3668 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3669 		return;
3670 	default:
3671 		BUG();
3672 	}
3673 	if (IS_DAX(inode))
3674 		inode->i_mapping->a_ops = &ext4_dax_aops;
3675 	else if (test_opt(inode->i_sb, DELALLOC))
3676 		inode->i_mapping->a_ops = &ext4_da_aops;
3677 	else
3678 		inode->i_mapping->a_ops = &ext4_aops;
3679 }
3680 
3681 /*
3682  * Here we can't skip an unwritten buffer even though it usually reads zero
3683  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3684  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3685  * racing writeback can come later and flush the stale pagecache to disk.
3686  */
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3687 static int __ext4_block_zero_page_range(handle_t *handle,
3688 		struct address_space *mapping, loff_t from, loff_t length)
3689 {
3690 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3691 	unsigned offset = from & (PAGE_SIZE-1);
3692 	unsigned blocksize, pos;
3693 	ext4_lblk_t iblock;
3694 	struct inode *inode = mapping->host;
3695 	struct buffer_head *bh;
3696 	struct folio *folio;
3697 	int err = 0;
3698 
3699 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3700 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3701 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3702 	if (IS_ERR(folio))
3703 		return PTR_ERR(folio);
3704 
3705 	blocksize = inode->i_sb->s_blocksize;
3706 
3707 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3708 
3709 	bh = folio_buffers(folio);
3710 	if (!bh)
3711 		bh = create_empty_buffers(folio, blocksize, 0);
3712 
3713 	/* Find the buffer that contains "offset" */
3714 	pos = blocksize;
3715 	while (offset >= pos) {
3716 		bh = bh->b_this_page;
3717 		iblock++;
3718 		pos += blocksize;
3719 	}
3720 	if (buffer_freed(bh)) {
3721 		BUFFER_TRACE(bh, "freed: skip");
3722 		goto unlock;
3723 	}
3724 	if (!buffer_mapped(bh)) {
3725 		BUFFER_TRACE(bh, "unmapped");
3726 		ext4_get_block(inode, iblock, bh, 0);
3727 		/* unmapped? It's a hole - nothing to do */
3728 		if (!buffer_mapped(bh)) {
3729 			BUFFER_TRACE(bh, "still unmapped");
3730 			goto unlock;
3731 		}
3732 	}
3733 
3734 	/* Ok, it's mapped. Make sure it's up-to-date */
3735 	if (folio_test_uptodate(folio))
3736 		set_buffer_uptodate(bh);
3737 
3738 	if (!buffer_uptodate(bh)) {
3739 		err = ext4_read_bh_lock(bh, 0, true);
3740 		if (err)
3741 			goto unlock;
3742 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3743 			/* We expect the key to be set. */
3744 			BUG_ON(!fscrypt_has_encryption_key(inode));
3745 			err = fscrypt_decrypt_pagecache_blocks(folio,
3746 							       blocksize,
3747 							       bh_offset(bh));
3748 			if (err) {
3749 				clear_buffer_uptodate(bh);
3750 				goto unlock;
3751 			}
3752 		}
3753 	}
3754 	if (ext4_should_journal_data(inode)) {
3755 		BUFFER_TRACE(bh, "get write access");
3756 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3757 						    EXT4_JTR_NONE);
3758 		if (err)
3759 			goto unlock;
3760 	}
3761 	folio_zero_range(folio, offset, length);
3762 	BUFFER_TRACE(bh, "zeroed end of block");
3763 
3764 	if (ext4_should_journal_data(inode)) {
3765 		err = ext4_dirty_journalled_data(handle, bh);
3766 	} else {
3767 		err = 0;
3768 		mark_buffer_dirty(bh);
3769 		if (ext4_should_order_data(inode))
3770 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3771 					length);
3772 	}
3773 
3774 unlock:
3775 	folio_unlock(folio);
3776 	folio_put(folio);
3777 	return err;
3778 }
3779 
3780 /*
3781  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3782  * starting from file offset 'from'.  The range to be zero'd must
3783  * be contained with in one block.  If the specified range exceeds
3784  * the end of the block it will be shortened to end of the block
3785  * that corresponds to 'from'
3786  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3787 static int ext4_block_zero_page_range(handle_t *handle,
3788 		struct address_space *mapping, loff_t from, loff_t length)
3789 {
3790 	struct inode *inode = mapping->host;
3791 	unsigned offset = from & (PAGE_SIZE-1);
3792 	unsigned blocksize = inode->i_sb->s_blocksize;
3793 	unsigned max = blocksize - (offset & (blocksize - 1));
3794 
3795 	/*
3796 	 * correct length if it does not fall between
3797 	 * 'from' and the end of the block
3798 	 */
3799 	if (length > max || length < 0)
3800 		length = max;
3801 
3802 	if (IS_DAX(inode)) {
3803 		return dax_zero_range(inode, from, length, NULL,
3804 				      &ext4_iomap_ops);
3805 	}
3806 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3807 }
3808 
3809 /*
3810  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3811  * up to the end of the block which corresponds to `from'.
3812  * This required during truncate. We need to physically zero the tail end
3813  * of that block so it doesn't yield old data if the file is later grown.
3814  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3815 static int ext4_block_truncate_page(handle_t *handle,
3816 		struct address_space *mapping, loff_t from)
3817 {
3818 	unsigned offset = from & (PAGE_SIZE-1);
3819 	unsigned length;
3820 	unsigned blocksize;
3821 	struct inode *inode = mapping->host;
3822 
3823 	/* If we are processing an encrypted inode during orphan list handling */
3824 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3825 		return 0;
3826 
3827 	blocksize = inode->i_sb->s_blocksize;
3828 	length = blocksize - (offset & (blocksize - 1));
3829 
3830 	return ext4_block_zero_page_range(handle, mapping, from, length);
3831 }
3832 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3833 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3834 			     loff_t lstart, loff_t length)
3835 {
3836 	struct super_block *sb = inode->i_sb;
3837 	struct address_space *mapping = inode->i_mapping;
3838 	unsigned partial_start, partial_end;
3839 	ext4_fsblk_t start, end;
3840 	loff_t byte_end = (lstart + length - 1);
3841 	int err = 0;
3842 
3843 	partial_start = lstart & (sb->s_blocksize - 1);
3844 	partial_end = byte_end & (sb->s_blocksize - 1);
3845 
3846 	start = lstart >> sb->s_blocksize_bits;
3847 	end = byte_end >> sb->s_blocksize_bits;
3848 
3849 	/* Handle partial zero within the single block */
3850 	if (start == end &&
3851 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3852 		err = ext4_block_zero_page_range(handle, mapping,
3853 						 lstart, length);
3854 		return err;
3855 	}
3856 	/* Handle partial zero out on the start of the range */
3857 	if (partial_start) {
3858 		err = ext4_block_zero_page_range(handle, mapping,
3859 						 lstart, sb->s_blocksize);
3860 		if (err)
3861 			return err;
3862 	}
3863 	/* Handle partial zero out on the end of the range */
3864 	if (partial_end != sb->s_blocksize - 1)
3865 		err = ext4_block_zero_page_range(handle, mapping,
3866 						 byte_end - partial_end,
3867 						 partial_end + 1);
3868 	return err;
3869 }
3870 
ext4_can_truncate(struct inode * inode)3871 int ext4_can_truncate(struct inode *inode)
3872 {
3873 	if (S_ISREG(inode->i_mode))
3874 		return 1;
3875 	if (S_ISDIR(inode->i_mode))
3876 		return 1;
3877 	if (S_ISLNK(inode->i_mode))
3878 		return !ext4_inode_is_fast_symlink(inode);
3879 	return 0;
3880 }
3881 
3882 /*
3883  * We have to make sure i_disksize gets properly updated before we truncate
3884  * page cache due to hole punching or zero range. Otherwise i_disksize update
3885  * can get lost as it may have been postponed to submission of writeback but
3886  * that will never happen after we truncate page cache.
3887  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3888 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3889 				      loff_t len)
3890 {
3891 	handle_t *handle;
3892 	int ret;
3893 
3894 	loff_t size = i_size_read(inode);
3895 
3896 	WARN_ON(!inode_is_locked(inode));
3897 	if (offset > size || offset + len < size)
3898 		return 0;
3899 
3900 	if (EXT4_I(inode)->i_disksize >= size)
3901 		return 0;
3902 
3903 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3904 	if (IS_ERR(handle))
3905 		return PTR_ERR(handle);
3906 	ext4_update_i_disksize(inode, size);
3907 	ret = ext4_mark_inode_dirty(handle, inode);
3908 	ext4_journal_stop(handle);
3909 
3910 	return ret;
3911 }
3912 
ext4_truncate_folio(struct inode * inode,loff_t start,loff_t end)3913 static inline void ext4_truncate_folio(struct inode *inode,
3914 				       loff_t start, loff_t end)
3915 {
3916 	unsigned long blocksize = i_blocksize(inode);
3917 	struct folio *folio;
3918 
3919 	/* Nothing to be done if no complete block needs to be truncated. */
3920 	if (round_up(start, blocksize) >= round_down(end, blocksize))
3921 		return;
3922 
3923 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
3924 	if (IS_ERR(folio))
3925 		return;
3926 
3927 	if (folio_mkclean(folio))
3928 		folio_mark_dirty(folio);
3929 	folio_unlock(folio);
3930 	folio_put(folio);
3931 }
3932 
ext4_truncate_page_cache_block_range(struct inode * inode,loff_t start,loff_t end)3933 int ext4_truncate_page_cache_block_range(struct inode *inode,
3934 					 loff_t start, loff_t end)
3935 {
3936 	unsigned long blocksize = i_blocksize(inode);
3937 	int ret;
3938 
3939 	/*
3940 	 * For journalled data we need to write (and checkpoint) pages
3941 	 * before discarding page cache to avoid inconsitent data on disk
3942 	 * in case of crash before freeing or unwritten converting trans
3943 	 * is committed.
3944 	 */
3945 	if (ext4_should_journal_data(inode)) {
3946 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
3947 						   end - 1);
3948 		if (ret)
3949 			return ret;
3950 		goto truncate_pagecache;
3951 	}
3952 
3953 	/*
3954 	 * If the block size is less than the page size, the file's mapped
3955 	 * blocks within one page could be freed or converted to unwritten.
3956 	 * So it's necessary to remove writable userspace mappings, and then
3957 	 * ext4_page_mkwrite() can be called during subsequent write access
3958 	 * to these partial folios.
