1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/rmap.h> 35 #include <linux/namei.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include <linux/workqueue.h> 39 #include <linux/kernel.h> 40 #include <linux/printk.h> 41 #include <linux/slab.h> 42 #include <linux/bitops.h> 43 #include <linux/iomap.h> 44 #include <linux/iversion.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static void ext4_journalled_zero_new_buffers(handle_t *handle, 54 struct inode *inode, 55 struct folio *folio, 56 unsigned from, unsigned to); 57 58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 59 struct ext4_inode_info *ei) 60 { 61 __u32 csum; 62 __u16 dummy_csum = 0; 63 int offset = offsetof(struct ext4_inode, i_checksum_lo); 64 unsigned int csum_size = sizeof(dummy_csum); 65 66 csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset); 67 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size); 68 offset += csum_size; 69 csum = ext4_chksum(csum, (__u8 *)raw + offset, 70 EXT4_GOOD_OLD_INODE_SIZE - offset); 71 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 73 offset = offsetof(struct ext4_inode, i_checksum_hi); 74 csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE, 75 offset - EXT4_GOOD_OLD_INODE_SIZE); 76 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 77 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, 78 csum_size); 79 offset += csum_size; 80 } 81 csum = ext4_chksum(csum, (__u8 *)raw + offset, 82 EXT4_INODE_SIZE(inode->i_sb) - offset); 83 } 84 85 return csum; 86 } 87 88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 89 struct ext4_inode_info *ei) 90 { 91 __u32 provided, calculated; 92 93 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 94 cpu_to_le32(EXT4_OS_LINUX) || 95 !ext4_has_feature_metadata_csum(inode->i_sb)) 96 return 1; 97 98 provided = le16_to_cpu(raw->i_checksum_lo); 99 calculated = ext4_inode_csum(inode, raw, ei); 100 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 101 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 102 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 103 else 104 calculated &= 0xFFFF; 105 106 return provided == calculated; 107 } 108 109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 110 struct ext4_inode_info *ei) 111 { 112 __u32 csum; 113 114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 115 cpu_to_le32(EXT4_OS_LINUX) || 116 !ext4_has_feature_metadata_csum(inode->i_sb)) 117 return; 118 119 csum = ext4_inode_csum(inode, raw, ei); 120 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 122 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 123 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 124 } 125 126 static inline int ext4_begin_ordered_truncate(struct inode *inode, 127 loff_t new_size) 128 { 129 trace_ext4_begin_ordered_truncate(inode, new_size); 130 /* 131 * If jinode is zero, then we never opened the file for 132 * writing, so there's no need to call 133 * jbd2_journal_begin_ordered_truncate() since there's no 134 * outstanding writes we need to flush. 135 */ 136 if (!EXT4_I(inode)->jinode) 137 return 0; 138 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 139 EXT4_I(inode)->jinode, 140 new_size); 141 } 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!ext4_has_feature_ea_inode(inode->i_sb)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 dax_break_layout_final(inode); 181 182 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 183 ext4_evict_ea_inode(inode); 184 if (inode->i_nlink) { 185 truncate_inode_pages_final(&inode->i_data); 186 187 goto no_delete; 188 } 189 190 if (is_bad_inode(inode)) 191 goto no_delete; 192 dquot_initialize(inode); 193 194 if (ext4_should_order_data(inode)) 195 ext4_begin_ordered_truncate(inode, 0); 196 truncate_inode_pages_final(&inode->i_data); 197 198 /* 199 * For inodes with journalled data, transaction commit could have 200 * dirtied the inode. And for inodes with dioread_nolock, unwritten 201 * extents converting worker could merge extents and also have dirtied 202 * the inode. Flush worker is ignoring it because of I_FREEING flag but 203 * we still need to remove the inode from the writeback lists. 204 */ 205 inode_io_list_del(inode); 206 207 /* 208 * Protect us against freezing - iput() caller didn't have to have any 209 * protection against it. When we are in a running transaction though, 210 * we are already protected against freezing and we cannot grab further 211 * protection due to lock ordering constraints. 212 */ 213 if (!ext4_journal_current_handle()) { 214 sb_start_intwrite(inode->i_sb); 215 freeze_protected = true; 216 } 217 218 if (!IS_NOQUOTA(inode)) 219 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 220 221 /* 222 * Block bitmap, group descriptor, and inode are accounted in both 223 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 224 */ 225 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 226 ext4_blocks_for_truncate(inode) + extra_credits - 3); 227 if (IS_ERR(handle)) { 228 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 229 /* 230 * If we're going to skip the normal cleanup, we still need to 231 * make sure that the in-core orphan linked list is properly 232 * cleaned up. 233 */ 234 ext4_orphan_del(NULL, inode); 235 if (freeze_protected) 236 sb_end_intwrite(inode->i_sb); 237 goto no_delete; 238 } 239 240 if (IS_SYNC(inode)) 241 ext4_handle_sync(handle); 242 243 /* 244 * Set inode->i_size to 0 before calling ext4_truncate(). We need 245 * special handling of symlinks here because i_size is used to 246 * determine whether ext4_inode_info->i_data contains symlink data or 247 * block mappings. Setting i_size to 0 will remove its fast symlink 248 * status. Erase i_data so that it becomes a valid empty block map. 249 */ 250 if (ext4_inode_is_fast_symlink(inode)) 251 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 252 inode->i_size = 0; 253 err = ext4_mark_inode_dirty(handle, inode); 254 if (err) { 255 ext4_warning(inode->i_sb, 256 "couldn't mark inode dirty (err %d)", err); 257 goto stop_handle; 258 } 259 if (inode->i_blocks) { 260 err = ext4_truncate(inode); 261 if (err) { 262 ext4_error_err(inode->i_sb, -err, 263 "couldn't truncate inode %lu (err %d)", 264 inode->i_ino, err); 265 goto stop_handle; 266 } 267 } 268 269 /* Remove xattr references. */ 270 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 271 extra_credits); 272 if (err) { 273 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 274 stop_handle: 275 ext4_journal_stop(handle); 276 ext4_orphan_del(NULL, inode); 277 if (freeze_protected) 278 sb_end_intwrite(inode->i_sb); 279 ext4_xattr_inode_array_free(ea_inode_array); 280 goto no_delete; 281 } 282 283 /* 284 * Kill off the orphan record which ext4_truncate created. 285 * AKPM: I think this can be inside the above `if'. 286 * Note that ext4_orphan_del() has to be able to cope with the 287 * deletion of a non-existent orphan - this is because we don't 288 * know if ext4_truncate() actually created an orphan record. 289 * (Well, we could do this if we need to, but heck - it works) 290 */ 291 ext4_orphan_del(handle, inode); 292 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 293 294 /* 295 * One subtle ordering requirement: if anything has gone wrong 296 * (transaction abort, IO errors, whatever), then we can still 297 * do these next steps (the fs will already have been marked as 298 * having errors), but we can't free the inode if the mark_dirty 299 * fails. 300 */ 301 if (ext4_mark_inode_dirty(handle, inode)) 302 /* If that failed, just do the required in-core inode clear. */ 303 ext4_clear_inode(inode); 304 else 305 ext4_free_inode(handle, inode); 306 ext4_journal_stop(handle); 307 if (freeze_protected) 308 sb_end_intwrite(inode->i_sb); 309 ext4_xattr_inode_array_free(ea_inode_array); 310 return; 311 no_delete: 312 /* 313 * Check out some where else accidentally dirty the evicting inode, 314 * which may probably cause inode use-after-free issues later. 315 */ 316 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 317 318 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 319 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 320 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 321 } 322 323 #ifdef CONFIG_QUOTA 324 qsize_t *ext4_get_reserved_space(struct inode *inode) 325 { 326 return &EXT4_I(inode)->i_reserved_quota; 327 } 328 #endif 329 330 /* 331 * Called with i_data_sem down, which is important since we can call 332 * ext4_discard_preallocations() from here. 333 */ 334 void ext4_da_update_reserve_space(struct inode *inode, 335 int used, int quota_claim) 336 { 337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 338 struct ext4_inode_info *ei = EXT4_I(inode); 339 340 spin_lock(&ei->i_block_reservation_lock); 341 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 342 if (unlikely(used > ei->i_reserved_data_blocks)) { 343 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 344 "with only %d reserved data blocks", 345 __func__, inode->i_ino, used, 346 ei->i_reserved_data_blocks); 347 WARN_ON(1); 348 used = ei->i_reserved_data_blocks; 349 } 350 351 /* Update per-inode reservations */ 352 ei->i_reserved_data_blocks -= used; 353 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 354 355 spin_unlock(&ei->i_block_reservation_lock); 356 357 /* Update quota subsystem for data blocks */ 358 if (quota_claim) 359 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 360 else { 361 /* 362 * We did fallocate with an offset that is already delayed 363 * allocated. So on delayed allocated writeback we should 364 * not re-claim the quota for fallocated blocks. 365 */ 366 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 367 } 368 369 /* 370 * If we have done all the pending block allocations and if 371 * there aren't any writers on the inode, we can discard the 372 * inode's preallocations. 373 */ 374 if ((ei->i_reserved_data_blocks == 0) && 375 !inode_is_open_for_write(inode)) 376 ext4_discard_preallocations(inode); 377 } 378 379 static int __check_block_validity(struct inode *inode, const char *func, 380 unsigned int line, 381 struct ext4_map_blocks *map) 382 { 383 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 384 385 if (journal && inode == journal->j_inode) 386 return 0; 387 388 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 389 ext4_error_inode(inode, func, line, map->m_pblk, 390 "lblock %lu mapped to illegal pblock %llu " 391 "(length %d)", (unsigned long) map->m_lblk, 392 map->m_pblk, map->m_len); 393 return -EFSCORRUPTED; 394 } 395 return 0; 396 } 397 398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 399 ext4_lblk_t len) 400 { 401 int ret; 402 403 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 404 return fscrypt_zeroout_range(inode, lblk, pblk, len); 405 406 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 407 if (ret > 0) 408 ret = 0; 409 410 return ret; 411 } 412 413 /* 414 * For generic regular files, when updating the extent tree, Ext4 should 415 * hold the i_rwsem and invalidate_lock exclusively. This ensures 416 * exclusion against concurrent page faults, as well as reads and writes. 417 */ 418 #ifdef CONFIG_EXT4_DEBUG 419 void ext4_check_map_extents_env(struct inode *inode) 420 { 421 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 422 return; 423 424 if (!S_ISREG(inode->i_mode) || 425 IS_NOQUOTA(inode) || IS_VERITY(inode) || 426 is_special_ino(inode->i_sb, inode->i_ino) || 427 (inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) || 428 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) || 429 ext4_verity_in_progress(inode)) 430 return; 431 432 WARN_ON_ONCE(!inode_is_locked(inode) && 433 !rwsem_is_locked(&inode->i_mapping->invalidate_lock)); 434 } 435 #else 436 void ext4_check_map_extents_env(struct inode *inode) {} 437 #endif 438 439 #define check_block_validity(inode, map) \ 440 __check_block_validity((inode), __func__, __LINE__, (map)) 441 442 #ifdef ES_AGGRESSIVE_TEST 443 static void ext4_map_blocks_es_recheck(handle_t *handle, 444 struct inode *inode, 445 struct ext4_map_blocks *es_map, 446 struct ext4_map_blocks *map, 447 int flags) 448 { 449 int retval; 450 451 map->m_flags = 0; 452 /* 453 * There is a race window that the result is not the same. 454 * e.g. xfstests #223 when dioread_nolock enables. The reason 455 * is that we lookup a block mapping in extent status tree with 456 * out taking i_data_sem. So at the time the unwritten extent 457 * could be converted. 458 */ 459 down_read(&EXT4_I(inode)->i_data_sem); 460 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 461 retval = ext4_ext_map_blocks(handle, inode, map, 0); 462 } else { 463 retval = ext4_ind_map_blocks(handle, inode, map, 0); 464 } 465 up_read((&EXT4_I(inode)->i_data_sem)); 466 467 /* 468 * We don't check m_len because extent will be collpased in status 469 * tree. So the m_len might not equal. 470 */ 471 if (es_map->m_lblk != map->m_lblk || 472 es_map->m_flags != map->m_flags || 473 es_map->m_pblk != map->m_pblk) { 474 printk("ES cache assertion failed for inode: %lu " 475 "es_cached ex [%d/%d/%llu/%x] != " 476 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 477 inode->i_ino, es_map->m_lblk, es_map->m_len, 478 es_map->m_pblk, es_map->m_flags, map->m_lblk, 479 map->m_len, map->m_pblk, map->m_flags, 480 retval, flags); 481 } 482 } 483 #endif /* ES_AGGRESSIVE_TEST */ 484 485 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle, 486 struct inode *inode, struct ext4_map_blocks *map, 487 unsigned int orig_mlen) 488 { 489 struct ext4_map_blocks map2; 490 unsigned int status, status2; 491 int retval; 492 493 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 494 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 495 496 WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF)); 497 WARN_ON_ONCE(orig_mlen <= map->m_len); 498 499 /* Prepare map2 for lookup in next leaf block */ 500 map2.m_lblk = map->m_lblk + map->m_len; 501 map2.m_len = orig_mlen - map->m_len; 502 map2.m_flags = 0; 503 retval = ext4_ext_map_blocks(handle, inode, &map2, 0); 504 505 if (retval <= 0) { 506 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 507 map->m_pblk, status, false); 508 return map->m_len; 509 } 510 511 if (unlikely(retval != map2.m_len)) { 512 ext4_warning(inode->i_sb, 513 "ES len assertion failed for inode " 514 "%lu: retval %d != map->m_len %d", 515 inode->i_ino, retval, map2.m_len); 516 WARN_ON(1); 517 } 518 519 status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ? 520 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 521 522 /* 523 * If map2 is contiguous with map, then let's insert it as a single 524 * extent in es cache and return the combined length of both the maps. 525 */ 526 if (map->m_pblk + map->m_len == map2.m_pblk && 527 status == status2) { 528 ext4_es_insert_extent(inode, map->m_lblk, 529 map->m_len + map2.m_len, map->m_pblk, 530 status, false); 531 map->m_len += map2.m_len; 532 } else { 533 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 534 map->m_pblk, status, false); 535 } 536 537 return map->m_len; 538 } 539 540 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 541 struct ext4_map_blocks *map, int flags) 542 { 543 unsigned int status; 544 int retval; 545 unsigned int orig_mlen = map->m_len; 546 547 flags &= EXT4_EX_QUERY_FILTER; 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 549 retval = ext4_ext_map_blocks(handle, inode, map, flags); 550 else 551 retval = ext4_ind_map_blocks(handle, inode, map, flags); 552 if (retval < 0) 553 return retval; 554 555 /* A hole? */ 556 if (retval == 0) 557 goto out; 558 559 if (unlikely(retval != map->m_len)) { 560 ext4_warning(inode->i_sb, 561 "ES len assertion failed for inode " 562 "%lu: retval %d != map->m_len %d", 563 inode->i_ino, retval, map->m_len); 564 WARN_ON(1); 565 } 566 567 /* 568 * No need to query next in leaf: 569 * - if returned extent is not last in leaf or 570 * - if the last in leaf is the full requested range 571 */ 572 if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) || 573 map->m_len == orig_mlen) { 574 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 575 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 576 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 577 map->m_pblk, status, false); 578 } else { 579 retval = ext4_map_query_blocks_next_in_leaf(handle, inode, map, 580 orig_mlen); 581 } 582 out: 583 map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq); 584 return retval; 585 } 586 587 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 588 struct ext4_map_blocks *map, int flags) 589 { 590 struct extent_status es; 591 unsigned int status; 592 int err, retval = 0; 593 594 /* 595 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 596 * indicates that the blocks and quotas has already been 597 * checked when the data was copied into the page cache. 598 */ 599 if (map->m_flags & EXT4_MAP_DELAYED) 600 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * We need to check for EXT4 here because migrate could have 610 * changed the inode type in between. 611 */ 612 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 613 retval = ext4_ext_map_blocks(handle, inode, map, flags); 614 } else { 615 retval = ext4_ind_map_blocks(handle, inode, map, flags); 616 617 /* 618 * We allocated new blocks which will result in i_data's 619 * format changing. Force the migrate to fail by clearing 620 * migrate flags. 621 */ 622 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 623 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 624 } 625 if (retval <= 0) 626 return retval; 627 628 if (unlikely(retval != map->m_len)) { 629 ext4_warning(inode->i_sb, 630 "ES len assertion failed for inode %lu: " 631 "retval %d != map->m_len %d", 632 inode->i_ino, retval, map->m_len); 633 WARN_ON(1); 634 } 635 636 /* 637 * We have to zeroout blocks before inserting them into extent 638 * status tree. Otherwise someone could look them up there and 639 * use them before they are really zeroed. We also have to 640 * unmap metadata before zeroing as otherwise writeback can 641 * overwrite zeros with stale data from block device. 642 */ 643 if (flags & EXT4_GET_BLOCKS_ZERO && 644 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 645 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 646 map->m_len); 647 if (err) 648 return err; 649 } 650 651 /* 652 * If the extent has been zeroed out, we don't need to update 653 * extent status tree. 654 */ 655 if (flags & EXT4_GET_BLOCKS_SPLIT_NOMERGE && 656 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, &map->m_seq)) { 657 if (ext4_es_is_written(&es)) 658 return retval; 659 } 660 661 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 662 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 663 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 664 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 665 map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq); 666 667 return retval; 668 } 669 670 /* 671 * The ext4_map_blocks() function tries to look up the requested blocks, 672 * and returns if the blocks are already mapped. 673 * 674 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 675 * and store the allocated blocks in the result buffer head and mark it 676 * mapped. 677 * 678 * If file type is extents based, it will call ext4_ext_map_blocks(), 679 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 680 * based files 681 * 682 * On success, it returns the number of blocks being mapped or allocated. 683 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 684 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 685 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 686 * 687 * It returns 0 if plain look up failed (blocks have not been allocated), in 688 * that case, @map is returned as unmapped but we still do fill map->m_len to 689 * indicate the length of a hole starting at map->m_lblk. 690 * 691 * It returns the error in case of allocation failure. 692 */ 693 int ext4_map_blocks(handle_t *handle, struct inode *inode, 694 struct ext4_map_blocks *map, int flags) 695 { 696 struct extent_status es; 697 int retval; 698 int ret = 0; 699 unsigned int orig_mlen = map->m_len; 700 #ifdef ES_AGGRESSIVE_TEST 701 struct ext4_map_blocks orig_map; 702 703 memcpy(&orig_map, map, sizeof(*map)); 704 #endif 705 706 map->m_flags = 0; 707 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 708 flags, map->m_len, (unsigned long) map->m_lblk); 709 710 /* 711 * ext4_map_blocks returns an int, and m_len is an unsigned int 712 */ 713 if (unlikely(map->m_len > INT_MAX)) 714 map->m_len = INT_MAX; 715 716 /* We can handle the block number less than EXT_MAX_BLOCKS */ 717 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 718 return -EFSCORRUPTED; 719 720 /* 721 * Callers from the context of data submission are the only exceptions 722 * for regular files that do not hold the i_rwsem or invalidate_lock. 723 * However, caching unrelated ranges is not permitted. 724 */ 725 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 726 WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE)); 727 else 728 ext4_check_map_extents_env(inode); 729 730 /* Lookup extent status tree firstly */ 731 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, &map->m_seq)) { 732 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 733 map->m_pblk = ext4_es_pblock(&es) + 734 map->m_lblk - es.es_lblk; 735 map->m_flags |= ext4_es_is_written(&es) ? 736 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 737 retval = es.es_len - (map->m_lblk - es.es_lblk); 738 if (retval > map->m_len) 739 retval = map->m_len; 740 map->m_len = retval; 741 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 742 map->m_pblk = 0; 743 map->m_flags |= ext4_es_is_delayed(&es) ? 744 EXT4_MAP_DELAYED : 0; 745 retval = es.es_len - (map->m_lblk - es.es_lblk); 746 if (retval > map->m_len) 747 retval = map->m_len; 748 map->m_len = retval; 749 retval = 0; 750 } else { 751 BUG(); 752 } 753 754 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 755 return retval; 756 #ifdef ES_AGGRESSIVE_TEST 757 ext4_map_blocks_es_recheck(handle, inode, map, 758 &orig_map, flags); 759 #endif 760 if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) || 761 orig_mlen == map->m_len) 762 goto found; 763 764 map->m_len = orig_mlen; 765 } 766 /* 767 * In the query cache no-wait mode, nothing we can do more if we 768 * cannot find extent in the cache. 769 */ 770 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 771 return 0; 772 773 /* 774 * Try to see if we can get the block without requesting a new 775 * file system block. 