1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 unsigned int journal_inum);
86 static int ext4_validate_options(struct fs_context *fc);
87 static int ext4_check_opt_consistency(struct fs_context *fc,
88 struct super_block *sb);
89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91 static int ext4_get_tree(struct fs_context *fc);
92 static int ext4_reconfigure(struct fs_context *fc);
93 static void ext4_fc_free(struct fs_context *fc);
94 static int ext4_init_fs_context(struct fs_context *fc);
95 static void ext4_kill_sb(struct super_block *sb);
96 static const struct fs_parameter_spec ext4_param_specs[];
97
98 /*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124 static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129 };
130
131
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = ext4_kill_sb,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147
148
149 static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = ext4_kill_sb,
155 .fs_flags = FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160
161
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io, bool simu_fail)
164 {
165 if (simu_fail) {
166 clear_buffer_uptodate(bh);
167 unlock_buffer(bh);
168 return;
169 }
170
171 /*
172 * buffer's verified bit is no longer valid after reading from
173 * disk again due to write out error, clear it to make sure we
174 * recheck the buffer contents.
175 */
176 clear_buffer_verified(bh);
177
178 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 get_bh(bh);
180 submit_bh(REQ_OP_READ | op_flags, bh);
181 }
182
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 bh_end_io_t *end_io, bool simu_fail)
185 {
186 BUG_ON(!buffer_locked(bh));
187
188 if (ext4_buffer_uptodate(bh)) {
189 unlock_buffer(bh);
190 return;
191 }
192 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
193 }
194
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 bh_end_io_t *end_io, bool simu_fail)
197 {
198 BUG_ON(!buffer_locked(bh));
199
200 if (ext4_buffer_uptodate(bh)) {
201 unlock_buffer(bh);
202 return 0;
203 }
204
205 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
206
207 wait_on_buffer(bh);
208 if (buffer_uptodate(bh))
209 return 0;
210 return -EIO;
211 }
212
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214 {
215 lock_buffer(bh);
216 if (!wait) {
217 ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 return 0;
219 }
220 return ext4_read_bh(bh, op_flags, NULL, false);
221 }
222
223 /*
224 * This works like __bread_gfp() except it uses ERR_PTR for error
225 * returns. Currently with sb_bread it's impossible to distinguish
226 * between ENOMEM and EIO situations (since both result in a NULL
227 * return.
228 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 sector_t block,
231 blk_opf_t op_flags, gfp_t gfp)
232 {
233 struct buffer_head *bh;
234 int ret;
235
236 bh = sb_getblk_gfp(sb, block, gfp);
237 if (bh == NULL)
238 return ERR_PTR(-ENOMEM);
239 if (ext4_buffer_uptodate(bh))
240 return bh;
241
242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 if (ret) {
244 put_bh(bh);
245 return ERR_PTR(ret);
246 }
247 return bh;
248 }
249
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 blk_opf_t op_flags)
252 {
253 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 ~__GFP_FS) | __GFP_MOVABLE;
255
256 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257 }
258
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 sector_t block)
261 {
262 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 ~__GFP_FS);
264
265 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266 }
267
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)268 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
269 {
270 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
271 sb->s_blocksize, GFP_NOWAIT);
272
273 if (likely(bh)) {
274 if (trylock_buffer(bh))
275 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
276 brelse(bh);
277 }
278 }
279
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)280 static int ext4_verify_csum_type(struct super_block *sb,
281 struct ext4_super_block *es)
282 {
283 if (!ext4_has_feature_metadata_csum(sb))
284 return 1;
285
286 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
287 }
288
ext4_superblock_csum(struct ext4_super_block * es)289 __le32 ext4_superblock_csum(struct ext4_super_block *es)
290 {
291 int offset = offsetof(struct ext4_super_block, s_checksum);
292 __u32 csum;
293
294 csum = ext4_chksum(~0, (char *)es, offset);
295
296 return cpu_to_le32(csum);
297 }
298
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)299 static int ext4_superblock_csum_verify(struct super_block *sb,
300 struct ext4_super_block *es)
301 {
302 if (!ext4_has_feature_metadata_csum(sb))
303 return 1;
304
305 return es->s_checksum == ext4_superblock_csum(es);
306 }
307
ext4_superblock_csum_set(struct super_block * sb)308 void ext4_superblock_csum_set(struct super_block *sb)
309 {
310 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
311
312 if (!ext4_has_feature_metadata_csum(sb))
313 return;
314
315 es->s_checksum = ext4_superblock_csum(es);
316 }
317
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)318 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
319 struct ext4_group_desc *bg)
320 {
321 return le32_to_cpu(bg->bg_block_bitmap_lo) |
322 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
323 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
324 }
325
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)326 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
327 struct ext4_group_desc *bg)
328 {
329 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
330 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
331 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
332 }
333
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)334 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
335 struct ext4_group_desc *bg)
336 {
337 return le32_to_cpu(bg->bg_inode_table_lo) |
338 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
339 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
340 }
341
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)342 __u32 ext4_free_group_clusters(struct super_block *sb,
343 struct ext4_group_desc *bg)
344 {
345 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
346 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
347 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
348 }
349
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)350 __u32 ext4_free_inodes_count(struct super_block *sb,
351 struct ext4_group_desc *bg)
352 {
353 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
354 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
355 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
356 }
357
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)358 __u32 ext4_used_dirs_count(struct super_block *sb,
359 struct ext4_group_desc *bg)
360 {
361 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
362 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
363 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
364 }
365
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)366 __u32 ext4_itable_unused_count(struct super_block *sb,
367 struct ext4_group_desc *bg)
368 {
369 return le16_to_cpu(bg->bg_itable_unused_lo) |
370 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
371 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
372 }
373
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)374 void ext4_block_bitmap_set(struct super_block *sb,
375 struct ext4_group_desc *bg, ext4_fsblk_t blk)
376 {
377 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
378 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
379 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
380 }
381
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)382 void ext4_inode_bitmap_set(struct super_block *sb,
383 struct ext4_group_desc *bg, ext4_fsblk_t blk)
384 {
385 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
386 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
387 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
388 }
389
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)390 void ext4_inode_table_set(struct super_block *sb,
391 struct ext4_group_desc *bg, ext4_fsblk_t blk)
392 {
393 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
394 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
395 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
396 }
397
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)398 void ext4_free_group_clusters_set(struct super_block *sb,
399 struct ext4_group_desc *bg, __u32 count)
400 {
401 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
402 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
403 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
404 }
405
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)406 void ext4_free_inodes_set(struct super_block *sb,
407 struct ext4_group_desc *bg, __u32 count)
408 {
409 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
410 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
411 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
412 }
413
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)414 void ext4_used_dirs_set(struct super_block *sb,
415 struct ext4_group_desc *bg, __u32 count)
416 {
417 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
418 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
419 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
420 }
421
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)422 void ext4_itable_unused_set(struct super_block *sb,
423 struct ext4_group_desc *bg, __u32 count)
424 {
425 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
426 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
427 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
428 }
429
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)430 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
431 {
432 now = clamp_val(now, 0, (1ull << 40) - 1);
433
434 *lo = cpu_to_le32(lower_32_bits(now));
435 *hi = upper_32_bits(now);
436 }
437
__ext4_get_tstamp(__le32 * lo,__u8 * hi)438 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
439 {
440 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
441 }
442 #define ext4_update_tstamp(es, tstamp) \
443 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
444 ktime_get_real_seconds())
445 #define ext4_get_tstamp(es, tstamp) \
446 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
447
448 /*
449 * The ext4_maybe_update_superblock() function checks and updates the
450 * superblock if needed.
451 *
452 * This function is designed to update the on-disk superblock only under
453 * certain conditions to prevent excessive disk writes and unnecessary
454 * waking of the disk from sleep. The superblock will be updated if:
455 * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
456 * superblock update
457 * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
458 * last superblock update.
459 *
460 * @sb: The superblock
461 */
ext4_maybe_update_superblock(struct super_block * sb)462 static void ext4_maybe_update_superblock(struct super_block *sb)
463 {
464 struct ext4_sb_info *sbi = EXT4_SB(sb);
465 struct ext4_super_block *es = sbi->s_es;
466 journal_t *journal = sbi->s_journal;
467 time64_t now;
468 __u64 last_update;
469 __u64 lifetime_write_kbytes;
470 __u64 diff_size;
471
472 if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
473 !(sb->s_flags & SB_ACTIVE) || !journal ||
474 journal->j_flags & JBD2_UNMOUNT)
475 return;
476
477 now = ktime_get_real_seconds();
478 last_update = ext4_get_tstamp(es, s_wtime);
479
480 if (likely(now - last_update < sbi->s_sb_update_sec))
481 return;
482
483 lifetime_write_kbytes = sbi->s_kbytes_written +
484 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
485 sbi->s_sectors_written_start) >> 1);
486
487 /* Get the number of kilobytes not written to disk to account
488 * for statistics and compare with a multiple of 16 MB. This
489 * is used to determine when the next superblock commit should
490 * occur (i.e. not more often than once per 16MB if there was
491 * less written in an hour).
492 */
493 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
494
495 if (diff_size > sbi->s_sb_update_kb)
496 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
497 }
498
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)499 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
500 {
501 struct super_block *sb = journal->j_private;
502
503 BUG_ON(txn->t_state == T_FINISHED);
504
505 ext4_process_freed_data(sb, txn->t_tid);
506 ext4_maybe_update_superblock(sb);
507 }
508
ext4_journalled_writepage_needs_redirty(struct jbd2_inode * jinode,struct folio * folio)509 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode,
510 struct folio *folio)
511 {
512 struct buffer_head *bh, *head;
513 struct journal_head *jh;
514
515 bh = head = folio_buffers(folio);
516 do {
517 /*
518 * We have to redirty a page in these cases:
519 * 1) If buffer is dirty, it means the page was dirty because it
520 * contains a buffer that needs checkpointing. So the dirty bit
521 * needs to be preserved so that checkpointing writes the buffer
522 * properly.
523 * 2) If buffer is not part of the committing transaction
524 * (we may have just accidentally come across this buffer because
525 * inode range tracking is not exact) or if the currently running
526 * transaction already contains this buffer as well, dirty bit
527 * needs to be preserved so that the buffer gets writeprotected
528 * properly on running transaction's commit.
529 */
530 jh = bh2jh(bh);
531 if (buffer_dirty(bh) ||
532 (jh && (jh->b_transaction != jinode->i_transaction ||
533 jh->b_next_transaction)))
534 return true;
535 } while ((bh = bh->b_this_page) != head);
536
537 return false;
538 }
539
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)540 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
541 {
542 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
543 struct writeback_control wbc = {
544 .sync_mode = WB_SYNC_ALL,
545 .nr_to_write = LONG_MAX,
546 .range_start = jinode->i_dirty_start,
547 .range_end = jinode->i_dirty_end,
548 };
549 struct folio *folio = NULL;
550 int error;
551
552 /*
553 * writeback_iter() already checks for dirty pages and calls
554 * folio_clear_dirty_for_io(), which we want to write protect the
555 * folios.
556 *
557 * However, we may have to redirty a folio sometimes.
558 */
559 while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
560 if (ext4_journalled_writepage_needs_redirty(jinode, folio))
561 folio_redirty_for_writepage(&wbc, folio);
562 folio_unlock(folio);
563 }
564
565 return error;
566 }
567
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)568 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
569 {
570 int ret;
571
572 if (ext4_should_journal_data(jinode->i_vfs_inode))
573 ret = ext4_journalled_submit_inode_data_buffers(jinode);
574 else
575 ret = ext4_normal_submit_inode_data_buffers(jinode);
576 return ret;
577 }
578
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)579 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
580 {
581 int ret = 0;
582
583 if (!ext4_should_journal_data(jinode->i_vfs_inode))
584 ret = jbd2_journal_finish_inode_data_buffers(jinode);
585
586 return ret;
587 }
588
system_going_down(void)589 static bool system_going_down(void)
590 {
591 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
592 || system_state == SYSTEM_RESTART;
593 }
594
595 struct ext4_err_translation {
596 int code;
597 int errno;
598 };
599
600 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
601
602 static struct ext4_err_translation err_translation[] = {
603 EXT4_ERR_TRANSLATE(EIO),
604 EXT4_ERR_TRANSLATE(ENOMEM),
605 EXT4_ERR_TRANSLATE(EFSBADCRC),
606 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
607 EXT4_ERR_TRANSLATE(ENOSPC),
608 EXT4_ERR_TRANSLATE(ENOKEY),
609 EXT4_ERR_TRANSLATE(EROFS),
610 EXT4_ERR_TRANSLATE(EFBIG),
611 EXT4_ERR_TRANSLATE(EEXIST),
612 EXT4_ERR_TRANSLATE(ERANGE),
613 EXT4_ERR_TRANSLATE(EOVERFLOW),
614 EXT4_ERR_TRANSLATE(EBUSY),
615 EXT4_ERR_TRANSLATE(ENOTDIR),
616 EXT4_ERR_TRANSLATE(ENOTEMPTY),
617 EXT4_ERR_TRANSLATE(ESHUTDOWN),
618 EXT4_ERR_TRANSLATE(EFAULT),
619 };
620
ext4_errno_to_code(int errno)621 static int ext4_errno_to_code(int errno)
622 {
623 int i;
624
625 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
626 if (err_translation[i].errno == errno)
627 return err_translation[i].code;
628 return EXT4_ERR_UNKNOWN;
629 }
630
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)631 static void save_error_info(struct super_block *sb, int error,
632 __u32 ino, __u64 block,
633 const char *func, unsigned int line)
634 {
635 struct ext4_sb_info *sbi = EXT4_SB(sb);
636
637 /* We default to EFSCORRUPTED error... */
638 if (error == 0)
639 error = EFSCORRUPTED;
640
641 spin_lock(&sbi->s_error_lock);
642 sbi->s_add_error_count++;
643 sbi->s_last_error_code = error;
644 sbi->s_last_error_line = line;
645 sbi->s_last_error_ino = ino;
646 sbi->s_last_error_block = block;
647 sbi->s_last_error_func = func;
648 sbi->s_last_error_time = ktime_get_real_seconds();
649 if (!sbi->s_first_error_time) {
650 sbi->s_first_error_code = error;
651 sbi->s_first_error_line = line;
652 sbi->s_first_error_ino = ino;
653 sbi->s_first_error_block = block;
654 sbi->s_first_error_func = func;
655 sbi->s_first_error_time = sbi->s_last_error_time;
656 }
657 spin_unlock(&sbi->s_error_lock);
658 }
659
660 /* Deal with the reporting of failure conditions on a filesystem such as
661 * inconsistencies detected or read IO failures.
662 *
663 * On ext2, we can store the error state of the filesystem in the
664 * superblock. That is not possible on ext4, because we may have other
665 * write ordering constraints on the superblock which prevent us from
666 * writing it out straight away; and given that the journal is about to
667 * be aborted, we can't rely on the current, or future, transactions to
668 * write out the superblock safely.
669 *
670 * We'll just use the jbd2_journal_abort() error code to record an error in
671 * the journal instead. On recovery, the journal will complain about
672 * that error until we've noted it down and cleared it.
673 *
674 * If force_ro is set, we unconditionally force the filesystem into an
675 * ABORT|READONLY state, unless the error response on the fs has been set to
676 * panic in which case we take the easy way out and panic immediately. This is
677 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
678 * at a critical moment in log management.
679 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)680 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
681 __u32 ino, __u64 block,
682 const char *func, unsigned int line)
683 {
684 journal_t *journal = EXT4_SB(sb)->s_journal;
685 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
686
687 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
688 if (test_opt(sb, WARN_ON_ERROR))
689 WARN_ON_ONCE(1);
690
691 if (!continue_fs && !ext4_emergency_ro(sb) && journal)
692 jbd2_journal_abort(journal, -EIO);
693
694 if (!bdev_read_only(sb->s_bdev)) {
695 save_error_info(sb, error, ino, block, func, line);
696 /*
697 * In case the fs should keep running, we need to writeout
698 * superblock through the journal. Due to lock ordering
699 * constraints, it may not be safe to do it right here so we
700 * defer superblock flushing to a workqueue. We just need to be
701 * careful when the journal is already shutting down. If we get
702 * here in that case, just update the sb directly as the last
703 * transaction won't commit anyway.
704 */
705 if (continue_fs && journal &&
706 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
707 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
708 else
709 ext4_commit_super(sb);
710 }
711
712 /*
713 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
714 * could panic during 'reboot -f' as the underlying device got already
715 * disabled.
716 */
717 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
718 panic("EXT4-fs (device %s): panic forced after error\n",
719 sb->s_id);
720 }
721
722 if (ext4_emergency_ro(sb) || continue_fs)
723 return;
724
725 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
726 /*
727 * We don't set SB_RDONLY because that requires sb->s_umount
728 * semaphore and setting it without proper remount procedure is
729 * confusing code such as freeze_super() leading to deadlocks
730 * and other problems.
731 */
732 set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
733 }
734
update_super_work(struct work_struct * work)735 static void update_super_work(struct work_struct *work)
736 {
737 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
738 s_sb_upd_work);
739 journal_t *journal = sbi->s_journal;
740 handle_t *handle;
741
742 /*
743 * If the journal is still running, we have to write out superblock
744 * through the journal to avoid collisions of other journalled sb
745 * updates.
746 *
747 * We use directly jbd2 functions here to avoid recursing back into
748 * ext4 error handling code during handling of previous errors.
749 */
750 if (!ext4_emergency_state(sbi->s_sb) &&
751 !sb_rdonly(sbi->s_sb) && journal) {
752 struct buffer_head *sbh = sbi->s_sbh;
753 bool call_notify_err = false;
754
755 handle = jbd2_journal_start(journal, 1);
756 if (IS_ERR(handle))
757 goto write_directly;
758 if (jbd2_journal_get_write_access(handle, sbh)) {
759 jbd2_journal_stop(handle);
760 goto write_directly;
761 }
762
763 if (sbi->s_add_error_count > 0)
764 call_notify_err = true;
765
766 ext4_update_super(sbi->s_sb);
767 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
768 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
769 "superblock detected");
770 clear_buffer_write_io_error(sbh);
771 set_buffer_uptodate(sbh);
772 }
773
774 if (jbd2_journal_dirty_metadata(handle, sbh)) {
775 jbd2_journal_stop(handle);
776 goto write_directly;
777 }
778 jbd2_journal_stop(handle);
779
780 if (call_notify_err)
781 ext4_notify_error_sysfs(sbi);
782
783 return;
784 }
785 write_directly:
786 /*
787 * Write through journal failed. Write sb directly to get error info
788 * out and hope for the best.
789 */
790 ext4_commit_super(sbi->s_sb);
791 ext4_notify_error_sysfs(sbi);
792 }
793
794 #define ext4_error_ratelimit(sb) \
795 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
796 "EXT4-fs error")
797
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)798 void __ext4_error(struct super_block *sb, const char *function,
799 unsigned int line, bool force_ro, int error, __u64 block,
800 const char *fmt, ...)
801 {
802 struct va_format vaf;
803 va_list args;
804
805 if (unlikely(ext4_emergency_state(sb)))
806 return;
807
808 trace_ext4_error(sb, function, line);
809 if (ext4_error_ratelimit(sb)) {
810 va_start(args, fmt);
811 vaf.fmt = fmt;
812 vaf.va = &args;
813 printk(KERN_CRIT
814 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
815 sb->s_id, function, line, current->comm, &vaf);
816 va_end(args);
817 }
818 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
819
820 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
821 }
822
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)823 void __ext4_error_inode(struct inode *inode, const char *function,
824 unsigned int line, ext4_fsblk_t block, int error,
825 const char *fmt, ...)
826 {
827 va_list args;
828 struct va_format vaf;
829
830 if (unlikely(ext4_emergency_state(inode->i_sb)))
831 return;
832
833 trace_ext4_error(inode->i_sb, function, line);
834 if (ext4_error_ratelimit(inode->i_sb)) {
835 va_start(args, fmt);
836 vaf.fmt = fmt;
837 vaf.va = &args;
838 if (block)
839 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
840 "inode #%lu: block %llu: comm %s: %pV\n",
841 inode->i_sb->s_id, function, line, inode->i_ino,
842 block, current->comm, &vaf);
843 else
844 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
845 "inode #%lu: comm %s: %pV\n",
846 inode->i_sb->s_id, function, line, inode->i_ino,
847 current->comm, &vaf);
848 va_end(args);
849 }
850 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
851
852 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
853 function, line);
854 }
855
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)856 void __ext4_error_file(struct file *file, const char *function,
857 unsigned int line, ext4_fsblk_t block,
858 const char *fmt, ...)
859 {
860 va_list args;
861 struct va_format vaf;
862 struct inode *inode = file_inode(file);
863 char pathname[80], *path;
864
865 if (unlikely(ext4_emergency_state(inode->i_sb)))
866 return;
867
868 trace_ext4_error(inode->i_sb, function, line);
869 if (ext4_error_ratelimit(inode->i_sb)) {
870 path = file_path(file, pathname, sizeof(pathname));
871 if (IS_ERR(path))
872 path = "(unknown)";
873 va_start(args, fmt);
874 vaf.fmt = fmt;
875 vaf.va = &args;
876 if (block)
877 printk(KERN_CRIT
878 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
879 "block %llu: comm %s: path %s: %pV\n",
880 inode->i_sb->s_id, function, line, inode->i_ino,
881 block, current->comm, path, &vaf);
882 else
883 printk(KERN_CRIT
884 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
885 "comm %s: path %s: %pV\n",
886 inode->i_sb->s_id, function, line, inode->i_ino,
887 current->comm, path, &vaf);
888 va_end(args);
889 }
890 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
891
892 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
893 function, line);
894 }
895
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])896 const char *ext4_decode_error(struct super_block *sb, int errno,
897 char nbuf[16])
898 {
899 char *errstr = NULL;
900
901 switch (errno) {
902 case -EFSCORRUPTED:
903 errstr = "Corrupt filesystem";
904 break;
905 case -EFSBADCRC:
906 errstr = "Filesystem failed CRC";
907 break;
908 case -EIO:
909 errstr = "IO failure";
910 break;
911 case -ENOMEM:
912 errstr = "Out of memory";
913 break;
914 case -EROFS:
915 if (!sb || (EXT4_SB(sb)->s_journal &&
916 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
917 errstr = "Journal has aborted";
918 else
919 errstr = "Readonly filesystem";
920 break;
921 default:
922 /* If the caller passed in an extra buffer for unknown
923 * errors, textualise them now. Else we just return
924 * NULL. */
925 if (nbuf) {
926 /* Check for truncated error codes... */
927 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
928 errstr = nbuf;
929 }
930 break;
931 }
932
933 return errstr;
934 }
935
936 /* __ext4_std_error decodes expected errors from journaling functions
937 * automatically and invokes the appropriate error response. */
938
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)939 void __ext4_std_error(struct super_block *sb, const char *function,
940 unsigned int line, int errno)
941 {
942 char nbuf[16];
943 const char *errstr;
944
945 if (unlikely(ext4_emergency_state(sb)))
946 return;
947
948 /* Special case: if the error is EROFS, and we're not already
949 * inside a transaction, then there's really no point in logging
950 * an error. */
951 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
952 return;
953
954 if (ext4_error_ratelimit(sb)) {
955 errstr = ext4_decode_error(sb, errno, nbuf);
956 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
957 sb->s_id, function, line, errstr);
958 }
959 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
960
961 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
962 }
963
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)964 void __ext4_msg(struct super_block *sb,
965 const char *prefix, const char *fmt, ...)
966 {
967 struct va_format vaf;
968 va_list args;
969
970 if (sb) {
971 atomic_inc(&EXT4_SB(sb)->s_msg_count);
972 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
973 "EXT4-fs"))
974 return;
975 }
976
977 va_start(args, fmt);
978 vaf.fmt = fmt;
979 vaf.va = &args;
980 if (sb)
981 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
982 else
983 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
984 va_end(args);
985 }
986
ext4_warning_ratelimit(struct super_block * sb)987 static int ext4_warning_ratelimit(struct super_block *sb)
988 {
989 atomic_inc(&EXT4_SB(sb)->s_warning_count);
990 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
991 "EXT4-fs warning");
992 }
993
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)994 void __ext4_warning(struct super_block *sb, const char *function,
995 unsigned int line, const char *fmt, ...)
996 {
997 struct va_format vaf;
998 va_list args;
999
1000 if (!ext4_warning_ratelimit(sb))
1001 return;
1002
1003 va_start(args, fmt);
1004 vaf.fmt = fmt;
1005 vaf.va = &args;
1006 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1007 sb->s_id, function, line, &vaf);
1008 va_end(args);
1009 }
1010
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1011 void __ext4_warning_inode(const struct inode *inode, const char *function,
1012 unsigned int line, const char *fmt, ...)
1013 {
1014 struct va_format vaf;
1015 va_list args;
1016
1017 if (!ext4_warning_ratelimit(inode->i_sb))
1018 return;
1019
1020 va_start(args, fmt);
1021 vaf.fmt = fmt;
1022 vaf.va = &args;
1023 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1024 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1025 function, line, inode->i_ino, current->comm, &vaf);
1026 va_end(args);
1027 }
1028
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1029 void __ext4_grp_locked_error(const char *function, unsigned int line,
1030 struct super_block *sb, ext4_group_t grp,
1031 unsigned long ino, ext4_fsblk_t block,
1032 const char *fmt, ...)
1033 __releases(bitlock)
1034 __acquires(bitlock)
1035 {
1036 struct va_format vaf;
1037 va_list args;
1038
1039 if (unlikely(ext4_emergency_state(sb)))
1040 return;
1041
1042 trace_ext4_error(sb, function, line);
1043 if (ext4_error_ratelimit(sb)) {
1044 va_start(args, fmt);
1045 vaf.fmt = fmt;
1046 vaf.va = &args;
1047 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1048 sb->s_id, function, line, grp);
1049 if (ino)
1050 printk(KERN_CONT "inode %lu: ", ino);
1051 if (block)
1052 printk(KERN_CONT "block %llu:",
1053 (unsigned long long) block);
1054 printk(KERN_CONT "%pV\n", &vaf);
1055 va_end(args);
1056 }
1057
1058 if (test_opt(sb, ERRORS_CONT)) {
1059 if (test_opt(sb, WARN_ON_ERROR))
1060 WARN_ON_ONCE(1);
1061 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1062 if (!bdev_read_only(sb->s_bdev)) {
1063 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1064 line);
1065 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1066 }
1067 return;
1068 }
1069 ext4_unlock_group(sb, grp);
1070 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1071 /*
1072 * We only get here in the ERRORS_RO case; relocking the group
1073 * may be dangerous, but nothing bad will happen since the
1074 * filesystem will have already been marked read/only and the
1075 * journal has been aborted. We return 1 as a hint to callers
1076 * who might what to use the return value from
1077 * ext4_grp_locked_error() to distinguish between the
1078 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1079 * aggressively from the ext4 function in question, with a
1080 * more appropriate error code.
1081 */
1082 ext4_lock_group(sb, grp);
1083 return;
1084 }
1085
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1086 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1087 ext4_group_t group,
1088 unsigned int flags)
1089 {
1090 struct ext4_sb_info *sbi = EXT4_SB(sb);
1091 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1092 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1093 int ret;
1094
1095 if (!grp || !gdp)
1096 return;
1097 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1098 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1099 &grp->bb_state);
1100 if (!ret)
1101 percpu_counter_sub(&sbi->s_freeclusters_counter,
1102 grp->bb_free);
1103 }
1104
1105 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1106 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1107 &grp->bb_state);
1108 if (!ret && gdp) {
1109 int count;
1110
1111 count = ext4_free_inodes_count(sb, gdp);
1112 percpu_counter_sub(&sbi->s_freeinodes_counter,
1113 count);
1114 }
1115 }
1116 }
1117
ext4_update_dynamic_rev(struct super_block * sb)1118 void ext4_update_dynamic_rev(struct super_block *sb)
1119 {
1120 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1121
1122 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1123 return;
1124
1125 ext4_warning(sb,
1126 "updating to rev %d because of new feature flag, "
1127 "running e2fsck is recommended",
1128 EXT4_DYNAMIC_REV);
1129
1130 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1131 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1132 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1133 /* leave es->s_feature_*compat flags alone */
1134 /* es->s_uuid will be set by e2fsck if empty */
1135
1136 /*
1137 * The rest of the superblock fields should be zero, and if not it
1138 * means they are likely already in use, so leave them alone. We
1139 * can leave it up to e2fsck to clean up any inconsistencies there.
