xref: /linux/fs/ext4/super.c (revision 074e461d9ed5bbd393a76ae42caa2a5a55add23b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 					    unsigned int journal_inum);
86 static int ext4_validate_options(struct fs_context *fc);
87 static int ext4_check_opt_consistency(struct fs_context *fc,
88 				      struct super_block *sb);
89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91 static int ext4_get_tree(struct fs_context *fc);
92 static int ext4_reconfigure(struct fs_context *fc);
93 static void ext4_fc_free(struct fs_context *fc);
94 static int ext4_init_fs_context(struct fs_context *fc);
95 static void ext4_kill_sb(struct super_block *sb);
96 static const struct fs_parameter_spec ext4_param_specs[];
97 
98 /*
99  * Lock ordering
100  *
101  * page fault path:
102  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103  *   -> page lock -> i_data_sem (rw)
104  *
105  * buffered write path:
106  * sb_start_write -> i_mutex -> mmap_lock
107  * sb_start_write -> i_mutex -> transaction start -> page lock ->
108  *   i_data_sem (rw)
109  *
110  * truncate:
111  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112  *   page lock
113  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114  *   i_data_sem (rw)
115  *
116  * direct IO:
117  * sb_start_write -> i_mutex -> mmap_lock
118  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119  *
120  * writepages:
121  * transaction start -> page lock(s) -> i_data_sem (rw)
122  */
123 
124 static const struct fs_context_operations ext4_context_ops = {
125 	.parse_param	= ext4_parse_param,
126 	.get_tree	= ext4_get_tree,
127 	.reconfigure	= ext4_reconfigure,
128 	.free		= ext4_fc_free,
129 };
130 
131 
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 	.owner			= THIS_MODULE,
135 	.name			= "ext2",
136 	.init_fs_context	= ext4_init_fs_context,
137 	.parameters		= ext4_param_specs,
138 	.kill_sb		= ext4_kill_sb,
139 	.fs_flags		= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147 
148 
149 static struct file_system_type ext3_fs_type = {
150 	.owner			= THIS_MODULE,
151 	.name			= "ext3",
152 	.init_fs_context	= ext4_init_fs_context,
153 	.parameters		= ext4_param_specs,
154 	.kill_sb		= ext4_kill_sb,
155 	.fs_flags		= FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160 
161 
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 				  bh_end_io_t *end_io, bool simu_fail)
164 {
165 	if (simu_fail) {
166 		clear_buffer_uptodate(bh);
167 		unlock_buffer(bh);
168 		return;
169 	}
170 
171 	/*
172 	 * buffer's verified bit is no longer valid after reading from
173 	 * disk again due to write out error, clear it to make sure we
174 	 * recheck the buffer contents.
175 	 */
176 	clear_buffer_verified(bh);
177 
178 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 	get_bh(bh);
180 	submit_bh(REQ_OP_READ | op_flags, bh);
181 }
182 
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 			 bh_end_io_t *end_io, bool simu_fail)
185 {
186 	BUG_ON(!buffer_locked(bh));
187 
188 	if (ext4_buffer_uptodate(bh)) {
189 		unlock_buffer(bh);
190 		return;
191 	}
192 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
193 }
194 
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 		 bh_end_io_t *end_io, bool simu_fail)
197 {
198 	BUG_ON(!buffer_locked(bh));
199 
200 	if (ext4_buffer_uptodate(bh)) {
201 		unlock_buffer(bh);
202 		return 0;
203 	}
204 
205 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
206 
207 	wait_on_buffer(bh);
208 	if (buffer_uptodate(bh))
209 		return 0;
210 	return -EIO;
211 }
212 
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214 {
215 	lock_buffer(bh);
216 	if (!wait) {
217 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 		return 0;
219 	}
220 	return ext4_read_bh(bh, op_flags, NULL, false);
221 }
222 
223 /*
224  * This works like __bread_gfp() except it uses ERR_PTR for error
225  * returns.  Currently with sb_bread it's impossible to distinguish
226  * between ENOMEM and EIO situations (since both result in a NULL
227  * return.
228  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 					       sector_t block,
231 					       blk_opf_t op_flags, gfp_t gfp)
232 {
233 	struct buffer_head *bh;
234 	int ret;
235 
236 	bh = sb_getblk_gfp(sb, block, gfp);
237 	if (bh == NULL)
238 		return ERR_PTR(-ENOMEM);
239 	if (ext4_buffer_uptodate(bh))
240 		return bh;
241 
242 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 	if (ret) {
244 		put_bh(bh);
245 		return ERR_PTR(ret);
246 	}
247 	return bh;
248 }
249 
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 				   blk_opf_t op_flags)
252 {
253 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 			~__GFP_FS) | __GFP_MOVABLE;
255 
256 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257 }
258 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 					    sector_t block)
261 {
262 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 			~__GFP_FS);
264 
265 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266 }
267 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)268 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
269 {
270 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
271 			sb->s_blocksize, GFP_NOWAIT);
272 
273 	if (likely(bh)) {
274 		if (trylock_buffer(bh))
275 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
276 		brelse(bh);
277 	}
278 }
279 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)280 static int ext4_verify_csum_type(struct super_block *sb,
281 				 struct ext4_super_block *es)
282 {
283 	if (!ext4_has_feature_metadata_csum(sb))
284 		return 1;
285 
286 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
287 }
288 
ext4_superblock_csum(struct ext4_super_block * es)289 __le32 ext4_superblock_csum(struct ext4_super_block *es)
290 {
291 	int offset = offsetof(struct ext4_super_block, s_checksum);
292 	__u32 csum;
293 
294 	csum = ext4_chksum(~0, (char *)es, offset);
295 
296 	return cpu_to_le32(csum);
297 }
298 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)299 static int ext4_superblock_csum_verify(struct super_block *sb,
300 				       struct ext4_super_block *es)
301 {
302 	if (!ext4_has_feature_metadata_csum(sb))
303 		return 1;
304 
305 	return es->s_checksum == ext4_superblock_csum(es);
306 }
307 
ext4_superblock_csum_set(struct super_block * sb)308 void ext4_superblock_csum_set(struct super_block *sb)
309 {
310 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
311 
312 	if (!ext4_has_feature_metadata_csum(sb))
313 		return;
314 
315 	es->s_checksum = ext4_superblock_csum(es);
316 }
317 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)318 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
319 			       struct ext4_group_desc *bg)
320 {
321 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
322 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
323 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
324 }
325 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)326 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
327 			       struct ext4_group_desc *bg)
328 {
329 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
330 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
331 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
332 }
333 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)334 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
335 			      struct ext4_group_desc *bg)
336 {
337 	return le32_to_cpu(bg->bg_inode_table_lo) |
338 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
339 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
340 }
341 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)342 __u32 ext4_free_group_clusters(struct super_block *sb,
343 			       struct ext4_group_desc *bg)
344 {
345 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
346 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
347 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
348 }
349 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)350 __u32 ext4_free_inodes_count(struct super_block *sb,
351 			      struct ext4_group_desc *bg)
352 {
353 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
354 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
355 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
356 }
357 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)358 __u32 ext4_used_dirs_count(struct super_block *sb,
359 			      struct ext4_group_desc *bg)
360 {
361 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
362 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
363 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
364 }
365 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)366 __u32 ext4_itable_unused_count(struct super_block *sb,
367 			      struct ext4_group_desc *bg)
368 {
369 	return le16_to_cpu(bg->bg_itable_unused_lo) |
370 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
371 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
372 }
373 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)374 void ext4_block_bitmap_set(struct super_block *sb,
375 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
376 {
377 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
378 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
379 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
380 }
381 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)382 void ext4_inode_bitmap_set(struct super_block *sb,
383 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
384 {
385 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
386 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
387 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
388 }
389 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)390 void ext4_inode_table_set(struct super_block *sb,
391 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
392 {
393 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
394 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
395 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
396 }
397 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)398 void ext4_free_group_clusters_set(struct super_block *sb,
399 				  struct ext4_group_desc *bg, __u32 count)
400 {
401 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
402 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
403 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
404 }
405 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)406 void ext4_free_inodes_set(struct super_block *sb,
407 			  struct ext4_group_desc *bg, __u32 count)
408 {
409 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
410 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
411 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
412 }
413 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)414 void ext4_used_dirs_set(struct super_block *sb,
415 			  struct ext4_group_desc *bg, __u32 count)
416 {
417 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
418 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
419 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
420 }
421 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)422 void ext4_itable_unused_set(struct super_block *sb,
423 			  struct ext4_group_desc *bg, __u32 count)
424 {
425 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
426 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
427 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
428 }
429 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)430 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
431 {
432 	now = clamp_val(now, 0, (1ull << 40) - 1);
433 
434 	*lo = cpu_to_le32(lower_32_bits(now));
435 	*hi = upper_32_bits(now);
436 }
437 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)438 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
439 {
440 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
441 }
442 #define ext4_update_tstamp(es, tstamp) \
443 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
444 			     ktime_get_real_seconds())
445 #define ext4_get_tstamp(es, tstamp) \
446 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
447 
448 /*
449  * The ext4_maybe_update_superblock() function checks and updates the
450  * superblock if needed.
451  *
452  * This function is designed to update the on-disk superblock only under
453  * certain conditions to prevent excessive disk writes and unnecessary
454  * waking of the disk from sleep. The superblock will be updated if:
455  * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
456  *    superblock update
457  * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
458  *    last superblock update.
459  *
460  * @sb: The superblock
461  */
ext4_maybe_update_superblock(struct super_block * sb)462 static void ext4_maybe_update_superblock(struct super_block *sb)
463 {
464 	struct ext4_sb_info *sbi = EXT4_SB(sb);
465 	struct ext4_super_block *es = sbi->s_es;
466 	journal_t *journal = sbi->s_journal;
467 	time64_t now;
468 	__u64 last_update;
469 	__u64 lifetime_write_kbytes;
470 	__u64 diff_size;
471 
472 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
473 	    !(sb->s_flags & SB_ACTIVE) || !journal ||
474 	    journal->j_flags & JBD2_UNMOUNT)
475 		return;
476 
477 	now = ktime_get_real_seconds();
478 	last_update = ext4_get_tstamp(es, s_wtime);
479 
480 	if (likely(now - last_update < sbi->s_sb_update_sec))
481 		return;
482 
483 	lifetime_write_kbytes = sbi->s_kbytes_written +
484 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
485 		  sbi->s_sectors_written_start) >> 1);
486 
487 	/* Get the number of kilobytes not written to disk to account
488 	 * for statistics and compare with a multiple of 16 MB. This
489 	 * is used to determine when the next superblock commit should
490 	 * occur (i.e. not more often than once per 16MB if there was
491 	 * less written in an hour).
492 	 */
493 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
494 
495 	if (diff_size > sbi->s_sb_update_kb)
496 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
497 }
498 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)499 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
500 {
501 	struct super_block		*sb = journal->j_private;
502 
503 	BUG_ON(txn->t_state == T_FINISHED);
504 
505 	ext4_process_freed_data(sb, txn->t_tid);
506 	ext4_maybe_update_superblock(sb);
507 }
508 
ext4_journalled_writepage_needs_redirty(struct jbd2_inode * jinode,struct folio * folio)509 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode,
510 		struct folio *folio)
511 {
512 	struct buffer_head *bh, *head;
513 	struct journal_head *jh;
514 
515 	bh = head = folio_buffers(folio);
516 	do {
517 		/*
518 		 * We have to redirty a page in these cases:
519 		 * 1) If buffer is dirty, it means the page was dirty because it
520 		 * contains a buffer that needs checkpointing. So the dirty bit
521 		 * needs to be preserved so that checkpointing writes the buffer
522 		 * properly.
523 		 * 2) If buffer is not part of the committing transaction
524 		 * (we may have just accidentally come across this buffer because
525 		 * inode range tracking is not exact) or if the currently running
526 		 * transaction already contains this buffer as well, dirty bit
527 		 * needs to be preserved so that the buffer gets writeprotected
528 		 * properly on running transaction's commit.
529 		 */
530 		jh = bh2jh(bh);
531 		if (buffer_dirty(bh) ||
532 		    (jh && (jh->b_transaction != jinode->i_transaction ||
533 			    jh->b_next_transaction)))
534 			return true;
535 	} while ((bh = bh->b_this_page) != head);
536 
537 	return false;
538 }
539 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)540 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
541 {
542 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
543 	struct writeback_control wbc = {
544 		.sync_mode =  WB_SYNC_ALL,
545 		.nr_to_write = LONG_MAX,
546 		.range_start = jinode->i_dirty_start,
547 		.range_end = jinode->i_dirty_end,
548         };
549 	struct folio *folio = NULL;
550 	int error;
551 
552 	/*
553 	 * writeback_iter() already checks for dirty pages and calls
554 	 * folio_clear_dirty_for_io(), which we want to write protect the
555 	 * folios.
556 	 *
557 	 * However, we may have to redirty a folio sometimes.
558 	 */
559 	while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
560 		if (ext4_journalled_writepage_needs_redirty(jinode, folio))
561 			folio_redirty_for_writepage(&wbc, folio);
562 		folio_unlock(folio);
563 	}
564 
565 	return error;
566 }
567 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)568 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
569 {
570 	int ret;
571 
572 	if (ext4_should_journal_data(jinode->i_vfs_inode))
573 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
574 	else
575 		ret = ext4_normal_submit_inode_data_buffers(jinode);
576 	return ret;
577 }
578 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)579 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
580 {
581 	int ret = 0;
582 
583 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
584 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
585 
586 	return ret;
587 }
588 
system_going_down(void)589 static bool system_going_down(void)
590 {
591 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
592 		|| system_state == SYSTEM_RESTART;
593 }
594 
595 struct ext4_err_translation {
596 	int code;
597 	int errno;
598 };
599 
600 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
601 
602 static struct ext4_err_translation err_translation[] = {
603 	EXT4_ERR_TRANSLATE(EIO),
604 	EXT4_ERR_TRANSLATE(ENOMEM),
605 	EXT4_ERR_TRANSLATE(EFSBADCRC),
606 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
607 	EXT4_ERR_TRANSLATE(ENOSPC),
608 	EXT4_ERR_TRANSLATE(ENOKEY),
609 	EXT4_ERR_TRANSLATE(EROFS),
610 	EXT4_ERR_TRANSLATE(EFBIG),
611 	EXT4_ERR_TRANSLATE(EEXIST),
612 	EXT4_ERR_TRANSLATE(ERANGE),
613 	EXT4_ERR_TRANSLATE(EOVERFLOW),
614 	EXT4_ERR_TRANSLATE(EBUSY),
615 	EXT4_ERR_TRANSLATE(ENOTDIR),
616 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
617 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
618 	EXT4_ERR_TRANSLATE(EFAULT),
619 };
620 
ext4_errno_to_code(int errno)621 static int ext4_errno_to_code(int errno)
622 {
623 	int i;
624 
625 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
626 		if (err_translation[i].errno == errno)
627 			return err_translation[i].code;
628 	return EXT4_ERR_UNKNOWN;
629 }
630 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)631 static void save_error_info(struct super_block *sb, int error,
632 			    __u32 ino, __u64 block,
633 			    const char *func, unsigned int line)
634 {
635 	struct ext4_sb_info *sbi = EXT4_SB(sb);
636 
637 	/* We default to EFSCORRUPTED error... */
638 	if (error == 0)
639 		error = EFSCORRUPTED;
640 
641 	spin_lock(&sbi->s_error_lock);
642 	sbi->s_add_error_count++;
643 	sbi->s_last_error_code = error;
644 	sbi->s_last_error_line = line;
645 	sbi->s_last_error_ino = ino;
646 	sbi->s_last_error_block = block;
647 	sbi->s_last_error_func = func;
648 	sbi->s_last_error_time = ktime_get_real_seconds();
649 	if (!sbi->s_first_error_time) {
650 		sbi->s_first_error_code = error;
651 		sbi->s_first_error_line = line;
652 		sbi->s_first_error_ino = ino;
653 		sbi->s_first_error_block = block;
654 		sbi->s_first_error_func = func;
655 		sbi->s_first_error_time = sbi->s_last_error_time;
656 	}
657 	spin_unlock(&sbi->s_error_lock);
658 }
659 
660 /* Deal with the reporting of failure conditions on a filesystem such as
661  * inconsistencies detected or read IO failures.
662  *
663  * On ext2, we can store the error state of the filesystem in the
664  * superblock.  That is not possible on ext4, because we may have other
665  * write ordering constraints on the superblock which prevent us from
666  * writing it out straight away; and given that the journal is about to
667  * be aborted, we can't rely on the current, or future, transactions to
668  * write out the superblock safely.
669  *
670  * We'll just use the jbd2_journal_abort() error code to record an error in
671  * the journal instead.  On recovery, the journal will complain about
672  * that error until we've noted it down and cleared it.
673  *
674  * If force_ro is set, we unconditionally force the filesystem into an
675  * ABORT|READONLY state, unless the error response on the fs has been set to
676  * panic in which case we take the easy way out and panic immediately. This is
677  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
678  * at a critical moment in log management.
679  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)680 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
681 			      __u32 ino, __u64 block,
682 			      const char *func, unsigned int line)
683 {
684 	journal_t *journal = EXT4_SB(sb)->s_journal;
685 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
686 
687 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
688 	if (test_opt(sb, WARN_ON_ERROR))
689 		WARN_ON_ONCE(1);
690 
691 	if (!continue_fs && !ext4_emergency_ro(sb) && journal)
692 		jbd2_journal_abort(journal, -EIO);
693 
694 	if (!bdev_read_only(sb->s_bdev)) {
695 		save_error_info(sb, error, ino, block, func, line);
696 		/*
697 		 * In case the fs should keep running, we need to writeout
698 		 * superblock through the journal. Due to lock ordering
699 		 * constraints, it may not be safe to do it right here so we
700 		 * defer superblock flushing to a workqueue. We just need to be
701 		 * careful when the journal is already shutting down. If we get
702 		 * here in that case, just update the sb directly as the last
703 		 * transaction won't commit anyway.
704 		 */
705 		if (continue_fs && journal &&
706 		    !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
707 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
708 		else
709 			ext4_commit_super(sb);
710 	}
711 
712 	/*
713 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
714 	 * could panic during 'reboot -f' as the underlying device got already
715 	 * disabled.
716 	 */
717 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
718 		panic("EXT4-fs (device %s): panic forced after error\n",
719 			sb->s_id);
720 	}
721 
722 	if (ext4_emergency_ro(sb) || continue_fs)
723 		return;
724 
725 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
726 	/*
727 	 * We don't set SB_RDONLY because that requires sb->s_umount
728 	 * semaphore and setting it without proper remount procedure is
729 	 * confusing code such as freeze_super() leading to deadlocks
730 	 * and other problems.
731 	 */
732 	set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
733 }
734 
update_super_work(struct work_struct * work)735 static void update_super_work(struct work_struct *work)
736 {
737 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
738 						s_sb_upd_work);
739 	journal_t *journal = sbi->s_journal;
740 	handle_t *handle;
741 
742 	/*
743 	 * If the journal is still running, we have to write out superblock
744 	 * through the journal to avoid collisions of other journalled sb
745 	 * updates.
746 	 *
747 	 * We use directly jbd2 functions here to avoid recursing back into
748 	 * ext4 error handling code during handling of previous errors.
749 	 */
750 	if (!ext4_emergency_state(sbi->s_sb) &&
751 	    !sb_rdonly(sbi->s_sb) && journal) {
752 		struct buffer_head *sbh = sbi->s_sbh;
753 		bool call_notify_err = false;
754 
755 		handle = jbd2_journal_start(journal, 1);
756 		if (IS_ERR(handle))
757 			goto write_directly;
758 		if (jbd2_journal_get_write_access(handle, sbh)) {
759 			jbd2_journal_stop(handle);
760 			goto write_directly;
761 		}
762 
763 		if (sbi->s_add_error_count > 0)
764 			call_notify_err = true;
765 
766 		ext4_update_super(sbi->s_sb);
767 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
768 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
769 				 "superblock detected");
770 			clear_buffer_write_io_error(sbh);
771 			set_buffer_uptodate(sbh);
772 		}
773 
774 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
775 			jbd2_journal_stop(handle);
776 			goto write_directly;
777 		}
778 		jbd2_journal_stop(handle);
779 
780 		if (call_notify_err)
781 			ext4_notify_error_sysfs(sbi);
782 
783 		return;
784 	}
785 write_directly:
786 	/*
787 	 * Write through journal failed. Write sb directly to get error info
788 	 * out and hope for the best.
789 	 */
790 	ext4_commit_super(sbi->s_sb);
791 	ext4_notify_error_sysfs(sbi);
792 }
793 
794 #define ext4_error_ratelimit(sb)					\
795 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
796 			     "EXT4-fs error")
797 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)798 void __ext4_error(struct super_block *sb, const char *function,
799 		  unsigned int line, bool force_ro, int error, __u64 block,
800 		  const char *fmt, ...)
801 {
802 	struct va_format vaf;
803 	va_list args;
804 
805 	if (unlikely(ext4_emergency_state(sb)))
806 		return;
807 
808 	trace_ext4_error(sb, function, line);
809 	if (ext4_error_ratelimit(sb)) {
810 		va_start(args, fmt);
811 		vaf.fmt = fmt;
812 		vaf.va = &args;
813 		printk(KERN_CRIT
814 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
815 		       sb->s_id, function, line, current->comm, &vaf);
816 		va_end(args);
817 	}
818 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
819 
820 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
821 }
822 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)823 void __ext4_error_inode(struct inode *inode, const char *function,
824 			unsigned int line, ext4_fsblk_t block, int error,
825 			const char *fmt, ...)
826 {
827 	va_list args;
828 	struct va_format vaf;
829 
830 	if (unlikely(ext4_emergency_state(inode->i_sb)))
831 		return;
832 
833 	trace_ext4_error(inode->i_sb, function, line);
834 	if (ext4_error_ratelimit(inode->i_sb)) {
835 		va_start(args, fmt);
836 		vaf.fmt = fmt;
837 		vaf.va = &args;
838 		if (block)
839 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
840 			       "inode #%lu: block %llu: comm %s: %pV\n",
841 			       inode->i_sb->s_id, function, line, inode->i_ino,
842 			       block, current->comm, &vaf);
843 		else
844 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
845 			       "inode #%lu: comm %s: %pV\n",
846 			       inode->i_sb->s_id, function, line, inode->i_ino,
847 			       current->comm, &vaf);
848 		va_end(args);
849 	}
850 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
851 
852 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
853 			  function, line);
854 }
855 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)856 void __ext4_error_file(struct file *file, const char *function,
857 		       unsigned int line, ext4_fsblk_t block,
858 		       const char *fmt, ...)
859 {
860 	va_list args;
861 	struct va_format vaf;
862 	struct inode *inode = file_inode(file);
863 	char pathname[80], *path;
864 
865 	if (unlikely(ext4_emergency_state(inode->i_sb)))
866 		return;
867 
868 	trace_ext4_error(inode->i_sb, function, line);
869 	if (ext4_error_ratelimit(inode->i_sb)) {
870 		path = file_path(file, pathname, sizeof(pathname));
871 		if (IS_ERR(path))
872 			path = "(unknown)";
873 		va_start(args, fmt);
874 		vaf.fmt = fmt;
875 		vaf.va = &args;
876 		if (block)
877 			printk(KERN_CRIT
878 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
879 			       "block %llu: comm %s: path %s: %pV\n",
880 			       inode->i_sb->s_id, function, line, inode->i_ino,
881 			       block, current->comm, path, &vaf);
882 		else
883 			printk(KERN_CRIT
884 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
885 			       "comm %s: path %s: %pV\n",
886 			       inode->i_sb->s_id, function, line, inode->i_ino,
887 			       current->comm, path, &vaf);
888 		va_end(args);
889 	}
890 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
891 
892 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
893 			  function, line);
894 }
895 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])896 const char *ext4_decode_error(struct super_block *sb, int errno,
897 			      char nbuf[16])
898 {
899 	char *errstr = NULL;
900 
901 	switch (errno) {
902 	case -EFSCORRUPTED:
903 		errstr = "Corrupt filesystem";
904 		break;
905 	case -EFSBADCRC:
906 		errstr = "Filesystem failed CRC";
907 		break;
908 	case -EIO:
909 		errstr = "IO failure";
910 		break;
911 	case -ENOMEM:
912 		errstr = "Out of memory";
913 		break;
914 	case -EROFS:
915 		if (!sb || (EXT4_SB(sb)->s_journal &&
916 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
917 			errstr = "Journal has aborted";
918 		else
919 			errstr = "Readonly filesystem";
920 		break;
921 	default:
922 		/* If the caller passed in an extra buffer for unknown
923 		 * errors, textualise them now.  Else we just return
924 		 * NULL. */
925 		if (nbuf) {
926 			/* Check for truncated error codes... */
927 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
928 				errstr = nbuf;
929 		}
930 		break;
931 	}
932 
933 	return errstr;
934 }
935 
936 /* __ext4_std_error decodes expected errors from journaling functions
937  * automatically and invokes the appropriate error response.  */
938 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)939 void __ext4_std_error(struct super_block *sb, const char *function,
940 		      unsigned int line, int errno)
941 {
942 	char nbuf[16];
943 	const char *errstr;
944 
945 	if (unlikely(ext4_emergency_state(sb)))
946 		return;
947 
948 	/* Special case: if the error is EROFS, and we're not already
949 	 * inside a transaction, then there's really no point in logging
950 	 * an error. */
951 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
952 		return;
953 
954 	if (ext4_error_ratelimit(sb)) {
955 		errstr = ext4_decode_error(sb, errno, nbuf);
956 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
957 		       sb->s_id, function, line, errstr);
958 	}
959 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
960 
961 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
962 }
963 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)964 void __ext4_msg(struct super_block *sb,
965 		const char *prefix, const char *fmt, ...)
966 {
967 	struct va_format vaf;
968 	va_list args;
969 
970 	if (sb) {
971 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
972 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
973 				  "EXT4-fs"))
974 			return;
975 	}
976 
977 	va_start(args, fmt);
978 	vaf.fmt = fmt;
979 	vaf.va = &args;
980 	if (sb)
981 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
982 	else
983 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
984 	va_end(args);
985 }
986 
ext4_warning_ratelimit(struct super_block * sb)987 static int ext4_warning_ratelimit(struct super_block *sb)
988 {
989 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
990 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
991 			    "EXT4-fs warning");
992 }
993 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)994 void __ext4_warning(struct super_block *sb, const char *function,
995 		    unsigned int line, const char *fmt, ...)
996 {
997 	struct va_format vaf;
998 	va_list args;
999 
1000 	if (!ext4_warning_ratelimit(sb))
1001 		return;
1002 
1003 	va_start(args, fmt);
1004 	vaf.fmt = fmt;
1005 	vaf.va = &args;
1006 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1007 	       sb->s_id, function, line, &vaf);
1008 	va_end(args);
1009 }
1010 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1011 void __ext4_warning_inode(const struct inode *inode, const char *function,
1012 			  unsigned int line, const char *fmt, ...)
1013 {
1014 	struct va_format vaf;
1015 	va_list args;
1016 
1017 	if (!ext4_warning_ratelimit(inode->i_sb))
1018 		return;
1019 
1020 	va_start(args, fmt);
1021 	vaf.fmt = fmt;
1022 	vaf.va = &args;
1023 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1024 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1025 	       function, line, inode->i_ino, current->comm, &vaf);
1026 	va_end(args);
1027 }
1028 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1029 void __ext4_grp_locked_error(const char *function, unsigned int line,
1030 			     struct super_block *sb, ext4_group_t grp,
1031 			     unsigned long ino, ext4_fsblk_t block,
1032 			     const char *fmt, ...)
1033 __releases(bitlock)
1034 __acquires(bitlock)
1035 {
1036 	struct va_format vaf;
1037 	va_list args;
1038 
1039 	if (unlikely(ext4_emergency_state(sb)))
1040 		return;
1041 
1042 	trace_ext4_error(sb, function, line);
1043 	if (ext4_error_ratelimit(sb)) {
1044 		va_start(args, fmt);
1045 		vaf.fmt = fmt;
1046 		vaf.va = &args;
1047 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1048 		       sb->s_id, function, line, grp);
1049 		if (ino)
1050 			printk(KERN_CONT "inode %lu: ", ino);
1051 		if (block)
1052 			printk(KERN_CONT "block %llu:",
1053 			       (unsigned long long) block);
1054 		printk(KERN_CONT "%pV\n", &vaf);
1055 		va_end(args);
1056 	}
1057 
1058 	if (test_opt(sb, ERRORS_CONT)) {
1059 		if (test_opt(sb, WARN_ON_ERROR))
1060 			WARN_ON_ONCE(1);
1061 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1062 		if (!bdev_read_only(sb->s_bdev)) {
1063 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1064 					line);
1065 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1066 		}
1067 		return;
1068 	}
1069 	ext4_unlock_group(sb, grp);
1070 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1071 	/*
1072 	 * We only get here in the ERRORS_RO case; relocking the group
1073 	 * may be dangerous, but nothing bad will happen since the
1074 	 * filesystem will have already been marked read/only and the
1075 	 * journal has been aborted.  We return 1 as a hint to callers
1076 	 * who might what to use the return value from
1077 	 * ext4_grp_locked_error() to distinguish between the
1078 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1079 	 * aggressively from the ext4 function in question, with a
1080 	 * more appropriate error code.