3959 	 */
3960 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
3961 	    blocksize < PAGE_SIZE && start < inode->i_size) {
3962 		loff_t page_boundary = round_up(start, PAGE_SIZE);
3963 
3964 		ext4_truncate_folio(inode, start, min(page_boundary, end));
3965 		if (end > page_boundary)
3966 			ext4_truncate_folio(inode,
3967 					    round_down(end, PAGE_SIZE), end);
3968 	}
3969 
3970 truncate_pagecache:
3971 	truncate_pagecache_range(inode, start, end - 1);
3972 	return 0;
3973 }
3974 
ext4_wait_dax_page(struct inode * inode)3975 static void ext4_wait_dax_page(struct inode *inode)
3976 {
3977 	filemap_invalidate_unlock(inode->i_mapping);
3978 	schedule();
3979 	filemap_invalidate_lock(inode->i_mapping);
3980 }
3981 
ext4_break_layouts(struct inode * inode)3982 int ext4_break_layouts(struct inode *inode)
3983 {
3984 	struct page *page;
3985 	int error;
3986 
3987 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3988 		return -EINVAL;
3989 
3990 	do {
3991 		page = dax_layout_busy_page(inode->i_mapping);
3992 		if (!page)
3993 			return 0;
3994 
3995 		error = ___wait_var_event(&page->_refcount,
3996 				atomic_read(&page->_refcount) == 1,
3997 				TASK_INTERRUPTIBLE, 0, 0,
3998 				ext4_wait_dax_page(inode));
3999 	} while (error == 0);
4000 
4001 	return error;
4002 }
4003 
4004 /*
4005  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4006  * associated with the given offset and length
4007  *
4008  * @inode:  File inode
4009  * @offset: The offset where the hole will begin
4010  * @len:    The length of the hole
4011  *
4012  * Returns: 0 on success or negative on failure
4013  */
4014 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4015 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4016 {
4017 	struct inode *inode = file_inode(file);
4018 	struct super_block *sb = inode->i_sb;
4019 	ext4_lblk_t start_lblk, end_lblk;
4020 	loff_t max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4021 	loff_t end = offset + length;
4022 	handle_t *handle;
4023 	unsigned int credits;
4024 	int ret;
4025 
4026 	trace_ext4_punch_hole(inode, offset, length, 0);
4027 	WARN_ON_ONCE(!inode_is_locked(inode));
4028 
4029 	/* No need to punch hole beyond i_size */
4030 	if (offset >= inode->i_size)
4031 		return 0;
4032 
4033 	/*
4034 	 * If the hole extends beyond i_size, set the hole to end after
4035 	 * the page that contains i_size, and also make sure that the hole
4036 	 * within one block before last range.
4037 	 */
4038 	if (end > inode->i_size)
4039 		end = round_up(inode->i_size, PAGE_SIZE);
4040 	if (end > max_end)
4041 		end = max_end;
4042 	length = end - offset;
4043 
4044 	/*
4045 	 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4046 	 * block.
4047 	 */
4048 	if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4049 		ret = ext4_inode_attach_jinode(inode);
4050 		if (ret < 0)
4051 			return ret;
4052 	}
4053 
4054 
4055 	ret = ext4_update_disksize_before_punch(inode, offset, length);
4056 	if (ret)
4057 		return ret;
4058 
4059 	/* Now release the pages and zero block aligned part of pages*/
4060 	ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4061 	if (ret)
4062 		return ret;
4063 
4064 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065 		credits = ext4_writepage_trans_blocks(inode);
4066 	else
4067 		credits = ext4_blocks_for_truncate(inode);
4068 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4069 	if (IS_ERR(handle)) {
4070 		ret = PTR_ERR(handle);
4071 		ext4_std_error(sb, ret);
4072 		return ret;
4073 	}
4074 
4075 	ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4076 	if (ret)
4077 		goto out_handle;
4078 
4079 	/* If there are blocks to remove, do it */
4080 	start_lblk = EXT4_B_TO_LBLK(inode, offset);
4081 	end_lblk = end >> inode->i_blkbits;
4082 
4083 	if (end_lblk > start_lblk) {
4084 		ext4_lblk_t hole_len = end_lblk - start_lblk;
4085 
4086 		down_write(&EXT4_I(inode)->i_data_sem);
4087 		ext4_discard_preallocations(inode);
4088 
4089 		ext4_es_remove_extent(inode, start_lblk, hole_len);
4090 
4091 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4092 			ret = ext4_ext_remove_space(inode, start_lblk,
4093 						    end_lblk - 1);
4094 		else
4095 			ret = ext4_ind_remove_space(handle, inode, start_lblk,
4096 						    end_lblk);
4097 		if (ret) {
4098 			up_write(&EXT4_I(inode)->i_data_sem);
4099 			goto out_handle;
4100 		}
4101 
4102 		ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4103 				      EXTENT_STATUS_HOLE, 0);
4104 		up_write(&EXT4_I(inode)->i_data_sem);
4105 	}
4106 	ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4107 
4108 	ret = ext4_mark_inode_dirty(handle, inode);
4109 	if (unlikely(ret))
4110 		goto out_handle;
4111 
4112 	ext4_update_inode_fsync_trans(handle, inode, 1);
4113 	if (IS_SYNC(inode))
4114 		ext4_handle_sync(handle);
4115 out_handle:
4116 	ext4_journal_stop(handle);
4117 	return ret;
4118 }
4119 
ext4_inode_attach_jinode(struct inode * inode)4120 int ext4_inode_attach_jinode(struct inode *inode)
4121 {
4122 	struct ext4_inode_info *ei = EXT4_I(inode);
4123 	struct jbd2_inode *jinode;
4124 
4125 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4126 		return 0;
4127 
4128 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4129 	spin_lock(&inode->i_lock);
4130 	if (!ei->jinode) {
4131 		if (!jinode) {
4132 			spin_unlock(&inode->i_lock);
4133 			return -ENOMEM;
4134 		}
4135 		ei->jinode = jinode;
4136 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4137 		jinode = NULL;
4138 	}
4139 	spin_unlock(&inode->i_lock);
4140 	if (unlikely(jinode != NULL))
4141 		jbd2_free_inode(jinode);
4142 	return 0;
4143 }
4144 
4145 /*
4146  * ext4_truncate()
4147  *
4148  * We block out ext4_get_block() block instantiations across the entire
4149  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4150  * simultaneously on behalf of the same inode.
4151  *
4152  * As we work through the truncate and commit bits of it to the journal there
4153  * is one core, guiding principle: the file's tree must always be consistent on
4154  * disk.  We must be able to restart the truncate after a crash.
4155  *
4156  * The file's tree may be transiently inconsistent in memory (although it
4157  * probably isn't), but whenever we close off and commit a journal transaction,
4158  * the contents of (the filesystem + the journal) must be consistent and
4159  * restartable.  It's pretty simple, really: bottom up, right to left (although
4160  * left-to-right works OK too).
4161  *
4162  * Note that at recovery time, journal replay occurs *before* the restart of
4163  * truncate against the orphan inode list.
4164  *
4165  * The committed inode has the new, desired i_size (which is the same as
4166  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4167  * that this inode's truncate did not complete and it will again call
4168  * ext4_truncate() to have another go.  So there will be instantiated blocks
4169  * to the right of the truncation point in a crashed ext4 filesystem.  But
4170  * that's fine - as long as they are linked from the inode, the post-crash
4171  * ext4_truncate() run will find them and release them.
4172  */
ext4_truncate(struct inode * inode)4173 int ext4_truncate(struct inode *inode)
4174 {
4175 	struct ext4_inode_info *ei = EXT4_I(inode);
4176 	unsigned int credits;
4177 	int err = 0, err2;
4178 	handle_t *handle;
4179 	struct address_space *mapping = inode->i_mapping;
4180 
4181 	/*
4182 	 * There is a possibility that we're either freeing the inode
4183 	 * or it's a completely new inode. In those cases we might not
4184 	 * have i_rwsem locked because it's not necessary.
4185 	 */
4186 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4187 		WARN_ON(!inode_is_locked(inode));
4188 	trace_ext4_truncate_enter(inode);
4189 
4190 	if (!ext4_can_truncate(inode))
4191 		goto out_trace;
4192 
4193 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4194 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4195 
4196 	if (ext4_has_inline_data(inode)) {
4197 		int has_inline = 1;
4198 
4199 		err = ext4_inline_data_truncate(inode, &has_inline);
4200 		if (err || has_inline)
4201 			goto out_trace;
4202 	}
4203 
4204 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4205 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4206 		err = ext4_inode_attach_jinode(inode);
4207 		if (err)
4208 			goto out_trace;
4209 	}
4210 
4211 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4212 		credits = ext4_writepage_trans_blocks(inode);
4213 	else
4214 		credits = ext4_blocks_for_truncate(inode);
4215 
4216 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4217 	if (IS_ERR(handle)) {
4218 		err = PTR_ERR(handle);
4219 		goto out_trace;
4220 	}
4221 
4222 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4223 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4224 
4225 	/*
4226 	 * We add the inode to the orphan list, so that if this
4227 	 * truncate spans multiple transactions, and we crash, we will
4228 	 * resume the truncate when the filesystem recovers.  It also
4229 	 * marks the inode dirty, to catch the new size.
4230 	 *
4231 	 * Implication: the file must always be in a sane, consistent
4232 	 * truncatable state while each transaction commits.
4233 	 */
4234 	err = ext4_orphan_add(handle, inode);
4235 	if (err)
4236 		goto out_stop;
4237 
4238 	down_write(&EXT4_I(inode)->i_data_sem);
4239 
4240 	ext4_discard_preallocations(inode);
4241 
4242 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4243 		err = ext4_ext_truncate(handle, inode);
4244 	else
4245 		ext4_ind_truncate(handle, inode);
4246 
4247 	up_write(&ei->i_data_sem);
4248 	if (err)
4249 		goto out_stop;
4250 
4251 	if (IS_SYNC(inode))
4252 		ext4_handle_sync(handle);
4253 
4254 out_stop:
4255 	/*
4256 	 * If this was a simple ftruncate() and the file will remain alive,
4257 	 * then we need to clear up the orphan record which we created above.
4258 	 * However, if this was a real unlink then we were called by
4259 	 * ext4_evict_inode(), and we allow that function to clean up the
4260 	 * orphan info for us.
4261 	 */
4262 	if (inode->i_nlink)
4263 		ext4_orphan_del(handle, inode);
4264 
4265 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4266 	err2 = ext4_mark_inode_dirty(handle, inode);
4267 	if (unlikely(err2 && !err))
4268 		err = err2;
4269 	ext4_journal_stop(handle);
4270 
4271 out_trace:
4272 	trace_ext4_truncate_exit(inode);
4273 	return err;
4274 }
4275 
ext4_inode_peek_iversion(const struct inode * inode)4276 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4277 {
4278 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4279 		return inode_peek_iversion_raw(inode);
4280 	else
4281 		return inode_peek_iversion(inode);
4282 }
4283 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4284 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4285 				 struct ext4_inode_info *ei)
4286 {
4287 	struct inode *inode = &(ei->vfs_inode);
4288 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4289 	struct super_block *sb = inode->i_sb;
4290 
4291 	if (i_blocks <= ~0U) {
4292 		/*
4293 		 * i_blocks can be represented in a 32 bit variable
4294 		 * as multiple of 512 bytes
4295 		 */
4296 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297 		raw_inode->i_blocks_high = 0;
4298 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4299 		return 0;
4300 	}
4301 
4302 	/*
4303 	 * This should never happen since sb->s_maxbytes should not have
4304 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4305 	 * feature in ext4_fill_super().