1140 */
1141 }
1142
orphan_list_entry(struct list_head * l)1143 static inline struct inode *orphan_list_entry(struct list_head *l)
1144 {
1145 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1146 }
1147
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1148 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1149 {
1150 struct list_head *l;
1151
1152 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1153 le32_to_cpu(sbi->s_es->s_last_orphan));
1154
1155 printk(KERN_ERR "sb_info orphan list:\n");
1156 list_for_each(l, &sbi->s_orphan) {
1157 struct inode *inode = orphan_list_entry(l);
1158 printk(KERN_ERR " "
1159 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1160 inode->i_sb->s_id, inode->i_ino, inode,
1161 inode->i_mode, inode->i_nlink,
1162 NEXT_ORPHAN(inode));
1163 }
1164 }
1165
1166 #ifdef CONFIG_QUOTA
1167 static int ext4_quota_off(struct super_block *sb, int type);
1168
ext4_quotas_off(struct super_block * sb,int type)1169 static inline void ext4_quotas_off(struct super_block *sb, int type)
1170 {
1171 BUG_ON(type > EXT4_MAXQUOTAS);
1172
1173 /* Use our quota_off function to clear inode flags etc. */
1174 for (type--; type >= 0; type--)
1175 ext4_quota_off(sb, type);
1176 }
1177
1178 /*
1179 * This is a helper function which is used in the mount/remount
1180 * codepaths (which holds s_umount) to fetch the quota file name.
1181 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1182 static inline char *get_qf_name(struct super_block *sb,
1183 struct ext4_sb_info *sbi,
1184 int type)
1185 {
1186 return rcu_dereference_protected(sbi->s_qf_names[type],
1187 lockdep_is_held(&sb->s_umount));
1188 }
1189 #else
ext4_quotas_off(struct super_block * sb,int type)1190 static inline void ext4_quotas_off(struct super_block *sb, int type)
1191 {
1192 }
1193 #endif
1194
ext4_percpu_param_init(struct ext4_sb_info * sbi)1195 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1196 {
1197 ext4_fsblk_t block;
1198 int err;
1199
1200 block = ext4_count_free_clusters(sbi->s_sb);
1201 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1202 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1203 GFP_KERNEL);
1204 if (!err) {
1205 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1206 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1207 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1208 GFP_KERNEL);
1209 }
1210 if (!err)
1211 err = percpu_counter_init(&sbi->s_dirs_counter,
1212 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1213 if (!err)
1214 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1215 GFP_KERNEL);
1216 if (!err)
1217 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1218 GFP_KERNEL);
1219 if (!err)
1220 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1221
1222 if (err)
1223 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1224
1225 return err;
1226 }
1227
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1228 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1229 {
1230 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1231 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1232 percpu_counter_destroy(&sbi->s_dirs_counter);
1233 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1234 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1235 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1236 }
1237
ext4_group_desc_free(struct ext4_sb_info * sbi)1238 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1239 {
1240 struct buffer_head **group_desc;
1241 int i;
1242
1243 rcu_read_lock();
1244 group_desc = rcu_dereference(sbi->s_group_desc);
1245 for (i = 0; i < sbi->s_gdb_count; i++)
1246 brelse(group_desc[i]);
1247 kvfree(group_desc);
1248 rcu_read_unlock();
1249 }
1250
ext4_flex_groups_free(struct ext4_sb_info * sbi)1251 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1252 {
1253 struct flex_groups **flex_groups;
1254 int i;
1255
1256 rcu_read_lock();
1257 flex_groups = rcu_dereference(sbi->s_flex_groups);
1258 if (flex_groups) {
1259 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1260 kvfree(flex_groups[i]);
1261 kvfree(flex_groups);
1262 }
1263 rcu_read_unlock();
1264 }
1265
ext4_put_super(struct super_block * sb)1266 static void ext4_put_super(struct super_block *sb)
1267 {
1268 struct ext4_sb_info *sbi = EXT4_SB(sb);
1269 struct ext4_super_block *es = sbi->s_es;
1270 int aborted = 0;
1271 int err;
1272
1273 /*
1274 * Unregister sysfs before destroying jbd2 journal.
1275 * Since we could still access attr_journal_task attribute via sysfs
1276 * path which could have sbi->s_journal->j_task as NULL
1277 * Unregister sysfs before flush sbi->s_sb_upd_work.
1278 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1279 * read metadata verify failed then will queue error work.
1280 * update_super_work will call start_this_handle may trigger
1281 * BUG_ON.
1282 */
1283 ext4_unregister_sysfs(sb);
1284
1285 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1286 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1287 &sb->s_uuid);
1288
1289 ext4_unregister_li_request(sb);
1290 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1291
1292 destroy_workqueue(sbi->rsv_conversion_wq);
1293 ext4_release_orphan_info(sb);
1294
1295 if (sbi->s_journal) {
1296 aborted = is_journal_aborted(sbi->s_journal);
1297 err = ext4_journal_destroy(sbi, sbi->s_journal);
1298 if ((err < 0) && !aborted) {
1299 ext4_abort(sb, -err, "Couldn't clean up the journal");
1300 }
1301 } else
1302 flush_work(&sbi->s_sb_upd_work);
1303
1304 ext4_es_unregister_shrinker(sbi);
1305 timer_shutdown_sync(&sbi->s_err_report);
1306 ext4_release_system_zone(sb);
1307 ext4_mb_release(sb);
1308 ext4_ext_release(sb);
1309
1310 if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1311 if (!aborted) {
1312 ext4_clear_feature_journal_needs_recovery(sb);
1313 ext4_clear_feature_orphan_present(sb);
1314 es->s_state = cpu_to_le16(sbi->s_mount_state);
1315 }
1316 ext4_commit_super(sb);
1317 }
1318
1319 ext4_group_desc_free(sbi);
1320 ext4_flex_groups_free(sbi);
1321
1322 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1323 percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1324 ext4_percpu_param_destroy(sbi);
1325 #ifdef CONFIG_QUOTA
1326 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1327 kfree(get_qf_name(sb, sbi, i));
1328 #endif
1329
1330 /* Debugging code just in case the in-memory inode orphan list
1331 * isn't empty. The on-disk one can be non-empty if we've
1332 * detected an error and taken the fs readonly, but the
1333 * in-memory list had better be clean by this point. */
1334 if (!list_empty(&sbi->s_orphan))
1335 dump_orphan_list(sb, sbi);
1336 ASSERT(list_empty(&sbi->s_orphan));
1337
1338 sync_blockdev(sb->s_bdev);
1339 invalidate_bdev(sb->s_bdev);
1340 if (sbi->s_journal_bdev_file) {
1341 /*
1342 * Invalidate the journal device's buffers. We don't want them
1343 * floating about in memory - the physical journal device may
1344 * hotswapped, and it breaks the `ro-after' testing code.
1345 */
1346 sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1347 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1348 }
1349
1350 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1351 sbi->s_ea_inode_cache = NULL;
1352
1353 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1354 sbi->s_ea_block_cache = NULL;
1355
1356 ext4_stop_mmpd(sbi);
1357
1358 brelse(sbi->s_sbh);
1359 sb->s_fs_info = NULL;
1360 /*
1361 * Now that we are completely done shutting down the
1362 * superblock, we need to actually destroy the kobject.
1363 */
1364 kobject_put(&sbi->s_kobj);
1365 wait_for_completion(&sbi->s_kobj_unregister);
1366 kfree(sbi->s_blockgroup_lock);
1367 fs_put_dax(sbi->s_daxdev, NULL);
1368 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1369 #if IS_ENABLED(CONFIG_UNICODE)
1370 utf8_unload(sb->s_encoding);
1371 #endif
1372 kfree(sbi);
1373 }
1374
1375 static struct kmem_cache *ext4_inode_cachep;
1376
1377 /*
1378 * Called inside transaction, so use GFP_NOFS
1379 */
ext4_alloc_inode(struct super_block * sb)1380 static struct inode *ext4_alloc_inode(struct super_block *sb)
1381 {
1382 struct ext4_inode_info *ei;
1383
1384 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1385 if (!ei)
1386 return NULL;
1387
1388 inode_set_iversion(&ei->vfs_inode, 1);
1389 ei->i_flags = 0;
1390 spin_lock_init(&ei->i_raw_lock);
1391 ei->i_prealloc_node = RB_ROOT;
1392 atomic_set(&ei->i_prealloc_active, 0);
1393 rwlock_init(&ei->i_prealloc_lock);
1394 ext4_es_init_tree(&ei->i_es_tree);
1395 rwlock_init(&ei->i_es_lock);
1396 INIT_LIST_HEAD(&ei->i_es_list);
1397 ei->i_es_all_nr = 0;
1398 ei->i_es_shk_nr = 0;
1399 ei->i_es_shrink_lblk = 0;
1400 ei->i_reserved_data_blocks = 0;
1401 spin_lock_init(&(ei->i_block_reservation_lock));
1402 ext4_init_pending_tree(&ei->i_pending_tree);
1403 #ifdef CONFIG_QUOTA
1404 ei->i_reserved_quota = 0;
1405 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1406 #endif
1407 ei->jinode = NULL;
1408 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1409 spin_lock_init(&ei->i_completed_io_lock);
1410 ei->i_sync_tid = 0;
1411 ei->i_datasync_tid = 0;
1412 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1413 ext4_fc_init_inode(&ei->vfs_inode);
1414 spin_lock_init(&ei->i_fc_lock);
1415 return &ei->vfs_inode;
1416 }
1417
ext4_drop_inode(struct inode * inode)1418 static int ext4_drop_inode(struct inode *inode)
1419 {
1420 int drop = generic_drop_inode(inode);
1421
1422 if (!drop)
1423 drop = fscrypt_drop_inode(inode);
1424
1425 trace_ext4_drop_inode(inode, drop);
1426 return drop;
1427 }
1428
ext4_free_in_core_inode(struct inode * inode)1429 static void ext4_free_in_core_inode(struct inode *inode)
1430 {
1431 fscrypt_free_inode(inode);
1432 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1433 pr_warn("%s: inode %ld still in fc list",
1434 __func__, inode->i_ino);
1435 }
1436 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1437 }
1438
ext4_destroy_inode(struct inode * inode)1439 static void ext4_destroy_inode(struct inode *inode)
1440 {
1441 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1442 ext4_msg(inode->i_sb, KERN_ERR,
1443 "Inode %lu (%p): orphan list check failed!",
1444 inode->i_ino, EXT4_I(inode));
1445 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1446 EXT4_I(inode), sizeof(struct ext4_inode_info),
1447 true);
1448 dump_stack();
1449 }
1450
1451 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1452 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1453 ext4_msg(inode->i_sb, KERN_ERR,
1454 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1455 inode->i_ino, EXT4_I(inode),
1456 EXT4_I(inode)->i_reserved_data_blocks);
1457 }
1458
ext4_shutdown(struct super_block * sb)1459 static void ext4_shutdown(struct super_block *sb)
1460 {
1461 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1462 }
1463
init_once(void * foo)1464 static void init_once(void *foo)
1465 {
1466 struct ext4_inode_info *ei = foo;
1467
1468 INIT_LIST_HEAD(&ei->i_orphan);
1469 init_rwsem(&ei->xattr_sem);
1470 init_rwsem(&ei->i_data_sem);
1471 inode_init_once(&ei->vfs_inode);
1472 ext4_fc_init_inode(&ei->vfs_inode);
1473 }
1474
init_inodecache(void)1475 static int __init init_inodecache(void)
1476 {
1477 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1478 sizeof(struct ext4_inode_info), 0,
1479 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1480 offsetof(struct ext4_inode_info, i_data),
1481 sizeof_field(struct ext4_inode_info, i_data),
1482 init_once);
1483 if (ext4_inode_cachep == NULL)
1484 return -ENOMEM;
1485 return 0;
1486 }
1487
destroy_inodecache(void)1488 static void destroy_inodecache(void)
1489 {
1490 /*
1491 * Make sure all delayed rcu free inodes are flushed before we
1492 * destroy cache.
1493 */
1494 rcu_barrier();
1495 kmem_cache_destroy(ext4_inode_cachep);
1496 }
1497
ext4_clear_inode(struct inode * inode)1498 void ext4_clear_inode(struct inode *inode)
1499 {
1500 ext4_fc_del(inode);
1501 invalidate_inode_buffers(inode);
1502 clear_inode(inode);
1503 ext4_discard_preallocations(inode);
1504 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1505 dquot_drop(inode);
1506 if (EXT4_I(inode)->jinode) {
1507 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1508 EXT4_I(inode)->jinode);
1509 jbd2_free_inode(EXT4_I(inode)->jinode);
1510 EXT4_I(inode)->jinode = NULL;
1511 }
1512 fscrypt_put_encryption_info(inode);
1513 fsverity_cleanup_inode(inode);
1514 }
1515
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1516 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1517 u64 ino, u32 generation)
1518 {
1519 struct inode *inode;
1520
1521 /*
1522 * Currently we don't know the generation for parent directory, so
1523 * a generation of 0 means "accept any"
1524 */
1525 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1526 if (IS_ERR(inode))
1527 return ERR_CAST(inode);
1528 if (generation && inode->i_generation != generation) {
1529 iput(inode);
1530 return ERR_PTR(-ESTALE);
1531 }
1532
1533 return inode;
1534 }
1535
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1536 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1537 int fh_len, int fh_type)
1538 {
1539 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1540 ext4_nfs_get_inode);
1541 }
1542
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1543 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1544 int fh_len, int fh_type)
1545 {
1546 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1547 ext4_nfs_get_inode);
1548 }
1549
ext4_nfs_commit_metadata(struct inode * inode)1550 static int ext4_nfs_commit_metadata(struct inode *inode)
1551 {
1552 struct writeback_control wbc = {
1553 .sync_mode = WB_SYNC_ALL
1554 };
1555
1556 trace_ext4_nfs_commit_metadata(inode);
1557 return ext4_write_inode(inode, &wbc);
1558 }
1559
1560 #ifdef CONFIG_QUOTA
1561 static const char * const quotatypes[] = INITQFNAMES;
1562 #define QTYPE2NAME(t) (quotatypes[t])
1563
1564 static int ext4_write_dquot(struct dquot *dquot);
1565 static int ext4_acquire_dquot(struct dquot *dquot);
1566 static int ext4_release_dquot(struct dquot *dquot);
1567 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1568 static int ext4_write_info(struct super_block *sb, int type);
1569 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1570 const struct path *path);
1571 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1572 size_t len, loff_t off);
1573 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1574 const char *data, size_t len, loff_t off);
1575 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1576 unsigned int flags);
1577
ext4_get_dquots(struct inode * inode)1578 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1579 {
1580 return EXT4_I(inode)->i_dquot;
1581 }
1582
1583 static const struct dquot_operations ext4_quota_operations = {
1584 .get_reserved_space = ext4_get_reserved_space,
1585 .write_dquot = ext4_write_dquot,
1586 .acquire_dquot = ext4_acquire_dquot,
1587 .release_dquot = ext4_release_dquot,
1588 .mark_dirty = ext4_mark_dquot_dirty,
1589 .write_info = ext4_write_info,
1590 .alloc_dquot = dquot_alloc,
1591 .destroy_dquot = dquot_destroy,
1592 .get_projid = ext4_get_projid,
1593 .get_inode_usage = ext4_get_inode_usage,
1594 .get_next_id = dquot_get_next_id,
1595 };
1596
1597 static const struct quotactl_ops ext4_qctl_operations = {
1598 .quota_on = ext4_quota_on,
1599 .quota_off = ext4_quota_off,
1600 .quota_sync = dquot_quota_sync,
1601 .get_state = dquot_get_state,
1602 .set_info = dquot_set_dqinfo,
1603 .get_dqblk = dquot_get_dqblk,
1604 .set_dqblk = dquot_set_dqblk,
1605 .get_nextdqblk = dquot_get_next_dqblk,
1606 };
1607 #endif
1608
1609 static const struct super_operations ext4_sops = {
1610 .alloc_inode = ext4_alloc_inode,
1611 .free_inode = ext4_free_in_core_inode,
1612 .destroy_inode = ext4_destroy_inode,
1613 .write_inode = ext4_write_inode,
1614 .dirty_inode = ext4_dirty_inode,
1615 .drop_inode = ext4_drop_inode,
1616 .evict_inode = ext4_evict_inode,
1617 .put_super = ext4_put_super,
1618 .sync_fs = ext4_sync_fs,
1619 .freeze_fs = ext4_freeze,
1620 .unfreeze_fs = ext4_unfreeze,
1621 .statfs = ext4_statfs,
1622 .show_options = ext4_show_options,
1623 .shutdown = ext4_shutdown,
1624 #ifdef CONFIG_QUOTA
1625 .quota_read = ext4_quota_read,
1626 .quota_write = ext4_quota_write,
1627 .get_dquots = ext4_get_dquots,
1628 #endif
1629 };
1630
1631 static const struct export_operations ext4_export_ops = {
1632 .encode_fh = generic_encode_ino32_fh,
1633 .fh_to_dentry = ext4_fh_to_dentry,
1634 .fh_to_parent = ext4_fh_to_parent,
1635 .get_parent = ext4_get_parent,
1636 .commit_metadata = ext4_nfs_commit_metadata,
1637 };
1638
1639 enum {
1640 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1641 Opt_resgid, Opt_resuid, Opt_sb,
1642 Opt_nouid32, Opt_debug, Opt_removed,
1643 Opt_user_xattr, Opt_acl,
1644 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1645 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1646 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1647 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1648 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1649 Opt_inlinecrypt,
1650 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1651 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1652 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1653 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1654 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1655 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1656 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1657 Opt_inode_readahead_blks, Opt_journal_ioprio,
1658 Opt_dioread_nolock, Opt_dioread_lock,
1659 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1660 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1661 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1662 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1663 #ifdef CONFIG_EXT4_DEBUG
1664 Opt_fc_debug_max_replay, Opt_fc_debug_force
1665 #endif
1666 };
1667
1668 static const struct constant_table ext4_param_errors[] = {
1669 {"continue", EXT4_MOUNT_ERRORS_CONT},
1670 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1671 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1672 {}
1673 };
1674
1675 static const struct constant_table ext4_param_data[] = {
1676 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1677 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1678 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1679 {}
1680 };
1681
1682 static const struct constant_table ext4_param_data_err[] = {
1683 {"abort", Opt_data_err_abort},
1684 {"ignore", Opt_data_err_ignore},
1685 {}
1686 };
1687
1688 static const struct constant_table ext4_param_jqfmt[] = {
1689 {"vfsold", QFMT_VFS_OLD},
1690 {"vfsv0", QFMT_VFS_V0},
1691 {"vfsv1", QFMT_VFS_V1},
1692 {}
1693 };
1694
1695 static const struct constant_table ext4_param_dax[] = {
1696 {"always", Opt_dax_always},
1697 {"inode", Opt_dax_inode},
1698 {"never", Opt_dax_never},
1699 {}
1700 };
1701
1702 /*
1703 * Mount option specification
1704 * We don't use fsparam_flag_no because of the way we set the
1705 * options and the way we show them in _ext4_show_options(). To
1706 * keep the changes to a minimum, let's keep the negative options
1707 * separate for now.
1708 */
1709 static const struct fs_parameter_spec ext4_param_specs[] = {
1710 fsparam_flag ("bsddf", Opt_bsd_df),
1711 fsparam_flag ("minixdf", Opt_minix_df),
1712 fsparam_flag ("grpid", Opt_grpid),
1713 fsparam_flag ("bsdgroups", Opt_grpid),
1714 fsparam_flag ("nogrpid", Opt_nogrpid),
1715 fsparam_flag ("sysvgroups", Opt_nogrpid),
1716 fsparam_gid ("resgid", Opt_resgid),
1717 fsparam_uid ("resuid", Opt_resuid),
1718 fsparam_u32 ("sb", Opt_sb),
1719 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1720 fsparam_flag ("nouid32", Opt_nouid32),
1721 fsparam_flag ("debug", Opt_debug),
1722 fsparam_flag ("oldalloc", Opt_removed),
1723 fsparam_flag ("orlov", Opt_removed),
1724 fsparam_flag ("user_xattr", Opt_user_xattr),
1725 fsparam_flag ("acl", Opt_acl),
1726 fsparam_flag ("norecovery", Opt_noload),
1727 fsparam_flag ("noload", Opt_noload),
1728 fsparam_flag ("bh", Opt_removed),
1729 fsparam_flag ("nobh", Opt_removed),
1730 fsparam_u32 ("commit", Opt_commit),
1731 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1732 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1733 fsparam_u32 ("journal_dev", Opt_journal_dev),
1734 fsparam_bdev ("journal_path", Opt_journal_path),
1735 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1736 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1737 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1738 fsparam_flag ("abort", Opt_abort),
1739 fsparam_enum ("data", Opt_data, ext4_param_data),
1740 fsparam_enum ("data_err", Opt_data_err,
1741 ext4_param_data_err),
1742 fsparam_string_empty
1743 ("usrjquota", Opt_usrjquota),
1744 fsparam_string_empty
1745 ("grpjquota", Opt_grpjquota),
1746 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1747 fsparam_flag ("grpquota", Opt_grpquota),
1748 fsparam_flag ("quota", Opt_quota),
1749 fsparam_flag ("noquota", Opt_noquota),
1750 fsparam_flag ("usrquota", Opt_usrquota),
1751 fsparam_flag ("prjquota", Opt_prjquota),
1752 fsparam_flag ("barrier", Opt_barrier),
1753 fsparam_u32 ("barrier", Opt_barrier),
1754 fsparam_flag ("nobarrier", Opt_nobarrier),
1755 fsparam_flag ("i_version", Opt_removed),
1756 fsparam_flag ("dax", Opt_dax),
1757 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1758 fsparam_u32 ("stripe", Opt_stripe),
1759 fsparam_flag ("delalloc", Opt_delalloc),
1760 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1761 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1762 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1763 fsparam_u32 ("debug_want_extra_isize",
1764 Opt_debug_want_extra_isize),
1765 fsparam_flag ("mblk_io_submit", Opt_removed),
1766 fsparam_flag ("nomblk_io_submit", Opt_removed),
1767 fsparam_flag ("block_validity", Opt_block_validity),
1768 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1769 fsparam_u32 ("inode_readahead_blks",
1770 Opt_inode_readahead_blks),
1771 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1772 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1773 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1774 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1775 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1776 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1777 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1778 fsparam_flag ("discard", Opt_discard),
1779 fsparam_flag ("nodiscard", Opt_nodiscard),
1780 fsparam_u32 ("init_itable", Opt_init_itable),
1781 fsparam_flag ("init_itable", Opt_init_itable),
1782 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1783 #ifdef CONFIG_EXT4_DEBUG
1784 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1785 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1786 #endif
1787 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1788 fsparam_flag ("test_dummy_encryption",
1789 Opt_test_dummy_encryption),
1790 fsparam_string ("test_dummy_encryption",
1791 Opt_test_dummy_encryption),
1792 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1793 fsparam_flag ("nombcache", Opt_nombcache),
1794 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1795 fsparam_flag ("prefetch_block_bitmaps",
1796 Opt_removed),
1797 fsparam_flag ("no_prefetch_block_bitmaps",
1798 Opt_no_prefetch_block_bitmaps),
1799 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1800 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1801 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1802 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1803 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1804 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1805 {}
1806 };
1807
1808
1809 #define MOPT_SET 0x0001
1810 #define MOPT_CLEAR 0x0002
1811 #define MOPT_NOSUPPORT 0x0004
1812 #define MOPT_EXPLICIT 0x0008
1813 #ifdef CONFIG_QUOTA
1814 #define MOPT_Q 0
1815 #define MOPT_QFMT 0x0010
1816 #else
1817 #define MOPT_Q MOPT_NOSUPPORT
1818 #define MOPT_QFMT MOPT_NOSUPPORT
1819 #endif
1820 #define MOPT_NO_EXT2 0x0020
1821 #define MOPT_NO_EXT3 0x0040
1822 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1823 #define MOPT_SKIP 0x0080
1824 #define MOPT_2 0x0100
1825
1826 static const struct mount_opts {
1827 int token;
1828 int mount_opt;
1829 int flags;
1830 } ext4_mount_opts[] = {
1831 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1832 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1833 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1834 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1835 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1836 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1837 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1838 MOPT_EXT4_ONLY | MOPT_SET},
1839 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1840 MOPT_EXT4_ONLY | MOPT_CLEAR},
1841 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1842 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1843 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1844 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1845 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1846 MOPT_EXT4_ONLY | MOPT_CLEAR},
1847 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1848 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1849 {Opt_commit, 0, MOPT_NO_EXT2},
1850 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1851 MOPT_EXT4_ONLY | MOPT_CLEAR},
1852 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1853 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1854 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1855 EXT4_MOUNT_JOURNAL_CHECKSUM),
1856 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1857 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1858 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1859 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1860 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1861 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1862 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1863 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1864 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1865 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1866 {Opt_journal_path, 0, MOPT_NO_EXT2},
1867 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1868 {Opt_data, 0, MOPT_NO_EXT2},
1869 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1870 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1871 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1872 #else
1873 {Opt_acl, 0, MOPT_NOSUPPORT},
1874 #endif
1875 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1876 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1877 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1878 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1879 MOPT_SET | MOPT_Q},
1880 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1881 MOPT_SET | MOPT_Q},
1882 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1883 MOPT_SET | MOPT_Q},
1884 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1885 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1886 MOPT_CLEAR | MOPT_Q},
1887 {Opt_usrjquota, 0, MOPT_Q},
1888 {Opt_grpjquota, 0, MOPT_Q},
1889 {Opt_jqfmt, 0, MOPT_QFMT},
1890 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1891 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1892 MOPT_SET},
1893 #ifdef CONFIG_EXT4_DEBUG
1894 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1895 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1896 #endif
1897 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1898 {Opt_err, 0, 0}
1899 };
1900
1901 #if IS_ENABLED(CONFIG_UNICODE)
1902 static const struct ext4_sb_encodings {
1903 __u16 magic;
1904 char *name;
1905 unsigned int version;
1906 } ext4_sb_encoding_map[] = {
1907 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1908 };
1909
1910 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1911 ext4_sb_read_encoding(const struct ext4_super_block *es)
1912 {
1913 __u16 magic = le16_to_cpu(es->s_encoding);
1914 int i;
1915
1916 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1917 if (magic == ext4_sb_encoding_map[i].magic)
1918 return &ext4_sb_encoding_map[i];
1919
1920 return NULL;
1921 }
1922 #endif
1923
1924 #define EXT4_SPEC_JQUOTA (1 << 0)
1925 #define EXT4_SPEC_JQFMT (1 << 1)
1926 #define EXT4_SPEC_DATAJ (1 << 2)
1927 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1928 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1929 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1930 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1931 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1932 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1933 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1934 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1935 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1936 #define EXT4_SPEC_s_stripe (1 << 13)
1937 #define EXT4_SPEC_s_resuid (1 << 14)
1938 #define EXT4_SPEC_s_resgid (1 << 15)
1939 #define EXT4_SPEC_s_commit_interval (1 << 16)
1940 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1941 #define EXT4_SPEC_s_sb_block (1 << 18)
1942 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1943
1944 struct ext4_fs_context {
1945 char *s_qf_names[EXT4_MAXQUOTAS];
1946 struct fscrypt_dummy_policy dummy_enc_policy;
1947 int s_jquota_fmt; /* Format of quota to use */
1948 #ifdef CONFIG_EXT4_DEBUG
1949 int s_fc_debug_max_replay;
1950 #endif
1951 unsigned short qname_spec;
1952 unsigned long vals_s_flags; /* Bits to set in s_flags */
1953 unsigned long mask_s_flags; /* Bits changed in s_flags */
1954 unsigned long journal_devnum;
1955 unsigned long s_commit_interval;
1956 unsigned long s_stripe;
1957 unsigned int s_inode_readahead_blks;
1958 unsigned int s_want_extra_isize;
1959 unsigned int s_li_wait_mult;
1960 unsigned int s_max_dir_size_kb;
1961 unsigned int journal_ioprio;
1962 unsigned int vals_s_mount_opt;
1963 unsigned int mask_s_mount_opt;
1964 unsigned int vals_s_mount_opt2;
1965 unsigned int mask_s_mount_opt2;
1966 unsigned int opt_flags; /* MOPT flags */
1967 unsigned int spec;
1968 u32 s_max_batch_time;
1969 u32 s_min_batch_time;
1970 kuid_t s_resuid;
1971 kgid_t s_resgid;
1972 ext4_fsblk_t s_sb_block;
1973 };
1974
ext4_fc_free(struct fs_context * fc)1975 static void ext4_fc_free(struct fs_context *fc)
1976 {
1977 struct ext4_fs_context *ctx = fc->fs_private;
1978 int i;
1979
1980 if (!ctx)
1981 return;
1982
1983 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1984 kfree(ctx->s_qf_names[i]);
1985
1986 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1987 kfree(ctx);
1988 }
1989
ext4_init_fs_context(struct fs_context * fc)1990 int ext4_init_fs_context(struct fs_context *fc)
1991 {
1992 struct ext4_fs_context *ctx;
1993
1994 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1995 if (!ctx)
1996 return -ENOMEM;
1997
1998 fc->fs_private = ctx;
1999 fc->ops = &ext4_context_ops;
2000
2001 /* i_version is always enabled now */
2002 fc->sb_flags |= SB_I_VERSION;
2003
2004 return 0;
2005 }
2006
2007 #ifdef CONFIG_QUOTA
2008 /*
2009 * Note the name of the specified quota file.