776 */ 777 down_read(&EXT4_I(inode)->i_data_sem); 778 retval = ext4_map_query_blocks(handle, inode, map, flags); 779 up_read((&EXT4_I(inode)->i_data_sem)); 780 781 found: 782 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 783 ret = check_block_validity(inode, map); 784 if (ret != 0) 785 return ret; 786 } 787 788 /* If it is only a block(s) look up */ 789 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 790 return retval; 791 792 /* 793 * Returns if the blocks have already allocated 794 * 795 * Note that if blocks have been preallocated 796 * ext4_ext_map_blocks() returns with buffer head unmapped 797 */ 798 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 799 /* 800 * If we need to convert extent to unwritten 801 * we continue and do the actual work in 802 * ext4_ext_map_blocks() 803 */ 804 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 805 return retval; 806 807 808 ext4_fc_track_inode(handle, inode); 809 /* 810 * New blocks allocate and/or writing to unwritten extent 811 * will possibly result in updating i_data, so we take 812 * the write lock of i_data_sem, and call get_block() 813 * with create == 1 flag. 814 */ 815 down_write(&EXT4_I(inode)->i_data_sem); 816 retval = ext4_map_create_blocks(handle, inode, map, flags); 817 up_write((&EXT4_I(inode)->i_data_sem)); 818 819 if (retval < 0) 820 ext_debug(inode, "failed with err %d\n", retval); 821 if (retval <= 0) 822 return retval; 823 824 if (map->m_flags & EXT4_MAP_MAPPED) { 825 ret = check_block_validity(inode, map); 826 if (ret != 0) 827 return ret; 828 829 /* 830 * Inodes with freshly allocated blocks where contents will be 831 * visible after transaction commit must be on transaction's 832 * ordered data list. 833 */ 834 if (map->m_flags & EXT4_MAP_NEW && 835 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 836 !(flags & EXT4_GET_BLOCKS_ZERO) && 837 !ext4_is_quota_file(inode) && 838 ext4_should_order_data(inode)) { 839 loff_t start_byte = EXT4_LBLK_TO_B(inode, map->m_lblk); 840 loff_t length = EXT4_LBLK_TO_B(inode, map->m_len); 841 842 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 843 ret = ext4_jbd2_inode_add_wait(handle, inode, 844 start_byte, length); 845 else 846 ret = ext4_jbd2_inode_add_write(handle, inode, 847 start_byte, length); 848 if (ret) 849 return ret; 850 } 851 } 852 ext4_fc_track_range(handle, inode, map->m_lblk, map->m_lblk + 853 map->m_len - 1); 854 return retval; 855 } 856 857 /* 858 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 859 * we have to be careful as someone else may be manipulating b_state as well. 860 */ 861 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 862 { 863 unsigned long old_state; 864 unsigned long new_state; 865 866 flags &= EXT4_MAP_FLAGS; 867 868 /* Dummy buffer_head? Set non-atomically. */ 869 if (!bh->b_folio) { 870 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 871 return; 872 } 873 /* 874 * Someone else may be modifying b_state. Be careful! This is ugly but 875 * once we get rid of using bh as a container for mapping information 876 * to pass to / from get_block functions, this can go away. 877 */ 878 old_state = READ_ONCE(bh->b_state); 879 do { 880 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 881 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 882 } 883 884 /* 885 * Make sure that the current journal transaction has enough credits to map 886 * one extent. Return -EAGAIN if it cannot extend the current running 887 * transaction. 888 */ 889 static inline int ext4_journal_ensure_extent_credits(handle_t *handle, 890 struct inode *inode) 891 { 892 int credits; 893 int ret; 894 895 /* Called from ext4_da_write_begin() which has no handle started? */ 896 if (!handle) 897 return 0; 898 899 credits = ext4_chunk_trans_blocks(inode, 1); 900 ret = __ext4_journal_ensure_credits(handle, credits, credits, 0); 901 return ret <= 0 ? ret : -EAGAIN; 902 } 903 904 static int _ext4_get_block(struct inode *inode, sector_t iblock, 905 struct buffer_head *bh, int flags) 906 { 907 struct ext4_map_blocks map; 908 int ret = 0; 909 910 if (ext4_has_inline_data(inode)) 911 return -ERANGE; 912 913 map.m_lblk = iblock; 914 map.m_len = bh->b_size >> inode->i_blkbits; 915 916 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 917 flags); 918 if (ret > 0) { 919 map_bh(bh, inode->i_sb, map.m_pblk); 920 ext4_update_bh_state(bh, map.m_flags); 921 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 922 ret = 0; 923 } else if (ret == 0) { 924 /* hole case, need to fill in bh->b_size */ 925 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 926 } 927 return ret; 928 } 929 930 int ext4_get_block(struct inode *inode, sector_t iblock, 931 struct buffer_head *bh, int create) 932 { 933 return _ext4_get_block(inode, iblock, bh, 934 create ? EXT4_GET_BLOCKS_CREATE : 0); 935 } 936 937 /* 938 * Get block function used when preparing for buffered write if we require 939 * creating an unwritten extent if blocks haven't been allocated. The extent 940 * will be converted to written after the IO is complete. 941 */ 942 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 943 struct buffer_head *bh_result, int create) 944 { 945 int ret = 0; 946 947 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 948 inode->i_ino, create); 949 ret = _ext4_get_block(inode, iblock, bh_result, 950 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 951 952 /* 953 * If the buffer is marked unwritten, mark it as new to make sure it is 954 * zeroed out correctly in case of partial writes. Otherwise, there is 955 * a chance of stale data getting exposed. 956 */ 957 if (ret == 0 && buffer_unwritten(bh_result)) 958 set_buffer_new(bh_result); 959 960 return ret; 961 } 962 963 /* Maximum number of blocks we map for direct IO at once. */ 964 #define DIO_MAX_BLOCKS 4096 965 966 /* 967 * `handle' can be NULL if create is zero 968 */ 969 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 970 ext4_lblk_t block, int map_flags) 971 { 972 struct ext4_map_blocks map; 973 struct buffer_head *bh; 974 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 975 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 976 int err; 977 978 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 979 || handle != NULL || create == 0); 980 ASSERT(create == 0 || !nowait); 981 982 map.m_lblk = block; 983 map.m_len = 1; 984 err = ext4_map_blocks(handle, inode, &map, map_flags); 985 986 if (err == 0) 987 return create ? ERR_PTR(-ENOSPC) : NULL; 988 if (err < 0) 989 return ERR_PTR(err); 990 991 if (nowait) 992 return sb_find_get_block(inode->i_sb, map.m_pblk); 993 994 /* 995 * Since bh could introduce extra ref count such as referred by 996 * journal_head etc. Try to avoid using __GFP_MOVABLE here 997 * as it may fail the migration when journal_head remains. 998 */ 999 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 1000 inode->i_sb->s_blocksize); 1001 1002 if (unlikely(!bh)) 1003 return ERR_PTR(-ENOMEM); 1004 if (map.m_flags & EXT4_MAP_NEW) { 1005 ASSERT(create != 0); 1006 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1007 || (handle != NULL)); 1008 1009 /* 1010 * Now that we do not always journal data, we should 1011 * keep in mind whether this should always journal the 1012 * new buffer as metadata. For now, regular file 1013 * writes use ext4_get_block instead, so it's not a 1014 * problem. 1015 */ 1016 lock_buffer(bh); 1017 BUFFER_TRACE(bh, "call get_create_access"); 1018 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 1019 EXT4_JTR_NONE); 1020 if (unlikely(err)) { 1021 unlock_buffer(bh); 1022 goto errout; 1023 } 1024 if (!buffer_uptodate(bh)) { 1025 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1026 set_buffer_uptodate(bh); 1027 } 1028 unlock_buffer(bh); 1029 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1030 err = ext4_handle_dirty_metadata(handle, inode, bh); 1031 if (unlikely(err)) 1032 goto errout; 1033 } else 1034 BUFFER_TRACE(bh, "not a new buffer"); 1035 return bh; 1036 errout: 1037 brelse(bh); 1038 return ERR_PTR(err); 1039 } 1040 1041 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1042 ext4_lblk_t block, int map_flags) 1043 { 1044 struct buffer_head *bh; 1045 int ret; 1046 1047 bh = ext4_getblk(handle, inode, block, map_flags); 1048 if (IS_ERR(bh)) 1049 return bh; 1050 if (!bh || ext4_buffer_uptodate(bh)) 1051 return bh; 1052 1053 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 1054 if (ret) { 1055 put_bh(bh); 1056 return ERR_PTR(ret); 1057 } 1058 return bh; 1059 } 1060 1061 /* Read a contiguous batch of blocks. */ 1062 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1063 bool wait, struct buffer_head **bhs) 1064 { 1065 int i, err; 1066 1067 for (i = 0; i < bh_count; i++) { 1068 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1069 if (IS_ERR(bhs[i])) { 1070 err = PTR_ERR(bhs[i]); 1071 bh_count = i; 1072 goto out_brelse; 1073 } 1074 } 1075 1076 for (i = 0; i < bh_count; i++) 1077 /* Note that NULL bhs[i] is valid because of holes. */ 1078 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 1079 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 1080 1081 if (!wait) 1082 return 0; 1083 1084 for (i = 0; i < bh_count; i++) 1085 if (bhs[i]) 1086 wait_on_buffer(bhs[i]); 1087 1088 for (i = 0; i < bh_count; i++) { 1089 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1090 err = -EIO; 1091 goto out_brelse; 1092 } 1093 } 1094 return 0; 1095 1096 out_brelse: 1097 for (i = 0; i < bh_count; i++) { 1098 brelse(bhs[i]); 1099 bhs[i] = NULL; 1100 } 1101 return err; 1102 } 1103 1104 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 1105 struct buffer_head *head, 1106 unsigned from, 1107 unsigned to, 1108 int *partial, 1109 int (*fn)(handle_t *handle, struct inode *inode, 1110 struct buffer_head *bh)) 1111 { 1112 struct buffer_head *bh; 1113 unsigned block_start, block_end; 1114 unsigned blocksize = head->b_size; 1115 int err, ret = 0; 1116 struct buffer_head *next; 1117 1118 for (bh = head, block_start = 0; 1119 ret == 0 && (bh != head || !block_start); 1120 block_start = block_end, bh = next) { 1121 next = bh->b_this_page; 1122 block_end = block_start + blocksize; 1123 if (block_end <= from || block_start >= to) { 1124 if (partial && !buffer_uptodate(bh)) 1125 *partial = 1; 1126 continue; 1127 } 1128 err = (*fn)(handle, inode, bh); 1129 if (!ret) 1130 ret = err; 1131 } 1132 return ret; 1133 } 1134 1135 /* 1136 * Helper for handling dirtying of journalled data. We also mark the folio as 1137 * dirty so that writeback code knows about this page (and inode) contains 1138 * dirty data. ext4_writepages() then commits appropriate transaction to 1139 * make data stable. 1140 */ 1141 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1142 { 1143 struct folio *folio = bh->b_folio; 1144 struct inode *inode = folio->mapping->host; 1145 1146 /* only regular files have a_ops */ 1147 if (S_ISREG(inode->i_mode)) 1148 folio_mark_dirty(folio); 1149 return ext4_handle_dirty_metadata(handle, NULL, bh); 1150 } 1151 1152 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1153 struct buffer_head *bh) 1154 { 1155 if (!buffer_mapped(bh) || buffer_freed(bh)) 1156 return 0; 1157 BUFFER_TRACE(bh, "get write access"); 1158 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1159 EXT4_JTR_NONE); 1160 } 1161 1162 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1163 loff_t pos, unsigned len, 1164 get_block_t *get_block) 1165 { 1166 unsigned int from = offset_in_folio(folio, pos); 1167 unsigned to = from + len; 1168 struct inode *inode = folio->mapping->host; 1169 unsigned block_start, block_end; 1170 sector_t block; 1171 int err = 0; 1172 unsigned int blocksize = i_blocksize(inode); 1173 struct buffer_head *bh, *head, *wait[2]; 1174 int nr_wait = 0; 1175 int i; 1176 bool should_journal_data = ext4_should_journal_data(inode); 1177 1178 BUG_ON(!folio_test_locked(folio)); 1179 BUG_ON(to > folio_size(folio)); 1180 BUG_ON(from > to); 1181 WARN_ON_ONCE(blocksize > folio_size(folio)); 1182 1183 head = folio_buffers(folio); 1184 if (!head) 1185 head = create_empty_buffers(folio, blocksize, 0); 1186 block = EXT4_PG_TO_LBLK(inode, folio->index); 1187 1188 for (bh = head, block_start = 0; bh != head || !block_start; 1189 block++, block_start = block_end, bh = bh->b_this_page) { 1190 block_end = block_start + blocksize; 1191 if (block_end <= from || block_start >= to) { 1192 if (folio_test_uptodate(folio)) { 1193 set_buffer_uptodate(bh); 1194 } 1195 continue; 1196 } 1197 if (WARN_ON_ONCE(buffer_new(bh))) 1198 clear_buffer_new(bh); 1199 if (!buffer_mapped(bh)) { 1200 WARN_ON(bh->b_size != blocksize); 1201 err = ext4_journal_ensure_extent_credits(handle, inode); 1202 if (!err) 1203 err = get_block(inode, block, bh, 1); 1204 if (err) 1205 break; 1206 if (buffer_new(bh)) { 1207 /* 1208 * We may be zeroing partial buffers or all new 1209 * buffers in case of failure. Prepare JBD2 for 1210 * that. 1211 */ 1212 if (should_journal_data) 1213 do_journal_get_write_access(handle, 1214 inode, bh); 1215 if (folio_test_uptodate(folio)) { 1216 /* 1217 * Unlike __block_write_begin() we leave 1218 * dirtying of new uptodate buffers to 1219 * ->write_end() time or 1220 * folio_zero_new_buffers(). 1221 */ 1222 set_buffer_uptodate(bh); 1223 continue; 1224 } 1225 if (block_end > to || block_start < from) 1226 folio_zero_segments(folio, to, 1227 block_end, 1228 block_start, from); 1229 continue; 1230 } 1231 } 1232 if (folio_test_uptodate(folio)) { 1233 set_buffer_uptodate(bh); 1234 continue; 1235 } 1236 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1237 !buffer_unwritten(bh) && 1238 (block_start < from || block_end > to)) { 1239 ext4_read_bh_lock(bh, 0, false); 1240 wait[nr_wait++] = bh; 1241 } 1242 } 1243 /* 1244 * If we issued read requests, let them complete. 1245 */ 1246 for (i = 0; i < nr_wait; i++) { 1247 wait_on_buffer(wait[i]); 1248 if (!buffer_uptodate(wait[i])) 1249 err = -EIO; 1250 } 1251 if (unlikely(err)) { 1252 if (should_journal_data) 1253 ext4_journalled_zero_new_buffers(handle, inode, folio, 1254 from, to); 1255 else 1256 folio_zero_new_buffers(folio, from, to); 1257 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1258 for (i = 0; i < nr_wait; i++) { 1259 int err2; 1260 1261 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1262 blocksize, bh_offset(wait[i])); 1263 if (err2) { 1264 clear_buffer_uptodate(wait[i]); 1265 err = err2; 1266 } 1267 } 1268 } 1269 1270 return err; 1271 } 1272 1273 /* 1274 * To preserve ordering, it is essential that the hole instantiation and 1275 * the data write be encapsulated in a single transaction. We cannot 1276 * close off a transaction and start a new one between the ext4_get_block() 1277 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1278 * ext4_write_begin() is the right place. 1279 */ 1280 static int ext4_write_begin(const struct kiocb *iocb, 1281 struct address_space *mapping, 1282 loff_t pos, unsigned len, 1283 struct folio **foliop, void **fsdata) 1284 { 1285 struct inode *inode = mapping->host; 1286 int ret, needed_blocks; 1287 handle_t *handle; 1288 int retries = 0; 1289 struct folio *folio; 1290 pgoff_t index; 1291 unsigned from, to; 1292 1293 ret = ext4_emergency_state(inode->i_sb); 1294 if (unlikely(ret)) 1295 return ret; 1296 1297 trace_ext4_write_begin(inode, pos, len); 1298 /* 1299 * Reserve one block more for addition to orphan list in case 1300 * we allocate blocks but write fails for some reason 1301 */ 1302 needed_blocks = ext4_chunk_trans_extent(inode, 1303 ext4_journal_blocks_per_folio(inode)) + 1; 1304 index = pos >> PAGE_SHIFT; 1305 1306 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1307 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1308 foliop); 1309 if (ret < 0) 1310 return ret; 1311 if (ret == 1) 1312 return 0; 1313 } 1314 1315 /* 1316 * write_begin_get_folio() can take a long time if the 1317 * system is thrashing due to memory pressure, or if the folio 1318 * is being written back. So grab it first before we start 1319 * the transaction handle. This also allows us to allocate 1320 * the folio (if needed) without using GFP_NOFS. 1321 */ 1322 retry_grab: 1323 folio = write_begin_get_folio(iocb, mapping, index, len); 1324 if (IS_ERR(folio)) 1325 return PTR_ERR(folio); 1326 1327 if (len > folio_next_pos(folio) - pos) 1328 len = folio_next_pos(folio) - pos; 1329 1330 from = offset_in_folio(folio, pos); 1331 to = from + len; 1332 1333 /* 1334 * The same as page allocation, we prealloc buffer heads before 1335 * starting the handle. 1336 */ 1337 if (!folio_buffers(folio)) 1338 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1339 1340 folio_unlock(folio); 1341 1342 retry_journal: 1343 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1344 if (IS_ERR(handle)) { 1345 folio_put(folio); 1346 return PTR_ERR(handle); 1347 } 1348 1349 folio_lock(folio); 1350 if (folio->mapping != mapping) { 1351 /* The folio got truncated from under us */ 1352 folio_unlock(folio); 1353 folio_put(folio); 1354 ext4_journal_stop(handle); 1355 goto retry_grab; 1356 } 1357 /* In case writeback began while the folio was unlocked */ 1358 folio_wait_stable(folio); 1359 1360 if (ext4_should_dioread_nolock(inode)) 1361 ret = ext4_block_write_begin(handle, folio, pos, len, 1362 ext4_get_block_unwritten); 1363 else 1364 ret = ext4_block_write_begin(handle, folio, pos, len, 1365 ext4_get_block); 1366 if (!ret && ext4_should_journal_data(inode)) { 1367 ret = ext4_walk_page_buffers(handle, inode, 1368 folio_buffers(folio), from, to, 1369 NULL, do_journal_get_write_access); 1370 } 1371 1372 if (ret) { 1373 bool extended = (pos + len > inode->i_size) && 1374 !ext4_verity_in_progress(inode); 1375 1376 folio_unlock(folio); 1377 /* 1378 * ext4_block_write_begin may have instantiated a few blocks 1379 * outside i_size. Trim these off again. Don't need 1380 * i_size_read because we hold i_rwsem. 1381 * 1382 * Add inode to orphan list in case we crash before 1383 * truncate finishes 1384 */ 1385 if (extended && ext4_can_truncate(inode)) 1386 ext4_orphan_add(handle, inode); 1387 1388 ext4_journal_stop(handle); 1389 if (extended) { 1390 ext4_truncate_failed_write(inode); 1391 /* 1392 * If truncate failed early the inode might 1393 * still be on the orphan list; we need to 1394 * make sure the inode is removed from the 1395 * orphan list in that case. 1396 */ 1397 if (inode->i_nlink) 1398 ext4_orphan_del(NULL, inode); 1399 } 1400 1401 if (ret == -EAGAIN || 1402 (ret == -ENOSPC && 1403 ext4_should_retry_alloc(inode->i_sb, &retries))) 1404 goto retry_journal; 1405 folio_put(folio); 1406 return ret; 1407 } 1408 *foliop = folio; 1409 return ret; 1410 } 1411 1412 /* For write_end() in data=journal mode */ 1413 static int write_end_fn(handle_t *handle, struct inode *inode, 1414 struct buffer_head *bh) 1415 { 1416 int ret; 1417 if (!buffer_mapped(bh) || buffer_freed(bh)) 1418 return 0; 1419 set_buffer_uptodate(bh); 1420 ret = ext4_dirty_journalled_data(handle, bh); 1421 clear_buffer_meta(bh); 1422 clear_buffer_prio(bh); 1423 clear_buffer_new(bh); 1424 return ret; 1425 } 1426 1427 /* 1428 * We need to pick up the new inode size which generic_commit_write gave us 1429 * `iocb` can be NULL - eg, when called from page_symlink(). 1430 * 1431 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1432 * buffers are managed internally. 1433 */ 1434 static int ext4_write_end(const struct kiocb *iocb, 1435 struct address_space *mapping, 1436 loff_t pos, unsigned len, unsigned copied, 1437 struct folio *folio, void *fsdata) 1438 { 1439 handle_t *handle = ext4_journal_current_handle(); 1440 struct inode *inode = mapping->host; 1441 loff_t old_size = inode->i_size; 1442 int ret = 0, ret2; 1443 int i_size_changed = 0; 1444 bool verity = ext4_verity_in_progress(inode); 1445 1446 trace_ext4_write_end(inode, pos, len, copied); 1447 1448 if (ext4_has_inline_data(inode) && 1449 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1450 return ext4_write_inline_data_end(inode, pos, len, copied, 1451 folio); 1452 1453 copied = block_write_end(pos, len, copied, folio); 1454 /* 1455 * it's important to update i_size while still holding folio lock: 1456 * page writeout could otherwise come in and zero beyond i_size. 1457 * 1458 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1459 * blocks are being written past EOF, so skip the i_size update. 1460 */ 1461 if (!verity) 1462 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1463 folio_unlock(folio); 1464 folio_put(folio); 1465 1466 if (old_size < pos && !verity) { 1467 pagecache_isize_extended(inode, old_size, pos); 1468 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1469 } 1470 /* 1471 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1472 * makes the holding time of folio lock longer. Second, it forces lock 1473 * ordering of folio lock and transaction start for journaling 1474 * filesystems. 1475 */ 1476 if (i_size_changed) 1477 ret = ext4_mark_inode_dirty(handle, inode); 1478 1479 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1480 /* if we have allocated more blocks and copied 1481 * less. We will have blocks allocated outside 1482 * inode->i_size. So truncate them 1483 */ 1484 ext4_orphan_add(handle, inode); 1485 1486 ret2 = ext4_journal_stop(handle); 1487 if (!ret) 1488 ret = ret2; 1489 1490 if (pos + len > inode->i_size && !verity) { 1491 ext4_truncate_failed_write(inode); 1492 /* 1493 * If truncate failed early the inode might still be 1494 * on the orphan list; we need to make sure the inode 1495 * is removed from the orphan list in that case. 1496 */ 1497 if (inode->i_nlink) 1498 ext4_orphan_del(NULL, inode); 1499 } 1500 1501 return ret ? ret : copied; 1502 } 1503 1504 /* 1505 * This is a private version of folio_zero_new_buffers() which doesn't 1506 * set the buffer to be dirty, since in data=journalled mode we need 1507 * to call ext4_dirty_journalled_data() instead. 