1081 	 */
1082 	ext4_lock_group(sb, grp);
1083 	return;
1084 }
1085 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1086 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1087 				     ext4_group_t group,
1088 				     unsigned int flags)
1089 {
1090 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1091 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1092 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1093 	int ret;
1094 
1095 	if (!grp || !gdp)
1096 		return;
1097 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1098 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1099 					    &grp->bb_state);
1100 		if (!ret)
1101 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1102 					   grp->bb_free);
1103 	}
1104 
1105 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1106 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1107 					    &grp->bb_state);
1108 		if (!ret && gdp) {
1109 			int count;
1110 
1111 			count = ext4_free_inodes_count(sb, gdp);
1112 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1113 					   count);
1114 		}
1115 	}
1116 }
1117 
ext4_update_dynamic_rev(struct super_block * sb)1118 void ext4_update_dynamic_rev(struct super_block *sb)
1119 {
1120 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1121 
1122 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1123 		return;
1124 
1125 	ext4_warning(sb,
1126 		     "updating to rev %d because of new feature flag, "
1127 		     "running e2fsck is recommended",
1128 		     EXT4_DYNAMIC_REV);
1129 
1130 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1131 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1132 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1133 	/* leave es->s_feature_*compat flags alone */
1134 	/* es->s_uuid will be set by e2fsck if empty */
1135 
1136 	/*
1137 	 * The rest of the superblock fields should be zero, and if not it
1138 	 * means they are likely already in use, so leave them alone.  We
1139 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1140 	 */
1141 }
1142 
orphan_list_entry(struct list_head * l)1143 static inline struct inode *orphan_list_entry(struct list_head *l)
1144 {
1145 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1146 }
1147 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1148 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1149 {
1150 	struct list_head *l;
1151 
1152 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1153 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1154 
1155 	printk(KERN_ERR "sb_info orphan list:\n");
1156 	list_for_each(l, &sbi->s_orphan) {
1157 		struct inode *inode = orphan_list_entry(l);
1158 		printk(KERN_ERR "  "
1159 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1160 		       inode->i_sb->s_id, inode->i_ino, inode,
1161 		       inode->i_mode, inode->i_nlink,
1162 		       NEXT_ORPHAN(inode));
1163 	}
1164 }
1165 
1166 #ifdef CONFIG_QUOTA
1167 static int ext4_quota_off(struct super_block *sb, int type);
1168 
ext4_quotas_off(struct super_block * sb,int type)1169 static inline void ext4_quotas_off(struct super_block *sb, int type)
1170 {
1171 	BUG_ON(type > EXT4_MAXQUOTAS);
1172 
1173 	/* Use our quota_off function to clear inode flags etc. */
1174 	for (type--; type >= 0; type--)
1175 		ext4_quota_off(sb, type);
1176 }
1177 
1178 /*
1179  * This is a helper function which is used in the mount/remount
1180  * codepaths (which holds s_umount) to fetch the quota file name.
1181  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1182 static inline char *get_qf_name(struct super_block *sb,
1183 				struct ext4_sb_info *sbi,
1184 				int type)
1185 {
1186 	return rcu_dereference_protected(sbi->s_qf_names[type],
1187 					 lockdep_is_held(&sb->s_umount));
1188 }
1189 #else
ext4_quotas_off(struct super_block * sb,int type)1190 static inline void ext4_quotas_off(struct super_block *sb, int type)
1191 {
1192 }
1193 #endif
1194 
ext4_percpu_param_init(struct ext4_sb_info * sbi)1195 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1196 {
1197 	ext4_fsblk_t block;
1198 	int err;
1199 
1200 	block = ext4_count_free_clusters(sbi->s_sb);
1201 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1202 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1203 				  GFP_KERNEL);
1204 	if (!err) {
1205 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1206 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1207 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1208 					  GFP_KERNEL);
1209 	}
1210 	if (!err)
1211 		err = percpu_counter_init(&sbi->s_dirs_counter,
1212 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1213 	if (!err)
1214 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1215 					  GFP_KERNEL);
1216 	if (!err)
1217 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1218 					  GFP_KERNEL);
1219 	if (!err)
1220 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1221 
1222 	if (err)
1223 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1224 
1225 	return err;
1226 }
1227 
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1228 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1229 {
1230 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1231 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1232 	percpu_counter_destroy(&sbi->s_dirs_counter);
1233 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1234 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1235 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1236 }
1237 
ext4_group_desc_free(struct ext4_sb_info * sbi)1238 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1239 {
1240 	struct buffer_head **group_desc;
1241 	int i;
1242 
1243 	rcu_read_lock();
1244 	group_desc = rcu_dereference(sbi->s_group_desc);
1245 	for (i = 0; i < sbi->s_gdb_count; i++)
1246 		brelse(group_desc[i]);
1247 	kvfree(group_desc);
1248 	rcu_read_unlock();
1249 }
1250 
ext4_flex_groups_free(struct ext4_sb_info * sbi)1251 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1252 {
1253 	struct flex_groups **flex_groups;
1254 	int i;
1255 
1256 	rcu_read_lock();
1257 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1258 	if (flex_groups) {
1259 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1260 			kvfree(flex_groups[i]);
1261 		kvfree(flex_groups);
1262 	}
1263 	rcu_read_unlock();
1264 }
1265 
ext4_put_super(struct super_block * sb)1266 static void ext4_put_super(struct super_block *sb)
1267 {
1268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1269 	struct ext4_super_block *es = sbi->s_es;
1270 	int aborted = 0;
1271 	int err;
1272 
1273 	/*
1274 	 * Unregister sysfs before destroying jbd2 journal.
1275 	 * Since we could still access attr_journal_task attribute via sysfs
1276 	 * path which could have sbi->s_journal->j_task as NULL
1277 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1278 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1279 	 * read metadata verify failed then will queue error work.
1280 	 * update_super_work will call start_this_handle may trigger
1281 	 * BUG_ON.
1282 	 */
1283 	ext4_unregister_sysfs(sb);
1284 
1285 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1286 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1287 			 &sb->s_uuid);
1288 
1289 	ext4_unregister_li_request(sb);
1290 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1291 
1292 	destroy_workqueue(sbi->rsv_conversion_wq);
1293 	ext4_release_orphan_info(sb);
1294 
1295 	if (sbi->s_journal) {
1296 		aborted = is_journal_aborted(sbi->s_journal);
1297 		err = ext4_journal_destroy(sbi, sbi->s_journal);
1298 		if ((err < 0) && !aborted) {
1299 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1300 		}
1301 	} else
1302 		flush_work(&sbi->s_sb_upd_work);
1303 
1304 	ext4_es_unregister_shrinker(sbi);
1305 	timer_shutdown_sync(&sbi->s_err_report);
1306 	ext4_release_system_zone(sb);
1307 	ext4_mb_release(sb);
1308 	ext4_ext_release(sb);
1309 
1310 	if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1311 		if (!aborted) {
1312 			ext4_clear_feature_journal_needs_recovery(sb);
1313 			ext4_clear_feature_orphan_present(sb);
1314 			es->s_state = cpu_to_le16(sbi->s_mount_state);
1315 		}
1316 		ext4_commit_super(sb);
1317 	}
1318 
1319 	ext4_group_desc_free(sbi);
1320 	ext4_flex_groups_free(sbi);
1321 
1322 	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1323 		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1324 	ext4_percpu_param_destroy(sbi);
1325 #ifdef CONFIG_QUOTA
1326 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1327 		kfree(get_qf_name(sb, sbi, i));
1328 #endif
1329 
1330 	/* Debugging code just in case the in-memory inode orphan list
1331 	 * isn't empty.  The on-disk one can be non-empty if we've
1332 	 * detected an error and taken the fs readonly, but the
1333 	 * in-memory list had better be clean by this point. */
1334 	if (!list_empty(&sbi->s_orphan))
1335 		dump_orphan_list(sb, sbi);
1336 	ASSERT(list_empty(&sbi->s_orphan));
1337 
1338 	sync_blockdev(sb->s_bdev);
1339 	invalidate_bdev(sb->s_bdev);
1340 	if (sbi->s_journal_bdev_file) {
1341 		/*
1342 		 * Invalidate the journal device's buffers.  We don't want them
1343 		 * floating about in memory - the physical journal device may
1344 		 * hotswapped, and it breaks the `ro-after' testing code.
1345 		 */
1346 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1347 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1348 	}
1349 
1350 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1351 	sbi->s_ea_inode_cache = NULL;
1352 
1353 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1354 	sbi->s_ea_block_cache = NULL;
1355 
1356 	ext4_stop_mmpd(sbi);
1357 
1358 	brelse(sbi->s_sbh);
1359 	sb->s_fs_info = NULL;
1360 	/*
1361 	 * Now that we are completely done shutting down the
1362 	 * superblock, we need to actually destroy the kobject.
1363 	 */
1364 	kobject_put(&sbi->s_kobj);
1365 	wait_for_completion(&sbi->s_kobj_unregister);
1366 	kfree(sbi->s_blockgroup_lock);
1367 	fs_put_dax(sbi->s_daxdev, NULL);
1368 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1369 #if IS_ENABLED(CONFIG_UNICODE)
1370 	utf8_unload(sb->s_encoding);
1371 #endif
1372 	kfree(sbi);
1373 }
1374 
1375 static struct kmem_cache *ext4_inode_cachep;
1376 
1377 /*
1378  * Called inside transaction, so use GFP_NOFS
1379  */
ext4_alloc_inode(struct super_block * sb)1380 static struct inode *ext4_alloc_inode(struct super_block *sb)
1381 {
1382 	struct ext4_inode_info *ei;
1383 
1384 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1385 	if (!ei)
1386 		return NULL;
1387 
1388 	inode_set_iversion(&ei->vfs_inode, 1);
1389 	ei->i_flags = 0;
1390 	spin_lock_init(&ei->i_raw_lock);
1391 	ei->i_prealloc_node = RB_ROOT;
1392 	atomic_set(&ei->i_prealloc_active, 0);
1393 	rwlock_init(&ei->i_prealloc_lock);
1394 	ext4_es_init_tree(&ei->i_es_tree);
1395 	rwlock_init(&ei->i_es_lock);
1396 	INIT_LIST_HEAD(&ei->i_es_list);
1397 	ei->i_es_all_nr = 0;
1398 	ei->i_es_shk_nr = 0;
1399 	ei->i_es_shrink_lblk = 0;
1400 	ei->i_reserved_data_blocks = 0;
1401 	spin_lock_init(&(ei->i_block_reservation_lock));
1402 	ext4_init_pending_tree(&ei->i_pending_tree);
1403 #ifdef CONFIG_QUOTA
1404 	ei->i_reserved_quota = 0;
1405 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1406 #endif
1407 	ei->jinode = NULL;
1408 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1409 	spin_lock_init(&ei->i_completed_io_lock);
1410 	ei->i_sync_tid = 0;
1411 	ei->i_datasync_tid = 0;
1412 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1413 	ext4_fc_init_inode(&ei->vfs_inode);
1414 	spin_lock_init(&ei->i_fc_lock);
1415 	return &ei->vfs_inode;
1416 }
1417 
ext4_drop_inode(struct inode * inode)1418 static int ext4_drop_inode(struct inode *inode)
1419 {
1420 	int drop = generic_drop_inode(inode);
1421 
1422 	if (!drop)
1423 		drop = fscrypt_drop_inode(inode);
1424 
1425 	trace_ext4_drop_inode(inode, drop);
1426 	return drop;
1427 }
1428 
ext4_free_in_core_inode(struct inode * inode)1429 static void ext4_free_in_core_inode(struct inode *inode)
1430 {
1431 	fscrypt_free_inode(inode);
1432 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1433 		pr_warn("%s: inode %ld still in fc list",
1434 			__func__, inode->i_ino);
1435 	}
1436 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1437 }
1438 
ext4_destroy_inode(struct inode * inode)1439 static void ext4_destroy_inode(struct inode *inode)
1440 {
1441 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1442 		ext4_msg(inode->i_sb, KERN_ERR,
1443 			 "Inode %lu (%p): orphan list check failed!",
1444 			 inode->i_ino, EXT4_I(inode));
1445 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1446 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1447 				true);
1448 		dump_stack();
1449 	}
1450 
1451 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1452 	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1453 		ext4_msg(inode->i_sb, KERN_ERR,
1454 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1455 			 inode->i_ino, EXT4_I(inode),
1456 			 EXT4_I(inode)->i_reserved_data_blocks);
1457 }
1458 
ext4_shutdown(struct super_block * sb)1459 static void ext4_shutdown(struct super_block *sb)
1460 {
1461        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1462 }
1463 
init_once(void * foo)1464 static void init_once(void *foo)
1465 {
1466 	struct ext4_inode_info *ei = foo;
1467 
1468 	INIT_LIST_HEAD(&ei->i_orphan);
1469 	init_rwsem(&ei->xattr_sem);
1470 	init_rwsem(&ei->i_data_sem);
1471 	inode_init_once(&ei->vfs_inode);
1472 	ext4_fc_init_inode(&ei->vfs_inode);
1473 }
1474 
init_inodecache(void)1475 static int __init init_inodecache(void)
1476 {
1477 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1478 				sizeof(struct ext4_inode_info), 0,
1479 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1480 				offsetof(struct ext4_inode_info, i_data),
1481 				sizeof_field(struct ext4_inode_info, i_data),
1482 				init_once);
1483 	if (ext4_inode_cachep == NULL)
1484 		return -ENOMEM;
1485 	return 0;
1486 }
1487 
destroy_inodecache(void)1488 static void destroy_inodecache(void)
1489 {
1490 	/*
1491 	 * Make sure all delayed rcu free inodes are flushed before we
1492 	 * destroy cache.
1493 	 */
1494 	rcu_barrier();
1495 	kmem_cache_destroy(ext4_inode_cachep);
1496 }
1497 
ext4_clear_inode(struct inode * inode)1498 void ext4_clear_inode(struct inode *inode)
1499 {
1500 	ext4_fc_del(inode);
1501 	invalidate_inode_buffers(inode);
1502 	clear_inode(inode);
1503 	ext4_discard_preallocations(inode);
1504 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1505 	dquot_drop(inode);
1506 	if (EXT4_I(inode)->jinode) {
1507 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1508 					       EXT4_I(inode)->jinode);
1509 		jbd2_free_inode(EXT4_I(inode)->jinode);
1510 		EXT4_I(inode)->jinode = NULL;
1511 	}
1512 	fscrypt_put_encryption_info(inode);
1513 	fsverity_cleanup_inode(inode);
1514 }
1515 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1516 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1517 					u64 ino, u32 generation)
1518 {
1519 	struct inode *inode;
1520 
1521 	/*
1522 	 * Currently we don't know the generation for parent directory, so
1523 	 * a generation of 0 means "accept any"
1524 	 */
1525 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1526 	if (IS_ERR(inode))
1527 		return ERR_CAST(inode);
1528 	if (generation && inode->i_generation != generation) {
1529 		iput(inode);
1530 		return ERR_PTR(-ESTALE);
1531 	}
1532 
1533 	return inode;
1534 }
1535 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1536 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1537 					int fh_len, int fh_type)
1538 {
1539 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1540 				    ext4_nfs_get_inode);
1541 }
1542 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1543 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1544 					int fh_len, int fh_type)
1545 {
1546 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1547 				    ext4_nfs_get_inode);
1548 }
1549 
ext4_nfs_commit_metadata(struct inode * inode)1550 static int ext4_nfs_commit_metadata(struct inode *inode)
1551 {
1552 	struct writeback_control wbc = {
1553 		.sync_mode = WB_SYNC_ALL
1554 	};
1555 
1556 	trace_ext4_nfs_commit_metadata(inode);
1557 	return ext4_write_inode(inode, &wbc);
1558 }
1559 
1560 #ifdef CONFIG_QUOTA
1561 static const char * const quotatypes[] = INITQFNAMES;
1562 #define QTYPE2NAME(t) (quotatypes[t])
1563 
1564 static int ext4_write_dquot(struct dquot *dquot);
1565 static int ext4_acquire_dquot(struct dquot *dquot);
1566 static int ext4_release_dquot(struct dquot *dquot);
1567 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1568 static int ext4_write_info(struct super_block *sb, int type);
1569 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1570 			 const struct path *path);
1571 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1572 			       size_t len, loff_t off);
1573 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1574 				const char *data, size_t len, loff_t off);
1575 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1576 			     unsigned int flags);
1577 
ext4_get_dquots(struct inode * inode)1578 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1579 {
1580 	return EXT4_I(inode)->i_dquot;
1581 }
1582 
1583 static const struct dquot_operations ext4_quota_operations = {
1584 	.get_reserved_space	= ext4_get_reserved_space,
1585 	.write_dquot		= ext4_write_dquot,
1586 	.acquire_dquot		= ext4_acquire_dquot,
1587 	.release_dquot		= ext4_release_dquot,
1588 	.mark_dirty		= ext4_mark_dquot_dirty,
1589 	.write_info		= ext4_write_info,
1590 	.alloc_dquot		= dquot_alloc,
1591 	.destroy_dquot		= dquot_destroy,
1592 	.get_projid		= ext4_get_projid,
1593 	.get_inode_usage	= ext4_get_inode_usage,
1594 	.get_next_id		= dquot_get_next_id,
1595 };
1596 
1597 static const struct quotactl_ops ext4_qctl_operations = {
1598 	.quota_on	= ext4_quota_on,
1599 	.quota_off	= ext4_quota_off,
1600 	.quota_sync	= dquot_quota_sync,
1601 	.get_state	= dquot_get_state,
1602 	.set_info	= dquot_set_dqinfo,
1603 	.get_dqblk	= dquot_get_dqblk,
1604 	.set_dqblk	= dquot_set_dqblk,
1605 	.get_nextdqblk	= dquot_get_next_dqblk,
1606 };
1607 #endif
1608 
1609 static const struct super_operations ext4_sops = {
1610 	.alloc_inode	= ext4_alloc_inode,
1611 	.free_inode	= ext4_free_in_core_inode,
1612 	.destroy_inode	= ext4_destroy_inode,
1613 	.write_inode	= ext4_write_inode,
1614 	.dirty_inode	= ext4_dirty_inode,
1615 	.drop_inode	= ext4_drop_inode,
1616 	.evict_inode	= ext4_evict_inode,
1617 	.put_super	= ext4_put_super,
1618 	.sync_fs	= ext4_sync_fs,
1619 	.freeze_fs	= ext4_freeze,
1620 	.unfreeze_fs	= ext4_unfreeze,
1621 	.statfs		= ext4_statfs,
1622 	.show_options	= ext4_show_options,
1623 	.shutdown	= ext4_shutdown,
1624 #ifdef CONFIG_QUOTA
1625 	.quota_read	= ext4_quota_read,
1626 	.quota_write	= ext4_quota_write,
1627 	.get_dquots	= ext4_get_dquots,
1628 #endif
1629 };
1630 
1631 static const struct export_operations ext4_export_ops = {
1632 	.encode_fh = generic_encode_ino32_fh,
1633 	.fh_to_dentry = ext4_fh_to_dentry,
1634 	.fh_to_parent = ext4_fh_to_parent,
1635 	.get_parent = ext4_get_parent,
1636 	.commit_metadata = ext4_nfs_commit_metadata,
1637 };
1638 
1639 enum {
1640 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1641 	Opt_resgid, Opt_resuid, Opt_sb,
1642 	Opt_nouid32, Opt_debug, Opt_removed,
1643 	Opt_user_xattr, Opt_acl,
1644 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1645 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1646 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1647 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1648 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1649 	Opt_inlinecrypt,
1650 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1651 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1652 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1653 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1654 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1655 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1656 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1657 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1658 	Opt_dioread_nolock, Opt_dioread_lock,
1659 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1660 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1661 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1662 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1663 #ifdef CONFIG_EXT4_DEBUG
1664 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1665 #endif
1666 };
1667 
1668 static const struct constant_table ext4_param_errors[] = {
1669 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1670 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1671 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1672 	{}
1673 };
1674 
1675 static const struct constant_table ext4_param_data[] = {
1676 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1677 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1678 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1679 	{}
1680 };
1681 
1682 static const struct constant_table ext4_param_data_err[] = {
1683 	{"abort",	Opt_data_err_abort},
1684 	{"ignore",	Opt_data_err_ignore},
1685 	{}
1686 };
1687 
1688 static const struct constant_table ext4_param_jqfmt[] = {
1689 	{"vfsold",	QFMT_VFS_OLD},
1690 	{"vfsv0",	QFMT_VFS_V0},
1691 	{"vfsv1",	QFMT_VFS_V1},
1692 	{}
1693 };
1694 
1695 static const struct constant_table ext4_param_dax[] = {
1696 	{"always",	Opt_dax_always},
1697 	{"inode",	Opt_dax_inode},
1698 	{"never",	Opt_dax_never},
1699 	{}
1700 };
1701 
1702 /*
1703  * Mount option specification
1704  * We don't use fsparam_flag_no because of the way we set the
1705  * options and the way we show them in _ext4_show_options(). To
1706  * keep the changes to a minimum, let's keep the negative options
1707  * separate for now.
1708  */
1709 static const struct fs_parameter_spec ext4_param_specs[] = {
1710 	fsparam_flag	("bsddf",		Opt_bsd_df),
1711 	fsparam_flag	("minixdf",		Opt_minix_df),
1712 	fsparam_flag	("grpid",		Opt_grpid),
1713 	fsparam_flag	("bsdgroups",		Opt_grpid),
1714 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1715 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1716 	fsparam_gid	("resgid",		Opt_resgid),
1717 	fsparam_uid	("resuid",		Opt_resuid),
1718 	fsparam_u32	("sb",			Opt_sb),
1719 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1720 	fsparam_flag	("nouid32",		Opt_nouid32),
1721 	fsparam_flag	("debug",		Opt_debug),
1722 	fsparam_flag	("oldalloc",		Opt_removed),
1723 	fsparam_flag	("orlov",		Opt_removed),
1724 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1725 	fsparam_flag	("acl",			Opt_acl),
1726 	fsparam_flag	("norecovery",		Opt_noload),
1727 	fsparam_flag	("noload",		Opt_noload),
1728 	fsparam_flag	("bh",			Opt_removed),
1729 	fsparam_flag	("nobh",		Opt_removed),
1730 	fsparam_u32	("commit",		Opt_commit),
1731 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1732 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1733 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1734 	fsparam_bdev	("journal_path",	Opt_journal_path),
1735 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1736 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1737 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1738 	fsparam_flag	("abort",		Opt_abort),
1739 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1740 	fsparam_enum	("data_err",		Opt_data_err,
1741 						ext4_param_data_err),
1742 	fsparam_string_empty
1743 			("usrjquota",		Opt_usrjquota),
1744 	fsparam_string_empty
1745 			("grpjquota",		Opt_grpjquota),
1746 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1747 	fsparam_flag	("grpquota",		Opt_grpquota),
1748 	fsparam_flag	("quota",		Opt_quota),
1749 	fsparam_flag	("noquota",		Opt_noquota),
1750 	fsparam_flag	("usrquota",		Opt_usrquota),
1751 	fsparam_flag	("prjquota",		Opt_prjquota),
1752 	fsparam_flag	("barrier",		Opt_barrier),
1753 	fsparam_u32	("barrier",		Opt_barrier),
1754 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1755 	fsparam_flag	("i_version",		Opt_removed),
1756 	fsparam_flag	("dax",			Opt_dax),
1757 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1758 	fsparam_u32	("stripe",		Opt_stripe),
1759 	fsparam_flag	("delalloc",		Opt_delalloc),
1760 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1761 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1762 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1763 	fsparam_u32	("debug_want_extra_isize",
1764 						Opt_debug_want_extra_isize),
1765 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1766 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1767 	fsparam_flag	("block_validity",	Opt_block_validity),
1768 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1769 	fsparam_u32	("inode_readahead_blks",
1770 						Opt_inode_readahead_blks),
1771 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1772 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1773 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1774 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1775 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1776 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1777 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1778 	fsparam_flag	("discard",		Opt_discard),
1779 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1780 	fsparam_u32	("init_itable",		Opt_init_itable),
1781 	fsparam_flag	("init_itable",		Opt_init_itable),
1782 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1783 #ifdef CONFIG_EXT4_DEBUG
1784 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1785 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1786 #endif
1787 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1788 	fsparam_flag	("test_dummy_encryption",
1789 						Opt_test_dummy_encryption),
1790 	fsparam_string	("test_dummy_encryption",
1791 						Opt_test_dummy_encryption),
1792 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1793 	fsparam_flag	("nombcache",		Opt_nombcache),
1794 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1795 	fsparam_flag	("prefetch_block_bitmaps",
1796 						Opt_removed),
1797 	fsparam_flag	("no_prefetch_block_bitmaps",
1798 						Opt_no_prefetch_block_bitmaps),
1799 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1800 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1801 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1802 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1803 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1804 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1805 	{}
1806 };
1807 
1808 
1809 #define MOPT_SET	0x0001
1810 #define MOPT_CLEAR	0x0002
1811 #define MOPT_NOSUPPORT	0x0004
1812 #define MOPT_EXPLICIT	0x0008
1813 #ifdef CONFIG_QUOTA
1814 #define MOPT_Q		0
1815 #define MOPT_QFMT	0x0010
1816 #else
1817 #define MOPT_Q		MOPT_NOSUPPORT
1818 #define MOPT_QFMT	MOPT_NOSUPPORT
1819 #endif
1820 #define MOPT_NO_EXT2	0x0020
1821 #define MOPT_NO_EXT3	0x0040
1822 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1823 #define MOPT_SKIP	0x0080
1824 #define	MOPT_2		0x0100
1825 
1826 static const struct mount_opts {
1827 	int	token;
1828 	int	mount_opt;
1829 	int	flags;
1830 } ext4_mount_opts[] = {
1831 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1832 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1833 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1834 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1835 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1836 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1837 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1838 	 MOPT_EXT4_ONLY | MOPT_SET},
1839 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1840 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1841 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1842 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1843 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1844 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1845 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1846 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1847 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1848 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1849 	{Opt_commit, 0, MOPT_NO_EXT2},
1850 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1851 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1852 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1853 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1854 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1855 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1856 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1857 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1858 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1859 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1860 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1861 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1862 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1863 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1864 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1865 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1866 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1867 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1868 	{Opt_data, 0, MOPT_NO_EXT2},
1869 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1870 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1871 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1872 #else
1873 	{Opt_acl, 0, MOPT_NOSUPPORT},
1874 #endif
1875 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1876 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1877 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1878 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1879 							MOPT_SET | MOPT_Q},
1880 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1881 							MOPT_SET | MOPT_Q},
1882 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1883 							MOPT_SET | MOPT_Q},
1884 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1885 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1886 							MOPT_CLEAR | MOPT_Q},
1887 	{Opt_usrjquota, 0, MOPT_Q},
1888 	{Opt_grpjquota, 0, MOPT_Q},
1889 	{Opt_jqfmt, 0, MOPT_QFMT},
1890 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1891 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1892 	 MOPT_SET},
1893 #ifdef CONFIG_EXT4_DEBUG
1894 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1895 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1896 #endif
1897 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1898 	{Opt_err, 0, 0}
1899 };
1900 
1901 #if IS_ENABLED(CONFIG_UNICODE)
1902 static const struct ext4_sb_encodings {
1903 	__u16 magic;
1904 	char *name;
1905 	unsigned int version;
1906 } ext4_sb_encoding_map[] = {
1907 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1908 };
1909 
1910 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1911 ext4_sb_read_encoding(const struct ext4_super_block *es)
1912 {
1913 	__u16 magic = le16_to_cpu(es->s_encoding);
1914 	int i;
1915 
1916 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1917 		if (magic == ext4_sb_encoding_map[i].magic)
1918 			return &ext4_sb_encoding_map[i];
1919 
1920 	return NULL;
1921 }
1922 #endif
1923 
1924 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1925 #define EXT4_SPEC_JQFMT				(1 <<  1)
1926 #define EXT4_SPEC_DATAJ				(1 <<  2)
1927 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1928 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1929 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1930 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1931 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1932 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1933 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1934 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1935 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1936 #define EXT4_SPEC_s_stripe			(1 << 13)
1937 #define EXT4_SPEC_s_resuid			(1 << 14)
1938 #define EXT4_SPEC_s_resgid			(1 << 15)
1939 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1940 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1941 #define EXT4_SPEC_s_sb_block			(1 << 18)
1942 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1943 
1944 struct ext4_fs_context {
1945 	char		*s_qf_names[EXT4_MAXQUOTAS];
1946 	struct fscrypt_dummy_policy dummy_enc_policy;
1947 	int		s_jquota_fmt;	/* Format of quota to use */
1948 #ifdef CONFIG_EXT4_DEBUG
1949 	int s_fc_debug_max_replay;
1950 #endif
1951 	unsigned short	qname_spec;
1952 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1953 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1954 	unsigned long	journal_devnum;
1955 	unsigned long	s_commit_interval;
1956 	unsigned long	s_stripe;
1957 	unsigned int	s_inode_readahead_blks;
1958 	unsigned int	s_want_extra_isize;
1959 	unsigned int	s_li_wait_mult;
1960 	unsigned int	s_max_dir_size_kb;
1961 	unsigned int	journal_ioprio;
1962 	unsigned int	vals_s_mount_opt;
1963 	unsigned int	mask_s_mount_opt;
1964 	unsigned int	vals_s_mount_opt2;
1965 	unsigned int	mask_s_mount_opt2;
1966 	unsigned int	opt_flags;	/* MOPT flags */
1967 	unsigned int	spec;
1968 	u32		s_max_batch_time;
1969 	u32		s_min_batch_time;
1970 	kuid_t		s_resuid;
1971 	kgid_t		s_resgid;
1972 	ext4_fsblk_t	s_sb_block;
1973 };
1974 
ext4_fc_free(struct fs_context * fc)1975 static void ext4_fc_free(struct fs_context *fc)
1976 {
1977 	struct ext4_fs_context *ctx = fc->fs_private;
1978 	int i;
1979 
1980 	if (!ctx)
1981 		return;
1982 
1983 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1984 		kfree(ctx->s_qf_names[i]);
1985 
1986 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1987 	kfree(ctx);
1988 }
1989 
ext4_init_fs_context(struct fs_context * fc)1990 int ext4_init_fs_context(struct fs_context *fc)
1991 {
1992 	struct ext4_fs_context *ctx;
1993 
1994 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1995 	if (!ctx)
1996 		return -ENOMEM;
1997 
1998 	fc->fs_private = ctx;
1999 	fc->ops = &ext4_context_ops;
2000 
2001 	/* i_version is always enabled now */
2002 	fc->sb_flags |= SB_I_VERSION;
2003 
2004 	return 0;
2005 }
2006 
2007 #ifdef CONFIG_QUOTA
2008 /*
2009  * Note the name of the specified quota file.