2010 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2011 static int note_qf_name(struct fs_context *fc, int qtype,
2012 struct fs_parameter *param)
2013 {
2014 struct ext4_fs_context *ctx = fc->fs_private;
2015 char *qname;
2016
2017 if (param->size < 1) {
2018 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2019 return -EINVAL;
2020 }
2021 if (strchr(param->string, '/')) {
2022 ext4_msg(NULL, KERN_ERR,
2023 "quotafile must be on filesystem root");
2024 return -EINVAL;
2025 }
2026 if (ctx->s_qf_names[qtype]) {
2027 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2028 ext4_msg(NULL, KERN_ERR,
2029 "%s quota file already specified",
2030 QTYPE2NAME(qtype));
2031 return -EINVAL;
2032 }
2033 return 0;
2034 }
2035
2036 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2037 if (!qname) {
2038 ext4_msg(NULL, KERN_ERR,
2039 "Not enough memory for storing quotafile name");
2040 return -ENOMEM;
2041 }
2042 ctx->s_qf_names[qtype] = qname;
2043 ctx->qname_spec |= 1 << qtype;
2044 ctx->spec |= EXT4_SPEC_JQUOTA;
2045 return 0;
2046 }
2047
2048 /*
2049 * Clear the name of the specified quota file.
2050 */
unnote_qf_name(struct fs_context * fc,int qtype)2051 static int unnote_qf_name(struct fs_context *fc, int qtype)
2052 {
2053 struct ext4_fs_context *ctx = fc->fs_private;
2054
2055 kfree(ctx->s_qf_names[qtype]);
2056
2057 ctx->s_qf_names[qtype] = NULL;
2058 ctx->qname_spec |= 1 << qtype;
2059 ctx->spec |= EXT4_SPEC_JQUOTA;
2060 return 0;
2061 }
2062 #endif
2063
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2064 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2065 struct ext4_fs_context *ctx)
2066 {
2067 int err;
2068
2069 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2070 ext4_msg(NULL, KERN_WARNING,
2071 "test_dummy_encryption option not supported");
2072 return -EINVAL;
2073 }
2074 err = fscrypt_parse_test_dummy_encryption(param,
2075 &ctx->dummy_enc_policy);
2076 if (err == -EINVAL) {
2077 ext4_msg(NULL, KERN_WARNING,
2078 "Value of option \"%s\" is unrecognized", param->key);
2079 } else if (err == -EEXIST) {
2080 ext4_msg(NULL, KERN_WARNING,
2081 "Conflicting test_dummy_encryption options");
2082 return -EINVAL;
2083 }
2084 return err;
2085 }
2086
2087 #define EXT4_SET_CTX(name) \
2088 static inline __maybe_unused \
2089 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2090 { \
2091 ctx->mask_s_##name |= flag; \
2092 ctx->vals_s_##name |= flag; \
2093 }
2094
2095 #define EXT4_CLEAR_CTX(name) \
2096 static inline __maybe_unused \
2097 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2098 { \
2099 ctx->mask_s_##name |= flag; \
2100 ctx->vals_s_##name &= ~flag; \
2101 }
2102
2103 #define EXT4_TEST_CTX(name) \
2104 static inline unsigned long \
2105 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2106 { \
2107 return (ctx->vals_s_##name & flag); \
2108 }
2109
2110 EXT4_SET_CTX(flags); /* set only */
2111 EXT4_SET_CTX(mount_opt);
2112 EXT4_CLEAR_CTX(mount_opt);
2113 EXT4_TEST_CTX(mount_opt);
2114 EXT4_SET_CTX(mount_opt2);
2115 EXT4_CLEAR_CTX(mount_opt2);
2116 EXT4_TEST_CTX(mount_opt2);
2117
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2118 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2119 {
2120 struct ext4_fs_context *ctx = fc->fs_private;
2121 struct fs_parse_result result;
2122 const struct mount_opts *m;
2123 int is_remount;
2124 int token;
2125
2126 token = fs_parse(fc, ext4_param_specs, param, &result);
2127 if (token < 0)
2128 return token;
2129 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2130
2131 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2132 if (token == m->token)
2133 break;
2134
2135 ctx->opt_flags |= m->flags;
2136
2137 if (m->flags & MOPT_EXPLICIT) {
2138 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2139 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2140 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2141 ctx_set_mount_opt2(ctx,
2142 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2143 } else
2144 return -EINVAL;
2145 }
2146
2147 if (m->flags & MOPT_NOSUPPORT) {
2148 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2149 param->key);
2150 return 0;
2151 }
2152
2153 switch (token) {
2154 #ifdef CONFIG_QUOTA
2155 case Opt_usrjquota:
2156 if (!*param->string)
2157 return unnote_qf_name(fc, USRQUOTA);
2158 else
2159 return note_qf_name(fc, USRQUOTA, param);
2160 case Opt_grpjquota:
2161 if (!*param->string)
2162 return unnote_qf_name(fc, GRPQUOTA);
2163 else
2164 return note_qf_name(fc, GRPQUOTA, param);
2165 #endif
2166 case Opt_sb:
2167 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2168 ext4_msg(NULL, KERN_WARNING,
2169 "Ignoring %s option on remount", param->key);
2170 } else {
2171 ctx->s_sb_block = result.uint_32;
2172 ctx->spec |= EXT4_SPEC_s_sb_block;
2173 }
2174 return 0;
2175 case Opt_removed:
2176 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2177 param->key);
2178 return 0;
2179 case Opt_inlinecrypt:
2180 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2181 ctx_set_flags(ctx, SB_INLINECRYPT);
2182 #else
2183 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2184 #endif
2185 return 0;
2186 case Opt_errors:
2187 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2188 ctx_set_mount_opt(ctx, result.uint_32);
2189 return 0;
2190 #ifdef CONFIG_QUOTA
2191 case Opt_jqfmt:
2192 ctx->s_jquota_fmt = result.uint_32;
2193 ctx->spec |= EXT4_SPEC_JQFMT;
2194 return 0;
2195 #endif
2196 case Opt_data:
2197 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2198 ctx_set_mount_opt(ctx, result.uint_32);
2199 ctx->spec |= EXT4_SPEC_DATAJ;
2200 return 0;
2201 case Opt_commit:
2202 if (result.uint_32 == 0)
2203 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2204 else if (result.uint_32 > INT_MAX / HZ) {
2205 ext4_msg(NULL, KERN_ERR,
2206 "Invalid commit interval %d, "
2207 "must be smaller than %d",
2208 result.uint_32, INT_MAX / HZ);
2209 return -EINVAL;
2210 }
2211 ctx->s_commit_interval = HZ * result.uint_32;
2212 ctx->spec |= EXT4_SPEC_s_commit_interval;
2213 return 0;
2214 case Opt_debug_want_extra_isize:
2215 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2216 ext4_msg(NULL, KERN_ERR,
2217 "Invalid want_extra_isize %d", result.uint_32);
2218 return -EINVAL;
2219 }
2220 ctx->s_want_extra_isize = result.uint_32;
2221 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2222 return 0;
2223 case Opt_max_batch_time:
2224 ctx->s_max_batch_time = result.uint_32;
2225 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2226 return 0;
2227 case Opt_min_batch_time:
2228 ctx->s_min_batch_time = result.uint_32;
2229 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2230 return 0;
2231 case Opt_inode_readahead_blks:
2232 if (result.uint_32 &&
2233 (result.uint_32 > (1 << 30) ||
2234 !is_power_of_2(result.uint_32))) {
2235 ext4_msg(NULL, KERN_ERR,
2236 "EXT4-fs: inode_readahead_blks must be "
2237 "0 or a power of 2 smaller than 2^31");
2238 return -EINVAL;
2239 }
2240 ctx->s_inode_readahead_blks = result.uint_32;
2241 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2242 return 0;
2243 case Opt_init_itable:
2244 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2245 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2246 if (param->type == fs_value_is_string)
2247 ctx->s_li_wait_mult = result.uint_32;
2248 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2249 return 0;
2250 case Opt_max_dir_size_kb:
2251 ctx->s_max_dir_size_kb = result.uint_32;
2252 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2253 return 0;
2254 #ifdef CONFIG_EXT4_DEBUG
2255 case Opt_fc_debug_max_replay:
2256 ctx->s_fc_debug_max_replay = result.uint_32;
2257 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2258 return 0;
2259 #endif
2260 case Opt_stripe:
2261 ctx->s_stripe = result.uint_32;
2262 ctx->spec |= EXT4_SPEC_s_stripe;
2263 return 0;
2264 case Opt_resuid:
2265 ctx->s_resuid = result.uid;
2266 ctx->spec |= EXT4_SPEC_s_resuid;
2267 return 0;
2268 case Opt_resgid:
2269 ctx->s_resgid = result.gid;
2270 ctx->spec |= EXT4_SPEC_s_resgid;
2271 return 0;
2272 case Opt_journal_dev:
2273 if (is_remount) {
2274 ext4_msg(NULL, KERN_ERR,
2275 "Cannot specify journal on remount");
2276 return -EINVAL;
2277 }
2278 ctx->journal_devnum = result.uint_32;
2279 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2280 return 0;
2281 case Opt_journal_path:
2282 {
2283 struct inode *journal_inode;
2284 struct path path;
2285 int error;
2286
2287 if (is_remount) {
2288 ext4_msg(NULL, KERN_ERR,
2289 "Cannot specify journal on remount");
2290 return -EINVAL;
2291 }
2292
2293 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2294 if (error) {
2295 ext4_msg(NULL, KERN_ERR, "error: could not find "
2296 "journal device path");
2297 return -EINVAL;
2298 }
2299
2300 journal_inode = d_inode(path.dentry);
2301 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2302 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2303 path_put(&path);
2304 return 0;
2305 }
2306 case Opt_journal_ioprio:
2307 if (result.uint_32 > 7) {
2308 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2309 " (must be 0-7)");
2310 return -EINVAL;
2311 }
2312 ctx->journal_ioprio =
2313 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2314 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2315 return 0;
2316 case Opt_test_dummy_encryption:
2317 return ext4_parse_test_dummy_encryption(param, ctx);
2318 case Opt_dax:
2319 case Opt_dax_type:
2320 #ifdef CONFIG_FS_DAX
2321 {
2322 int type = (token == Opt_dax) ?
2323 Opt_dax : result.uint_32;
2324
2325 switch (type) {
2326 case Opt_dax:
2327 case Opt_dax_always:
2328 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2329 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2330 break;
2331 case Opt_dax_never:
2332 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2333 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2334 break;
2335 case Opt_dax_inode:
2336 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2337 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2338 /* Strictly for printing options */
2339 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2340 break;
2341 }
2342 return 0;
2343 }
2344 #else
2345 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2346 return -EINVAL;
2347 #endif
2348 case Opt_data_err:
2349 if (result.uint_32 == Opt_data_err_abort)
2350 ctx_set_mount_opt(ctx, m->mount_opt);
2351 else if (result.uint_32 == Opt_data_err_ignore)
2352 ctx_clear_mount_opt(ctx, m->mount_opt);
2353 return 0;
2354 case Opt_mb_optimize_scan:
2355 if (result.int_32 == 1) {
2356 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2357 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2358 } else if (result.int_32 == 0) {
2359 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2360 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2361 } else {
2362 ext4_msg(NULL, KERN_WARNING,
2363 "mb_optimize_scan should be set to 0 or 1.");
2364 return -EINVAL;
2365 }
2366 return 0;
2367 }
2368
2369 /*
2370 * At this point we should only be getting options requiring MOPT_SET,
2371 * or MOPT_CLEAR. Anything else is a bug
2372 */
2373 if (m->token == Opt_err) {
2374 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2375 param->key);
2376 WARN_ON(1);
2377 return -EINVAL;
2378 }
2379
2380 else {
2381 unsigned int set = 0;
2382
2383 if ((param->type == fs_value_is_flag) ||
2384 result.uint_32 > 0)
2385 set = 1;
2386
2387 if (m->flags & MOPT_CLEAR)
2388 set = !set;
2389 else if (unlikely(!(m->flags & MOPT_SET))) {
2390 ext4_msg(NULL, KERN_WARNING,
2391 "buggy handling of option %s",
2392 param->key);
2393 WARN_ON(1);
2394 return -EINVAL;
2395 }
2396 if (m->flags & MOPT_2) {
2397 if (set != 0)
2398 ctx_set_mount_opt2(ctx, m->mount_opt);
2399 else
2400 ctx_clear_mount_opt2(ctx, m->mount_opt);
2401 } else {
2402 if (set != 0)
2403 ctx_set_mount_opt(ctx, m->mount_opt);
2404 else
2405 ctx_clear_mount_opt(ctx, m->mount_opt);
2406 }
2407 }
2408
2409 return 0;
2410 }
2411
parse_options(struct fs_context * fc,char * options)2412 static int parse_options(struct fs_context *fc, char *options)
2413 {
2414 struct fs_parameter param;
2415 int ret;
2416 char *key;
2417
2418 if (!options)
2419 return 0;
2420
2421 while ((key = strsep(&options, ",")) != NULL) {
2422 if (*key) {
2423 size_t v_len = 0;
2424 char *value = strchr(key, '=');
2425
2426 param.type = fs_value_is_flag;
2427 param.string = NULL;
2428
2429 if (value) {
2430 if (value == key)
2431 continue;
2432
2433 *value++ = 0;
2434 v_len = strlen(value);
2435 param.string = kmemdup_nul(value, v_len,
2436 GFP_KERNEL);
2437 if (!param.string)
2438 return -ENOMEM;
2439 param.type = fs_value_is_string;
2440 }
2441
2442 param.key = key;
2443 param.size = v_len;
2444
2445 ret = ext4_parse_param(fc, ¶m);
2446 kfree(param.string);
2447 if (ret < 0)
2448 return ret;
2449 }
2450 }
2451
2452 ret = ext4_validate_options(fc);
2453 if (ret < 0)
2454 return ret;
2455
2456 return 0;
2457 }
2458
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2459 static int parse_apply_sb_mount_options(struct super_block *sb,
2460 struct ext4_fs_context *m_ctx)
2461 {
2462 struct ext4_sb_info *sbi = EXT4_SB(sb);
2463 char *s_mount_opts = NULL;
2464 struct ext4_fs_context *s_ctx = NULL;
2465 struct fs_context *fc = NULL;
2466 int ret = -ENOMEM;
2467
2468 if (!sbi->s_es->s_mount_opts[0])
2469 return 0;
2470
2471 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2472 sizeof(sbi->s_es->s_mount_opts),
2473 GFP_KERNEL);
2474 if (!s_mount_opts)
2475 return ret;
2476
2477 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2478 if (!fc)
2479 goto out_free;
2480
2481 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2482 if (!s_ctx)
2483 goto out_free;
2484
2485 fc->fs_private = s_ctx;
2486 fc->s_fs_info = sbi;
2487
2488 ret = parse_options(fc, s_mount_opts);
2489 if (ret < 0)
2490 goto parse_failed;
2491
2492 ret = ext4_check_opt_consistency(fc, sb);
2493 if (ret < 0) {
2494 parse_failed:
2495 ext4_msg(sb, KERN_WARNING,
2496 "failed to parse options in superblock: %s",
2497 s_mount_opts);
2498 ret = 0;
2499 goto out_free;
2500 }
2501
2502 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2503 m_ctx->journal_devnum = s_ctx->journal_devnum;
2504 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2505 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2506
2507 ext4_apply_options(fc, sb);
2508 ret = 0;
2509
2510 out_free:
2511 if (fc) {
2512 ext4_fc_free(fc);
2513 kfree(fc);
2514 }
2515 kfree(s_mount_opts);
2516 return ret;
2517 }
2518
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2519 static void ext4_apply_quota_options(struct fs_context *fc,
2520 struct super_block *sb)
2521 {
2522 #ifdef CONFIG_QUOTA
2523 bool quota_feature = ext4_has_feature_quota(sb);
2524 struct ext4_fs_context *ctx = fc->fs_private;
2525 struct ext4_sb_info *sbi = EXT4_SB(sb);
2526 char *qname;
2527 int i;
2528
2529 if (quota_feature)
2530 return;
2531
2532 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2533 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2534 if (!(ctx->qname_spec & (1 << i)))
2535 continue;
2536
2537 qname = ctx->s_qf_names[i]; /* May be NULL */
2538 if (qname)
2539 set_opt(sb, QUOTA);
2540 ctx->s_qf_names[i] = NULL;
2541 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2542 lockdep_is_held(&sb->s_umount));
2543 if (qname)
2544 kfree_rcu_mightsleep(qname);
2545 }
2546 }
2547
2548 if (ctx->spec & EXT4_SPEC_JQFMT)
2549 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2550 #endif
2551 }
2552
2553 /*
2554 * Check quota settings consistency.
2555 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2556 static int ext4_check_quota_consistency(struct fs_context *fc,
2557 struct super_block *sb)
2558 {
2559 #ifdef CONFIG_QUOTA
2560 struct ext4_fs_context *ctx = fc->fs_private;
2561 struct ext4_sb_info *sbi = EXT4_SB(sb);
2562 bool quota_feature = ext4_has_feature_quota(sb);
2563 bool quota_loaded = sb_any_quota_loaded(sb);
2564 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2565 int quota_flags, i;
2566
2567 /*
2568 * We do the test below only for project quotas. 'usrquota' and
2569 * 'grpquota' mount options are allowed even without quota feature
2570 * to support legacy quotas in quota files.
2571 */
2572 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2573 !ext4_has_feature_project(sb)) {
2574 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2575 "Cannot enable project quota enforcement.");
2576 return -EINVAL;
2577 }
2578
2579 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2580 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2581 if (quota_loaded &&
2582 ctx->mask_s_mount_opt & quota_flags &&
2583 !ctx_test_mount_opt(ctx, quota_flags))
2584 goto err_quota_change;
2585
2586 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2587
2588 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2589 if (!(ctx->qname_spec & (1 << i)))
2590 continue;
2591
2592 if (quota_loaded &&
2593 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2594 goto err_jquota_change;
2595
2596 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2597 strcmp(get_qf_name(sb, sbi, i),
2598 ctx->s_qf_names[i]) != 0)
2599 goto err_jquota_specified;
2600 }
2601
2602 if (quota_feature) {
2603 ext4_msg(NULL, KERN_INFO,
2604 "Journaled quota options ignored when "
2605 "QUOTA feature is enabled");
2606 return 0;
2607 }
2608 }
2609
2610 if (ctx->spec & EXT4_SPEC_JQFMT) {
2611 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2612 goto err_jquota_change;
2613 if (quota_feature) {
2614 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2615 "ignored when QUOTA feature is enabled");
2616 return 0;
2617 }
2618 }
2619
2620 /* Make sure we don't mix old and new quota format */
2621 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2622 ctx->s_qf_names[USRQUOTA]);
2623 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2624 ctx->s_qf_names[GRPQUOTA]);
2625
2626 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2627 test_opt(sb, USRQUOTA));
2628
2629 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2630 test_opt(sb, GRPQUOTA));
2631
2632 if (usr_qf_name) {
2633 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2634 usrquota = false;
2635 }
2636 if (grp_qf_name) {
2637 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2638 grpquota = false;
2639 }
2640
2641 if (usr_qf_name || grp_qf_name) {
2642 if (usrquota || grpquota) {
2643 ext4_msg(NULL, KERN_ERR, "old and new quota "
2644 "format mixing");
2645 return -EINVAL;
2646 }
2647
2648 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2649 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2650 "not specified");
2651 return -EINVAL;
2652 }
2653 }
2654
2655 return 0;
2656
2657 err_quota_change:
2658 ext4_msg(NULL, KERN_ERR,
2659 "Cannot change quota options when quota turned on");
2660 return -EINVAL;
2661 err_jquota_change:
2662 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2663 "options when quota turned on");
2664 return -EINVAL;
2665 err_jquota_specified:
2666 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2667 QTYPE2NAME(i));
2668 return -EINVAL;
2669 #else
2670 return 0;
2671 #endif
2672 }
2673
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2674 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2675 struct super_block *sb)
2676 {
2677 const struct ext4_fs_context *ctx = fc->fs_private;
2678 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2679
2680 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2681 return 0;
2682
2683 if (!ext4_has_feature_encrypt(sb)) {
2684 ext4_msg(NULL, KERN_WARNING,
2685 "test_dummy_encryption requires encrypt feature");
2686 return -EINVAL;
2687 }
2688 /*
2689 * This mount option is just for testing, and it's not worthwhile to
2690 * implement the extra complexity (e.g. RCU protection) that would be
2691 * needed to allow it to be set or changed during remount. We do allow
2692 * it to be specified during remount, but only if there is no change.