4306 	 */
4307 	if (!ext4_has_feature_huge_file(sb))
4308 		return -EFSCORRUPTED;
4309 
4310 	if (i_blocks <= 0xffffffffffffULL) {
4311 		/*
4312 		 * i_blocks can be represented in a 48 bit variable
4313 		 * as multiple of 512 bytes
4314 		 */
4315 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4316 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4317 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4318 	} else {
4319 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4320 		/* i_block is stored in file system block size */
4321 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4322 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4323 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4324 	}
4325 	return 0;
4326 }
4327 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4328 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4329 {
4330 	struct ext4_inode_info *ei = EXT4_I(inode);
4331 	uid_t i_uid;
4332 	gid_t i_gid;
4333 	projid_t i_projid;
4334 	int block;
4335 	int err;
4336 
4337 	err = ext4_inode_blocks_set(raw_inode, ei);
4338 
4339 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4340 	i_uid = i_uid_read(inode);
4341 	i_gid = i_gid_read(inode);
4342 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4343 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4344 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4345 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4346 		/*
4347 		 * Fix up interoperability with old kernels. Otherwise,
4348 		 * old inodes get re-used with the upper 16 bits of the
4349 		 * uid/gid intact.
4350 		 */
4351 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4352 			raw_inode->i_uid_high = 0;
4353 			raw_inode->i_gid_high = 0;
4354 		} else {
4355 			raw_inode->i_uid_high =
4356 				cpu_to_le16(high_16_bits(i_uid));
4357 			raw_inode->i_gid_high =
4358 				cpu_to_le16(high_16_bits(i_gid));
4359 		}
4360 	} else {
4361 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4362 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4363 		raw_inode->i_uid_high = 0;
4364 		raw_inode->i_gid_high = 0;
4365 	}
4366 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4367 
4368 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4369 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4370 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4371 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4372 
4373 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4374 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4375 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4376 		raw_inode->i_file_acl_high =
4377 			cpu_to_le16(ei->i_file_acl >> 32);
4378 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4379 	ext4_isize_set(raw_inode, ei->i_disksize);
4380 
4381 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4382 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4383 		if (old_valid_dev(inode->i_rdev)) {
4384 			raw_inode->i_block[0] =
4385 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4386 			raw_inode->i_block[1] = 0;
4387 		} else {
4388 			raw_inode->i_block[0] = 0;
4389 			raw_inode->i_block[1] =
4390 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4391 			raw_inode->i_block[2] = 0;
4392 		}
4393 	} else if (!ext4_has_inline_data(inode)) {
4394 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4395 			raw_inode->i_block[block] = ei->i_data[block];
4396 	}
4397 
4398 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4399 		u64 ivers = ext4_inode_peek_iversion(inode);
4400 
4401 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4402 		if (ei->i_extra_isize) {
4403 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4404 				raw_inode->i_version_hi =
4405 					cpu_to_le32(ivers >> 32);
4406 			raw_inode->i_extra_isize =
4407 				cpu_to_le16(ei->i_extra_isize);
4408 		}
4409 	}
4410 
4411 	if (i_projid != EXT4_DEF_PROJID &&
4412 	    !ext4_has_feature_project(inode->i_sb))
4413 		err = err ?: -EFSCORRUPTED;
4414 
4415 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4416 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4417 		raw_inode->i_projid = cpu_to_le32(i_projid);
4418 
4419 	ext4_inode_csum_set(inode, raw_inode, ei);
4420 	return err;
4421 }
4422 
4423 /*
4424  * ext4_get_inode_loc returns with an extra refcount against the inode's
4425  * underlying buffer_head on success. If we pass 'inode' and it does not
4426  * have in-inode xattr, we have all inode data in memory that is needed
4427  * to recreate the on-disk version of this inode.
4428  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4429 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4430 				struct inode *inode, struct ext4_iloc *iloc,
4431 				ext4_fsblk_t *ret_block)
4432 {
4433 	struct ext4_group_desc	*gdp;
4434 	struct buffer_head	*bh;
4435 	ext4_fsblk_t		block;
4436 	struct blk_plug		plug;
4437 	int			inodes_per_block, inode_offset;
4438 
4439 	iloc->bh = NULL;
4440 	if (ino < EXT4_ROOT_INO ||
4441 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4442 		return -EFSCORRUPTED;
4443 
4444 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4445 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4446 	if (!gdp)
4447 		return -EIO;
4448 
4449 	/*
4450 	 * Figure out the offset within the block group inode table
4451 	 */
4452 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4453 	inode_offset = ((ino - 1) %
4454 			EXT4_INODES_PER_GROUP(sb));
4455 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4456 
4457 	block = ext4_inode_table(sb, gdp);
4458 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4459 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4460 		ext4_error(sb, "Invalid inode table block %llu in "
4461 			   "block_group %u", block, iloc->block_group);
4462 		return -EFSCORRUPTED;
4463 	}
4464 	block += (inode_offset / inodes_per_block);
4465 
4466 	bh = sb_getblk(sb, block);
4467 	if (unlikely(!bh))
4468 		return -ENOMEM;
4469 	if (ext4_buffer_uptodate(bh))
4470 		goto has_buffer;
4471 
4472 	lock_buffer(bh);
4473 	if (ext4_buffer_uptodate(bh)) {
4474 		/* Someone brought it uptodate while we waited */
4475 		unlock_buffer(bh);
4476 		goto has_buffer;
4477 	}
4478 
4479 	/*
4480 	 * If we have all information of the inode in memory and this
4481 	 * is the only valid inode in the block, we need not read the
4482 	 * block.
4483 	 */
4484 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4485 		struct buffer_head *bitmap_bh;
4486 		int i, start;
4487 
4488 		start = inode_offset & ~(inodes_per_block - 1);
4489 
4490 		/* Is the inode bitmap in cache? */
4491 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4492 		if (unlikely(!bitmap_bh))
4493 			goto make_io;
4494 
4495 		/*
4496 		 * If the inode bitmap isn't in cache then the
4497 		 * optimisation may end up performing two reads instead
4498 		 * of one, so skip it.
4499 		 */
4500 		if (!buffer_uptodate(bitmap_bh)) {
4501 			brelse(bitmap_bh);
4502 			goto make_io;
4503 		}
4504 		for (i = start; i < start + inodes_per_block; i++) {
4505 			if (i == inode_offset)
4506 				continue;
4507 			if (ext4_test_bit(i, bitmap_bh->b_data))
4508 				break;
4509 		}
4510 		brelse(bitmap_bh);
4511 		if (i == start + inodes_per_block) {
4512 			struct ext4_inode *raw_inode =
4513 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4514 
4515 			/* all other inodes are free, so skip I/O */
4516 			memset(bh->b_data, 0, bh->b_size);
4517 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4518 				ext4_fill_raw_inode(inode, raw_inode);
4519 			set_buffer_uptodate(bh);
4520 			unlock_buffer(bh);
4521 			goto has_buffer;
4522 		}
4523 	}
4524 
4525 make_io:
4526 	/*
4527 	 * If we need to do any I/O, try to pre-readahead extra
4528 	 * blocks from the inode table.
4529 	 */
4530 	blk_start_plug(&plug);
4531 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4532 		ext4_fsblk_t b, end, table;
4533 		unsigned num;
4534 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4535 
4536 		table = ext4_inode_table(sb, gdp);
4537 		/* s_inode_readahead_blks is always a power of 2 */
4538 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4539 		if (table > b)
4540 			b = table;
4541 		end = b + ra_blks;
4542 		num = EXT4_INODES_PER_GROUP(sb);
4543 		if (ext4_has_group_desc_csum(sb))
4544 			num -= ext4_itable_unused_count(sb, gdp);
4545 		table += num / inodes_per_block;
4546 		if (end > table)
4547 			end = table;
4548 		while (b <= end)
4549 			ext4_sb_breadahead_unmovable(sb, b++);
4550 	}
4551 
4552 	/*
4553 	 * There are other valid inodes in the buffer, this inode
4554 	 * has in-inode xattrs, or we don't have this inode in memory.
4555 	 * Read the block from disk.
4556 	 */
4557 	trace_ext4_load_inode(sb, ino);
4558 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4559 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4560 	blk_finish_plug(&plug);
4561 	wait_on_buffer(bh);
4562 	if (!buffer_uptodate(bh)) {
4563 		if (ret_block)
4564 			*ret_block = block;
4565 		brelse(bh);
4566 		return -EIO;
4567 	}
4568 has_buffer:
4569 	iloc->bh = bh;
4570 	return 0;
4571 }
4572 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4573 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4574 					struct ext4_iloc *iloc)
4575 {
4576 	ext4_fsblk_t err_blk = 0;
4577 	int ret;
4578 
4579 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4580 					&err_blk);
4581 
4582 	if (ret == -EIO)
4583 		ext4_error_inode_block(inode, err_blk, EIO,
4584 					"unable to read itable block");
4585 
4586 	return ret;
4587 }
4588 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4589 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4590 {
4591 	ext4_fsblk_t err_blk = 0;
4592 	int ret;
4593 
4594 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4595 					&err_blk);
4596 
4597 	if (ret == -EIO)
4598 		ext4_error_inode_block(inode, err_blk, EIO,
4599 					"unable to read itable block");
4600 
4601 	return ret;
4602 }
4603 
4604 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4605 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4606 			  struct ext4_iloc *iloc)
4607 {
4608 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4609 }
4610 
ext4_should_enable_dax(struct inode * inode)4611 static bool ext4_should_enable_dax(struct inode *inode)
4612 {
4613 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4614 
4615 	if (test_opt2(inode->i_sb, DAX_NEVER))
4616 		return false;
4617 	if (!S_ISREG(inode->i_mode))
4618 		return false;
4619 	if (ext4_should_journal_data(inode))
4620 		return false;
4621 	if (ext4_has_inline_data(inode))
4622 		return false;
4623 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4624 		return false;
4625 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4626 		return false;
4627 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4628 		return false;
4629 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4630 		return true;
4631 
4632 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4633 }
4634 
ext4_set_inode_flags(struct inode * inode,bool init)4635 void ext4_set_inode_flags(struct inode *inode, bool init)
4636 {
4637 	unsigned int flags = EXT4_I(inode)->i_flags;
4638 	unsigned int new_fl = 0;
4639 
4640 	WARN_ON_ONCE(IS_DAX(inode) && init);
4641 
4642 	if (flags & EXT4_SYNC_FL)
4643 		new_fl |= S_SYNC;
4644 	if (flags & EXT4_APPEND_FL)
4645 		new_fl |= S_APPEND;
4646 	if (flags & EXT4_IMMUTABLE_FL)
4647 		new_fl |= S_IMMUTABLE;
4648 	if (flags & EXT4_NOATIME_FL)
4649 		new_fl |= S_NOATIME;
4650 	if (flags & EXT4_DIRSYNC_FL)
4651 		new_fl |= S_DIRSYNC;
4652 
4653 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4654 	 * here if already set. */
4655 	new_fl |= (inode->i_flags & S_DAX);
4656 	if (init && ext4_should_enable_dax(inode))
4657 		new_fl |= S_DAX;
4658 
4659 	if (flags & EXT4_ENCRYPT_FL)
4660 		new_fl |= S_ENCRYPTED;
4661 	if (flags & EXT4_CASEFOLD_FL)
4662 		new_fl |= S_CASEFOLD;
4663 	if (flags & EXT4_VERITY_FL)
4664 		new_fl |= S_VERITY;
4665 	inode_set_flags(inode, new_fl,
4666 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4667 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4668 }
4669 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4670 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4671 				  struct ext4_inode_info *ei)
4672 {
4673 	blkcnt_t i_blocks ;
4674 	struct inode *inode = &(ei->vfs_inode);
4675 	struct super_block *sb = inode->i_sb;
4676 
4677 	if (ext4_has_feature_huge_file(sb)) {
4678 		/* we are using combined 48 bit field */
4679 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4680 					le32_to_cpu(raw_inode->i_blocks_lo);
4681 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4682 			/* i_blocks represent file system block size */
4683 			return i_blocks  << (inode->i_blkbits - 9);
4684 		} else {
4685 			return i_blocks;
4686 		}
4687 	} else {
4688 		return le32_to_cpu(raw_inode->i_blocks_lo);
4689 	}
4690 }
4691 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4692 static inline int ext4_iget_extra_inode(struct inode *inode,
4693 					 struct ext4_inode *raw_inode,
4694 					 struct ext4_inode_info *ei)
4695 {
4696 	__le32 *magic = (void *)raw_inode +
4697 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4698 
4699 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4700 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4701 		int err;
4702 
4703 		err = xattr_check_inode(inode, IHDR(inode, raw_inode),
4704 					ITAIL(inode, raw_inode));
4705 		if (err)
4706 			return err;
4707 
4708 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4709 		err = ext4_find_inline_data_nolock(inode);
4710 		if (!err && ext4_has_inline_data(inode))
4711 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4712 		return err;
4713 	} else
4714 		EXT4_I(inode)->i_inline_off = 0;
4715 	return 0;
4716 }
4717 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4718 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4719 {
4720 	if (!ext4_has_feature_project(inode->i_sb))
4721 		return -EOPNOTSUPP;
4722 	*projid = EXT4_I(inode)->i_projid;
4723 	return 0;
4724 }
4725 
4726 /*
4727  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4728  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4729  * set.