1508 */ 1509 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1510 struct inode *inode, 1511 struct folio *folio, 1512 unsigned from, unsigned to) 1513 { 1514 unsigned int block_start = 0, block_end; 1515 struct buffer_head *head, *bh; 1516 1517 bh = head = folio_buffers(folio); 1518 do { 1519 block_end = block_start + bh->b_size; 1520 if (buffer_new(bh)) { 1521 if (block_end > from && block_start < to) { 1522 if (!folio_test_uptodate(folio)) { 1523 unsigned start, size; 1524 1525 start = max(from, block_start); 1526 size = min(to, block_end) - start; 1527 1528 folio_zero_range(folio, start, size); 1529 } 1530 clear_buffer_new(bh); 1531 write_end_fn(handle, inode, bh); 1532 } 1533 } 1534 block_start = block_end; 1535 bh = bh->b_this_page; 1536 } while (bh != head); 1537 } 1538 1539 static int ext4_journalled_write_end(const struct kiocb *iocb, 1540 struct address_space *mapping, 1541 loff_t pos, unsigned len, unsigned copied, 1542 struct folio *folio, void *fsdata) 1543 { 1544 handle_t *handle = ext4_journal_current_handle(); 1545 struct inode *inode = mapping->host; 1546 loff_t old_size = inode->i_size; 1547 int ret = 0, ret2; 1548 int partial = 0; 1549 unsigned from, to; 1550 int size_changed = 0; 1551 bool verity = ext4_verity_in_progress(inode); 1552 1553 trace_ext4_journalled_write_end(inode, pos, len, copied); 1554 from = pos & (PAGE_SIZE - 1); 1555 to = from + len; 1556 1557 BUG_ON(!ext4_handle_valid(handle)); 1558 1559 if (ext4_has_inline_data(inode)) 1560 return ext4_write_inline_data_end(inode, pos, len, copied, 1561 folio); 1562 1563 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1564 copied = 0; 1565 ext4_journalled_zero_new_buffers(handle, inode, folio, 1566 from, to); 1567 } else { 1568 if (unlikely(copied < len)) 1569 ext4_journalled_zero_new_buffers(handle, inode, folio, 1570 from + copied, to); 1571 ret = ext4_walk_page_buffers(handle, inode, 1572 folio_buffers(folio), 1573 from, from + copied, &partial, 1574 write_end_fn); 1575 if (!partial) 1576 folio_mark_uptodate(folio); 1577 } 1578 if (!verity) 1579 size_changed = ext4_update_inode_size(inode, pos + copied); 1580 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1581 folio_unlock(folio); 1582 folio_put(folio); 1583 1584 if (old_size < pos && !verity) { 1585 pagecache_isize_extended(inode, old_size, pos); 1586 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1587 } 1588 1589 if (size_changed) { 1590 ret2 = ext4_mark_inode_dirty(handle, inode); 1591 if (!ret) 1592 ret = ret2; 1593 } 1594 1595 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1596 /* if we have allocated more blocks and copied 1597 * less. We will have blocks allocated outside 1598 * inode->i_size. So truncate them 1599 */ 1600 ext4_orphan_add(handle, inode); 1601 1602 ret2 = ext4_journal_stop(handle); 1603 if (!ret) 1604 ret = ret2; 1605 if (pos + len > inode->i_size && !verity) { 1606 ext4_truncate_failed_write(inode); 1607 /* 1608 * If truncate failed early the inode might still be 1609 * on the orphan list; we need to make sure the inode 1610 * is removed from the orphan list in that case. 1611 */ 1612 if (inode->i_nlink) 1613 ext4_orphan_del(NULL, inode); 1614 } 1615 1616 return ret ? ret : copied; 1617 } 1618 1619 /* 1620 * Reserve space for 'nr_resv' clusters 1621 */ 1622 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1623 { 1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1625 struct ext4_inode_info *ei = EXT4_I(inode); 1626 int ret; 1627 1628 /* 1629 * We will charge metadata quota at writeout time; this saves 1630 * us from metadata over-estimation, though we may go over by 1631 * a small amount in the end. Here we just reserve for data. 1632 */ 1633 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1634 if (ret) 1635 return ret; 1636 1637 spin_lock(&ei->i_block_reservation_lock); 1638 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1639 spin_unlock(&ei->i_block_reservation_lock); 1640 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1641 return -ENOSPC; 1642 } 1643 ei->i_reserved_data_blocks += nr_resv; 1644 trace_ext4_da_reserve_space(inode, nr_resv); 1645 spin_unlock(&ei->i_block_reservation_lock); 1646 1647 return 0; /* success */ 1648 } 1649 1650 void ext4_da_release_space(struct inode *inode, int to_free) 1651 { 1652 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1653 struct ext4_inode_info *ei = EXT4_I(inode); 1654 1655 if (!to_free) 1656 return; /* Nothing to release, exit */ 1657 1658 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1659 1660 trace_ext4_da_release_space(inode, to_free); 1661 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1662 /* 1663 * if there aren't enough reserved blocks, then the 1664 * counter is messed up somewhere. Since this 1665 * function is called from invalidate page, it's 1666 * harmless to return without any action. 1667 */ 1668 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1669 "ino %lu, to_free %d with only %d reserved " 1670 "data blocks", inode->i_ino, to_free, 1671 ei->i_reserved_data_blocks); 1672 WARN_ON(1); 1673 to_free = ei->i_reserved_data_blocks; 1674 } 1675 ei->i_reserved_data_blocks -= to_free; 1676 1677 /* update fs dirty data blocks counter */ 1678 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1679 1680 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1681 1682 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1683 } 1684 1685 /* 1686 * Delayed allocation stuff 1687 */ 1688 1689 struct mpage_da_data { 1690 /* These are input fields for ext4_do_writepages() */ 1691 struct inode *inode; 1692 struct writeback_control *wbc; 1693 unsigned int can_map:1; /* Can writepages call map blocks? */ 1694 1695 /* These are internal state of ext4_do_writepages() */ 1696 loff_t start_pos; /* The start pos to write */ 1697 loff_t next_pos; /* Current pos to examine */ 1698 loff_t end_pos; /* Last pos to examine */ 1699 1700 /* 1701 * Extent to map - this can be after start_pos because that can be 1702 * fully mapped. We somewhat abuse m_flags to store whether the extent 1703 * is delalloc or unwritten. 1704 */ 1705 struct ext4_map_blocks map; 1706 struct ext4_io_submit io_submit; /* IO submission data */ 1707 unsigned int do_map:1; 1708 unsigned int scanned_until_end:1; 1709 unsigned int journalled_more_data:1; 1710 }; 1711 1712 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1713 bool invalidate) 1714 { 1715 unsigned nr, i; 1716 pgoff_t index, end; 1717 struct folio_batch fbatch; 1718 struct inode *inode = mpd->inode; 1719 struct address_space *mapping = inode->i_mapping; 1720 1721 /* This is necessary when next_pos == 0. */ 1722 if (mpd->start_pos >= mpd->next_pos) 1723 return; 1724 1725 mpd->scanned_until_end = 0; 1726 if (invalidate) { 1727 ext4_lblk_t start, last; 1728 start = EXT4_B_TO_LBLK(inode, mpd->start_pos); 1729 last = mpd->next_pos >> inode->i_blkbits; 1730 1731 /* 1732 * avoid racing with extent status tree scans made by 1733 * ext4_insert_delayed_block() 1734 */ 1735 down_write(&EXT4_I(inode)->i_data_sem); 1736 ext4_es_remove_extent(inode, start, last - start); 1737 up_write(&EXT4_I(inode)->i_data_sem); 1738 } 1739 1740 folio_batch_init(&fbatch); 1741 index = mpd->start_pos >> PAGE_SHIFT; 1742 end = mpd->next_pos >> PAGE_SHIFT; 1743 while (index < end) { 1744 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1745 if (nr == 0) 1746 break; 1747 for (i = 0; i < nr; i++) { 1748 struct folio *folio = fbatch.folios[i]; 1749 1750 if (folio_pos(folio) < mpd->start_pos) 1751 continue; 1752 if (folio_next_index(folio) > end) 1753 continue; 1754 BUG_ON(!folio_test_locked(folio)); 1755 BUG_ON(folio_test_writeback(folio)); 1756 if (invalidate) { 1757 if (folio_mapped(folio)) 1758 folio_clear_dirty_for_io(folio); 1759 block_invalidate_folio(folio, 0, 1760 folio_size(folio)); 1761 folio_clear_uptodate(folio); 1762 } 1763 folio_unlock(folio); 1764 } 1765 folio_batch_release(&fbatch); 1766 } 1767 } 1768 1769 static void ext4_print_free_blocks(struct inode *inode) 1770 { 1771 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1772 struct super_block *sb = inode->i_sb; 1773 struct ext4_inode_info *ei = EXT4_I(inode); 1774 1775 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1776 EXT4_C2B(EXT4_SB(inode->i_sb), 1777 ext4_count_free_clusters(sb))); 1778 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1779 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1780 (long long) EXT4_C2B(EXT4_SB(sb), 1781 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1782 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1783 (long long) EXT4_C2B(EXT4_SB(sb), 1784 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1785 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1786 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1787 ei->i_reserved_data_blocks); 1788 return; 1789 } 1790 1791 /* 1792 * Check whether the cluster containing lblk has been allocated or has 1793 * delalloc reservation. 1794 * 1795 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1796 * reservation, 2 if it's already been allocated, negative error code on 1797 * failure. 1798 */ 1799 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1800 { 1801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1802 int ret; 1803 1804 /* Has delalloc reservation? */ 1805 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1806 return 1; 1807 1808 /* Already been allocated? */ 1809 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1810 return 2; 1811 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1812 if (ret < 0) 1813 return ret; 1814 if (ret > 0) 1815 return 2; 1816 1817 return 0; 1818 } 1819 1820 /* 1821 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1822 * status tree, incrementing the reserved 1823 * cluster/block count or making pending 1824 * reservations where needed 1825 * 1826 * @inode - file containing the newly added block 1827 * @lblk - start logical block to be added 1828 * @len - length of blocks to be added 1829 * 1830 * Returns 0 on success, negative error code on failure. 1831 */ 1832 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1833 ext4_lblk_t len) 1834 { 1835 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1836 int ret; 1837 bool lclu_allocated = false; 1838 bool end_allocated = false; 1839 ext4_lblk_t resv_clu; 1840 ext4_lblk_t end = lblk + len - 1; 1841 1842 /* 1843 * If the cluster containing lblk or end is shared with a delayed, 1844 * written, or unwritten extent in a bigalloc file system, it's 1845 * already been accounted for and does not need to be reserved. 1846 * A pending reservation must be made for the cluster if it's 1847 * shared with a written or unwritten extent and doesn't already 1848 * have one. Written and unwritten extents can be purged from the 1849 * extents status tree if the system is under memory pressure, so 1850 * it's necessary to examine the extent tree if a search of the 1851 * extents status tree doesn't get a match. 1852 */ 1853 if (sbi->s_cluster_ratio == 1) { 1854 ret = ext4_da_reserve_space(inode, len); 1855 if (ret != 0) /* ENOSPC */ 1856 return ret; 1857 } else { /* bigalloc */ 1858 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1859 1860 ret = ext4_clu_alloc_state(inode, lblk); 1861 if (ret < 0) 1862 return ret; 1863 if (ret > 0) { 1864 resv_clu--; 1865 lclu_allocated = (ret == 2); 1866 } 1867 1868 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1869 ret = ext4_clu_alloc_state(inode, end); 1870 if (ret < 0) 1871 return ret; 1872 if (ret > 0) { 1873 resv_clu--; 1874 end_allocated = (ret == 2); 1875 } 1876 } 1877 1878 if (resv_clu) { 1879 ret = ext4_da_reserve_space(inode, resv_clu); 1880 if (ret != 0) /* ENOSPC */ 1881 return ret; 1882 } 1883 } 1884 1885 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1886 end_allocated); 1887 return 0; 1888 } 1889 1890 /* 1891 * Looks up the requested blocks and sets the delalloc extent map. 1892 * First try to look up for the extent entry that contains the requested 1893 * blocks in the extent status tree without i_data_sem, then try to look 1894 * up for the ondisk extent mapping with i_data_sem in read mode, 1895 * finally hold i_data_sem in write mode, looks up again and add a 1896 * delalloc extent entry if it still couldn't find any extent. Pass out 1897 * the mapped extent through @map and return 0 on success. 1898 */ 1899 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1900 { 1901 struct extent_status es; 1902 int retval; 1903 #ifdef ES_AGGRESSIVE_TEST 1904 struct ext4_map_blocks orig_map; 1905 1906 memcpy(&orig_map, map, sizeof(*map)); 1907 #endif 1908 1909 map->m_flags = 0; 1910 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1911 (unsigned long) map->m_lblk); 1912 1913 ext4_check_map_extents_env(inode); 1914 1915 /* Lookup extent status tree firstly */ 1916 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) { 1917 map->m_len = min_t(unsigned int, map->m_len, 1918 es.es_len - (map->m_lblk - es.es_lblk)); 1919 1920 if (ext4_es_is_hole(&es)) 1921 goto add_delayed; 1922 1923 found: 1924 /* 1925 * Delayed extent could be allocated by fallocate. 1926 * So we need to check it. 1927 */ 1928 if (ext4_es_is_delayed(&es)) { 1929 map->m_flags |= EXT4_MAP_DELAYED; 1930 return 0; 1931 } 1932 1933 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1934 if (ext4_es_is_written(&es)) 1935 map->m_flags |= EXT4_MAP_MAPPED; 1936 else if (ext4_es_is_unwritten(&es)) 1937 map->m_flags |= EXT4_MAP_UNWRITTEN; 1938 else 1939 BUG(); 1940 1941 #ifdef ES_AGGRESSIVE_TEST 1942 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1943 #endif 1944 return 0; 1945 } 1946 1947 /* 1948 * Try to see if we can get the block without requesting a new 1949 * file system block. 1950 */ 1951 down_read(&EXT4_I(inode)->i_data_sem); 1952 if (ext4_has_inline_data(inode)) 1953 retval = 0; 1954 else 1955 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1956 up_read(&EXT4_I(inode)->i_data_sem); 1957 if (retval) 1958 return retval < 0 ? retval : 0; 1959 1960 add_delayed: 1961 down_write(&EXT4_I(inode)->i_data_sem); 1962 /* 1963 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1964 * and fallocate path (no folio lock) can race. Make sure we 1965 * lookup the extent status tree here again while i_data_sem 1966 * is held in write mode, before inserting a new da entry in 1967 * the extent status tree. 1968 */ 1969 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) { 1970 map->m_len = min_t(unsigned int, map->m_len, 1971 es.es_len - (map->m_lblk - es.es_lblk)); 1972 1973 if (!ext4_es_is_hole(&es)) { 1974 up_write(&EXT4_I(inode)->i_data_sem); 1975 goto found; 1976 } 1977 } else if (!ext4_has_inline_data(inode)) { 1978 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1979 if (retval) { 1980 up_write(&EXT4_I(inode)->i_data_sem); 1981 return retval < 0 ? retval : 0; 1982 } 1983 } 1984 1985 map->m_flags |= EXT4_MAP_DELAYED; 1986 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1987 if (!retval) 1988 map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq); 1989 up_write(&EXT4_I(inode)->i_data_sem); 1990 1991 return retval; 1992 } 1993 1994 /* 1995 * This is a special get_block_t callback which is used by 1996 * ext4_da_write_begin(). It will either return mapped block or 1997 * reserve space for a single block. 1998 * 1999 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2000 * We also have b_blocknr = -1 and b_bdev initialized properly 2001 * 2002 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2003 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2004 * initialized properly. 2005 */ 2006 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2007 struct buffer_head *bh, int create) 2008 { 2009 struct ext4_map_blocks map; 2010 sector_t invalid_block = ~((sector_t) 0xffff); 2011 int ret = 0; 2012 2013 BUG_ON(create == 0); 2014 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2015 2016 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2017 invalid_block = ~0; 2018 2019 map.m_lblk = iblock; 2020 map.m_len = 1; 2021 2022 /* 2023 * first, we need to know whether the block is allocated already 2024 * preallocated blocks are unmapped but should treated 2025 * the same as allocated blocks. 2026 */ 2027 ret = ext4_da_map_blocks(inode, &map); 2028 if (ret < 0) 2029 return ret; 2030 2031 if (map.m_flags & EXT4_MAP_DELAYED) { 2032 map_bh(bh, inode->i_sb, invalid_block); 2033 set_buffer_new(bh); 2034 set_buffer_delay(bh); 2035 return 0; 2036 } 2037 2038 map_bh(bh, inode->i_sb, map.m_pblk); 2039 ext4_update_bh_state(bh, map.m_flags); 2040 2041 if (buffer_unwritten(bh)) { 2042 /* A delayed write to unwritten bh should be marked 2043 * new and mapped. Mapped ensures that we don't do 2044 * get_block multiple times when we write to the same 2045 * offset and new ensures that we do proper zero out 2046 * for partial write. 2047 */ 2048 set_buffer_new(bh); 2049 set_buffer_mapped(bh); 2050 } 2051 return 0; 2052 } 2053 2054 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 2055 { 2056 mpd->start_pos += folio_size(folio); 2057 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2058 folio_unlock(folio); 2059 } 2060 2061 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 2062 { 2063 size_t len; 2064 loff_t size; 2065 int err; 2066 2067 WARN_ON_ONCE(folio_pos(folio) != mpd->start_pos); 2068 folio_clear_dirty_for_io(folio); 2069 /* 2070 * We have to be very careful here! Nothing protects writeback path 2071 * against i_size changes and the page can be writeably mapped into 2072 * page tables. So an application can be growing i_size and writing 2073 * data through mmap while writeback runs. folio_clear_dirty_for_io() 2074 * write-protects our page in page tables and the page cannot get 2075 * written to again until we release folio lock. So only after 2076 * folio_clear_dirty_for_io() we are safe to sample i_size for 2077 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 2078 * on the barrier provided by folio_test_clear_dirty() in 2079 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 2080 * after page tables are updated. 2081 */ 2082 size = i_size_read(mpd->inode); 2083 len = folio_size(folio); 2084 if (folio_pos(folio) + len > size && 2085 !ext4_verity_in_progress(mpd->inode)) 2086 len = size & (len - 1); 2087 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 2088 2089 return err; 2090 } 2091 2092 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2093 2094 /* 2095 * mballoc gives us at most this number of blocks... 2096 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2097 * The rest of mballoc seems to handle chunks up to full group size. 2098 */ 2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2100 2101 /* 2102 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2103 * 2104 * @mpd - extent of blocks 2105 * @lblk - logical number of the block in the file 2106 * @bh - buffer head we want to add to the extent 2107 * 2108 * The function is used to collect contig. blocks in the same state. If the 2109 * buffer doesn't require mapping for writeback and we haven't started the 2110 * extent of buffers to map yet, the function returns 'true' immediately - the 2111 * caller can write the buffer right away. Otherwise the function returns true 2112 * if the block has been added to the extent, false if the block couldn't be 2113 * added. 2114 */ 2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2116 struct buffer_head *bh) 2117 { 2118 struct ext4_map_blocks *map = &mpd->map; 2119 2120 /* Buffer that doesn't need mapping for writeback? */ 2121 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2122 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2123 /* So far no extent to map => we write the buffer right away */ 2124 if (map->m_len == 0) 2125 return true; 2126 return false; 2127 } 2128 2129 /* First block in the extent? */ 2130 if (map->m_len == 0) { 2131 /* We cannot map unless handle is started... */ 2132 if (!mpd->do_map) 2133 return false; 2134 map->m_lblk = lblk; 2135 map->m_len = 1; 2136 map->m_flags = bh->b_state & BH_FLAGS; 2137 return true; 2138 } 2139 2140 /* Don't go larger than mballoc is willing to allocate */ 2141 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2142 return false; 2143 2144 /* Can we merge the block to our big extent? */ 2145 if (lblk == map->m_lblk + map->m_len && 2146 (bh->b_state & BH_FLAGS) == map->m_flags) { 2147 map->m_len++; 2148 return true; 2149 } 2150 return false; 2151 } 2152 2153 /* 2154 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2155 * 2156 * @mpd - extent of blocks for mapping 2157 * @head - the first buffer in the page 2158 * @bh - buffer we should start processing from 2159 * @lblk - logical number of the block in the file corresponding to @bh 2160 * 2161 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2162 * the page for IO if all buffers in this page were mapped and there's no 2163 * accumulated extent of buffers to map or add buffers in the page to the 2164 * extent of buffers to map. The function returns 1 if the caller can continue 2165 * by processing the next page, 0 if it should stop adding buffers to the 2166 * extent to map because we cannot extend it anymore. It can also return value 2167 * < 0 in case of error during IO submission. 2168 */ 2169 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2170 struct buffer_head *head, 2171 struct buffer_head *bh, 2172 ext4_lblk_t lblk) 2173 { 2174 struct inode *inode = mpd->inode; 2175 int err; 2176 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2177 >> inode->i_blkbits; 2178 2179 if (ext4_verity_in_progress(inode)) 2180 blocks = EXT_MAX_BLOCKS; 2181 2182 do { 2183 BUG_ON(buffer_locked(bh)); 2184 2185 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2186 /* Found extent to map? */ 2187 if (mpd->map.m_len) 2188 return 0; 2189 /* Buffer needs mapping and handle is not started? */ 2190 if (!mpd->do_map) 2191 return 0; 2192 /* Everything mapped so far and we hit EOF */ 2193 break; 2194 } 2195 } while (lblk++, (bh = bh->b_this_page) != head); 2196 /* So far everything mapped? Submit the page for IO. */ 2197 if (mpd->map.m_len == 0) { 2198 err = mpage_submit_folio(mpd, head->b_folio); 2199 if (err < 0) 2200 return err; 2201 mpage_folio_done(mpd, head->b_folio); 2202 } 2203 if (lblk >= blocks) { 2204 mpd->scanned_until_end = 1; 2205 return 0; 2206 } 2207 return 1; 2208 } 2209 2210 /* 2211 * mpage_process_folio - update folio buffers corresponding to changed extent 2212 * and may submit fully mapped page for IO 2213 * @mpd: description of extent to map, on return next extent to map 2214 * @folio: Contains these buffers. 2215 * @m_lblk: logical block mapping. 2216 * @m_pblk: corresponding physical mapping. 2217 * @map_bh: determines on return whether this page requires any further 2218 * mapping or not. 2219 * 2220 * Scan given folio buffers corresponding to changed extent and update buffer 2221 * state according to new extent state. 2222 * We map delalloc buffers to their physical location, clear unwritten bits. 2223 * If the given folio is not fully mapped, we update @mpd to the next extent in 2224 * the given folio that needs mapping & return @map_bh as true. 2225 */ 2226 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2227 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2228 bool *map_bh) 2229 { 2230 struct buffer_head *head, *bh; 2231 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2232 ext4_lblk_t lblk = *m_lblk; 2233 ext4_fsblk_t pblock = *m_pblk; 2234 int err = 0; 2235 ssize_t io_end_size = 0; 2236 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2237 2238 bh = head = folio_buffers(folio); 2239 do { 2240 if (lblk < mpd->map.m_lblk) 2241 continue; 2242 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2243 /* 2244 * Buffer after end of mapped extent. 2245 * Find next buffer in the folio to map. 2246 */ 2247 mpd->map.m_len = 0; 2248 mpd->map.m_flags = 0; 2249 io_end_vec->size += io_end_size; 2250 2251 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2252 if (err > 0) 2253 err = 0; 2254 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2255 io_end_vec = ext4_alloc_io_end_vec(io_end); 2256 if (IS_ERR(io_end_vec)) { 2257 err = PTR_ERR(io_end_vec); 2258 goto out; 2259 } 2260 io_end_vec->offset = EXT4_LBLK_TO_B(mpd->inode, 2261 mpd->map.m_lblk); 2262 } 2263 *map_bh = true; 2264 goto out; 2265 } 2266 if (buffer_delay(bh)) { 2267 clear_buffer_delay(bh); 2268 bh->b_blocknr = pblock++; 2269 } 2270 clear_buffer_unwritten(bh); 2271 io_end_size += i_blocksize(mpd->inode); 2272 } while (lblk++, (bh = bh->b_this_page) != head); 2273 2274 io_end_vec->size += io_end_size; 2275 *map_bh = false; 2276 out: 2277 *m_lblk = lblk; 2278 *m_pblk = pblock; 2279 return err; 2280 } 2281 2282 /* 2283 * mpage_map_buffers - update buffers corresponding to changed extent and 2284 * submit fully mapped pages for IO 2285 * 2286 * @mpd - description of extent to map, on return next extent to map 2287 * 2288 * Scan buffers corresponding to changed extent (we expect corresponding pages 2289 * to be already locked) and update buffer state according to new extent state. 