2010  */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2011 static int note_qf_name(struct fs_context *fc, int qtype,
2012 		       struct fs_parameter *param)
2013 {
2014 	struct ext4_fs_context *ctx = fc->fs_private;
2015 	char *qname;
2016 
2017 	if (param->size < 1) {
2018 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2019 		return -EINVAL;
2020 	}
2021 	if (strchr(param->string, '/')) {
2022 		ext4_msg(NULL, KERN_ERR,
2023 			 "quotafile must be on filesystem root");
2024 		return -EINVAL;
2025 	}
2026 	if (ctx->s_qf_names[qtype]) {
2027 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2028 			ext4_msg(NULL, KERN_ERR,
2029 				 "%s quota file already specified",
2030 				 QTYPE2NAME(qtype));
2031 			return -EINVAL;
2032 		}
2033 		return 0;
2034 	}
2035 
2036 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2037 	if (!qname) {
2038 		ext4_msg(NULL, KERN_ERR,
2039 			 "Not enough memory for storing quotafile name");
2040 		return -ENOMEM;
2041 	}
2042 	ctx->s_qf_names[qtype] = qname;
2043 	ctx->qname_spec |= 1 << qtype;
2044 	ctx->spec |= EXT4_SPEC_JQUOTA;
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Clear the name of the specified quota file.
2050  */
unnote_qf_name(struct fs_context * fc,int qtype)2051 static int unnote_qf_name(struct fs_context *fc, int qtype)
2052 {
2053 	struct ext4_fs_context *ctx = fc->fs_private;
2054 
2055 	kfree(ctx->s_qf_names[qtype]);
2056 
2057 	ctx->s_qf_names[qtype] = NULL;
2058 	ctx->qname_spec |= 1 << qtype;
2059 	ctx->spec |= EXT4_SPEC_JQUOTA;
2060 	return 0;
2061 }
2062 #endif
2063 
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2064 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2065 					    struct ext4_fs_context *ctx)
2066 {
2067 	int err;
2068 
2069 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2070 		ext4_msg(NULL, KERN_WARNING,
2071 			 "test_dummy_encryption option not supported");
2072 		return -EINVAL;
2073 	}
2074 	err = fscrypt_parse_test_dummy_encryption(param,
2075 						  &ctx->dummy_enc_policy);
2076 	if (err == -EINVAL) {
2077 		ext4_msg(NULL, KERN_WARNING,
2078 			 "Value of option \"%s\" is unrecognized", param->key);
2079 	} else if (err == -EEXIST) {
2080 		ext4_msg(NULL, KERN_WARNING,
2081 			 "Conflicting test_dummy_encryption options");
2082 		return -EINVAL;
2083 	}
2084 	return err;
2085 }
2086 
2087 #define EXT4_SET_CTX(name)						\
2088 static inline __maybe_unused						\
2089 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2090 {									\
2091 	ctx->mask_s_##name |= flag;					\
2092 	ctx->vals_s_##name |= flag;					\
2093 }
2094 
2095 #define EXT4_CLEAR_CTX(name)						\
2096 static inline __maybe_unused						\
2097 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2098 {									\
2099 	ctx->mask_s_##name |= flag;					\
2100 	ctx->vals_s_##name &= ~flag;					\
2101 }
2102 
2103 #define EXT4_TEST_CTX(name)						\
2104 static inline unsigned long						\
2105 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2106 {									\
2107 	return (ctx->vals_s_##name & flag);				\
2108 }
2109 
2110 EXT4_SET_CTX(flags); /* set only */
2111 EXT4_SET_CTX(mount_opt);
2112 EXT4_CLEAR_CTX(mount_opt);
2113 EXT4_TEST_CTX(mount_opt);
2114 EXT4_SET_CTX(mount_opt2);
2115 EXT4_CLEAR_CTX(mount_opt2);
2116 EXT4_TEST_CTX(mount_opt2);
2117 
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2118 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2119 {
2120 	struct ext4_fs_context *ctx = fc->fs_private;
2121 	struct fs_parse_result result;
2122 	const struct mount_opts *m;
2123 	int is_remount;
2124 	int token;
2125 
2126 	token = fs_parse(fc, ext4_param_specs, param, &result);
2127 	if (token < 0)
2128 		return token;
2129 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2130 
2131 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2132 		if (token == m->token)
2133 			break;
2134 
2135 	ctx->opt_flags |= m->flags;
2136 
2137 	if (m->flags & MOPT_EXPLICIT) {
2138 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2139 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2140 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2141 			ctx_set_mount_opt2(ctx,
2142 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2143 		} else
2144 			return -EINVAL;
2145 	}
2146 
2147 	if (m->flags & MOPT_NOSUPPORT) {
2148 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2149 			 param->key);
2150 		return 0;
2151 	}
2152 
2153 	switch (token) {
2154 #ifdef CONFIG_QUOTA
2155 	case Opt_usrjquota:
2156 		if (!*param->string)
2157 			return unnote_qf_name(fc, USRQUOTA);
2158 		else
2159 			return note_qf_name(fc, USRQUOTA, param);
2160 	case Opt_grpjquota:
2161 		if (!*param->string)
2162 			return unnote_qf_name(fc, GRPQUOTA);
2163 		else
2164 			return note_qf_name(fc, GRPQUOTA, param);
2165 #endif
2166 	case Opt_sb:
2167 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2168 			ext4_msg(NULL, KERN_WARNING,
2169 				 "Ignoring %s option on remount", param->key);
2170 		} else {
2171 			ctx->s_sb_block = result.uint_32;
2172 			ctx->spec |= EXT4_SPEC_s_sb_block;
2173 		}
2174 		return 0;
2175 	case Opt_removed:
2176 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2177 			 param->key);
2178 		return 0;
2179 	case Opt_inlinecrypt:
2180 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2181 		ctx_set_flags(ctx, SB_INLINECRYPT);
2182 #else
2183 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2184 #endif
2185 		return 0;
2186 	case Opt_errors:
2187 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2188 		ctx_set_mount_opt(ctx, result.uint_32);
2189 		return 0;
2190 #ifdef CONFIG_QUOTA
2191 	case Opt_jqfmt:
2192 		ctx->s_jquota_fmt = result.uint_32;
2193 		ctx->spec |= EXT4_SPEC_JQFMT;
2194 		return 0;
2195 #endif
2196 	case Opt_data:
2197 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2198 		ctx_set_mount_opt(ctx, result.uint_32);
2199 		ctx->spec |= EXT4_SPEC_DATAJ;
2200 		return 0;
2201 	case Opt_commit:
2202 		if (result.uint_32 == 0)
2203 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2204 		else if (result.uint_32 > INT_MAX / HZ) {
2205 			ext4_msg(NULL, KERN_ERR,
2206 				 "Invalid commit interval %d, "
2207 				 "must be smaller than %d",
2208 				 result.uint_32, INT_MAX / HZ);
2209 			return -EINVAL;
2210 		}
2211 		ctx->s_commit_interval = HZ * result.uint_32;
2212 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2213 		return 0;
2214 	case Opt_debug_want_extra_isize:
2215 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2216 			ext4_msg(NULL, KERN_ERR,
2217 				 "Invalid want_extra_isize %d", result.uint_32);
2218 			return -EINVAL;
2219 		}
2220 		ctx->s_want_extra_isize = result.uint_32;
2221 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2222 		return 0;
2223 	case Opt_max_batch_time:
2224 		ctx->s_max_batch_time = result.uint_32;
2225 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2226 		return 0;
2227 	case Opt_min_batch_time:
2228 		ctx->s_min_batch_time = result.uint_32;
2229 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2230 		return 0;
2231 	case Opt_inode_readahead_blks:
2232 		if (result.uint_32 &&
2233 		    (result.uint_32 > (1 << 30) ||
2234 		     !is_power_of_2(result.uint_32))) {
2235 			ext4_msg(NULL, KERN_ERR,
2236 				 "EXT4-fs: inode_readahead_blks must be "
2237 				 "0 or a power of 2 smaller than 2^31");
2238 			return -EINVAL;
2239 		}
2240 		ctx->s_inode_readahead_blks = result.uint_32;
2241 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2242 		return 0;
2243 	case Opt_init_itable:
2244 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2245 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2246 		if (param->type == fs_value_is_string)
2247 			ctx->s_li_wait_mult = result.uint_32;
2248 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2249 		return 0;
2250 	case Opt_max_dir_size_kb:
2251 		ctx->s_max_dir_size_kb = result.uint_32;
2252 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2253 		return 0;
2254 #ifdef CONFIG_EXT4_DEBUG
2255 	case Opt_fc_debug_max_replay:
2256 		ctx->s_fc_debug_max_replay = result.uint_32;
2257 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2258 		return 0;
2259 #endif
2260 	case Opt_stripe:
2261 		ctx->s_stripe = result.uint_32;
2262 		ctx->spec |= EXT4_SPEC_s_stripe;
2263 		return 0;
2264 	case Opt_resuid:
2265 		ctx->s_resuid = result.uid;
2266 		ctx->spec |= EXT4_SPEC_s_resuid;
2267 		return 0;
2268 	case Opt_resgid:
2269 		ctx->s_resgid = result.gid;
2270 		ctx->spec |= EXT4_SPEC_s_resgid;
2271 		return 0;
2272 	case Opt_journal_dev:
2273 		if (is_remount) {
2274 			ext4_msg(NULL, KERN_ERR,
2275 				 "Cannot specify journal on remount");
2276 			return -EINVAL;
2277 		}
2278 		ctx->journal_devnum = result.uint_32;
2279 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2280 		return 0;
2281 	case Opt_journal_path:
2282 	{
2283 		struct inode *journal_inode;
2284 		struct path path;
2285 		int error;
2286 
2287 		if (is_remount) {
2288 			ext4_msg(NULL, KERN_ERR,
2289 				 "Cannot specify journal on remount");
2290 			return -EINVAL;
2291 		}
2292 
2293 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2294 		if (error) {
2295 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2296 				 "journal device path");
2297 			return -EINVAL;
2298 		}
2299 
2300 		journal_inode = d_inode(path.dentry);
2301 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2302 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2303 		path_put(&path);
2304 		return 0;
2305 	}
2306 	case Opt_journal_ioprio:
2307 		if (result.uint_32 > 7) {
2308 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2309 				 " (must be 0-7)");
2310 			return -EINVAL;
2311 		}
2312 		ctx->journal_ioprio =
2313 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2314 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2315 		return 0;
2316 	case Opt_test_dummy_encryption:
2317 		return ext4_parse_test_dummy_encryption(param, ctx);
2318 	case Opt_dax:
2319 	case Opt_dax_type:
2320 #ifdef CONFIG_FS_DAX
2321 	{
2322 		int type = (token == Opt_dax) ?
2323 			   Opt_dax : result.uint_32;
2324 
2325 		switch (type) {
2326 		case Opt_dax:
2327 		case Opt_dax_always:
2328 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2329 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2330 			break;
2331 		case Opt_dax_never:
2332 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2333 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2334 			break;
2335 		case Opt_dax_inode:
2336 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2337 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2338 			/* Strictly for printing options */
2339 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2340 			break;
2341 		}
2342 		return 0;
2343 	}
2344 #else
2345 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2346 		return -EINVAL;
2347 #endif
2348 	case Opt_data_err:
2349 		if (result.uint_32 == Opt_data_err_abort)
2350 			ctx_set_mount_opt(ctx, m->mount_opt);
2351 		else if (result.uint_32 == Opt_data_err_ignore)
2352 			ctx_clear_mount_opt(ctx, m->mount_opt);
2353 		return 0;
2354 	case Opt_mb_optimize_scan:
2355 		if (result.int_32 == 1) {
2356 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2357 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2358 		} else if (result.int_32 == 0) {
2359 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2360 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2361 		} else {
2362 			ext4_msg(NULL, KERN_WARNING,
2363 				 "mb_optimize_scan should be set to 0 or 1.");
2364 			return -EINVAL;
2365 		}
2366 		return 0;
2367 	}
2368 
2369 	/*
2370 	 * At this point we should only be getting options requiring MOPT_SET,
2371 	 * or MOPT_CLEAR. Anything else is a bug
2372 	 */
2373 	if (m->token == Opt_err) {
2374 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2375 			 param->key);
2376 		WARN_ON(1);
2377 		return -EINVAL;
2378 	}
2379 
2380 	else {
2381 		unsigned int set = 0;
2382 
2383 		if ((param->type == fs_value_is_flag) ||
2384 		    result.uint_32 > 0)
2385 			set = 1;
2386 
2387 		if (m->flags & MOPT_CLEAR)
2388 			set = !set;
2389 		else if (unlikely(!(m->flags & MOPT_SET))) {
2390 			ext4_msg(NULL, KERN_WARNING,
2391 				 "buggy handling of option %s",
2392 				 param->key);
2393 			WARN_ON(1);
2394 			return -EINVAL;
2395 		}
2396 		if (m->flags & MOPT_2) {
2397 			if (set != 0)
2398 				ctx_set_mount_opt2(ctx, m->mount_opt);
2399 			else
2400 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2401 		} else {
2402 			if (set != 0)
2403 				ctx_set_mount_opt(ctx, m->mount_opt);
2404 			else
2405 				ctx_clear_mount_opt(ctx, m->mount_opt);
2406 		}
2407 	}
2408 
2409 	return 0;
2410 }
2411 
parse_options(struct fs_context * fc,char * options)2412 static int parse_options(struct fs_context *fc, char *options)
2413 {
2414 	struct fs_parameter param;
2415 	int ret;
2416 	char *key;
2417 
2418 	if (!options)
2419 		return 0;
2420 
2421 	while ((key = strsep(&options, ",")) != NULL) {
2422 		if (*key) {
2423 			size_t v_len = 0;
2424 			char *value = strchr(key, '=');
2425 
2426 			param.type = fs_value_is_flag;
2427 			param.string = NULL;
2428 
2429 			if (value) {
2430 				if (value == key)
2431 					continue;
2432 
2433 				*value++ = 0;
2434 				v_len = strlen(value);
2435 				param.string = kmemdup_nul(value, v_len,
2436 							   GFP_KERNEL);
2437 				if (!param.string)
2438 					return -ENOMEM;
2439 				param.type = fs_value_is_string;
2440 			}
2441 
2442 			param.key = key;
2443 			param.size = v_len;
2444 
2445 			ret = ext4_parse_param(fc, &param);
2446 			kfree(param.string);
2447 			if (ret < 0)
2448 				return ret;
2449 		}
2450 	}
2451 
2452 	ret = ext4_validate_options(fc);
2453 	if (ret < 0)
2454 		return ret;
2455 
2456 	return 0;
2457 }
2458 
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2459 static int parse_apply_sb_mount_options(struct super_block *sb,
2460 					struct ext4_fs_context *m_ctx)
2461 {
2462 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2463 	char *s_mount_opts = NULL;
2464 	struct ext4_fs_context *s_ctx = NULL;
2465 	struct fs_context *fc = NULL;
2466 	int ret = -ENOMEM;
2467 
2468 	if (!sbi->s_es->s_mount_opts[0])
2469 		return 0;
2470 
2471 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2472 				sizeof(sbi->s_es->s_mount_opts),
2473 				GFP_KERNEL);
2474 	if (!s_mount_opts)
2475 		return ret;
2476 
2477 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2478 	if (!fc)
2479 		goto out_free;
2480 
2481 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2482 	if (!s_ctx)
2483 		goto out_free;
2484 
2485 	fc->fs_private = s_ctx;
2486 	fc->s_fs_info = sbi;
2487 
2488 	ret = parse_options(fc, s_mount_opts);
2489 	if (ret < 0)
2490 		goto parse_failed;
2491 
2492 	ret = ext4_check_opt_consistency(fc, sb);
2493 	if (ret < 0) {
2494 parse_failed:
2495 		ext4_msg(sb, KERN_WARNING,
2496 			 "failed to parse options in superblock: %s",
2497 			 s_mount_opts);
2498 		ret = 0;
2499 		goto out_free;
2500 	}
2501 
2502 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2503 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2504 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2505 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2506 
2507 	ext4_apply_options(fc, sb);
2508 	ret = 0;
2509 
2510 out_free:
2511 	if (fc) {
2512 		ext4_fc_free(fc);
2513 		kfree(fc);
2514 	}
2515 	kfree(s_mount_opts);
2516 	return ret;
2517 }
2518 
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2519 static void ext4_apply_quota_options(struct fs_context *fc,
2520 				     struct super_block *sb)
2521 {
2522 #ifdef CONFIG_QUOTA
2523 	bool quota_feature = ext4_has_feature_quota(sb);
2524 	struct ext4_fs_context *ctx = fc->fs_private;
2525 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2526 	char *qname;
2527 	int i;
2528 
2529 	if (quota_feature)
2530 		return;
2531 
2532 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2533 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2534 			if (!(ctx->qname_spec & (1 << i)))
2535 				continue;
2536 
2537 			qname = ctx->s_qf_names[i]; /* May be NULL */
2538 			if (qname)
2539 				set_opt(sb, QUOTA);
2540 			ctx->s_qf_names[i] = NULL;
2541 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2542 						lockdep_is_held(&sb->s_umount));
2543 			if (qname)
2544 				kfree_rcu_mightsleep(qname);
2545 		}
2546 	}
2547 
2548 	if (ctx->spec & EXT4_SPEC_JQFMT)
2549 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2550 #endif
2551 }
2552 
2553 /*
2554  * Check quota settings consistency.
2555  */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2556 static int ext4_check_quota_consistency(struct fs_context *fc,
2557 					struct super_block *sb)
2558 {
2559 #ifdef CONFIG_QUOTA
2560 	struct ext4_fs_context *ctx = fc->fs_private;
2561 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2562 	bool quota_feature = ext4_has_feature_quota(sb);
2563 	bool quota_loaded = sb_any_quota_loaded(sb);
2564 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2565 	int quota_flags, i;
2566 
2567 	/*
2568 	 * We do the test below only for project quotas. 'usrquota' and
2569 	 * 'grpquota' mount options are allowed even without quota feature
2570 	 * to support legacy quotas in quota files.
2571 	 */
2572 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2573 	    !ext4_has_feature_project(sb)) {
2574 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2575 			 "Cannot enable project quota enforcement.");
2576 		return -EINVAL;
2577 	}
2578 
2579 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2580 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2581 	if (quota_loaded &&
2582 	    ctx->mask_s_mount_opt & quota_flags &&
2583 	    !ctx_test_mount_opt(ctx, quota_flags))
2584 		goto err_quota_change;
2585 
2586 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2587 
2588 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2589 			if (!(ctx->qname_spec & (1 << i)))
2590 				continue;
2591 
2592 			if (quota_loaded &&
2593 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2594 				goto err_jquota_change;
2595 
2596 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2597 			    strcmp(get_qf_name(sb, sbi, i),
2598 				   ctx->s_qf_names[i]) != 0)
2599 				goto err_jquota_specified;
2600 		}
2601 
2602 		if (quota_feature) {
2603 			ext4_msg(NULL, KERN_INFO,
2604 				 "Journaled quota options ignored when "
2605 				 "QUOTA feature is enabled");
2606 			return 0;
2607 		}
2608 	}
2609 
2610 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2611 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2612 			goto err_jquota_change;
2613 		if (quota_feature) {
2614 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2615 				 "ignored when QUOTA feature is enabled");
2616 			return 0;
2617 		}
2618 	}
2619 
2620 	/* Make sure we don't mix old and new quota format */
2621 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2622 		       ctx->s_qf_names[USRQUOTA]);
2623 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2624 		       ctx->s_qf_names[GRPQUOTA]);
2625 
2626 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2627 		    test_opt(sb, USRQUOTA));
2628 
2629 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2630 		    test_opt(sb, GRPQUOTA));
2631 
2632 	if (usr_qf_name) {
2633 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2634 		usrquota = false;
2635 	}
2636 	if (grp_qf_name) {
2637 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2638 		grpquota = false;
2639 	}
2640 
2641 	if (usr_qf_name || grp_qf_name) {
2642 		if (usrquota || grpquota) {
2643 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2644 				 "format mixing");
2645 			return -EINVAL;
2646 		}
2647 
2648 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2649 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2650 				 "not specified");
2651 			return -EINVAL;
2652 		}
2653 	}
2654 
2655 	return 0;
2656 
2657 err_quota_change:
2658 	ext4_msg(NULL, KERN_ERR,
2659 		 "Cannot change quota options when quota turned on");
2660 	return -EINVAL;
2661 err_jquota_change:
2662 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2663 		 "options when quota turned on");
2664 	return -EINVAL;
2665 err_jquota_specified:
2666 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2667 		 QTYPE2NAME(i));
2668 	return -EINVAL;
2669 #else
2670 	return 0;
2671 #endif
2672 }
2673 
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2674 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2675 					    struct super_block *sb)
2676 {
2677 	const struct ext4_fs_context *ctx = fc->fs_private;
2678 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2679 
2680 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2681 		return 0;
2682 
2683 	if (!ext4_has_feature_encrypt(sb)) {
2684 		ext4_msg(NULL, KERN_WARNING,
2685 			 "test_dummy_encryption requires encrypt feature");
2686 		return -EINVAL;
2687 	}
2688 	/*
2689 	 * This mount option is just for testing, and it's not worthwhile to
2690 	 * implement the extra complexity (e.g. RCU protection) that would be
2691 	 * needed to allow it to be set or changed during remount.  We do allow
2692 	 * it to be specified during remount, but only if there is no change.