4730  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4731 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4732 {
4733 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4734 		inode_set_iversion_raw(inode, val);
4735 	else
4736 		inode_set_iversion_queried(inode, val);
4737 }
4738 
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4739 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4740 
4741 {
4742 	if (flags & EXT4_IGET_EA_INODE) {
4743 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4744 			return "missing EA_INODE flag";
4745 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4746 		    EXT4_I(inode)->i_file_acl)
4747 			return "ea_inode with extended attributes";
4748 	} else {
4749 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4750 			return "unexpected EA_INODE flag";
4751 	}
4752 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4753 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4754 	return NULL;
4755 }
4756 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4757 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4758 			  ext4_iget_flags flags, const char *function,
4759 			  unsigned int line)
4760 {
4761 	struct ext4_iloc iloc;
4762 	struct ext4_inode *raw_inode;
4763 	struct ext4_inode_info *ei;
4764 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4765 	struct inode *inode;
4766 	const char *err_str;
4767 	journal_t *journal = EXT4_SB(sb)->s_journal;
4768 	long ret;
4769 	loff_t size;
4770 	int block;
4771 	uid_t i_uid;
4772 	gid_t i_gid;
4773 	projid_t i_projid;
4774 
4775 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4776 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4777 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4778 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4779 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4780 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4781 	    (ino < EXT4_ROOT_INO) ||
4782 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4783 		if (flags & EXT4_IGET_HANDLE)
4784 			return ERR_PTR(-ESTALE);
4785 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4786 			     "inode #%lu: comm %s: iget: illegal inode #",
4787 			     ino, current->comm);
4788 		return ERR_PTR(-EFSCORRUPTED);
4789 	}
4790 
4791 	inode = iget_locked(sb, ino);
4792 	if (!inode)
4793 		return ERR_PTR(-ENOMEM);
4794 	if (!(inode->i_state & I_NEW)) {
4795 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4796 			ext4_error_inode(inode, function, line, 0, err_str);
4797 			iput(inode);
4798 			return ERR_PTR(-EFSCORRUPTED);
4799 		}
4800 		return inode;
4801 	}
4802 
4803 	ei = EXT4_I(inode);
4804 	iloc.bh = NULL;
4805 
4806 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4807 	if (ret < 0)
4808 		goto bad_inode;
4809 	raw_inode = ext4_raw_inode(&iloc);
4810 
4811 	if ((flags & EXT4_IGET_HANDLE) &&
4812 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4813 		ret = -ESTALE;
4814 		goto bad_inode;
4815 	}
4816 
4817 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4818 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4819 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4820 			EXT4_INODE_SIZE(inode->i_sb) ||
4821 		    (ei->i_extra_isize & 3)) {
4822 			ext4_error_inode(inode, function, line, 0,
4823 					 "iget: bad extra_isize %u "
4824 					 "(inode size %u)",
4825 					 ei->i_extra_isize,
4826 					 EXT4_INODE_SIZE(inode->i_sb));
4827 			ret = -EFSCORRUPTED;
4828 			goto bad_inode;
4829 		}
4830 	} else
4831 		ei->i_extra_isize = 0;
4832 
4833 	/* Precompute checksum seed for inode metadata */
4834 	if (ext4_has_feature_metadata_csum(sb)) {
4835 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4836 		__u32 csum;
4837 		__le32 inum = cpu_to_le32(inode->i_ino);
4838 		__le32 gen = raw_inode->i_generation;
4839 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4840 				   sizeof(inum));
4841 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4842 					      sizeof(gen));
4843 	}
4844 
4845 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4846 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4847 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4848 		ext4_error_inode_err(inode, function, line, 0,
4849 				EFSBADCRC, "iget: checksum invalid");
4850 		ret = -EFSBADCRC;
4851 		goto bad_inode;
4852 	}
4853 
4854 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4855 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4856 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4857 	if (ext4_has_feature_project(sb) &&
4858 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4859 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4860 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4861 	else
4862 		i_projid = EXT4_DEF_PROJID;
4863 
4864 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4865 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4866 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4867 	}
4868 	i_uid_write(inode, i_uid);
4869 	i_gid_write(inode, i_gid);
4870 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4871 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4872 
4873 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4874 	ei->i_inline_off = 0;
4875 	ei->i_dir_start_lookup = 0;
4876 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4877 	/* We now have enough fields to check if the inode was active or not.
4878 	 * This is needed because nfsd might try to access dead inodes
4879 	 * the test is that same one that e2fsck uses
4880 	 * NeilBrown 1999oct15
4881 	 */
4882 	if (inode->i_nlink == 0) {
4883 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4884 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4885 		    ino != EXT4_BOOT_LOADER_INO) {
4886 			/* this inode is deleted or unallocated */
4887 			if (flags & EXT4_IGET_SPECIAL) {
4888 				ext4_error_inode(inode, function, line, 0,
4889 						 "iget: special inode unallocated");
4890 				ret = -EFSCORRUPTED;
4891 			} else
4892 				ret = -ESTALE;
4893 			goto bad_inode;
4894 		}
4895 		/* The only unlinked inodes we let through here have
4896 		 * valid i_mode and are being read by the orphan
4897 		 * recovery code: that's fine, we're about to complete
4898 		 * the process of deleting those.
4899 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4900 		 * not initialized on a new filesystem. */
4901 	}
4902 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4903 	ext4_set_inode_flags(inode, true);
4904 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4905 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4906 	if (ext4_has_feature_64bit(sb))
4907 		ei->i_file_acl |=
4908 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4909 	inode->i_size = ext4_isize(sb, raw_inode);
4910 	if ((size = i_size_read(inode)) < 0) {
4911 		ext4_error_inode(inode, function, line, 0,
4912 				 "iget: bad i_size value: %lld", size);
4913 		ret = -EFSCORRUPTED;
4914 		goto bad_inode;
4915 	}
4916 	/*
4917 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4918 	 * we'd normally treat htree data as empty space. But with metadata
4919 	 * checksumming that corrupts checksums so forbid that.
4920 	 */
4921 	if (!ext4_has_feature_dir_index(sb) &&
4922 	    ext4_has_feature_metadata_csum(sb) &&
4923 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4924 		ext4_error_inode(inode, function, line, 0,
4925 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4926 		ret = -EFSCORRUPTED;
4927 		goto bad_inode;
4928 	}
4929 	ei->i_disksize = inode->i_size;
4930 #ifdef CONFIG_QUOTA
4931 	ei->i_reserved_quota = 0;
4932 #endif
4933 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4934 	ei->i_block_group = iloc.block_group;
4935 	ei->i_last_alloc_group = ~0;
4936 	/*
4937 	 * NOTE! The in-memory inode i_data array is in little-endian order
4938 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4939 	 */
4940 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4941 		ei->i_data[block] = raw_inode->i_block[block];
4942 	INIT_LIST_HEAD(&ei->i_orphan);
4943 	ext4_fc_init_inode(&ei->vfs_inode);
4944 
4945 	/*
4946 	 * Set transaction id's of transactions that have to be committed
4947 	 * to finish f[data]sync. We set them to currently running transaction
4948 	 * as we cannot be sure that the inode or some of its metadata isn't
4949 	 * part of the transaction - the inode could have been reclaimed and
4950 	 * now it is reread from disk.