2290 * We map delalloc buffers to their physical location, clear unwritten bits, 2291 * and mark buffers as uninit when we perform writes to unwritten extents 2292 * and do extent conversion after IO is finished. If the last page is not fully 2293 * mapped, we update @map to the next extent in the last page that needs 2294 * mapping. Otherwise we submit the page for IO. 2295 */ 2296 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2297 { 2298 struct folio_batch fbatch; 2299 unsigned nr, i; 2300 struct inode *inode = mpd->inode; 2301 pgoff_t start, end; 2302 ext4_lblk_t lblk; 2303 ext4_fsblk_t pblock; 2304 int err; 2305 bool map_bh = false; 2306 2307 start = EXT4_LBLK_TO_PG(inode, mpd->map.m_lblk); 2308 end = EXT4_LBLK_TO_PG(inode, mpd->map.m_lblk + mpd->map.m_len - 1); 2309 pblock = mpd->map.m_pblk; 2310 2311 folio_batch_init(&fbatch); 2312 while (start <= end) { 2313 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2314 if (nr == 0) 2315 break; 2316 for (i = 0; i < nr; i++) { 2317 struct folio *folio = fbatch.folios[i]; 2318 2319 lblk = EXT4_PG_TO_LBLK(inode, folio->index); 2320 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2321 &map_bh); 2322 /* 2323 * If map_bh is true, means page may require further bh 2324 * mapping, or maybe the page was submitted for IO. 2325 * So we return to call further extent mapping. 2326 */ 2327 if (err < 0 || map_bh) 2328 goto out; 2329 /* Page fully mapped - let IO run! */ 2330 err = mpage_submit_folio(mpd, folio); 2331 if (err < 0) 2332 goto out; 2333 mpage_folio_done(mpd, folio); 2334 } 2335 folio_batch_release(&fbatch); 2336 } 2337 /* Extent fully mapped and matches with page boundary. We are done. */ 2338 mpd->map.m_len = 0; 2339 mpd->map.m_flags = 0; 2340 return 0; 2341 out: 2342 folio_batch_release(&fbatch); 2343 return err; 2344 } 2345 2346 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2347 { 2348 struct inode *inode = mpd->inode; 2349 struct ext4_map_blocks *map = &mpd->map; 2350 int get_blocks_flags; 2351 int err, dioread_nolock; 2352 2353 /* Make sure transaction has enough credits for this extent */ 2354 err = ext4_journal_ensure_extent_credits(handle, inode); 2355 if (err < 0) 2356 return err; 2357 2358 trace_ext4_da_write_pages_extent(inode, map); 2359 /* 2360 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2361 * to convert an unwritten extent to be initialized (in the case 2362 * where we have written into one or more preallocated blocks). It is 2363 * possible that we're going to need more metadata blocks than 2364 * previously reserved. However we must not fail because we're in 2365 * writeback and there is nothing we can do about it so it might result 2366 * in data loss. So use reserved blocks to allocate metadata if 2367 * possible. In addition, do not cache any unrelated extents, as it 2368 * only holds the folio lock but does not hold the i_rwsem or 2369 * invalidate_lock, which could corrupt the extent status tree. 2370 */ 2371 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2372 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2373 EXT4_GET_BLOCKS_IO_SUBMIT | 2374 EXT4_EX_NOCACHE; 2375 2376 dioread_nolock = ext4_should_dioread_nolock(inode); 2377 if (dioread_nolock) 2378 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2379 2380 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2381 if (err < 0) 2382 return err; 2383 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2384 if (!mpd->io_submit.io_end->handle && 2385 ext4_handle_valid(handle)) { 2386 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2387 handle->h_rsv_handle = NULL; 2388 } 2389 ext4_set_io_unwritten_flag(mpd->io_submit.io_end); 2390 } 2391 2392 BUG_ON(map->m_len == 0); 2393 return 0; 2394 } 2395 2396 /* 2397 * This is used to submit mapped buffers in a single folio that is not fully 2398 * mapped for various reasons, such as insufficient space or journal credits. 2399 */ 2400 static int mpage_submit_partial_folio(struct mpage_da_data *mpd) 2401 { 2402 struct inode *inode = mpd->inode; 2403 struct folio *folio; 2404 loff_t pos; 2405 int ret; 2406 2407 folio = filemap_get_folio(inode->i_mapping, 2408 mpd->start_pos >> PAGE_SHIFT); 2409 if (IS_ERR(folio)) 2410 return PTR_ERR(folio); 2411 /* 2412 * The mapped position should be within the current processing folio 2413 * but must not be the folio start position. 2414 */ 2415 pos = ((loff_t)mpd->map.m_lblk) << inode->i_blkbits; 2416 if (WARN_ON_ONCE((folio_pos(folio) == pos) || 2417 !folio_contains(folio, pos >> PAGE_SHIFT))) 2418 return -EINVAL; 2419 2420 ret = mpage_submit_folio(mpd, folio); 2421 if (ret) 2422 goto out; 2423 /* 2424 * Update start_pos to prevent this folio from being released in 2425 * mpage_release_unused_pages(), it will be reset to the aligned folio 2426 * pos when this folio is written again in the next round. Additionally, 2427 * do not update wbc->nr_to_write here, as it will be updated once the 2428 * entire folio has finished processing. 2429 */ 2430 mpd->start_pos = pos; 2431 out: 2432 folio_unlock(folio); 2433 folio_put(folio); 2434 return ret; 2435 } 2436 2437 /* 2438 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2439 * mpd->len and submit pages underlying it for IO 2440 * 2441 * @handle - handle for journal operations 2442 * @mpd - extent to map 2443 * @give_up_on_write - we set this to true iff there is a fatal error and there 2444 * is no hope of writing the data. The caller should discard 2445 * dirty pages to avoid infinite loops. 2446 * 2447 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2448 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2449 * them to initialized or split the described range from larger unwritten 2450 * extent. Note that we need not map all the described range since allocation 2451 * can return less blocks or the range is covered by more unwritten extents. We 2452 * cannot map more because we are limited by reserved transaction credits. On 2453 * the other hand we always make sure that the last touched page is fully 2454 * mapped so that it can be written out (and thus forward progress is 2455 * guaranteed). After mapping we submit all mapped pages for IO. 2456 */ 2457 static int mpage_map_and_submit_extent(handle_t *handle, 2458 struct mpage_da_data *mpd, 2459 bool *give_up_on_write) 2460 { 2461 struct inode *inode = mpd->inode; 2462 struct ext4_map_blocks *map = &mpd->map; 2463 int err; 2464 loff_t disksize; 2465 int progress = 0; 2466 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2467 struct ext4_io_end_vec *io_end_vec; 2468 2469 io_end_vec = ext4_alloc_io_end_vec(io_end); 2470 if (IS_ERR(io_end_vec)) 2471 return PTR_ERR(io_end_vec); 2472 io_end_vec->offset = EXT4_LBLK_TO_B(inode, map->m_lblk); 2473 do { 2474 err = mpage_map_one_extent(handle, mpd); 2475 if (err < 0) { 2476 struct super_block *sb = inode->i_sb; 2477 2478 if (ext4_emergency_state(sb)) 2479 goto invalidate_dirty_pages; 2480 /* 2481 * Let the uper layers retry transient errors. 2482 * In the case of ENOSPC, if ext4_count_free_blocks() 2483 * is non-zero, a commit should free up blocks. 2484 */ 2485 if ((err == -ENOMEM) || (err == -EAGAIN) || 2486 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2487 /* 2488 * We may have already allocated extents for 2489 * some bhs inside the folio, issue the 2490 * corresponding data to prevent stale data. 2491 */ 2492 if (progress) { 2493 if (mpage_submit_partial_folio(mpd)) 2494 goto invalidate_dirty_pages; 2495 goto update_disksize; 2496 } 2497 return err; 2498 } 2499 ext4_msg(sb, KERN_CRIT, 2500 "Delayed block allocation failed for " 2501 "inode %lu at logical offset %llu with" 2502 " max blocks %u with error %d", 2503 inode->i_ino, 2504 (unsigned long long)map->m_lblk, 2505 (unsigned)map->m_len, -err); 2506 ext4_msg(sb, KERN_CRIT, 2507 "This should not happen!! Data will " 2508 "be lost\n"); 2509 if (err == -ENOSPC) 2510 ext4_print_free_blocks(inode); 2511 invalidate_dirty_pages: 2512 *give_up_on_write = true; 2513 return err; 2514 } 2515 progress = 1; 2516 /* 2517 * Update buffer state, submit mapped pages, and get us new 2518 * extent to map 2519 */ 2520 err = mpage_map_and_submit_buffers(mpd); 2521 if (err < 0) 2522 goto update_disksize; 2523 } while (map->m_len); 2524 2525 update_disksize: 2526 /* 2527 * Update on-disk size after IO is submitted. Races with 2528 * truncate are avoided by checking i_size under i_data_sem. 2529 */ 2530 disksize = mpd->start_pos; 2531 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2532 int err2; 2533 loff_t i_size; 2534 2535 down_write(&EXT4_I(inode)->i_data_sem); 2536 i_size = i_size_read(inode); 2537 if (disksize > i_size) 2538 disksize = i_size; 2539 if (disksize > EXT4_I(inode)->i_disksize) 2540 EXT4_I(inode)->i_disksize = disksize; 2541 up_write(&EXT4_I(inode)->i_data_sem); 2542 err2 = ext4_mark_inode_dirty(handle, inode); 2543 if (err2) { 2544 ext4_error_err(inode->i_sb, -err2, 2545 "Failed to mark inode %lu dirty", 2546 inode->i_ino); 2547 } 2548 if (!err) 2549 err = err2; 2550 } 2551 return err; 2552 } 2553 2554 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2555 size_t len) 2556 { 2557 struct buffer_head *page_bufs = folio_buffers(folio); 2558 struct inode *inode = folio->mapping->host; 2559 int ret, err; 2560 2561 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2562 NULL, do_journal_get_write_access); 2563 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2564 NULL, write_end_fn); 2565 if (ret == 0) 2566 ret = err; 2567 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2568 if (ret == 0) 2569 ret = err; 2570 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2571 2572 return ret; 2573 } 2574 2575 static int mpage_journal_page_buffers(handle_t *handle, 2576 struct mpage_da_data *mpd, 2577 struct folio *folio) 2578 { 2579 struct inode *inode = mpd->inode; 2580 loff_t size = i_size_read(inode); 2581 size_t len = folio_size(folio); 2582 2583 folio_clear_checked(folio); 2584 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2585 2586 if (folio_pos(folio) + len > size && 2587 !ext4_verity_in_progress(inode)) 2588 len = size & (len - 1); 2589 2590 return ext4_journal_folio_buffers(handle, folio, len); 2591 } 2592 2593 /* 2594 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2595 * needing mapping, submit mapped pages 2596 * 2597 * @mpd - where to look for pages 2598 * 2599 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2600 * IO immediately. If we cannot map blocks, we submit just already mapped 2601 * buffers in the page for IO and keep page dirty. When we can map blocks and 2602 * we find a page which isn't mapped we start accumulating extent of buffers 2603 * underlying these pages that needs mapping (formed by either delayed or 2604 * unwritten buffers). We also lock the pages containing these buffers. The 2605 * extent found is returned in @mpd structure (starting at mpd->lblk with 2606 * length mpd->len blocks). 2607 * 2608 * Note that this function can attach bios to one io_end structure which are 2609 * neither logically nor physically contiguous. Although it may seem as an 2610 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2611 * case as we need to track IO to all buffers underlying a page in one io_end. 2612 */ 2613 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2614 { 2615 struct address_space *mapping = mpd->inode->i_mapping; 2616 struct folio_batch fbatch; 2617 unsigned int nr_folios; 2618 pgoff_t index = mpd->start_pos >> PAGE_SHIFT; 2619 pgoff_t end = mpd->end_pos >> PAGE_SHIFT; 2620 xa_mark_t tag; 2621 int i, err = 0; 2622 ext4_lblk_t lblk; 2623 struct buffer_head *head; 2624 handle_t *handle = NULL; 2625 int bpp = ext4_journal_blocks_per_folio(mpd->inode); 2626 2627 tag = wbc_to_tag(mpd->wbc); 2628 2629 mpd->map.m_len = 0; 2630 mpd->next_pos = mpd->start_pos; 2631 if (ext4_should_journal_data(mpd->inode)) { 2632 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2633 bpp); 2634 if (IS_ERR(handle)) 2635 return PTR_ERR(handle); 2636 } 2637 folio_batch_init(&fbatch); 2638 while (index <= end) { 2639 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2640 tag, &fbatch); 2641 if (nr_folios == 0) 2642 break; 2643 2644 for (i = 0; i < nr_folios; i++) { 2645 struct folio *folio = fbatch.folios[i]; 2646 2647 /* 2648 * Accumulated enough dirty pages? This doesn't apply 2649 * to WB_SYNC_ALL mode. For integrity sync we have to 2650 * keep going because someone may be concurrently 2651 * dirtying pages, and we might have synced a lot of 2652 * newly appeared dirty pages, but have not synced all 2653 * of the old dirty pages. 2654 */ 2655 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2656 mpd->wbc->nr_to_write <= 2657 EXT4_LBLK_TO_PG(mpd->inode, mpd->map.m_len)) 2658 goto out; 2659 2660 /* If we can't merge this page, we are done. */ 2661 if (mpd->map.m_len > 0 && 2662 mpd->next_pos != folio_pos(folio)) 2663 goto out; 2664 2665 if (handle) { 2666 err = ext4_journal_ensure_credits(handle, bpp, 2667 0); 2668 if (err < 0) 2669 goto out; 2670 } 2671 2672 folio_lock(folio); 2673 /* 2674 * If the page is no longer dirty, or its mapping no 2675 * longer corresponds to inode we are writing (which 2676 * means it has been truncated or invalidated), or the 2677 * page is already under writeback and we are not doing 2678 * a data integrity writeback, skip the page 2679 */ 2680 if (!folio_test_dirty(folio) || 2681 (folio_test_writeback(folio) && 2682 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2683 unlikely(folio->mapping != mapping)) { 2684 folio_unlock(folio); 2685 continue; 2686 } 2687 2688 folio_wait_writeback(folio); 2689 BUG_ON(folio_test_writeback(folio)); 2690 2691 /* 2692 * Should never happen but for buggy code in 2693 * other subsystems that call 2694 * set_page_dirty() without properly warning 2695 * the file system first. See [1] for more 2696 * information. 2697 * 2698 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2699 */ 2700 if (!folio_buffers(folio)) { 2701 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2702 folio_clear_dirty(folio); 2703 folio_unlock(folio); 2704 continue; 2705 } 2706 2707 if (mpd->map.m_len == 0) 2708 mpd->start_pos = folio_pos(folio); 2709 mpd->next_pos = folio_next_pos(folio); 2710 /* 2711 * Writeout when we cannot modify metadata is simple. 2712 * Just submit the page. For data=journal mode we 2713 * first handle writeout of the page for checkpoint and 2714 * only after that handle delayed page dirtying. This 2715 * makes sure current data is checkpointed to the final 2716 * location before possibly journalling it again which 2717 * is desirable when the page is frequently dirtied 2718 * through a pin. 2719 */ 2720 if (!mpd->can_map) { 2721 err = mpage_submit_folio(mpd, folio); 2722 if (err < 0) 2723 goto out; 2724 /* Pending dirtying of journalled data? */ 2725 if (folio_test_checked(folio)) { 2726 err = mpage_journal_page_buffers(handle, 2727 mpd, folio); 2728 if (err < 0) 2729 goto out; 2730 mpd->journalled_more_data = 1; 2731 } 2732 mpage_folio_done(mpd, folio); 2733 } else { 2734 /* Add all dirty buffers to mpd */ 2735 lblk = EXT4_PG_TO_LBLK(mpd->inode, folio->index); 2736 head = folio_buffers(folio); 2737 err = mpage_process_page_bufs(mpd, head, head, 2738 lblk); 2739 if (err <= 0) 2740 goto out; 2741 err = 0; 2742 } 2743 } 2744 folio_batch_release(&fbatch); 2745 cond_resched(); 2746 } 2747 mpd->scanned_until_end = 1; 2748 if (handle) 2749 ext4_journal_stop(handle); 2750 return 0; 2751 out: 2752 folio_batch_release(&fbatch); 2753 if (handle) 2754 ext4_journal_stop(handle); 2755 return err; 2756 } 2757 2758 static int ext4_do_writepages(struct mpage_da_data *mpd) 2759 { 2760 struct writeback_control *wbc = mpd->wbc; 2761 pgoff_t writeback_index = 0; 2762 long nr_to_write = wbc->nr_to_write; 2763 int range_whole = 0; 2764 int cycled = 1; 2765 handle_t *handle = NULL; 2766 struct inode *inode = mpd->inode; 2767 struct address_space *mapping = inode->i_mapping; 2768 int needed_blocks, rsv_blocks = 0, ret = 0; 2769 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2770 struct blk_plug plug; 2771 bool give_up_on_write = false; 2772 2773 trace_ext4_writepages(inode, wbc); 2774 2775 /* 2776 * No pages to write? This is mainly a kludge to avoid starting 2777 * a transaction for special inodes like journal inode on last iput() 2778 * because that could violate lock ordering on umount 2779 */ 2780 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2781 goto out_writepages; 2782 2783 /* 2784 * If the filesystem has aborted, it is read-only, so return 2785 * right away instead of dumping stack traces later on that 2786 * will obscure the real source of the problem. We test 2787 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2788 * the latter could be true if the filesystem is mounted 2789 * read-only, and in that case, ext4_writepages should 2790 * *never* be called, so if that ever happens, we would want 2791 * the stack trace. 2792 */ 2793 ret = ext4_emergency_state(mapping->host->i_sb); 2794 if (unlikely(ret)) 2795 goto out_writepages; 2796 2797 /* 2798 * If we have inline data and arrive here, it means that 2799 * we will soon create the block for the 1st page, so 2800 * we'd better clear the inline data here. 2801 */ 2802 if (ext4_has_inline_data(inode)) { 2803 /* Just inode will be modified... */ 2804 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2805 if (IS_ERR(handle)) { 2806 ret = PTR_ERR(handle); 2807 goto out_writepages; 2808 } 2809 BUG_ON(ext4_test_inode_state(inode, 2810 EXT4_STATE_MAY_INLINE_DATA)); 2811 ext4_destroy_inline_data(handle, inode); 2812 ext4_journal_stop(handle); 2813 } 2814 2815 /* 2816 * data=journal mode does not do delalloc so we just need to writeout / 2817 * journal already mapped buffers. On the other hand we need to commit 2818 * transaction to make data stable. We expect all the data to be 2819 * already in the journal (the only exception are DMA pinned pages 2820 * dirtied behind our back) so we commit transaction here and run the 2821 * writeback loop to checkpoint them. The checkpointing is not actually 2822 * necessary to make data persistent *but* quite a few places (extent 2823 * shifting operations, fsverity, ...) depend on being able to drop 2824 * pagecache pages after calling filemap_write_and_wait() and for that 2825 * checkpointing needs to happen. 2826 */ 2827 if (ext4_should_journal_data(inode)) { 2828 mpd->can_map = 0; 2829 if (wbc->sync_mode == WB_SYNC_ALL) 2830 ext4_fc_commit(sbi->s_journal, 2831 EXT4_I(inode)->i_datasync_tid); 2832 } 2833 mpd->journalled_more_data = 0; 2834 2835 if (ext4_should_dioread_nolock(inode)) { 2836 int bpf = ext4_journal_blocks_per_folio(inode); 2837 /* 2838 * We may need to convert up to one extent per block in 2839 * the folio and we may dirty the inode. 2840 */ 2841 rsv_blocks = 1 + ext4_ext_index_trans_blocks(inode, bpf); 2842 } 2843 2844 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2845 range_whole = 1; 2846 2847 if (wbc->range_cyclic) { 2848 writeback_index = mapping->writeback_index; 2849 if (writeback_index) 2850 cycled = 0; 2851 mpd->start_pos = writeback_index << PAGE_SHIFT; 2852 mpd->end_pos = LLONG_MAX; 2853 } else { 2854 mpd->start_pos = wbc->range_start; 2855 mpd->end_pos = wbc->range_end; 2856 } 2857 2858 ext4_io_submit_init(&mpd->io_submit, wbc); 2859 retry: 2860 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2861 tag_pages_for_writeback(mapping, mpd->start_pos >> PAGE_SHIFT, 2862 mpd->end_pos >> PAGE_SHIFT); 2863 blk_start_plug(&plug); 2864 2865 /* 2866 * First writeback pages that don't need mapping - we can avoid 2867 * starting a transaction unnecessarily and also avoid being blocked 2868 * in the block layer on device congestion while having transaction 2869 * started. 2870 */ 2871 mpd->do_map = 0; 2872 mpd->scanned_until_end = 0; 2873 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2874 if (!mpd->io_submit.io_end) { 2875 ret = -ENOMEM; 2876 goto unplug; 2877 } 2878 ret = mpage_prepare_extent_to_map(mpd); 2879 /* Unlock pages we didn't use */ 2880 mpage_release_unused_pages(mpd, false); 2881 /* Submit prepared bio */ 2882 ext4_io_submit(&mpd->io_submit); 2883 ext4_put_io_end_defer(mpd->io_submit.io_end); 2884 mpd->io_submit.io_end = NULL; 2885 if (ret < 0) 2886 goto unplug; 2887 2888 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2889 /* For each extent of pages we use new io_end */ 2890 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2891 if (!mpd->io_submit.io_end) { 2892 ret = -ENOMEM; 2893 break; 2894 } 2895 2896 WARN_ON_ONCE(!mpd->can_map); 2897 /* 2898 * We have two constraints: We find one extent to map and we 2899 * must always write out whole page (makes a difference when 2900 * blocksize < pagesize) so that we don't block on IO when we 2901 * try to write out the rest of the page. Journalled mode is 2902 * not supported by delalloc. 2903 */ 2904 BUG_ON(ext4_should_journal_data(inode)); 2905 /* 2906 * Calculate the number of credits needed to reserve for one 2907 * extent of up to MAX_WRITEPAGES_EXTENT_LEN blocks. It will 2908 * attempt to extend the transaction or start a new iteration 2909 * if the reserved credits are insufficient. 2910 */ 2911 needed_blocks = ext4_chunk_trans_blocks(inode, 2912 MAX_WRITEPAGES_EXTENT_LEN); 2913 /* start a new transaction */ 2914 handle = ext4_journal_start_with_reserve(inode, 2915 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2916 if (IS_ERR(handle)) { 2917 ret = PTR_ERR(handle); 2918 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2919 "%ld pages, ino %lu; err %d", __func__, 2920 wbc->nr_to_write, inode->i_ino, ret); 2921 /* Release allocated io_end */ 2922 ext4_put_io_end(mpd->io_submit.io_end); 2923 mpd->io_submit.io_end = NULL; 2924 break; 2925 } 2926 mpd->do_map = 1; 2927 2928 trace_ext4_da_write_folios_start(inode, mpd->start_pos, 2929 mpd->next_pos, wbc); 2930 ret = mpage_prepare_extent_to_map(mpd); 2931 if (!ret && mpd->map.m_len) 2932 ret = mpage_map_and_submit_extent(handle, mpd, 2933 &give_up_on_write); 2934 /* 2935 * Caution: If the handle is synchronous, 2936 * ext4_journal_stop() can wait for transaction commit 2937 * to finish which may depend on writeback of pages to 2938 * complete or on page lock to be released. In that 2939 * case, we have to wait until after we have 2940 * submitted all the IO, released page locks we hold, 2941 * and dropped io_end reference (for extent conversion 2942 * to be able to complete) before stopping the handle. 2943 */ 2944 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2945 ext4_journal_stop(handle); 2946 handle = NULL; 2947 mpd->do_map = 0; 2948 } 2949 /* Unlock pages we didn't use */ 2950 mpage_release_unused_pages(mpd, give_up_on_write); 2951 /* Submit prepared bio */ 2952 ext4_io_submit(&mpd->io_submit); 2953 2954 /* 2955 * Drop our io_end reference we got from init. We have 2956 * to be careful and use deferred io_end finishing if 2957 * we are still holding the transaction as we can 2958 * release the last reference to io_end which may end 2959 * up doing unwritten extent conversion. 