2693 	 */
2694 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2695 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2696 						 &ctx->dummy_enc_policy))
2697 			return 0;
2698 		ext4_msg(NULL, KERN_WARNING,
2699 			 "Can't set or change test_dummy_encryption on remount");
2700 		return -EINVAL;
2701 	}
2702 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2703 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2704 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2705 						 &ctx->dummy_enc_policy))
2706 			return 0;
2707 		ext4_msg(NULL, KERN_WARNING,
2708 			 "Conflicting test_dummy_encryption options");
2709 		return -EINVAL;
2710 	}
2711 	return 0;
2712 }
2713 
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2714 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2715 					     struct super_block *sb)
2716 {
2717 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2718 	    /* if already set, it was already verified to be the same */
2719 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2720 		return;
2721 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2722 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2723 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2724 }
2725 
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2726 static int ext4_check_opt_consistency(struct fs_context *fc,
2727 				      struct super_block *sb)
2728 {
2729 	struct ext4_fs_context *ctx = fc->fs_private;
2730 	struct ext4_sb_info *sbi = fc->s_fs_info;
2731 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2732 	int err;
2733 
2734 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2735 		ext4_msg(NULL, KERN_ERR,
2736 			 "Mount option(s) incompatible with ext2");
2737 		return -EINVAL;
2738 	}
2739 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2740 		ext4_msg(NULL, KERN_ERR,
2741 			 "Mount option(s) incompatible with ext3");
2742 		return -EINVAL;
2743 	}
2744 
2745 	if (ctx->s_want_extra_isize >
2746 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2747 		ext4_msg(NULL, KERN_ERR,
2748 			 "Invalid want_extra_isize %d",
2749 			 ctx->s_want_extra_isize);
2750 		return -EINVAL;
2751 	}
2752 
2753 	err = ext4_check_test_dummy_encryption(fc, sb);
2754 	if (err)
2755 		return err;
2756 
2757 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2758 		if (!sbi->s_journal) {
2759 			ext4_msg(NULL, KERN_WARNING,
2760 				 "Remounting file system with no journal "
2761 				 "so ignoring journalled data option");
2762 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2763 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2764 			   test_opt(sb, DATA_FLAGS)) {
2765 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2766 				 "on remount");
2767 			return -EINVAL;
2768 		}
2769 	}
2770 
2771 	if (is_remount) {
2772 		if (!sbi->s_journal &&
2773 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2774 			ext4_msg(NULL, KERN_WARNING,
2775 				 "Remounting fs w/o journal so ignoring data_err option");
2776 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2777 		}
2778 
2779 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2780 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2781 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2782 				 "both data=journal and dax");
2783 			return -EINVAL;
2784 		}
2785 
2786 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2787 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2788 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2789 fail_dax_change_remount:
2790 			ext4_msg(NULL, KERN_ERR, "can't change "
2791 				 "dax mount option while remounting");
2792 			return -EINVAL;
2793 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2794 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2795 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2796 			goto fail_dax_change_remount;
2797 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2798 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2799 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2800 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2801 			goto fail_dax_change_remount;
2802 		}
2803 	}
2804 
2805 	return ext4_check_quota_consistency(fc, sb);
2806 }
2807 
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2808 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2809 {
2810 	struct ext4_fs_context *ctx = fc->fs_private;
2811 	struct ext4_sb_info *sbi = fc->s_fs_info;
2812 
2813 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2814 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2815 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2816 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2817 	sb->s_flags &= ~ctx->mask_s_flags;
2818 	sb->s_flags |= ctx->vals_s_flags;
2819 
2820 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2821 	APPLY(s_commit_interval);
2822 	APPLY(s_stripe);
2823 	APPLY(s_max_batch_time);
2824 	APPLY(s_min_batch_time);
2825 	APPLY(s_want_extra_isize);
2826 	APPLY(s_inode_readahead_blks);
2827 	APPLY(s_max_dir_size_kb);
2828 	APPLY(s_li_wait_mult);
2829 	APPLY(s_resgid);
2830 	APPLY(s_resuid);
2831 
2832 #ifdef CONFIG_EXT4_DEBUG
2833 	APPLY(s_fc_debug_max_replay);
2834 #endif
2835 
2836 	ext4_apply_quota_options(fc, sb);
2837 	ext4_apply_test_dummy_encryption(ctx, sb);
2838 }
2839 
2840 
ext4_validate_options(struct fs_context * fc)2841 static int ext4_validate_options(struct fs_context *fc)
2842 {
2843 #ifdef CONFIG_QUOTA
2844 	struct ext4_fs_context *ctx = fc->fs_private;
2845 	char *usr_qf_name, *grp_qf_name;
2846 
2847 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2848 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2849 
2850 	if (usr_qf_name || grp_qf_name) {
2851 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2852 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2853 
2854 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2855 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2856 
2857 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2858 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2859 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2860 				 "format mixing");
2861 			return -EINVAL;
2862 		}
2863 	}
2864 #endif
2865 	return 1;
2866 }
2867 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2868 static inline void ext4_show_quota_options(struct seq_file *seq,
2869 					   struct super_block *sb)
2870 {
2871 #if defined(CONFIG_QUOTA)
2872 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2873 	char *usr_qf_name, *grp_qf_name;
2874 
2875 	if (sbi->s_jquota_fmt) {
2876 		char *fmtname = "";
2877 
2878 		switch (sbi->s_jquota_fmt) {
2879 		case QFMT_VFS_OLD:
2880 			fmtname = "vfsold";
2881 			break;
2882 		case QFMT_VFS_V0:
2883 			fmtname = "vfsv0";
2884 			break;
2885 		case QFMT_VFS_V1:
2886 			fmtname = "vfsv1";
2887 			break;
2888 		}
2889 		seq_printf(seq, ",jqfmt=%s", fmtname);
2890 	}
2891 
2892 	rcu_read_lock();
2893 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2894 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2895 	if (usr_qf_name)
2896 		seq_show_option(seq, "usrjquota", usr_qf_name);
2897 	if (grp_qf_name)
2898 		seq_show_option(seq, "grpjquota", grp_qf_name);
2899 	rcu_read_unlock();
2900 #endif
2901 }
2902 
token2str(int token)2903 static const char *token2str(int token)
2904 {
2905 	const struct fs_parameter_spec *spec;
2906 
2907 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2908 		if (spec->opt == token && !spec->type)
2909 			break;
2910 	return spec->name;
2911 }
2912 
2913 /*
2914  * Show an option if
2915  *  - it's set to a non-default value OR
2916  *  - if the per-sb default is different from the global default
2917  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2918 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2919 			      int nodefs)
2920 {
2921 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2922 	struct ext4_super_block *es = sbi->s_es;
2923 	int def_errors;
2924 	const struct mount_opts *m;
2925 	char sep = nodefs ? '\n' : ',';
2926 
2927 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2928 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2929 
2930 	if (sbi->s_sb_block != 1)
2931 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2932 
2933 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2934 		int want_set = m->flags & MOPT_SET;
2935 		int opt_2 = m->flags & MOPT_2;
2936 		unsigned int mount_opt, def_mount_opt;
2937 
2938 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2939 		    m->flags & MOPT_SKIP)
2940 			continue;
2941 
2942 		if (opt_2) {
2943 			mount_opt = sbi->s_mount_opt2;
2944 			def_mount_opt = sbi->s_def_mount_opt2;
2945 		} else {
2946 			mount_opt = sbi->s_mount_opt;
2947 			def_mount_opt = sbi->s_def_mount_opt;
2948 		}
2949 		/* skip if same as the default */
2950 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2951 			continue;
2952 		/* select Opt_noFoo vs Opt_Foo */
2953 		if ((want_set &&
2954 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2955 		    (!want_set && (mount_opt & m->mount_opt)))
2956 			continue;
2957 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2958 	}
2959 
2960 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2961 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2962 		SEQ_OPTS_PRINT("resuid=%u",
2963 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2964 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2965 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2966 		SEQ_OPTS_PRINT("resgid=%u",
2967 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2968 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2969 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2970 		SEQ_OPTS_PUTS("errors=remount-ro");
2971 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2972 		SEQ_OPTS_PUTS("errors=continue");
2973 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2974 		SEQ_OPTS_PUTS("errors=panic");
2975 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2976 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2977 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2978 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2979 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2980 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2981 	if (nodefs && sb->s_flags & SB_I_VERSION)
2982 		SEQ_OPTS_PUTS("i_version");
2983 	if (nodefs || sbi->s_stripe)
2984 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2985 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2986 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2987 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2988 			SEQ_OPTS_PUTS("data=journal");
2989 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2990 			SEQ_OPTS_PUTS("data=ordered");
2991 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2992 			SEQ_OPTS_PUTS("data=writeback");
2993 	}
2994 	if (nodefs ||
2995 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2996 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2997 			       sbi->s_inode_readahead_blks);
2998 
2999 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3000 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3001 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3002 	if (nodefs || sbi->s_max_dir_size_kb)
3003 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3004 	if (test_opt(sb, DATA_ERR_ABORT))
3005 		SEQ_OPTS_PUTS("data_err=abort");
3006 
3007 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3008 
3009 	if (sb->s_flags & SB_INLINECRYPT)
3010 		SEQ_OPTS_PUTS("inlinecrypt");
3011 
3012 	if (test_opt(sb, DAX_ALWAYS)) {
3013 		if (IS_EXT2_SB(sb))
3014 			SEQ_OPTS_PUTS("dax");
3015 		else
3016 			SEQ_OPTS_PUTS("dax=always");
3017 	} else if (test_opt2(sb, DAX_NEVER)) {
3018 		SEQ_OPTS_PUTS("dax=never");
3019 	} else if (test_opt2(sb, DAX_INODE)) {
3020 		SEQ_OPTS_PUTS("dax=inode");
3021 	}
3022 
3023 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3024 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3025 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3026 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3027 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3028 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3029 	}
3030 
3031 	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3032 		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3033 
3034 	if (ext4_emergency_ro(sb))
3035 		SEQ_OPTS_PUTS("emergency_ro");
3036 
3037 	if (ext4_forced_shutdown(sb))
3038 		SEQ_OPTS_PUTS("shutdown");
3039 
3040 	ext4_show_quota_options(seq, sb);
3041 	return 0;
3042 }
3043 
ext4_show_options(struct seq_file * seq,struct dentry * root)3044 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3045 {
3046 	return _ext4_show_options(seq, root->d_sb, 0);
3047 }
3048 
ext4_seq_options_show(struct seq_file * seq,void * offset)3049 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3050 {
3051 	struct super_block *sb = seq->private;
3052 	int rc;
3053 
3054 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3055 	rc = _ext4_show_options(seq, sb, 1);
3056 	seq_putc(seq, '\n');
3057 	return rc;
3058 }
3059 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3060 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3061 			    int read_only)
3062 {
3063 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3064 	int err = 0;
3065 
3066 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3067 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3068 			 "forcing read-only mode");
3069 		err = -EROFS;
3070 		goto done;
3071 	}
3072 	if (read_only)
3073 		goto done;
3074 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3075 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3076 			 "running e2fsck is recommended");
3077 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3078 		ext4_msg(sb, KERN_WARNING,
3079 			 "warning: mounting fs with errors, "
3080 			 "running e2fsck is recommended");
3081 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3082 		 le16_to_cpu(es->s_mnt_count) >=
3083 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3084 		ext4_msg(sb, KERN_WARNING,
3085 			 "warning: maximal mount count reached, "
3086 			 "running e2fsck is recommended");
3087 	else if (le32_to_cpu(es->s_checkinterval) &&
3088 		 (ext4_get_tstamp(es, s_lastcheck) +
3089 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3090 		ext4_msg(sb, KERN_WARNING,
3091 			 "warning: checktime reached, "
3092 			 "running e2fsck is recommended");
3093 	if (!sbi->s_journal)
3094 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3095 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3096 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3097 	le16_add_cpu(&es->s_mnt_count, 1);
3098 	ext4_update_tstamp(es, s_mtime);
3099 	if (sbi->s_journal) {
3100 		ext4_set_feature_journal_needs_recovery(sb);
3101 		if (ext4_has_feature_orphan_file(sb))
3102 			ext4_set_feature_orphan_present(sb);
3103 	}
3104 
3105 	err = ext4_commit_super(sb);
3106 done:
3107 	if (test_opt(sb, DEBUG))
3108 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3109 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3110 			sb->s_blocksize,
3111 			sbi->s_groups_count,
3112 			EXT4_BLOCKS_PER_GROUP(sb),
3113 			EXT4_INODES_PER_GROUP(sb),
3114 			sbi->s_mount_opt, sbi->s_mount_opt2);
3115 	return err;
3116 }
3117 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3118 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3119 {
3120 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3121 	struct flex_groups **old_groups, **new_groups;
3122 	int size, i, j;
3123 
3124 	if (!sbi->s_log_groups_per_flex)
3125 		return 0;
3126 
3127 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3128 	if (size <= sbi->s_flex_groups_allocated)
3129 		return 0;
3130 
3131 	new_groups = kvzalloc(roundup_pow_of_two(size *
3132 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3133 	if (!new_groups) {
3134 		ext4_msg(sb, KERN_ERR,
3135 			 "not enough memory for %d flex group pointers", size);
3136 		return -ENOMEM;
3137 	}
3138 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3139 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3140 					 sizeof(struct flex_groups)),
3141 					 GFP_KERNEL);
3142 		if (!new_groups[i]) {
3143 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3144 				kvfree(new_groups[j]);
3145 			kvfree(new_groups);
3146 			ext4_msg(sb, KERN_ERR,
3147 				 "not enough memory for %d flex groups", size);
3148 			return -ENOMEM;
3149 		}
3150 	}
3151 	rcu_read_lock();
3152 	old_groups = rcu_dereference(sbi->s_flex_groups);
3153 	if (old_groups)
3154 		memcpy(new_groups, old_groups,
3155 		       (sbi->s_flex_groups_allocated *
3156 			sizeof(struct flex_groups *)));
3157 	rcu_read_unlock();
3158 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3159 	sbi->s_flex_groups_allocated = size;
3160 	if (old_groups)
3161 		ext4_kvfree_array_rcu(old_groups);
3162 	return 0;
3163 }
3164 
ext4_fill_flex_info(struct super_block * sb)3165 static int ext4_fill_flex_info(struct super_block *sb)
3166 {
3167 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3168 	struct ext4_group_desc *gdp = NULL;
3169 	struct flex_groups *fg;
3170 	ext4_group_t flex_group;
3171 	int i, err;
3172 
3173 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3174 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3175 		sbi->s_log_groups_per_flex = 0;
3176 		return 1;
3177 	}
3178 
3179 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3180 	if (err)
3181 		goto failed;
3182 
3183 	for (i = 0; i < sbi->s_groups_count; i++) {
3184 		gdp = ext4_get_group_desc(sb, i, NULL);
3185 
3186 		flex_group = ext4_flex_group(sbi, i);
3187 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3188 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3189 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3190 			     &fg->free_clusters);
3191 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3192 	}
3193 
3194 	return 1;
3195 failed:
3196 	return 0;
3197 }
3198 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3199 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3200 				   struct ext4_group_desc *gdp)
3201 {
3202 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3203 	__u16 crc = 0;
3204 	__le32 le_group = cpu_to_le32(block_group);
3205 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3206 
3207 	if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3208 		/* Use new metadata_csum algorithm */
3209 		__u32 csum32;
3210 		__u16 dummy_csum = 0;
3211 
3212 		csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group,
3213 				     sizeof(le_group));
3214 		csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset);
3215 		csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum,
3216 				     sizeof(dummy_csum));
3217 		offset += sizeof(dummy_csum);
3218 		if (offset < sbi->s_desc_size)
3219 			csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset,
3220 					     sbi->s_desc_size - offset);
3221 
3222 		crc = csum32 & 0xFFFF;
3223 		goto out;
3224 	}
3225 
3226 	/* old crc16 code */
3227 	if (!ext4_has_feature_gdt_csum(sb))
3228 		return 0;
3229 
3230 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3231 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3232 	crc = crc16(crc, (__u8 *)gdp, offset);
3233 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3234 	/* for checksum of struct ext4_group_desc do the rest...*/
3235 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3236 		crc = crc16(crc, (__u8 *)gdp + offset,
3237 			    sbi->s_desc_size - offset);
3238 
3239 out:
3240 	return cpu_to_le16(crc);
3241 }
3242 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3243 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3244 				struct ext4_group_desc *gdp)
3245 {
3246 	if (ext4_has_group_desc_csum(sb) &&
3247 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3248 		return 0;
3249 
3250 	return 1;
3251 }
3252 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3253 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3254 			      struct ext4_group_desc *gdp)
3255 {
3256 	if (!ext4_has_group_desc_csum(sb))
3257 		return;
3258 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3259 }
3260 
3261 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3262 static int ext4_check_descriptors(struct super_block *sb,
3263 				  ext4_fsblk_t sb_block,
3264 				  ext4_group_t *first_not_zeroed)
3265 {
3266 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3267 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3268 	ext4_fsblk_t last_block;
3269 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3270 	ext4_fsblk_t block_bitmap;
3271 	ext4_fsblk_t inode_bitmap;
3272 	ext4_fsblk_t inode_table;
3273 	int flexbg_flag = 0;
3274 	ext4_group_t i, grp = sbi->s_groups_count;
3275 
3276 	if (ext4_has_feature_flex_bg(sb))
3277 		flexbg_flag = 1;
3278 
3279 	ext4_debug("Checking group descriptors");
3280 
3281 	for (i = 0; i < sbi->s_groups_count; i++) {
3282 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3283 
3284 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3285 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3286 		else
3287 			last_block = first_block +
3288 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3289 
3290 		if ((grp == sbi->s_groups_count) &&
3291 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3292 			grp = i;
3293 
3294 		block_bitmap = ext4_block_bitmap(sb, gdp);
3295 		if (block_bitmap == sb_block) {
3296 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3297 				 "Block bitmap for group %u overlaps "
3298 				 "superblock", i);
3299 			if (!sb_rdonly(sb))
3300 				return 0;
3301 		}
3302 		if (block_bitmap >= sb_block + 1 &&
3303 		    block_bitmap <= last_bg_block) {
3304 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3305 				 "Block bitmap for group %u overlaps "
3306 				 "block group descriptors", i);
3307 			if (!sb_rdonly(sb))
3308 				return 0;
3309 		}
3310 		if (block_bitmap < first_block || block_bitmap > last_block) {
3311 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3312 			       "Block bitmap for group %u not in group "
3313 			       "(block %llu)!", i, block_bitmap);
3314 			return 0;
3315 		}
3316 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3317 		if (inode_bitmap == sb_block) {
3318 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3319 				 "Inode bitmap for group %u overlaps "
3320 				 "superblock", i);
3321 			if (!sb_rdonly(sb))
3322 				return 0;
3323 		}
3324 		if (inode_bitmap >= sb_block + 1 &&
3325 		    inode_bitmap <= last_bg_block) {
3326 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3327 				 "Inode bitmap for group %u overlaps "
3328 				 "block group descriptors", i);
3329 			if (!sb_rdonly(sb))
3330 				return 0;
3331 		}
3332 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3333 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3334 			       "Inode bitmap for group %u not in group "
3335 			       "(block %llu)!", i, inode_bitmap);
3336 			return 0;
3337 		}
3338 		inode_table = ext4_inode_table(sb, gdp);
3339 		if (inode_table == sb_block) {
3340 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3341 				 "Inode table for group %u overlaps "
3342 				 "superblock", i);
3343 			if (!sb_rdonly(sb))
3344 				return 0;
3345 		}
3346 		if (inode_table >= sb_block + 1 &&
3347 		    inode_table <= last_bg_block) {
3348 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3349 				 "Inode table for group %u overlaps "
3350 				 "block group descriptors", i);
3351 			if (!sb_rdonly(sb))
3352 				return 0;
3353 		}
3354 		if (inode_table < first_block ||
3355 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3356 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3357 			       "Inode table for group %u not in group "
3358 			       "(block %llu)!", i, inode_table);
3359 			return 0;
3360 		}
3361 		ext4_lock_group(sb, i);
3362 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3363 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3364 				 "Checksum for group %u failed (%u!=%u)",
3365 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3366 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3367 			if (!sb_rdonly(sb)) {
3368 				ext4_unlock_group(sb, i);
3369 				return 0;
3370 			}
3371 		}
3372 		ext4_unlock_group(sb, i);
3373 		if (!flexbg_flag)
3374 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3375 	}
3376 	if (NULL != first_not_zeroed)
3377 		*first_not_zeroed = grp;
3378 	return 1;
3379 }
3380 
3381 /*
3382  * Maximal extent format file size.
3383  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3384  * extent format containers, within a sector_t, and within i_blocks
3385  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3386  * so that won't be a limiting factor.
3387  *
3388  * However there is other limiting factor. We do store extents in the form
3389  * of starting block and length, hence the resulting length of the extent
3390  * covering maximum file size must fit into on-disk format containers as
3391  * well. Given that length is always by 1 unit bigger than max unit (because
3392  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3393  *
3394  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3395  */
ext4_max_size(int blkbits,int has_huge_files)3396 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3397 {
3398 	loff_t res;
3399 	loff_t upper_limit = MAX_LFS_FILESIZE;
3400 
3401 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3402 
3403 	if (!has_huge_files) {
3404 		upper_limit = (1LL << 32) - 1;
3405 
3406 		/* total blocks in file system block size */
3407 		upper_limit >>= (blkbits - 9);
3408 		upper_limit <<= blkbits;
3409 	}
3410 
3411 	/*
3412 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3413 	 * by one fs block, so ee_len can cover the extent of maximum file
3414 	 * size
3415 	 */
3416 	res = (1LL << 32) - 1;
3417 	res <<= blkbits;
3418 
3419 	/* Sanity check against vm- & vfs- imposed limits */
3420 	if (res > upper_limit)
3421 		res = upper_limit;
3422 
3423 	return res;
3424 }
3425 
3426 /*
3427  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3428  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3429  * We need to be 1 filesystem block less than the 2^48 sector limit.
3430  */
ext4_max_bitmap_size(int bits,int has_huge_files)3431 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3432 {
3433 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3434 	int meta_blocks;
3435 	unsigned int ppb = 1 << (bits - 2);
3436 
3437 	/*
3438 	 * This is calculated to be the largest file size for a dense, block
3439 	 * mapped file such that the file's total number of 512-byte sectors,
3440 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3441 	 *
3442 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3443 	 * number of 512-byte sectors of the file.
3444 	 */
3445 	if (!has_huge_files) {
3446 		/*
3447 		 * !has_huge_files or implies that the inode i_block field
3448 		 * represents total file blocks in 2^32 512-byte sectors ==
3449 		 * size of vfs inode i_blocks * 8
3450 		 */
3451 		upper_limit = (1LL << 32) - 1;
3452 
3453 		/* total blocks in file system block size */
3454 		upper_limit >>= (bits - 9);
3455 
3456 	} else {
3457 		/*
3458 		 * We use 48 bit ext4_inode i_blocks
3459 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3460 		 * represent total number of blocks in
3461 		 * file system block size
3462 		 */
3463 		upper_limit = (1LL << 48) - 1;
3464 
3465 	}
3466 
3467 	/* Compute how many blocks we can address by block tree */
3468 	res += ppb;
3469 	res += ppb * ppb;
3470 	res += ((loff_t)ppb) * ppb * ppb;
3471 	/* Compute how many metadata blocks are needed */
3472 	meta_blocks = 1;
3473 	meta_blocks += 1 + ppb;
3474 	meta_blocks += 1 + ppb + ppb * ppb;
3475 	/* Does block tree limit file size? */
3476 	if (res + meta_blocks <= upper_limit)
3477 		goto check_lfs;
3478 
3479 	res = upper_limit;
3480 	/* How many metadata blocks are needed for addressing upper_limit? */
3481 	upper_limit -= EXT4_NDIR_BLOCKS;
3482 	/* indirect blocks */
3483 	meta_blocks = 1;
3484 	upper_limit -= ppb;
3485 	/* double indirect blocks */
3486 	if (upper_limit < ppb * ppb) {
3487 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3488 		res -= meta_blocks;
3489 		goto check_lfs;
3490 	}
3491 	meta_blocks += 1 + ppb;
3492 	upper_limit -= ppb * ppb;
3493 	/* tripple indirect blocks for the rest */
3494 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3495 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3496 	res -= meta_blocks;
3497 check_lfs:
3498 	res <<= bits;
3499 	if (res > MAX_LFS_FILESIZE)
3500 		res = MAX_LFS_FILESIZE;
3501 
3502 	return res;
3503 }
3504 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3505 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3506 				   ext4_fsblk_t logical_sb_block, int nr)
3507 {
3508 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3509 	ext4_group_t bg, first_meta_bg;
3510 	int has_super = 0;
3511 
3512 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3513 
3514 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3515 		return logical_sb_block + nr + 1;
3516 	bg = sbi->s_desc_per_block * nr;
3517 	if (ext4_bg_has_super(sb, bg))
3518 		has_super = 1;
3519 
3520 	/*
3521 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3522 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3523 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3524 	 * compensate.
3525 	 */
3526 	if (sb->s_blocksize == 1024 && nr == 0 &&
3527 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3528 		has_super++;
3529 
3530 	return (has_super + ext4_group_first_block_no(sb, bg));
3531 }
3532 
3533 /**
3534  * ext4_get_stripe_size: Get the stripe size.
3535  * @sbi: In memory super block info
3536  *
3537  * If we have specified it via mount option, then
3538  * use the mount option value. If the value specified at mount time is
3539  * greater than the blocks per group use the super block value.
3540  * If the super block value is greater than blocks per group return 0.
3541  * Allocator needs it be less than blocks per group.
3542  *
3543  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3544 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3545 {
3546 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3547 	unsigned long stripe_width =
3548 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3549 	int ret;
3550 
3551 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3552 		ret = sbi->s_stripe;
3553 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3554 		ret = stripe_width;
3555 	else if (stride && stride <= sbi->s_blocks_per_group)
3556 		ret = stride;
3557 	else
3558 		ret = 0;
3559 
3560 	/*
3561 	 * If the stripe width is 1, this makes no sense and
3562 	 * we set it to 0 to turn off stripe handling code.
3563 	 */
3564 	if (ret <= 1)
3565 		ret = 0;
3566 
3567 	return ret;
3568 }
3569 
3570 /*
3571  * Check whether this filesystem can be mounted based on
3572  * the features present and the RDONLY/RDWR mount requested.
3573  * Returns 1 if this filesystem can be mounted as requested,
3574  * 0 if it cannot be.
3575  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3576 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3577 {
3578 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3579 		ext4_msg(sb, KERN_ERR,
3580 			"Couldn't mount because of "
3581 			"unsupported optional features (%x)",
3582 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3583 			~EXT4_FEATURE_INCOMPAT_SUPP));
3584 		return 0;
3585 	}
3586 
3587 	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3588 		ext4_msg(sb, KERN_ERR,
3589 			 "Filesystem with casefold feature cannot be "
3590 			 "mounted without CONFIG_UNICODE");
3591 		return 0;
3592 	}
3593 
3594 	if (readonly)
3595 		return 1;
3596 
3597 	if (ext4_has_feature_readonly(sb)) {
3598 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3599 		sb->s_flags |= SB_RDONLY;
3600 		return 1;
3601 	}
3602 
3603 	/* Check that feature set is OK for a read-write mount */
3604 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3605 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3606 			 "unsupported optional features (%x)",
3607 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3608 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3609 		return 0;
3610 	}
3611 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3612 		ext4_msg(sb, KERN_ERR,
3613 			 "Can't support bigalloc feature without "
3614 			 "extents feature\n");
3615 		return 0;
3616 	}
3617 
3618 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3619 	if (!readonly && (ext4_has_feature_quota(sb) ||
3620 			  ext4_has_feature_project(sb))) {
3621 		ext4_msg(sb, KERN_ERR,
3622 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3623 		return 0;
3624 	}
3625 #endif  /* CONFIG_QUOTA */
3626 	return 1;
3627 }
3628 
3629 /*
3630  * This function is called once a day if we have errors logged
3631  * on the file system
3632  */
print_daily_error_info(struct timer_list * t)3633 static void print_daily_error_info(struct timer_list *t)
3634 {
3635 	struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report);
3636 	struct super_block *sb = sbi->s_sb;
3637 	struct ext4_super_block *es = sbi->s_es;
3638 
3639 	if (es->s_error_count)
3640 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3641 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3642 			 le32_to_cpu(es->s_error_count));
3643 	if (es->s_first_error_time) {
3644 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3645 		       sb->s_id,
3646 		       ext4_get_tstamp(es, s_first_error_time),
3647 		       (int) sizeof(es->s_first_error_func),
3648 		       es->s_first_error_func,
3649 		       le32_to_cpu(es->s_first_error_line));
3650 		if (es->s_first_error_ino)
3651 			printk(KERN_CONT ": inode %u",
3652 			       le32_to_cpu(es->s_first_error_ino));
3653 		if (es->s_first_error_block)
3654 			printk(KERN_CONT ": block %llu", (unsigned long long)
3655 			       le64_to_cpu(es->s_first_error_block));
3656 		printk(KERN_CONT "\n");
3657 	}
3658 	if (es->s_last_error_time) {
3659 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3660 		       sb->s_id,
3661 		       ext4_get_tstamp(es, s_last_error_time),
3662 		       (int) sizeof(es->s_last_error_func),
3663 		       es->s_last_error_func,
3664 		       le32_to_cpu(es->s_last_error_line));
3665 		if (es->s_last_error_ino)
3666 			printk(KERN_CONT ": inode %u",
3667 			       le32_to_cpu(es->s_last_error_ino));
3668 		if (es->s_last_error_block)
3669 			printk(KERN_CONT ": block %llu", (unsigned long long)
3670 			       le64_to_cpu(es->s_last_error_block));
3671 		printk(KERN_CONT "\n");
3672 	}
3673 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3674 }
3675 
3676 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3677 static int ext4_run_li_request(struct ext4_li_request *elr)
3678 {
3679 	struct ext4_group_desc *gdp = NULL;
3680 	struct super_block *sb = elr->lr_super;
3681 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3682 	ext4_group_t group = elr->lr_next_group;
3683 	unsigned int prefetch_ios = 0;
3684 	int ret = 0;
3685 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3686 	u64 start_time;
3687 
3688 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3689 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3690 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3691 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3692 		if (group >= elr->lr_next_group) {
3693 			ret = 1;
3694 			if (elr->lr_first_not_zeroed != ngroups &&
3695 			    !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3696 			    test_opt(sb, INIT_INODE_TABLE)) {
3697 				elr->lr_next_group = elr->lr_first_not_zeroed;
3698 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3699 				ret = 0;
3700 			}
3701 		}
3702 		return ret;
3703 	}
3704 
3705 	for (; group < ngroups; group++) {
3706 		gdp = ext4_get_group_desc(sb, group, NULL);
3707 		if (!gdp) {
3708 			ret = 1;
3709 			break;
3710 		}
3711 
3712 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3713 			break;
3714 	}
3715 
3716 	if (group >= ngroups)
3717 		ret = 1;
3718 
3719 	if (!ret) {
3720 		start_time = ktime_get_ns();
3721 		ret = ext4_init_inode_table(sb, group,
3722 					    elr->lr_timeout ? 0 : 1);
3723 		trace_ext4_lazy_itable_init(sb, group);
3724 		if (elr->lr_timeout == 0) {
3725 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3726 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3727 		}
3728 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3729 		elr->lr_next_group = group + 1;
3730 	}
3731 	return ret;
3732 }
3733 
3734 /*
3735  * Remove lr_request from the list_request and free the
3736  * request structure. Should be called with li_list_mtx held
3737  */
ext4_remove_li_request(struct ext4_li_request * elr)3738 static void ext4_remove_li_request(struct ext4_li_request *elr)
3739 {
3740 	if (!elr)
3741 		return;
3742 
3743 	list_del(&elr->lr_request);
3744 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3745 	kfree(elr);
3746 }
3747 
ext4_unregister_li_request(struct super_block * sb)3748 static void ext4_unregister_li_request(struct super_block *sb)
3749 {
3750 	mutex_lock(&ext4_li_mtx);
3751 	if (!ext4_li_info) {
3752 		mutex_unlock(&ext4_li_mtx);
3753 		return;
3754 	}
3755 
3756 	mutex_lock(&ext4_li_info->li_list_mtx);
3757 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3758 	mutex_unlock(&ext4_li_info->li_list_mtx);
3759 	mutex_unlock(&ext4_li_mtx);
3760 }
3761 
3762 static struct task_struct *ext4_lazyinit_task;
3763 
3764 /*
3765  * This is the function where ext4lazyinit thread lives. It walks
3766  * through the request list searching for next scheduled filesystem.
3767  * When such a fs is found, run the lazy initialization request
3768  * (ext4_rn_li_request) and keep track of the time spend in this
3769  * function. Based on that time we compute next schedule time of
3770  * the request. When walking through the list is complete, compute
3771  * next waking time and put itself into sleep.
3772  */
ext4_lazyinit_thread(void * arg)3773 static int ext4_lazyinit_thread(void *arg)
3774 {
3775 	struct ext4_lazy_init *eli = arg;
3776 	struct list_head *pos, *n;
3777 	struct ext4_li_request *elr;
3778 	unsigned long next_wakeup, cur;
3779 
3780 	BUG_ON(NULL == eli);
3781 	set_freezable();
3782 
3783 cont_thread:
3784 	while (true) {
3785 		bool next_wakeup_initialized = false;
3786 
3787 		next_wakeup = 0;
3788 		mutex_lock(&eli->li_list_mtx);
3789 		if (list_empty(&eli->li_request_list)) {
3790 			mutex_unlock(&eli->li_list_mtx);
3791 			goto exit_thread;
3792 		}
3793 		list_for_each_safe(pos, n, &eli->li_request_list) {
3794 			int err = 0;
3795 			int progress = 0;
3796 			elr = list_entry(pos, struct ext4_li_request,
3797 					 lr_request);
3798 
3799 			if (time_before(jiffies, elr->lr_next_sched)) {
3800 				if (!next_wakeup_initialized ||
3801 				    time_before(elr->lr_next_sched, next_wakeup)) {
3802 					next_wakeup = elr->lr_next_sched;
3803 					next_wakeup_initialized = true;
3804 				}
3805 				continue;
3806 			}
3807 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3808 				if (sb_start_write_trylock(elr->lr_super)) {
3809 					progress = 1;
3810 					/*
3811 					 * We hold sb->s_umount, sb can not
3812 					 * be removed from the list, it is
3813 					 * now safe to drop li_list_mtx
3814 					 */
3815 					mutex_unlock(&eli->li_list_mtx);
3816 					err = ext4_run_li_request(elr);
3817 					sb_end_write(elr->lr_super);
3818 					mutex_lock(&eli->li_list_mtx);
3819 					n = pos->next;
3820 				}
3821 				up_read((&elr->lr_super->s_umount));
3822 			}
3823 			/* error, remove the lazy_init job */
3824 			if (err) {
3825 				ext4_remove_li_request(elr);
3826 				continue;
3827 			}
3828 			if (!progress) {
3829 				elr->lr_next_sched = jiffies +
3830 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3831 			}
3832 			if (!next_wakeup_initialized ||
3833 			    time_before(elr->lr_next_sched, next_wakeup)) {
3834 				next_wakeup = elr->lr_next_sched;
3835 				next_wakeup_initialized = true;
3836 			}
3837 		}
3838 		mutex_unlock(&eli->li_list_mtx);
3839 
3840 		try_to_freeze();
3841 
3842 		cur = jiffies;
3843 		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3844 			cond_resched();
3845 			continue;
3846 		}
3847 
3848 		schedule_timeout_interruptible(next_wakeup - cur);
3849 
3850 		if (kthread_should_stop()) {
3851 			ext4_clear_request_list();
3852 			goto exit_thread;
3853 		}
3854 	}
3855 
3856 exit_thread:
3857 	/*
3858 	 * It looks like the request list is empty, but we need
3859 	 * to check it under the li_list_mtx lock, to prevent any
3860 	 * additions into it, and of course we should lock ext4_li_mtx
3861 	 * to atomically free the list and ext4_li_info, because at
3862 	 * this point another ext4 filesystem could be registering
3863 	 * new one.