4951 	 */
4952 	if (journal) {
4953 		transaction_t *transaction;
4954 		tid_t tid;
4955 
4956 		read_lock(&journal->j_state_lock);
4957 		if (journal->j_running_transaction)
4958 			transaction = journal->j_running_transaction;
4959 		else
4960 			transaction = journal->j_committing_transaction;
4961 		if (transaction)
4962 			tid = transaction->t_tid;
4963 		else
4964 			tid = journal->j_commit_sequence;
4965 		read_unlock(&journal->j_state_lock);
4966 		ei->i_sync_tid = tid;
4967 		ei->i_datasync_tid = tid;
4968 	}
4969 
4970 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4971 		if (ei->i_extra_isize == 0) {
4972 			/* The extra space is currently unused. Use it. */
4973 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4974 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4975 					    EXT4_GOOD_OLD_INODE_SIZE;
4976 		} else {
4977 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4978 			if (ret)
4979 				goto bad_inode;
4980 		}
4981 	}
4982 
4983 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4984 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4985 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4986 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4987 
4988 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4989 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4990 
4991 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4992 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4993 				ivers |=
4994 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4995 		}
4996 		ext4_inode_set_iversion_queried(inode, ivers);
4997 	}
4998 
4999 	ret = 0;
5000 	if (ei->i_file_acl &&
5001 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5002 		ext4_error_inode(inode, function, line, 0,
5003 				 "iget: bad extended attribute block %llu",
5004 				 ei->i_file_acl);
5005 		ret = -EFSCORRUPTED;
5006 		goto bad_inode;
5007 	} else if (!ext4_has_inline_data(inode)) {
5008 		/* validate the block references in the inode */
5009 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5010 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5011 			(S_ISLNK(inode->i_mode) &&
5012 			!ext4_inode_is_fast_symlink(inode)))) {
5013 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5014 				ret = ext4_ext_check_inode(inode);
5015 			else
5016 				ret = ext4_ind_check_inode(inode);
5017 		}
5018 	}
5019 	if (ret)
5020 		goto bad_inode;
5021 
5022 	if (S_ISREG(inode->i_mode)) {
5023 		inode->i_op = &ext4_file_inode_operations;
5024 		inode->i_fop = &ext4_file_operations;
5025 		ext4_set_aops(inode);
5026 	} else if (S_ISDIR(inode->i_mode)) {
5027 		inode->i_op = &ext4_dir_inode_operations;
5028 		inode->i_fop = &ext4_dir_operations;
5029 	} else if (S_ISLNK(inode->i_mode)) {
5030 		/* VFS does not allow setting these so must be corruption */
5031 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5032 			ext4_error_inode(inode, function, line, 0,
5033 					 "iget: immutable or append flags "
5034 					 "not allowed on symlinks");
5035 			ret = -EFSCORRUPTED;
5036 			goto bad_inode;
5037 		}
5038 		if (IS_ENCRYPTED(inode)) {
5039 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5040 		} else if (ext4_inode_is_fast_symlink(inode)) {
5041 			inode->i_op = &ext4_fast_symlink_inode_operations;
5042 			if (inode->i_size == 0 ||
5043 			    inode->i_size >= sizeof(ei->i_data) ||
5044 			    strnlen((char *)ei->i_data, inode->i_size + 1) !=
5045 								inode->i_size) {
5046 				ext4_error_inode(inode, function, line, 0,
5047 					"invalid fast symlink length %llu",
5048 					 (unsigned long long)inode->i_size);
5049 				ret = -EFSCORRUPTED;
5050 				goto bad_inode;
5051 			}
5052 			inode_set_cached_link(inode, (char *)ei->i_data,
5053 					      inode->i_size);
5054 		} else {
5055 			inode->i_op = &ext4_symlink_inode_operations;
5056 		}
5057 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5058 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5059 		inode->i_op = &ext4_special_inode_operations;
5060 		if (raw_inode->i_block[0])
5061 			init_special_inode(inode, inode->i_mode,
5062 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5063 		else
5064 			init_special_inode(inode, inode->i_mode,
5065 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5066 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5067 		make_bad_inode(inode);
5068 	} else {
5069 		ret = -EFSCORRUPTED;
5070 		ext4_error_inode(inode, function, line, 0,
5071 				 "iget: bogus i_mode (%o)", inode->i_mode);
5072 		goto bad_inode;
5073 	}
5074 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5075 		ext4_error_inode(inode, function, line, 0,
5076 				 "casefold flag without casefold feature");
5077 		ret = -EFSCORRUPTED;
5078 		goto bad_inode;
5079 	}
5080 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5081 		ext4_error_inode(inode, function, line, 0, err_str);
5082 		ret = -EFSCORRUPTED;
5083 		goto bad_inode;
5084 	}
5085 
5086 	brelse(iloc.bh);
5087 	unlock_new_inode(inode);
5088 	return inode;
5089 
5090 bad_inode:
5091 	brelse(iloc.bh);
5092 	iget_failed(inode);
5093 	return ERR_PTR(ret);
5094 }
5095 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5096 static void __ext4_update_other_inode_time(struct super_block *sb,
5097 					   unsigned long orig_ino,
5098 					   unsigned long ino,
5099 					   struct ext4_inode *raw_inode)
5100 {
5101 	struct inode *inode;
5102 
5103 	inode = find_inode_by_ino_rcu(sb, ino);
5104 	if (!inode)
5105 		return;
5106 
5107 	if (!inode_is_dirtytime_only(inode))
5108 		return;
5109 
5110 	spin_lock(&inode->i_lock);
5111 	if (inode_is_dirtytime_only(inode)) {
5112 		struct ext4_inode_info	*ei = EXT4_I(inode);
5113 
5114 		inode->i_state &= ~I_DIRTY_TIME;
5115 		spin_unlock(&inode->i_lock);
5116 
5117 		spin_lock(&ei->i_raw_lock);
5118 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5119 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5120 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5121 		ext4_inode_csum_set(inode, raw_inode, ei);
5122 		spin_unlock(&ei->i_raw_lock);
5123 		trace_ext4_other_inode_update_time(inode, orig_ino);
5124 		return;
5125 	}
5126 	spin_unlock(&inode->i_lock);
5127 }
5128 
5129 /*
5130  * Opportunistically update the other time fields for other inodes in
5131  * the same inode table block.
5132  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5133 static void ext4_update_other_inodes_time(struct super_block *sb,
5134 					  unsigned long orig_ino, char *buf)
5135 {
5136 	unsigned long ino;
5137 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5138 	int inode_size = EXT4_INODE_SIZE(sb);
5139 
5140 	/*
5141 	 * Calculate the first inode in the inode table block.  Inode
5142 	 * numbers are one-based.  That is, the first inode in a block
5143 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5144 	 */
5145 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5146 	rcu_read_lock();
5147 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5148 		if (ino == orig_ino)
5149 			continue;
5150 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5151 					       (struct ext4_inode *)buf);
5152 	}
5153 	rcu_read_unlock();
5154 }
5155 
5156 /*
5157  * Post the struct inode info into an on-disk inode location in the
5158  * buffer-cache.  This gobbles the caller's reference to the
5159  * buffer_head in the inode location struct.
5160  *
5161  * The caller must have write access to iloc->bh.
5162  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5163 static int ext4_do_update_inode(handle_t *handle,
5164 				struct inode *inode,
5165 				struct ext4_iloc *iloc)
5166 {
5167 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5168 	struct ext4_inode_info *ei = EXT4_I(inode);
5169 	struct buffer_head *bh = iloc->bh;
5170 	struct super_block *sb = inode->i_sb;
5171 	int err;
5172 	int need_datasync = 0, set_large_file = 0;
5173 
5174 	spin_lock(&ei->i_raw_lock);
5175 
5176 	/*
5177 	 * For fields not tracked in the in-memory inode, initialise them
5178 	 * to zero for new inodes.
5179 	 */
5180 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5181 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5182 
5183 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5184 		need_datasync = 1;
5185 	if (ei->i_disksize > 0x7fffffffULL) {
5186 		if (!ext4_has_feature_large_file(sb) ||
5187 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5188 			set_large_file = 1;
5189 	}
5190 
5191 	err = ext4_fill_raw_inode(inode, raw_inode);
5192 	spin_unlock(&ei->i_raw_lock);
5193 	if (err) {
5194 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5195 		goto out_brelse;
5196 	}
5197 
5198 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5199 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5200 					      bh->b_data);
5201 
5202 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5203 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5204 	if (err)
5205 		goto out_error;
5206 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5207 	if (set_large_file) {
5208 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5209 		err = ext4_journal_get_write_access(handle, sb,
5210 						    EXT4_SB(sb)->s_sbh,
5211 						    EXT4_JTR_NONE);
5212 		if (err)
5213 			goto out_error;
5214 		lock_buffer(EXT4_SB(sb)->s_sbh);
5215 		ext4_set_feature_large_file(sb);
5216 		ext4_superblock_csum_set(sb);
5217 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5218 		ext4_handle_sync(handle);
5219 		err = ext4_handle_dirty_metadata(handle, NULL,
5220 						 EXT4_SB(sb)->s_sbh);
5221 	}
5222 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5223 out_error:
5224 	ext4_std_error(inode->i_sb, err);
5225 out_brelse:
5226 	brelse(bh);
5227 	return err;
5228 }
5229 
5230 /*
5231  * ext4_write_inode()
5232  *
5233  * We are called from a few places:
5234  *
5235  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5236  *   Here, there will be no transaction running. We wait for any running
5237  *   transaction to commit.
5238  *
5239  * - Within flush work (sys_sync(), kupdate and such).
5240  *   We wait on commit, if told to.
5241  *
5242  * - Within iput_final() -> write_inode_now()
5243  *   We wait on commit, if told to.
5244  *
5245  * In all cases it is actually safe for us to return without doing anything,
5246  * because the inode has been copied into a raw inode buffer in
5247  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5248  * writeback.
5249  *
5250  * Note that we are absolutely dependent upon all inode dirtiers doing the
5251  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5252  * which we are interested.
5253  *
5254  * It would be a bug for them to not do this.  The code:
5255  *
5256  *	mark_inode_dirty(inode)
5257  *	stuff();
5258  *	inode->i_size = expr;
5259  *
5260  * is in error because write_inode() could occur while `stuff()' is running,
5261  * and the new i_size will be lost.  Plus the inode will no longer be on the
5262  * superblock's dirty inode list.
5263  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5264 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5265 {
5266 	int err;
5267 
5268 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5269 		return 0;
5270 
5271 	err = ext4_emergency_state(inode->i_sb);
5272 	if (unlikely(err))
5273 		return err;
5274 
5275 	if (EXT4_SB(inode->i_sb)->s_journal) {
5276 		if (ext4_journal_current_handle()) {
5277 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5278 			dump_stack();
5279 			return -EIO;
5280 		}
5281 
5282 		/*
5283 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5284 		 * ext4_sync_fs() will force the commit after everything is
5285 		 * written.
5286 		 */
5287 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5288 			return 0;
5289 
5290 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5291 						EXT4_I(inode)->i_sync_tid);
5292 	} else {
5293 		struct ext4_iloc iloc;
5294 
5295 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5296 		if (err)
5297 			return err;
5298 		/*
5299 		 * sync(2) will flush the whole buffer cache. No need to do
5300 		 * it here separately for each inode.
5301 		 */
5302 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5303 			sync_dirty_buffer(iloc.bh);
5304 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5305 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5306 					       "IO error syncing inode");
5307 			err = -EIO;
5308 		}
5309 		brelse(iloc.bh);
5310 	}
5311 	return err;
5312 }
5313 
5314 /*
5315  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5316  * buffers that are attached to a folio straddling i_size and are undergoing
5317  * commit. In that case we have to wait for commit to finish and try again.
5318  */
ext4_wait_for_tail_page_commit(struct inode * inode)5319 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5320 {
5321 	unsigned offset;
5322 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5323 	tid_t commit_tid;
5324 	int ret;
5325 	bool has_transaction;
5326 
5327 	offset = inode->i_size & (PAGE_SIZE - 1);
5328 	/*
5329 	 * If the folio is fully truncated, we don't need to wait for any commit
5330 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5331 	 * strip all buffers from the folio but keep the folio dirty which can then
5332 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5333 	 * buffers). Also we don't need to wait for any commit if all buffers in
5334 	 * the folio remain valid. This is most beneficial for the common case of
5335 	 * blocksize == PAGESIZE.