2693 */
2694 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2695 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2696 &ctx->dummy_enc_policy))
2697 return 0;
2698 ext4_msg(NULL, KERN_WARNING,
2699 "Can't set or change test_dummy_encryption on remount");
2700 return -EINVAL;
2701 }
2702 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2703 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2704 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2705 &ctx->dummy_enc_policy))
2706 return 0;
2707 ext4_msg(NULL, KERN_WARNING,
2708 "Conflicting test_dummy_encryption options");
2709 return -EINVAL;
2710 }
2711 return 0;
2712 }
2713
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2714 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2715 struct super_block *sb)
2716 {
2717 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2718 /* if already set, it was already verified to be the same */
2719 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2720 return;
2721 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2722 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2723 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2724 }
2725
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2726 static int ext4_check_opt_consistency(struct fs_context *fc,
2727 struct super_block *sb)
2728 {
2729 struct ext4_fs_context *ctx = fc->fs_private;
2730 struct ext4_sb_info *sbi = fc->s_fs_info;
2731 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2732 int err;
2733
2734 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2735 ext4_msg(NULL, KERN_ERR,
2736 "Mount option(s) incompatible with ext2");
2737 return -EINVAL;
2738 }
2739 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2740 ext4_msg(NULL, KERN_ERR,
2741 "Mount option(s) incompatible with ext3");
2742 return -EINVAL;
2743 }
2744
2745 if (ctx->s_want_extra_isize >
2746 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2747 ext4_msg(NULL, KERN_ERR,
2748 "Invalid want_extra_isize %d",
2749 ctx->s_want_extra_isize);
2750 return -EINVAL;
2751 }
2752
2753 err = ext4_check_test_dummy_encryption(fc, sb);
2754 if (err)
2755 return err;
2756
2757 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2758 if (!sbi->s_journal) {
2759 ext4_msg(NULL, KERN_WARNING,
2760 "Remounting file system with no journal "
2761 "so ignoring journalled data option");
2762 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2763 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2764 test_opt(sb, DATA_FLAGS)) {
2765 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2766 "on remount");
2767 return -EINVAL;
2768 }
2769 }
2770
2771 if (is_remount) {
2772 if (!sbi->s_journal &&
2773 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2774 ext4_msg(NULL, KERN_WARNING,
2775 "Remounting fs w/o journal so ignoring data_err option");
2776 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2777 }
2778
2779 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2780 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2781 ext4_msg(NULL, KERN_ERR, "can't mount with "
2782 "both data=journal and dax");
2783 return -EINVAL;
2784 }
2785
2786 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2787 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2788 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2789 fail_dax_change_remount:
2790 ext4_msg(NULL, KERN_ERR, "can't change "
2791 "dax mount option while remounting");
2792 return -EINVAL;
2793 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2794 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2795 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2796 goto fail_dax_change_remount;
2797 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2798 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2799 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2800 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2801 goto fail_dax_change_remount;
2802 }
2803 }
2804
2805 return ext4_check_quota_consistency(fc, sb);
2806 }
2807
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2808 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2809 {
2810 struct ext4_fs_context *ctx = fc->fs_private;
2811 struct ext4_sb_info *sbi = fc->s_fs_info;
2812
2813 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2814 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2815 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2816 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2817 sb->s_flags &= ~ctx->mask_s_flags;
2818 sb->s_flags |= ctx->vals_s_flags;
2819
2820 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2821 APPLY(s_commit_interval);
2822 APPLY(s_stripe);
2823 APPLY(s_max_batch_time);
2824 APPLY(s_min_batch_time);
2825 APPLY(s_want_extra_isize);
2826 APPLY(s_inode_readahead_blks);
2827 APPLY(s_max_dir_size_kb);
2828 APPLY(s_li_wait_mult);
2829 APPLY(s_resgid);
2830 APPLY(s_resuid);
2831
2832 #ifdef CONFIG_EXT4_DEBUG
2833 APPLY(s_fc_debug_max_replay);
2834 #endif
2835
2836 ext4_apply_quota_options(fc, sb);
2837 ext4_apply_test_dummy_encryption(ctx, sb);
2838 }
2839
2840
ext4_validate_options(struct fs_context * fc)2841 static int ext4_validate_options(struct fs_context *fc)
2842 {
2843 #ifdef CONFIG_QUOTA
2844 struct ext4_fs_context *ctx = fc->fs_private;
2845 char *usr_qf_name, *grp_qf_name;
2846
2847 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2848 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2849
2850 if (usr_qf_name || grp_qf_name) {
2851 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2852 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2853
2854 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2855 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2856
2857 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2858 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2859 ext4_msg(NULL, KERN_ERR, "old and new quota "
2860 "format mixing");
2861 return -EINVAL;
2862 }
2863 }
2864 #endif
2865 return 1;
2866 }
2867
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2868 static inline void ext4_show_quota_options(struct seq_file *seq,
2869 struct super_block *sb)
2870 {
2871 #if defined(CONFIG_QUOTA)
2872 struct ext4_sb_info *sbi = EXT4_SB(sb);
2873 char *usr_qf_name, *grp_qf_name;
2874
2875 if (sbi->s_jquota_fmt) {
2876 char *fmtname = "";
2877
2878 switch (sbi->s_jquota_fmt) {
2879 case QFMT_VFS_OLD:
2880 fmtname = "vfsold";
2881 break;
2882 case QFMT_VFS_V0:
2883 fmtname = "vfsv0";
2884 break;
2885 case QFMT_VFS_V1:
2886 fmtname = "vfsv1";
2887 break;
2888 }
2889 seq_printf(seq, ",jqfmt=%s", fmtname);
2890 }
2891
2892 rcu_read_lock();
2893 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2894 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2895 if (usr_qf_name)
2896 seq_show_option(seq, "usrjquota", usr_qf_name);
2897 if (grp_qf_name)
2898 seq_show_option(seq, "grpjquota", grp_qf_name);
2899 rcu_read_unlock();
2900 #endif
2901 }
2902
token2str(int token)2903 static const char *token2str(int token)
2904 {
2905 const struct fs_parameter_spec *spec;
2906
2907 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2908 if (spec->opt == token && !spec->type)
2909 break;
2910 return spec->name;
2911 }
2912
2913 /*
2914 * Show an option if
2915 * - it's set to a non-default value OR
2916 * - if the per-sb default is different from the global default
2917 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2918 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2919 int nodefs)
2920 {
2921 struct ext4_sb_info *sbi = EXT4_SB(sb);
2922 struct ext4_super_block *es = sbi->s_es;
2923 int def_errors;
2924 const struct mount_opts *m;
2925 char sep = nodefs ? '\n' : ',';
2926
2927 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2928 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2929
2930 if (sbi->s_sb_block != 1)
2931 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2932
2933 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2934 int want_set = m->flags & MOPT_SET;
2935 int opt_2 = m->flags & MOPT_2;
2936 unsigned int mount_opt, def_mount_opt;
2937
2938 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2939 m->flags & MOPT_SKIP)
2940 continue;
2941
2942 if (opt_2) {
2943 mount_opt = sbi->s_mount_opt2;
2944 def_mount_opt = sbi->s_def_mount_opt2;
2945 } else {
2946 mount_opt = sbi->s_mount_opt;
2947 def_mount_opt = sbi->s_def_mount_opt;
2948 }
2949 /* skip if same as the default */
2950 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2951 continue;
2952 /* select Opt_noFoo vs Opt_Foo */
2953 if ((want_set &&
2954 (mount_opt & m->mount_opt) != m->mount_opt) ||
2955 (!want_set && (mount_opt & m->mount_opt)))
2956 continue;
2957 SEQ_OPTS_PRINT("%s", token2str(m->token));
2958 }
2959
2960 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2961 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2962 SEQ_OPTS_PRINT("resuid=%u",
2963 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2964 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2965 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2966 SEQ_OPTS_PRINT("resgid=%u",
2967 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2968 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2969 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2970 SEQ_OPTS_PUTS("errors=remount-ro");
2971 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2972 SEQ_OPTS_PUTS("errors=continue");
2973 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2974 SEQ_OPTS_PUTS("errors=panic");
2975 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2976 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2977 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2978 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2979 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2980 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2981 if (nodefs && sb->s_flags & SB_I_VERSION)
2982 SEQ_OPTS_PUTS("i_version");
2983 if (nodefs || sbi->s_stripe)
2984 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2985 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2986 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2987 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2988 SEQ_OPTS_PUTS("data=journal");
2989 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2990 SEQ_OPTS_PUTS("data=ordered");
2991 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2992 SEQ_OPTS_PUTS("data=writeback");
2993 }
2994 if (nodefs ||
2995 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2996 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2997 sbi->s_inode_readahead_blks);
2998
2999 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3000 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3001 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3002 if (nodefs || sbi->s_max_dir_size_kb)
3003 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3004 if (test_opt(sb, DATA_ERR_ABORT))
3005 SEQ_OPTS_PUTS("data_err=abort");
3006
3007 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3008
3009 if (sb->s_flags & SB_INLINECRYPT)
3010 SEQ_OPTS_PUTS("inlinecrypt");
3011
3012 if (test_opt(sb, DAX_ALWAYS)) {
3013 if (IS_EXT2_SB(sb))
3014 SEQ_OPTS_PUTS("dax");
3015 else
3016 SEQ_OPTS_PUTS("dax=always");
3017 } else if (test_opt2(sb, DAX_NEVER)) {
3018 SEQ_OPTS_PUTS("dax=never");
3019 } else if (test_opt2(sb, DAX_INODE)) {
3020 SEQ_OPTS_PUTS("dax=inode");
3021 }
3022
3023 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3024 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3025 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3026 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3027 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3028 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3029 }
3030
3031 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3032 SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3033
3034 if (ext4_emergency_ro(sb))
3035 SEQ_OPTS_PUTS("emergency_ro");
3036
3037 if (ext4_forced_shutdown(sb))
3038 SEQ_OPTS_PUTS("shutdown");
3039
3040 ext4_show_quota_options(seq, sb);
3041 return 0;
3042 }
3043
ext4_show_options(struct seq_file * seq,struct dentry * root)3044 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3045 {
3046 return _ext4_show_options(seq, root->d_sb, 0);
3047 }
3048
ext4_seq_options_show(struct seq_file * seq,void * offset)3049 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3050 {
3051 struct super_block *sb = seq->private;
3052 int rc;
3053
3054 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3055 rc = _ext4_show_options(seq, sb, 1);
3056 seq_putc(seq, '\n');
3057 return rc;
3058 }
3059
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3060 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3061 int read_only)
3062 {
3063 struct ext4_sb_info *sbi = EXT4_SB(sb);
3064 int err = 0;
3065
3066 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3067 ext4_msg(sb, KERN_ERR, "revision level too high, "
3068 "forcing read-only mode");
3069 err = -EROFS;
3070 goto done;
3071 }
3072 if (read_only)
3073 goto done;
3074 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3075 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3076 "running e2fsck is recommended");
3077 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3078 ext4_msg(sb, KERN_WARNING,
3079 "warning: mounting fs with errors, "
3080 "running e2fsck is recommended");
3081 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3082 le16_to_cpu(es->s_mnt_count) >=
3083 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3084 ext4_msg(sb, KERN_WARNING,
3085 "warning: maximal mount count reached, "
3086 "running e2fsck is recommended");
3087 else if (le32_to_cpu(es->s_checkinterval) &&
3088 (ext4_get_tstamp(es, s_lastcheck) +
3089 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3090 ext4_msg(sb, KERN_WARNING,
3091 "warning: checktime reached, "
3092 "running e2fsck is recommended");
3093 if (!sbi->s_journal)
3094 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3095 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3096 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3097 le16_add_cpu(&es->s_mnt_count, 1);
3098 ext4_update_tstamp(es, s_mtime);
3099 if (sbi->s_journal) {
3100 ext4_set_feature_journal_needs_recovery(sb);
3101 if (ext4_has_feature_orphan_file(sb))
3102 ext4_set_feature_orphan_present(sb);
3103 }
3104
3105 err = ext4_commit_super(sb);
3106 done:
3107 if (test_opt(sb, DEBUG))
3108 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3109 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3110 sb->s_blocksize,
3111 sbi->s_groups_count,
3112 EXT4_BLOCKS_PER_GROUP(sb),
3113 EXT4_INODES_PER_GROUP(sb),
3114 sbi->s_mount_opt, sbi->s_mount_opt2);
3115 return err;
3116 }
3117
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3118 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3119 {
3120 struct ext4_sb_info *sbi = EXT4_SB(sb);
3121 struct flex_groups **old_groups, **new_groups;
3122 int size, i, j;
3123
3124 if (!sbi->s_log_groups_per_flex)
3125 return 0;
3126
3127 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3128 if (size <= sbi->s_flex_groups_allocated)
3129 return 0;
3130
3131 new_groups = kvzalloc(roundup_pow_of_two(size *
3132 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3133 if (!new_groups) {
3134 ext4_msg(sb, KERN_ERR,
3135 "not enough memory for %d flex group pointers", size);
3136 return -ENOMEM;
3137 }
3138 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3139 new_groups[i] = kvzalloc(roundup_pow_of_two(
3140 sizeof(struct flex_groups)),
3141 GFP_KERNEL);
3142 if (!new_groups[i]) {
3143 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3144 kvfree(new_groups[j]);
3145 kvfree(new_groups);
3146 ext4_msg(sb, KERN_ERR,
3147 "not enough memory for %d flex groups", size);
3148 return -ENOMEM;
3149 }
3150 }
3151 rcu_read_lock();
3152 old_groups = rcu_dereference(sbi->s_flex_groups);
3153 if (old_groups)
3154 memcpy(new_groups, old_groups,
3155 (sbi->s_flex_groups_allocated *
3156 sizeof(struct flex_groups *)));
3157 rcu_read_unlock();
3158 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3159 sbi->s_flex_groups_allocated = size;
3160 if (old_groups)
3161 ext4_kvfree_array_rcu(old_groups);
3162 return 0;
3163 }
3164
ext4_fill_flex_info(struct super_block * sb)3165 static int ext4_fill_flex_info(struct super_block *sb)
3166 {
3167 struct ext4_sb_info *sbi = EXT4_SB(sb);
3168 struct ext4_group_desc *gdp = NULL;
3169 struct flex_groups *fg;
3170 ext4_group_t flex_group;
3171 int i, err;
3172
3173 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3174 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3175 sbi->s_log_groups_per_flex = 0;
3176 return 1;
3177 }
3178
3179 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3180 if (err)
3181 goto failed;
3182
3183 for (i = 0; i < sbi->s_groups_count; i++) {
3184 gdp = ext4_get_group_desc(sb, i, NULL);
3185
3186 flex_group = ext4_flex_group(sbi, i);
3187 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3188 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3189 atomic64_add(ext4_free_group_clusters(sb, gdp),
3190 &fg->free_clusters);
3191 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3192 }
3193
3194 return 1;
3195 failed:
3196 return 0;
3197 }
3198
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3199 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3200 struct ext4_group_desc *gdp)
3201 {
3202 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3203 __u16 crc = 0;
3204 __le32 le_group = cpu_to_le32(block_group);
3205 struct ext4_sb_info *sbi = EXT4_SB(sb);
3206
3207 if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3208 /* Use new metadata_csum algorithm */
3209 __u32 csum32;
3210 __u16 dummy_csum = 0;
3211
3212 csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group,
3213 sizeof(le_group));
3214 csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset);
3215 csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum,
3216 sizeof(dummy_csum));
3217 offset += sizeof(dummy_csum);
3218 if (offset < sbi->s_desc_size)
3219 csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset,
3220 sbi->s_desc_size - offset);
3221
3222 crc = csum32 & 0xFFFF;
3223 goto out;
3224 }
3225
3226 /* old crc16 code */
3227 if (!ext4_has_feature_gdt_csum(sb))
3228 return 0;
3229
3230 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3231 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3232 crc = crc16(crc, (__u8 *)gdp, offset);
3233 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3234 /* for checksum of struct ext4_group_desc do the rest...*/
3235 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3236 crc = crc16(crc, (__u8 *)gdp + offset,
3237 sbi->s_desc_size - offset);
3238
3239 out:
3240 return cpu_to_le16(crc);
3241 }
3242
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3243 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3244 struct ext4_group_desc *gdp)
3245 {
3246 if (ext4_has_group_desc_csum(sb) &&
3247 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3248 return 0;
3249
3250 return 1;
3251 }
3252
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3253 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3254 struct ext4_group_desc *gdp)
3255 {
3256 if (!ext4_has_group_desc_csum(sb))
3257 return;
3258 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3259 }
3260
3261 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3262 static int ext4_check_descriptors(struct super_block *sb,
3263 ext4_fsblk_t sb_block,
3264 ext4_group_t *first_not_zeroed)
3265 {
3266 struct ext4_sb_info *sbi = EXT4_SB(sb);
3267 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3268 ext4_fsblk_t last_block;
3269 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3270 ext4_fsblk_t block_bitmap;
3271 ext4_fsblk_t inode_bitmap;
3272 ext4_fsblk_t inode_table;
3273 int flexbg_flag = 0;
3274 ext4_group_t i, grp = sbi->s_groups_count;
3275
3276 if (ext4_has_feature_flex_bg(sb))
3277 flexbg_flag = 1;
3278
3279 ext4_debug("Checking group descriptors");
3280
3281 for (i = 0; i < sbi->s_groups_count; i++) {
3282 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3283
3284 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3285 last_block = ext4_blocks_count(sbi->s_es) - 1;
3286 else
3287 last_block = first_block +
3288 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3289
3290 if ((grp == sbi->s_groups_count) &&
3291 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3292 grp = i;
3293
3294 block_bitmap = ext4_block_bitmap(sb, gdp);
3295 if (block_bitmap == sb_block) {
3296 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3297 "Block bitmap for group %u overlaps "
3298 "superblock", i);
3299 if (!sb_rdonly(sb))
3300 return 0;
3301 }
3302 if (block_bitmap >= sb_block + 1 &&
3303 block_bitmap <= last_bg_block) {
3304 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3305 "Block bitmap for group %u overlaps "
3306 "block group descriptors", i);
3307 if (!sb_rdonly(sb))
3308 return 0;
3309 }
3310 if (block_bitmap < first_block || block_bitmap > last_block) {
3311 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3312 "Block bitmap for group %u not in group "
3313 "(block %llu)!", i, block_bitmap);
3314 return 0;
3315 }
3316 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3317 if (inode_bitmap == sb_block) {
3318 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3319 "Inode bitmap for group %u overlaps "
3320 "superblock", i);
3321 if (!sb_rdonly(sb))
3322 return 0;
3323 }
3324 if (inode_bitmap >= sb_block + 1 &&
3325 inode_bitmap <= last_bg_block) {
3326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3327 "Inode bitmap for group %u overlaps "
3328 "block group descriptors", i);
3329 if (!sb_rdonly(sb))
3330 return 0;
3331 }
3332 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3334 "Inode bitmap for group %u not in group "
3335 "(block %llu)!", i, inode_bitmap);
3336 return 0;
3337 }
3338 inode_table = ext4_inode_table(sb, gdp);
3339 if (inode_table == sb_block) {
3340 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3341 "Inode table for group %u overlaps "
3342 "superblock", i);
3343 if (!sb_rdonly(sb))
3344 return 0;
3345 }
3346 if (inode_table >= sb_block + 1 &&
3347 inode_table <= last_bg_block) {
3348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3349 "Inode table for group %u overlaps "
3350 "block group descriptors", i);
3351 if (!sb_rdonly(sb))
3352 return 0;
3353 }
3354 if (inode_table < first_block ||
3355 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3357 "Inode table for group %u not in group "
3358 "(block %llu)!", i, inode_table);
3359 return 0;
3360 }
3361 ext4_lock_group(sb, i);
3362 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3363 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3364 "Checksum for group %u failed (%u!=%u)",
3365 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3366 gdp)), le16_to_cpu(gdp->bg_checksum));
3367 if (!sb_rdonly(sb)) {
3368 ext4_unlock_group(sb, i);
3369 return 0;
3370 }
3371 }
3372 ext4_unlock_group(sb, i);
3373 if (!flexbg_flag)
3374 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3375 }
3376 if (NULL != first_not_zeroed)
3377 *first_not_zeroed = grp;
3378 return 1;
3379 }
3380
3381 /*
3382 * Maximal extent format file size.
3383 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3384 * extent format containers, within a sector_t, and within i_blocks
3385 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3386 * so that won't be a limiting factor.
3387 *
3388 * However there is other limiting factor. We do store extents in the form
3389 * of starting block and length, hence the resulting length of the extent
3390 * covering maximum file size must fit into on-disk format containers as
3391 * well. Given that length is always by 1 unit bigger than max unit (because
3392 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3393 *
3394 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3395 */
ext4_max_size(int blkbits,int has_huge_files)3396 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3397 {
3398 loff_t res;
3399 loff_t upper_limit = MAX_LFS_FILESIZE;
3400
3401 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3402
3403 if (!has_huge_files) {
3404 upper_limit = (1LL << 32) - 1;
3405
3406 /* total blocks in file system block size */
3407 upper_limit >>= (blkbits - 9);
3408 upper_limit <<= blkbits;
3409 }
3410
3411 /*
3412 * 32-bit extent-start container, ee_block. We lower the maxbytes
3413 * by one fs block, so ee_len can cover the extent of maximum file
3414 * size
3415 */
3416 res = (1LL << 32) - 1;
3417 res <<= blkbits;
3418
3419 /* Sanity check against vm- & vfs- imposed limits */
3420 if (res > upper_limit)
3421 res = upper_limit;
3422
3423 return res;
3424 }
3425
3426 /*
3427 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3428 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3429 * We need to be 1 filesystem block less than the 2^48 sector limit.
3430 */
ext4_max_bitmap_size(int bits,int has_huge_files)3431 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3432 {
3433 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3434 int meta_blocks;
3435 unsigned int ppb = 1 << (bits - 2);
3436
3437 /*
3438 * This is calculated to be the largest file size for a dense, block
3439 * mapped file such that the file's total number of 512-byte sectors,
3440 * including data and all indirect blocks, does not exceed (2^48 - 1).
3441 *
3442 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3443 * number of 512-byte sectors of the file.
3444 */
3445 if (!has_huge_files) {
3446 /*
3447 * !has_huge_files or implies that the inode i_block field
3448 * represents total file blocks in 2^32 512-byte sectors ==
3449 * size of vfs inode i_blocks * 8
3450 */
3451 upper_limit = (1LL << 32) - 1;
3452
3453 /* total blocks in file system block size */
3454 upper_limit >>= (bits - 9);
3455
3456 } else {
3457 /*
3458 * We use 48 bit ext4_inode i_blocks
3459 * With EXT4_HUGE_FILE_FL set the i_blocks
3460 * represent total number of blocks in
3461 * file system block size
3462 */
3463 upper_limit = (1LL << 48) - 1;
3464
3465 }
3466
3467 /* Compute how many blocks we can address by block tree */
3468 res += ppb;
3469 res += ppb * ppb;
3470 res += ((loff_t)ppb) * ppb * ppb;
3471 /* Compute how many metadata blocks are needed */
3472 meta_blocks = 1;
3473 meta_blocks += 1 + ppb;
3474 meta_blocks += 1 + ppb + ppb * ppb;
3475 /* Does block tree limit file size? */
3476 if (res + meta_blocks <= upper_limit)
3477 goto check_lfs;
3478
3479 res = upper_limit;
3480 /* How many metadata blocks are needed for addressing upper_limit? */
3481 upper_limit -= EXT4_NDIR_BLOCKS;
3482 /* indirect blocks */
3483 meta_blocks = 1;
3484 upper_limit -= ppb;
3485 /* double indirect blocks */
3486 if (upper_limit < ppb * ppb) {
3487 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3488 res -= meta_blocks;
3489 goto check_lfs;
3490 }
3491 meta_blocks += 1 + ppb;
3492 upper_limit -= ppb * ppb;
3493 /* tripple indirect blocks for the rest */
3494 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3495 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3496 res -= meta_blocks;
3497 check_lfs:
3498 res <<= bits;
3499 if (res > MAX_LFS_FILESIZE)
3500 res = MAX_LFS_FILESIZE;
3501
3502 return res;
3503 }
3504
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3505 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3506 ext4_fsblk_t logical_sb_block, int nr)
3507 {
3508 struct ext4_sb_info *sbi = EXT4_SB(sb);
3509 ext4_group_t bg, first_meta_bg;
3510 int has_super = 0;
3511
3512 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3513
3514 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3515 return logical_sb_block + nr + 1;
3516 bg = sbi->s_desc_per_block * nr;
3517 if (ext4_bg_has_super(sb, bg))
3518 has_super = 1;
3519
3520 /*
3521 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3522 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3523 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3524 * compensate.
3525 */
3526 if (sb->s_blocksize == 1024 && nr == 0 &&
3527 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3528 has_super++;
3529
3530 return (has_super + ext4_group_first_block_no(sb, bg));
3531 }
3532
3533 /**
3534 * ext4_get_stripe_size: Get the stripe size.
3535 * @sbi: In memory super block info
3536 *
3537 * If we have specified it via mount option, then
3538 * use the mount option value. If the value specified at mount time is
3539 * greater than the blocks per group use the super block value.
3540 * If the super block value is greater than blocks per group return 0.
3541 * Allocator needs it be less than blocks per group.
3542 *
3543 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3544 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3545 {
3546 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3547 unsigned long stripe_width =
3548 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3549 int ret;
3550
3551 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3552 ret = sbi->s_stripe;
3553 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3554 ret = stripe_width;
3555 else if (stride && stride <= sbi->s_blocks_per_group)
3556 ret = stride;
3557 else
3558 ret = 0;
3559
3560 /*
3561 * If the stripe width is 1, this makes no sense and
3562 * we set it to 0 to turn off stripe handling code.
3563 */
3564 if (ret <= 1)
3565 ret = 0;
3566
3567 return ret;
3568 }
3569
3570 /*
3571 * Check whether this filesystem can be mounted based on
3572 * the features present and the RDONLY/RDWR mount requested.
3573 * Returns 1 if this filesystem can be mounted as requested,
3574 * 0 if it cannot be.
3575 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3576 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3577 {
3578 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3579 ext4_msg(sb, KERN_ERR,
3580 "Couldn't mount because of "
3581 "unsupported optional features (%x)",
3582 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3583 ~EXT4_FEATURE_INCOMPAT_SUPP));
3584 return 0;
3585 }
3586
3587 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3588 ext4_msg(sb, KERN_ERR,
3589 "Filesystem with casefold feature cannot be "
3590 "mounted without CONFIG_UNICODE");
3591 return 0;
3592 }
3593
3594 if (readonly)
3595 return 1;
3596
3597 if (ext4_has_feature_readonly(sb)) {
3598 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3599 sb->s_flags |= SB_RDONLY;
3600 return 1;
3601 }
3602
3603 /* Check that feature set is OK for a read-write mount */
3604 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3605 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3606 "unsupported optional features (%x)",
3607 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3608 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3609 return 0;
3610 }
3611 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3612 ext4_msg(sb, KERN_ERR,
3613 "Can't support bigalloc feature without "
3614 "extents feature\n");
3615 return 0;
3616 }
3617
3618 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3619 if (!readonly && (ext4_has_feature_quota(sb) ||
3620 ext4_has_feature_project(sb))) {
3621 ext4_msg(sb, KERN_ERR,
3622 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3623 return 0;
3624 }
3625 #endif /* CONFIG_QUOTA */
3626 return 1;
3627 }
3628
3629 /*
3630 * This function is called once a day if we have errors logged
3631 * on the file system
3632 */
print_daily_error_info(struct timer_list * t)3633 static void print_daily_error_info(struct timer_list *t)
3634 {
3635 struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report);
3636 struct super_block *sb = sbi->s_sb;
3637 struct ext4_super_block *es = sbi->s_es;
3638
3639 if (es->s_error_count)
3640 /* fsck newer than v1.41.13 is needed to clean this condition. */
3641 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3642 le32_to_cpu(es->s_error_count));
3643 if (es->s_first_error_time) {
3644 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3645 sb->s_id,
3646 ext4_get_tstamp(es, s_first_error_time),
3647 (int) sizeof(es->s_first_error_func),
3648 es->s_first_error_func,
3649 le32_to_cpu(es->s_first_error_line));
3650 if (es->s_first_error_ino)
3651 printk(KERN_CONT ": inode %u",
3652 le32_to_cpu(es->s_first_error_ino));
3653 if (es->s_first_error_block)
3654 printk(KERN_CONT ": block %llu", (unsigned long long)
3655 le64_to_cpu(es->s_first_error_block));
3656 printk(KERN_CONT "\n");
3657 }
3658 if (es->s_last_error_time) {
3659 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3660 sb->s_id,
3661 ext4_get_tstamp(es, s_last_error_time),
3662 (int) sizeof(es->s_last_error_func),
3663 es->s_last_error_func,
3664 le32_to_cpu(es->s_last_error_line));
3665 if (es->s_last_error_ino)
3666 printk(KERN_CONT ": inode %u",
3667 le32_to_cpu(es->s_last_error_ino));
3668 if (es->s_last_error_block)
3669 printk(KERN_CONT ": block %llu", (unsigned long long)
3670 le64_to_cpu(es->s_last_error_block));
3671 printk(KERN_CONT "\n");
3672 }
3673 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3674 }
3675
3676 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3677 static int ext4_run_li_request(struct ext4_li_request *elr)
3678 {
3679 struct ext4_group_desc *gdp = NULL;
3680 struct super_block *sb = elr->lr_super;
3681 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3682 ext4_group_t group = elr->lr_next_group;
3683 unsigned int prefetch_ios = 0;
3684 int ret = 0;
3685 int nr = EXT4_SB(sb)->s_mb_prefetch;
3686 u64 start_time;
3687
3688 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3689 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3690 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3691 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3692 if (group >= elr->lr_next_group) {
3693 ret = 1;
3694 if (elr->lr_first_not_zeroed != ngroups &&
3695 !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3696 test_opt(sb, INIT_INODE_TABLE)) {
3697 elr->lr_next_group = elr->lr_first_not_zeroed;
3698 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3699 ret = 0;
3700 }
3701 }
3702 return ret;
3703 }
3704
3705 for (; group < ngroups; group++) {
3706 gdp = ext4_get_group_desc(sb, group, NULL);
3707 if (!gdp) {
3708 ret = 1;
3709 break;
3710 }
3711
3712 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3713 break;
3714 }
3715
3716 if (group >= ngroups)
3717 ret = 1;
3718
3719 if (!ret) {
3720 start_time = ktime_get_ns();
3721 ret = ext4_init_inode_table(sb, group,
3722 elr->lr_timeout ? 0 : 1);
3723 trace_ext4_lazy_itable_init(sb, group);
3724 if (elr->lr_timeout == 0) {
3725 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3726 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3727 }
3728 elr->lr_next_sched = jiffies + elr->lr_timeout;
3729 elr->lr_next_group = group + 1;
3730 }
3731 return ret;
3732 }
3733
3734 /*
3735 * Remove lr_request from the list_request and free the
3736 * request structure. Should be called with li_list_mtx held
3737 */
ext4_remove_li_request(struct ext4_li_request * elr)3738 static void ext4_remove_li_request(struct ext4_li_request *elr)
3739 {
3740 if (!elr)
3741 return;
3742
3743 list_del(&elr->lr_request);
3744 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3745 kfree(elr);
3746 }
3747
ext4_unregister_li_request(struct super_block * sb)3748 static void ext4_unregister_li_request(struct super_block *sb)
3749 {
3750 mutex_lock(&ext4_li_mtx);
3751 if (!ext4_li_info) {
3752 mutex_unlock(&ext4_li_mtx);
3753 return;
3754 }
3755
3756 mutex_lock(&ext4_li_info->li_list_mtx);
3757 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3758 mutex_unlock(&ext4_li_info->li_list_mtx);
3759 mutex_unlock(&ext4_li_mtx);
3760 }
3761
3762 static struct task_struct *ext4_lazyinit_task;
3763
3764 /*
3765 * This is the function where ext4lazyinit thread lives. It walks
3766 * through the request list searching for next scheduled filesystem.
3767 * When such a fs is found, run the lazy initialization request
3768 * (ext4_rn_li_request) and keep track of the time spend in this
3769 * function. Based on that time we compute next schedule time of
3770 * the request. When walking through the list is complete, compute
3771 * next waking time and put itself into sleep.
3772 */
ext4_lazyinit_thread(void * arg)3773 static int ext4_lazyinit_thread(void *arg)
3774 {
3775 struct ext4_lazy_init *eli = arg;
3776 struct list_head *pos, *n;
3777 struct ext4_li_request *elr;
3778 unsigned long next_wakeup, cur;
3779
3780 BUG_ON(NULL == eli);
3781 set_freezable();
3782
3783 cont_thread:
3784 while (true) {
3785 bool next_wakeup_initialized = false;
3786
3787 next_wakeup = 0;
3788 mutex_lock(&eli->li_list_mtx);
3789 if (list_empty(&eli->li_request_list)) {
3790 mutex_unlock(&eli->li_list_mtx);
3791 goto exit_thread;
3792 }
3793 list_for_each_safe(pos, n, &eli->li_request_list) {
3794 int err = 0;
3795 int progress = 0;
3796 elr = list_entry(pos, struct ext4_li_request,
3797 lr_request);
3798
3799 if (time_before(jiffies, elr->lr_next_sched)) {
3800 if (!next_wakeup_initialized ||
3801 time_before(elr->lr_next_sched, next_wakeup)) {
3802 next_wakeup = elr->lr_next_sched;
3803 next_wakeup_initialized = true;
3804 }
3805 continue;
3806 }
3807 if (down_read_trylock(&elr->lr_super->s_umount)) {
3808 if (sb_start_write_trylock(elr->lr_super)) {
3809 progress = 1;
3810 /*
3811 * We hold sb->s_umount, sb can not
3812 * be removed from the list, it is
3813 * now safe to drop li_list_mtx
3814 */
3815 mutex_unlock(&eli->li_list_mtx);
3816 err = ext4_run_li_request(elr);
3817 sb_end_write(elr->lr_super);
3818 mutex_lock(&eli->li_list_mtx);
3819 n = pos->next;
3820 }
3821 up_read((&elr->lr_super->s_umount));
3822 }
3823 /* error, remove the lazy_init job */
3824 if (err) {
3825 ext4_remove_li_request(elr);
3826 continue;
3827 }
3828 if (!progress) {
3829 elr->lr_next_sched = jiffies +
3830 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3831 }
3832 if (!next_wakeup_initialized ||
3833 time_before(elr->lr_next_sched, next_wakeup)) {
3834 next_wakeup = elr->lr_next_sched;
3835 next_wakeup_initialized = true;
3836 }
3837 }
3838 mutex_unlock(&eli->li_list_mtx);
3839
3840 try_to_freeze();
3841
3842 cur = jiffies;
3843 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3844 cond_resched();
3845 continue;
3846 }
3847
3848 schedule_timeout_interruptible(next_wakeup - cur);
3849
3850 if (kthread_should_stop()) {
3851 ext4_clear_request_list();
3852 goto exit_thread;
3853 }
3854 }
3855
3856 exit_thread:
3857 /*
3858 * It looks like the request list is empty, but we need
3859 * to check it under the li_list_mtx lock, to prevent any
3860 * additions into it, and of course we should lock ext4_li_mtx
3861 * to atomically free the list and ext4_li_info, because at
3862 * this point another ext4 filesystem could be registering
3863 * new one.