2960 */ 2961 if (handle) { 2962 ext4_put_io_end_defer(mpd->io_submit.io_end); 2963 ext4_journal_stop(handle); 2964 } else 2965 ext4_put_io_end(mpd->io_submit.io_end); 2966 mpd->io_submit.io_end = NULL; 2967 trace_ext4_da_write_folios_end(inode, mpd->start_pos, 2968 mpd->next_pos, wbc, ret); 2969 2970 if (ret == -ENOSPC && sbi->s_journal) { 2971 /* 2972 * Commit the transaction which would 2973 * free blocks released in the transaction 2974 * and try again 2975 */ 2976 jbd2_journal_force_commit_nested(sbi->s_journal); 2977 ret = 0; 2978 continue; 2979 } 2980 if (ret == -EAGAIN) 2981 ret = 0; 2982 /* Fatal error - ENOMEM, EIO... */ 2983 if (ret) 2984 break; 2985 } 2986 unplug: 2987 blk_finish_plug(&plug); 2988 if (!ret && !cycled && wbc->nr_to_write > 0) { 2989 cycled = 1; 2990 mpd->end_pos = (writeback_index << PAGE_SHIFT) - 1; 2991 mpd->start_pos = 0; 2992 goto retry; 2993 } 2994 2995 /* Update index */ 2996 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2997 /* 2998 * Set the writeback_index so that range_cyclic 2999 * mode will write it back later 3000 */ 3001 mapping->writeback_index = mpd->start_pos >> PAGE_SHIFT; 3002 3003 out_writepages: 3004 trace_ext4_writepages_result(inode, wbc, ret, 3005 nr_to_write - wbc->nr_to_write); 3006 return ret; 3007 } 3008 3009 static int ext4_writepages(struct address_space *mapping, 3010 struct writeback_control *wbc) 3011 { 3012 struct super_block *sb = mapping->host->i_sb; 3013 struct mpage_da_data mpd = { 3014 .inode = mapping->host, 3015 .wbc = wbc, 3016 .can_map = 1, 3017 }; 3018 int ret; 3019 int alloc_ctx; 3020 3021 ret = ext4_emergency_state(sb); 3022 if (unlikely(ret)) 3023 return ret; 3024 3025 alloc_ctx = ext4_writepages_down_read(sb); 3026 ret = ext4_do_writepages(&mpd); 3027 /* 3028 * For data=journal writeback we could have come across pages marked 3029 * for delayed dirtying (PageChecked) which were just added to the 3030 * running transaction. Try once more to get them to stable storage. 3031 */ 3032 if (!ret && mpd.journalled_more_data) 3033 ret = ext4_do_writepages(&mpd); 3034 ext4_writepages_up_read(sb, alloc_ctx); 3035 3036 return ret; 3037 } 3038 3039 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 3040 { 3041 struct writeback_control wbc = { 3042 .sync_mode = WB_SYNC_ALL, 3043 .nr_to_write = LONG_MAX, 3044 .range_start = jinode->i_dirty_start, 3045 .range_end = jinode->i_dirty_end, 3046 }; 3047 struct mpage_da_data mpd = { 3048 .inode = jinode->i_vfs_inode, 3049 .wbc = &wbc, 3050 .can_map = 0, 3051 }; 3052 return ext4_do_writepages(&mpd); 3053 } 3054 3055 static int ext4_dax_writepages(struct address_space *mapping, 3056 struct writeback_control *wbc) 3057 { 3058 int ret; 3059 long nr_to_write = wbc->nr_to_write; 3060 struct inode *inode = mapping->host; 3061 int alloc_ctx; 3062 3063 ret = ext4_emergency_state(inode->i_sb); 3064 if (unlikely(ret)) 3065 return ret; 3066 3067 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 3068 trace_ext4_writepages(inode, wbc); 3069 3070 ret = dax_writeback_mapping_range(mapping, 3071 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 3072 trace_ext4_writepages_result(inode, wbc, ret, 3073 nr_to_write - wbc->nr_to_write); 3074 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 3075 return ret; 3076 } 3077 3078 static int ext4_nonda_switch(struct super_block *sb) 3079 { 3080 s64 free_clusters, dirty_clusters; 3081 struct ext4_sb_info *sbi = EXT4_SB(sb); 3082 3083 /* 3084 * switch to non delalloc mode if we are running low 3085 * on free block. The free block accounting via percpu 3086 * counters can get slightly wrong with percpu_counter_batch getting 3087 * accumulated on each CPU without updating global counters 3088 * Delalloc need an accurate free block accounting. So switch 3089 * to non delalloc when we are near to error range. 3090 */ 3091 free_clusters = 3092 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3093 dirty_clusters = 3094 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3095 /* 3096 * Start pushing delalloc when 1/2 of free blocks are dirty. 3097 */ 3098 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3099 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3100 3101 if (2 * free_clusters < 3 * dirty_clusters || 3102 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3103 /* 3104 * free block count is less than 150% of dirty blocks 3105 * or free blocks is less than watermark 3106 */ 3107 return 1; 3108 } 3109 return 0; 3110 } 3111 3112 static int ext4_da_write_begin(const struct kiocb *iocb, 3113 struct address_space *mapping, 3114 loff_t pos, unsigned len, 3115 struct folio **foliop, void **fsdata) 3116 { 3117 int ret, retries = 0; 3118 struct folio *folio; 3119 pgoff_t index; 3120 struct inode *inode = mapping->host; 3121 3122 ret = ext4_emergency_state(inode->i_sb); 3123 if (unlikely(ret)) 3124 return ret; 3125 3126 index = pos >> PAGE_SHIFT; 3127 3128 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 3129 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3130 return ext4_write_begin(iocb, mapping, pos, 3131 len, foliop, fsdata); 3132 } 3133 *fsdata = (void *)0; 3134 trace_ext4_da_write_begin(inode, pos, len); 3135 3136 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3137 ret = ext4_generic_write_inline_data(mapping, inode, pos, len, 3138 foliop, fsdata, true); 3139 if (ret < 0) 3140 return ret; 3141 if (ret == 1) 3142 return 0; 3143 } 3144 3145 retry: 3146 folio = write_begin_get_folio(iocb, mapping, index, len); 3147 if (IS_ERR(folio)) 3148 return PTR_ERR(folio); 3149 3150 if (len > folio_next_pos(folio) - pos) 3151 len = folio_next_pos(folio) - pos; 3152 3153 ret = ext4_block_write_begin(NULL, folio, pos, len, 3154 ext4_da_get_block_prep); 3155 if (ret < 0) { 3156 folio_unlock(folio); 3157 folio_put(folio); 3158 /* 3159 * ext4_block_write_begin may have instantiated a few blocks 3160 * outside i_size. Trim these off again. Don't need 3161 * i_size_read because we hold inode lock. 3162 */ 3163 if (pos + len > inode->i_size) 3164 ext4_truncate_failed_write(inode); 3165 3166 if (ret == -ENOSPC && 3167 ext4_should_retry_alloc(inode->i_sb, &retries)) 3168 goto retry; 3169 return ret; 3170 } 3171 3172 *foliop = folio; 3173 return ret; 3174 } 3175 3176 /* 3177 * Check if we should update i_disksize 3178 * when write to the end of file but not require block allocation 3179 */ 3180 static int ext4_da_should_update_i_disksize(struct folio *folio, 3181 unsigned long offset) 3182 { 3183 struct buffer_head *bh; 3184 struct inode *inode = folio->mapping->host; 3185 unsigned int idx; 3186 int i; 3187 3188 bh = folio_buffers(folio); 3189 idx = offset >> inode->i_blkbits; 3190 3191 for (i = 0; i < idx; i++) 3192 bh = bh->b_this_page; 3193 3194 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3195 return 0; 3196 return 1; 3197 } 3198 3199 static int ext4_da_do_write_end(struct address_space *mapping, 3200 loff_t pos, unsigned len, unsigned copied, 3201 struct folio *folio) 3202 { 3203 struct inode *inode = mapping->host; 3204 loff_t old_size = inode->i_size; 3205 bool disksize_changed = false; 3206 loff_t new_i_size, zero_len = 0; 3207 handle_t *handle; 3208 3209 if (unlikely(!folio_buffers(folio))) { 3210 folio_unlock(folio); 3211 folio_put(folio); 3212 return -EIO; 3213 } 3214 /* 3215 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3216 * flag, which all that's needed to trigger page writeback. 3217 */ 3218 copied = block_write_end(pos, len, copied, folio); 3219 new_i_size = pos + copied; 3220 3221 /* 3222 * It's important to update i_size while still holding folio lock, 3223 * because folio writeout could otherwise come in and zero beyond 3224 * i_size. 3225 * 3226 * Since we are holding inode lock, we are sure i_disksize <= 3227 * i_size. We also know that if i_disksize < i_size, there are 3228 * delalloc writes pending in the range up to i_size. If the end of 3229 * the current write is <= i_size, there's no need to touch 3230 * i_disksize since writeback will push i_disksize up to i_size 3231 * eventually. If the end of the current write is > i_size and 3232 * inside an allocated block which ext4_da_should_update_i_disksize() 3233 * checked, we need to update i_disksize here as certain 3234 * ext4_writepages() paths not allocating blocks and update i_disksize. 3235 */ 3236 if (new_i_size > inode->i_size) { 3237 unsigned long end; 3238 3239 i_size_write(inode, new_i_size); 3240 end = offset_in_folio(folio, new_i_size - 1); 3241 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3242 ext4_update_i_disksize(inode, new_i_size); 3243 disksize_changed = true; 3244 } 3245 } 3246 3247 folio_unlock(folio); 3248 folio_put(folio); 3249 3250 if (pos > old_size) { 3251 pagecache_isize_extended(inode, old_size, pos); 3252 zero_len = pos - old_size; 3253 } 3254 3255 if (!disksize_changed && !zero_len) 3256 return copied; 3257 3258 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3259 if (IS_ERR(handle)) 3260 return PTR_ERR(handle); 3261 if (zero_len) 3262 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3263 ext4_mark_inode_dirty(handle, inode); 3264 ext4_journal_stop(handle); 3265 3266 return copied; 3267 } 3268 3269 static int ext4_da_write_end(const struct kiocb *iocb, 3270 struct address_space *mapping, 3271 loff_t pos, unsigned len, unsigned copied, 3272 struct folio *folio, void *fsdata) 3273 { 3274 struct inode *inode = mapping->host; 3275 int write_mode = (int)(unsigned long)fsdata; 3276 3277 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3278 return ext4_write_end(iocb, mapping, pos, 3279 len, copied, folio, fsdata); 3280 3281 trace_ext4_da_write_end(inode, pos, len, copied); 3282 3283 if (write_mode != CONVERT_INLINE_DATA && 3284 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3285 ext4_has_inline_data(inode)) 3286 return ext4_write_inline_data_end(inode, pos, len, copied, 3287 folio); 3288 3289 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3290 copied = 0; 3291 3292 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3293 } 3294 3295 /* 3296 * Force all delayed allocation blocks to be allocated for a given inode. 3297 */ 3298 int ext4_alloc_da_blocks(struct inode *inode) 3299 { 3300 trace_ext4_alloc_da_blocks(inode); 3301 3302 if (!EXT4_I(inode)->i_reserved_data_blocks) 3303 return 0; 3304 3305 /* 3306 * We do something simple for now. The filemap_flush() will 3307 * also start triggering a write of the data blocks, which is 3308 * not strictly speaking necessary (and for users of 3309 * laptop_mode, not even desirable). However, to do otherwise 3310 * would require replicating code paths in: 3311 * 3312 * ext4_writepages() -> 3313 * write_cache_pages() ---> (via passed in callback function) 3314 * __mpage_da_writepage() --> 3315 * mpage_add_bh_to_extent() 3316 * mpage_da_map_blocks() 3317 * 3318 * The problem is that write_cache_pages(), located in 3319 * mm/page-writeback.c, marks pages clean in preparation for 3320 * doing I/O, which is not desirable if we're not planning on 3321 * doing I/O at all. 3322 * 3323 * We could call write_cache_pages(), and then redirty all of 3324 * the pages by calling redirty_page_for_writepage() but that 3325 * would be ugly in the extreme. So instead we would need to 3326 * replicate parts of the code in the above functions, 3327 * simplifying them because we wouldn't actually intend to 3328 * write out the pages, but rather only collect contiguous 3329 * logical block extents, call the multi-block allocator, and 3330 * then update the buffer heads with the block allocations. 3331 * 3332 * For now, though, we'll cheat by calling filemap_flush(), 3333 * which will map the blocks, and start the I/O, but not 3334 * actually wait for the I/O to complete. 3335 */ 3336 return filemap_flush(inode->i_mapping); 3337 } 3338 3339 /* 3340 * bmap() is special. It gets used by applications such as lilo and by 3341 * the swapper to find the on-disk block of a specific piece of data. 3342 * 3343 * Naturally, this is dangerous if the block concerned is still in the 3344 * journal. If somebody makes a swapfile on an ext4 data-journaling 3345 * filesystem and enables swap, then they may get a nasty shock when the 3346 * data getting swapped to that swapfile suddenly gets overwritten by 3347 * the original zero's written out previously to the journal and 3348 * awaiting writeback in the kernel's buffer cache. 3349 * 3350 * So, if we see any bmap calls here on a modified, data-journaled file, 3351 * take extra steps to flush any blocks which might be in the cache. 3352 */ 3353 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3354 { 3355 struct inode *inode = mapping->host; 3356 sector_t ret = 0; 3357 3358 inode_lock_shared(inode); 3359 /* 3360 * We can get here for an inline file via the FIBMAP ioctl 3361 */ 3362 if (ext4_has_inline_data(inode)) 3363 goto out; 3364 3365 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3366 (test_opt(inode->i_sb, DELALLOC) || 3367 ext4_should_journal_data(inode))) { 3368 /* 3369 * With delalloc or journalled data we want to sync the file so 3370 * that we can make sure we allocate blocks for file and data 3371 * is in place for the user to see it 3372 */ 3373 filemap_write_and_wait(mapping); 3374 } 3375 3376 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3377 3378 out: 3379 inode_unlock_shared(inode); 3380 return ret; 3381 } 3382 3383 static int ext4_read_folio(struct file *file, struct folio *folio) 3384 { 3385 int ret = -EAGAIN; 3386 struct inode *inode = folio->mapping->host; 3387 3388 trace_ext4_read_folio(inode, folio); 3389 3390 if (ext4_has_inline_data(inode)) 3391 ret = ext4_readpage_inline(inode, folio); 3392 3393 if (ret == -EAGAIN) 3394 return ext4_mpage_readpages(inode, NULL, folio); 3395 3396 return ret; 3397 } 3398 3399 static void ext4_readahead(struct readahead_control *rac) 3400 { 3401 struct inode *inode = rac->mapping->host; 3402 3403 /* If the file has inline data, no need to do readahead. */ 3404 if (ext4_has_inline_data(inode)) 3405 return; 3406 3407 ext4_mpage_readpages(inode, rac, NULL); 3408 } 3409 3410 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3411 size_t length) 3412 { 3413 trace_ext4_invalidate_folio(folio, offset, length); 3414 3415 /* No journalling happens on data buffers when this function is used */ 3416 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3417 3418 block_invalidate_folio(folio, offset, length); 3419 } 3420 3421 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3422 size_t offset, size_t length) 3423 { 3424 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3425 3426 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3427 3428 /* 3429 * If it's a full truncate we just forget about the pending dirtying 3430 */ 3431 if (offset == 0 && length == folio_size(folio)) 3432 folio_clear_checked(folio); 3433 3434 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3435 } 3436 3437 /* Wrapper for aops... */ 3438 static void ext4_journalled_invalidate_folio(struct folio *folio, 3439 size_t offset, 3440 size_t length) 3441 { 3442 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3443 } 3444 3445 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3446 { 3447 struct inode *inode = folio->mapping->host; 3448 journal_t *journal = EXT4_JOURNAL(inode); 3449 3450 trace_ext4_release_folio(inode, folio); 3451 3452 /* Page has dirty journalled data -> cannot release */ 3453 if (folio_test_checked(folio)) 3454 return false; 3455 if (journal) 3456 return jbd2_journal_try_to_free_buffers(journal, folio); 3457 else 3458 return try_to_free_buffers(folio); 3459 } 3460 3461 static bool ext4_inode_datasync_dirty(struct inode *inode) 3462 { 3463 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3464 3465 if (journal) { 3466 if (jbd2_transaction_committed(journal, 3467 EXT4_I(inode)->i_datasync_tid)) 3468 return false; 3469 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3470 return !list_empty(&EXT4_I(inode)->i_fc_list); 3471 return true; 3472 } 3473 3474 /* Any metadata buffers to write? */ 3475 if (!list_empty(&inode->i_mapping->i_private_list)) 3476 return true; 3477 return inode_state_read_once(inode) & I_DIRTY_DATASYNC; 3478 } 3479 3480 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3481 struct ext4_map_blocks *map, loff_t offset, 3482 loff_t length, unsigned int flags) 3483 { 3484 u8 blkbits = inode->i_blkbits; 3485 3486 /* 3487 * Writes that span EOF might trigger an I/O size update on completion, 3488 * so consider them to be dirty for the purpose of O_DSYNC, even if 3489 * there is no other metadata changes being made or are pending. 3490 */ 3491 iomap->flags = 0; 3492 if (ext4_inode_datasync_dirty(inode) || 3493 offset + length > i_size_read(inode)) 3494 iomap->flags |= IOMAP_F_DIRTY; 3495 3496 if (map->m_flags & EXT4_MAP_NEW) 3497 iomap->flags |= IOMAP_F_NEW; 3498 3499 /* HW-offload atomics are always used */ 3500 if (flags & IOMAP_ATOMIC) 3501 iomap->flags |= IOMAP_F_ATOMIC_BIO; 3502 3503 if (flags & IOMAP_DAX) 3504 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3505 else 3506 iomap->bdev = inode->i_sb->s_bdev; 3507 iomap->offset = EXT4_LBLK_TO_B(inode, map->m_lblk); 3508 iomap->length = EXT4_LBLK_TO_B(inode, map->m_len); 3509 3510 if ((map->m_flags & EXT4_MAP_MAPPED) && 3511 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3512 iomap->flags |= IOMAP_F_MERGED; 3513 3514 /* 3515 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3516 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3517 * set. In order for any allocated unwritten extents to be converted 3518 * into written extents correctly within the ->end_io() handler, we 3519 * need to ensure that the iomap->type is set appropriately. Hence, the 3520 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3521 * been set first. 3522 */ 3523 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3524 iomap->type = IOMAP_UNWRITTEN; 3525 iomap->addr = (u64) map->m_pblk << blkbits; 3526 if (flags & IOMAP_DAX) 3527 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3528 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3529 iomap->type = IOMAP_MAPPED; 3530 iomap->addr = (u64) map->m_pblk << blkbits; 3531 if (flags & IOMAP_DAX) 3532 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3533 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3534 iomap->type = IOMAP_DELALLOC; 3535 iomap->addr = IOMAP_NULL_ADDR; 3536 } else { 3537 iomap->type = IOMAP_HOLE; 3538 iomap->addr = IOMAP_NULL_ADDR; 3539 } 3540 } 3541 3542 static int ext4_map_blocks_atomic_write_slow(handle_t *handle, 3543 struct inode *inode, struct ext4_map_blocks *map) 3544 { 3545 ext4_lblk_t m_lblk = map->m_lblk; 3546 unsigned int m_len = map->m_len; 3547 unsigned int mapped_len = 0, m_flags = 0; 3548 ext4_fsblk_t next_pblk = 0; 3549 bool check_next_pblk = false; 3550 int ret = 0; 3551 3552 WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb)); 3553 3554 /* 3555 * This is a slow path in case of mixed mapping. We use 3556 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single 3557 * contiguous mapped mapping. This will ensure any unwritten or hole 3558 * regions within the requested range is zeroed out and we return 3559 * a single contiguous mapped extent. 3560 */ 3561 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3562 3563 do { 3564 ret = ext4_map_blocks(handle, inode, map, m_flags); 3565 if (ret < 0 && ret != -ENOSPC) 3566 goto out_err; 3567 /* 3568 * This should never happen, but let's return an error code to 3569 * avoid an infinite loop in here. 3570 */ 3571 if (ret == 0) { 3572 ret = -EFSCORRUPTED; 3573 ext4_warning_inode(inode, 3574 "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d", 3575 m_flags, ret); 3576 goto out_err; 3577 } 3578 /* 3579 * With bigalloc we should never get ENOSPC nor discontiguous 3580 * physical extents. 3581 */ 3582 if ((check_next_pblk && next_pblk != map->m_pblk) || 3583 ret == -ENOSPC) { 3584 ext4_warning_inode(inode, 3585 "Non-contiguous allocation detected: expected %llu, got %llu, " 3586 "or ext4_map_blocks() returned out of space ret: %d", 3587 next_pblk, map->m_pblk, ret); 3588 ret = -EFSCORRUPTED; 3589 goto out_err; 3590 } 3591 next_pblk = map->m_pblk + map->m_len; 3592 check_next_pblk = true; 3593 3594 mapped_len += map->m_len; 3595 map->m_lblk += map->m_len; 3596 map->m_len = m_len - mapped_len; 3597 } while (mapped_len < m_len); 3598 3599 /* 3600 * We might have done some work in above loop, so we need to query the 3601 * start of the physical extent, based on the origin m_lblk and m_len. 3602 * Let's also ensure we were able to allocate the required range for 3603 * mixed mapping case. 3604 */ 3605 map->m_lblk = m_lblk; 3606 map->m_len = m_len; 3607 map->m_flags = 0; 3608 3609 ret = ext4_map_blocks(handle, inode, map, 3610 EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF); 3611 if (ret != m_len) { 3612 ext4_warning_inode(inode, 3613 "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n", 3614 m_lblk, m_len, ret); 3615 ret = -EINVAL; 3616 } 3617 return ret; 3618 3619 out_err: 3620 /* reset map before returning an error */ 3621 map->m_lblk = m_lblk; 3622 map->m_len = m_len; 3623 map->m_flags = 0; 3624 return ret; 3625 } 3626 3627 /* 3628 * ext4_map_blocks_atomic: Helper routine to ensure the entire requested 3629 * range in @map [lblk, lblk + len) is one single contiguous extent with no 3630 * mixed mappings. 3631 * 3632 * We first use m_flags passed to us by our caller (ext4_iomap_alloc()). 3633 * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying 3634 * physical extent for the requested range does not have a single contiguous 3635 * mapping type i.e. (Hole, Mapped, or Unwritten) throughout. 3636 * In that case we will loop over the requested range to allocate and zero out 3637 * the unwritten / holes in between, to get a single mapped extent from 3638 * [m_lblk, m_lblk + m_len). Note that this is only possible because we know 3639 * this can be called only with bigalloc enabled filesystem where the underlying 3640 * cluster is already allocated. This avoids allocating discontiguous extents 3641 * in the slow path due to multiple calls to ext4_map_blocks(). 3642 * The slow path is mostly non-performance critical path, so it should be ok to 3643 * loop using ext4_map_blocks() with appropriate flags to allocate & zero the 3644 * underlying short holes/unwritten extents within the requested range. 3645 */ 3646 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode, 3647 struct ext4_map_blocks *map, int m_flags, 3648 bool *force_commit) 3649 { 3650 ext4_lblk_t m_lblk = map->m_lblk; 3651 unsigned int m_len = map->m_len; 3652 int ret = 0; 3653 3654 WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb)); 3655 3656 ret = ext4_map_blocks(handle, inode, map, m_flags); 3657 if (ret < 0 || ret == m_len) 3658 goto out; 3659 /* 3660 * This is a mixed mapping case where we were not able to allocate 3661 * a single contiguous extent. In that case let's reset requested 3662 * mapping and call the slow path. 3663 */ 3664 map->m_lblk = m_lblk; 3665 map->m_len = m_len; 3666 map->m_flags = 0; 3667 3668 /* 3669 * slow path means we have mixed mapping, that means we will need 3670 * to force txn commit. 