5336 	 */
5337 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5338 		return;
5339 	while (1) {
5340 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5341 				      inode->i_size >> PAGE_SHIFT);
5342 		if (IS_ERR(folio))
5343 			return;
5344 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5345 						folio_size(folio) - offset);
5346 		folio_unlock(folio);
5347 		folio_put(folio);
5348 		if (ret != -EBUSY)
5349 			return;
5350 		has_transaction = false;
5351 		read_lock(&journal->j_state_lock);
5352 		if (journal->j_committing_transaction) {
5353 			commit_tid = journal->j_committing_transaction->t_tid;
5354 			has_transaction = true;
5355 		}
5356 		read_unlock(&journal->j_state_lock);
5357 		if (has_transaction)
5358 			jbd2_log_wait_commit(journal, commit_tid);
5359 	}
5360 }
5361 
5362 /*
5363  * ext4_setattr()
5364  *
5365  * Called from notify_change.
5366  *
5367  * We want to trap VFS attempts to truncate the file as soon as
5368  * possible.  In particular, we want to make sure that when the VFS
5369  * shrinks i_size, we put the inode on the orphan list and modify
5370  * i_disksize immediately, so that during the subsequent flushing of
5371  * dirty pages and freeing of disk blocks, we can guarantee that any
5372  * commit will leave the blocks being flushed in an unused state on
5373  * disk.  (On recovery, the inode will get truncated and the blocks will
5374  * be freed, so we have a strong guarantee that no future commit will
5375  * leave these blocks visible to the user.)
5376  *
5377  * Another thing we have to assure is that if we are in ordered mode
5378  * and inode is still attached to the committing transaction, we must
5379  * we start writeout of all the dirty pages which are being truncated.
5380  * This way we are sure that all the data written in the previous
5381  * transaction are already on disk (truncate waits for pages under
5382  * writeback).
5383  *
5384  * Called with inode->i_rwsem down.
5385  */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5386 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5387 		 struct iattr *attr)
5388 {
5389 	struct inode *inode = d_inode(dentry);
5390 	int error, rc = 0;
5391 	int orphan = 0;
5392 	const unsigned int ia_valid = attr->ia_valid;
5393 	bool inc_ivers = true;
5394 
5395 	error = ext4_emergency_state(inode->i_sb);
5396 	if (unlikely(error))
5397 		return error;
5398 
5399 	if (unlikely(IS_IMMUTABLE(inode)))
5400 		return -EPERM;
5401 
5402 	if (unlikely(IS_APPEND(inode) &&
5403 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5404 				  ATTR_GID | ATTR_TIMES_SET))))
5405 		return -EPERM;
5406 
5407 	error = setattr_prepare(idmap, dentry, attr);
5408 	if (error)
5409 		return error;
5410 
5411 	error = fscrypt_prepare_setattr(dentry, attr);
5412 	if (error)
5413 		return error;
5414 
5415 	error = fsverity_prepare_setattr(dentry, attr);
5416 	if (error)
5417 		return error;
5418 
5419 	if (is_quota_modification(idmap, inode, attr)) {
5420 		error = dquot_initialize(inode);
5421 		if (error)
5422 			return error;
5423 	}
5424 
5425 	if (i_uid_needs_update(idmap, attr, inode) ||
5426 	    i_gid_needs_update(idmap, attr, inode)) {
5427 		handle_t *handle;
5428 
5429 		/* (user+group)*(old+new) structure, inode write (sb,
5430 		 * inode block, ? - but truncate inode update has it) */
5431 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5432 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5433 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5434 		if (IS_ERR(handle)) {
5435 			error = PTR_ERR(handle);
5436 			goto err_out;
5437 		}
5438 
5439 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5440 		 * counts xattr inode references.
5441 		 */
5442 		down_read(&EXT4_I(inode)->xattr_sem);
5443 		error = dquot_transfer(idmap, inode, attr);
5444 		up_read(&EXT4_I(inode)->xattr_sem);
5445 
5446 		if (error) {
5447 			ext4_journal_stop(handle);
5448 			return error;
5449 		}
5450 		/* Update corresponding info in inode so that everything is in
5451 		 * one transaction */
5452 		i_uid_update(idmap, attr, inode);
5453 		i_gid_update(idmap, attr, inode);
5454 		error = ext4_mark_inode_dirty(handle, inode);
5455 		ext4_journal_stop(handle);
5456 		if (unlikely(error)) {
5457 			return error;
5458 		}
5459 	}
5460 
5461 	if (attr->ia_valid & ATTR_SIZE) {
5462 		handle_t *handle;
5463 		loff_t oldsize = inode->i_size;
5464 		loff_t old_disksize;
5465 		int shrink = (attr->ia_size < inode->i_size);
5466 
5467 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5468 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5469 
5470 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5471 				return -EFBIG;
5472 			}
5473 		}
5474 		if (!S_ISREG(inode->i_mode)) {
5475 			return -EINVAL;
5476 		}
5477 
5478 		if (attr->ia_size == inode->i_size)
5479 			inc_ivers = false;
5480 
5481 		if (shrink) {
5482 			if (ext4_should_order_data(inode)) {
5483 				error = ext4_begin_ordered_truncate(inode,
5484 							    attr->ia_size);
5485 				if (error)
5486 					goto err_out;
5487 			}
5488 			/*
5489 			 * Blocks are going to be removed from the inode. Wait
5490 			 * for dio in flight.
5491 			 */
5492 			inode_dio_wait(inode);
5493 		}
5494 
5495 		filemap_invalidate_lock(inode->i_mapping);
5496 
5497 		rc = ext4_break_layouts(inode);
5498 		if (rc) {
5499 			filemap_invalidate_unlock(inode->i_mapping);
5500 			goto err_out;
5501 		}
5502 
5503 		if (attr->ia_size != inode->i_size) {
5504 			/* attach jbd2 jinode for EOF folio tail zeroing */
5505 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5506 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5507 				error = ext4_inode_attach_jinode(inode);
5508 				if (error)
5509 					goto out_mmap_sem;
5510 			}
5511 
5512 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5513 			if (IS_ERR(handle)) {
5514 				error = PTR_ERR(handle);
5515 				goto out_mmap_sem;
5516 			}
5517 			if (ext4_handle_valid(handle) && shrink) {
5518 				error = ext4_orphan_add(handle, inode);
5519 				orphan = 1;
5520 			}
5521 			/*
5522 			 * Update c/mtime and tail zero the EOF folio on
5523 			 * truncate up. ext4_truncate() handles the shrink case
5524 			 * below.
5525 			 */
5526 			if (!shrink) {
5527 				inode_set_mtime_to_ts(inode,
5528 						      inode_set_ctime_current(inode));
5529 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5530 					ext4_block_truncate_page(handle,
5531 							inode->i_mapping, oldsize);
5532 			}
5533 
5534 			if (shrink)
5535 				ext4_fc_track_range(handle, inode,
5536 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5537 					inode->i_sb->s_blocksize_bits,
5538 					EXT_MAX_BLOCKS - 1);
5539 			else
5540 				ext4_fc_track_range(
5541 					handle, inode,
5542 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5543 					inode->i_sb->s_blocksize_bits,
5544 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5545 					inode->i_sb->s_blocksize_bits);
5546 
5547 			down_write(&EXT4_I(inode)->i_data_sem);
5548 			old_disksize = EXT4_I(inode)->i_disksize;
5549 			EXT4_I(inode)->i_disksize = attr->ia_size;
5550 			rc = ext4_mark_inode_dirty(handle, inode);
5551 			if (!error)
5552 				error = rc;
5553 			/*
5554 			 * We have to update i_size under i_data_sem together
5555 			 * with i_disksize to avoid races with writeback code
5556 			 * running ext4_wb_update_i_disksize().
5557 			 */
5558 			if (!error)
5559 				i_size_write(inode, attr->ia_size);
5560 			else
5561 				EXT4_I(inode)->i_disksize = old_disksize;
5562 			up_write(&EXT4_I(inode)->i_data_sem);
5563 			ext4_journal_stop(handle);
5564 			if (error)
5565 				goto out_mmap_sem;
5566 			if (!shrink) {
5567 				pagecache_isize_extended(inode, oldsize,
5568 							 inode->i_size);
5569 			} else if (ext4_should_journal_data(inode)) {
5570 				ext4_wait_for_tail_page_commit(inode);
5571 			}
5572 		}
5573 
5574 		/*
5575 		 * Truncate pagecache after we've waited for commit
5576 		 * in data=journal mode to make pages freeable.
5577 		 */
5578 		truncate_pagecache(inode, inode->i_size);
5579 		/*
5580 		 * Call ext4_truncate() even if i_size didn't change to
5581 		 * truncate possible preallocated blocks.
5582 		 */
5583 		if (attr->ia_size <= oldsize) {
5584 			rc = ext4_truncate(inode);
5585 			if (rc)
5586 				error = rc;
5587 		}
5588 out_mmap_sem:
5589 		filemap_invalidate_unlock(inode->i_mapping);
5590 	}
5591 
5592 	if (!error) {
5593 		if (inc_ivers)
5594 			inode_inc_iversion(inode);
5595 		setattr_copy(idmap, inode, attr);
5596 		mark_inode_dirty(inode);
5597 	}
5598 
5599 	/*
5600 	 * If the call to ext4_truncate failed to get a transaction handle at
5601 	 * all, we need to clean up the in-core orphan list manually.
5602 	 */
5603 	if (orphan && inode->i_nlink)
5604 		ext4_orphan_del(NULL, inode);
5605 
5606 	if (!error && (ia_valid & ATTR_MODE))
5607 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5608 
5609 err_out:
5610 	if  (error)
5611 		ext4_std_error(inode->i_sb, error);
5612 	if (!error)
5613 		error = rc;
5614 	return error;
5615 }
5616 
ext4_dio_alignment(struct inode * inode)5617 u32 ext4_dio_alignment(struct inode *inode)
5618 {
5619 	if (fsverity_active(inode))
5620 		return 0;
5621 	if (ext4_should_journal_data(inode))
5622 		return 0;
5623 	if (ext4_has_inline_data(inode))
5624 		return 0;
5625 	if (IS_ENCRYPTED(inode)) {
5626 		if (!fscrypt_dio_supported(inode))
5627 			return 0;
5628 		return i_blocksize(inode);
5629 	}
5630 	return 1; /* use the iomap defaults */
5631 }
5632 
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5633 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5634 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5635 {
5636 	struct inode *inode = d_inode(path->dentry);
5637 	struct ext4_inode *raw_inode;
5638 	struct ext4_inode_info *ei = EXT4_I(inode);
5639 	unsigned int flags;
5640 
5641 	if ((request_mask & STATX_BTIME) &&
5642 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5643 		stat->result_mask |= STATX_BTIME;
5644 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5645 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5646 	}
5647 
5648 	/*
5649 	 * Return the DIO alignment restrictions if requested.  We only return
5650 	 * this information when requested, since on encrypted files it might
5651 	 * take a fair bit of work to get if the file wasn't opened recently.