3864 	 */
3865 	mutex_lock(&ext4_li_mtx);
3866 	mutex_lock(&eli->li_list_mtx);
3867 	if (!list_empty(&eli->li_request_list)) {
3868 		mutex_unlock(&eli->li_list_mtx);
3869 		mutex_unlock(&ext4_li_mtx);
3870 		goto cont_thread;
3871 	}
3872 	mutex_unlock(&eli->li_list_mtx);
3873 	kfree(ext4_li_info);
3874 	ext4_li_info = NULL;
3875 	mutex_unlock(&ext4_li_mtx);
3876 
3877 	return 0;
3878 }
3879 
ext4_clear_request_list(void)3880 static void ext4_clear_request_list(void)
3881 {
3882 	struct list_head *pos, *n;
3883 	struct ext4_li_request *elr;
3884 
3885 	mutex_lock(&ext4_li_info->li_list_mtx);
3886 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3887 		elr = list_entry(pos, struct ext4_li_request,
3888 				 lr_request);
3889 		ext4_remove_li_request(elr);
3890 	}
3891 	mutex_unlock(&ext4_li_info->li_list_mtx);
3892 }
3893 
ext4_run_lazyinit_thread(void)3894 static int ext4_run_lazyinit_thread(void)
3895 {
3896 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3897 					 ext4_li_info, "ext4lazyinit");
3898 	if (IS_ERR(ext4_lazyinit_task)) {
3899 		int err = PTR_ERR(ext4_lazyinit_task);
3900 		ext4_clear_request_list();
3901 		kfree(ext4_li_info);
3902 		ext4_li_info = NULL;
3903 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3904 				 "initialization thread\n",
3905 				 err);
3906 		return err;
3907 	}
3908 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3909 	return 0;
3910 }
3911 
3912 /*
3913  * Check whether it make sense to run itable init. thread or not.
3914  * If there is at least one uninitialized inode table, return
3915  * corresponding group number, else the loop goes through all
3916  * groups and return total number of groups.
3917  */
ext4_has_uninit_itable(struct super_block * sb)3918 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3919 {
3920 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3921 	struct ext4_group_desc *gdp = NULL;
3922 
3923 	if (!ext4_has_group_desc_csum(sb))
3924 		return ngroups;
3925 
3926 	for (group = 0; group < ngroups; group++) {
3927 		gdp = ext4_get_group_desc(sb, group, NULL);
3928 		if (!gdp)
3929 			continue;
3930 
3931 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3932 			break;
3933 	}
3934 
3935 	return group;
3936 }
3937 
ext4_li_info_new(void)3938 static int ext4_li_info_new(void)
3939 {
3940 	struct ext4_lazy_init *eli = NULL;
3941 
3942 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3943 	if (!eli)
3944 		return -ENOMEM;
3945 
3946 	INIT_LIST_HEAD(&eli->li_request_list);
3947 	mutex_init(&eli->li_list_mtx);
3948 
3949 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3950 
3951 	ext4_li_info = eli;
3952 
3953 	return 0;
3954 }
3955 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3956 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3957 					    ext4_group_t start)
3958 {
3959 	struct ext4_li_request *elr;
3960 
3961 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3962 	if (!elr)
3963 		return NULL;
3964 
3965 	elr->lr_super = sb;
3966 	elr->lr_first_not_zeroed = start;
3967 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3968 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3969 		elr->lr_next_group = start;
3970 	} else {
3971 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3972 	}
3973 
3974 	/*
3975 	 * Randomize first schedule time of the request to
3976 	 * spread the inode table initialization requests
3977 	 * better.
3978 	 */
3979 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3980 	return elr;
3981 }
3982 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3983 int ext4_register_li_request(struct super_block *sb,
3984 			     ext4_group_t first_not_zeroed)
3985 {
3986 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3987 	struct ext4_li_request *elr = NULL;
3988 	ext4_group_t ngroups = sbi->s_groups_count;
3989 	int ret = 0;
3990 
3991 	mutex_lock(&ext4_li_mtx);
3992 	if (sbi->s_li_request != NULL) {
3993 		/*
3994 		 * Reset timeout so it can be computed again, because
3995 		 * s_li_wait_mult might have changed.
3996 		 */
3997 		sbi->s_li_request->lr_timeout = 0;
3998 		goto out;
3999 	}
4000 
4001 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
4002 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4003 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4004 		goto out;
4005 
4006 	elr = ext4_li_request_new(sb, first_not_zeroed);
4007 	if (!elr) {
4008 		ret = -ENOMEM;
4009 		goto out;
4010 	}
4011 
4012 	if (NULL == ext4_li_info) {
4013 		ret = ext4_li_info_new();
4014 		if (ret)
4015 			goto out;
4016 	}
4017 
4018 	mutex_lock(&ext4_li_info->li_list_mtx);
4019 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4020 	mutex_unlock(&ext4_li_info->li_list_mtx);
4021 
4022 	sbi->s_li_request = elr;
4023 	/*
4024 	 * set elr to NULL here since it has been inserted to
4025 	 * the request_list and the removal and free of it is
4026 	 * handled by ext4_clear_request_list from now on.
4027 	 */
4028 	elr = NULL;
4029 
4030 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4031 		ret = ext4_run_lazyinit_thread();
4032 		if (ret)
4033 			goto out;
4034 	}
4035 out:
4036 	mutex_unlock(&ext4_li_mtx);
4037 	if (ret)
4038 		kfree(elr);
4039 	return ret;
4040 }
4041 
4042 /*
4043  * We do not need to lock anything since this is called on
4044  * module unload.
4045  */
ext4_destroy_lazyinit_thread(void)4046 static void ext4_destroy_lazyinit_thread(void)
4047 {
4048 	/*
4049 	 * If thread exited earlier
4050 	 * there's nothing to be done.
4051 	 */
4052 	if (!ext4_li_info || !ext4_lazyinit_task)
4053 		return;
4054 
4055 	kthread_stop(ext4_lazyinit_task);
4056 }
4057 
set_journal_csum_feature_set(struct super_block * sb)4058 static int set_journal_csum_feature_set(struct super_block *sb)
4059 {
4060 	int ret = 1;
4061 	int compat, incompat;
4062 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4063 
4064 	if (ext4_has_feature_metadata_csum(sb)) {
4065 		/* journal checksum v3 */
4066 		compat = 0;
4067 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4068 	} else {
4069 		/* journal checksum v1 */
4070 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4071 		incompat = 0;
4072 	}
4073 
4074 	jbd2_journal_clear_features(sbi->s_journal,
4075 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4076 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4077 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4078 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4079 		ret = jbd2_journal_set_features(sbi->s_journal,
4080 				compat, 0,
4081 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4082 				incompat);
4083 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4084 		ret = jbd2_journal_set_features(sbi->s_journal,
4085 				compat, 0,
4086 				incompat);
4087 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4088 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4089 	} else {
4090 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4091 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4092 	}
4093 
4094 	return ret;
4095 }
4096 
4097 /*
4098  * Note: calculating the overhead so we can be compatible with
4099  * historical BSD practice is quite difficult in the face of
4100  * clusters/bigalloc.  This is because multiple metadata blocks from
4101  * different block group can end up in the same allocation cluster.
4102  * Calculating the exact overhead in the face of clustered allocation
4103  * requires either O(all block bitmaps) in memory or O(number of block
4104  * groups**2) in time.  We will still calculate the superblock for
4105  * older file systems --- and if we come across with a bigalloc file
4106  * system with zero in s_overhead_clusters the estimate will be close to
4107  * correct especially for very large cluster sizes --- but for newer
4108  * file systems, it's better to calculate this figure once at mkfs
4109  * time, and store it in the superblock.  If the superblock value is
4110  * present (even for non-bigalloc file systems), we will use it.
4111  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4112 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4113 			  char *buf)
4114 {
4115 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4116 	struct ext4_group_desc	*gdp;
4117 	ext4_fsblk_t		first_block, last_block, b;
4118 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4119 	int			s, j, count = 0;
4120 	int			has_super = ext4_bg_has_super(sb, grp);
4121 
4122 	if (!ext4_has_feature_bigalloc(sb))
4123 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4124 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4125 			sbi->s_itb_per_group + 2);
4126 
4127 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4128 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4129 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4130 	for (i = 0; i < ngroups; i++) {
4131 		gdp = ext4_get_group_desc(sb, i, NULL);
4132 		b = ext4_block_bitmap(sb, gdp);
4133 		if (b >= first_block && b <= last_block) {
4134 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4135 			count++;
4136 		}
4137 		b = ext4_inode_bitmap(sb, gdp);
4138 		if (b >= first_block && b <= last_block) {
4139 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4140 			count++;
4141 		}
4142 		b = ext4_inode_table(sb, gdp);
4143 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4144 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4145 				int c = EXT4_B2C(sbi, b - first_block);
4146 				ext4_set_bit(c, buf);
4147 				count++;
4148 			}
4149 		if (i != grp)
4150 			continue;
4151 		s = 0;
4152 		if (ext4_bg_has_super(sb, grp)) {
4153 			ext4_set_bit(s++, buf);
4154 			count++;
4155 		}
4156 		j = ext4_bg_num_gdb(sb, grp);
4157 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4158 			ext4_error(sb, "Invalid number of block group "
4159 				   "descriptor blocks: %d", j);
4160 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4161 		}
4162 		count += j;
4163 		for (; j > 0; j--)
4164 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4165 	}
4166 	if (!count)
4167 		return 0;
4168 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4169 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4170 }
4171 
4172 /*
4173  * Compute the overhead and stash it in sbi->s_overhead
4174  */
ext4_calculate_overhead(struct super_block * sb)4175 int ext4_calculate_overhead(struct super_block *sb)
4176 {
4177 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4178 	struct ext4_super_block *es = sbi->s_es;
4179 	struct inode *j_inode;
4180 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4181 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4182 	ext4_fsblk_t overhead = 0;
4183 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4184 
4185 	if (!buf)
4186 		return -ENOMEM;
4187 
4188 	/*
4189 	 * Compute the overhead (FS structures).  This is constant
4190 	 * for a given filesystem unless the number of block groups
4191 	 * changes so we cache the previous value until it does.
4192 	 */
4193 
4194 	/*
4195 	 * All of the blocks before first_data_block are overhead
4196 	 */
4197 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4198 
4199 	/*
4200 	 * Add the overhead found in each block group
4201 	 */
4202 	for (i = 0; i < ngroups; i++) {
4203 		int blks;
4204 
4205 		blks = count_overhead(sb, i, buf);
4206 		overhead += blks;
4207 		if (blks)
4208 			memset(buf, 0, PAGE_SIZE);
4209 		cond_resched();
4210 	}
4211 
4212 	/*
4213 	 * Add the internal journal blocks whether the journal has been
4214 	 * loaded or not
4215 	 */
4216 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4217 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4218 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4219 		/* j_inum for internal journal is non-zero */
4220 		j_inode = ext4_get_journal_inode(sb, j_inum);
4221 		if (!IS_ERR(j_inode)) {
4222 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4223 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4224 			iput(j_inode);
4225 		} else {
4226 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4227 		}
4228 	}
4229 	sbi->s_overhead = overhead;
4230 	smp_wmb();
4231 	free_page((unsigned long) buf);
4232 	return 0;
4233 }
4234 
ext4_set_resv_clusters(struct super_block * sb)4235 static void ext4_set_resv_clusters(struct super_block *sb)
4236 {
4237 	ext4_fsblk_t resv_clusters;
4238 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4239 
4240 	/*
4241 	 * There's no need to reserve anything when we aren't using extents.
4242 	 * The space estimates are exact, there are no unwritten extents,
4243 	 * hole punching doesn't need new metadata... This is needed especially
4244 	 * to keep ext2/3 backward compatibility.
4245 	 */
4246 	if (!ext4_has_feature_extents(sb))
4247 		return;
4248 	/*
4249 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4250 	 * This should cover the situations where we can not afford to run
4251 	 * out of space like for example punch hole, or converting
4252 	 * unwritten extents in delalloc path. In most cases such
4253 	 * allocation would require 1, or 2 blocks, higher numbers are
4254 	 * very rare.
4255 	 */
4256 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4257 			 sbi->s_cluster_bits);
4258 
4259 	do_div(resv_clusters, 50);
4260 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4261 
4262 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4263 }
4264 
ext4_quota_mode(struct super_block * sb)4265 static const char *ext4_quota_mode(struct super_block *sb)
4266 {
4267 #ifdef CONFIG_QUOTA
4268 	if (!ext4_quota_capable(sb))
4269 		return "none";
4270 
4271 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4272 		return "journalled";
4273 	else
4274 		return "writeback";
4275 #else
4276 	return "disabled";
4277 #endif
4278 }
4279 
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4280 static void ext4_setup_csum_trigger(struct super_block *sb,
4281 				    enum ext4_journal_trigger_type type,
4282 				    void (*trigger)(
4283 					struct jbd2_buffer_trigger_type *type,
4284 					struct buffer_head *bh,
4285 					void *mapped_data,
4286 					size_t size))
4287 {
4288 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4289 
4290 	sbi->s_journal_triggers[type].sb = sb;
4291 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4292 }
4293 
ext4_free_sbi(struct ext4_sb_info * sbi)4294 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4295 {
4296 	if (!sbi)
4297 		return;
4298 
4299 	kfree(sbi->s_blockgroup_lock);
4300 	fs_put_dax(sbi->s_daxdev, NULL);
4301 	kfree(sbi);
4302 }
4303 
ext4_alloc_sbi(struct super_block * sb)4304 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4305 {
4306 	struct ext4_sb_info *sbi;
4307 
4308 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4309 	if (!sbi)
4310 		return NULL;
4311 
4312 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4313 					   NULL, NULL);
4314 
4315 	sbi->s_blockgroup_lock =
4316 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4317 
4318 	if (!sbi->s_blockgroup_lock)
4319 		goto err_out;
4320 
4321 	sb->s_fs_info = sbi;
4322 	sbi->s_sb = sb;
4323 	return sbi;
4324 err_out:
4325 	fs_put_dax(sbi->s_daxdev, NULL);
4326 	kfree(sbi);
4327 	return NULL;
4328 }
4329 
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4330 static void ext4_set_def_opts(struct super_block *sb,
4331 			      struct ext4_super_block *es)
4332 {
4333 	unsigned long def_mount_opts;
4334 
4335 	/* Set defaults before we parse the mount options */
4336 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4337 	set_opt(sb, INIT_INODE_TABLE);
4338 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4339 		set_opt(sb, DEBUG);
4340 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4341 		set_opt(sb, GRPID);
4342 	if (def_mount_opts & EXT4_DEFM_UID16)
4343 		set_opt(sb, NO_UID32);
4344 	/* xattr user namespace & acls are now defaulted on */
4345 	set_opt(sb, XATTR_USER);
4346 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4347 	set_opt(sb, POSIX_ACL);
4348 #endif
4349 	if (ext4_has_feature_fast_commit(sb))
4350 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4351 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4352 	if (ext4_has_feature_metadata_csum(sb))
4353 		set_opt(sb, JOURNAL_CHECKSUM);
4354 
4355 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4356 		set_opt(sb, JOURNAL_DATA);
4357 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4358 		set_opt(sb, ORDERED_DATA);
4359 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4360 		set_opt(sb, WRITEBACK_DATA);
4361 
4362 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4363 		set_opt(sb, ERRORS_PANIC);
4364 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4365 		set_opt(sb, ERRORS_CONT);
4366 	else
4367 		set_opt(sb, ERRORS_RO);
4368 	/* block_validity enabled by default; disable with noblock_validity */
4369 	set_opt(sb, BLOCK_VALIDITY);
4370 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4371 		set_opt(sb, DISCARD);
4372 
4373 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4374 		set_opt(sb, BARRIER);
4375 
4376 	/*
4377 	 * enable delayed allocation by default
4378 	 * Use -o nodelalloc to turn it off
4379 	 */
4380 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4381 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4382 		set_opt(sb, DELALLOC);
4383 
4384 	if (sb->s_blocksize <= PAGE_SIZE)
4385 		set_opt(sb, DIOREAD_NOLOCK);
4386 }
4387 
ext4_handle_clustersize(struct super_block * sb)4388 static int ext4_handle_clustersize(struct super_block *sb)
4389 {
4390 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4391 	struct ext4_super_block *es = sbi->s_es;
4392 	int clustersize;
4393 
4394 	/* Handle clustersize */
4395 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4396 	if (ext4_has_feature_bigalloc(sb)) {
4397 		if (clustersize < sb->s_blocksize) {
4398 			ext4_msg(sb, KERN_ERR,
4399 				 "cluster size (%d) smaller than "
4400 				 "block size (%lu)", clustersize, sb->s_blocksize);
4401 			return -EINVAL;
4402 		}
4403 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4404 			le32_to_cpu(es->s_log_block_size);
4405 	} else {
4406 		if (clustersize != sb->s_blocksize) {
4407 			ext4_msg(sb, KERN_ERR,
4408 				 "fragment/cluster size (%d) != "
4409 				 "block size (%lu)", clustersize, sb->s_blocksize);
4410 			return -EINVAL;
4411 		}
4412 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4413 			ext4_msg(sb, KERN_ERR,
4414 				 "#blocks per group too big: %lu",
4415 				 sbi->s_blocks_per_group);
4416 			return -EINVAL;
4417 		}
4418 		sbi->s_cluster_bits = 0;
4419 	}
4420 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4421 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4422 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4423 			 sbi->s_clusters_per_group);
4424 		return -EINVAL;
4425 	}
4426 	if (sbi->s_blocks_per_group !=
4427 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4428 		ext4_msg(sb, KERN_ERR,
4429 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4430 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4431 		return -EINVAL;
4432 	}
4433 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4434 
4435 	/* Do we have standard group size of clustersize * 8 blocks ? */
4436 	if (sbi->s_blocks_per_group == clustersize << 3)
4437 		set_opt2(sb, STD_GROUP_SIZE);
4438 
4439 	return 0;
4440 }
4441 
4442 /*
4443  * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4444  * With non-bigalloc filesystem awu will be based upon filesystem blocksize
4445  * & bdev awu units.
4446  * With bigalloc it will be based upon bigalloc cluster size & bdev awu units.
4447  * @sb: super block
4448  */
ext4_atomic_write_init(struct super_block * sb)4449 static void ext4_atomic_write_init(struct super_block *sb)
4450 {
4451 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4452 	struct block_device *bdev = sb->s_bdev;
4453 	unsigned int clustersize = EXT4_CLUSTER_SIZE(sb);
4454 
4455 	if (!bdev_can_atomic_write(bdev))
4456 		return;
4457 
4458 	if (!ext4_has_feature_extents(sb))
4459 		return;
4460 
4461 	sbi->s_awu_min = max(sb->s_blocksize,
4462 			      bdev_atomic_write_unit_min_bytes(bdev));
4463 	sbi->s_awu_max = min(clustersize,
4464 			      bdev_atomic_write_unit_max_bytes(bdev));
4465 	if (sbi->s_awu_min && sbi->s_awu_max &&
4466 	    sbi->s_awu_min <= sbi->s_awu_max) {
4467 		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4468 			 sbi->s_awu_min, sbi->s_awu_max);
4469 	} else {
4470 		sbi->s_awu_min = 0;
4471 		sbi->s_awu_max = 0;
4472 	}
4473 }
4474 
ext4_fast_commit_init(struct super_block * sb)4475 static void ext4_fast_commit_init(struct super_block *sb)
4476 {
4477 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4478 
4479 	/* Initialize fast commit stuff */
4480 	atomic_set(&sbi->s_fc_subtid, 0);
4481 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4482 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4483 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4484 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4485 	sbi->s_fc_bytes = 0;
4486 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4487 	sbi->s_fc_ineligible_tid = 0;
4488 	mutex_init(&sbi->s_fc_lock);
4489 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4490 	sbi->s_fc_replay_state.fc_regions = NULL;
4491 	sbi->s_fc_replay_state.fc_regions_size = 0;
4492 	sbi->s_fc_replay_state.fc_regions_used = 0;
4493 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4494 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4495 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4496 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4497 }
4498 
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4499 static int ext4_inode_info_init(struct super_block *sb,
4500 				struct ext4_super_block *es)
4501 {
4502 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4503 
4504 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4505 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4506 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4507 	} else {
4508 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4509 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4510 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4511 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4512 				 sbi->s_first_ino);
4513 			return -EINVAL;
4514 		}
4515 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4516 		    (!is_power_of_2(sbi->s_inode_size)) ||
4517 		    (sbi->s_inode_size > sb->s_blocksize)) {
4518 			ext4_msg(sb, KERN_ERR,
4519 			       "unsupported inode size: %d",
4520 			       sbi->s_inode_size);
4521 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4522 			return -EINVAL;
4523 		}
4524 		/*
4525 		 * i_atime_extra is the last extra field available for
4526 		 * [acm]times in struct ext4_inode. Checking for that
4527 		 * field should suffice to ensure we have extra space
4528 		 * for all three.
4529 		 */
4530 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4531 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4532 			sb->s_time_gran = 1;
4533 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4534 		} else {
4535 			sb->s_time_gran = NSEC_PER_SEC;
4536 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4537 		}
4538 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4539 	}
4540 
4541 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4542 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4543 			EXT4_GOOD_OLD_INODE_SIZE;
4544 		if (ext4_has_feature_extra_isize(sb)) {
4545 			unsigned v, max = (sbi->s_inode_size -
4546 					   EXT4_GOOD_OLD_INODE_SIZE);
4547 
4548 			v = le16_to_cpu(es->s_want_extra_isize);
4549 			if (v > max) {
4550 				ext4_msg(sb, KERN_ERR,
4551 					 "bad s_want_extra_isize: %d", v);
4552 				return -EINVAL;
4553 			}
4554 			if (sbi->s_want_extra_isize < v)
4555 				sbi->s_want_extra_isize = v;
4556 
4557 			v = le16_to_cpu(es->s_min_extra_isize);
4558 			if (v > max) {
4559 				ext4_msg(sb, KERN_ERR,
4560 					 "bad s_min_extra_isize: %d", v);
4561 				return -EINVAL;
4562 			}
4563 			if (sbi->s_want_extra_isize < v)
4564 				sbi->s_want_extra_isize = v;
4565 		}
4566 	}
4567 
4568 	return 0;
4569 }
4570 
4571 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4572 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4573 {
4574 	const struct ext4_sb_encodings *encoding_info;
4575 	struct unicode_map *encoding;
4576 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4577 
4578 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4579 		return 0;
4580 
4581 	encoding_info = ext4_sb_read_encoding(es);
4582 	if (!encoding_info) {
4583 		ext4_msg(sb, KERN_ERR,
4584 			"Encoding requested by superblock is unknown");
4585 		return -EINVAL;
4586 	}
4587 
4588 	encoding = utf8_load(encoding_info->version);
4589 	if (IS_ERR(encoding)) {
4590 		ext4_msg(sb, KERN_ERR,
4591 			"can't mount with superblock charset: %s-%u.%u.%u "
4592 			"not supported by the kernel. flags: 0x%x.",
4593 			encoding_info->name,
4594 			unicode_major(encoding_info->version),
4595 			unicode_minor(encoding_info->version),
4596 			unicode_rev(encoding_info->version),
4597 			encoding_flags);
4598 		return -EINVAL;
4599 	}
4600 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4601 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4602 		unicode_major(encoding_info->version),
4603 		unicode_minor(encoding_info->version),
4604 		unicode_rev(encoding_info->version),
4605 		encoding_flags);
4606 
4607 	sb->s_encoding = encoding;
4608 	sb->s_encoding_flags = encoding_flags;
4609 
4610 	return 0;
4611 }
4612 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4613 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4614 {
4615 	return 0;
4616 }
4617 #endif
4618 
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4619 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4620 {
4621 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4622 
4623 	/* Warn if metadata_csum and gdt_csum are both set. */
4624 	if (ext4_has_feature_metadata_csum(sb) &&
4625 	    ext4_has_feature_gdt_csum(sb))
4626 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4627 			     "redundant flags; please run fsck.");
4628 
4629 	/* Check for a known checksum algorithm */
4630 	if (!ext4_verify_csum_type(sb, es)) {
4631 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4632 			 "unknown checksum algorithm.");
4633 		return -EINVAL;
4634 	}
4635 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4636 				ext4_orphan_file_block_trigger);
4637 
4638 	/* Check superblock checksum */
4639 	if (!ext4_superblock_csum_verify(sb, es)) {
4640 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4641 			 "invalid superblock checksum.  Run e2fsck?");
4642 		return -EFSBADCRC;
4643 	}
4644 
4645 	/* Precompute checksum seed for all metadata */
4646 	if (ext4_has_feature_csum_seed(sb))
4647 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4648 	else if (ext4_has_feature_metadata_csum(sb) ||
4649 		 ext4_has_feature_ea_inode(sb))
4650 		sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid,
4651 					       sizeof(es->s_uuid));
4652 	return 0;
4653 }
4654 
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4655 static int ext4_check_feature_compatibility(struct super_block *sb,
4656 					    struct ext4_super_block *es,
4657 					    int silent)
4658 {
4659 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4660 
4661 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4662 	    (ext4_has_compat_features(sb) ||
4663 	     ext4_has_ro_compat_features(sb) ||
4664 	     ext4_has_incompat_features(sb)))
4665 		ext4_msg(sb, KERN_WARNING,
4666 		       "feature flags set on rev 0 fs, "
4667 		       "running e2fsck is recommended");
4668 
4669 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4670 		set_opt2(sb, HURD_COMPAT);
4671 		if (ext4_has_feature_64bit(sb)) {
4672 			ext4_msg(sb, KERN_ERR,
4673 				 "The Hurd can't support 64-bit file systems");
4674 			return -EINVAL;
4675 		}
4676 
4677 		/*
4678 		 * ea_inode feature uses l_i_version field which is not
4679 		 * available in HURD_COMPAT mode.
4680 		 */
4681 		if (ext4_has_feature_ea_inode(sb)) {
4682 			ext4_msg(sb, KERN_ERR,
4683 				 "ea_inode feature is not supported for Hurd");
4684 			return -EINVAL;
4685 		}
4686 	}
4687 
4688 	if (IS_EXT2_SB(sb)) {
4689 		if (ext2_feature_set_ok(sb))
4690 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4691 				 "using the ext4 subsystem");
4692 		else {
4693 			/*
4694 			 * If we're probing be silent, if this looks like
4695 			 * it's actually an ext[34] filesystem.
4696 			 */
4697 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4698 				return -EINVAL;
4699 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4700 				 "to feature incompatibilities");
4701 			return -EINVAL;
4702 		}
4703 	}
4704 
4705 	if (IS_EXT3_SB(sb)) {
4706 		if (ext3_feature_set_ok(sb))
4707 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4708 				 "using the ext4 subsystem");
4709 		else {
4710 			/*
4711 			 * If we're probing be silent, if this looks like
4712 			 * it's actually an ext4 filesystem.
4713 			 */
4714 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4715 				return -EINVAL;
4716 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4717 				 "to feature incompatibilities");
4718 			return -EINVAL;
4719 		}
4720 	}
4721 
4722 	/*
4723 	 * Check feature flags regardless of the revision level, since we
4724 	 * previously didn't change the revision level when setting the flags,
4725 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4726 	 */
4727 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4728 		return -EINVAL;
4729 
4730 	if (sbi->s_daxdev) {
4731 		if (sb->s_blocksize == PAGE_SIZE)
4732 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4733 		else
4734 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4735 	}
4736 
4737 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4738 		if (ext4_has_feature_inline_data(sb)) {
4739 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4740 					" that may contain inline data");
4741 			return -EINVAL;
4742 		}
4743 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4744 			ext4_msg(sb, KERN_ERR,
4745 				"DAX unsupported by block device.");
4746 			return -EINVAL;
4747 		}
4748 	}
4749 
4750 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4751 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4752 			 es->s_encryption_level);
4753 		return -EINVAL;
4754 	}
4755 
4756 	return 0;
4757 }
4758 
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4759 static int ext4_check_geometry(struct super_block *sb,
4760 			       struct ext4_super_block *es)
4761 {
4762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4763 	__u64 blocks_count;
4764 	int err;
4765 
4766 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4767 		ext4_msg(sb, KERN_ERR,
4768 			 "Number of reserved GDT blocks insanely large: %d",
4769 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4770 		return -EINVAL;
4771 	}
4772 	/*
4773 	 * Test whether we have more sectors than will fit in sector_t,
4774 	 * and whether the max offset is addressable by the page cache.