3671 */ 3672 *force_commit = true; 3673 return ext4_map_blocks_atomic_write_slow(handle, inode, map); 3674 out: 3675 return ret; 3676 } 3677 3678 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3679 unsigned int flags) 3680 { 3681 handle_t *handle; 3682 int ret, dio_credits, m_flags = 0, retries = 0; 3683 bool force_commit = false; 3684 3685 /* 3686 * Trim the mapping request to the maximum value that we can map at 3687 * once for direct I/O. 3688 */ 3689 if (map->m_len > DIO_MAX_BLOCKS) 3690 map->m_len = DIO_MAX_BLOCKS; 3691 3692 /* 3693 * journal credits estimation for atomic writes. We call 3694 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes, 3695 * then let's assume the no. of pextents required can be m_len i.e. 3696 * every alternate block can be unwritten and hole. 3697 */ 3698 if (flags & IOMAP_ATOMIC) { 3699 unsigned int orig_mlen = map->m_len; 3700 3701 ret = ext4_map_blocks(NULL, inode, map, 0); 3702 if (ret < 0) 3703 return ret; 3704 if (map->m_len < orig_mlen) { 3705 map->m_len = orig_mlen; 3706 dio_credits = ext4_meta_trans_blocks(inode, orig_mlen, 3707 map->m_len); 3708 } else { 3709 dio_credits = ext4_chunk_trans_blocks(inode, 3710 map->m_len); 3711 } 3712 } else { 3713 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3714 } 3715 3716 retry: 3717 /* 3718 * Either we allocate blocks and then don't get an unwritten extent, so 3719 * in that case we have reserved enough credits. Or, the blocks are 3720 * already allocated and unwritten. In that case, the extent conversion 3721 * fits into the credits as well. 3722 */ 3723 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3724 if (IS_ERR(handle)) 3725 return PTR_ERR(handle); 3726 3727 /* 3728 * DAX and direct I/O are the only two operations that are currently 3729 * supported with IOMAP_WRITE. 3730 */ 3731 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3732 if (flags & IOMAP_DAX) 3733 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3734 /* 3735 * We use i_size instead of i_disksize here because delalloc writeback 3736 * can complete at any point during the I/O and subsequently push the 3737 * i_disksize out to i_size. This could be beyond where direct I/O is 3738 * happening and thus expose allocated blocks to direct I/O reads. 3739 */ 3740 else if (EXT4_LBLK_TO_B(inode, map->m_lblk) >= i_size_read(inode)) 3741 m_flags = EXT4_GET_BLOCKS_CREATE; 3742 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3743 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3744 3745 if (flags & IOMAP_ATOMIC) 3746 ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags, 3747 &force_commit); 3748 else 3749 ret = ext4_map_blocks(handle, inode, map, m_flags); 3750 3751 /* 3752 * We cannot fill holes in indirect tree based inodes as that could 3753 * expose stale data in the case of a crash. Use the magic error code 3754 * to fallback to buffered I/O. 3755 */ 3756 if (!m_flags && !ret) 3757 ret = -ENOTBLK; 3758 3759 ext4_journal_stop(handle); 3760 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3761 goto retry; 3762 3763 /* 3764 * Force commit the current transaction if the allocation spans a mixed 3765 * mapping range. This ensures any pending metadata updates (like 3766 * unwritten to written extents conversion) in this range are in 3767 * consistent state with the file data blocks, before performing the 3768 * actual write I/O. If the commit fails, the whole I/O must be aborted 3769 * to prevent any possible torn writes. 3770 */ 3771 if (ret > 0 && force_commit) { 3772 int ret2; 3773 3774 ret2 = ext4_force_commit(inode->i_sb); 3775 if (ret2) 3776 return ret2; 3777 } 3778 3779 return ret; 3780 } 3781 3782 3783 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3784 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3785 { 3786 int ret; 3787 struct ext4_map_blocks map; 3788 u8 blkbits = inode->i_blkbits; 3789 unsigned int orig_mlen; 3790 3791 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3792 return -EINVAL; 3793 3794 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3795 return -ERANGE; 3796 3797 /* 3798 * Calculate the first and last logical blocks respectively. 3799 */ 3800 map.m_lblk = offset >> blkbits; 3801 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3802 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3803 orig_mlen = map.m_len; 3804 3805 if (flags & IOMAP_WRITE) { 3806 /* 3807 * We check here if the blocks are already allocated, then we 3808 * don't need to start a journal txn and we can directly return 3809 * the mapping information. This could boost performance 3810 * especially in multi-threaded overwrite requests. 3811 */ 3812 if (offset + length <= i_size_read(inode)) { 3813 ret = ext4_map_blocks(NULL, inode, &map, 0); 3814 /* 3815 * For atomic writes the entire requested length should 3816 * be mapped. 3817 */ 3818 if (map.m_flags & EXT4_MAP_MAPPED) { 3819 if ((!(flags & IOMAP_ATOMIC) && ret > 0) || 3820 (flags & IOMAP_ATOMIC && ret >= orig_mlen)) 3821 goto out; 3822 } 3823 map.m_len = orig_mlen; 3824 } 3825 ret = ext4_iomap_alloc(inode, &map, flags); 3826 } else { 3827 /* 3828 * This can be called for overwrites path from 3829 * ext4_iomap_overwrite_begin(). 3830 */ 3831 ret = ext4_map_blocks(NULL, inode, &map, 0); 3832 } 3833 3834 if (ret < 0) 3835 return ret; 3836 out: 3837 /* 3838 * When inline encryption is enabled, sometimes I/O to an encrypted file 3839 * has to be broken up to guarantee DUN contiguity. Handle this by 3840 * limiting the length of the mapping returned. 3841 */ 3842 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3843 3844 /* 3845 * Before returning to iomap, let's ensure the allocated mapping 3846 * covers the entire requested length for atomic writes. 3847 */ 3848 if (flags & IOMAP_ATOMIC) { 3849 if (map.m_len < (length >> blkbits)) { 3850 WARN_ON_ONCE(1); 3851 return -EINVAL; 3852 } 3853 } 3854 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3855 3856 return 0; 3857 } 3858 3859 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3860 loff_t length, unsigned flags, struct iomap *iomap, 3861 struct iomap *srcmap) 3862 { 3863 int ret; 3864 3865 /* 3866 * Even for writes we don't need to allocate blocks, so just pretend 3867 * we are reading to save overhead of starting a transaction. 3868 */ 3869 flags &= ~IOMAP_WRITE; 3870 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3871 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3872 return ret; 3873 } 3874 3875 const struct iomap_ops ext4_iomap_ops = { 3876 .iomap_begin = ext4_iomap_begin, 3877 }; 3878 3879 const struct iomap_ops ext4_iomap_overwrite_ops = { 3880 .iomap_begin = ext4_iomap_overwrite_begin, 3881 }; 3882 3883 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3884 loff_t length, unsigned int flags, 3885 struct iomap *iomap, struct iomap *srcmap) 3886 { 3887 int ret; 3888 struct ext4_map_blocks map; 3889 u8 blkbits = inode->i_blkbits; 3890 3891 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3892 return -EINVAL; 3893 3894 if (ext4_has_inline_data(inode)) { 3895 ret = ext4_inline_data_iomap(inode, iomap); 3896 if (ret != -EAGAIN) { 3897 if (ret == 0 && offset >= iomap->length) 3898 ret = -ENOENT; 3899 return ret; 3900 } 3901 } 3902 3903 /* 3904 * Calculate the first and last logical block respectively. 3905 */ 3906 map.m_lblk = offset >> blkbits; 3907 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3908 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3909 3910 /* 3911 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3912 * So handle it here itself instead of querying ext4_map_blocks(). 3913 * Since ext4_map_blocks() will warn about it and will return 3914 * -EIO error. 3915 */ 3916 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3917 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3918 3919 if (offset >= sbi->s_bitmap_maxbytes) { 3920 map.m_flags = 0; 3921 goto set_iomap; 3922 } 3923 } 3924 3925 ret = ext4_map_blocks(NULL, inode, &map, 0); 3926 if (ret < 0) 3927 return ret; 3928 set_iomap: 3929 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3930 3931 return 0; 3932 } 3933 3934 const struct iomap_ops ext4_iomap_report_ops = { 3935 .iomap_begin = ext4_iomap_begin_report, 3936 }; 3937 3938 /* 3939 * For data=journal mode, folio should be marked dirty only when it was 3940 * writeably mapped. When that happens, it was already attached to the 3941 * transaction and marked as jbddirty (we take care of this in 3942 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3943 * so we should have nothing to do here, except for the case when someone 3944 * had the page pinned and dirtied the page through this pin (e.g. by doing 3945 * direct IO to it). In that case we'd need to attach buffers here to the 3946 * transaction but we cannot due to lock ordering. We cannot just dirty the 3947 * folio and leave attached buffers clean, because the buffers' dirty state is 3948 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3949 * the journalling code will explode. So what we do is to mark the folio 3950 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3951 * to the transaction appropriately. 3952 */ 3953 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3954 struct folio *folio) 3955 { 3956 WARN_ON_ONCE(!folio_buffers(folio)); 3957 if (folio_maybe_dma_pinned(folio)) 3958 folio_set_checked(folio); 3959 return filemap_dirty_folio(mapping, folio); 3960 } 3961 3962 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3963 { 3964 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3965 WARN_ON_ONCE(!folio_buffers(folio)); 3966 return block_dirty_folio(mapping, folio); 3967 } 3968 3969 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3970 struct file *file, sector_t *span) 3971 { 3972 return iomap_swapfile_activate(sis, file, span, 3973 &ext4_iomap_report_ops); 3974 } 3975 3976 static const struct address_space_operations ext4_aops = { 3977 .read_folio = ext4_read_folio, 3978 .readahead = ext4_readahead, 3979 .writepages = ext4_writepages, 3980 .write_begin = ext4_write_begin, 3981 .write_end = ext4_write_end, 3982 .dirty_folio = ext4_dirty_folio, 3983 .bmap = ext4_bmap, 3984 .invalidate_folio = ext4_invalidate_folio, 3985 .release_folio = ext4_release_folio, 3986 .migrate_folio = buffer_migrate_folio, 3987 .is_partially_uptodate = block_is_partially_uptodate, 3988 .error_remove_folio = generic_error_remove_folio, 3989 .swap_activate = ext4_iomap_swap_activate, 3990 }; 3991 3992 static const struct address_space_operations ext4_journalled_aops = { 3993 .read_folio = ext4_read_folio, 3994 .readahead = ext4_readahead, 3995 .writepages = ext4_writepages, 3996 .write_begin = ext4_write_begin, 3997 .write_end = ext4_journalled_write_end, 3998 .dirty_folio = ext4_journalled_dirty_folio, 3999 .bmap = ext4_bmap, 4000 .invalidate_folio = ext4_journalled_invalidate_folio, 4001 .release_folio = ext4_release_folio, 4002 .migrate_folio = buffer_migrate_folio_norefs, 4003 .is_partially_uptodate = block_is_partially_uptodate, 4004 .error_remove_folio = generic_error_remove_folio, 4005 .swap_activate = ext4_iomap_swap_activate, 4006 }; 4007 4008 static const struct address_space_operations ext4_da_aops = { 4009 .read_folio = ext4_read_folio, 4010 .readahead = ext4_readahead, 4011 .writepages = ext4_writepages, 4012 .write_begin = ext4_da_write_begin, 4013 .write_end = ext4_da_write_end, 4014 .dirty_folio = ext4_dirty_folio, 4015 .bmap = ext4_bmap, 4016 .invalidate_folio = ext4_invalidate_folio, 4017 .release_folio = ext4_release_folio, 4018 .migrate_folio = buffer_migrate_folio, 4019 .is_partially_uptodate = block_is_partially_uptodate, 4020 .error_remove_folio = generic_error_remove_folio, 4021 .swap_activate = ext4_iomap_swap_activate, 4022 }; 4023 4024 static const struct address_space_operations ext4_dax_aops = { 4025 .writepages = ext4_dax_writepages, 4026 .dirty_folio = noop_dirty_folio, 4027 .bmap = ext4_bmap, 4028 .swap_activate = ext4_iomap_swap_activate, 4029 }; 4030 4031 void ext4_set_aops(struct inode *inode) 4032 { 4033 switch (ext4_inode_journal_mode(inode)) { 4034 case EXT4_INODE_ORDERED_DATA_MODE: 4035 case EXT4_INODE_WRITEBACK_DATA_MODE: 4036 break; 4037 case EXT4_INODE_JOURNAL_DATA_MODE: 4038 inode->i_mapping->a_ops = &ext4_journalled_aops; 4039 return; 4040 default: 4041 BUG(); 4042 } 4043 if (IS_DAX(inode)) 4044 inode->i_mapping->a_ops = &ext4_dax_aops; 4045 else if (test_opt(inode->i_sb, DELALLOC)) 4046 inode->i_mapping->a_ops = &ext4_da_aops; 4047 else 4048 inode->i_mapping->a_ops = &ext4_aops; 4049 } 4050 4051 /* 4052 * Here we can't skip an unwritten buffer even though it usually reads zero 4053 * because it might have data in pagecache (eg, if called from ext4_zero_range, 4054 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 4055 * racing writeback can come later and flush the stale pagecache to disk. 4056 */ 4057 static int __ext4_block_zero_page_range(handle_t *handle, 4058 struct address_space *mapping, loff_t from, loff_t length) 4059 { 4060 unsigned int offset, blocksize, pos; 4061 ext4_lblk_t iblock; 4062 struct inode *inode = mapping->host; 4063 struct buffer_head *bh; 4064 struct folio *folio; 4065 int err = 0; 4066 4067 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 4068 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 4069 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4070 if (IS_ERR(folio)) 4071 return PTR_ERR(folio); 4072 4073 blocksize = inode->i_sb->s_blocksize; 4074 4075 iblock = EXT4_PG_TO_LBLK(inode, folio->index); 4076 4077 bh = folio_buffers(folio); 4078 if (!bh) 4079 bh = create_empty_buffers(folio, blocksize, 0); 4080 4081 /* Find the buffer that contains "offset" */ 4082 offset = offset_in_folio(folio, from); 4083 pos = blocksize; 4084 while (offset >= pos) { 4085 bh = bh->b_this_page; 4086 iblock++; 4087 pos += blocksize; 4088 } 4089 if (buffer_freed(bh)) { 4090 BUFFER_TRACE(bh, "freed: skip"); 4091 goto unlock; 4092 } 4093 if (!buffer_mapped(bh)) { 4094 BUFFER_TRACE(bh, "unmapped"); 4095 ext4_get_block(inode, iblock, bh, 0); 4096 /* unmapped? It's a hole - nothing to do */ 4097 if (!buffer_mapped(bh)) { 4098 BUFFER_TRACE(bh, "still unmapped"); 4099 goto unlock; 4100 } 4101 } 4102 4103 /* Ok, it's mapped. Make sure it's up-to-date */ 4104 if (folio_test_uptodate(folio)) 4105 set_buffer_uptodate(bh); 4106 4107 if (!buffer_uptodate(bh)) { 4108 err = ext4_read_bh_lock(bh, 0, true); 4109 if (err) 4110 goto unlock; 4111 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 4112 /* We expect the key to be set. */ 4113 BUG_ON(!fscrypt_has_encryption_key(inode)); 4114 err = fscrypt_decrypt_pagecache_blocks(folio, 4115 blocksize, 4116 bh_offset(bh)); 4117 if (err) { 4118 clear_buffer_uptodate(bh); 4119 goto unlock; 4120 } 4121 } 4122 } 4123 if (ext4_should_journal_data(inode)) { 4124 BUFFER_TRACE(bh, "get write access"); 4125 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 4126 EXT4_JTR_NONE); 4127 if (err) 4128 goto unlock; 4129 } 4130 folio_zero_range(folio, offset, length); 4131 BUFFER_TRACE(bh, "zeroed end of block"); 4132 4133 if (ext4_should_journal_data(inode)) { 4134 err = ext4_dirty_journalled_data(handle, bh); 4135 } else { 4136 err = 0; 4137 mark_buffer_dirty(bh); 4138 if (ext4_should_order_data(inode)) 4139 err = ext4_jbd2_inode_add_write(handle, inode, from, 4140 length); 4141 } 4142 4143 unlock: 4144 folio_unlock(folio); 4145 folio_put(folio); 4146 return err; 4147 } 4148 4149 /* 4150 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4151 * starting from file offset 'from'. The range to be zero'd must 4152 * be contained with in one block. If the specified range exceeds 4153 * the end of the block it will be shortened to end of the block 4154 * that corresponds to 'from' 4155 */ 4156 static int ext4_block_zero_page_range(handle_t *handle, 4157 struct address_space *mapping, loff_t from, loff_t length) 4158 { 4159 struct inode *inode = mapping->host; 4160 unsigned blocksize = inode->i_sb->s_blocksize; 4161 unsigned int max = blocksize - (from & (blocksize - 1)); 4162 4163 /* 4164 * correct length if it does not fall between 4165 * 'from' and the end of the block 4166 */ 4167 if (length > max || length < 0) 4168 length = max; 4169 4170 if (IS_DAX(inode)) { 4171 return dax_zero_range(inode, from, length, NULL, 4172 &ext4_iomap_ops); 4173 } 4174 return __ext4_block_zero_page_range(handle, mapping, from, length); 4175 } 4176 4177 /* 4178 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4179 * up to the end of the block which corresponds to `from'. 4180 * This required during truncate. We need to physically zero the tail end 4181 * of that block so it doesn't yield old data if the file is later grown. 4182 */ 4183 static int ext4_block_truncate_page(handle_t *handle, 4184 struct address_space *mapping, loff_t from) 4185 { 4186 unsigned length; 4187 unsigned blocksize; 4188 struct inode *inode = mapping->host; 4189 4190 /* If we are processing an encrypted inode during orphan list handling */ 4191 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4192 return 0; 4193 4194 blocksize = i_blocksize(inode); 4195 length = blocksize - (from & (blocksize - 1)); 4196 4197 return ext4_block_zero_page_range(handle, mapping, from, length); 4198 } 4199 4200 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4201 loff_t lstart, loff_t length) 4202 { 4203 struct super_block *sb = inode->i_sb; 4204 struct address_space *mapping = inode->i_mapping; 4205 unsigned partial_start, partial_end; 4206 ext4_fsblk_t start, end; 4207 loff_t byte_end = (lstart + length - 1); 4208 int err = 0; 4209 4210 partial_start = lstart & (sb->s_blocksize - 1); 4211 partial_end = byte_end & (sb->s_blocksize - 1); 4212 4213 start = lstart >> sb->s_blocksize_bits; 4214 end = byte_end >> sb->s_blocksize_bits; 4215 4216 /* Handle partial zero within the single block */ 4217 if (start == end && 4218 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4219 err = ext4_block_zero_page_range(handle, mapping, 4220 lstart, length); 4221 return err; 4222 } 4223 /* Handle partial zero out on the start of the range */ 4224 if (partial_start) { 4225 err = ext4_block_zero_page_range(handle, mapping, 4226 lstart, sb->s_blocksize); 4227 if (err) 4228 return err; 4229 } 4230 /* Handle partial zero out on the end of the range */ 4231 if (partial_end != sb->s_blocksize - 1) 4232 err = ext4_block_zero_page_range(handle, mapping, 4233 byte_end - partial_end, 4234 partial_end + 1); 4235 return err; 4236 } 4237 4238 int ext4_can_truncate(struct inode *inode) 4239 { 4240 if (S_ISREG(inode->i_mode)) 4241 return 1; 4242 if (S_ISDIR(inode->i_mode)) 4243 return 1; 4244 if (S_ISLNK(inode->i_mode)) 4245 return !ext4_inode_is_fast_symlink(inode); 4246 return 0; 4247 } 4248 4249 /* 4250 * We have to make sure i_disksize gets properly updated before we truncate 4251 * page cache due to hole punching or zero range. Otherwise i_disksize update 4252 * can get lost as it may have been postponed to submission of writeback but 4253 * that will never happen if we remove the folio containing i_size from the 4254 * page cache. Also if we punch hole within i_size but above i_disksize, 4255 * following ext4_page_mkwrite() may mistakenly allocate written blocks over 4256 * the hole and thus introduce allocated blocks beyond i_disksize which is 4257 * not allowed (e2fsck would complain in case of crash). 4258 */ 4259 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4260 loff_t len) 4261 { 4262 handle_t *handle; 4263 int ret; 4264 4265 loff_t size = i_size_read(inode); 4266 4267 WARN_ON(!inode_is_locked(inode)); 4268 if (offset > size) 4269 return 0; 4270 4271 if (offset + len < size) 4272 size = offset + len; 4273 if (EXT4_I(inode)->i_disksize >= size) 4274 return 0; 4275 4276 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4277 if (IS_ERR(handle)) 4278 return PTR_ERR(handle); 4279 ext4_update_i_disksize(inode, size); 4280 ret = ext4_mark_inode_dirty(handle, inode); 4281 ext4_journal_stop(handle); 4282 4283 return ret; 4284 } 4285 4286 static inline void ext4_truncate_folio(struct inode *inode, 4287 loff_t start, loff_t end) 4288 { 4289 unsigned long blocksize = i_blocksize(inode); 4290 struct folio *folio; 4291 4292 /* Nothing to be done if no complete block needs to be truncated. */ 4293 if (round_up(start, blocksize) >= round_down(end, blocksize)) 4294 return; 4295 4296 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); 4297 if (IS_ERR(folio)) 4298 return; 4299 4300 if (folio_mkclean(folio)) 4301 folio_mark_dirty(folio); 4302 folio_unlock(folio); 4303 folio_put(folio); 4304 } 4305 4306 int ext4_truncate_page_cache_block_range(struct inode *inode, 4307 loff_t start, loff_t end) 4308 { 4309 unsigned long blocksize = i_blocksize(inode); 4310 int ret; 4311 4312 /* 4313 * For journalled data we need to write (and checkpoint) pages 4314 * before discarding page cache to avoid inconsitent data on disk 4315 * in case of crash before freeing or unwritten converting trans 4316 * is committed. 4317 */ 4318 if (ext4_should_journal_data(inode)) { 4319 ret = filemap_write_and_wait_range(inode->i_mapping, start, 4320 end - 1); 4321 if (ret) 4322 return ret; 4323 goto truncate_pagecache; 4324 } 4325 4326 /* 4327 * If the block size is less than the page size, the file's mapped 4328 * blocks within one page could be freed or converted to unwritten. 4329 * So it's necessary to remove writable userspace mappings, and then 4330 * ext4_page_mkwrite() can be called during subsequent write access 4331 * to these partial folios. 4332 */ 4333 if (!IS_ALIGNED(start | end, PAGE_SIZE) && 4334 blocksize < PAGE_SIZE && start < inode->i_size) { 4335 loff_t page_boundary = round_up(start, PAGE_SIZE); 4336 4337 ext4_truncate_folio(inode, start, min(page_boundary, end)); 4338 if (end > page_boundary) 4339 ext4_truncate_folio(inode, 4340 round_down(end, PAGE_SIZE), end); 4341 } 4342 4343 truncate_pagecache: 4344 truncate_pagecache_range(inode, start, end - 1); 4345 return 0; 4346 } 4347 4348 static void ext4_wait_dax_page(struct inode *inode) 4349 { 4350 filemap_invalidate_unlock(inode->i_mapping); 4351 schedule(); 4352 filemap_invalidate_lock(inode->i_mapping); 4353 } 4354 4355 int ext4_break_layouts(struct inode *inode) 4356 { 4357 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 4358 return -EINVAL; 4359 4360 return dax_break_layout_inode(inode, ext4_wait_dax_page); 4361 } 4362 4363 /* 4364 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4365 * associated with the given offset and length 4366 * 4367 * @inode: File inode 4368 * @offset: The offset where the hole will begin 4369 * @len: The length of the hole 4370 * 4371 * Returns: 0 on success or negative on failure 4372 */ 4373 4374 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4375 { 4376 struct inode *inode = file_inode(file); 4377 struct super_block *sb = inode->i_sb; 4378 ext4_lblk_t start_lblk, end_lblk; 4379 loff_t max_end = sb->s_maxbytes; 4380 loff_t end = offset + length; 4381 handle_t *handle; 4382 unsigned int credits; 4383 int ret; 4384 4385 trace_ext4_punch_hole(inode, offset, length, 0); 4386 WARN_ON_ONCE(!inode_is_locked(inode)); 4387 4388 /* 4389 * For indirect-block based inodes, make sure that the hole within 4390 * one block before last range. 4391 */ 4392 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4393 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; 4394 4395 /* No need to punch hole beyond i_size */ 4396 if (offset >= inode->i_size || offset >= max_end) 4397 return 0; 4398 4399 /* 4400 * If the hole extends beyond i_size, set the hole to end after 4401 * the block that contains i_size to save pointless tail block zeroing. 4402 */ 4403 if (end >= inode->i_size) 4404 end = round_up(inode->i_size, sb->s_blocksize); 4405 if (end > max_end) 4406 end = max_end; 4407 length = end - offset; 4408 4409 /* 4410 * Attach jinode to inode for jbd2 if we do any zeroing of partial 4411 * block. 