5652 	 */
5653 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5654 		u32 dio_align = ext4_dio_alignment(inode);
5655 
5656 		stat->result_mask |= STATX_DIOALIGN;
5657 		if (dio_align == 1) {
5658 			struct block_device *bdev = inode->i_sb->s_bdev;
5659 
5660 			/* iomap defaults */
5661 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5662 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5663 		} else {
5664 			stat->dio_mem_align = dio_align;
5665 			stat->dio_offset_align = dio_align;
5666 		}
5667 	}
5668 
5669 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5670 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5671 		unsigned int awu_min = 0, awu_max = 0;
5672 
5673 		if (ext4_inode_can_atomic_write(inode)) {
5674 			awu_min = sbi->s_awu_min;
5675 			awu_max = sbi->s_awu_max;
5676 		}
5677 
5678 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5679 	}
5680 
5681 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5682 	if (flags & EXT4_APPEND_FL)
5683 		stat->attributes |= STATX_ATTR_APPEND;
5684 	if (flags & EXT4_COMPR_FL)
5685 		stat->attributes |= STATX_ATTR_COMPRESSED;
5686 	if (flags & EXT4_ENCRYPT_FL)
5687 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5688 	if (flags & EXT4_IMMUTABLE_FL)
5689 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5690 	if (flags & EXT4_NODUMP_FL)
5691 		stat->attributes |= STATX_ATTR_NODUMP;
5692 	if (flags & EXT4_VERITY_FL)
5693 		stat->attributes |= STATX_ATTR_VERITY;
5694 
5695 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5696 				  STATX_ATTR_COMPRESSED |
5697 				  STATX_ATTR_ENCRYPTED |
5698 				  STATX_ATTR_IMMUTABLE |
5699 				  STATX_ATTR_NODUMP |
5700 				  STATX_ATTR_VERITY);
5701 
5702 	generic_fillattr(idmap, request_mask, inode, stat);
5703 	return 0;
5704 }
5705 
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5706 int ext4_file_getattr(struct mnt_idmap *idmap,
5707 		      const struct path *path, struct kstat *stat,
5708 		      u32 request_mask, unsigned int query_flags)
5709 {
5710 	struct inode *inode = d_inode(path->dentry);
5711 	u64 delalloc_blocks;
5712 
5713 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5714 
5715 	/*
5716 	 * If there is inline data in the inode, the inode will normally not
5717 	 * have data blocks allocated (it may have an external xattr block).
5718 	 * Report at least one sector for such files, so tools like tar, rsync,
5719 	 * others don't incorrectly think the file is completely sparse.
5720 	 */
5721 	if (unlikely(ext4_has_inline_data(inode)))
5722 		stat->blocks += (stat->size + 511) >> 9;
5723 
5724 	/*
5725 	 * We can't update i_blocks if the block allocation is delayed
5726 	 * otherwise in the case of system crash before the real block
5727 	 * allocation is done, we will have i_blocks inconsistent with
5728 	 * on-disk file blocks.
5729 	 * We always keep i_blocks updated together with real
5730 	 * allocation. But to not confuse with user, stat
5731 	 * will return the blocks that include the delayed allocation
5732 	 * blocks for this file.
5733 	 */
5734 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5735 				   EXT4_I(inode)->i_reserved_data_blocks);
5736 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5737 	return 0;
5738 }
5739 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5740 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5741 				   int pextents)
5742 {
5743 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5744 		return ext4_ind_trans_blocks(inode, lblocks);
5745 	return ext4_ext_index_trans_blocks(inode, pextents);
5746 }
5747 
5748 /*
5749  * Account for index blocks, block groups bitmaps and block group
5750  * descriptor blocks if modify datablocks and index blocks
5751  * worse case, the indexs blocks spread over different block groups
5752  *
5753  * If datablocks are discontiguous, they are possible to spread over
5754  * different block groups too. If they are contiguous, with flexbg,
5755  * they could still across block group boundary.
5756  *
5757  * Also account for superblock, inode, quota and xattr blocks
5758  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5759 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5760 				  int pextents)
5761 {
5762 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5763 	int gdpblocks;
5764 	int idxblocks;
5765 	int ret;
5766 
5767 	/*
5768 	 * How many index blocks need to touch to map @lblocks logical blocks
5769 	 * to @pextents physical extents?
5770 	 */
5771 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5772 
5773 	ret = idxblocks;
5774 
5775 	/*
5776 	 * Now let's see how many group bitmaps and group descriptors need
5777 	 * to account
5778 	 */
5779 	groups = idxblocks + pextents;
5780 	gdpblocks = groups;
5781 	if (groups > ngroups)
5782 		groups = ngroups;
5783 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5784 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5785 
5786 	/* bitmaps and block group descriptor blocks */
5787 	ret += groups + gdpblocks;
5788 
5789 	/* Blocks for super block, inode, quota and xattr blocks */
5790 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5791 
5792 	return ret;
5793 }
5794 
5795 /*
5796  * Calculate the total number of credits to reserve to fit
5797  * the modification of a single pages into a single transaction,
5798  * which may include multiple chunks of block allocations.
5799  *
5800  * This could be called via ext4_write_begin()
5801  *
5802  * We need to consider the worse case, when
5803  * one new block per extent.
5804  */
ext4_writepage_trans_blocks(struct inode * inode)5805 int ext4_writepage_trans_blocks(struct inode *inode)
5806 {
5807 	int bpp = ext4_journal_blocks_per_page(inode);
5808 	int ret;
5809 
5810 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5811 
5812 	/* Account for data blocks for journalled mode */
5813 	if (ext4_should_journal_data(inode))
5814 		ret += bpp;
5815 	return ret;
5816 }
5817 
5818 /*
5819  * Calculate the journal credits for a chunk of data modification.
5820  *
5821  * This is called from DIO, fallocate or whoever calling
5822  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5823  *
5824  * journal buffers for data blocks are not included here, as DIO
5825  * and fallocate do no need to journal data buffers.
5826  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5827 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5828 {
5829 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5830 }
5831 
5832 /*
5833  * The caller must have previously called ext4_reserve_inode_write().
5834  * Give this, we know that the caller already has write access to iloc->bh.
5835  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5836 int ext4_mark_iloc_dirty(handle_t *handle,
5837 			 struct inode *inode, struct ext4_iloc *iloc)
5838 {
5839 	int err = 0;
5840 
5841 	err = ext4_emergency_state(inode->i_sb);
5842 	if (unlikely(err)) {
5843 		put_bh(iloc->bh);
5844 		return err;
5845 	}
5846 	ext4_fc_track_inode(handle, inode);
5847 
5848 	/* the do_update_inode consumes one bh->b_count */
5849 	get_bh(iloc->bh);
5850 
5851 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5852 	err = ext4_do_update_inode(handle, inode, iloc);
5853 	put_bh(iloc->bh);
5854 	return err;
5855 }
5856 
5857 /*
5858  * On success, We end up with an outstanding reference count against
5859  * iloc->bh.  This _must_ be cleaned up later.
5860  */
5861 
5862 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5863 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5864 			 struct ext4_iloc *iloc)
5865 {
5866 	int err;
5867 
5868 	err = ext4_emergency_state(inode->i_sb);
5869 	if (unlikely(err))
5870 		return err;
5871 
5872 	err = ext4_get_inode_loc(inode, iloc);
5873 	if (!err) {
5874 		BUFFER_TRACE(iloc->bh, "get_write_access");
5875 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5876 						    iloc->bh, EXT4_JTR_NONE);
5877 		if (err) {
5878 			brelse(iloc->bh);
5879 			iloc->bh = NULL;
5880 		}
5881 	}
5882 	ext4_std_error(inode->i_sb, err);
5883 	return err;
5884 }
5885 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5886 static int __ext4_expand_extra_isize(struct inode *inode,
5887 				     unsigned int new_extra_isize,
5888 				     struct ext4_iloc *iloc,
5889 				     handle_t *handle, int *no_expand)
5890 {
5891 	struct ext4_inode *raw_inode;
5892 	struct ext4_xattr_ibody_header *header;
5893 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5894 	struct ext4_inode_info *ei = EXT4_I(inode);
5895 	int error;
5896 
5897 	/* this was checked at iget time, but double check for good measure */
5898 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5899 	    (ei->i_extra_isize & 3)) {
5900 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5901 				 ei->i_extra_isize,
5902 				 EXT4_INODE_SIZE(inode->i_sb));
5903 		return -EFSCORRUPTED;
5904 	}
5905 	if ((new_extra_isize < ei->i_extra_isize) ||
5906 	    (new_extra_isize < 4) ||
5907 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5908 		return -EINVAL;	/* Should never happen */
5909 
5910 	raw_inode = ext4_raw_inode(iloc);
5911 
5912 	header = IHDR(inode, raw_inode);
5913 
5914 	/* No extended attributes present */
5915 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5916 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5917 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5918 		       EXT4_I(inode)->i_extra_isize, 0,
5919 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5920 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5921 		return 0;
5922 	}
5923 
5924 	/*
5925 	 * We may need to allocate external xattr block so we need quotas
5926 	 * initialized. Here we can be called with various locks held so we
5927 	 * cannot affort to initialize quotas ourselves. So just bail.
5928 	 */
5929 	if (dquot_initialize_needed(inode))
5930 		return -EAGAIN;
5931 
5932 	/* try to expand with EAs present */
5933 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5934 					   raw_inode, handle);
5935 	if (error) {
5936 		/*
5937 		 * Inode size expansion failed; don't try again
5938 		 */
5939 		*no_expand = 1;
5940 	}
5941 
5942 	return error;
5943 }
5944 
5945 /*
5946  * Expand an inode by new_extra_isize bytes.
5947  * Returns 0 on success or negative error number on failure.
5948  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5949 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5950 					  unsigned int new_extra_isize,
5951 					  struct ext4_iloc iloc,
5952 					  handle_t *handle)
5953 {
5954 	int no_expand;
5955 	int error;
5956 
5957 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5958 		return -EOVERFLOW;
5959 
5960 	/*
5961 	 * In nojournal mode, we can immediately attempt to expand
5962 	 * the inode.  When journaled, we first need to obtain extra
5963 	 * buffer credits since we may write into the EA block
5964 	 * with this same handle. If journal_extend fails, then it will
5965 	 * only result in a minor loss of functionality for that inode.
5966 	 * If this is felt to be critical, then e2fsck should be run to
5967 	 * force a large enough s_min_extra_isize.