4775 	 */
4776 	err = generic_check_addressable(sb->s_blocksize_bits,
4777 					ext4_blocks_count(es));
4778 	if (err) {
4779 		ext4_msg(sb, KERN_ERR, "filesystem"
4780 			 " too large to mount safely on this system");
4781 		return err;
4782 	}
4783 
4784 	/* check blocks count against device size */
4785 	blocks_count = sb_bdev_nr_blocks(sb);
4786 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4787 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4788 		       "exceeds size of device (%llu blocks)",
4789 		       ext4_blocks_count(es), blocks_count);
4790 		return -EINVAL;
4791 	}
4792 
4793 	/*
4794 	 * It makes no sense for the first data block to be beyond the end
4795 	 * of the filesystem.
4796 	 */
4797 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4798 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4799 			 "block %u is beyond end of filesystem (%llu)",
4800 			 le32_to_cpu(es->s_first_data_block),
4801 			 ext4_blocks_count(es));
4802 		return -EINVAL;
4803 	}
4804 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4805 	    (sbi->s_cluster_ratio == 1)) {
4806 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4807 			 "block is 0 with a 1k block and cluster size");
4808 		return -EINVAL;
4809 	}
4810 
4811 	blocks_count = (ext4_blocks_count(es) -
4812 			le32_to_cpu(es->s_first_data_block) +
4813 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4814 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4815 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4816 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4817 		       "(block count %llu, first data block %u, "
4818 		       "blocks per group %lu)", blocks_count,
4819 		       ext4_blocks_count(es),
4820 		       le32_to_cpu(es->s_first_data_block),
4821 		       EXT4_BLOCKS_PER_GROUP(sb));
4822 		return -EINVAL;
4823 	}
4824 	sbi->s_groups_count = blocks_count;
4825 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4826 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4827 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4828 	    le32_to_cpu(es->s_inodes_count)) {
4829 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4830 			 le32_to_cpu(es->s_inodes_count),
4831 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4832 		return -EINVAL;
4833 	}
4834 
4835 	return 0;
4836 }
4837 
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4838 static int ext4_group_desc_init(struct super_block *sb,
4839 				struct ext4_super_block *es,
4840 				ext4_fsblk_t logical_sb_block,
4841 				ext4_group_t *first_not_zeroed)
4842 {
4843 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4844 	unsigned int db_count;
4845 	ext4_fsblk_t block;
4846 	int i;
4847 
4848 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4849 		   EXT4_DESC_PER_BLOCK(sb);
4850 	if (ext4_has_feature_meta_bg(sb)) {
4851 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4852 			ext4_msg(sb, KERN_WARNING,
4853 				 "first meta block group too large: %u "
4854 				 "(group descriptor block count %u)",
4855 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4856 			return -EINVAL;
4857 		}
4858 	}
4859 	rcu_assign_pointer(sbi->s_group_desc,
4860 			   kvmalloc_array(db_count,
4861 					  sizeof(struct buffer_head *),
4862 					  GFP_KERNEL));
4863 	if (sbi->s_group_desc == NULL) {
4864 		ext4_msg(sb, KERN_ERR, "not enough memory");
4865 		return -ENOMEM;
4866 	}
4867 
4868 	bgl_lock_init(sbi->s_blockgroup_lock);
4869 
4870 	/* Pre-read the descriptors into the buffer cache */
4871 	for (i = 0; i < db_count; i++) {
4872 		block = descriptor_loc(sb, logical_sb_block, i);
4873 		ext4_sb_breadahead_unmovable(sb, block);
4874 	}
4875 
4876 	for (i = 0; i < db_count; i++) {
4877 		struct buffer_head *bh;
4878 
4879 		block = descriptor_loc(sb, logical_sb_block, i);
4880 		bh = ext4_sb_bread_unmovable(sb, block);
4881 		if (IS_ERR(bh)) {
4882 			ext4_msg(sb, KERN_ERR,
4883 			       "can't read group descriptor %d", i);
4884 			sbi->s_gdb_count = i;
4885 			return PTR_ERR(bh);
4886 		}
4887 		rcu_read_lock();
4888 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4889 		rcu_read_unlock();
4890 	}
4891 	sbi->s_gdb_count = db_count;
4892 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4893 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4894 		return -EFSCORRUPTED;
4895 	}
4896 
4897 	return 0;
4898 }
4899 
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4900 static int ext4_load_and_init_journal(struct super_block *sb,
4901 				      struct ext4_super_block *es,
4902 				      struct ext4_fs_context *ctx)
4903 {
4904 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4905 	int err;
4906 
4907 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4908 	if (err)
4909 		return err;
4910 
4911 	if (ext4_has_feature_64bit(sb) &&
4912 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4913 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4914 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4915 		goto out;
4916 	}
4917 
4918 	if (!set_journal_csum_feature_set(sb)) {
4919 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4920 			 "feature set");
4921 		goto out;
4922 	}
4923 
4924 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4925 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4926 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4927 		ext4_msg(sb, KERN_ERR,
4928 			"Failed to set fast commit journal feature");
4929 		goto out;
4930 	}
4931 
4932 	/* We have now updated the journal if required, so we can
4933 	 * validate the data journaling mode. */
4934 	switch (test_opt(sb, DATA_FLAGS)) {
4935 	case 0:
4936 		/* No mode set, assume a default based on the journal
4937 		 * capabilities: ORDERED_DATA if the journal can
4938 		 * cope, else JOURNAL_DATA
4939 		 */
4940 		if (jbd2_journal_check_available_features
4941 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4942 			set_opt(sb, ORDERED_DATA);
4943 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4944 		} else {
4945 			set_opt(sb, JOURNAL_DATA);
4946 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4947 		}
4948 		break;
4949 
4950 	case EXT4_MOUNT_ORDERED_DATA:
4951 	case EXT4_MOUNT_WRITEBACK_DATA:
4952 		if (!jbd2_journal_check_available_features
4953 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4954 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4955 			       "requested data journaling mode");
4956 			goto out;
4957 		}
4958 		break;
4959 	default:
4960 		break;
4961 	}
4962 
4963 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4964 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4965 		ext4_msg(sb, KERN_ERR, "can't mount with "
4966 			"journal_async_commit in data=ordered mode");
4967 		goto out;
4968 	}
4969 
4970 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4971 
4972 	sbi->s_journal->j_submit_inode_data_buffers =
4973 		ext4_journal_submit_inode_data_buffers;
4974 	sbi->s_journal->j_finish_inode_data_buffers =
4975 		ext4_journal_finish_inode_data_buffers;
4976 
4977 	return 0;
4978 
4979 out:
4980 	ext4_journal_destroy(sbi, sbi->s_journal);
4981 	return -EINVAL;
4982 }
4983 
ext4_check_journal_data_mode(struct super_block * sb)4984 static int ext4_check_journal_data_mode(struct super_block *sb)
4985 {
4986 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4987 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4988 			    "data=journal disables delayed allocation, "
4989 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4990 		/* can't mount with both data=journal and dioread_nolock. */
4991 		clear_opt(sb, DIOREAD_NOLOCK);
4992 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4993 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4994 			ext4_msg(sb, KERN_ERR, "can't mount with "
4995 				 "both data=journal and delalloc");
4996 			return -EINVAL;
4997 		}
4998 		if (test_opt(sb, DAX_ALWAYS)) {
4999 			ext4_msg(sb, KERN_ERR, "can't mount with "
5000 				 "both data=journal and dax");
5001 			return -EINVAL;
5002 		}
5003 		if (ext4_has_feature_encrypt(sb)) {
5004 			ext4_msg(sb, KERN_WARNING,
5005 				 "encrypted files will use data=ordered "
5006 				 "instead of data journaling mode");
5007 		}
5008 		if (test_opt(sb, DELALLOC))
5009 			clear_opt(sb, DELALLOC);
5010 	} else {
5011 		sb->s_iflags |= SB_I_CGROUPWB;
5012 	}
5013 
5014 	return 0;
5015 }
5016 
ext4_has_journal_option(struct super_block * sb)5017 static const char *ext4_has_journal_option(struct super_block *sb)
5018 {
5019 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5020 
5021 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5022 		return "journal_async_commit";
5023 	if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5024 		return "journal_checksum";
5025 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5026 		return "commit=";
5027 	if (EXT4_MOUNT_DATA_FLAGS &
5028 	    (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5029 		return "data=";
5030 	if (test_opt(sb, DATA_ERR_ABORT))
5031 		return "data_err=abort";
5032 	return NULL;
5033 }
5034 
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5035 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5036 			   int silent)
5037 {
5038 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5039 	struct ext4_super_block *es;
5040 	ext4_fsblk_t logical_sb_block;
5041 	unsigned long offset = 0;
5042 	struct buffer_head *bh;
5043 	int ret = -EINVAL;
5044 	int blocksize;
5045 
5046 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5047 	if (!blocksize) {
5048 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5049 		return -EINVAL;
5050 	}
5051 
5052 	/*
5053 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5054 	 * block sizes.  We need to calculate the offset from buffer start.
5055 	 */
5056 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5057 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5058 		offset = do_div(logical_sb_block, blocksize);
5059 	} else {
5060 		logical_sb_block = sbi->s_sb_block;
5061 	}
5062 
5063 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5064 	if (IS_ERR(bh)) {
5065 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5066 		return PTR_ERR(bh);
5067 	}
5068 	/*
5069 	 * Note: s_es must be initialized as soon as possible because
5070 	 *       some ext4 macro-instructions depend on its value
5071 	 */
5072 	es = (struct ext4_super_block *) (bh->b_data + offset);
5073 	sbi->s_es = es;
5074 	sb->s_magic = le16_to_cpu(es->s_magic);
5075 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5076 		if (!silent)
5077 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5078 		goto out;
5079 	}
5080 
5081 	if (le32_to_cpu(es->s_log_block_size) >
5082 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5083 		ext4_msg(sb, KERN_ERR,
5084 			 "Invalid log block size: %u",
5085 			 le32_to_cpu(es->s_log_block_size));
5086 		goto out;
5087 	}
5088 	if (le32_to_cpu(es->s_log_cluster_size) >
5089 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5090 		ext4_msg(sb, KERN_ERR,
5091 			 "Invalid log cluster size: %u",
5092 			 le32_to_cpu(es->s_log_cluster_size));
5093 		goto out;
5094 	}
5095 
5096 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5097 
5098 	/*
5099 	 * If the default block size is not the same as the real block size,
5100 	 * we need to reload it.
5101 	 */
5102 	if (sb->s_blocksize == blocksize) {
5103 		*lsb = logical_sb_block;
5104 		sbi->s_sbh = bh;
5105 		return 0;
5106 	}
5107 
5108 	/*
5109 	 * bh must be released before kill_bdev(), otherwise
5110 	 * it won't be freed and its page also. kill_bdev()
5111 	 * is called by sb_set_blocksize().
5112 	 */
5113 	brelse(bh);
5114 	/* Validate the filesystem blocksize */
5115 	if (!sb_set_blocksize(sb, blocksize)) {
5116 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5117 				blocksize);
5118 		bh = NULL;
5119 		goto out;
5120 	}
5121 
5122 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5123 	offset = do_div(logical_sb_block, blocksize);
5124 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5125 	if (IS_ERR(bh)) {
5126 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5127 		ret = PTR_ERR(bh);
5128 		bh = NULL;
5129 		goto out;
5130 	}
5131 	es = (struct ext4_super_block *)(bh->b_data + offset);
5132 	sbi->s_es = es;
5133 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5134 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5135 		goto out;
5136 	}
5137 	*lsb = logical_sb_block;
5138 	sbi->s_sbh = bh;
5139 	return 0;
5140 out:
5141 	brelse(bh);
5142 	return ret;
5143 }
5144 
ext4_hash_info_init(struct super_block * sb)5145 static int ext4_hash_info_init(struct super_block *sb)
5146 {
5147 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5148 	struct ext4_super_block *es = sbi->s_es;
5149 	unsigned int i;
5150 
5151 	sbi->s_def_hash_version = es->s_def_hash_version;
5152 
5153 	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5154 		ext4_msg(sb, KERN_ERR,
5155 			 "Invalid default hash set in the superblock");
5156 		return -EINVAL;
5157 	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5158 		ext4_msg(sb, KERN_ERR,
5159 			 "SIPHASH is not a valid default hash value");
5160 		return -EINVAL;
5161 	}
5162 
5163 	for (i = 0; i < 4; i++)
5164 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5165 
5166 	if (ext4_has_feature_dir_index(sb)) {
5167 		i = le32_to_cpu(es->s_flags);
5168 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5169 			sbi->s_hash_unsigned = 3;
5170 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5171 #ifdef __CHAR_UNSIGNED__
5172 			if (!sb_rdonly(sb))
5173 				es->s_flags |=
5174 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5175 			sbi->s_hash_unsigned = 3;
5176 #else
5177 			if (!sb_rdonly(sb))
5178 				es->s_flags |=
5179 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5180 #endif
5181 		}
5182 	}
5183 	return 0;
5184 }
5185 
ext4_block_group_meta_init(struct super_block * sb,int silent)5186 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5187 {
5188 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5189 	struct ext4_super_block *es = sbi->s_es;
5190 	int has_huge_files;
5191 
5192 	has_huge_files = ext4_has_feature_huge_file(sb);
5193 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5194 						      has_huge_files);
5195 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5196 
5197 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5198 	if (ext4_has_feature_64bit(sb)) {
5199 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5200 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5201 		    !is_power_of_2(sbi->s_desc_size)) {
5202 			ext4_msg(sb, KERN_ERR,
5203 			       "unsupported descriptor size %lu",
5204 			       sbi->s_desc_size);
5205 			return -EINVAL;
5206 		}
5207 	} else
5208 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5209 
5210 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5211 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5212 
5213 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5214 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5215 		if (!silent)
5216 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5217 		return -EINVAL;
5218 	}
5219 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5220 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5221 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5222 			 sbi->s_inodes_per_group);
5223 		return -EINVAL;
5224 	}
5225 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5226 					sbi->s_inodes_per_block;
5227 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5228 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5229 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5230 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5231 
5232 	return 0;
5233 }
5234 
5235 /*
5236  * It's hard to get stripe aligned blocks if stripe is not aligned with
5237  * cluster, just disable stripe and alert user to simplify code and avoid
5238  * stripe aligned allocation which will rarely succeed.
5239  */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5240 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5241 {
5242 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5243 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5244 		stripe % sbi->s_cluster_ratio != 0);
5245 }
5246 
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5247 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5248 {
5249 	struct ext4_super_block *es = NULL;
5250 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5251 	ext4_fsblk_t logical_sb_block;
5252 	struct inode *root;
5253 	int needs_recovery;
5254 	int err;
5255 	ext4_group_t first_not_zeroed;
5256 	struct ext4_fs_context *ctx = fc->fs_private;
5257 	int silent = fc->sb_flags & SB_SILENT;
5258 
5259 	/* Set defaults for the variables that will be set during parsing */
5260 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5261 		ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
5262 
5263 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5264 	sbi->s_sectors_written_start =
5265 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5266 
5267 	err = ext4_load_super(sb, &logical_sb_block, silent);
5268 	if (err)
5269 		goto out_fail;
5270 
5271 	es = sbi->s_es;
5272 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5273 
5274 	err = ext4_init_metadata_csum(sb, es);
5275 	if (err)
5276 		goto failed_mount;
5277 
5278 	ext4_set_def_opts(sb, es);
5279 
5280 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5281 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5282 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5283 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5284 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5285 	sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5286 	sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5287 
5288 	/*
5289 	 * set default s_li_wait_mult for lazyinit, for the case there is
5290 	 * no mount option specified.
5291 	 */
5292 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5293 
5294 	err = ext4_inode_info_init(sb, es);
5295 	if (err)
5296 		goto failed_mount;
5297 
5298 	err = parse_apply_sb_mount_options(sb, ctx);
5299 	if (err < 0)
5300 		goto failed_mount;
5301 
5302 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5303 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5304 
5305 	err = ext4_check_opt_consistency(fc, sb);
5306 	if (err < 0)
5307 		goto failed_mount;
5308 
5309 	ext4_apply_options(fc, sb);
5310 
5311 	err = ext4_encoding_init(sb, es);
5312 	if (err)
5313 		goto failed_mount;
5314 
5315 	err = ext4_check_journal_data_mode(sb);
5316 	if (err)
5317 		goto failed_mount;
5318 
5319 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5320 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5321 
5322 	/* HSM events are allowed by default. */
5323 	sb->s_iflags |= SB_I_ALLOW_HSM;
5324 
5325 	err = ext4_check_feature_compatibility(sb, es, silent);
5326 	if (err)
5327 		goto failed_mount;
5328 
5329 	err = ext4_block_group_meta_init(sb, silent);
5330 	if (err)
5331 		goto failed_mount;
5332 
5333 	err = ext4_hash_info_init(sb);
5334 	if (err)
5335 		goto failed_mount;
5336 
5337 	err = ext4_handle_clustersize(sb);
5338 	if (err)
5339 		goto failed_mount;
5340 
5341 	err = ext4_check_geometry(sb, es);
5342 	if (err)
5343 		goto failed_mount;
5344 
5345 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5346 	spin_lock_init(&sbi->s_error_lock);
5347 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5348 
5349 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5350 	if (err)
5351 		goto failed_mount3;
5352 
5353 	err = ext4_es_register_shrinker(sbi);
5354 	if (err)
5355 		goto failed_mount3;
5356 
5357 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5358 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5359 		ext4_msg(sb, KERN_WARNING,
5360 			 "stripe (%lu) is not aligned with cluster size (%u), "
5361 			 "stripe is disabled",
5362 			 sbi->s_stripe, sbi->s_cluster_ratio);
5363 		sbi->s_stripe = 0;
5364 	}
5365 	sbi->s_extent_max_zeroout_kb = 32;
5366 
5367 	/*
5368 	 * set up enough so that it can read an inode
5369 	 */
5370 	sb->s_op = &ext4_sops;
5371 	sb->s_export_op = &ext4_export_ops;
5372 	sb->s_xattr = ext4_xattr_handlers;
5373 #ifdef CONFIG_FS_ENCRYPTION
5374 	sb->s_cop = &ext4_cryptops;
5375 #endif
5376 #ifdef CONFIG_FS_VERITY
5377 	sb->s_vop = &ext4_verityops;
5378 #endif
5379 #ifdef CONFIG_QUOTA
5380 	sb->dq_op = &ext4_quota_operations;
5381 	if (ext4_has_feature_quota(sb))
5382 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5383 	else
5384 		sb->s_qcop = &ext4_qctl_operations;
5385 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5386 #endif
5387 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5388 	super_set_sysfs_name_bdev(sb);
5389 
5390 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5391 	mutex_init(&sbi->s_orphan_lock);
5392 
5393 	spin_lock_init(&sbi->s_bdev_wb_lock);
5394 
5395 	ext4_atomic_write_init(sb);
5396 	ext4_fast_commit_init(sb);
5397 
5398 	sb->s_root = NULL;
5399 
5400 	needs_recovery = (es->s_last_orphan != 0 ||
5401 			  ext4_has_feature_orphan_present(sb) ||
5402 			  ext4_has_feature_journal_needs_recovery(sb));
5403 
5404 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5405 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5406 		if (err)
5407 			goto failed_mount3a;
5408 	}
5409 
5410 	err = -EINVAL;
5411 	/*
5412 	 * The first inode we look at is the journal inode.  Don't try
5413 	 * root first: it may be modified in the journal!
5414 	 */
5415 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5416 		err = ext4_load_and_init_journal(sb, es, ctx);
5417 		if (err)
5418 			goto failed_mount3a;
5419 		if (bdev_read_only(sb->s_bdev))
5420 		    needs_recovery = 0;
5421 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5422 		   ext4_has_feature_journal_needs_recovery(sb)) {
5423 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5424 		       "suppressed and not mounted read-only");
5425 		goto failed_mount3a;
5426 	} else {
5427 		const char *journal_option;
5428 
5429 		/* Nojournal mode, all journal mount options are illegal */
5430 		journal_option = ext4_has_journal_option(sb);
5431 		if (journal_option != NULL) {
5432 			ext4_msg(sb, KERN_ERR,
5433 				 "can't mount with %s, fs mounted w/o journal",
5434 				 journal_option);
5435 			goto failed_mount3a;
5436 		}
5437 
5438 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5439 		clear_opt(sb, JOURNAL_CHECKSUM);
5440 		clear_opt(sb, DATA_FLAGS);
5441 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5442 		sbi->s_journal = NULL;
5443 		needs_recovery = 0;
5444 	}
5445 
5446 	if (!test_opt(sb, NO_MBCACHE)) {
5447 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5448 		if (!sbi->s_ea_block_cache) {
5449 			ext4_msg(sb, KERN_ERR,
5450 				 "Failed to create ea_block_cache");
5451 			err = -EINVAL;
5452 			goto failed_mount_wq;
5453 		}
5454 
5455 		if (ext4_has_feature_ea_inode(sb)) {
5456 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5457 			if (!sbi->s_ea_inode_cache) {
5458 				ext4_msg(sb, KERN_ERR,
5459 					 "Failed to create ea_inode_cache");
5460 				err = -EINVAL;
5461 				goto failed_mount_wq;
5462 			}
5463 		}
5464 	}
5465 
5466 	/*
5467 	 * Get the # of file system overhead blocks from the
5468 	 * superblock if present.
5469 	 */
5470 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5471 	/* ignore the precalculated value if it is ridiculous */
5472 	if (sbi->s_overhead > ext4_blocks_count(es))
5473 		sbi->s_overhead = 0;
5474 	/*
5475 	 * If the bigalloc feature is not enabled recalculating the
5476 	 * overhead doesn't take long, so we might as well just redo
5477 	 * it to make sure we are using the correct value.
5478 	 */
5479 	if (!ext4_has_feature_bigalloc(sb))
5480 		sbi->s_overhead = 0;
5481 	if (sbi->s_overhead == 0) {
5482 		err = ext4_calculate_overhead(sb);
5483 		if (err)
5484 			goto failed_mount_wq;
5485 	}
5486 
5487 	/*
5488 	 * The maximum number of concurrent works can be high and
5489 	 * concurrency isn't really necessary.  Limit it to 1.
5490 	 */
5491 	EXT4_SB(sb)->rsv_conversion_wq =
5492 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5493 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5494 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5495 		err = -ENOMEM;
5496 		goto failed_mount4;
5497 	}
5498 
5499 	/*
5500 	 * The jbd2_journal_load will have done any necessary log recovery,
5501 	 * so we can safely mount the rest of the filesystem now.
5502 	 */
5503 
5504 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5505 	if (IS_ERR(root)) {
5506 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5507 		err = PTR_ERR(root);
5508 		root = NULL;
5509 		goto failed_mount4;
5510 	}
5511 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5512 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5513 		iput(root);
5514 		err = -EFSCORRUPTED;
5515 		goto failed_mount4;
5516 	}
5517 
5518 	generic_set_sb_d_ops(sb);
5519 	sb->s_root = d_make_root(root);
5520 	if (!sb->s_root) {
5521 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5522 		err = -ENOMEM;
5523 		goto failed_mount4;
5524 	}
5525 
5526 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5527 	if (err == -EROFS) {
5528 		sb->s_flags |= SB_RDONLY;
5529 	} else if (err)
5530 		goto failed_mount4a;
5531 
5532 	ext4_set_resv_clusters(sb);
5533 
5534 	if (test_opt(sb, BLOCK_VALIDITY)) {
5535 		err = ext4_setup_system_zone(sb);
5536 		if (err) {
5537 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5538 				 "zone (%d)", err);
5539 			goto failed_mount4a;
5540 		}
5541 	}
5542 	ext4_fc_replay_cleanup(sb);
5543 
5544 	ext4_ext_init(sb);
5545 
5546 	/*
5547 	 * Enable optimize_scan if number of groups is > threshold. This can be
5548 	 * turned off by passing "mb_optimize_scan=0". This can also be
5549 	 * turned on forcefully by passing "mb_optimize_scan=1".
5550 	 */
5551 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5552 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5553 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5554 		else
5555 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5556 	}
5557 
5558 	err = ext4_mb_init(sb);
5559 	if (err) {
5560 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5561 			 err);
5562 		goto failed_mount5;
5563 	}
5564 
5565 	/*
5566 	 * We can only set up the journal commit callback once
5567 	 * mballoc is initialized
5568 	 */
5569 	if (sbi->s_journal)
5570 		sbi->s_journal->j_commit_callback =
5571 			ext4_journal_commit_callback;
5572 
5573 	err = ext4_percpu_param_init(sbi);
5574 	if (err)
5575 		goto failed_mount6;
5576 
5577 	if (ext4_has_feature_flex_bg(sb))
5578 		if (!ext4_fill_flex_info(sb)) {
5579 			ext4_msg(sb, KERN_ERR,
5580 			       "unable to initialize "
5581 			       "flex_bg meta info!");
5582 			err = -ENOMEM;
5583 			goto failed_mount6;
5584 		}
5585 
5586 	err = ext4_register_li_request(sb, first_not_zeroed);
5587 	if (err)
5588 		goto failed_mount6;
5589 
5590 	err = ext4_init_orphan_info(sb);
5591 	if (err)
5592 		goto failed_mount7;
5593 #ifdef CONFIG_QUOTA
5594 	/* Enable quota usage during mount. */
5595 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5596 		err = ext4_enable_quotas(sb);
5597 		if (err)
5598 			goto failed_mount8;
5599 	}
5600 #endif  /* CONFIG_QUOTA */
5601 
5602 	/*
5603 	 * Save the original bdev mapping's wb_err value which could be
5604 	 * used to detect the metadata async write error.
5605 	 */
5606 	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5607 				 &sbi->s_bdev_wb_err);
5608 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5609 	ext4_orphan_cleanup(sb, es);
5610 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5611 	/*
5612 	 * Update the checksum after updating free space/inode counters and
5613 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5614 	 * checksum in the buffer cache until it is written out and
5615 	 * e2fsprogs programs trying to open a file system immediately
5616 	 * after it is mounted can fail.
5617 	 */
5618 	ext4_superblock_csum_set(sb);
5619 	if (needs_recovery) {
5620 		ext4_msg(sb, KERN_INFO, "recovery complete");
5621 		err = ext4_mark_recovery_complete(sb, es);
5622 		if (err)
5623 			goto failed_mount9;
5624 	}
5625 
5626 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5627 		ext4_msg(sb, KERN_WARNING,
5628 			 "mounting with \"discard\" option, but the device does not support discard");
5629 		clear_opt(sb, DISCARD);
5630 	}
5631 
5632 	if (es->s_error_count)
5633 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5634 
5635 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5636 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5637 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5638 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5639 	atomic_set(&sbi->s_warning_count, 0);
5640 	atomic_set(&sbi->s_msg_count, 0);
5641 
5642 	/* Register sysfs after all initializations are complete. */
5643 	err = ext4_register_sysfs(sb);
5644 	if (err)
5645 		goto failed_mount9;
5646 
5647 	return 0;
5648 
5649 failed_mount9:
5650 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5651 failed_mount8: __maybe_unused
5652 	ext4_release_orphan_info(sb);
5653 failed_mount7:
5654 	ext4_unregister_li_request(sb);
5655 failed_mount6:
5656 	ext4_mb_release(sb);
5657 	ext4_flex_groups_free(sbi);
5658 	ext4_percpu_param_destroy(sbi);
5659 failed_mount5:
5660 	ext4_ext_release(sb);
5661 	ext4_release_system_zone(sb);
5662 failed_mount4a:
5663 	dput(sb->s_root);
5664 	sb->s_root = NULL;
5665 failed_mount4:
5666 	ext4_msg(sb, KERN_ERR, "mount failed");
5667 	if (EXT4_SB(sb)->rsv_conversion_wq)
5668 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5669 failed_mount_wq:
5670 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5671 	sbi->s_ea_inode_cache = NULL;
5672 
5673 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5674 	sbi->s_ea_block_cache = NULL;
5675 
5676 	if (sbi->s_journal) {
5677 		ext4_journal_destroy(sbi, sbi->s_journal);
5678 	}
5679 failed_mount3a:
5680 	ext4_es_unregister_shrinker(sbi);
5681 failed_mount3:
5682 	/* flush s_sb_upd_work before sbi destroy */
5683 	flush_work(&sbi->s_sb_upd_work);
5684 	ext4_stop_mmpd(sbi);
5685 	timer_delete_sync(&sbi->s_err_report);
5686 	ext4_group_desc_free(sbi);
5687 failed_mount:
5688 #if IS_ENABLED(CONFIG_UNICODE)
5689 	utf8_unload(sb->s_encoding);
5690 #endif
5691 
5692 #ifdef CONFIG_QUOTA
5693 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5694 		kfree(get_qf_name(sb, sbi, i));
5695 #endif
5696 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5697 	brelse(sbi->s_sbh);
5698 	if (sbi->s_journal_bdev_file) {
5699 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5700 		bdev_fput(sbi->s_journal_bdev_file);
5701 	}
5702 out_fail:
5703 	invalidate_bdev(sb->s_bdev);
5704 	sb->s_fs_info = NULL;
5705 	return err;
5706 }
5707 
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5708 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5709 {
5710 	struct ext4_fs_context *ctx = fc->fs_private;
5711 	struct ext4_sb_info *sbi;
5712 	const char *descr;
5713 	int ret;
5714 
5715 	sbi = ext4_alloc_sbi(sb);
5716 	if (!sbi)
5717 		return -ENOMEM;
5718 
5719 	fc->s_fs_info = sbi;
5720 
5721 	/* Cleanup superblock name */
5722 	strreplace(sb->s_id, '/', '!');
5723 
5724 	sbi->s_sb_block = 1;	/* Default super block location */
5725 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5726 		sbi->s_sb_block = ctx->s_sb_block;
5727 
5728 	ret = __ext4_fill_super(fc, sb);
5729 	if (ret < 0)
5730 		goto free_sbi;
5731 
5732 	if (sbi->s_journal) {
5733 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5734 			descr = " journalled data mode";
5735 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5736 			descr = " ordered data mode";
5737 		else
5738 			descr = " writeback data mode";
5739 	} else
5740 		descr = "out journal";
5741 
5742 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5743 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5744 			 "Quota mode: %s.", &sb->s_uuid,
5745 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5746 			 ext4_quota_mode(sb));
5747 
5748 	/* Update the s_overhead_clusters if necessary */
5749 	ext4_update_overhead(sb, false);
5750 	return 0;
5751 
5752 free_sbi:
5753 	ext4_free_sbi(sbi);
5754 	fc->s_fs_info = NULL;
5755 	return ret;
5756 }
5757 
ext4_get_tree(struct fs_context * fc)5758 static int ext4_get_tree(struct fs_context *fc)
5759 {
5760 	return get_tree_bdev(fc, ext4_fill_super);
5761 }
5762 
5763 /*
5764  * Setup any per-fs journal parameters now.  We'll do this both on
5765  * initial mount, once the journal has been initialised but before we've
5766  * done any recovery; and again on any subsequent remount.