3864 */
3865 mutex_lock(&ext4_li_mtx);
3866 mutex_lock(&eli->li_list_mtx);
3867 if (!list_empty(&eli->li_request_list)) {
3868 mutex_unlock(&eli->li_list_mtx);
3869 mutex_unlock(&ext4_li_mtx);
3870 goto cont_thread;
3871 }
3872 mutex_unlock(&eli->li_list_mtx);
3873 kfree(ext4_li_info);
3874 ext4_li_info = NULL;
3875 mutex_unlock(&ext4_li_mtx);
3876
3877 return 0;
3878 }
3879
ext4_clear_request_list(void)3880 static void ext4_clear_request_list(void)
3881 {
3882 struct list_head *pos, *n;
3883 struct ext4_li_request *elr;
3884
3885 mutex_lock(&ext4_li_info->li_list_mtx);
3886 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3887 elr = list_entry(pos, struct ext4_li_request,
3888 lr_request);
3889 ext4_remove_li_request(elr);
3890 }
3891 mutex_unlock(&ext4_li_info->li_list_mtx);
3892 }
3893
ext4_run_lazyinit_thread(void)3894 static int ext4_run_lazyinit_thread(void)
3895 {
3896 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3897 ext4_li_info, "ext4lazyinit");
3898 if (IS_ERR(ext4_lazyinit_task)) {
3899 int err = PTR_ERR(ext4_lazyinit_task);
3900 ext4_clear_request_list();
3901 kfree(ext4_li_info);
3902 ext4_li_info = NULL;
3903 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3904 "initialization thread\n",
3905 err);
3906 return err;
3907 }
3908 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3909 return 0;
3910 }
3911
3912 /*
3913 * Check whether it make sense to run itable init. thread or not.
3914 * If there is at least one uninitialized inode table, return
3915 * corresponding group number, else the loop goes through all
3916 * groups and return total number of groups.
3917 */
ext4_has_uninit_itable(struct super_block * sb)3918 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3919 {
3920 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3921 struct ext4_group_desc *gdp = NULL;
3922
3923 if (!ext4_has_group_desc_csum(sb))
3924 return ngroups;
3925
3926 for (group = 0; group < ngroups; group++) {
3927 gdp = ext4_get_group_desc(sb, group, NULL);
3928 if (!gdp)
3929 continue;
3930
3931 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3932 break;
3933 }
3934
3935 return group;
3936 }
3937
ext4_li_info_new(void)3938 static int ext4_li_info_new(void)
3939 {
3940 struct ext4_lazy_init *eli = NULL;
3941
3942 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3943 if (!eli)
3944 return -ENOMEM;
3945
3946 INIT_LIST_HEAD(&eli->li_request_list);
3947 mutex_init(&eli->li_list_mtx);
3948
3949 eli->li_state |= EXT4_LAZYINIT_QUIT;
3950
3951 ext4_li_info = eli;
3952
3953 return 0;
3954 }
3955
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3956 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3957 ext4_group_t start)
3958 {
3959 struct ext4_li_request *elr;
3960
3961 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3962 if (!elr)
3963 return NULL;
3964
3965 elr->lr_super = sb;
3966 elr->lr_first_not_zeroed = start;
3967 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3968 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3969 elr->lr_next_group = start;
3970 } else {
3971 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3972 }
3973
3974 /*
3975 * Randomize first schedule time of the request to
3976 * spread the inode table initialization requests
3977 * better.
3978 */
3979 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3980 return elr;
3981 }
3982
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3983 int ext4_register_li_request(struct super_block *sb,
3984 ext4_group_t first_not_zeroed)
3985 {
3986 struct ext4_sb_info *sbi = EXT4_SB(sb);
3987 struct ext4_li_request *elr = NULL;
3988 ext4_group_t ngroups = sbi->s_groups_count;
3989 int ret = 0;
3990
3991 mutex_lock(&ext4_li_mtx);
3992 if (sbi->s_li_request != NULL) {
3993 /*
3994 * Reset timeout so it can be computed again, because
3995 * s_li_wait_mult might have changed.
3996 */
3997 sbi->s_li_request->lr_timeout = 0;
3998 goto out;
3999 }
4000
4001 if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
4002 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4003 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4004 goto out;
4005
4006 elr = ext4_li_request_new(sb, first_not_zeroed);
4007 if (!elr) {
4008 ret = -ENOMEM;
4009 goto out;
4010 }
4011
4012 if (NULL == ext4_li_info) {
4013 ret = ext4_li_info_new();
4014 if (ret)
4015 goto out;
4016 }
4017
4018 mutex_lock(&ext4_li_info->li_list_mtx);
4019 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4020 mutex_unlock(&ext4_li_info->li_list_mtx);
4021
4022 sbi->s_li_request = elr;
4023 /*
4024 * set elr to NULL here since it has been inserted to
4025 * the request_list and the removal and free of it is
4026 * handled by ext4_clear_request_list from now on.
4027 */
4028 elr = NULL;
4029
4030 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4031 ret = ext4_run_lazyinit_thread();
4032 if (ret)
4033 goto out;
4034 }
4035 out:
4036 mutex_unlock(&ext4_li_mtx);
4037 if (ret)
4038 kfree(elr);
4039 return ret;
4040 }
4041
4042 /*
4043 * We do not need to lock anything since this is called on
4044 * module unload.
4045 */
ext4_destroy_lazyinit_thread(void)4046 static void ext4_destroy_lazyinit_thread(void)
4047 {
4048 /*
4049 * If thread exited earlier
4050 * there's nothing to be done.
4051 */
4052 if (!ext4_li_info || !ext4_lazyinit_task)
4053 return;
4054
4055 kthread_stop(ext4_lazyinit_task);
4056 }
4057
set_journal_csum_feature_set(struct super_block * sb)4058 static int set_journal_csum_feature_set(struct super_block *sb)
4059 {
4060 int ret = 1;
4061 int compat, incompat;
4062 struct ext4_sb_info *sbi = EXT4_SB(sb);
4063
4064 if (ext4_has_feature_metadata_csum(sb)) {
4065 /* journal checksum v3 */
4066 compat = 0;
4067 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4068 } else {
4069 /* journal checksum v1 */
4070 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4071 incompat = 0;
4072 }
4073
4074 jbd2_journal_clear_features(sbi->s_journal,
4075 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4076 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4077 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4078 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4079 ret = jbd2_journal_set_features(sbi->s_journal,
4080 compat, 0,
4081 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4082 incompat);
4083 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4084 ret = jbd2_journal_set_features(sbi->s_journal,
4085 compat, 0,
4086 incompat);
4087 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4088 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4089 } else {
4090 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4091 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4092 }
4093
4094 return ret;
4095 }
4096
4097 /*
4098 * Note: calculating the overhead so we can be compatible with
4099 * historical BSD practice is quite difficult in the face of
4100 * clusters/bigalloc. This is because multiple metadata blocks from
4101 * different block group can end up in the same allocation cluster.
4102 * Calculating the exact overhead in the face of clustered allocation
4103 * requires either O(all block bitmaps) in memory or O(number of block
4104 * groups**2) in time. We will still calculate the superblock for
4105 * older file systems --- and if we come across with a bigalloc file
4106 * system with zero in s_overhead_clusters the estimate will be close to
4107 * correct especially for very large cluster sizes --- but for newer
4108 * file systems, it's better to calculate this figure once at mkfs
4109 * time, and store it in the superblock. If the superblock value is
4110 * present (even for non-bigalloc file systems), we will use it.
4111 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4112 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4113 char *buf)
4114 {
4115 struct ext4_sb_info *sbi = EXT4_SB(sb);
4116 struct ext4_group_desc *gdp;
4117 ext4_fsblk_t first_block, last_block, b;
4118 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4119 int s, j, count = 0;
4120 int has_super = ext4_bg_has_super(sb, grp);
4121
4122 if (!ext4_has_feature_bigalloc(sb))
4123 return (has_super + ext4_bg_num_gdb(sb, grp) +
4124 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4125 sbi->s_itb_per_group + 2);
4126
4127 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4128 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4129 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4130 for (i = 0; i < ngroups; i++) {
4131 gdp = ext4_get_group_desc(sb, i, NULL);
4132 b = ext4_block_bitmap(sb, gdp);
4133 if (b >= first_block && b <= last_block) {
4134 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4135 count++;
4136 }
4137 b = ext4_inode_bitmap(sb, gdp);
4138 if (b >= first_block && b <= last_block) {
4139 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4140 count++;
4141 }
4142 b = ext4_inode_table(sb, gdp);
4143 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4144 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4145 int c = EXT4_B2C(sbi, b - first_block);
4146 ext4_set_bit(c, buf);
4147 count++;
4148 }
4149 if (i != grp)
4150 continue;
4151 s = 0;
4152 if (ext4_bg_has_super(sb, grp)) {
4153 ext4_set_bit(s++, buf);
4154 count++;
4155 }
4156 j = ext4_bg_num_gdb(sb, grp);
4157 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4158 ext4_error(sb, "Invalid number of block group "
4159 "descriptor blocks: %d", j);
4160 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4161 }
4162 count += j;
4163 for (; j > 0; j--)
4164 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4165 }
4166 if (!count)
4167 return 0;
4168 return EXT4_CLUSTERS_PER_GROUP(sb) -
4169 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4170 }
4171
4172 /*
4173 * Compute the overhead and stash it in sbi->s_overhead
4174 */
ext4_calculate_overhead(struct super_block * sb)4175 int ext4_calculate_overhead(struct super_block *sb)
4176 {
4177 struct ext4_sb_info *sbi = EXT4_SB(sb);
4178 struct ext4_super_block *es = sbi->s_es;
4179 struct inode *j_inode;
4180 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4181 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4182 ext4_fsblk_t overhead = 0;
4183 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4184
4185 if (!buf)
4186 return -ENOMEM;
4187
4188 /*
4189 * Compute the overhead (FS structures). This is constant
4190 * for a given filesystem unless the number of block groups
4191 * changes so we cache the previous value until it does.
4192 */
4193
4194 /*
4195 * All of the blocks before first_data_block are overhead
4196 */
4197 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4198
4199 /*
4200 * Add the overhead found in each block group
4201 */
4202 for (i = 0; i < ngroups; i++) {
4203 int blks;
4204
4205 blks = count_overhead(sb, i, buf);
4206 overhead += blks;
4207 if (blks)
4208 memset(buf, 0, PAGE_SIZE);
4209 cond_resched();
4210 }
4211
4212 /*
4213 * Add the internal journal blocks whether the journal has been
4214 * loaded or not
4215 */
4216 if (sbi->s_journal && !sbi->s_journal_bdev_file)
4217 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4218 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4219 /* j_inum for internal journal is non-zero */
4220 j_inode = ext4_get_journal_inode(sb, j_inum);
4221 if (!IS_ERR(j_inode)) {
4222 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4223 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4224 iput(j_inode);
4225 } else {
4226 ext4_msg(sb, KERN_ERR, "can't get journal size");
4227 }
4228 }
4229 sbi->s_overhead = overhead;
4230 smp_wmb();
4231 free_page((unsigned long) buf);
4232 return 0;
4233 }
4234
ext4_set_resv_clusters(struct super_block * sb)4235 static void ext4_set_resv_clusters(struct super_block *sb)
4236 {
4237 ext4_fsblk_t resv_clusters;
4238 struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240 /*
4241 * There's no need to reserve anything when we aren't using extents.
4242 * The space estimates are exact, there are no unwritten extents,
4243 * hole punching doesn't need new metadata... This is needed especially
4244 * to keep ext2/3 backward compatibility.
4245 */
4246 if (!ext4_has_feature_extents(sb))
4247 return;
4248 /*
4249 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4250 * This should cover the situations where we can not afford to run
4251 * out of space like for example punch hole, or converting
4252 * unwritten extents in delalloc path. In most cases such
4253 * allocation would require 1, or 2 blocks, higher numbers are
4254 * very rare.
4255 */
4256 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4257 sbi->s_cluster_bits);
4258
4259 do_div(resv_clusters, 50);
4260 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4261
4262 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4263 }
4264
ext4_quota_mode(struct super_block * sb)4265 static const char *ext4_quota_mode(struct super_block *sb)
4266 {
4267 #ifdef CONFIG_QUOTA
4268 if (!ext4_quota_capable(sb))
4269 return "none";
4270
4271 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4272 return "journalled";
4273 else
4274 return "writeback";
4275 #else
4276 return "disabled";
4277 #endif
4278 }
4279
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4280 static void ext4_setup_csum_trigger(struct super_block *sb,
4281 enum ext4_journal_trigger_type type,
4282 void (*trigger)(
4283 struct jbd2_buffer_trigger_type *type,
4284 struct buffer_head *bh,
4285 void *mapped_data,
4286 size_t size))
4287 {
4288 struct ext4_sb_info *sbi = EXT4_SB(sb);
4289
4290 sbi->s_journal_triggers[type].sb = sb;
4291 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4292 }
4293
ext4_free_sbi(struct ext4_sb_info * sbi)4294 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4295 {
4296 if (!sbi)
4297 return;
4298
4299 kfree(sbi->s_blockgroup_lock);
4300 fs_put_dax(sbi->s_daxdev, NULL);
4301 kfree(sbi);
4302 }
4303
ext4_alloc_sbi(struct super_block * sb)4304 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4305 {
4306 struct ext4_sb_info *sbi;
4307
4308 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4309 if (!sbi)
4310 return NULL;
4311
4312 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4313 NULL, NULL);
4314
4315 sbi->s_blockgroup_lock =
4316 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4317
4318 if (!sbi->s_blockgroup_lock)
4319 goto err_out;
4320
4321 sb->s_fs_info = sbi;
4322 sbi->s_sb = sb;
4323 return sbi;
4324 err_out:
4325 fs_put_dax(sbi->s_daxdev, NULL);
4326 kfree(sbi);
4327 return NULL;
4328 }
4329
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4330 static void ext4_set_def_opts(struct super_block *sb,
4331 struct ext4_super_block *es)
4332 {
4333 unsigned long def_mount_opts;
4334
4335 /* Set defaults before we parse the mount options */
4336 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4337 set_opt(sb, INIT_INODE_TABLE);
4338 if (def_mount_opts & EXT4_DEFM_DEBUG)
4339 set_opt(sb, DEBUG);
4340 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4341 set_opt(sb, GRPID);
4342 if (def_mount_opts & EXT4_DEFM_UID16)
4343 set_opt(sb, NO_UID32);
4344 /* xattr user namespace & acls are now defaulted on */
4345 set_opt(sb, XATTR_USER);
4346 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4347 set_opt(sb, POSIX_ACL);
4348 #endif
4349 if (ext4_has_feature_fast_commit(sb))
4350 set_opt2(sb, JOURNAL_FAST_COMMIT);
4351 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4352 if (ext4_has_feature_metadata_csum(sb))
4353 set_opt(sb, JOURNAL_CHECKSUM);
4354
4355 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4356 set_opt(sb, JOURNAL_DATA);
4357 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4358 set_opt(sb, ORDERED_DATA);
4359 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4360 set_opt(sb, WRITEBACK_DATA);
4361
4362 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4363 set_opt(sb, ERRORS_PANIC);
4364 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4365 set_opt(sb, ERRORS_CONT);
4366 else
4367 set_opt(sb, ERRORS_RO);
4368 /* block_validity enabled by default; disable with noblock_validity */
4369 set_opt(sb, BLOCK_VALIDITY);
4370 if (def_mount_opts & EXT4_DEFM_DISCARD)
4371 set_opt(sb, DISCARD);
4372
4373 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4374 set_opt(sb, BARRIER);
4375
4376 /*
4377 * enable delayed allocation by default
4378 * Use -o nodelalloc to turn it off
4379 */
4380 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4381 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4382 set_opt(sb, DELALLOC);
4383
4384 if (sb->s_blocksize <= PAGE_SIZE)
4385 set_opt(sb, DIOREAD_NOLOCK);
4386 }
4387
ext4_handle_clustersize(struct super_block * sb)4388 static int ext4_handle_clustersize(struct super_block *sb)
4389 {
4390 struct ext4_sb_info *sbi = EXT4_SB(sb);
4391 struct ext4_super_block *es = sbi->s_es;
4392 int clustersize;
4393
4394 /* Handle clustersize */
4395 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4396 if (ext4_has_feature_bigalloc(sb)) {
4397 if (clustersize < sb->s_blocksize) {
4398 ext4_msg(sb, KERN_ERR,
4399 "cluster size (%d) smaller than "
4400 "block size (%lu)", clustersize, sb->s_blocksize);
4401 return -EINVAL;
4402 }
4403 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4404 le32_to_cpu(es->s_log_block_size);
4405 } else {
4406 if (clustersize != sb->s_blocksize) {
4407 ext4_msg(sb, KERN_ERR,
4408 "fragment/cluster size (%d) != "
4409 "block size (%lu)", clustersize, sb->s_blocksize);
4410 return -EINVAL;
4411 }
4412 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4413 ext4_msg(sb, KERN_ERR,
4414 "#blocks per group too big: %lu",
4415 sbi->s_blocks_per_group);
4416 return -EINVAL;
4417 }
4418 sbi->s_cluster_bits = 0;
4419 }
4420 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4421 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4422 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4423 sbi->s_clusters_per_group);
4424 return -EINVAL;
4425 }
4426 if (sbi->s_blocks_per_group !=
4427 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4428 ext4_msg(sb, KERN_ERR,
4429 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4430 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4431 return -EINVAL;
4432 }
4433 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4434
4435 /* Do we have standard group size of clustersize * 8 blocks ? */
4436 if (sbi->s_blocks_per_group == clustersize << 3)
4437 set_opt2(sb, STD_GROUP_SIZE);
4438
4439 return 0;
4440 }
4441
4442 /*
4443 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4444 * With non-bigalloc filesystem awu will be based upon filesystem blocksize
4445 * & bdev awu units.
4446 * With bigalloc it will be based upon bigalloc cluster size & bdev awu units.
4447 * @sb: super block
4448 */
ext4_atomic_write_init(struct super_block * sb)4449 static void ext4_atomic_write_init(struct super_block *sb)
4450 {
4451 struct ext4_sb_info *sbi = EXT4_SB(sb);
4452 struct block_device *bdev = sb->s_bdev;
4453 unsigned int clustersize = EXT4_CLUSTER_SIZE(sb);
4454
4455 if (!bdev_can_atomic_write(bdev))
4456 return;
4457
4458 if (!ext4_has_feature_extents(sb))
4459 return;
4460
4461 sbi->s_awu_min = max(sb->s_blocksize,
4462 bdev_atomic_write_unit_min_bytes(bdev));
4463 sbi->s_awu_max = min(clustersize,
4464 bdev_atomic_write_unit_max_bytes(bdev));
4465 if (sbi->s_awu_min && sbi->s_awu_max &&
4466 sbi->s_awu_min <= sbi->s_awu_max) {
4467 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4468 sbi->s_awu_min, sbi->s_awu_max);
4469 } else {
4470 sbi->s_awu_min = 0;
4471 sbi->s_awu_max = 0;
4472 }
4473 }
4474
ext4_fast_commit_init(struct super_block * sb)4475 static void ext4_fast_commit_init(struct super_block *sb)
4476 {
4477 struct ext4_sb_info *sbi = EXT4_SB(sb);
4478
4479 /* Initialize fast commit stuff */
4480 atomic_set(&sbi->s_fc_subtid, 0);
4481 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4482 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4483 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4484 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4485 sbi->s_fc_bytes = 0;
4486 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4487 sbi->s_fc_ineligible_tid = 0;
4488 mutex_init(&sbi->s_fc_lock);
4489 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4490 sbi->s_fc_replay_state.fc_regions = NULL;
4491 sbi->s_fc_replay_state.fc_regions_size = 0;
4492 sbi->s_fc_replay_state.fc_regions_used = 0;
4493 sbi->s_fc_replay_state.fc_regions_valid = 0;
4494 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4495 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4496 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4497 }
4498
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4499 static int ext4_inode_info_init(struct super_block *sb,
4500 struct ext4_super_block *es)
4501 {
4502 struct ext4_sb_info *sbi = EXT4_SB(sb);
4503
4504 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4505 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4506 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4507 } else {
4508 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4509 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4510 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4511 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4512 sbi->s_first_ino);
4513 return -EINVAL;
4514 }
4515 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4516 (!is_power_of_2(sbi->s_inode_size)) ||
4517 (sbi->s_inode_size > sb->s_blocksize)) {
4518 ext4_msg(sb, KERN_ERR,
4519 "unsupported inode size: %d",
4520 sbi->s_inode_size);
4521 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4522 return -EINVAL;
4523 }
4524 /*
4525 * i_atime_extra is the last extra field available for
4526 * [acm]times in struct ext4_inode. Checking for that
4527 * field should suffice to ensure we have extra space
4528 * for all three.
4529 */
4530 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4531 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4532 sb->s_time_gran = 1;
4533 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4534 } else {
4535 sb->s_time_gran = NSEC_PER_SEC;
4536 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4537 }
4538 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4539 }
4540
4541 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4542 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4543 EXT4_GOOD_OLD_INODE_SIZE;
4544 if (ext4_has_feature_extra_isize(sb)) {
4545 unsigned v, max = (sbi->s_inode_size -
4546 EXT4_GOOD_OLD_INODE_SIZE);
4547
4548 v = le16_to_cpu(es->s_want_extra_isize);
4549 if (v > max) {
4550 ext4_msg(sb, KERN_ERR,
4551 "bad s_want_extra_isize: %d", v);
4552 return -EINVAL;
4553 }
4554 if (sbi->s_want_extra_isize < v)
4555 sbi->s_want_extra_isize = v;
4556
4557 v = le16_to_cpu(es->s_min_extra_isize);
4558 if (v > max) {
4559 ext4_msg(sb, KERN_ERR,
4560 "bad s_min_extra_isize: %d", v);
4561 return -EINVAL;
4562 }
4563 if (sbi->s_want_extra_isize < v)
4564 sbi->s_want_extra_isize = v;
4565 }
4566 }
4567
4568 return 0;
4569 }
4570
4571 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4572 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4573 {
4574 const struct ext4_sb_encodings *encoding_info;
4575 struct unicode_map *encoding;
4576 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4577
4578 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4579 return 0;
4580
4581 encoding_info = ext4_sb_read_encoding(es);
4582 if (!encoding_info) {
4583 ext4_msg(sb, KERN_ERR,
4584 "Encoding requested by superblock is unknown");
4585 return -EINVAL;
4586 }
4587
4588 encoding = utf8_load(encoding_info->version);
4589 if (IS_ERR(encoding)) {
4590 ext4_msg(sb, KERN_ERR,
4591 "can't mount with superblock charset: %s-%u.%u.%u "
4592 "not supported by the kernel. flags: 0x%x.",
4593 encoding_info->name,
4594 unicode_major(encoding_info->version),
4595 unicode_minor(encoding_info->version),
4596 unicode_rev(encoding_info->version),
4597 encoding_flags);
4598 return -EINVAL;
4599 }
4600 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4601 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4602 unicode_major(encoding_info->version),
4603 unicode_minor(encoding_info->version),
4604 unicode_rev(encoding_info->version),
4605 encoding_flags);
4606
4607 sb->s_encoding = encoding;
4608 sb->s_encoding_flags = encoding_flags;
4609
4610 return 0;
4611 }
4612 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4613 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4614 {
4615 return 0;
4616 }
4617 #endif
4618
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4619 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4620 {
4621 struct ext4_sb_info *sbi = EXT4_SB(sb);
4622
4623 /* Warn if metadata_csum and gdt_csum are both set. */
4624 if (ext4_has_feature_metadata_csum(sb) &&
4625 ext4_has_feature_gdt_csum(sb))
4626 ext4_warning(sb, "metadata_csum and uninit_bg are "
4627 "redundant flags; please run fsck.");
4628
4629 /* Check for a known checksum algorithm */
4630 if (!ext4_verify_csum_type(sb, es)) {
4631 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4632 "unknown checksum algorithm.");
4633 return -EINVAL;
4634 }
4635 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4636 ext4_orphan_file_block_trigger);
4637
4638 /* Check superblock checksum */
4639 if (!ext4_superblock_csum_verify(sb, es)) {
4640 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4641 "invalid superblock checksum. Run e2fsck?");
4642 return -EFSBADCRC;
4643 }
4644
4645 /* Precompute checksum seed for all metadata */
4646 if (ext4_has_feature_csum_seed(sb))
4647 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4648 else if (ext4_has_feature_metadata_csum(sb) ||
4649 ext4_has_feature_ea_inode(sb))
4650 sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid,
4651 sizeof(es->s_uuid));
4652 return 0;
4653 }
4654
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4655 static int ext4_check_feature_compatibility(struct super_block *sb,
4656 struct ext4_super_block *es,
4657 int silent)
4658 {
4659 struct ext4_sb_info *sbi = EXT4_SB(sb);
4660
4661 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4662 (ext4_has_compat_features(sb) ||
4663 ext4_has_ro_compat_features(sb) ||
4664 ext4_has_incompat_features(sb)))
4665 ext4_msg(sb, KERN_WARNING,
4666 "feature flags set on rev 0 fs, "
4667 "running e2fsck is recommended");
4668
4669 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4670 set_opt2(sb, HURD_COMPAT);
4671 if (ext4_has_feature_64bit(sb)) {
4672 ext4_msg(sb, KERN_ERR,
4673 "The Hurd can't support 64-bit file systems");
4674 return -EINVAL;
4675 }
4676
4677 /*
4678 * ea_inode feature uses l_i_version field which is not
4679 * available in HURD_COMPAT mode.
4680 */
4681 if (ext4_has_feature_ea_inode(sb)) {
4682 ext4_msg(sb, KERN_ERR,
4683 "ea_inode feature is not supported for Hurd");
4684 return -EINVAL;
4685 }
4686 }
4687
4688 if (IS_EXT2_SB(sb)) {
4689 if (ext2_feature_set_ok(sb))
4690 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4691 "using the ext4 subsystem");
4692 else {
4693 /*
4694 * If we're probing be silent, if this looks like
4695 * it's actually an ext[34] filesystem.
4696 */
4697 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4698 return -EINVAL;
4699 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4700 "to feature incompatibilities");
4701 return -EINVAL;
4702 }
4703 }
4704
4705 if (IS_EXT3_SB(sb)) {
4706 if (ext3_feature_set_ok(sb))
4707 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4708 "using the ext4 subsystem");
4709 else {
4710 /*
4711 * If we're probing be silent, if this looks like
4712 * it's actually an ext4 filesystem.
4713 */
4714 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4715 return -EINVAL;
4716 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4717 "to feature incompatibilities");
4718 return -EINVAL;
4719 }
4720 }
4721
4722 /*
4723 * Check feature flags regardless of the revision level, since we
4724 * previously didn't change the revision level when setting the flags,
4725 * so there is a chance incompat flags are set on a rev 0 filesystem.