5968 	 */
5969 	if (ext4_journal_extend(handle,
5970 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5971 		return -ENOSPC;
5972 
5973 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5974 		return -EBUSY;
5975 
5976 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5977 					  handle, &no_expand);
5978 	ext4_write_unlock_xattr(inode, &no_expand);
5979 
5980 	return error;
5981 }
5982 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5983 int ext4_expand_extra_isize(struct inode *inode,
5984 			    unsigned int new_extra_isize,
5985 			    struct ext4_iloc *iloc)
5986 {
5987 	handle_t *handle;
5988 	int no_expand;
5989 	int error, rc;
5990 
5991 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5992 		brelse(iloc->bh);
5993 		return -EOVERFLOW;
5994 	}
5995 
5996 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5997 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5998 	if (IS_ERR(handle)) {
5999 		error = PTR_ERR(handle);
6000 		brelse(iloc->bh);
6001 		return error;
6002 	}
6003 
6004 	ext4_write_lock_xattr(inode, &no_expand);
6005 
6006 	BUFFER_TRACE(iloc->bh, "get_write_access");
6007 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6008 					      EXT4_JTR_NONE);
6009 	if (error) {
6010 		brelse(iloc->bh);
6011 		goto out_unlock;
6012 	}
6013 
6014 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6015 					  handle, &no_expand);
6016 
6017 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6018 	if (!error)
6019 		error = rc;
6020 
6021 out_unlock:
6022 	ext4_write_unlock_xattr(inode, &no_expand);
6023 	ext4_journal_stop(handle);
6024 	return error;
6025 }
6026 
6027 /*
6028  * What we do here is to mark the in-core inode as clean with respect to inode
6029  * dirtiness (it may still be data-dirty).
6030  * This means that the in-core inode may be reaped by prune_icache
6031  * without having to perform any I/O.  This is a very good thing,
6032  * because *any* task may call prune_icache - even ones which
6033  * have a transaction open against a different journal.
6034  *
6035  * Is this cheating?  Not really.  Sure, we haven't written the
6036  * inode out, but prune_icache isn't a user-visible syncing function.
6037  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6038  * we start and wait on commits.
6039  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6040 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6041 				const char *func, unsigned int line)
6042 {
6043 	struct ext4_iloc iloc;
6044 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6045 	int err;
6046 
6047 	might_sleep();
6048 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6049 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6050 	if (err)
6051 		goto out;
6052 
6053 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6054 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6055 					       iloc, handle);
6056 
6057 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6058 out:
6059 	if (unlikely(err))
6060 		ext4_error_inode_err(inode, func, line, 0, err,
6061 					"mark_inode_dirty error");
6062 	return err;
6063 }
6064 
6065 /*
6066  * ext4_dirty_inode() is called from __mark_inode_dirty()
6067  *
6068  * We're really interested in the case where a file is being extended.
6069  * i_size has been changed by generic_commit_write() and we thus need
6070  * to include the updated inode in the current transaction.
6071  *
6072  * Also, dquot_alloc_block() will always dirty the inode when blocks
6073  * are allocated to the file.
6074  *
6075  * If the inode is marked synchronous, we don't honour that here - doing
6076  * so would cause a commit on atime updates, which we don't bother doing.
6077  * We handle synchronous inodes at the highest possible level.
6078  */
ext4_dirty_inode(struct inode * inode,int flags)6079 void ext4_dirty_inode(struct inode *inode, int flags)
6080 {
6081 	handle_t *handle;
6082 
6083 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6084 	if (IS_ERR(handle))
6085 		return;
6086 	ext4_mark_inode_dirty(handle, inode);
6087 	ext4_journal_stop(handle);
6088 }
6089 
ext4_change_inode_journal_flag(struct inode * inode,int val)6090 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6091 {
6092 	journal_t *journal;
6093 	handle_t *handle;
6094 	int err;
6095 	int alloc_ctx;
6096 
6097 	/*
6098 	 * We have to be very careful here: changing a data block's
6099 	 * journaling status dynamically is dangerous.  If we write a
6100 	 * data block to the journal, change the status and then delete
6101 	 * that block, we risk forgetting to revoke the old log record
6102 	 * from the journal and so a subsequent replay can corrupt data.
6103 	 * So, first we make sure that the journal is empty and that
6104 	 * nobody is changing anything.
6105 	 */
6106 
6107 	journal = EXT4_JOURNAL(inode);
6108 	if (!journal)
6109 		return 0;
6110 	if (is_journal_aborted(journal))
6111 		return -EROFS;
6112 
6113 	/* Wait for all existing dio workers */
6114 	inode_dio_wait(inode);
6115 
6116 	/*
6117 	 * Before flushing the journal and switching inode's aops, we have
6118 	 * to flush all dirty data the inode has. There can be outstanding
6119 	 * delayed allocations, there can be unwritten extents created by
6120 	 * fallocate or buffered writes in dioread_nolock mode covered by
6121 	 * dirty data which can be converted only after flushing the dirty
6122 	 * data (and journalled aops don't know how to handle these cases).
6123 	 */
6124 	if (val) {
6125 		filemap_invalidate_lock(inode->i_mapping);
6126 		err = filemap_write_and_wait(inode->i_mapping);
6127 		if (err < 0) {
6128 			filemap_invalidate_unlock(inode->i_mapping);
6129 			return err;
6130 		}
6131 	}
6132 
6133 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6134 	jbd2_journal_lock_updates(journal);
6135 
6136 	/*
6137 	 * OK, there are no updates running now, and all cached data is
6138 	 * synced to disk.  We are now in a completely consistent state
6139 	 * which doesn't have anything in the journal, and we know that
6140 	 * no filesystem updates are running, so it is safe to modify
6141 	 * the inode's in-core data-journaling state flag now.
6142 	 */
6143 
6144 	if (val)
6145 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6146 	else {
6147 		err = jbd2_journal_flush(journal, 0);
6148 		if (err < 0) {
6149 			jbd2_journal_unlock_updates(journal);
6150 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6151 			return err;
6152 		}
6153 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6154 	}
6155 	ext4_set_aops(inode);
6156 
6157 	jbd2_journal_unlock_updates(journal);
6158 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6159 
6160 	if (val)
6161 		filemap_invalidate_unlock(inode->i_mapping);
6162 
6163 	/* Finally we can mark the inode as dirty. */
6164 
6165 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6166 	if (IS_ERR(handle))
6167 		return PTR_ERR(handle);
6168 
6169 	ext4_fc_mark_ineligible(inode->i_sb,
6170 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6171 	err = ext4_mark_inode_dirty(handle, inode);
6172 	ext4_handle_sync(handle);
6173 	ext4_journal_stop(handle);
6174 	ext4_std_error(inode->i_sb, err);
6175 
6176 	return err;
6177 }
6178 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6179 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6180 			    struct buffer_head *bh)
6181 {
6182 	return !buffer_mapped(bh);
6183 }
6184 
ext4_page_mkwrite(struct vm_fault * vmf)6185 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6186 {
6187 	struct vm_area_struct *vma = vmf->vma;
6188 	struct folio *folio = page_folio(vmf->page);
6189 	loff_t size;
6190 	unsigned long len;
6191 	int err;
6192 	vm_fault_t ret;
6193 	struct file *file = vma->vm_file;
6194 	struct inode *inode = file_inode(file);
6195 	struct address_space *mapping = inode->i_mapping;
6196 	handle_t *handle;
6197 	get_block_t *get_block;
6198 	int retries = 0;
6199 
6200 	if (unlikely(IS_IMMUTABLE(inode)))
6201 		return VM_FAULT_SIGBUS;
6202 
6203 	sb_start_pagefault(inode->i_sb);
6204 	file_update_time(vma->vm_file);
6205 
6206 	filemap_invalidate_lock_shared(mapping);
6207 
6208 	err = ext4_convert_inline_data(inode);
6209 	if (err)
6210 		goto out_ret;
6211 
6212 	/*
6213 	 * On data journalling we skip straight to the transaction handle:
6214 	 * there's no delalloc; page truncated will be checked later; the
6215 	 * early return w/ all buffers mapped (calculates size/len) can't
6216 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6217 	 */
6218 	if (ext4_should_journal_data(inode))
6219 		goto retry_alloc;
6220 
6221 	/* Delalloc case is easy... */
6222 	if (test_opt(inode->i_sb, DELALLOC) &&
6223 	    !ext4_nonda_switch(inode->i_sb)) {
6224 		do {
6225 			err = block_page_mkwrite(vma, vmf,
6226 						   ext4_da_get_block_prep);
6227 		} while (err == -ENOSPC &&
6228 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6229 		goto out_ret;
6230 	}
6231 
6232 	folio_lock(folio);
6233 	size = i_size_read(inode);
6234 	/* Page got truncated from under us? */
6235 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6236 		folio_unlock(folio);
6237 		ret = VM_FAULT_NOPAGE;
6238 		goto out;
6239 	}
6240 
6241 	len = folio_size(folio);
6242 	if (folio_pos(folio) + len > size)
6243 		len = size - folio_pos(folio);
6244 	/*
6245 	 * Return if we have all the buffers mapped. This avoids the need to do
6246 	 * journal_start/journal_stop which can block and take a long time
6247 	 *
6248 	 * This cannot be done for data journalling, as we have to add the
6249 	 * inode to the transaction's list to writeprotect pages on commit.
6250 	 */
6251 	if (folio_buffers(folio)) {
6252 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6253 					    0, len, NULL,
6254 					    ext4_bh_unmapped)) {
6255 			/* Wait so that we don't change page under IO */
6256 			folio_wait_stable(folio);
6257 			ret = VM_FAULT_LOCKED;
6258 			goto out;
6259 		}
6260 	}
6261 	folio_unlock(folio);
6262 	/* OK, we need to fill the hole... */
6263 	if (ext4_should_dioread_nolock(inode))
6264 		get_block = ext4_get_block_unwritten;
6265 	else
6266 		get_block = ext4_get_block;
6267 retry_alloc:
6268 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6269 				    ext4_writepage_trans_blocks(inode));
6270 	if (IS_ERR(handle)) {
6271 		ret = VM_FAULT_SIGBUS;
6272 		goto out;
6273 	}
6274 	/*
6275 	 * Data journalling can't use block_page_mkwrite() because it
6276 	 * will set_buffer_dirty() before do_journal_get_write_access()
6277 	 * thus might hit warning messages for dirty metadata buffers.
6278 	 */
6279 	if (!ext4_should_journal_data(inode)) {
6280 		err = block_page_mkwrite(vma, vmf, get_block);
6281 	} else {
6282 		folio_lock(folio);
6283 		size = i_size_read(inode);
6284 		/* Page got truncated from under us? */
6285 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6286 			ret = VM_FAULT_NOPAGE;
6287 			goto out_error;
6288 		}
6289 
6290 		len = folio_size(folio);
6291 		if (folio_pos(folio) + len > size)
6292 			len = size - folio_pos(folio);
6293 
6294 		err = ext4_block_write_begin(handle, folio, 0, len,
6295 					     ext4_get_block);
6296 		if (!err) {
6297 			ret = VM_FAULT_SIGBUS;
6298 			if (ext4_journal_folio_buffers(handle, folio, len))
6299 				goto out_error;
6300 		} else {
6301 			folio_unlock(folio);
6302 		}
6303 	}
6304 	ext4_journal_stop(handle);
6305 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6306 		goto retry_alloc;
6307 out_ret:
6308 	ret = vmf_fs_error(err);
6309 out:
6310 	filemap_invalidate_unlock_shared(mapping);
6311 	sb_end_pagefault(inode->i_sb);
6312 	return ret;
6313 out_error:
6314 	folio_unlock(folio);
6315 	ext4_journal_stop(handle);
6316 	goto out;
6317 }
6318