4412 */ 4413 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { 4414 ret = ext4_inode_attach_jinode(inode); 4415 if (ret < 0) 4416 return ret; 4417 } 4418 4419 4420 ret = ext4_update_disksize_before_punch(inode, offset, length); 4421 if (ret) 4422 return ret; 4423 4424 /* Now release the pages and zero block aligned part of pages*/ 4425 ret = ext4_truncate_page_cache_block_range(inode, offset, end); 4426 if (ret) 4427 return ret; 4428 4429 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4430 credits = ext4_chunk_trans_extent(inode, 2); 4431 else 4432 credits = ext4_blocks_for_truncate(inode); 4433 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4434 if (IS_ERR(handle)) { 4435 ret = PTR_ERR(handle); 4436 ext4_std_error(sb, ret); 4437 return ret; 4438 } 4439 4440 ret = ext4_zero_partial_blocks(handle, inode, offset, length); 4441 if (ret) 4442 goto out_handle; 4443 4444 /* If there are blocks to remove, do it */ 4445 start_lblk = EXT4_B_TO_LBLK(inode, offset); 4446 end_lblk = end >> inode->i_blkbits; 4447 4448 if (end_lblk > start_lblk) { 4449 ext4_lblk_t hole_len = end_lblk - start_lblk; 4450 4451 ext4_fc_track_inode(handle, inode); 4452 ext4_check_map_extents_env(inode); 4453 down_write(&EXT4_I(inode)->i_data_sem); 4454 ext4_discard_preallocations(inode); 4455 4456 ext4_es_remove_extent(inode, start_lblk, hole_len); 4457 4458 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4459 ret = ext4_ext_remove_space(inode, start_lblk, 4460 end_lblk - 1); 4461 else 4462 ret = ext4_ind_remove_space(handle, inode, start_lblk, 4463 end_lblk); 4464 if (ret) { 4465 up_write(&EXT4_I(inode)->i_data_sem); 4466 goto out_handle; 4467 } 4468 4469 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, 4470 EXTENT_STATUS_HOLE, 0); 4471 up_write(&EXT4_I(inode)->i_data_sem); 4472 } 4473 ext4_fc_track_range(handle, inode, start_lblk, end_lblk); 4474 4475 ret = ext4_mark_inode_dirty(handle, inode); 4476 if (unlikely(ret)) 4477 goto out_handle; 4478 4479 ext4_update_inode_fsync_trans(handle, inode, 1); 4480 if (IS_SYNC(inode)) 4481 ext4_handle_sync(handle); 4482 out_handle: 4483 ext4_journal_stop(handle); 4484 return ret; 4485 } 4486 4487 int ext4_inode_attach_jinode(struct inode *inode) 4488 { 4489 struct ext4_inode_info *ei = EXT4_I(inode); 4490 struct jbd2_inode *jinode; 4491 4492 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4493 return 0; 4494 4495 jinode = jbd2_alloc_inode(GFP_KERNEL); 4496 spin_lock(&inode->i_lock); 4497 if (!ei->jinode) { 4498 if (!jinode) { 4499 spin_unlock(&inode->i_lock); 4500 return -ENOMEM; 4501 } 4502 ei->jinode = jinode; 4503 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4504 jinode = NULL; 4505 } 4506 spin_unlock(&inode->i_lock); 4507 if (unlikely(jinode != NULL)) 4508 jbd2_free_inode(jinode); 4509 return 0; 4510 } 4511 4512 /* 4513 * ext4_truncate() 4514 * 4515 * We block out ext4_get_block() block instantiations across the entire 4516 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4517 * simultaneously on behalf of the same inode. 4518 * 4519 * As we work through the truncate and commit bits of it to the journal there 4520 * is one core, guiding principle: the file's tree must always be consistent on 4521 * disk. We must be able to restart the truncate after a crash. 4522 * 4523 * The file's tree may be transiently inconsistent in memory (although it 4524 * probably isn't), but whenever we close off and commit a journal transaction, 4525 * the contents of (the filesystem + the journal) must be consistent and 4526 * restartable. It's pretty simple, really: bottom up, right to left (although 4527 * left-to-right works OK too). 4528 * 4529 * Note that at recovery time, journal replay occurs *before* the restart of 4530 * truncate against the orphan inode list. 4531 * 4532 * The committed inode has the new, desired i_size (which is the same as 4533 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4534 * that this inode's truncate did not complete and it will again call 4535 * ext4_truncate() to have another go. So there will be instantiated blocks 4536 * to the right of the truncation point in a crashed ext4 filesystem. But 4537 * that's fine - as long as they are linked from the inode, the post-crash 4538 * ext4_truncate() run will find them and release them. 4539 */ 4540 int ext4_truncate(struct inode *inode) 4541 { 4542 struct ext4_inode_info *ei = EXT4_I(inode); 4543 unsigned int credits; 4544 int err = 0, err2; 4545 handle_t *handle; 4546 struct address_space *mapping = inode->i_mapping; 4547 4548 /* 4549 * There is a possibility that we're either freeing the inode 4550 * or it's a completely new inode. In those cases we might not 4551 * have i_rwsem locked because it's not necessary. 4552 */ 4553 if (!(inode_state_read_once(inode) & (I_NEW | I_FREEING))) 4554 WARN_ON(!inode_is_locked(inode)); 4555 trace_ext4_truncate_enter(inode); 4556 4557 if (!ext4_can_truncate(inode)) 4558 goto out_trace; 4559 4560 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4561 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4562 4563 if (ext4_has_inline_data(inode)) { 4564 int has_inline = 1; 4565 4566 err = ext4_inline_data_truncate(inode, &has_inline); 4567 if (err || has_inline) 4568 goto out_trace; 4569 } 4570 4571 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4572 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4573 err = ext4_inode_attach_jinode(inode); 4574 if (err) 4575 goto out_trace; 4576 } 4577 4578 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4579 credits = ext4_chunk_trans_extent(inode, 1); 4580 else 4581 credits = ext4_blocks_for_truncate(inode); 4582 4583 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4584 if (IS_ERR(handle)) { 4585 err = PTR_ERR(handle); 4586 goto out_trace; 4587 } 4588 4589 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4590 ext4_block_truncate_page(handle, mapping, inode->i_size); 4591 4592 /* 4593 * We add the inode to the orphan list, so that if this 4594 * truncate spans multiple transactions, and we crash, we will 4595 * resume the truncate when the filesystem recovers. It also 4596 * marks the inode dirty, to catch the new size. 4597 * 4598 * Implication: the file must always be in a sane, consistent 4599 * truncatable state while each transaction commits. 4600 */ 4601 err = ext4_orphan_add(handle, inode); 4602 if (err) 4603 goto out_stop; 4604 4605 ext4_fc_track_inode(handle, inode); 4606 ext4_check_map_extents_env(inode); 4607 4608 down_write(&EXT4_I(inode)->i_data_sem); 4609 ext4_discard_preallocations(inode); 4610 4611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4612 err = ext4_ext_truncate(handle, inode); 4613 else 4614 ext4_ind_truncate(handle, inode); 4615 4616 up_write(&ei->i_data_sem); 4617 if (err) 4618 goto out_stop; 4619 4620 if (IS_SYNC(inode)) 4621 ext4_handle_sync(handle); 4622 4623 out_stop: 4624 /* 4625 * If this was a simple ftruncate() and the file will remain alive, 4626 * then we need to clear up the orphan record which we created above. 4627 * However, if this was a real unlink then we were called by 4628 * ext4_evict_inode(), and we allow that function to clean up the 4629 * orphan info for us. 4630 */ 4631 if (inode->i_nlink) 4632 ext4_orphan_del(handle, inode); 4633 4634 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4635 err2 = ext4_mark_inode_dirty(handle, inode); 4636 if (unlikely(err2 && !err)) 4637 err = err2; 4638 ext4_journal_stop(handle); 4639 4640 out_trace: 4641 trace_ext4_truncate_exit(inode); 4642 return err; 4643 } 4644 4645 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4646 { 4647 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4648 return inode_peek_iversion_raw(inode); 4649 else 4650 return inode_peek_iversion(inode); 4651 } 4652 4653 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4654 struct ext4_inode_info *ei) 4655 { 4656 struct inode *inode = &(ei->vfs_inode); 4657 u64 i_blocks = READ_ONCE(inode->i_blocks); 4658 struct super_block *sb = inode->i_sb; 4659 4660 if (i_blocks <= ~0U) { 4661 /* 4662 * i_blocks can be represented in a 32 bit variable 4663 * as multiple of 512 bytes 4664 */ 4665 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4666 raw_inode->i_blocks_high = 0; 4667 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4668 return 0; 4669 } 4670 4671 /* 4672 * This should never happen since sb->s_maxbytes should not have 4673 * allowed this, sb->s_maxbytes was set according to the huge_file 4674 * feature in ext4_fill_super(). 4675 */ 4676 if (!ext4_has_feature_huge_file(sb)) 4677 return -EFSCORRUPTED; 4678 4679 if (i_blocks <= 0xffffffffffffULL) { 4680 /* 4681 * i_blocks can be represented in a 48 bit variable 4682 * as multiple of 512 bytes 4683 */ 4684 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4685 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4686 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4687 } else { 4688 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4689 /* i_block is stored in file system block size */ 4690 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4691 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4692 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4693 } 4694 return 0; 4695 } 4696 4697 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4698 { 4699 struct ext4_inode_info *ei = EXT4_I(inode); 4700 uid_t i_uid; 4701 gid_t i_gid; 4702 projid_t i_projid; 4703 int block; 4704 int err; 4705 4706 err = ext4_inode_blocks_set(raw_inode, ei); 4707 4708 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4709 i_uid = i_uid_read(inode); 4710 i_gid = i_gid_read(inode); 4711 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4712 if (!(test_opt(inode->i_sb, NO_UID32))) { 4713 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4714 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4715 /* 4716 * Fix up interoperability with old kernels. Otherwise, 4717 * old inodes get re-used with the upper 16 bits of the 4718 * uid/gid intact. 4719 */ 4720 if (ei->i_dtime && !ext4_inode_orphan_tracked(inode)) { 4721 raw_inode->i_uid_high = 0; 4722 raw_inode->i_gid_high = 0; 4723 } else { 4724 raw_inode->i_uid_high = 4725 cpu_to_le16(high_16_bits(i_uid)); 4726 raw_inode->i_gid_high = 4727 cpu_to_le16(high_16_bits(i_gid)); 4728 } 4729 } else { 4730 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4731 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4732 raw_inode->i_uid_high = 0; 4733 raw_inode->i_gid_high = 0; 4734 } 4735 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4736 4737 EXT4_INODE_SET_CTIME(inode, raw_inode); 4738 EXT4_INODE_SET_MTIME(inode, raw_inode); 4739 EXT4_INODE_SET_ATIME(inode, raw_inode); 4740 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4741 4742 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4743 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4744 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4745 raw_inode->i_file_acl_high = 4746 cpu_to_le16(ei->i_file_acl >> 32); 4747 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4748 ext4_isize_set(raw_inode, ei->i_disksize); 4749 4750 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4751 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4752 if (old_valid_dev(inode->i_rdev)) { 4753 raw_inode->i_block[0] = 4754 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4755 raw_inode->i_block[1] = 0; 4756 } else { 4757 raw_inode->i_block[0] = 0; 4758 raw_inode->i_block[1] = 4759 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4760 raw_inode->i_block[2] = 0; 4761 } 4762 } else if (!ext4_has_inline_data(inode)) { 4763 for (block = 0; block < EXT4_N_BLOCKS; block++) 4764 raw_inode->i_block[block] = ei->i_data[block]; 4765 } 4766 4767 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4768 u64 ivers = ext4_inode_peek_iversion(inode); 4769 4770 raw_inode->i_disk_version = cpu_to_le32(ivers); 4771 if (ei->i_extra_isize) { 4772 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4773 raw_inode->i_version_hi = 4774 cpu_to_le32(ivers >> 32); 4775 raw_inode->i_extra_isize = 4776 cpu_to_le16(ei->i_extra_isize); 4777 } 4778 } 4779 4780 if (i_projid != EXT4_DEF_PROJID && 4781 !ext4_has_feature_project(inode->i_sb)) 4782 err = err ?: -EFSCORRUPTED; 4783 4784 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4785 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4786 raw_inode->i_projid = cpu_to_le32(i_projid); 4787 4788 ext4_inode_csum_set(inode, raw_inode, ei); 4789 return err; 4790 } 4791 4792 /* 4793 * ext4_get_inode_loc returns with an extra refcount against the inode's 4794 * underlying buffer_head on success. If we pass 'inode' and it does not 4795 * have in-inode xattr, we have all inode data in memory that is needed 4796 * to recreate the on-disk version of this inode. 4797 */ 4798 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4799 struct inode *inode, struct ext4_iloc *iloc, 4800 ext4_fsblk_t *ret_block) 4801 { 4802 struct ext4_group_desc *gdp; 4803 struct buffer_head *bh; 4804 ext4_fsblk_t block; 4805 struct blk_plug plug; 4806 int inodes_per_block, inode_offset; 4807 4808 iloc->bh = NULL; 4809 if (ino < EXT4_ROOT_INO || 4810 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4811 return -EFSCORRUPTED; 4812 4813 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4814 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4815 if (!gdp) 4816 return -EIO; 4817 4818 /* 4819 * Figure out the offset within the block group inode table 4820 */ 4821 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4822 inode_offset = ((ino - 1) % 4823 EXT4_INODES_PER_GROUP(sb)); 4824 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4825 4826 block = ext4_inode_table(sb, gdp); 4827 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4828 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4829 ext4_error(sb, "Invalid inode table block %llu in " 4830 "block_group %u", block, iloc->block_group); 4831 return -EFSCORRUPTED; 4832 } 4833 block += (inode_offset / inodes_per_block); 4834 4835 bh = sb_getblk(sb, block); 4836 if (unlikely(!bh)) 4837 return -ENOMEM; 4838 if (ext4_buffer_uptodate(bh)) 4839 goto has_buffer; 4840 4841 lock_buffer(bh); 4842 if (ext4_buffer_uptodate(bh)) { 4843 /* Someone brought it uptodate while we waited */ 4844 unlock_buffer(bh); 4845 goto has_buffer; 4846 } 4847 4848 /* 4849 * If we have all information of the inode in memory and this 4850 * is the only valid inode in the block, we need not read the 4851 * block. 4852 */ 4853 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4854 struct buffer_head *bitmap_bh; 4855 int i, start; 4856 4857 start = inode_offset & ~(inodes_per_block - 1); 4858 4859 /* Is the inode bitmap in cache? */ 4860 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4861 if (unlikely(!bitmap_bh)) 4862 goto make_io; 4863 4864 /* 4865 * If the inode bitmap isn't in cache then the 4866 * optimisation may end up performing two reads instead 4867 * of one, so skip it. 4868 */ 4869 if (!buffer_uptodate(bitmap_bh)) { 4870 brelse(bitmap_bh); 4871 goto make_io; 4872 } 4873 for (i = start; i < start + inodes_per_block; i++) { 4874 if (i == inode_offset) 4875 continue; 4876 if (ext4_test_bit(i, bitmap_bh->b_data)) 4877 break; 4878 } 4879 brelse(bitmap_bh); 4880 if (i == start + inodes_per_block) { 4881 struct ext4_inode *raw_inode = 4882 (struct ext4_inode *) (bh->b_data + iloc->offset); 4883 4884 /* all other inodes are free, so skip I/O */ 4885 memset(bh->b_data, 0, bh->b_size); 4886 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4887 ext4_fill_raw_inode(inode, raw_inode); 4888 set_buffer_uptodate(bh); 4889 unlock_buffer(bh); 4890 goto has_buffer; 4891 } 4892 } 4893 4894 make_io: 4895 /* 4896 * If we need to do any I/O, try to pre-readahead extra 4897 * blocks from the inode table. 4898 */ 4899 blk_start_plug(&plug); 4900 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4901 ext4_fsblk_t b, end, table; 4902 unsigned num; 4903 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4904 4905 table = ext4_inode_table(sb, gdp); 4906 /* s_inode_readahead_blks is always a power of 2 */ 4907 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4908 if (table > b) 4909 b = table; 4910 end = b + ra_blks; 4911 num = EXT4_INODES_PER_GROUP(sb); 4912 if (ext4_has_group_desc_csum(sb)) 4913 num -= ext4_itable_unused_count(sb, gdp); 4914 table += num / inodes_per_block; 4915 if (end > table) 4916 end = table; 4917 while (b <= end) 4918 ext4_sb_breadahead_unmovable(sb, b++); 4919 } 4920 4921 /* 4922 * There are other valid inodes in the buffer, this inode 4923 * has in-inode xattrs, or we don't have this inode in memory. 4924 * Read the block from disk. 4925 */ 4926 trace_ext4_load_inode(sb, ino); 4927 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4928 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4929 blk_finish_plug(&plug); 4930 wait_on_buffer(bh); 4931 if (!buffer_uptodate(bh)) { 4932 if (ret_block) 4933 *ret_block = block; 4934 brelse(bh); 4935 return -EIO; 4936 } 4937 has_buffer: 4938 iloc->bh = bh; 4939 return 0; 4940 } 4941 4942 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4943 struct ext4_iloc *iloc) 4944 { 4945 ext4_fsblk_t err_blk = 0; 4946 int ret; 4947 4948 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4949 &err_blk); 4950 4951 if (ret == -EIO) 4952 ext4_error_inode_block(inode, err_blk, EIO, 4953 "unable to read itable block"); 4954 4955 return ret; 4956 } 4957 4958 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4959 { 4960 ext4_fsblk_t err_blk = 0; 4961 int ret; 4962 4963 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4964 &err_blk); 4965 4966 if (ret == -EIO) 4967 ext4_error_inode_block(inode, err_blk, EIO, 4968 "unable to read itable block"); 4969 4970 return ret; 4971 } 4972 4973 4974 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4975 struct ext4_iloc *iloc) 4976 { 4977 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4978 } 4979 4980 static bool ext4_should_enable_dax(struct inode *inode) 4981 { 4982 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4983 4984 if (test_opt2(inode->i_sb, DAX_NEVER)) 4985 return false; 4986 if (!S_ISREG(inode->i_mode)) 4987 return false; 4988 if (ext4_should_journal_data(inode)) 4989 return false; 4990 if (ext4_has_inline_data(inode)) 4991 return false; 4992 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4993 return false; 4994 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4995 return false; 4996 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4997 return false; 4998 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4999 return true; 5000 5001 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 5002 } 5003 5004 void ext4_set_inode_flags(struct inode *inode, bool init) 5005 { 5006 unsigned int flags = EXT4_I(inode)->i_flags; 5007 unsigned int new_fl = 0; 5008 5009 WARN_ON_ONCE(IS_DAX(inode) && init); 5010 5011 if (flags & EXT4_SYNC_FL) 5012 new_fl |= S_SYNC; 5013 if (flags & EXT4_APPEND_FL) 5014 new_fl |= S_APPEND; 5015 if (flags & EXT4_IMMUTABLE_FL) 5016 new_fl |= S_IMMUTABLE; 5017 if (flags & EXT4_NOATIME_FL) 5018 new_fl |= S_NOATIME; 5019 if (flags & EXT4_DIRSYNC_FL) 5020 new_fl |= S_DIRSYNC; 5021 5022 /* Because of the way inode_set_flags() works we must preserve S_DAX 5023 * here if already set. */ 5024 new_fl |= (inode->i_flags & S_DAX); 5025 if (init && ext4_should_enable_dax(inode)) 5026 new_fl |= S_DAX; 5027 5028 if (flags & EXT4_ENCRYPT_FL) 5029 new_fl |= S_ENCRYPTED; 5030 if (flags & EXT4_CASEFOLD_FL) 5031 new_fl |= S_CASEFOLD; 5032 if (flags & EXT4_VERITY_FL) 5033 new_fl |= S_VERITY; 5034 inode_set_flags(inode, new_fl, 5035 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 5036 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 5037 } 5038 5039 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 5040 struct ext4_inode_info *ei) 5041 { 5042 blkcnt_t i_blocks ; 5043 struct inode *inode = &(ei->vfs_inode); 5044 struct super_block *sb = inode->i_sb; 5045 5046 if (ext4_has_feature_huge_file(sb)) { 5047 /* we are using combined 48 bit field */ 5048 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 5049 le32_to_cpu(raw_inode->i_blocks_lo); 5050 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 5051 /* i_blocks represent file system block size */ 5052 return i_blocks << (inode->i_blkbits - 9); 5053 } else { 5054 return i_blocks; 5055 } 5056 } else { 5057 return le32_to_cpu(raw_inode->i_blocks_lo); 5058 } 5059 } 5060 5061 static inline int ext4_iget_extra_inode(struct inode *inode, 5062 struct ext4_inode *raw_inode, 5063 struct ext4_inode_info *ei) 5064 { 5065 __le32 *magic = (void *)raw_inode + 5066 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 5067 5068 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 5069 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 5070 int err; 5071 5072 err = xattr_check_inode(inode, IHDR(inode, raw_inode), 5073 ITAIL(inode, raw_inode)); 5074 if (err) 5075 return err; 5076 5077 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5078 err = ext4_find_inline_data_nolock(inode); 5079 if (!err && ext4_has_inline_data(inode)) 5080 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 5081 return err; 5082 } else 5083 EXT4_I(inode)->i_inline_off = 0; 5084 return 0; 5085 } 5086 5087 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 5088 { 5089 if (!ext4_has_feature_project(inode->i_sb)) 5090 return -EOPNOTSUPP; 5091 *projid = EXT4_I(inode)->i_projid; 5092 return 0; 5093 } 5094 5095 /* 5096 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 5097 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 5098 * set. 5099 */ 5100 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 5101 { 5102 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 5103 inode_set_iversion_raw(inode, val); 5104 else 5105 inode_set_iversion_queried(inode, val); 5106 } 5107 5108 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, 5109 const char *function, unsigned int line) 5110 { 5111 const char *err_str; 5112 5113 if (flags & EXT4_IGET_EA_INODE) { 5114 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5115 err_str = "missing EA_INODE flag"; 5116 goto error; 5117 } 5118 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5119 EXT4_I(inode)->i_file_acl) { 5120 err_str = "ea_inode with extended attributes"; 5121 goto error; 5122 } 5123 } else { 5124 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5125 /* 5126 * open_by_handle_at() could provide an old inode number 5127 * that has since been reused for an ea_inode; this does 5128 * not indicate filesystem corruption 5129 */ 5130 if (flags & EXT4_IGET_HANDLE) 5131 return -ESTALE; 5132 err_str = "unexpected EA_INODE flag"; 5133 goto error; 5134 } 5135 } 5136 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 5137 err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; 5138 goto error; 5139 } 5140 return 0; 5141 5142 error: 5143 ext4_error_inode(inode, function, line, 0, "%s", err_str); 5144 return -EFSCORRUPTED; 5145 } 5146 5147 void ext4_set_inode_mapping_order(struct inode *inode) 5148 { 5149 struct super_block *sb = inode->i_sb; 5150 u16 min_order, max_order; 5151 5152 max_order = EXT4_SB(sb)->s_max_folio_order; 5153 if (!max_order) 5154 return; 5155 5156 min_order = EXT4_SB(sb)->s_min_folio_order; 5157 if (!min_order && !S_ISREG(inode->i_mode)) 5158 return; 5159 5160 if (ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA)) 5161 max_order = min_order; 5162 5163 mapping_set_folio_order_range(inode->i_mapping, min_order, max_order); 5164 } 5165 5166 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 5167 ext4_iget_flags flags, const char *function, 5168 unsigned int line) 5169 { 5170 struct ext4_iloc iloc; 5171 struct ext4_inode *raw_inode; 5172 struct ext4_inode_info *ei; 5173 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5174 struct inode *inode; 5175 journal_t *journal = EXT4_SB(sb)->s_journal; 5176 long ret; 5177 loff_t size; 5178 int block; 5179 uid_t i_uid; 5180 gid_t i_gid; 5181 projid_t i_projid; 5182 5183 if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) || 5184 (ino < EXT4_ROOT_INO) || 5185 (ino > le32_to_cpu(es->s_inodes_count))) { 5186 if (flags & EXT4_IGET_HANDLE) 5187 return ERR_PTR(-ESTALE); 5188 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 5189 "inode #%lu: comm %s: iget: illegal inode #", 5190 ino, current->comm); 5191 return ERR_PTR(-EFSCORRUPTED); 5192 } 5193 5194 inode = iget_locked(sb, ino); 5195 if (!inode) 5196 return ERR_PTR(-ENOMEM); 5197 if (!