4726 */
4727 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4728 return -EINVAL;
4729
4730 if (sbi->s_daxdev) {
4731 if (sb->s_blocksize == PAGE_SIZE)
4732 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4733 else
4734 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4735 }
4736
4737 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4738 if (ext4_has_feature_inline_data(sb)) {
4739 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4740 " that may contain inline data");
4741 return -EINVAL;
4742 }
4743 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4744 ext4_msg(sb, KERN_ERR,
4745 "DAX unsupported by block device.");
4746 return -EINVAL;
4747 }
4748 }
4749
4750 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4751 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4752 es->s_encryption_level);
4753 return -EINVAL;
4754 }
4755
4756 return 0;
4757 }
4758
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4759 static int ext4_check_geometry(struct super_block *sb,
4760 struct ext4_super_block *es)
4761 {
4762 struct ext4_sb_info *sbi = EXT4_SB(sb);
4763 __u64 blocks_count;
4764 int err;
4765
4766 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4767 ext4_msg(sb, KERN_ERR,
4768 "Number of reserved GDT blocks insanely large: %d",
4769 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4770 return -EINVAL;
4771 }
4772 /*
4773 * Test whether we have more sectors than will fit in sector_t,
4774 * and whether the max offset is addressable by the page cache.
4775 */
4776 err = generic_check_addressable(sb->s_blocksize_bits,
4777 ext4_blocks_count(es));
4778 if (err) {
4779 ext4_msg(sb, KERN_ERR, "filesystem"
4780 " too large to mount safely on this system");
4781 return err;
4782 }
4783
4784 /* check blocks count against device size */
4785 blocks_count = sb_bdev_nr_blocks(sb);
4786 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4787 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4788 "exceeds size of device (%llu blocks)",
4789 ext4_blocks_count(es), blocks_count);
4790 return -EINVAL;
4791 }
4792
4793 /*
4794 * It makes no sense for the first data block to be beyond the end
4795 * of the filesystem.
4796 */
4797 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4798 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4799 "block %u is beyond end of filesystem (%llu)",
4800 le32_to_cpu(es->s_first_data_block),
4801 ext4_blocks_count(es));
4802 return -EINVAL;
4803 }
4804 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4805 (sbi->s_cluster_ratio == 1)) {
4806 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4807 "block is 0 with a 1k block and cluster size");
4808 return -EINVAL;
4809 }
4810
4811 blocks_count = (ext4_blocks_count(es) -
4812 le32_to_cpu(es->s_first_data_block) +
4813 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4814 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4815 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4816 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4817 "(block count %llu, first data block %u, "
4818 "blocks per group %lu)", blocks_count,
4819 ext4_blocks_count(es),
4820 le32_to_cpu(es->s_first_data_block),
4821 EXT4_BLOCKS_PER_GROUP(sb));
4822 return -EINVAL;
4823 }
4824 sbi->s_groups_count = blocks_count;
4825 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4826 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4827 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4828 le32_to_cpu(es->s_inodes_count)) {
4829 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4830 le32_to_cpu(es->s_inodes_count),
4831 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4832 return -EINVAL;
4833 }
4834
4835 return 0;
4836 }
4837
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4838 static int ext4_group_desc_init(struct super_block *sb,
4839 struct ext4_super_block *es,
4840 ext4_fsblk_t logical_sb_block,
4841 ext4_group_t *first_not_zeroed)
4842 {
4843 struct ext4_sb_info *sbi = EXT4_SB(sb);
4844 unsigned int db_count;
4845 ext4_fsblk_t block;
4846 int i;
4847
4848 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4849 EXT4_DESC_PER_BLOCK(sb);
4850 if (ext4_has_feature_meta_bg(sb)) {
4851 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4852 ext4_msg(sb, KERN_WARNING,
4853 "first meta block group too large: %u "
4854 "(group descriptor block count %u)",
4855 le32_to_cpu(es->s_first_meta_bg), db_count);
4856 return -EINVAL;
4857 }
4858 }
4859 rcu_assign_pointer(sbi->s_group_desc,
4860 kvmalloc_array(db_count,
4861 sizeof(struct buffer_head *),
4862 GFP_KERNEL));
4863 if (sbi->s_group_desc == NULL) {
4864 ext4_msg(sb, KERN_ERR, "not enough memory");
4865 return -ENOMEM;
4866 }
4867
4868 bgl_lock_init(sbi->s_blockgroup_lock);
4869
4870 /* Pre-read the descriptors into the buffer cache */
4871 for (i = 0; i < db_count; i++) {
4872 block = descriptor_loc(sb, logical_sb_block, i);
4873 ext4_sb_breadahead_unmovable(sb, block);
4874 }
4875
4876 for (i = 0; i < db_count; i++) {
4877 struct buffer_head *bh;
4878
4879 block = descriptor_loc(sb, logical_sb_block, i);
4880 bh = ext4_sb_bread_unmovable(sb, block);
4881 if (IS_ERR(bh)) {
4882 ext4_msg(sb, KERN_ERR,
4883 "can't read group descriptor %d", i);
4884 sbi->s_gdb_count = i;
4885 return PTR_ERR(bh);
4886 }
4887 rcu_read_lock();
4888 rcu_dereference(sbi->s_group_desc)[i] = bh;
4889 rcu_read_unlock();
4890 }
4891 sbi->s_gdb_count = db_count;
4892 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4893 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4894 return -EFSCORRUPTED;
4895 }
4896
4897 return 0;
4898 }
4899
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4900 static int ext4_load_and_init_journal(struct super_block *sb,
4901 struct ext4_super_block *es,
4902 struct ext4_fs_context *ctx)
4903 {
4904 struct ext4_sb_info *sbi = EXT4_SB(sb);
4905 int err;
4906
4907 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4908 if (err)
4909 return err;
4910
4911 if (ext4_has_feature_64bit(sb) &&
4912 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4913 JBD2_FEATURE_INCOMPAT_64BIT)) {
4914 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4915 goto out;
4916 }
4917
4918 if (!set_journal_csum_feature_set(sb)) {
4919 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4920 "feature set");
4921 goto out;
4922 }
4923
4924 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4925 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4926 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4927 ext4_msg(sb, KERN_ERR,
4928 "Failed to set fast commit journal feature");
4929 goto out;
4930 }
4931
4932 /* We have now updated the journal if required, so we can
4933 * validate the data journaling mode. */
4934 switch (test_opt(sb, DATA_FLAGS)) {
4935 case 0:
4936 /* No mode set, assume a default based on the journal
4937 * capabilities: ORDERED_DATA if the journal can
4938 * cope, else JOURNAL_DATA
4939 */
4940 if (jbd2_journal_check_available_features
4941 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4942 set_opt(sb, ORDERED_DATA);
4943 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4944 } else {
4945 set_opt(sb, JOURNAL_DATA);
4946 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4947 }
4948 break;
4949
4950 case EXT4_MOUNT_ORDERED_DATA:
4951 case EXT4_MOUNT_WRITEBACK_DATA:
4952 if (!jbd2_journal_check_available_features
4953 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4954 ext4_msg(sb, KERN_ERR, "Journal does not support "
4955 "requested data journaling mode");
4956 goto out;
4957 }
4958 break;
4959 default:
4960 break;
4961 }
4962
4963 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4964 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4965 ext4_msg(sb, KERN_ERR, "can't mount with "
4966 "journal_async_commit in data=ordered mode");
4967 goto out;
4968 }
4969
4970 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4971
4972 sbi->s_journal->j_submit_inode_data_buffers =
4973 ext4_journal_submit_inode_data_buffers;
4974 sbi->s_journal->j_finish_inode_data_buffers =
4975 ext4_journal_finish_inode_data_buffers;
4976
4977 return 0;
4978
4979 out:
4980 ext4_journal_destroy(sbi, sbi->s_journal);
4981 return -EINVAL;
4982 }
4983
ext4_check_journal_data_mode(struct super_block * sb)4984 static int ext4_check_journal_data_mode(struct super_block *sb)
4985 {
4986 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4987 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4988 "data=journal disables delayed allocation, "
4989 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4990 /* can't mount with both data=journal and dioread_nolock. */
4991 clear_opt(sb, DIOREAD_NOLOCK);
4992 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4993 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4994 ext4_msg(sb, KERN_ERR, "can't mount with "
4995 "both data=journal and delalloc");
4996 return -EINVAL;
4997 }
4998 if (test_opt(sb, DAX_ALWAYS)) {
4999 ext4_msg(sb, KERN_ERR, "can't mount with "
5000 "both data=journal and dax");
5001 return -EINVAL;
5002 }
5003 if (ext4_has_feature_encrypt(sb)) {
5004 ext4_msg(sb, KERN_WARNING,
5005 "encrypted files will use data=ordered "
5006 "instead of data journaling mode");
5007 }
5008 if (test_opt(sb, DELALLOC))
5009 clear_opt(sb, DELALLOC);
5010 } else {
5011 sb->s_iflags |= SB_I_CGROUPWB;
5012 }
5013
5014 return 0;
5015 }
5016
ext4_has_journal_option(struct super_block * sb)5017 static const char *ext4_has_journal_option(struct super_block *sb)
5018 {
5019 struct ext4_sb_info *sbi = EXT4_SB(sb);
5020
5021 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5022 return "journal_async_commit";
5023 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5024 return "journal_checksum";
5025 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5026 return "commit=";
5027 if (EXT4_MOUNT_DATA_FLAGS &
5028 (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5029 return "data=";
5030 if (test_opt(sb, DATA_ERR_ABORT))
5031 return "data_err=abort";
5032 return NULL;
5033 }
5034
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5035 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5036 int silent)
5037 {
5038 struct ext4_sb_info *sbi = EXT4_SB(sb);
5039 struct ext4_super_block *es;
5040 ext4_fsblk_t logical_sb_block;
5041 unsigned long offset = 0;
5042 struct buffer_head *bh;
5043 int ret = -EINVAL;
5044 int blocksize;
5045
5046 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5047 if (!blocksize) {
5048 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5049 return -EINVAL;
5050 }
5051
5052 /*
5053 * The ext4 superblock will not be buffer aligned for other than 1kB
5054 * block sizes. We need to calculate the offset from buffer start.
5055 */
5056 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5057 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5058 offset = do_div(logical_sb_block, blocksize);
5059 } else {
5060 logical_sb_block = sbi->s_sb_block;
5061 }
5062
5063 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5064 if (IS_ERR(bh)) {
5065 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5066 return PTR_ERR(bh);
5067 }
5068 /*
5069 * Note: s_es must be initialized as soon as possible because
5070 * some ext4 macro-instructions depend on its value
5071 */
5072 es = (struct ext4_super_block *) (bh->b_data + offset);
5073 sbi->s_es = es;
5074 sb->s_magic = le16_to_cpu(es->s_magic);
5075 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5076 if (!silent)
5077 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5078 goto out;
5079 }
5080
5081 if (le32_to_cpu(es->s_log_block_size) >
5082 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5083 ext4_msg(sb, KERN_ERR,
5084 "Invalid log block size: %u",
5085 le32_to_cpu(es->s_log_block_size));
5086 goto out;
5087 }
5088 if (le32_to_cpu(es->s_log_cluster_size) >
5089 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5090 ext4_msg(sb, KERN_ERR,
5091 "Invalid log cluster size: %u",
5092 le32_to_cpu(es->s_log_cluster_size));
5093 goto out;
5094 }
5095
5096 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5097
5098 /*
5099 * If the default block size is not the same as the real block size,
5100 * we need to reload it.
5101 */
5102 if (sb->s_blocksize == blocksize) {
5103 *lsb = logical_sb_block;
5104 sbi->s_sbh = bh;
5105 return 0;
5106 }
5107
5108 /*
5109 * bh must be released before kill_bdev(), otherwise
5110 * it won't be freed and its page also. kill_bdev()
5111 * is called by sb_set_blocksize().
5112 */
5113 brelse(bh);
5114 /* Validate the filesystem blocksize */
5115 if (!sb_set_blocksize(sb, blocksize)) {
5116 ext4_msg(sb, KERN_ERR, "bad block size %d",
5117 blocksize);
5118 bh = NULL;
5119 goto out;
5120 }
5121
5122 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5123 offset = do_div(logical_sb_block, blocksize);
5124 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5125 if (IS_ERR(bh)) {
5126 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5127 ret = PTR_ERR(bh);
5128 bh = NULL;
5129 goto out;
5130 }
5131 es = (struct ext4_super_block *)(bh->b_data + offset);
5132 sbi->s_es = es;
5133 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5134 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5135 goto out;
5136 }
5137 *lsb = logical_sb_block;
5138 sbi->s_sbh = bh;
5139 return 0;
5140 out:
5141 brelse(bh);
5142 return ret;
5143 }
5144
ext4_hash_info_init(struct super_block * sb)5145 static int ext4_hash_info_init(struct super_block *sb)
5146 {
5147 struct ext4_sb_info *sbi = EXT4_SB(sb);
5148 struct ext4_super_block *es = sbi->s_es;
5149 unsigned int i;
5150
5151 sbi->s_def_hash_version = es->s_def_hash_version;
5152
5153 if (sbi->s_def_hash_version > DX_HASH_LAST) {
5154 ext4_msg(sb, KERN_ERR,
5155 "Invalid default hash set in the superblock");
5156 return -EINVAL;
5157 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5158 ext4_msg(sb, KERN_ERR,
5159 "SIPHASH is not a valid default hash value");
5160 return -EINVAL;
5161 }
5162
5163 for (i = 0; i < 4; i++)
5164 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5165
5166 if (ext4_has_feature_dir_index(sb)) {
5167 i = le32_to_cpu(es->s_flags);
5168 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5169 sbi->s_hash_unsigned = 3;
5170 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5171 #ifdef __CHAR_UNSIGNED__
5172 if (!sb_rdonly(sb))
5173 es->s_flags |=
5174 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5175 sbi->s_hash_unsigned = 3;
5176 #else
5177 if (!sb_rdonly(sb))
5178 es->s_flags |=
5179 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5180 #endif
5181 }
5182 }
5183 return 0;
5184 }
5185
ext4_block_group_meta_init(struct super_block * sb,int silent)5186 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5187 {
5188 struct ext4_sb_info *sbi = EXT4_SB(sb);
5189 struct ext4_super_block *es = sbi->s_es;
5190 int has_huge_files;
5191
5192 has_huge_files = ext4_has_feature_huge_file(sb);
5193 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5194 has_huge_files);
5195 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5196
5197 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5198 if (ext4_has_feature_64bit(sb)) {
5199 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5200 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5201 !is_power_of_2(sbi->s_desc_size)) {
5202 ext4_msg(sb, KERN_ERR,
5203 "unsupported descriptor size %lu",
5204 sbi->s_desc_size);
5205 return -EINVAL;
5206 }
5207 } else
5208 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5209
5210 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5211 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5212
5213 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5214 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5215 if (!silent)
5216 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5217 return -EINVAL;
5218 }
5219 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5220 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5221 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5222 sbi->s_inodes_per_group);
5223 return -EINVAL;
5224 }
5225 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5226 sbi->s_inodes_per_block;
5227 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5228 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5229 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5230 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5231
5232 return 0;
5233 }
5234
5235 /*
5236 * It's hard to get stripe aligned blocks if stripe is not aligned with
5237 * cluster, just disable stripe and alert user to simplify code and avoid
5238 * stripe aligned allocation which will rarely succeed.
5239 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5240 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5241 {
5242 struct ext4_sb_info *sbi = EXT4_SB(sb);
5243 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5244 stripe % sbi->s_cluster_ratio != 0);
5245 }
5246
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5247 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5248 {
5249 struct ext4_super_block *es = NULL;
5250 struct ext4_sb_info *sbi = EXT4_SB(sb);
5251 ext4_fsblk_t logical_sb_block;
5252 struct inode *root;
5253 int needs_recovery;
5254 int err;
5255 ext4_group_t first_not_zeroed;
5256 struct ext4_fs_context *ctx = fc->fs_private;
5257 int silent = fc->sb_flags & SB_SILENT;
5258
5259 /* Set defaults for the variables that will be set during parsing */
5260 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5261 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
5262
5263 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5264 sbi->s_sectors_written_start =
5265 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5266
5267 err = ext4_load_super(sb, &logical_sb_block, silent);
5268 if (err)
5269 goto out_fail;
5270
5271 es = sbi->s_es;
5272 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5273
5274 err = ext4_init_metadata_csum(sb, es);
5275 if (err)
5276 goto failed_mount;
5277
5278 ext4_set_def_opts(sb, es);
5279
5280 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5281 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5282 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5283 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5284 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5285 sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5286 sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5287
5288 /*
5289 * set default s_li_wait_mult for lazyinit, for the case there is
5290 * no mount option specified.
5291 */
5292 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5293
5294 err = ext4_inode_info_init(sb, es);
5295 if (err)
5296 goto failed_mount;
5297
5298 err = parse_apply_sb_mount_options(sb, ctx);
5299 if (err < 0)
5300 goto failed_mount;
5301
5302 sbi->s_def_mount_opt = sbi->s_mount_opt;
5303 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5304
5305 err = ext4_check_opt_consistency(fc, sb);
5306 if (err < 0)
5307 goto failed_mount;
5308
5309 ext4_apply_options(fc, sb);
5310
5311 err = ext4_encoding_init(sb, es);
5312 if (err)
5313 goto failed_mount;
5314
5315 err = ext4_check_journal_data_mode(sb);
5316 if (err)
5317 goto failed_mount;
5318
5319 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5320 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5321
5322 /* HSM events are allowed by default. */
5323 sb->s_iflags |= SB_I_ALLOW_HSM;
5324
5325 err = ext4_check_feature_compatibility(sb, es, silent);
5326 if (err)
5327 goto failed_mount;
5328
5329 err = ext4_block_group_meta_init(sb, silent);
5330 if (err)
5331 goto failed_mount;
5332
5333 err = ext4_hash_info_init(sb);
5334 if (err)
5335 goto failed_mount;
5336
5337 err = ext4_handle_clustersize(sb);
5338 if (err)
5339 goto failed_mount;
5340
5341 err = ext4_check_geometry(sb, es);
5342 if (err)
5343 goto failed_mount;
5344
5345 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5346 spin_lock_init(&sbi->s_error_lock);
5347 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5348
5349 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5350 if (err)
5351 goto failed_mount3;
5352
5353 err = ext4_es_register_shrinker(sbi);
5354 if (err)
5355 goto failed_mount3;
5356
5357 sbi->s_stripe = ext4_get_stripe_size(sbi);
5358 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5359 ext4_msg(sb, KERN_WARNING,
5360 "stripe (%lu) is not aligned with cluster size (%u), "
5361 "stripe is disabled",
5362 sbi->s_stripe, sbi->s_cluster_ratio);
5363 sbi->s_stripe = 0;
5364 }
5365 sbi->s_extent_max_zeroout_kb = 32;
5366
5367 /*
5368 * set up enough so that it can read an inode
5369 */
5370 sb->s_op = &ext4_sops;
5371 sb->s_export_op = &ext4_export_ops;
5372 sb->s_xattr = ext4_xattr_handlers;
5373 #ifdef CONFIG_FS_ENCRYPTION
5374 sb->s_cop = &ext4_cryptops;
5375 #endif
5376 #ifdef CONFIG_FS_VERITY
5377 sb->s_vop = &ext4_verityops;
5378 #endif
5379 #ifdef CONFIG_QUOTA
5380 sb->dq_op = &ext4_quota_operations;
5381 if (ext4_has_feature_quota(sb))
5382 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5383 else
5384 sb->s_qcop = &ext4_qctl_operations;
5385 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5386 #endif
5387 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5388 super_set_sysfs_name_bdev(sb);
5389
5390 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5391 mutex_init(&sbi->s_orphan_lock);
5392
5393 spin_lock_init(&sbi->s_bdev_wb_lock);
5394
5395 ext4_atomic_write_init(sb);
5396 ext4_fast_commit_init(sb);
5397
5398 sb->s_root = NULL;
5399
5400 needs_recovery = (es->s_last_orphan != 0 ||
5401 ext4_has_feature_orphan_present(sb) ||
5402 ext4_has_feature_journal_needs_recovery(sb));
5403
5404 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5405 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5406 if (err)
5407 goto failed_mount3a;
5408 }
5409
5410 err = -EINVAL;
5411 /*
5412 * The first inode we look at is the journal inode. Don't try
5413 * root first: it may be modified in the journal!
5414 */
5415 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5416 err = ext4_load_and_init_journal(sb, es, ctx);
5417 if (err)
5418 goto failed_mount3a;
5419 if (bdev_read_only(sb->s_bdev))
5420 needs_recovery = 0;
5421 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5422 ext4_has_feature_journal_needs_recovery(sb)) {
5423 ext4_msg(sb, KERN_ERR, "required journal recovery "
5424 "suppressed and not mounted read-only");
5425 goto failed_mount3a;
5426 } else {
5427 const char *journal_option;
5428
5429 /* Nojournal mode, all journal mount options are illegal */
5430 journal_option = ext4_has_journal_option(sb);
5431 if (journal_option != NULL) {
5432 ext4_msg(sb, KERN_ERR,
5433 "can't mount with %s, fs mounted w/o journal",
5434 journal_option);
5435 goto failed_mount3a;
5436 }
5437
5438 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5439 clear_opt(sb, JOURNAL_CHECKSUM);
5440 clear_opt(sb, DATA_FLAGS);
5441 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5442 sbi->s_journal = NULL;
5443 needs_recovery = 0;
5444 }
5445
5446 if (!test_opt(sb, NO_MBCACHE)) {
5447 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5448 if (!sbi->s_ea_block_cache) {
5449 ext4_msg(sb, KERN_ERR,
5450 "Failed to create ea_block_cache");
5451 err = -EINVAL;
5452 goto failed_mount_wq;
5453 }
5454
5455 if (ext4_has_feature_ea_inode(sb)) {
5456 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5457 if (!sbi->s_ea_inode_cache) {
5458 ext4_msg(sb, KERN_ERR,
5459 "Failed to create ea_inode_cache");
5460 err = -EINVAL;
5461 goto failed_mount_wq;
5462 }
5463 }
5464 }
5465
5466 /*
5467 * Get the # of file system overhead blocks from the
5468 * superblock if present.
5469 */
5470 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5471 /* ignore the precalculated value if it is ridiculous */
5472 if (sbi->s_overhead > ext4_blocks_count(es))
5473 sbi->s_overhead = 0;
5474 /*
5475 * If the bigalloc feature is not enabled recalculating the
5476 * overhead doesn't take long, so we might as well just redo
5477 * it to make sure we are using the correct value.
5478 */
5479 if (!ext4_has_feature_bigalloc(sb))
5480 sbi->s_overhead = 0;
5481 if (sbi->s_overhead == 0) {
5482 err = ext4_calculate_overhead(sb);
5483 if (err)
5484 goto failed_mount_wq;
5485 }
5486
5487 /*
5488 * The maximum number of concurrent works can be high and
5489 * concurrency isn't really necessary. Limit it to 1.
5490 */
5491 EXT4_SB(sb)->rsv_conversion_wq =
5492 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5493 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5494 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5495 err = -ENOMEM;
5496 goto failed_mount4;
5497 }
5498
5499 /*
5500 * The jbd2_journal_load will have done any necessary log recovery,
5501 * so we can safely mount the rest of the filesystem now.
5502 */
5503
5504 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5505 if (IS_ERR(root)) {
5506 ext4_msg(sb, KERN_ERR, "get root inode failed");
5507 err = PTR_ERR(root);
5508 root = NULL;
5509 goto failed_mount4;
5510 }
5511 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5512 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5513 iput(root);
5514 err = -EFSCORRUPTED;
5515 goto failed_mount4;
5516 }
5517
5518 generic_set_sb_d_ops(sb);
5519 sb->s_root = d_make_root(root);
5520 if (!sb->s_root) {
5521 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5522 err = -ENOMEM;
5523 goto failed_mount4;
5524 }
5525
5526 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5527 if (err == -EROFS) {
5528 sb->s_flags |= SB_RDONLY;
5529 } else if (err)
5530 goto failed_mount4a;
5531
5532 ext4_set_resv_clusters(sb);
5533
5534 if (test_opt(sb, BLOCK_VALIDITY)) {
5535 err = ext4_setup_system_zone(sb);
5536 if (err) {
5537 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5538 "zone (%d)", err);
5539 goto failed_mount4a;
5540 }
5541 }
5542 ext4_fc_replay_cleanup(sb);
5543
5544 ext4_ext_init(sb);
5545
5546 /*
5547 * Enable optimize_scan if number of groups is > threshold. This can be
5548 * turned off by passing "mb_optimize_scan=0". This can also be
5549 * turned on forcefully by passing "mb_optimize_scan=1".
5550 */
5551 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5552 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5553 set_opt2(sb, MB_OPTIMIZE_SCAN);
5554 else
5555 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5556 }
5557
5558 err = ext4_mb_init(sb);
5559 if (err) {
5560 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5561 err);
5562 goto failed_mount5;
5563 }
5564
5565 /*
5566 * We can only set up the journal commit callback once
5567 * mballoc is initialized
5568 */
5569 if (sbi->s_journal)
5570 sbi->s_journal->j_commit_callback =
5571 ext4_journal_commit_callback;
5572
5573 err = ext4_percpu_param_init(sbi);
5574 if (err)
5575 goto failed_mount6;
5576
5577 if (ext4_has_feature_flex_bg(sb))
5578 if (!ext4_fill_flex_info(sb)) {
5579 ext4_msg(sb, KERN_ERR,
5580 "unable to initialize "
5581 "flex_bg meta info!");
5582 err = -ENOMEM;
5583 goto failed_mount6;
5584 }
5585
5586 err = ext4_register_li_request(sb, first_not_zeroed);
5587 if (err)
5588 goto failed_mount6;
5589
5590 err = ext4_init_orphan_info(sb);
5591 if (err)
5592 goto failed_mount7;
5593 #ifdef CONFIG_QUOTA
5594 /* Enable quota usage during mount. */
5595 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5596 err = ext4_enable_quotas(sb);
5597 if (err)
5598 goto failed_mount8;
5599 }
5600 #endif /* CONFIG_QUOTA */
5601
5602 /*
5603 * Save the original bdev mapping's wb_err value which could be
5604 * used to detect the metadata async write error.
5605 */
5606 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5607 &sbi->s_bdev_wb_err);
5608 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5609 ext4_orphan_cleanup(sb, es);
5610 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5611 /*
5612 * Update the checksum after updating free space/inode counters and
5613 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5614 * checksum in the buffer cache until it is written out and
5615 * e2fsprogs programs trying to open a file system immediately
5616 * after it is mounted can fail.