5767  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5768 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5769 {
5770 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5771 
5772 	journal->j_commit_interval = sbi->s_commit_interval;
5773 	journal->j_min_batch_time = sbi->s_min_batch_time;
5774 	journal->j_max_batch_time = sbi->s_max_batch_time;
5775 	ext4_fc_init(sb, journal);
5776 
5777 	write_lock(&journal->j_state_lock);
5778 	if (test_opt(sb, BARRIER))
5779 		journal->j_flags |= JBD2_BARRIER;
5780 	else
5781 		journal->j_flags &= ~JBD2_BARRIER;
5782 	/*
5783 	 * Always enable journal cycle record option, letting the journal
5784 	 * records log transactions continuously between each mount.
5785 	 */
5786 	journal->j_flags |= JBD2_CYCLE_RECORD;
5787 	write_unlock(&journal->j_state_lock);
5788 }
5789 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5790 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5791 					     unsigned int journal_inum)
5792 {
5793 	struct inode *journal_inode;
5794 
5795 	/*
5796 	 * Test for the existence of a valid inode on disk.  Bad things
5797 	 * happen if we iget() an unused inode, as the subsequent iput()
5798 	 * will try to delete it.
5799 	 */
5800 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5801 	if (IS_ERR(journal_inode)) {
5802 		ext4_msg(sb, KERN_ERR, "no journal found");
5803 		return ERR_CAST(journal_inode);
5804 	}
5805 	if (!journal_inode->i_nlink) {
5806 		make_bad_inode(journal_inode);
5807 		iput(journal_inode);
5808 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5809 		return ERR_PTR(-EFSCORRUPTED);
5810 	}
5811 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5812 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5813 		iput(journal_inode);
5814 		return ERR_PTR(-EFSCORRUPTED);
5815 	}
5816 
5817 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5818 		  journal_inode, journal_inode->i_size);
5819 	return journal_inode;
5820 }
5821 
ext4_journal_bmap(journal_t * journal,sector_t * block)5822 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5823 {
5824 	struct ext4_map_blocks map;
5825 	int ret;
5826 
5827 	if (journal->j_inode == NULL)
5828 		return 0;
5829 
5830 	map.m_lblk = *block;
5831 	map.m_len = 1;
5832 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5833 	if (ret <= 0) {
5834 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5835 			 "journal bmap failed: block %llu ret %d\n",
5836 			 *block, ret);
5837 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5838 		return ret;
5839 	}
5840 	*block = map.m_pblk;
5841 	return 0;
5842 }
5843 
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5844 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5845 					  unsigned int journal_inum)
5846 {
5847 	struct inode *journal_inode;
5848 	journal_t *journal;
5849 
5850 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5851 	if (IS_ERR(journal_inode))
5852 		return ERR_CAST(journal_inode);
5853 
5854 	journal = jbd2_journal_init_inode(journal_inode);
5855 	if (IS_ERR(journal)) {
5856 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5857 		iput(journal_inode);
5858 		return ERR_CAST(journal);
5859 	}
5860 	journal->j_private = sb;
5861 	journal->j_bmap = ext4_journal_bmap;
5862 	ext4_init_journal_params(sb, journal);
5863 	return journal;
5864 }
5865 
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5866 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5867 					dev_t j_dev, ext4_fsblk_t *j_start,
5868 					ext4_fsblk_t *j_len)
5869 {
5870 	struct buffer_head *bh;
5871 	struct block_device *bdev;
5872 	struct file *bdev_file;
5873 	int hblock, blocksize;
5874 	ext4_fsblk_t sb_block;
5875 	unsigned long offset;
5876 	struct ext4_super_block *es;
5877 	int errno;
5878 
5879 	bdev_file = bdev_file_open_by_dev(j_dev,
5880 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5881 		sb, &fs_holder_ops);
5882 	if (IS_ERR(bdev_file)) {
5883 		ext4_msg(sb, KERN_ERR,
5884 			 "failed to open journal device unknown-block(%u,%u) %ld",
5885 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5886 		return bdev_file;
5887 	}
5888 
5889 	bdev = file_bdev(bdev_file);
5890 	blocksize = sb->s_blocksize;
5891 	hblock = bdev_logical_block_size(bdev);
5892 	if (blocksize < hblock) {
5893 		ext4_msg(sb, KERN_ERR,
5894 			"blocksize too small for journal device");
5895 		errno = -EINVAL;
5896 		goto out_bdev;
5897 	}
5898 
5899 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5900 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5901 	set_blocksize(bdev_file, blocksize);
5902 	bh = __bread(bdev, sb_block, blocksize);
5903 	if (!bh) {
5904 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5905 		       "external journal");
5906 		errno = -EINVAL;
5907 		goto out_bdev;
5908 	}
5909 
5910 	es = (struct ext4_super_block *) (bh->b_data + offset);
5911 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5912 	    !(le32_to_cpu(es->s_feature_incompat) &
5913 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5914 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5915 		errno = -EFSCORRUPTED;
5916 		goto out_bh;
5917 	}
5918 
5919 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5920 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5921 	    es->s_checksum != ext4_superblock_csum(es)) {
5922 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5923 		errno = -EFSCORRUPTED;
5924 		goto out_bh;
5925 	}
5926 
5927 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5928 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5929 		errno = -EFSCORRUPTED;
5930 		goto out_bh;
5931 	}
5932 
5933 	*j_start = sb_block + 1;
5934 	*j_len = ext4_blocks_count(es);
5935 	brelse(bh);
5936 	return bdev_file;
5937 
5938 out_bh:
5939 	brelse(bh);
5940 out_bdev:
5941 	bdev_fput(bdev_file);
5942 	return ERR_PTR(errno);
5943 }
5944 
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5945 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5946 					dev_t j_dev)
5947 {
5948 	journal_t *journal;
5949 	ext4_fsblk_t j_start;
5950 	ext4_fsblk_t j_len;
5951 	struct file *bdev_file;
5952 	int errno = 0;
5953 
5954 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5955 	if (IS_ERR(bdev_file))
5956 		return ERR_CAST(bdev_file);
5957 
5958 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5959 					j_len, sb->s_blocksize);
5960 	if (IS_ERR(journal)) {
5961 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5962 		errno = PTR_ERR(journal);
5963 		goto out_bdev;
5964 	}
5965 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5966 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5967 					"user (unsupported) - %d",
5968 			be32_to_cpu(journal->j_superblock->s_nr_users));
5969 		errno = -EINVAL;
5970 		goto out_journal;
5971 	}
5972 	journal->j_private = sb;
5973 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5974 	ext4_init_journal_params(sb, journal);
5975 	return journal;
5976 
5977 out_journal:
5978 	ext4_journal_destroy(EXT4_SB(sb), journal);
5979 out_bdev:
5980 	bdev_fput(bdev_file);
5981 	return ERR_PTR(errno);
5982 }
5983 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5984 static int ext4_load_journal(struct super_block *sb,
5985 			     struct ext4_super_block *es,
5986 			     unsigned long journal_devnum)
5987 {
5988 	journal_t *journal;
5989 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5990 	dev_t journal_dev;
5991 	int err = 0;
5992 	int really_read_only;
5993 	int journal_dev_ro;
5994 
5995 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5996 		return -EFSCORRUPTED;
5997 
5998 	if (journal_devnum &&
5999 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6000 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6001 			"numbers have changed");
6002 		journal_dev = new_decode_dev(journal_devnum);
6003 	} else
6004 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6005 
6006 	if (journal_inum && journal_dev) {
6007 		ext4_msg(sb, KERN_ERR,
6008 			 "filesystem has both journal inode and journal device!");
6009 		return -EINVAL;
6010 	}
6011 
6012 	if (journal_inum) {
6013 		journal = ext4_open_inode_journal(sb, journal_inum);
6014 		if (IS_ERR(journal))
6015 			return PTR_ERR(journal);
6016 	} else {
6017 		journal = ext4_open_dev_journal(sb, journal_dev);
6018 		if (IS_ERR(journal))
6019 			return PTR_ERR(journal);
6020 	}
6021 
6022 	journal_dev_ro = bdev_read_only(journal->j_dev);
6023 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6024 
6025 	if (journal_dev_ro && !sb_rdonly(sb)) {
6026 		ext4_msg(sb, KERN_ERR,
6027 			 "journal device read-only, try mounting with '-o ro'");
6028 		err = -EROFS;
6029 		goto err_out;
6030 	}
6031 
6032 	/*
6033 	 * Are we loading a blank journal or performing recovery after a
6034 	 * crash?  For recovery, we need to check in advance whether we
6035 	 * can get read-write access to the device.
6036 	 */
6037 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6038 		if (sb_rdonly(sb)) {
6039 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6040 					"required on readonly filesystem");
6041 			if (really_read_only) {
6042 				ext4_msg(sb, KERN_ERR, "write access "
6043 					"unavailable, cannot proceed "
6044 					"(try mounting with noload)");
6045 				err = -EROFS;
6046 				goto err_out;
6047 			}
6048 			ext4_msg(sb, KERN_INFO, "write access will "
6049 			       "be enabled during recovery");
6050 		}
6051 	}
6052 
6053 	if (!(journal->j_flags & JBD2_BARRIER))
6054 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6055 
6056 	if (!ext4_has_feature_journal_needs_recovery(sb))
6057 		err = jbd2_journal_wipe(journal, !really_read_only);
6058 	if (!err) {
6059 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6060 		__le16 orig_state;
6061 		bool changed = false;
6062 
6063 		if (save)
6064 			memcpy(save, ((char *) es) +
6065 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6066 		err = jbd2_journal_load(journal);
6067 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6068 				   save, EXT4_S_ERR_LEN)) {
6069 			memcpy(((char *) es) + EXT4_S_ERR_START,
6070 			       save, EXT4_S_ERR_LEN);
6071 			changed = true;
6072 		}
6073 		kfree(save);
6074 		orig_state = es->s_state;
6075 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6076 					   EXT4_ERROR_FS);
6077 		if (orig_state != es->s_state)
6078 			changed = true;
6079 		/* Write out restored error information to the superblock */
6080 		if (changed && !really_read_only) {
6081 			int err2;
6082 			err2 = ext4_commit_super(sb);
6083 			err = err ? : err2;
6084 		}
6085 	}
6086 
6087 	if (err) {
6088 		ext4_msg(sb, KERN_ERR, "error loading journal");
6089 		goto err_out;
6090 	}
6091 
6092 	EXT4_SB(sb)->s_journal = journal;
6093 	err = ext4_clear_journal_err(sb, es);
6094 	if (err) {
6095 		ext4_journal_destroy(EXT4_SB(sb), journal);
6096 		return err;
6097 	}
6098 
6099 	if (!really_read_only && journal_devnum &&
6100 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6101 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6102 		ext4_commit_super(sb);
6103 	}
6104 	if (!really_read_only && journal_inum &&
6105 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6106 		es->s_journal_inum = cpu_to_le32(journal_inum);
6107 		ext4_commit_super(sb);
6108 	}
6109 
6110 	return 0;
6111 
6112 err_out:
6113 	ext4_journal_destroy(EXT4_SB(sb), journal);
6114 	return err;
6115 }
6116 
6117 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6118 static void ext4_update_super(struct super_block *sb)
6119 {
6120 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6121 	struct ext4_super_block *es = sbi->s_es;
6122 	struct buffer_head *sbh = sbi->s_sbh;
6123 
6124 	lock_buffer(sbh);
6125 	/*
6126 	 * If the file system is mounted read-only, don't update the
6127 	 * superblock write time.  This avoids updating the superblock
6128 	 * write time when we are mounting the root file system
6129 	 * read/only but we need to replay the journal; at that point,
6130 	 * for people who are east of GMT and who make their clock
6131 	 * tick in localtime for Windows bug-for-bug compatibility,
6132 	 * the clock is set in the future, and this will cause e2fsck
6133 	 * to complain and force a full file system check.
6134 	 */
6135 	if (!sb_rdonly(sb))
6136 		ext4_update_tstamp(es, s_wtime);
6137 	es->s_kbytes_written =
6138 		cpu_to_le64(sbi->s_kbytes_written +
6139 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6140 		      sbi->s_sectors_written_start) >> 1));
6141 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6142 		ext4_free_blocks_count_set(es,
6143 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6144 				&sbi->s_freeclusters_counter)));
6145 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6146 		es->s_free_inodes_count =
6147 			cpu_to_le32(percpu_counter_sum_positive(
6148 				&sbi->s_freeinodes_counter));
6149 	/* Copy error information to the on-disk superblock */
6150 	spin_lock(&sbi->s_error_lock);
6151 	if (sbi->s_add_error_count > 0) {
6152 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6153 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6154 			__ext4_update_tstamp(&es->s_first_error_time,
6155 					     &es->s_first_error_time_hi,
6156 					     sbi->s_first_error_time);
6157 			strtomem_pad(es->s_first_error_func,
6158 				     sbi->s_first_error_func, 0);
6159 			es->s_first_error_line =
6160 				cpu_to_le32(sbi->s_first_error_line);
6161 			es->s_first_error_ino =
6162 				cpu_to_le32(sbi->s_first_error_ino);
6163 			es->s_first_error_block =
6164 				cpu_to_le64(sbi->s_first_error_block);
6165 			es->s_first_error_errcode =
6166 				ext4_errno_to_code(sbi->s_first_error_code);
6167 		}
6168 		__ext4_update_tstamp(&es->s_last_error_time,
6169 				     &es->s_last_error_time_hi,
6170 				     sbi->s_last_error_time);
6171 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6172 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6173 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6174 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6175 		es->s_last_error_errcode =
6176 				ext4_errno_to_code(sbi->s_last_error_code);
6177 		/*
6178 		 * Start the daily error reporting function if it hasn't been
6179 		 * started already
6180 		 */
6181 		if (!es->s_error_count)
6182 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6183 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6184 		sbi->s_add_error_count = 0;
6185 	}
6186 	spin_unlock(&sbi->s_error_lock);
6187 
6188 	ext4_superblock_csum_set(sb);
6189 	unlock_buffer(sbh);
6190 }
6191 
ext4_commit_super(struct super_block * sb)6192 static int ext4_commit_super(struct super_block *sb)
6193 {
6194 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6195 
6196 	if (!sbh)
6197 		return -EINVAL;
6198 
6199 	ext4_update_super(sb);
6200 
6201 	lock_buffer(sbh);
6202 	/* Buffer got discarded which means block device got invalidated */
6203 	if (!buffer_mapped(sbh)) {
6204 		unlock_buffer(sbh);
6205 		return -EIO;
6206 	}
6207 
6208 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6209 		/*
6210 		 * Oh, dear.  A previous attempt to write the
6211 		 * superblock failed.  This could happen because the
6212 		 * USB device was yanked out.  Or it could happen to
6213 		 * be a transient write error and maybe the block will
6214 		 * be remapped.  Nothing we can do but to retry the
6215 		 * write and hope for the best.
6216 		 */
6217 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6218 		       "superblock detected");
6219 		clear_buffer_write_io_error(sbh);
6220 		set_buffer_uptodate(sbh);
6221 	}
6222 	get_bh(sbh);
6223 	/* Clear potential dirty bit if it was journalled update */
6224 	clear_buffer_dirty(sbh);
6225 	sbh->b_end_io = end_buffer_write_sync;
6226 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6227 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6228 	wait_on_buffer(sbh);
6229 	if (buffer_write_io_error(sbh)) {
6230 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6231 		       "superblock");
6232 		clear_buffer_write_io_error(sbh);
6233 		set_buffer_uptodate(sbh);
6234 		return -EIO;
6235 	}
6236 	return 0;
6237 }
6238 
6239 /*
6240  * Have we just finished recovery?  If so, and if we are mounting (or
6241  * remounting) the filesystem readonly, then we will end up with a
6242  * consistent fs on disk.  Record that fact.
6243  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6244 static int ext4_mark_recovery_complete(struct super_block *sb,
6245 				       struct ext4_super_block *es)
6246 {
6247 	int err;
6248 	journal_t *journal = EXT4_SB(sb)->s_journal;
6249 
6250 	if (!ext4_has_feature_journal(sb)) {
6251 		if (journal != NULL) {
6252 			ext4_error(sb, "Journal got removed while the fs was "
6253 				   "mounted!");
6254 			return -EFSCORRUPTED;
6255 		}
6256 		return 0;
6257 	}
6258 	jbd2_journal_lock_updates(journal);
6259 	err = jbd2_journal_flush(journal, 0);
6260 	if (err < 0)
6261 		goto out;
6262 
6263 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6264 	    ext4_has_feature_orphan_present(sb))) {
6265 		if (!ext4_orphan_file_empty(sb)) {
6266 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6267 			err = -EFSCORRUPTED;
6268 			goto out;
6269 		}
6270 		ext4_clear_feature_journal_needs_recovery(sb);
6271 		ext4_clear_feature_orphan_present(sb);
6272 		ext4_commit_super(sb);
6273 	}
6274 out:
6275 	jbd2_journal_unlock_updates(journal);
6276 	return err;
6277 }
6278 
6279 /*
6280  * If we are mounting (or read-write remounting) a filesystem whose journal
6281  * has recorded an error from a previous lifetime, move that error to the
6282  * main filesystem now.
6283  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6284 static int ext4_clear_journal_err(struct super_block *sb,
6285 				   struct ext4_super_block *es)
6286 {
6287 	journal_t *journal;
6288 	int j_errno;
6289 	const char *errstr;
6290 
6291 	if (!ext4_has_feature_journal(sb)) {
6292 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6293 		return -EFSCORRUPTED;
6294 	}
6295 
6296 	journal = EXT4_SB(sb)->s_journal;
6297 
6298 	/*
6299 	 * Now check for any error status which may have been recorded in the
6300 	 * journal by a prior ext4_error() or ext4_abort()
6301 	 */
6302 
6303 	j_errno = jbd2_journal_errno(journal);
6304 	if (j_errno) {
6305 		char nbuf[16];
6306 
6307 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6308 		ext4_warning(sb, "Filesystem error recorded "
6309 			     "from previous mount: %s", errstr);
6310 
6311 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6312 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6313 		j_errno = ext4_commit_super(sb);
6314 		if (j_errno)
6315 			return j_errno;
6316 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6317 
6318 		jbd2_journal_clear_err(journal);
6319 		jbd2_journal_update_sb_errno(journal);
6320 	}
6321 	return 0;
6322 }
6323 
6324 /*
6325  * Force the running and committing transactions to commit,
6326  * and wait on the commit.
6327  */
ext4_force_commit(struct super_block * sb)6328 int ext4_force_commit(struct super_block *sb)
6329 {
6330 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6331 }
6332 
ext4_sync_fs(struct super_block * sb,int wait)6333 static int ext4_sync_fs(struct super_block *sb, int wait)
6334 {
6335 	int ret = 0;
6336 	tid_t target;
6337 	bool needs_barrier = false;
6338 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6339 
6340 	ret = ext4_emergency_state(sb);
6341 	if (unlikely(ret))
6342 		return ret;
6343 
6344 	trace_ext4_sync_fs(sb, wait);
6345 	flush_workqueue(sbi->rsv_conversion_wq);
6346 	/*
6347 	 * Writeback quota in non-journalled quota case - journalled quota has
6348 	 * no dirty dquots
6349 	 */
6350 	dquot_writeback_dquots(sb, -1);
6351 	/*
6352 	 * Data writeback is possible w/o journal transaction, so barrier must
6353 	 * being sent at the end of the function. But we can skip it if
6354 	 * transaction_commit will do it for us.
6355 	 */
6356 	if (sbi->s_journal) {
6357 		target = jbd2_get_latest_transaction(sbi->s_journal);
6358 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6359 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6360 			needs_barrier = true;
6361 
6362 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6363 			if (wait)
6364 				ret = jbd2_log_wait_commit(sbi->s_journal,
6365 							   target);
6366 		}
6367 	} else if (wait && test_opt(sb, BARRIER))
6368 		needs_barrier = true;
6369 	if (needs_barrier) {
6370 		int err;
6371 		err = blkdev_issue_flush(sb->s_bdev);
6372 		if (!ret)
6373 			ret = err;
6374 	}
6375 
6376 	return ret;
6377 }
6378 
6379 /*
6380  * LVM calls this function before a (read-only) snapshot is created.  This
6381  * gives us a chance to flush the journal completely and mark the fs clean.
6382  *
6383  * Note that only this function cannot bring a filesystem to be in a clean
6384  * state independently. It relies on upper layer to stop all data & metadata
6385  * modifications.
6386  */
ext4_freeze(struct super_block * sb)6387 static int ext4_freeze(struct super_block *sb)
6388 {
6389 	int error = 0;
6390 	journal_t *journal = EXT4_SB(sb)->s_journal;
6391 
6392 	if (journal) {
6393 		/* Now we set up the journal barrier. */
6394 		jbd2_journal_lock_updates(journal);
6395 
6396 		/*
6397 		 * Don't clear the needs_recovery flag if we failed to
6398 		 * flush the journal.
6399 		 */
6400 		error = jbd2_journal_flush(journal, 0);
6401 		if (error < 0)
6402 			goto out;
6403 
6404 		/* Journal blocked and flushed, clear needs_recovery flag. */
6405 		ext4_clear_feature_journal_needs_recovery(sb);
6406 		if (ext4_orphan_file_empty(sb))
6407 			ext4_clear_feature_orphan_present(sb);
6408 	}
6409 
6410 	error = ext4_commit_super(sb);
6411 out:
6412 	if (journal)
6413 		/* we rely on upper layer to stop further updates */
6414 		jbd2_journal_unlock_updates(journal);
6415 	return error;
6416 }
6417 
6418 /*
6419  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6420  * flag here, even though the filesystem is not technically dirty yet.
6421  */
ext4_unfreeze(struct super_block * sb)6422 static int ext4_unfreeze(struct super_block *sb)
6423 {
6424 	if (ext4_emergency_state(sb))
6425 		return 0;
6426 
6427 	if (EXT4_SB(sb)->s_journal) {
6428 		/* Reset the needs_recovery flag before the fs is unlocked. */
6429 		ext4_set_feature_journal_needs_recovery(sb);
6430 		if (ext4_has_feature_orphan_file(sb))
6431 			ext4_set_feature_orphan_present(sb);
6432 	}
6433 
6434 	ext4_commit_super(sb);
6435 	return 0;
6436 }
6437 
6438 /*
6439  * Structure to save mount options for ext4_remount's benefit
6440  */
6441 struct ext4_mount_options {
6442 	unsigned long s_mount_opt;
6443 	unsigned long s_mount_opt2;
6444 	kuid_t s_resuid;
6445 	kgid_t s_resgid;
6446 	unsigned long s_commit_interval;
6447 	u32 s_min_batch_time, s_max_batch_time;
6448 #ifdef CONFIG_QUOTA
6449 	int s_jquota_fmt;
6450 	char *s_qf_names[EXT4_MAXQUOTAS];
6451 #endif
6452 };
6453 
__ext4_remount(struct fs_context * fc,struct super_block * sb)6454 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6455 {
6456 	struct ext4_fs_context *ctx = fc->fs_private;
6457 	struct ext4_super_block *es;
6458 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6459 	unsigned long old_sb_flags;
6460 	struct ext4_mount_options old_opts;
6461 	ext4_group_t g;
6462 	int err = 0;
6463 	int alloc_ctx;
6464 #ifdef CONFIG_QUOTA
6465 	int enable_quota = 0;
6466 	int i, j;
6467 	char *to_free[EXT4_MAXQUOTAS];
6468 #endif
6469 
6470 
6471 	/* Store the original options */
6472 	old_sb_flags = sb->s_flags;
6473 	old_opts.s_mount_opt = sbi->s_mount_opt;
6474 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6475 	old_opts.s_resuid = sbi->s_resuid;
6476 	old_opts.s_resgid = sbi->s_resgid;
6477 	old_opts.s_commit_interval = sbi->s_commit_interval;
6478 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6479 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6480 #ifdef CONFIG_QUOTA
6481 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6482 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6483 		if (sbi->s_qf_names[i]) {
6484 			char *qf_name = get_qf_name(sb, sbi, i);
6485 
6486 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6487 			if (!old_opts.s_qf_names[i]) {
6488 				for (j = 0; j < i; j++)
6489 					kfree(old_opts.s_qf_names[j]);
6490 				return -ENOMEM;
6491 			}
6492 		} else
6493 			old_opts.s_qf_names[i] = NULL;
6494 #endif
6495 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6496 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6497 			ctx->journal_ioprio =
6498 				sbi->s_journal->j_task->io_context->ioprio;
6499 		else
6500 			ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
6501 
6502 	}
6503 
6504 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6505 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6506 		ext4_msg(sb, KERN_WARNING,
6507 			 "stripe (%lu) is not aligned with cluster size (%u), "
6508 			 "stripe is disabled",
6509 			 ctx->s_stripe, sbi->s_cluster_ratio);
6510 		ctx->s_stripe = 0;
6511 	}
6512 
6513 	/*
6514 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6515 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6516 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6517 	 * here s_writepages_rwsem to avoid race between writepages ops and
6518 	 * remount.
6519 	 */
6520 	alloc_ctx = ext4_writepages_down_write(sb);
6521 	ext4_apply_options(fc, sb);
6522 	ext4_writepages_up_write(sb, alloc_ctx);
6523 
6524 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6525 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6526 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6527 			 "during remount not supported; ignoring");
6528 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6529 	}
6530 
6531 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6532 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6533 			ext4_msg(sb, KERN_ERR, "can't mount with "
6534 				 "both data=journal and delalloc");
6535 			err = -EINVAL;
6536 			goto restore_opts;
6537 		}
6538 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6539 			ext4_msg(sb, KERN_ERR, "can't mount with "
6540 				 "both data=journal and dioread_nolock");
6541 			err = -EINVAL;
6542 			goto restore_opts;
6543 		}
6544 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6545 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6546 			ext4_msg(sb, KERN_ERR, "can't mount with "
6547 				"journal_async_commit in data=ordered mode");
6548 			err = -EINVAL;
6549 			goto restore_opts;
6550 		}
6551 	}
6552 
6553 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6554 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6555 		err = -EINVAL;
6556 		goto restore_opts;
6557 	}
6558 
6559 	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6560 	    !test_opt(sb, DELALLOC)) {
6561 		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6562 		err = -EINVAL;
6563 		goto restore_opts;
6564 	}
6565 
6566 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6567 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6568 
6569 	es = sbi->s_es;
6570 
6571 	if (sbi->s_journal) {
6572 		ext4_init_journal_params(sb, sbi->s_journal);
6573 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6574 	}
6575 
6576 	/* Flush outstanding errors before changing fs state */
6577 	flush_work(&sbi->s_sb_upd_work);
6578 
6579 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6580 		if (ext4_emergency_state(sb)) {
6581 			err = -EROFS;
6582 			goto restore_opts;
6583 		}
6584 
6585 		if (fc->sb_flags & SB_RDONLY) {
6586 			err = sync_filesystem(sb);
6587 			if (err < 0)
6588 				goto restore_opts;
6589 			err = dquot_suspend(sb, -1);
6590 			if (err < 0)
6591 				goto restore_opts;
6592 
6593 			/*
6594 			 * First of all, the unconditional stuff we have to do
6595 			 * to disable replay of the journal when we next remount
6596 			 */
6597 			sb->s_flags |= SB_RDONLY;
6598 
6599 			/*
6600 			 * OK, test if we are remounting a valid rw partition
6601 			 * readonly, and if so set the rdonly flag and then
6602 			 * mark the partition as valid again.