5617 */
5618 ext4_superblock_csum_set(sb);
5619 if (needs_recovery) {
5620 ext4_msg(sb, KERN_INFO, "recovery complete");
5621 err = ext4_mark_recovery_complete(sb, es);
5622 if (err)
5623 goto failed_mount9;
5624 }
5625
5626 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5627 ext4_msg(sb, KERN_WARNING,
5628 "mounting with \"discard\" option, but the device does not support discard");
5629 clear_opt(sb, DISCARD);
5630 }
5631
5632 if (es->s_error_count)
5633 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5634
5635 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5636 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5637 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5638 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5639 atomic_set(&sbi->s_warning_count, 0);
5640 atomic_set(&sbi->s_msg_count, 0);
5641
5642 /* Register sysfs after all initializations are complete. */
5643 err = ext4_register_sysfs(sb);
5644 if (err)
5645 goto failed_mount9;
5646
5647 return 0;
5648
5649 failed_mount9:
5650 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5651 failed_mount8: __maybe_unused
5652 ext4_release_orphan_info(sb);
5653 failed_mount7:
5654 ext4_unregister_li_request(sb);
5655 failed_mount6:
5656 ext4_mb_release(sb);
5657 ext4_flex_groups_free(sbi);
5658 ext4_percpu_param_destroy(sbi);
5659 failed_mount5:
5660 ext4_ext_release(sb);
5661 ext4_release_system_zone(sb);
5662 failed_mount4a:
5663 dput(sb->s_root);
5664 sb->s_root = NULL;
5665 failed_mount4:
5666 ext4_msg(sb, KERN_ERR, "mount failed");
5667 if (EXT4_SB(sb)->rsv_conversion_wq)
5668 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5669 failed_mount_wq:
5670 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5671 sbi->s_ea_inode_cache = NULL;
5672
5673 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5674 sbi->s_ea_block_cache = NULL;
5675
5676 if (sbi->s_journal) {
5677 ext4_journal_destroy(sbi, sbi->s_journal);
5678 }
5679 failed_mount3a:
5680 ext4_es_unregister_shrinker(sbi);
5681 failed_mount3:
5682 /* flush s_sb_upd_work before sbi destroy */
5683 flush_work(&sbi->s_sb_upd_work);
5684 ext4_stop_mmpd(sbi);
5685 timer_delete_sync(&sbi->s_err_report);
5686 ext4_group_desc_free(sbi);
5687 failed_mount:
5688 #if IS_ENABLED(CONFIG_UNICODE)
5689 utf8_unload(sb->s_encoding);
5690 #endif
5691
5692 #ifdef CONFIG_QUOTA
5693 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5694 kfree(get_qf_name(sb, sbi, i));
5695 #endif
5696 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5697 brelse(sbi->s_sbh);
5698 if (sbi->s_journal_bdev_file) {
5699 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5700 bdev_fput(sbi->s_journal_bdev_file);
5701 }
5702 out_fail:
5703 invalidate_bdev(sb->s_bdev);
5704 sb->s_fs_info = NULL;
5705 return err;
5706 }
5707
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5708 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5709 {
5710 struct ext4_fs_context *ctx = fc->fs_private;
5711 struct ext4_sb_info *sbi;
5712 const char *descr;
5713 int ret;
5714
5715 sbi = ext4_alloc_sbi(sb);
5716 if (!sbi)
5717 return -ENOMEM;
5718
5719 fc->s_fs_info = sbi;
5720
5721 /* Cleanup superblock name */
5722 strreplace(sb->s_id, '/', '!');
5723
5724 sbi->s_sb_block = 1; /* Default super block location */
5725 if (ctx->spec & EXT4_SPEC_s_sb_block)
5726 sbi->s_sb_block = ctx->s_sb_block;
5727
5728 ret = __ext4_fill_super(fc, sb);
5729 if (ret < 0)
5730 goto free_sbi;
5731
5732 if (sbi->s_journal) {
5733 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5734 descr = " journalled data mode";
5735 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5736 descr = " ordered data mode";
5737 else
5738 descr = " writeback data mode";
5739 } else
5740 descr = "out journal";
5741
5742 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5743 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5744 "Quota mode: %s.", &sb->s_uuid,
5745 sb_rdonly(sb) ? "ro" : "r/w", descr,
5746 ext4_quota_mode(sb));
5747
5748 /* Update the s_overhead_clusters if necessary */
5749 ext4_update_overhead(sb, false);
5750 return 0;
5751
5752 free_sbi:
5753 ext4_free_sbi(sbi);
5754 fc->s_fs_info = NULL;
5755 return ret;
5756 }
5757
ext4_get_tree(struct fs_context * fc)5758 static int ext4_get_tree(struct fs_context *fc)
5759 {
5760 return get_tree_bdev(fc, ext4_fill_super);
5761 }
5762
5763 /*
5764 * Setup any per-fs journal parameters now. We'll do this both on
5765 * initial mount, once the journal has been initialised but before we've
5766 * done any recovery; and again on any subsequent remount.
5767 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5768 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5769 {
5770 struct ext4_sb_info *sbi = EXT4_SB(sb);
5771
5772 journal->j_commit_interval = sbi->s_commit_interval;
5773 journal->j_min_batch_time = sbi->s_min_batch_time;
5774 journal->j_max_batch_time = sbi->s_max_batch_time;
5775 ext4_fc_init(sb, journal);
5776
5777 write_lock(&journal->j_state_lock);
5778 if (test_opt(sb, BARRIER))
5779 journal->j_flags |= JBD2_BARRIER;
5780 else
5781 journal->j_flags &= ~JBD2_BARRIER;
5782 /*
5783 * Always enable journal cycle record option, letting the journal
5784 * records log transactions continuously between each mount.
5785 */
5786 journal->j_flags |= JBD2_CYCLE_RECORD;
5787 write_unlock(&journal->j_state_lock);
5788 }
5789
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5790 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5791 unsigned int journal_inum)
5792 {
5793 struct inode *journal_inode;
5794
5795 /*
5796 * Test for the existence of a valid inode on disk. Bad things
5797 * happen if we iget() an unused inode, as the subsequent iput()
5798 * will try to delete it.
5799 */
5800 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5801 if (IS_ERR(journal_inode)) {
5802 ext4_msg(sb, KERN_ERR, "no journal found");
5803 return ERR_CAST(journal_inode);
5804 }
5805 if (!journal_inode->i_nlink) {
5806 make_bad_inode(journal_inode);
5807 iput(journal_inode);
5808 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5809 return ERR_PTR(-EFSCORRUPTED);
5810 }
5811 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5812 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5813 iput(journal_inode);
5814 return ERR_PTR(-EFSCORRUPTED);
5815 }
5816
5817 ext4_debug("Journal inode found at %p: %lld bytes\n",
5818 journal_inode, journal_inode->i_size);
5819 return journal_inode;
5820 }
5821
ext4_journal_bmap(journal_t * journal,sector_t * block)5822 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5823 {
5824 struct ext4_map_blocks map;
5825 int ret;
5826
5827 if (journal->j_inode == NULL)
5828 return 0;
5829
5830 map.m_lblk = *block;
5831 map.m_len = 1;
5832 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5833 if (ret <= 0) {
5834 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5835 "journal bmap failed: block %llu ret %d\n",
5836 *block, ret);
5837 jbd2_journal_abort(journal, ret ? ret : -EIO);
5838 return ret;
5839 }
5840 *block = map.m_pblk;
5841 return 0;
5842 }
5843
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5844 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5845 unsigned int journal_inum)
5846 {
5847 struct inode *journal_inode;
5848 journal_t *journal;
5849
5850 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5851 if (IS_ERR(journal_inode))
5852 return ERR_CAST(journal_inode);
5853
5854 journal = jbd2_journal_init_inode(journal_inode);
5855 if (IS_ERR(journal)) {
5856 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5857 iput(journal_inode);
5858 return ERR_CAST(journal);
5859 }
5860 journal->j_private = sb;
5861 journal->j_bmap = ext4_journal_bmap;
5862 ext4_init_journal_params(sb, journal);
5863 return journal;
5864 }
5865
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5866 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5867 dev_t j_dev, ext4_fsblk_t *j_start,
5868 ext4_fsblk_t *j_len)
5869 {
5870 struct buffer_head *bh;
5871 struct block_device *bdev;
5872 struct file *bdev_file;
5873 int hblock, blocksize;
5874 ext4_fsblk_t sb_block;
5875 unsigned long offset;
5876 struct ext4_super_block *es;
5877 int errno;
5878
5879 bdev_file = bdev_file_open_by_dev(j_dev,
5880 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5881 sb, &fs_holder_ops);
5882 if (IS_ERR(bdev_file)) {
5883 ext4_msg(sb, KERN_ERR,
5884 "failed to open journal device unknown-block(%u,%u) %ld",
5885 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5886 return bdev_file;
5887 }
5888
5889 bdev = file_bdev(bdev_file);
5890 blocksize = sb->s_blocksize;
5891 hblock = bdev_logical_block_size(bdev);
5892 if (blocksize < hblock) {
5893 ext4_msg(sb, KERN_ERR,
5894 "blocksize too small for journal device");
5895 errno = -EINVAL;
5896 goto out_bdev;
5897 }
5898
5899 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5900 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5901 set_blocksize(bdev_file, blocksize);
5902 bh = __bread(bdev, sb_block, blocksize);
5903 if (!bh) {
5904 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5905 "external journal");
5906 errno = -EINVAL;
5907 goto out_bdev;
5908 }
5909
5910 es = (struct ext4_super_block *) (bh->b_data + offset);
5911 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5912 !(le32_to_cpu(es->s_feature_incompat) &
5913 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5914 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5915 errno = -EFSCORRUPTED;
5916 goto out_bh;
5917 }
5918
5919 if ((le32_to_cpu(es->s_feature_ro_compat) &
5920 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5921 es->s_checksum != ext4_superblock_csum(es)) {
5922 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5923 errno = -EFSCORRUPTED;
5924 goto out_bh;
5925 }
5926
5927 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5928 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5929 errno = -EFSCORRUPTED;
5930 goto out_bh;
5931 }
5932
5933 *j_start = sb_block + 1;
5934 *j_len = ext4_blocks_count(es);
5935 brelse(bh);
5936 return bdev_file;
5937
5938 out_bh:
5939 brelse(bh);
5940 out_bdev:
5941 bdev_fput(bdev_file);
5942 return ERR_PTR(errno);
5943 }
5944
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5945 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5946 dev_t j_dev)
5947 {
5948 journal_t *journal;
5949 ext4_fsblk_t j_start;
5950 ext4_fsblk_t j_len;
5951 struct file *bdev_file;
5952 int errno = 0;
5953
5954 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5955 if (IS_ERR(bdev_file))
5956 return ERR_CAST(bdev_file);
5957
5958 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5959 j_len, sb->s_blocksize);
5960 if (IS_ERR(journal)) {
5961 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5962 errno = PTR_ERR(journal);
5963 goto out_bdev;
5964 }
5965 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5966 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5967 "user (unsupported) - %d",
5968 be32_to_cpu(journal->j_superblock->s_nr_users));
5969 errno = -EINVAL;
5970 goto out_journal;
5971 }
5972 journal->j_private = sb;
5973 EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5974 ext4_init_journal_params(sb, journal);
5975 return journal;
5976
5977 out_journal:
5978 ext4_journal_destroy(EXT4_SB(sb), journal);
5979 out_bdev:
5980 bdev_fput(bdev_file);
5981 return ERR_PTR(errno);
5982 }
5983
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5984 static int ext4_load_journal(struct super_block *sb,
5985 struct ext4_super_block *es,
5986 unsigned long journal_devnum)
5987 {
5988 journal_t *journal;
5989 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5990 dev_t journal_dev;
5991 int err = 0;
5992 int really_read_only;
5993 int journal_dev_ro;
5994
5995 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5996 return -EFSCORRUPTED;
5997
5998 if (journal_devnum &&
5999 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6000 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6001 "numbers have changed");
6002 journal_dev = new_decode_dev(journal_devnum);
6003 } else
6004 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6005
6006 if (journal_inum && journal_dev) {
6007 ext4_msg(sb, KERN_ERR,
6008 "filesystem has both journal inode and journal device!");
6009 return -EINVAL;
6010 }
6011
6012 if (journal_inum) {
6013 journal = ext4_open_inode_journal(sb, journal_inum);
6014 if (IS_ERR(journal))
6015 return PTR_ERR(journal);
6016 } else {
6017 journal = ext4_open_dev_journal(sb, journal_dev);
6018 if (IS_ERR(journal))
6019 return PTR_ERR(journal);
6020 }
6021
6022 journal_dev_ro = bdev_read_only(journal->j_dev);
6023 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6024
6025 if (journal_dev_ro && !sb_rdonly(sb)) {
6026 ext4_msg(sb, KERN_ERR,
6027 "journal device read-only, try mounting with '-o ro'");
6028 err = -EROFS;
6029 goto err_out;
6030 }
6031
6032 /*
6033 * Are we loading a blank journal or performing recovery after a
6034 * crash? For recovery, we need to check in advance whether we
6035 * can get read-write access to the device.
6036 */
6037 if (ext4_has_feature_journal_needs_recovery(sb)) {
6038 if (sb_rdonly(sb)) {
6039 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6040 "required on readonly filesystem");
6041 if (really_read_only) {
6042 ext4_msg(sb, KERN_ERR, "write access "
6043 "unavailable, cannot proceed "
6044 "(try mounting with noload)");
6045 err = -EROFS;
6046 goto err_out;
6047 }
6048 ext4_msg(sb, KERN_INFO, "write access will "
6049 "be enabled during recovery");
6050 }
6051 }
6052
6053 if (!(journal->j_flags & JBD2_BARRIER))
6054 ext4_msg(sb, KERN_INFO, "barriers disabled");
6055
6056 if (!ext4_has_feature_journal_needs_recovery(sb))
6057 err = jbd2_journal_wipe(journal, !really_read_only);
6058 if (!err) {
6059 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6060 __le16 orig_state;
6061 bool changed = false;
6062
6063 if (save)
6064 memcpy(save, ((char *) es) +
6065 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6066 err = jbd2_journal_load(journal);
6067 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6068 save, EXT4_S_ERR_LEN)) {
6069 memcpy(((char *) es) + EXT4_S_ERR_START,
6070 save, EXT4_S_ERR_LEN);
6071 changed = true;
6072 }
6073 kfree(save);
6074 orig_state = es->s_state;
6075 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6076 EXT4_ERROR_FS);
6077 if (orig_state != es->s_state)
6078 changed = true;
6079 /* Write out restored error information to the superblock */
6080 if (changed && !really_read_only) {
6081 int err2;
6082 err2 = ext4_commit_super(sb);
6083 err = err ? : err2;
6084 }
6085 }
6086
6087 if (err) {
6088 ext4_msg(sb, KERN_ERR, "error loading journal");
6089 goto err_out;
6090 }
6091
6092 EXT4_SB(sb)->s_journal = journal;
6093 err = ext4_clear_journal_err(sb, es);
6094 if (err) {
6095 ext4_journal_destroy(EXT4_SB(sb), journal);
6096 return err;
6097 }
6098
6099 if (!really_read_only && journal_devnum &&
6100 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6101 es->s_journal_dev = cpu_to_le32(journal_devnum);
6102 ext4_commit_super(sb);
6103 }
6104 if (!really_read_only && journal_inum &&
6105 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6106 es->s_journal_inum = cpu_to_le32(journal_inum);
6107 ext4_commit_super(sb);
6108 }
6109
6110 return 0;
6111
6112 err_out:
6113 ext4_journal_destroy(EXT4_SB(sb), journal);
6114 return err;
6115 }
6116
6117 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6118 static void ext4_update_super(struct super_block *sb)
6119 {
6120 struct ext4_sb_info *sbi = EXT4_SB(sb);
6121 struct ext4_super_block *es = sbi->s_es;
6122 struct buffer_head *sbh = sbi->s_sbh;
6123
6124 lock_buffer(sbh);
6125 /*
6126 * If the file system is mounted read-only, don't update the
6127 * superblock write time. This avoids updating the superblock
6128 * write time when we are mounting the root file system
6129 * read/only but we need to replay the journal; at that point,
6130 * for people who are east of GMT and who make their clock
6131 * tick in localtime for Windows bug-for-bug compatibility,
6132 * the clock is set in the future, and this will cause e2fsck
6133 * to complain and force a full file system check.
6134 */
6135 if (!sb_rdonly(sb))
6136 ext4_update_tstamp(es, s_wtime);
6137 es->s_kbytes_written =
6138 cpu_to_le64(sbi->s_kbytes_written +
6139 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6140 sbi->s_sectors_written_start) >> 1));
6141 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6142 ext4_free_blocks_count_set(es,
6143 EXT4_C2B(sbi, percpu_counter_sum_positive(
6144 &sbi->s_freeclusters_counter)));
6145 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6146 es->s_free_inodes_count =
6147 cpu_to_le32(percpu_counter_sum_positive(
6148 &sbi->s_freeinodes_counter));
6149 /* Copy error information to the on-disk superblock */
6150 spin_lock(&sbi->s_error_lock);
6151 if (sbi->s_add_error_count > 0) {
6152 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6153 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6154 __ext4_update_tstamp(&es->s_first_error_time,
6155 &es->s_first_error_time_hi,
6156 sbi->s_first_error_time);
6157 strtomem_pad(es->s_first_error_func,
6158 sbi->s_first_error_func, 0);
6159 es->s_first_error_line =
6160 cpu_to_le32(sbi->s_first_error_line);
6161 es->s_first_error_ino =
6162 cpu_to_le32(sbi->s_first_error_ino);
6163 es->s_first_error_block =
6164 cpu_to_le64(sbi->s_first_error_block);
6165 es->s_first_error_errcode =
6166 ext4_errno_to_code(sbi->s_first_error_code);
6167 }
6168 __ext4_update_tstamp(&es->s_last_error_time,
6169 &es->s_last_error_time_hi,
6170 sbi->s_last_error_time);
6171 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6172 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6173 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6174 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6175 es->s_last_error_errcode =
6176 ext4_errno_to_code(sbi->s_last_error_code);
6177 /*
6178 * Start the daily error reporting function if it hasn't been
6179 * started already
6180 */
6181 if (!es->s_error_count)
6182 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6183 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6184 sbi->s_add_error_count = 0;
6185 }
6186 spin_unlock(&sbi->s_error_lock);
6187
6188 ext4_superblock_csum_set(sb);
6189 unlock_buffer(sbh);
6190 }
6191
ext4_commit_super(struct super_block * sb)6192 static int ext4_commit_super(struct super_block *sb)
6193 {
6194 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6195
6196 if (!sbh)
6197 return -EINVAL;
6198
6199 ext4_update_super(sb);
6200
6201 lock_buffer(sbh);
6202 /* Buffer got discarded which means block device got invalidated */
6203 if (!buffer_mapped(sbh)) {
6204 unlock_buffer(sbh);
6205 return -EIO;
6206 }
6207
6208 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6209 /*
6210 * Oh, dear. A previous attempt to write the
6211 * superblock failed. This could happen because the
6212 * USB device was yanked out. Or it could happen to
6213 * be a transient write error and maybe the block will
6214 * be remapped. Nothing we can do but to retry the
6215 * write and hope for the best.
6216 */
6217 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6218 "superblock detected");
6219 clear_buffer_write_io_error(sbh);
6220 set_buffer_uptodate(sbh);
6221 }
6222 get_bh(sbh);
6223 /* Clear potential dirty bit if it was journalled update */
6224 clear_buffer_dirty(sbh);
6225 sbh->b_end_io = end_buffer_write_sync;
6226 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6227 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6228 wait_on_buffer(sbh);
6229 if (buffer_write_io_error(sbh)) {
6230 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6231 "superblock");
6232 clear_buffer_write_io_error(sbh);
6233 set_buffer_uptodate(sbh);
6234 return -EIO;
6235 }
6236 return 0;
6237 }
6238
6239 /*
6240 * Have we just finished recovery? If so, and if we are mounting (or
6241 * remounting) the filesystem readonly, then we will end up with a
6242 * consistent fs on disk. Record that fact.
6243 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6244 static int ext4_mark_recovery_complete(struct super_block *sb,
6245 struct ext4_super_block *es)
6246 {
6247 int err;
6248 journal_t *journal = EXT4_SB(sb)->s_journal;
6249
6250 if (!ext4_has_feature_journal(sb)) {
6251 if (journal != NULL) {
6252 ext4_error(sb, "Journal got removed while the fs was "
6253 "mounted!");
6254 return -EFSCORRUPTED;
6255 }
6256 return 0;
6257 }
6258 jbd2_journal_lock_updates(journal);
6259 err = jbd2_journal_flush(journal, 0);
6260 if (err < 0)
6261 goto out;
6262
6263 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6264 ext4_has_feature_orphan_present(sb))) {
6265 if (!ext4_orphan_file_empty(sb)) {
6266 ext4_error(sb, "Orphan file not empty on read-only fs.");
6267 err = -EFSCORRUPTED;
6268 goto out;
6269 }
6270 ext4_clear_feature_journal_needs_recovery(sb);
6271 ext4_clear_feature_orphan_present(sb);
6272 ext4_commit_super(sb);
6273 }
6274 out:
6275 jbd2_journal_unlock_updates(journal);
6276 return err;
6277 }
6278
6279 /*
6280 * If we are mounting (or read-write remounting) a filesystem whose journal
6281 * has recorded an error from a previous lifetime, move that error to the
6282 * main filesystem now.
6283 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6284 static int ext4_clear_journal_err(struct super_block *sb,
6285 struct ext4_super_block *es)
6286 {
6287 journal_t *journal;
6288 int j_errno;
6289 const char *errstr;
6290
6291 if (!ext4_has_feature_journal(sb)) {
6292 ext4_error(sb, "Journal got removed while the fs was mounted!");
6293 return -EFSCORRUPTED;
6294 }
6295
6296 journal = EXT4_SB(sb)->s_journal;
6297
6298 /*
6299 * Now check for any error status which may have been recorded in the
6300 * journal by a prior ext4_error() or ext4_abort()
6301 */
6302
6303 j_errno = jbd2_journal_errno(journal);
6304 if (j_errno) {
6305 char nbuf[16];
6306
6307 errstr = ext4_decode_error(sb, j_errno, nbuf);
6308 ext4_warning(sb, "Filesystem error recorded "
6309 "from previous mount: %s", errstr);
6310
6311 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6312 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6313 j_errno = ext4_commit_super(sb);
6314 if (j_errno)
6315 return j_errno;
6316 ext4_warning(sb, "Marked fs in need of filesystem check.");
6317
6318 jbd2_journal_clear_err(journal);
6319 jbd2_journal_update_sb_errno(journal);
6320 }
6321 return 0;
6322 }
6323
6324 /*
6325 * Force the running and committing transactions to commit,
6326 * and wait on the commit.
6327 */
ext4_force_commit(struct super_block * sb)6328 int ext4_force_commit(struct super_block *sb)
6329 {
6330 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6331 }
6332
ext4_sync_fs(struct super_block * sb,int wait)6333 static int ext4_sync_fs(struct super_block *sb, int wait)
6334 {
6335 int ret = 0;
6336 tid_t target;
6337 bool needs_barrier = false;
6338 struct ext4_sb_info *sbi = EXT4_SB(sb);
6339
6340 ret = ext4_emergency_state(sb);
6341 if (unlikely(ret))
6342 return ret;
6343
6344 trace_ext4_sync_fs(sb, wait);
6345 flush_workqueue(sbi->rsv_conversion_wq);
6346 /*
6347 * Writeback quota in non-journalled quota case - journalled quota has
6348 * no dirty dquots
6349 */
6350 dquot_writeback_dquots(sb, -1);
6351 /*
6352 * Data writeback is possible w/o journal transaction, so barrier must
6353 * being sent at the end of the function. But we can skip it if
6354 * transaction_commit will do it for us.
6355 */
6356 if (sbi->s_journal) {
6357 target = jbd2_get_latest_transaction(sbi->s_journal);
6358 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6359 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6360 needs_barrier = true;
6361
6362 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6363 if (wait)
6364 ret = jbd2_log_wait_commit(sbi->s_journal,
6365 target);
6366 }
6367 } else if (wait && test_opt(sb, BARRIER))
6368 needs_barrier = true;
6369 if (needs_barrier) {
6370 int err;
6371 err = blkdev_issue_flush(sb->s_bdev);
6372 if (!ret)
6373 ret = err;
6374 }
6375
6376 return ret;
6377 }
6378
6379 /*
6380 * LVM calls this function before a (read-only) snapshot is created. This
6381 * gives us a chance to flush the journal completely and mark the fs clean.
6382 *
6383 * Note that only this function cannot bring a filesystem to be in a clean
6384 * state independently. It relies on upper layer to stop all data & metadata
6385 * modifications.
6386 */
ext4_freeze(struct super_block * sb)6387 static int ext4_freeze(struct super_block *sb)
6388 {
6389 int error = 0;
6390 journal_t *journal = EXT4_SB(sb)->s_journal;
6391
6392 if (journal) {
6393 /* Now we set up the journal barrier. */
6394 jbd2_journal_lock_updates(journal);
6395
6396 /*
6397 * Don't clear the needs_recovery flag if we failed to
6398 * flush the journal.
6399 */
6400 error = jbd2_journal_flush(journal, 0);
6401 if (error < 0)
6402 goto out;
6403
6404 /* Journal blocked and flushed, clear needs_recovery flag. */
6405 ext4_clear_feature_journal_needs_recovery(sb);
6406 if (ext4_orphan_file_empty(sb))
6407 ext4_clear_feature_orphan_present(sb);
6408 }
6409
6410 error = ext4_commit_super(sb);
6411 out:
6412 if (journal)
6413 /* we rely on upper layer to stop further updates */
6414 jbd2_journal_unlock_updates(journal);
6415 return error;
6416 }
6417
6418 /*
6419 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6420 * flag here, even though the filesystem is not technically dirty yet.
6421 */
ext4_unfreeze(struct super_block * sb)6422 static int ext4_unfreeze(struct super_block *sb)
6423 {
6424 if (ext4_emergency_state(sb))
6425 return 0;
6426
6427 if (EXT4_SB(sb)->s_journal) {
6428 /* Reset the needs_recovery flag before the fs is unlocked. */
6429 ext4_set_feature_journal_needs_recovery(sb);
6430 if (ext4_has_feature_orphan_file(sb))
6431 ext4_set_feature_orphan_present(sb);
6432 }
6433
6434 ext4_commit_super(sb);
6435 return 0;
6436 }
6437
6438 /*
6439 * Structure to save mount options for ext4_remount's benefit
6440 */
6441 struct ext4_mount_options {
6442 unsigned long s_mount_opt;
6443 unsigned long s_mount_opt2;
6444 kuid_t s_resuid;
6445 kgid_t s_resgid;
6446 unsigned long s_commit_interval;
6447 u32 s_min_batch_time, s_max_batch_time;
6448 #ifdef CONFIG_QUOTA
6449 int s_jquota_fmt;
6450 char *s_qf_names[EXT4_MAXQUOTAS];
6451 #endif
6452 };
6453
__ext4_remount(struct fs_context * fc,struct super_block * sb)6454 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6455 {
6456 struct ext4_fs_context *ctx = fc->fs_private;
6457 struct ext4_super_block *es;
6458 struct ext4_sb_info *sbi = EXT4_SB(sb);
6459 unsigned long old_sb_flags;
6460 struct ext4_mount_options old_opts;
6461 ext4_group_t g;
6462 int err = 0;
6463 int alloc_ctx;
6464 #ifdef CONFIG_QUOTA
6465 int enable_quota = 0;
6466 int i, j;
6467 char *to_free[EXT4_MAXQUOTAS];
6468 #endif
6469
6470
6471 /* Store the original options */
6472 old_sb_flags = sb->s_flags;
6473 old_opts.s_mount_opt = sbi->s_mount_opt;
6474 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6475 old_opts.s_resuid = sbi->s_resuid;
6476 old_opts.s_resgid = sbi->s_resgid;
6477 old_opts.s_commit_interval = sbi->s_commit_interval;
6478 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6479 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6480 #ifdef CONFIG_QUOTA
6481 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6482 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6483 if (sbi->s_qf_names[i]) {
6484 char *qf_name = get_qf_name(sb, sbi, i);
6485
6486 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6487 if (!old_opts.s_qf_names[i]) {
6488 for (j = 0; j < i; j++)
6489 kfree(old_opts.s_qf_names[j]);
6490 return -ENOMEM;
6491 }
6492 } else
6493 old_opts.s_qf_names[i] = NULL;
6494 #endif
6495 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6496 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6497 ctx->journal_ioprio =
6498 sbi->s_journal->j_task->io_context->ioprio;
6499 else
6500 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
6501
6502 }
6503
6504 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6505 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6506 ext4_msg(sb, KERN_WARNING,
6507 "stripe (%lu) is not aligned with cluster size (%u), "
6508 "stripe is disabled",
6509 ctx->s_stripe, sbi->s_cluster_ratio);
6510 ctx->s_stripe = 0;
6511 }
6512
6513 /*
6514 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6515 * two calls to ext4_should_dioread_nolock() to return inconsistent
6516 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6517 * here s_writepages_rwsem to avoid race between writepages ops and
6518 * remount.