6603 			 */
6604 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6605 			    (sbi->s_mount_state & EXT4_VALID_FS))
6606 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6607 
6608 			if (sbi->s_journal) {
6609 				/*
6610 				 * We let remount-ro finish even if marking fs
6611 				 * as clean failed...
6612 				 */
6613 				ext4_mark_recovery_complete(sb, es);
6614 			}
6615 		} else {
6616 			/* Make sure we can mount this feature set readwrite */
6617 			if (ext4_has_feature_readonly(sb) ||
6618 			    !ext4_feature_set_ok(sb, 0)) {
6619 				err = -EROFS;
6620 				goto restore_opts;
6621 			}
6622 			/*
6623 			 * Make sure the group descriptor checksums
6624 			 * are sane.  If they aren't, refuse to remount r/w.
6625 			 */
6626 			for (g = 0; g < sbi->s_groups_count; g++) {
6627 				struct ext4_group_desc *gdp =
6628 					ext4_get_group_desc(sb, g, NULL);
6629 
6630 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6631 					ext4_msg(sb, KERN_ERR,
6632 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6633 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6634 					       le16_to_cpu(gdp->bg_checksum));
6635 					err = -EFSBADCRC;
6636 					goto restore_opts;
6637 				}
6638 			}
6639 
6640 			/*
6641 			 * If we have an unprocessed orphan list hanging
6642 			 * around from a previously readonly bdev mount,
6643 			 * require a full umount/remount for now.
6644 			 */
6645 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6646 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6647 				       "remount RDWR because of unprocessed "
6648 				       "orphan inode list.  Please "
6649 				       "umount/remount instead");
6650 				err = -EINVAL;
6651 				goto restore_opts;
6652 			}
6653 
6654 			/*
6655 			 * Mounting a RDONLY partition read-write, so reread
6656 			 * and store the current valid flag.  (It may have
6657 			 * been changed by e2fsck since we originally mounted
6658 			 * the partition.)
6659 			 */
6660 			if (sbi->s_journal) {
6661 				err = ext4_clear_journal_err(sb, es);
6662 				if (err)
6663 					goto restore_opts;
6664 			}
6665 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6666 					      ~EXT4_FC_REPLAY);
6667 
6668 			err = ext4_setup_super(sb, es, 0);
6669 			if (err)
6670 				goto restore_opts;
6671 
6672 			sb->s_flags &= ~SB_RDONLY;
6673 			if (ext4_has_feature_mmp(sb)) {
6674 				err = ext4_multi_mount_protect(sb,
6675 						le64_to_cpu(es->s_mmp_block));
6676 				if (err)
6677 					goto restore_opts;
6678 			}
6679 #ifdef CONFIG_QUOTA
6680 			enable_quota = 1;
6681 #endif
6682 		}
6683 	}
6684 
6685 	/*
6686 	 * Handle creation of system zone data early because it can fail.
6687 	 * Releasing of existing data is done when we are sure remount will
6688 	 * succeed.
6689 	 */
6690 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6691 		err = ext4_setup_system_zone(sb);
6692 		if (err)
6693 			goto restore_opts;
6694 	}
6695 
6696 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6697 		err = ext4_commit_super(sb);
6698 		if (err)
6699 			goto restore_opts;
6700 	}
6701 
6702 #ifdef CONFIG_QUOTA
6703 	if (enable_quota) {
6704 		if (sb_any_quota_suspended(sb))
6705 			dquot_resume(sb, -1);
6706 		else if (ext4_has_feature_quota(sb)) {
6707 			err = ext4_enable_quotas(sb);
6708 			if (err)
6709 				goto restore_opts;
6710 		}
6711 	}
6712 	/* Release old quota file names */
6713 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6714 		kfree(old_opts.s_qf_names[i]);
6715 #endif
6716 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6717 		ext4_release_system_zone(sb);
6718 
6719 	/*
6720 	 * Reinitialize lazy itable initialization thread based on
6721 	 * current settings
6722 	 */
6723 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6724 		ext4_unregister_li_request(sb);
6725 	else {
6726 		ext4_group_t first_not_zeroed;
6727 		first_not_zeroed = ext4_has_uninit_itable(sb);
6728 		ext4_register_li_request(sb, first_not_zeroed);
6729 	}
6730 
6731 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6732 		ext4_stop_mmpd(sbi);
6733 
6734 	/*
6735 	 * Handle aborting the filesystem as the last thing during remount to
6736 	 * avoid obsure errors during remount when some option changes fail to
6737 	 * apply due to shutdown filesystem.
6738 	 */
6739 	if (test_opt2(sb, ABORT))
6740 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6741 
6742 	return 0;
6743 
6744 restore_opts:
6745 	/*
6746 	 * If there was a failing r/w to ro transition, we may need to
6747 	 * re-enable quota
6748 	 */
6749 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6750 	    sb_any_quota_suspended(sb))
6751 		dquot_resume(sb, -1);
6752 
6753 	alloc_ctx = ext4_writepages_down_write(sb);
6754 	sb->s_flags = old_sb_flags;
6755 	sbi->s_mount_opt = old_opts.s_mount_opt;
6756 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6757 	sbi->s_resuid = old_opts.s_resuid;
6758 	sbi->s_resgid = old_opts.s_resgid;
6759 	sbi->s_commit_interval = old_opts.s_commit_interval;
6760 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6761 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6762 	ext4_writepages_up_write(sb, alloc_ctx);
6763 
6764 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6765 		ext4_release_system_zone(sb);
6766 #ifdef CONFIG_QUOTA
6767 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6768 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6769 		to_free[i] = get_qf_name(sb, sbi, i);
6770 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6771 	}
6772 	synchronize_rcu();
6773 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6774 		kfree(to_free[i]);
6775 #endif
6776 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6777 		ext4_stop_mmpd(sbi);
6778 	return err;
6779 }
6780 
ext4_reconfigure(struct fs_context * fc)6781 static int ext4_reconfigure(struct fs_context *fc)
6782 {
6783 	struct super_block *sb = fc->root->d_sb;
6784 	int ret;
6785 	bool old_ro = sb_rdonly(sb);
6786 
6787 	fc->s_fs_info = EXT4_SB(sb);
6788 
6789 	ret = ext4_check_opt_consistency(fc, sb);
6790 	if (ret < 0)
6791 		return ret;
6792 
6793 	ret = __ext4_remount(fc, sb);
6794 	if (ret < 0)
6795 		return ret;
6796 
6797 	ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6798 		 &sb->s_uuid,
6799 		 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6800 
6801 	return 0;
6802 }
6803 
6804 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6805 static int ext4_statfs_project(struct super_block *sb,
6806 			       kprojid_t projid, struct kstatfs *buf)
6807 {
6808 	struct kqid qid;
6809 	struct dquot *dquot;
6810 	u64 limit;
6811 	u64 curblock;
6812 
6813 	qid = make_kqid_projid(projid);
6814 	dquot = dqget(sb, qid);
6815 	if (IS_ERR(dquot))
6816 		return PTR_ERR(dquot);
6817 	spin_lock(&dquot->dq_dqb_lock);
6818 
6819 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6820 			     dquot->dq_dqb.dqb_bhardlimit);
6821 	limit >>= sb->s_blocksize_bits;
6822 
6823 	if (limit) {
6824 		uint64_t	remaining = 0;
6825 
6826 		curblock = (dquot->dq_dqb.dqb_curspace +
6827 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6828 		if (limit > curblock)
6829 			remaining = limit - curblock;
6830 
6831 		buf->f_blocks = min(buf->f_blocks, limit);
6832 		buf->f_bfree = min(buf->f_bfree, remaining);
6833 		buf->f_bavail = min(buf->f_bavail, remaining);
6834 	}
6835 
6836 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6837 			     dquot->dq_dqb.dqb_ihardlimit);
6838 	if (limit) {
6839 		uint64_t	remaining = 0;
6840 
6841 		if (limit > dquot->dq_dqb.dqb_curinodes)
6842 			remaining = limit - dquot->dq_dqb.dqb_curinodes;
6843 
6844 		buf->f_files = min(buf->f_files, limit);
6845 		buf->f_ffree = min(buf->f_ffree, remaining);
6846 	}
6847 
6848 	spin_unlock(&dquot->dq_dqb_lock);
6849 	dqput(dquot);
6850 	return 0;
6851 }
6852 #endif
6853 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6854 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6855 {
6856 	struct super_block *sb = dentry->d_sb;
6857 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6858 	struct ext4_super_block *es = sbi->s_es;
6859 	ext4_fsblk_t overhead = 0, resv_blocks;
6860 	s64 bfree;
6861 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6862 
6863 	if (!test_opt(sb, MINIX_DF))
6864 		overhead = sbi->s_overhead;
6865 
6866 	buf->f_type = EXT4_SUPER_MAGIC;
6867 	buf->f_bsize = sb->s_blocksize;
6868 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6869 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6870 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6871 	/* prevent underflow in case that few free space is available */
6872 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6873 	buf->f_bavail = buf->f_bfree -
6874 			(ext4_r_blocks_count(es) + resv_blocks);
6875 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6876 		buf->f_bavail = 0;
6877 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6878 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6879 	buf->f_namelen = EXT4_NAME_LEN;
6880 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6881 
6882 #ifdef CONFIG_QUOTA
6883 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6884 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6885 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6886 #endif
6887 	return 0;
6888 }
6889 
6890 
6891 #ifdef CONFIG_QUOTA
6892 
6893 /*
6894  * Helper functions so that transaction is started before we acquire dqio_sem
6895  * to keep correct lock ordering of transaction > dqio_sem
6896  */
dquot_to_inode(struct dquot * dquot)6897 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6898 {
6899 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6900 }
6901 
ext4_write_dquot(struct dquot * dquot)6902 static int ext4_write_dquot(struct dquot *dquot)
6903 {
6904 	int ret, err;
6905 	handle_t *handle;
6906 	struct inode *inode;
6907 
6908 	inode = dquot_to_inode(dquot);
6909 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6910 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6911 	if (IS_ERR(handle))
6912 		return PTR_ERR(handle);
6913 	ret = dquot_commit(dquot);
6914 	if (ret < 0)
6915 		ext4_error_err(dquot->dq_sb, -ret,
6916 			       "Failed to commit dquot type %d",
6917 			       dquot->dq_id.type);
6918 	err = ext4_journal_stop(handle);
6919 	if (!ret)
6920 		ret = err;
6921 	return ret;
6922 }
6923 
ext4_acquire_dquot(struct dquot * dquot)6924 static int ext4_acquire_dquot(struct dquot *dquot)
6925 {
6926 	int ret, err;
6927 	handle_t *handle;
6928 
6929 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6930 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6931 	if (IS_ERR(handle))
6932 		return PTR_ERR(handle);
6933 	ret = dquot_acquire(dquot);
6934 	if (ret < 0)
6935 		ext4_error_err(dquot->dq_sb, -ret,
6936 			      "Failed to acquire dquot type %d",
6937 			      dquot->dq_id.type);
6938 	err = ext4_journal_stop(handle);
6939 	if (!ret)
6940 		ret = err;
6941 	return ret;
6942 }
6943 
ext4_release_dquot(struct dquot * dquot)6944 static int ext4_release_dquot(struct dquot *dquot)
6945 {
6946 	int ret, err;
6947 	handle_t *handle;
6948 	bool freeze_protected = false;
6949 
6950 	/*
6951 	 * Trying to sb_start_intwrite() in a running transaction
6952 	 * can result in a deadlock. Further, running transactions
6953 	 * are already protected from freezing.
6954 	 */
6955 	if (!ext4_journal_current_handle()) {
6956 		sb_start_intwrite(dquot->dq_sb);
6957 		freeze_protected = true;
6958 	}
6959 
6960 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6961 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6962 	if (IS_ERR(handle)) {
6963 		/* Release dquot anyway to avoid endless cycle in dqput() */
6964 		dquot_release(dquot);
6965 		if (freeze_protected)
6966 			sb_end_intwrite(dquot->dq_sb);
6967 		return PTR_ERR(handle);
6968 	}
6969 	ret = dquot_release(dquot);
6970 	if (ret < 0)
6971 		ext4_error_err(dquot->dq_sb, -ret,
6972 			       "Failed to release dquot type %d",
6973 			       dquot->dq_id.type);
6974 	err = ext4_journal_stop(handle);
6975 	if (!ret)
6976 		ret = err;
6977 
6978 	if (freeze_protected)
6979 		sb_end_intwrite(dquot->dq_sb);
6980 
6981 	return ret;
6982 }
6983 
ext4_mark_dquot_dirty(struct dquot * dquot)6984 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6985 {
6986 	struct super_block *sb = dquot->dq_sb;
6987 
6988 	if (ext4_is_quota_journalled(sb)) {
6989 		dquot_mark_dquot_dirty(dquot);
6990 		return ext4_write_dquot(dquot);
6991 	} else {
6992 		return dquot_mark_dquot_dirty(dquot);
6993 	}
6994 }
6995 
ext4_write_info(struct super_block * sb,int type)6996 static int ext4_write_info(struct super_block *sb, int type)
6997 {
6998 	int ret, err;
6999 	handle_t *handle;
7000 
7001 	/* Data block + inode block */
7002 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7003 	if (IS_ERR(handle))
7004 		return PTR_ERR(handle);
7005 	ret = dquot_commit_info(sb, type);
7006 	err = ext4_journal_stop(handle);
7007 	if (!ret)
7008 		ret = err;
7009 	return ret;
7010 }
7011 
lockdep_set_quota_inode(struct inode * inode,int subclass)7012 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7013 {
7014 	struct ext4_inode_info *ei = EXT4_I(inode);
7015 
7016 	/* The first argument of lockdep_set_subclass has to be
7017 	 * *exactly* the same as the argument to init_rwsem() --- in
7018 	 * this case, in init_once() --- or lockdep gets unhappy
7019 	 * because the name of the lock is set using the
7020 	 * stringification of the argument to init_rwsem().
7021 	 */
7022 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7023 	lockdep_set_subclass(&ei->i_data_sem, subclass);
7024 }
7025 
7026 /*
7027  * Standard function to be called on quota_on
7028  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7029 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7030 			 const struct path *path)
7031 {
7032 	int err;
7033 
7034 	if (!test_opt(sb, QUOTA))
7035 		return -EINVAL;
7036 
7037 	/* Quotafile not on the same filesystem? */
7038 	if (path->dentry->d_sb != sb)
7039 		return -EXDEV;
7040 
7041 	/* Quota already enabled for this file? */
7042 	if (IS_NOQUOTA(d_inode(path->dentry)))
7043 		return -EBUSY;
7044 
7045 	/* Journaling quota? */
7046 	if (EXT4_SB(sb)->s_qf_names[type]) {
7047 		/* Quotafile not in fs root? */
7048 		if (path->dentry->d_parent != sb->s_root)
7049 			ext4_msg(sb, KERN_WARNING,
7050 				"Quota file not on filesystem root. "
7051 				"Journaled quota will not work");
7052 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7053 	} else {
7054 		/*
7055 		 * Clear the flag just in case mount options changed since
7056 		 * last time.
7057 		 */
7058 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7059 	}
7060 
7061 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7062 	err = dquot_quota_on(sb, type, format_id, path);
7063 	if (!err) {
7064 		struct inode *inode = d_inode(path->dentry);
7065 		handle_t *handle;
7066 
7067 		/*
7068 		 * Set inode flags to prevent userspace from messing with quota
7069 		 * files. If this fails, we return success anyway since quotas
7070 		 * are already enabled and this is not a hard failure.
7071 		 */
7072 		inode_lock(inode);
7073 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7074 		if (IS_ERR(handle))
7075 			goto unlock_inode;
7076 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7077 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7078 				S_NOATIME | S_IMMUTABLE);
7079 		err = ext4_mark_inode_dirty(handle, inode);
7080 		ext4_journal_stop(handle);
7081 	unlock_inode:
7082 		inode_unlock(inode);
7083 		if (err)
7084 			dquot_quota_off(sb, type);
7085 	}
7086 	if (err)
7087 		lockdep_set_quota_inode(path->dentry->d_inode,
7088 					     I_DATA_SEM_NORMAL);
7089 	return err;
7090 }
7091 
ext4_check_quota_inum(int type,unsigned long qf_inum)7092 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7093 {
7094 	switch (type) {
7095 	case USRQUOTA:
7096 		return qf_inum == EXT4_USR_QUOTA_INO;
7097 	case GRPQUOTA:
7098 		return qf_inum == EXT4_GRP_QUOTA_INO;
7099 	case PRJQUOTA:
7100 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7101 	default:
7102 		BUG();
7103 	}
7104 }
7105 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7106 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7107 			     unsigned int flags)
7108 {
7109 	int err;
7110 	struct inode *qf_inode;
7111 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7112 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7113 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7114 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7115 	};
7116 
7117 	BUG_ON(!ext4_has_feature_quota(sb));
7118 
7119 	if (!qf_inums[type])
7120 		return -EPERM;
7121 
7122 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7123 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7124 				qf_inums[type], type);
7125 		return -EUCLEAN;
7126 	}
7127 
7128 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7129 	if (IS_ERR(qf_inode)) {
7130 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7131 				qf_inums[type], type);
7132 		return PTR_ERR(qf_inode);
7133 	}
7134 
7135 	/* Don't account quota for quota files to avoid recursion */
7136 	qf_inode->i_flags |= S_NOQUOTA;
7137 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7138 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7139 	if (err)
7140 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7141 	iput(qf_inode);
7142 
7143 	return err;
7144 }
7145 
7146 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7147 int ext4_enable_quotas(struct super_block *sb)
7148 {
7149 	int type, err = 0;
7150 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7151 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7152 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7153 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7154 	};
7155 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7156 		test_opt(sb, USRQUOTA),
7157 		test_opt(sb, GRPQUOTA),
7158 		test_opt(sb, PRJQUOTA),
7159 	};
7160 
7161 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7162 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7163 		if (qf_inums[type]) {
7164 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7165 				DQUOT_USAGE_ENABLED |
7166 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7167 			if (err) {
7168 				ext4_warning(sb,
7169 					"Failed to enable quota tracking "
7170 					"(type=%d, err=%d, ino=%lu). "
7171 					"Please run e2fsck to fix.", type,
7172 					err, qf_inums[type]);
7173 
7174 				ext4_quotas_off(sb, type);
7175 				return err;
7176 			}
7177 		}
7178 	}
7179 	return 0;
7180 }
7181 
ext4_quota_off(struct super_block * sb,int type)7182 static int ext4_quota_off(struct super_block *sb, int type)
7183 {
7184 	struct inode *inode = sb_dqopt(sb)->files[type];
7185 	handle_t *handle;
7186 	int err;
7187 
7188 	/* Force all delayed allocation blocks to be allocated.
7189 	 * Caller already holds s_umount sem */
7190 	if (test_opt(sb, DELALLOC))
7191 		sync_filesystem(sb);
7192 
7193 	if (!inode || !igrab(inode))
7194 		goto out;
7195 
7196 	err = dquot_quota_off(sb, type);
7197 	if (err || ext4_has_feature_quota(sb))
7198 		goto out_put;
7199 	/*
7200 	 * When the filesystem was remounted read-only first, we cannot cleanup
7201 	 * inode flags here. Bad luck but people should be using QUOTA feature
7202 	 * these days anyway.
7203 	 */
7204 	if (sb_rdonly(sb))
7205 		goto out_put;
7206 
7207 	inode_lock(inode);
7208 	/*
7209 	 * Update modification times of quota files when userspace can
7210 	 * start looking at them. If we fail, we return success anyway since
7211 	 * this is not a hard failure and quotas are already disabled.
7212 	 */
7213 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7214 	if (IS_ERR(handle)) {
7215 		err = PTR_ERR(handle);
7216 		goto out_unlock;
7217 	}
7218 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7219 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7220 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7221 	err = ext4_mark_inode_dirty(handle, inode);
7222 	ext4_journal_stop(handle);
7223 out_unlock:
7224 	inode_unlock(inode);
7225 out_put:
7226 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7227 	iput(inode);
7228 	return err;
7229 out:
7230 	return dquot_quota_off(sb, type);
7231 }
7232 
7233 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7234  * acquiring the locks... As quota files are never truncated and quota code
7235  * itself serializes the operations (and no one else should touch the files)
7236  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7237 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7238 			       size_t len, loff_t off)
7239 {
7240 	struct inode *inode = sb_dqopt(sb)->files[type];
7241 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7242 	int offset = off & (sb->s_blocksize - 1);
7243 	int tocopy;
7244 	size_t toread;
7245 	struct buffer_head *bh;
7246 	loff_t i_size = i_size_read(inode);
7247 
7248 	if (off > i_size)
7249 		return 0;
7250 	if (off+len > i_size)
7251 		len = i_size-off;
7252 	toread = len;
7253 	while (toread > 0) {
7254 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7255 		bh = ext4_bread(NULL, inode, blk, 0);
7256 		if (IS_ERR(bh))
7257 			return PTR_ERR(bh);
7258 		if (!bh)	/* A hole? */
7259 			memset(data, 0, tocopy);
7260 		else
7261 			memcpy(data, bh->b_data+offset, tocopy);
7262 		brelse(bh);
7263 		offset = 0;
7264 		toread -= tocopy;
7265 		data += tocopy;
7266 		blk++;
7267 	}
7268 	return len;
7269 }
7270 
7271 /* Write to quotafile (we know the transaction is already started and has
7272  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7273 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7274 				const char *data, size_t len, loff_t off)
7275 {
7276 	struct inode *inode = sb_dqopt(sb)->files[type];
7277 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7278 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7279 	int retries = 0;
7280 	struct buffer_head *bh;
7281 	handle_t *handle = journal_current_handle();
7282 
7283 	if (!handle) {
7284 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7285 			" cancelled because transaction is not started",
7286 			(unsigned long long)off, (unsigned long long)len);
7287 		return -EIO;
7288 	}
7289 	/*
7290 	 * Since we account only one data block in transaction credits,
7291 	 * then it is impossible to cross a block boundary.
7292 	 */
7293 	if (sb->s_blocksize - offset < len) {
7294 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7295 			" cancelled because not block aligned",
7296 			(unsigned long long)off, (unsigned long long)len);
7297 		return -EIO;
7298 	}
7299 
7300 	do {
7301 		bh = ext4_bread(handle, inode, blk,
7302 				EXT4_GET_BLOCKS_CREATE |
7303 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7304 	} while (PTR_ERR(bh) == -ENOSPC &&
7305 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7306 	if (IS_ERR(bh))
7307 		return PTR_ERR(bh);
7308 	if (!bh)
7309 		goto out;
7310 	BUFFER_TRACE(bh, "get write access");
7311 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7312 	if (err) {
7313 		brelse(bh);
7314 		return err;
7315 	}
7316 	lock_buffer(bh);
7317 	memcpy(bh->b_data+offset, data, len);
7318 	flush_dcache_folio(bh->b_folio);
7319 	unlock_buffer(bh);
7320 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7321 	brelse(bh);
7322 out:
7323 	if (inode->i_size < off + len) {
7324 		i_size_write(inode, off + len);
7325 		EXT4_I(inode)->i_disksize = inode->i_size;
7326 		err2 = ext4_mark_inode_dirty(handle, inode);
7327 		if (unlikely(err2 && !err))
7328 			err = err2;
7329 	}
7330 	return err ? err : len;
7331 }
7332 #endif
7333 
7334 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7335 static inline void register_as_ext2(void)
7336 {
7337 	int err = register_filesystem(&ext2_fs_type);
7338 	if (err)
7339 		printk(KERN_WARNING
7340 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7341 }
7342 
unregister_as_ext2(void)7343 static inline void unregister_as_ext2(void)
7344 {
7345 	unregister_filesystem(&ext2_fs_type);
7346 }
7347 
ext2_feature_set_ok(struct super_block * sb)7348 static inline int ext2_feature_set_ok(struct super_block *sb)
7349 {
7350 	if (ext4_has_unknown_ext2_incompat_features(sb))
7351 		return 0;
7352 	if (sb_rdonly(sb))
7353 		return 1;
7354 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7355 		return 0;
7356 	return 1;
7357 }
7358 #else
register_as_ext2(void)7359 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7360 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7361 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7362 #endif
7363 
register_as_ext3(void)7364 static inline void register_as_ext3(void)
7365 {
7366 	int err = register_filesystem(&ext3_fs_type);
7367 	if (err)
7368 		printk(KERN_WARNING
7369 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7370 }
7371 
unregister_as_ext3(void)7372 static inline void unregister_as_ext3(void)
7373 {
7374 	unregister_filesystem(&ext3_fs_type);
7375 }
7376 
ext3_feature_set_ok(struct super_block * sb)7377 static inline int ext3_feature_set_ok(struct super_block *sb)
7378 {
7379 	if (ext4_has_unknown_ext3_incompat_features(sb))
7380 		return 0;
7381 	if (!ext4_has_feature_journal(sb))
7382 		return 0;
7383 	if (sb_rdonly(sb))
7384 		return 1;
7385 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7386 		return 0;
7387 	return 1;
7388 }
7389 
ext4_kill_sb(struct super_block * sb)7390 static void ext4_kill_sb(struct super_block *sb)
7391 {
7392 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7393 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7394 
7395 	kill_block_super(sb);
7396 
7397 	if (bdev_file)
7398 		bdev_fput(bdev_file);
7399 }
7400 
7401 static struct file_system_type ext4_fs_type = {
7402 	.owner			= THIS_MODULE,
7403 	.name			= "ext4",
7404 	.init_fs_context	= ext4_init_fs_context,
7405 	.parameters		= ext4_param_specs,
7406 	.kill_sb		= ext4_kill_sb,
7407 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7408 };
7409 MODULE_ALIAS_FS("ext4");
7410 
ext4_init_fs(void)7411 static int __init ext4_init_fs(void)
7412 {
7413 	int err;
7414 
7415 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7416 	ext4_li_info = NULL;
7417 
7418 	/* Build-time check for flags consistency */
7419 	ext4_check_flag_values();
7420 
7421 	err = ext4_init_es();
7422 	if (err)
7423 		return err;
7424 
7425 	err = ext4_init_pending();
7426 	if (err)
7427 		goto out7;
7428 
7429 	err = ext4_init_post_read_processing();
7430 	if (err)
7431 		goto out6;
7432 
7433 	err = ext4_init_pageio();
7434 	if (err)
7435 		goto out5;
7436 
7437 	err = ext4_init_system_zone();
7438 	if (err)
7439 		goto out4;
7440 
7441 	err = ext4_init_sysfs();
7442 	if (err)
7443 		goto out3;
7444 
7445 	err = ext4_init_mballoc();
7446 	if (err)
7447 		goto out2;
7448 	err = init_inodecache();
7449 	if (err)
7450 		goto out1;
7451 
7452 	err = ext4_fc_init_dentry_cache();
7453 	if (err)
7454 		goto out05;
7455 
7456 	register_as_ext3();
7457 	register_as_ext2();
7458 	err = register_filesystem(&ext4_fs_type);
7459 	if (err)
7460 		goto out;
7461 
7462 	return 0;
7463 out:
7464 	unregister_as_ext2();
7465 	unregister_as_ext3();
7466 	ext4_fc_destroy_dentry_cache();
7467 out05:
7468 	destroy_inodecache();
7469 out1:
7470 	ext4_exit_mballoc();
7471 out2:
7472 	ext4_exit_sysfs();
7473 out3:
7474 	ext4_exit_system_zone();
7475 out4:
7476 	ext4_exit_pageio();
7477 out5:
7478 	ext4_exit_post_read_processing();
7479 out6:
7480 	ext4_exit_pending();
7481 out7:
7482 	ext4_exit_es();
7483 
7484 	return err;
7485 }
7486 
ext4_exit_fs(void)7487 static void __exit ext4_exit_fs(void)
7488 {
7489 	ext4_destroy_lazyinit_thread();
7490 	unregister_as_ext2();
7491 	unregister_as_ext3();
7492 	unregister_filesystem(&ext4_fs_type);
7493 	ext4_fc_destroy_dentry_cache();
7494 	destroy_inodecache();
7495 	ext4_exit_mballoc();
7496 	ext4_exit_sysfs();
7497 	ext4_exit_system_zone();
7498 	ext4_exit_pageio();
7499 	ext4_exit_post_read_processing();
7500 	ext4_exit_es();
7501 	ext4_exit_pending();
7502 }
7503 
7504 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7505 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7506 MODULE_LICENSE("GPL");
7507 module_init(ext4_init_fs)
7508 module_exit(ext4_exit_fs)
7509