6519 */
6520 alloc_ctx = ext4_writepages_down_write(sb);
6521 ext4_apply_options(fc, sb);
6522 ext4_writepages_up_write(sb, alloc_ctx);
6523
6524 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6525 test_opt(sb, JOURNAL_CHECKSUM)) {
6526 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6527 "during remount not supported; ignoring");
6528 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6529 }
6530
6531 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6532 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6533 ext4_msg(sb, KERN_ERR, "can't mount with "
6534 "both data=journal and delalloc");
6535 err = -EINVAL;
6536 goto restore_opts;
6537 }
6538 if (test_opt(sb, DIOREAD_NOLOCK)) {
6539 ext4_msg(sb, KERN_ERR, "can't mount with "
6540 "both data=journal and dioread_nolock");
6541 err = -EINVAL;
6542 goto restore_opts;
6543 }
6544 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6545 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6546 ext4_msg(sb, KERN_ERR, "can't mount with "
6547 "journal_async_commit in data=ordered mode");
6548 err = -EINVAL;
6549 goto restore_opts;
6550 }
6551 }
6552
6553 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6554 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6555 err = -EINVAL;
6556 goto restore_opts;
6557 }
6558
6559 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6560 !test_opt(sb, DELALLOC)) {
6561 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6562 err = -EINVAL;
6563 goto restore_opts;
6564 }
6565
6566 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6567 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6568
6569 es = sbi->s_es;
6570
6571 if (sbi->s_journal) {
6572 ext4_init_journal_params(sb, sbi->s_journal);
6573 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6574 }
6575
6576 /* Flush outstanding errors before changing fs state */
6577 flush_work(&sbi->s_sb_upd_work);
6578
6579 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6580 if (ext4_emergency_state(sb)) {
6581 err = -EROFS;
6582 goto restore_opts;
6583 }
6584
6585 if (fc->sb_flags & SB_RDONLY) {
6586 err = sync_filesystem(sb);
6587 if (err < 0)
6588 goto restore_opts;
6589 err = dquot_suspend(sb, -1);
6590 if (err < 0)
6591 goto restore_opts;
6592
6593 /*
6594 * First of all, the unconditional stuff we have to do
6595 * to disable replay of the journal when we next remount
6596 */
6597 sb->s_flags |= SB_RDONLY;
6598
6599 /*
6600 * OK, test if we are remounting a valid rw partition
6601 * readonly, and if so set the rdonly flag and then
6602 * mark the partition as valid again.
6603 */
6604 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6605 (sbi->s_mount_state & EXT4_VALID_FS))
6606 es->s_state = cpu_to_le16(sbi->s_mount_state);
6607
6608 if (sbi->s_journal) {
6609 /*
6610 * We let remount-ro finish even if marking fs
6611 * as clean failed...
6612 */
6613 ext4_mark_recovery_complete(sb, es);
6614 }
6615 } else {
6616 /* Make sure we can mount this feature set readwrite */
6617 if (ext4_has_feature_readonly(sb) ||
6618 !ext4_feature_set_ok(sb, 0)) {
6619 err = -EROFS;
6620 goto restore_opts;
6621 }
6622 /*
6623 * Make sure the group descriptor checksums
6624 * are sane. If they aren't, refuse to remount r/w.
6625 */
6626 for (g = 0; g < sbi->s_groups_count; g++) {
6627 struct ext4_group_desc *gdp =
6628 ext4_get_group_desc(sb, g, NULL);
6629
6630 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6631 ext4_msg(sb, KERN_ERR,
6632 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6633 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6634 le16_to_cpu(gdp->bg_checksum));
6635 err = -EFSBADCRC;
6636 goto restore_opts;
6637 }
6638 }
6639
6640 /*
6641 * If we have an unprocessed orphan list hanging
6642 * around from a previously readonly bdev mount,
6643 * require a full umount/remount for now.
6644 */
6645 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6646 ext4_msg(sb, KERN_WARNING, "Couldn't "
6647 "remount RDWR because of unprocessed "
6648 "orphan inode list. Please "
6649 "umount/remount instead");
6650 err = -EINVAL;
6651 goto restore_opts;
6652 }
6653
6654 /*
6655 * Mounting a RDONLY partition read-write, so reread
6656 * and store the current valid flag. (It may have
6657 * been changed by e2fsck since we originally mounted
6658 * the partition.)
6659 */
6660 if (sbi->s_journal) {
6661 err = ext4_clear_journal_err(sb, es);
6662 if (err)
6663 goto restore_opts;
6664 }
6665 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6666 ~EXT4_FC_REPLAY);
6667
6668 err = ext4_setup_super(sb, es, 0);
6669 if (err)
6670 goto restore_opts;
6671
6672 sb->s_flags &= ~SB_RDONLY;
6673 if (ext4_has_feature_mmp(sb)) {
6674 err = ext4_multi_mount_protect(sb,
6675 le64_to_cpu(es->s_mmp_block));
6676 if (err)
6677 goto restore_opts;
6678 }
6679 #ifdef CONFIG_QUOTA
6680 enable_quota = 1;
6681 #endif
6682 }
6683 }
6684
6685 /*
6686 * Handle creation of system zone data early because it can fail.
6687 * Releasing of existing data is done when we are sure remount will
6688 * succeed.
6689 */
6690 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6691 err = ext4_setup_system_zone(sb);
6692 if (err)
6693 goto restore_opts;
6694 }
6695
6696 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6697 err = ext4_commit_super(sb);
6698 if (err)
6699 goto restore_opts;
6700 }
6701
6702 #ifdef CONFIG_QUOTA
6703 if (enable_quota) {
6704 if (sb_any_quota_suspended(sb))
6705 dquot_resume(sb, -1);
6706 else if (ext4_has_feature_quota(sb)) {
6707 err = ext4_enable_quotas(sb);
6708 if (err)
6709 goto restore_opts;
6710 }
6711 }
6712 /* Release old quota file names */
6713 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6714 kfree(old_opts.s_qf_names[i]);
6715 #endif
6716 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6717 ext4_release_system_zone(sb);
6718
6719 /*
6720 * Reinitialize lazy itable initialization thread based on
6721 * current settings
6722 */
6723 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6724 ext4_unregister_li_request(sb);
6725 else {
6726 ext4_group_t first_not_zeroed;
6727 first_not_zeroed = ext4_has_uninit_itable(sb);
6728 ext4_register_li_request(sb, first_not_zeroed);
6729 }
6730
6731 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6732 ext4_stop_mmpd(sbi);
6733
6734 /*
6735 * Handle aborting the filesystem as the last thing during remount to
6736 * avoid obsure errors during remount when some option changes fail to
6737 * apply due to shutdown filesystem.
6738 */
6739 if (test_opt2(sb, ABORT))
6740 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6741
6742 return 0;
6743
6744 restore_opts:
6745 /*
6746 * If there was a failing r/w to ro transition, we may need to
6747 * re-enable quota
6748 */
6749 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6750 sb_any_quota_suspended(sb))
6751 dquot_resume(sb, -1);
6752
6753 alloc_ctx = ext4_writepages_down_write(sb);
6754 sb->s_flags = old_sb_flags;
6755 sbi->s_mount_opt = old_opts.s_mount_opt;
6756 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6757 sbi->s_resuid = old_opts.s_resuid;
6758 sbi->s_resgid = old_opts.s_resgid;
6759 sbi->s_commit_interval = old_opts.s_commit_interval;
6760 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6761 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6762 ext4_writepages_up_write(sb, alloc_ctx);
6763
6764 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6765 ext4_release_system_zone(sb);
6766 #ifdef CONFIG_QUOTA
6767 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6768 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6769 to_free[i] = get_qf_name(sb, sbi, i);
6770 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6771 }
6772 synchronize_rcu();
6773 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6774 kfree(to_free[i]);
6775 #endif
6776 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6777 ext4_stop_mmpd(sbi);
6778 return err;
6779 }
6780
ext4_reconfigure(struct fs_context * fc)6781 static int ext4_reconfigure(struct fs_context *fc)
6782 {
6783 struct super_block *sb = fc->root->d_sb;
6784 int ret;
6785 bool old_ro = sb_rdonly(sb);
6786
6787 fc->s_fs_info = EXT4_SB(sb);
6788
6789 ret = ext4_check_opt_consistency(fc, sb);
6790 if (ret < 0)
6791 return ret;
6792
6793 ret = __ext4_remount(fc, sb);
6794 if (ret < 0)
6795 return ret;
6796
6797 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6798 &sb->s_uuid,
6799 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6800
6801 return 0;
6802 }
6803
6804 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6805 static int ext4_statfs_project(struct super_block *sb,
6806 kprojid_t projid, struct kstatfs *buf)
6807 {
6808 struct kqid qid;
6809 struct dquot *dquot;
6810 u64 limit;
6811 u64 curblock;
6812
6813 qid = make_kqid_projid(projid);
6814 dquot = dqget(sb, qid);
6815 if (IS_ERR(dquot))
6816 return PTR_ERR(dquot);
6817 spin_lock(&dquot->dq_dqb_lock);
6818
6819 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6820 dquot->dq_dqb.dqb_bhardlimit);
6821 limit >>= sb->s_blocksize_bits;
6822
6823 if (limit) {
6824 uint64_t remaining = 0;
6825
6826 curblock = (dquot->dq_dqb.dqb_curspace +
6827 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6828 if (limit > curblock)
6829 remaining = limit - curblock;
6830
6831 buf->f_blocks = min(buf->f_blocks, limit);
6832 buf->f_bfree = min(buf->f_bfree, remaining);
6833 buf->f_bavail = min(buf->f_bavail, remaining);
6834 }
6835
6836 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6837 dquot->dq_dqb.dqb_ihardlimit);
6838 if (limit) {
6839 uint64_t remaining = 0;
6840
6841 if (limit > dquot->dq_dqb.dqb_curinodes)
6842 remaining = limit - dquot->dq_dqb.dqb_curinodes;
6843
6844 buf->f_files = min(buf->f_files, limit);
6845 buf->f_ffree = min(buf->f_ffree, remaining);
6846 }
6847
6848 spin_unlock(&dquot->dq_dqb_lock);
6849 dqput(dquot);
6850 return 0;
6851 }
6852 #endif
6853
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6854 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6855 {
6856 struct super_block *sb = dentry->d_sb;
6857 struct ext4_sb_info *sbi = EXT4_SB(sb);
6858 struct ext4_super_block *es = sbi->s_es;
6859 ext4_fsblk_t overhead = 0, resv_blocks;
6860 s64 bfree;
6861 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6862
6863 if (!test_opt(sb, MINIX_DF))
6864 overhead = sbi->s_overhead;
6865
6866 buf->f_type = EXT4_SUPER_MAGIC;
6867 buf->f_bsize = sb->s_blocksize;
6868 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6869 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6870 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6871 /* prevent underflow in case that few free space is available */
6872 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6873 buf->f_bavail = buf->f_bfree -
6874 (ext4_r_blocks_count(es) + resv_blocks);
6875 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6876 buf->f_bavail = 0;
6877 buf->f_files = le32_to_cpu(es->s_inodes_count);
6878 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6879 buf->f_namelen = EXT4_NAME_LEN;
6880 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6881
6882 #ifdef CONFIG_QUOTA
6883 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6884 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6885 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6886 #endif
6887 return 0;
6888 }
6889
6890
6891 #ifdef CONFIG_QUOTA
6892
6893 /*
6894 * Helper functions so that transaction is started before we acquire dqio_sem
6895 * to keep correct lock ordering of transaction > dqio_sem
6896 */
dquot_to_inode(struct dquot * dquot)6897 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6898 {
6899 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6900 }
6901
ext4_write_dquot(struct dquot * dquot)6902 static int ext4_write_dquot(struct dquot *dquot)
6903 {
6904 int ret, err;
6905 handle_t *handle;
6906 struct inode *inode;
6907
6908 inode = dquot_to_inode(dquot);
6909 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6910 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6911 if (IS_ERR(handle))
6912 return PTR_ERR(handle);
6913 ret = dquot_commit(dquot);
6914 if (ret < 0)
6915 ext4_error_err(dquot->dq_sb, -ret,
6916 "Failed to commit dquot type %d",
6917 dquot->dq_id.type);
6918 err = ext4_journal_stop(handle);
6919 if (!ret)
6920 ret = err;
6921 return ret;
6922 }
6923
ext4_acquire_dquot(struct dquot * dquot)6924 static int ext4_acquire_dquot(struct dquot *dquot)
6925 {
6926 int ret, err;
6927 handle_t *handle;
6928
6929 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6930 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6931 if (IS_ERR(handle))
6932 return PTR_ERR(handle);
6933 ret = dquot_acquire(dquot);
6934 if (ret < 0)
6935 ext4_error_err(dquot->dq_sb, -ret,
6936 "Failed to acquire dquot type %d",
6937 dquot->dq_id.type);
6938 err = ext4_journal_stop(handle);
6939 if (!ret)
6940 ret = err;
6941 return ret;
6942 }
6943
ext4_release_dquot(struct dquot * dquot)6944 static int ext4_release_dquot(struct dquot *dquot)
6945 {
6946 int ret, err;
6947 handle_t *handle;
6948 bool freeze_protected = false;
6949
6950 /*
6951 * Trying to sb_start_intwrite() in a running transaction
6952 * can result in a deadlock. Further, running transactions
6953 * are already protected from freezing.
6954 */
6955 if (!ext4_journal_current_handle()) {
6956 sb_start_intwrite(dquot->dq_sb);
6957 freeze_protected = true;
6958 }
6959
6960 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6961 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6962 if (IS_ERR(handle)) {
6963 /* Release dquot anyway to avoid endless cycle in dqput() */
6964 dquot_release(dquot);
6965 if (freeze_protected)
6966 sb_end_intwrite(dquot->dq_sb);
6967 return PTR_ERR(handle);
6968 }
6969 ret = dquot_release(dquot);
6970 if (ret < 0)
6971 ext4_error_err(dquot->dq_sb, -ret,
6972 "Failed to release dquot type %d",
6973 dquot->dq_id.type);
6974 err = ext4_journal_stop(handle);
6975 if (!ret)
6976 ret = err;
6977
6978 if (freeze_protected)
6979 sb_end_intwrite(dquot->dq_sb);
6980
6981 return ret;
6982 }
6983
ext4_mark_dquot_dirty(struct dquot * dquot)6984 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6985 {
6986 struct super_block *sb = dquot->dq_sb;
6987
6988 if (ext4_is_quota_journalled(sb)) {
6989 dquot_mark_dquot_dirty(dquot);
6990 return ext4_write_dquot(dquot);
6991 } else {
6992 return dquot_mark_dquot_dirty(dquot);
6993 }
6994 }
6995
ext4_write_info(struct super_block * sb,int type)6996 static int ext4_write_info(struct super_block *sb, int type)
6997 {
6998 int ret, err;
6999 handle_t *handle;
7000
7001 /* Data block + inode block */
7002 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7003 if (IS_ERR(handle))
7004 return PTR_ERR(handle);
7005 ret = dquot_commit_info(sb, type);
7006 err = ext4_journal_stop(handle);
7007 if (!ret)
7008 ret = err;
7009 return ret;
7010 }
7011
lockdep_set_quota_inode(struct inode * inode,int subclass)7012 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7013 {
7014 struct ext4_inode_info *ei = EXT4_I(inode);
7015
7016 /* The first argument of lockdep_set_subclass has to be
7017 * *exactly* the same as the argument to init_rwsem() --- in
7018 * this case, in init_once() --- or lockdep gets unhappy
7019 * because the name of the lock is set using the
7020 * stringification of the argument to init_rwsem().
7021 */
7022 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
7023 lockdep_set_subclass(&ei->i_data_sem, subclass);
7024 }
7025
7026 /*
7027 * Standard function to be called on quota_on
7028 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7029 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7030 const struct path *path)
7031 {
7032 int err;
7033
7034 if (!test_opt(sb, QUOTA))
7035 return -EINVAL;
7036
7037 /* Quotafile not on the same filesystem? */
7038 if (path->dentry->d_sb != sb)
7039 return -EXDEV;
7040
7041 /* Quota already enabled for this file? */
7042 if (IS_NOQUOTA(d_inode(path->dentry)))
7043 return -EBUSY;
7044
7045 /* Journaling quota? */
7046 if (EXT4_SB(sb)->s_qf_names[type]) {
7047 /* Quotafile not in fs root? */
7048 if (path->dentry->d_parent != sb->s_root)
7049 ext4_msg(sb, KERN_WARNING,
7050 "Quota file not on filesystem root. "
7051 "Journaled quota will not work");
7052 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7053 } else {
7054 /*
7055 * Clear the flag just in case mount options changed since
7056 * last time.
7057 */
7058 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7059 }
7060
7061 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7062 err = dquot_quota_on(sb, type, format_id, path);
7063 if (!err) {
7064 struct inode *inode = d_inode(path->dentry);
7065 handle_t *handle;
7066
7067 /*
7068 * Set inode flags to prevent userspace from messing with quota
7069 * files. If this fails, we return success anyway since quotas
7070 * are already enabled and this is not a hard failure.
7071 */
7072 inode_lock(inode);
7073 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7074 if (IS_ERR(handle))
7075 goto unlock_inode;
7076 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7077 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7078 S_NOATIME | S_IMMUTABLE);
7079 err = ext4_mark_inode_dirty(handle, inode);
7080 ext4_journal_stop(handle);
7081 unlock_inode:
7082 inode_unlock(inode);
7083 if (err)
7084 dquot_quota_off(sb, type);
7085 }
7086 if (err)
7087 lockdep_set_quota_inode(path->dentry->d_inode,
7088 I_DATA_SEM_NORMAL);
7089 return err;
7090 }
7091
ext4_check_quota_inum(int type,unsigned long qf_inum)7092 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7093 {
7094 switch (type) {
7095 case USRQUOTA:
7096 return qf_inum == EXT4_USR_QUOTA_INO;
7097 case GRPQUOTA:
7098 return qf_inum == EXT4_GRP_QUOTA_INO;
7099 case PRJQUOTA:
7100 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7101 default:
7102 BUG();
7103 }
7104 }
7105
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7106 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7107 unsigned int flags)
7108 {
7109 int err;
7110 struct inode *qf_inode;
7111 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7112 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7113 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7114 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7115 };
7116
7117 BUG_ON(!ext4_has_feature_quota(sb));
7118
7119 if (!qf_inums[type])
7120 return -EPERM;
7121
7122 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7123 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7124 qf_inums[type], type);
7125 return -EUCLEAN;
7126 }
7127
7128 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7129 if (IS_ERR(qf_inode)) {
7130 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7131 qf_inums[type], type);
7132 return PTR_ERR(qf_inode);
7133 }
7134
7135 /* Don't account quota for quota files to avoid recursion */
7136 qf_inode->i_flags |= S_NOQUOTA;
7137 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7138 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7139 if (err)
7140 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7141 iput(qf_inode);
7142
7143 return err;
7144 }
7145
7146 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7147 int ext4_enable_quotas(struct super_block *sb)
7148 {
7149 int type, err = 0;
7150 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7151 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7152 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7153 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7154 };
7155 bool quota_mopt[EXT4_MAXQUOTAS] = {
7156 test_opt(sb, USRQUOTA),
7157 test_opt(sb, GRPQUOTA),
7158 test_opt(sb, PRJQUOTA),
7159 };
7160
7161 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7162 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7163 if (qf_inums[type]) {
7164 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7165 DQUOT_USAGE_ENABLED |
7166 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7167 if (err) {
7168 ext4_warning(sb,
7169 "Failed to enable quota tracking "
7170 "(type=%d, err=%d, ino=%lu). "
7171 "Please run e2fsck to fix.", type,
7172 err, qf_inums[type]);
7173
7174 ext4_quotas_off(sb, type);
7175 return err;
7176 }
7177 }
7178 }
7179 return 0;
7180 }
7181
ext4_quota_off(struct super_block * sb,int type)7182 static int ext4_quota_off(struct super_block *sb, int type)
7183 {
7184 struct inode *inode = sb_dqopt(sb)->files[type];
7185 handle_t *handle;
7186 int err;
7187
7188 /* Force all delayed allocation blocks to be allocated.
7189 * Caller already holds s_umount sem */
7190 if (test_opt(sb, DELALLOC))
7191 sync_filesystem(sb);
7192
7193 if (!inode || !igrab(inode))
7194 goto out;
7195
7196 err = dquot_quota_off(sb, type);
7197 if (err || ext4_has_feature_quota(sb))
7198 goto out_put;
7199 /*
7200 * When the filesystem was remounted read-only first, we cannot cleanup
7201 * inode flags here. Bad luck but people should be using QUOTA feature
7202 * these days anyway.
7203 */
7204 if (sb_rdonly(sb))
7205 goto out_put;
7206
7207 inode_lock(inode);
7208 /*
7209 * Update modification times of quota files when userspace can
7210 * start looking at them. If we fail, we return success anyway since
7211 * this is not a hard failure and quotas are already disabled.
7212 */
7213 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7214 if (IS_ERR(handle)) {
7215 err = PTR_ERR(handle);
7216 goto out_unlock;
7217 }
7218 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7219 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7220 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7221 err = ext4_mark_inode_dirty(handle, inode);
7222 ext4_journal_stop(handle);
7223 out_unlock:
7224 inode_unlock(inode);
7225 out_put:
7226 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7227 iput(inode);
7228 return err;
7229 out:
7230 return dquot_quota_off(sb, type);
7231 }
7232
7233 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7234 * acquiring the locks... As quota files are never truncated and quota code
7235 * itself serializes the operations (and no one else should touch the files)
7236 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7237 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7238 size_t len, loff_t off)
7239 {
7240 struct inode *inode = sb_dqopt(sb)->files[type];
7241 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7242 int offset = off & (sb->s_blocksize - 1);
7243 int tocopy;
7244 size_t toread;
7245 struct buffer_head *bh;
7246 loff_t i_size = i_size_read(inode);
7247
7248 if (off > i_size)
7249 return 0;
7250 if (off+len > i_size)
7251 len = i_size-off;
7252 toread = len;
7253 while (toread > 0) {
7254 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7255 bh = ext4_bread(NULL, inode, blk, 0);
7256 if (IS_ERR(bh))
7257 return PTR_ERR(bh);
7258 if (!bh) /* A hole? */
7259 memset(data, 0, tocopy);
7260 else
7261 memcpy(data, bh->b_data+offset, tocopy);
7262 brelse(bh);
7263 offset = 0;
7264 toread -= tocopy;
7265 data += tocopy;
7266 blk++;
7267 }
7268 return len;
7269 }
7270
7271 /* Write to quotafile (we know the transaction is already started and has
7272 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7273 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7274 const char *data, size_t len, loff_t off)
7275 {
7276 struct inode *inode = sb_dqopt(sb)->files[type];
7277 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7278 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7279 int retries = 0;
7280 struct buffer_head *bh;
7281 handle_t *handle = journal_current_handle();
7282
7283 if (!handle) {
7284 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7285 " cancelled because transaction is not started",
7286 (unsigned long long)off, (unsigned long long)len);
7287 return -EIO;
7288 }
7289 /*
7290 * Since we account only one data block in transaction credits,
7291 * then it is impossible to cross a block boundary.
7292 */
7293 if (sb->s_blocksize - offset < len) {
7294 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7295 " cancelled because not block aligned",
7296 (unsigned long long)off, (unsigned long long)len);
7297 return -EIO;
7298 }
7299
7300 do {
7301 bh = ext4_bread(handle, inode, blk,
7302 EXT4_GET_BLOCKS_CREATE |
7303 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7304 } while (PTR_ERR(bh) == -ENOSPC &&
7305 ext4_should_retry_alloc(inode->i_sb, &retries));
7306 if (IS_ERR(bh))
7307 return PTR_ERR(bh);
7308 if (!bh)
7309 goto out;
7310 BUFFER_TRACE(bh, "get write access");
7311 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7312 if (err) {
7313 brelse(bh);
7314 return err;
7315 }
7316 lock_buffer(bh);
7317 memcpy(bh->b_data+offset, data, len);
7318 flush_dcache_folio(bh->b_folio);
7319 unlock_buffer(bh);
7320 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7321 brelse(bh);
7322 out:
7323 if (inode->i_size < off + len) {
7324 i_size_write(inode, off + len);
7325 EXT4_I(inode)->i_disksize = inode->i_size;
7326 err2 = ext4_mark_inode_dirty(handle, inode);
7327 if (unlikely(err2 && !err))
7328 err = err2;
7329 }
7330 return err ? err : len;
7331 }
7332 #endif
7333
7334 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7335 static inline void register_as_ext2(void)
7336 {
7337 int err = register_filesystem(&ext2_fs_type);
7338 if (err)
7339 printk(KERN_WARNING
7340 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7341 }
7342
unregister_as_ext2(void)7343 static inline void unregister_as_ext2(void)
7344 {
7345 unregister_filesystem(&ext2_fs_type);
7346 }
7347
ext2_feature_set_ok(struct super_block * sb)7348 static inline int ext2_feature_set_ok(struct super_block *sb)
7349 {
7350 if (ext4_has_unknown_ext2_incompat_features(sb))
7351 return 0;
7352 if (sb_rdonly(sb))
7353 return 1;
7354 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7355 return 0;
7356 return 1;
7357 }
7358 #else
register_as_ext2(void)7359 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7360 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7361 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7362 #endif
7363
register_as_ext3(void)7364 static inline void register_as_ext3(void)
7365 {
7366 int err = register_filesystem(&ext3_fs_type);
7367 if (err)
7368 printk(KERN_WARNING
7369 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7370 }
7371
unregister_as_ext3(void)7372 static inline void unregister_as_ext3(void)
7373 {
7374 unregister_filesystem(&ext3_fs_type);
7375 }
7376
ext3_feature_set_ok(struct super_block * sb)7377 static inline int ext3_feature_set_ok(struct super_block *sb)
7378 {
7379 if (ext4_has_unknown_ext3_incompat_features(sb))
7380 return 0;
7381 if (!ext4_has_feature_journal(sb))
7382 return 0;
7383 if (sb_rdonly(sb))
7384 return 1;
7385 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7386 return 0;
7387 return 1;
7388 }
7389
ext4_kill_sb(struct super_block * sb)7390 static void ext4_kill_sb(struct super_block *sb)
7391 {
7392 struct ext4_sb_info *sbi = EXT4_SB(sb);
7393 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7394
7395 kill_block_super(sb);
7396
7397 if (bdev_file)
7398 bdev_fput(bdev_file);
7399 }
7400
7401 static struct file_system_type ext4_fs_type = {
7402 .owner = THIS_MODULE,
7403 .name = "ext4",
7404 .init_fs_context = ext4_init_fs_context,
7405 .parameters = ext4_param_specs,
7406 .kill_sb = ext4_kill_sb,
7407 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7408 };
7409 MODULE_ALIAS_FS("ext4");
7410
ext4_init_fs(void)7411 static int __init ext4_init_fs(void)
7412 {
7413 int err;
7414
7415 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7416 ext4_li_info = NULL;
7417
7418 /* Build-time check for flags consistency */
7419 ext4_check_flag_values();
7420
7421 err = ext4_init_es();
7422 if (err)
7423 return err;
7424
7425 err = ext4_init_pending();
7426 if (err)
7427 goto out7;
7428
7429 err = ext4_init_post_read_processing();
7430 if (err)
7431 goto out6;
7432
7433 err = ext4_init_pageio();
7434 if (err)
7435 goto out5;
7436
7437 err = ext4_init_system_zone();
7438 if (err)
7439 goto out4;
7440
7441 err = ext4_init_sysfs();
7442 if (err)
7443 goto out3;
7444
7445 err = ext4_init_mballoc();
7446 if (err)
7447 goto out2;
7448 err = init_inodecache();
7449 if (err)
7450 goto out1;
7451
7452 err = ext4_fc_init_dentry_cache();
7453 if (err)
7454 goto out05;
7455
7456 register_as_ext3();
7457 register_as_ext2();
7458 err = register_filesystem(&ext4_fs_type);
7459 if (err)
7460 goto out;
7461
7462 return 0;
7463 out:
7464 unregister_as_ext2();
7465 unregister_as_ext3();
7466 ext4_fc_destroy_dentry_cache();
7467 out05:
7468 destroy_inodecache();
7469 out1:
7470 ext4_exit_mballoc();
7471 out2:
7472 ext4_exit_sysfs();
7473 out3:
7474 ext4_exit_system_zone();
7475 out4:
7476 ext4_exit_pageio();
7477 out5:
7478 ext4_exit_post_read_processing();
7479 out6:
7480 ext4_exit_pending();
7481 out7:
7482 ext4_exit_es();
7483
7484 return err;
7485 }
7486
ext4_exit_fs(void)7487 static void __exit ext4_exit_fs(void)
7488 {
7489 ext4_destroy_lazyinit_thread();
7490 unregister_as_ext2();
7491 unregister_as_ext3();
7492 unregister_filesystem(&ext4_fs_type);
7493 ext4_fc_destroy_dentry_cache();
7494 destroy_inodecache();
7495 ext4_exit_mballoc();
7496 ext4_exit_sysfs();
7497 ext4_exit_system_zone();
7498 ext4_exit_pageio();
7499 ext4_exit_post_read_processing();
7500 ext4_exit_es();
7501 ext4_exit_pending();
7502 }
7503
7504 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7505 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7506 MODULE_LICENSE("GPL");
7507 module_init(ext4_init_fs)
7508 module_exit(ext4_exit_fs)
7509