(inode_state_read_once(inode) & I_NEW)) { 5198 ret = check_igot_inode(inode, flags, function, line); 5199 if (ret) { 5200 iput(inode); 5201 return ERR_PTR(ret); 5202 } 5203 return inode; 5204 } 5205 5206 ei = EXT4_I(inode); 5207 iloc.bh = NULL; 5208 5209 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 5210 if (ret < 0) 5211 goto bad_inode; 5212 raw_inode = ext4_raw_inode(&iloc); 5213 5214 if ((flags & EXT4_IGET_HANDLE) && 5215 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 5216 ret = -ESTALE; 5217 goto bad_inode; 5218 } 5219 5220 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5221 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5222 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5223 EXT4_INODE_SIZE(inode->i_sb) || 5224 (ei->i_extra_isize & 3)) { 5225 ext4_error_inode(inode, function, line, 0, 5226 "iget: bad extra_isize %u " 5227 "(inode size %u)", 5228 ei->i_extra_isize, 5229 EXT4_INODE_SIZE(inode->i_sb)); 5230 ret = -EFSCORRUPTED; 5231 goto bad_inode; 5232 } 5233 } else 5234 ei->i_extra_isize = 0; 5235 5236 /* Precompute checksum seed for inode metadata */ 5237 if (ext4_has_feature_metadata_csum(sb)) { 5238 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5239 __u32 csum; 5240 __le32 inum = cpu_to_le32(inode->i_ino); 5241 __le32 gen = raw_inode->i_generation; 5242 csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum, 5243 sizeof(inum)); 5244 ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen)); 5245 } 5246 5247 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 5248 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 5249 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 5250 ext4_error_inode_err(inode, function, line, 0, 5251 EFSBADCRC, "iget: checksum invalid"); 5252 ret = -EFSBADCRC; 5253 goto bad_inode; 5254 } 5255 5256 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5257 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5258 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5259 if (ext4_has_feature_project(sb) && 5260 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 5261 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5262 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 5263 else 5264 i_projid = EXT4_DEF_PROJID; 5265 5266 if (!(test_opt(inode->i_sb, NO_UID32))) { 5267 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5268 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5269 } 5270 i_uid_write(inode, i_uid); 5271 i_gid_write(inode, i_gid); 5272 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 5273 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 5274 5275 ei->i_inline_off = 0; 5276 ei->i_dir_start_lookup = 0; 5277 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5278 /* We now have enough fields to check if the inode was active or not. 5279 * This is needed because nfsd might try to access dead inodes 5280 * the test is that same one that e2fsck uses 5281 * NeilBrown 1999oct15 5282 */ 5283 if (inode->i_nlink == 0) { 5284 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 5285 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 5286 ino != EXT4_BOOT_LOADER_INO) { 5287 /* this inode is deleted or unallocated */ 5288 if (flags & EXT4_IGET_SPECIAL) { 5289 ext4_error_inode(inode, function, line, 0, 5290 "iget: special inode unallocated"); 5291 ret = -EFSCORRUPTED; 5292 } else 5293 ret = -ESTALE; 5294 goto bad_inode; 5295 } 5296 /* The only unlinked inodes we let through here have 5297 * valid i_mode and are being read by the orphan 5298 * recovery code: that's fine, we're about to complete 5299 * the process of deleting those. 5300 * OR it is the EXT4_BOOT_LOADER_INO which is 5301 * not initialized on a new filesystem. */ 5302 } 5303 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5304 ext4_set_inode_flags(inode, true); 5305 /* Detect invalid flag combination - can't have both inline data and extents */ 5306 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) && 5307 ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5308 ext4_error_inode(inode, function, line, 0, 5309 "inode has both inline data and extents flags"); 5310 ret = -EFSCORRUPTED; 5311 goto bad_inode; 5312 } 5313 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5314 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5315 if (ext4_has_feature_64bit(sb)) 5316 ei->i_file_acl |= 5317 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5318 inode->i_size = ext4_isize(sb, raw_inode); 5319 size = i_size_read(inode); 5320 if (size < 0 || size > ext4_get_maxbytes(inode)) { 5321 ext4_error_inode(inode, function, line, 0, 5322 "iget: bad i_size value: %lld", size); 5323 ret = -EFSCORRUPTED; 5324 goto bad_inode; 5325 } 5326 /* 5327 * If dir_index is not enabled but there's dir with INDEX flag set, 5328 * we'd normally treat htree data as empty space. But with metadata 5329 * checksumming that corrupts checksums so forbid that. 5330 */ 5331 if (!ext4_has_feature_dir_index(sb) && 5332 ext4_has_feature_metadata_csum(sb) && 5333 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 5334 ext4_error_inode(inode, function, line, 0, 5335 "iget: Dir with htree data on filesystem without dir_index feature."); 5336 ret = -EFSCORRUPTED; 5337 goto bad_inode; 5338 } 5339 ei->i_disksize = inode->i_size; 5340 #ifdef CONFIG_QUOTA 5341 ei->i_reserved_quota = 0; 5342 #endif 5343 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5344 ei->i_block_group = iloc.block_group; 5345 ei->i_last_alloc_group = ~0; 5346 /* 5347 * NOTE! The in-memory inode i_data array is in little-endian order 5348 * even on big-endian machines: we do NOT byteswap the block numbers! 5349 */ 5350 for (block = 0; block < EXT4_N_BLOCKS; block++) 5351 ei->i_data[block] = raw_inode->i_block[block]; 5352 INIT_LIST_HEAD(&ei->i_orphan); 5353 ext4_fc_init_inode(&ei->vfs_inode); 5354 5355 /* 5356 * Set transaction id's of transactions that have to be committed 5357 * to finish f[data]sync. We set them to currently running transaction 5358 * as we cannot be sure that the inode or some of its metadata isn't 5359 * part of the transaction - the inode could have been reclaimed and 5360 * now it is reread from disk. 5361 */ 5362 if (journal) { 5363 transaction_t *transaction; 5364 tid_t tid; 5365 5366 read_lock(&journal->j_state_lock); 5367 if (journal->j_running_transaction) 5368 transaction = journal->j_running_transaction; 5369 else 5370 transaction = journal->j_committing_transaction; 5371 if (transaction) 5372 tid = transaction->t_tid; 5373 else 5374 tid = journal->j_commit_sequence; 5375 read_unlock(&journal->j_state_lock); 5376 ei->i_sync_tid = tid; 5377 ei->i_datasync_tid = tid; 5378 } 5379 5380 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5381 if (ei->i_extra_isize == 0) { 5382 /* The extra space is currently unused. Use it. */ 5383 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5384 ei->i_extra_isize = sizeof(struct ext4_inode) - 5385 EXT4_GOOD_OLD_INODE_SIZE; 5386 } else { 5387 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5388 if (ret) 5389 goto bad_inode; 5390 } 5391 } 5392 5393 EXT4_INODE_GET_CTIME(inode, raw_inode); 5394 EXT4_INODE_GET_ATIME(inode, raw_inode); 5395 EXT4_INODE_GET_MTIME(inode, raw_inode); 5396 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5397 5398 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5399 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5400 5401 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5402 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5403 ivers |= 5404 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5405 } 5406 ext4_inode_set_iversion_queried(inode, ivers); 5407 } 5408 5409 ret = 0; 5410 if (ei->i_file_acl && 5411 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5412 ext4_error_inode(inode, function, line, 0, 5413 "iget: bad extended attribute block %llu", 5414 ei->i_file_acl); 5415 ret = -EFSCORRUPTED; 5416 goto bad_inode; 5417 } else if (!ext4_has_inline_data(inode)) { 5418 /* validate the block references in the inode */ 5419 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5420 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5421 (S_ISLNK(inode->i_mode) && 5422 !ext4_inode_is_fast_symlink(inode)))) { 5423 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5424 ret = ext4_ext_check_inode(inode); 5425 else 5426 ret = ext4_ind_check_inode(inode); 5427 } 5428 } 5429 if (ret) 5430 goto bad_inode; 5431 5432 if (S_ISREG(inode->i_mode)) { 5433 inode->i_op = &ext4_file_inode_operations; 5434 inode->i_fop = &ext4_file_operations; 5435 ext4_set_aops(inode); 5436 } else if (S_ISDIR(inode->i_mode)) { 5437 inode->i_op = &ext4_dir_inode_operations; 5438 inode->i_fop = &ext4_dir_operations; 5439 } else if (S_ISLNK(inode->i_mode)) { 5440 /* VFS does not allow setting these so must be corruption */ 5441 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5442 ext4_error_inode(inode, function, line, 0, 5443 "iget: immutable or append flags " 5444 "not allowed on symlinks"); 5445 ret = -EFSCORRUPTED; 5446 goto bad_inode; 5447 } 5448 if (IS_ENCRYPTED(inode)) { 5449 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5450 } else if (ext4_inode_is_fast_symlink(inode)) { 5451 inode->i_op = &ext4_fast_symlink_inode_operations; 5452 if (inode->i_size == 0 || 5453 inode->i_size >= sizeof(ei->i_data) || 5454 strnlen((char *)ei->i_data, inode->i_size + 1) != 5455 inode->i_size) { 5456 ext4_error_inode(inode, function, line, 0, 5457 "invalid fast symlink length %llu", 5458 (unsigned long long)inode->i_size); 5459 ret = -EFSCORRUPTED; 5460 goto bad_inode; 5461 } 5462 inode_set_cached_link(inode, (char *)ei->i_data, 5463 inode->i_size); 5464 } else { 5465 inode->i_op = &ext4_symlink_inode_operations; 5466 } 5467 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5468 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5469 inode->i_op = &ext4_special_inode_operations; 5470 if (raw_inode->i_block[0]) 5471 init_special_inode(inode, inode->i_mode, 5472 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5473 else 5474 init_special_inode(inode, inode->i_mode, 5475 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5476 } else if (ino == EXT4_BOOT_LOADER_INO) { 5477 make_bad_inode(inode); 5478 } else { 5479 ret = -EFSCORRUPTED; 5480 ext4_error_inode(inode, function, line, 0, 5481 "iget: bogus i_mode (%o)", inode->i_mode); 5482 goto bad_inode; 5483 } 5484 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5485 ext4_error_inode(inode, function, line, 0, 5486 "casefold flag without casefold feature"); 5487 ret = -EFSCORRUPTED; 5488 goto bad_inode; 5489 } 5490 5491 ext4_set_inode_mapping_order(inode); 5492 5493 ret = check_igot_inode(inode, flags, function, line); 5494 /* 5495 * -ESTALE here means there is nothing inherently wrong with the inode, 5496 * it's just not an inode we can return for an fhandle lookup. 5497 */ 5498 if (ret == -ESTALE) { 5499 brelse(iloc.bh); 5500 unlock_new_inode(inode); 5501 iput(inode); 5502 return ERR_PTR(-ESTALE); 5503 } 5504 if (ret) 5505 goto bad_inode; 5506 brelse(iloc.bh); 5507 /* Initialize the "no ACL's" state for the simple cases */ 5508 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) && !ei->i_file_acl) 5509 cache_no_acl(inode); 5510 unlock_new_inode(inode); 5511 return inode; 5512 5513 bad_inode: 5514 brelse(iloc.bh); 5515 iget_failed(inode); 5516 return ERR_PTR(ret); 5517 } 5518 5519 static void __ext4_update_other_inode_time(struct super_block *sb, 5520 unsigned long orig_ino, 5521 unsigned long ino, 5522 struct ext4_inode *raw_inode) 5523 { 5524 struct inode *inode; 5525 5526 inode = find_inode_by_ino_rcu(sb, ino); 5527 if (!inode) 5528 return; 5529 5530 if (!inode_is_dirtytime_only(inode)) 5531 return; 5532 5533 spin_lock(&inode->i_lock); 5534 if (inode_is_dirtytime_only(inode)) { 5535 struct ext4_inode_info *ei = EXT4_I(inode); 5536 5537 inode_state_clear(inode, I_DIRTY_TIME); 5538 spin_unlock(&inode->i_lock); 5539 5540 spin_lock(&ei->i_raw_lock); 5541 EXT4_INODE_SET_CTIME(inode, raw_inode); 5542 EXT4_INODE_SET_MTIME(inode, raw_inode); 5543 EXT4_INODE_SET_ATIME(inode, raw_inode); 5544 ext4_inode_csum_set(inode, raw_inode, ei); 5545 spin_unlock(&ei->i_raw_lock); 5546 trace_ext4_other_inode_update_time(inode, orig_ino); 5547 return; 5548 } 5549 spin_unlock(&inode->i_lock); 5550 } 5551 5552 /* 5553 * Opportunistically update the other time fields for other inodes in 5554 * the same inode table block. 5555 */ 5556 static void ext4_update_other_inodes_time(struct super_block *sb, 5557 unsigned long orig_ino, char *buf) 5558 { 5559 unsigned long ino; 5560 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5561 int inode_size = EXT4_INODE_SIZE(sb); 5562 5563 /* 5564 * Calculate the first inode in the inode table block. Inode 5565 * numbers are one-based. That is, the first inode in a block 5566 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5567 */ 5568 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5569 rcu_read_lock(); 5570 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5571 if (ino == orig_ino) 5572 continue; 5573 __ext4_update_other_inode_time(sb, orig_ino, ino, 5574 (struct ext4_inode *)buf); 5575 } 5576 rcu_read_unlock(); 5577 } 5578 5579 /* 5580 * Post the struct inode info into an on-disk inode location in the 5581 * buffer-cache. This gobbles the caller's reference to the 5582 * buffer_head in the inode location struct. 5583 * 5584 * The caller must have write access to iloc->bh. 5585 */ 5586 static int ext4_do_update_inode(handle_t *handle, 5587 struct inode *inode, 5588 struct ext4_iloc *iloc) 5589 { 5590 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5591 struct ext4_inode_info *ei = EXT4_I(inode); 5592 struct buffer_head *bh = iloc->bh; 5593 struct super_block *sb = inode->i_sb; 5594 int err; 5595 int need_datasync = 0, set_large_file = 0; 5596 5597 spin_lock(&ei->i_raw_lock); 5598 5599 /* 5600 * For fields not tracked in the in-memory inode, initialise them 5601 * to zero for new inodes. 5602 */ 5603 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5604 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5605 5606 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5607 need_datasync = 1; 5608 if (ei->i_disksize > 0x7fffffffULL) { 5609 if (!ext4_has_feature_large_file(sb) || 5610 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5611 set_large_file = 1; 5612 } 5613 5614 err = ext4_fill_raw_inode(inode, raw_inode); 5615 spin_unlock(&ei->i_raw_lock); 5616 if (err) { 5617 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5618 goto out_brelse; 5619 } 5620 5621 if (inode->i_sb->s_flags & SB_LAZYTIME) 5622 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5623 bh->b_data); 5624 5625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5626 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5627 if (err) 5628 goto out_error; 5629 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5630 if (set_large_file) { 5631 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5632 err = ext4_journal_get_write_access(handle, sb, 5633 EXT4_SB(sb)->s_sbh, 5634 EXT4_JTR_NONE); 5635 if (err) 5636 goto out_error; 5637 lock_buffer(EXT4_SB(sb)->s_sbh); 5638 ext4_set_feature_large_file(sb); 5639 ext4_superblock_csum_set(sb); 5640 unlock_buffer(EXT4_SB(sb)->s_sbh); 5641 ext4_handle_sync(handle); 5642 err = ext4_handle_dirty_metadata(handle, NULL, 5643 EXT4_SB(sb)->s_sbh); 5644 } 5645 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5646 out_error: 5647 ext4_std_error(inode->i_sb, err); 5648 out_brelse: 5649 brelse(bh); 5650 return err; 5651 } 5652 5653 /* 5654 * ext4_write_inode() 5655 * 5656 * We are called from a few places: 5657 * 5658 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5659 * Here, there will be no transaction running. We wait for any running 5660 * transaction to commit. 5661 * 5662 * - Within flush work (sys_sync(), kupdate and such). 5663 * We wait on commit, if told to. 5664 * 5665 * - Within iput_final() -> write_inode_now() 5666 * We wait on commit, if told to. 5667 * 5668 * In all cases it is actually safe for us to return without doing anything, 5669 * because the inode has been copied into a raw inode buffer in 5670 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5671 * writeback. 5672 * 5673 * Note that we are absolutely dependent upon all inode dirtiers doing the 5674 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5675 * which we are interested. 5676 * 5677 * It would be a bug for them to not do this. The code: 5678 * 5679 * mark_inode_dirty(inode) 5680 * stuff(); 5681 * inode->i_size = expr; 5682 * 5683 * is in error because write_inode() could occur while `stuff()' is running, 5684 * and the new i_size will be lost. Plus the inode will no longer be on the 5685 * superblock's dirty inode list. 5686 */ 5687 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5688 { 5689 int err; 5690 5691 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5692 return 0; 5693 5694 err = ext4_emergency_state(inode->i_sb); 5695 if (unlikely(err)) 5696 return err; 5697 5698 if (EXT4_SB(inode->i_sb)->s_journal) { 5699 if (ext4_journal_current_handle()) { 5700 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5701 dump_stack(); 5702 return -EIO; 5703 } 5704 5705 /* 5706 * No need to force transaction in WB_SYNC_NONE mode. Also 5707 * ext4_sync_fs() will force the commit after everything is 5708 * written. 5709 */ 5710 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5711 return 0; 5712 5713 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5714 EXT4_I(inode)->i_sync_tid); 5715 } else { 5716 struct ext4_iloc iloc; 5717 5718 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5719 if (err) 5720 return err; 5721 /* 5722 * sync(2) will flush the whole buffer cache. No need to do 5723 * it here separately for each inode. 5724 */ 5725 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5726 sync_dirty_buffer(iloc.bh); 5727 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5728 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5729 "IO error syncing inode"); 5730 err = -EIO; 5731 } 5732 brelse(iloc.bh); 5733 } 5734 return err; 5735 } 5736 5737 /* 5738 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5739 * buffers that are attached to a folio straddling i_size and are undergoing 5740 * commit. In that case we have to wait for commit to finish and try again. 5741 */ 5742 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5743 { 5744 unsigned offset; 5745 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5746 tid_t commit_tid; 5747 int ret; 5748 bool has_transaction; 5749 5750 offset = inode->i_size & (PAGE_SIZE - 1); 5751 /* 5752 * If the folio is fully truncated, we don't need to wait for any commit 5753 * (and we even should not as __ext4_journalled_invalidate_folio() may 5754 * strip all buffers from the folio but keep the folio dirty which can then 5755 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5756 * buffers). Also we don't need to wait for any commit if all buffers in 5757 * the folio remain valid. This is most beneficial for the common case of 5758 * blocksize == PAGESIZE. 5759 */ 5760 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5761 return; 5762 while (1) { 5763 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5764 inode->i_size >> PAGE_SHIFT); 5765 if (IS_ERR(folio)) 5766 return; 5767 ret = __ext4_journalled_invalidate_folio(folio, offset, 5768 folio_size(folio) - offset); 5769 folio_unlock(folio); 5770 folio_put(folio); 5771 if (ret != -EBUSY) 5772 return; 5773 has_transaction = false; 5774 read_lock(&journal->j_state_lock); 5775 if (journal->j_committing_transaction) { 5776 commit_tid = journal->j_committing_transaction->t_tid; 5777 has_transaction = true; 5778 } 5779 read_unlock(&journal->j_state_lock); 5780 if (has_transaction) 5781 jbd2_log_wait_commit(journal, commit_tid); 5782 } 5783 } 5784 5785 /* 5786 * ext4_setattr() 5787 * 5788 * Called from notify_change. 5789 * 5790 * We want to trap VFS attempts to truncate the file as soon as 5791 * possible. In particular, we want to make sure that when the VFS 5792 * shrinks i_size, we put the inode on the orphan list and modify 5793 * i_disksize immediately, so that during the subsequent flushing of 5794 * dirty pages and freeing of disk blocks, we can guarantee that any 5795 * commit will leave the blocks being flushed in an unused state on 5796 * disk. (On recovery, the inode will get truncated and the blocks will 5797 * be freed, so we have a strong guarantee that no future commit will 5798 * leave these blocks visible to the user.) 5799 * 5800 * Another thing we have to assure is that if we are in ordered mode 5801 * and inode is still attached to the committing transaction, we must 5802 * we start writeout of all the dirty pages which are being truncated. 5803 * This way we are sure that all the data written in the previous 5804 * transaction are already on disk (truncate waits for pages under 5805 * writeback). 5806 * 5807 * Called with inode->i_rwsem down. 5808 */ 5809 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5810 struct iattr *attr) 5811 { 5812 struct inode *inode = d_inode(dentry); 5813 int error, rc = 0; 5814 int orphan = 0; 5815 const unsigned int ia_valid = attr->ia_valid; 5816 bool inc_ivers = true; 5817 5818 error = ext4_emergency_state(inode->i_sb); 5819 if (unlikely(error)) 5820 return error; 5821 5822 if (unlikely(IS_IMMUTABLE(inode))) 5823 return -EPERM; 5824 5825 if (unlikely(IS_APPEND(inode) && 5826 (ia_valid & (ATTR_MODE | ATTR_UID | 5827 ATTR_GID | ATTR_TIMES_SET)))) 5828 return -EPERM; 5829 5830 error = setattr_prepare(idmap, dentry, attr); 5831 if (error) 5832 return error; 5833 5834 error = fscrypt_prepare_setattr(dentry, attr); 5835 if (error) 5836 return error; 5837 5838 error = fsverity_prepare_setattr(dentry, attr); 5839 if (error) 5840 return error; 5841 5842 if (is_quota_modification(idmap, inode, attr)) { 5843 error = dquot_initialize(inode); 5844 if (error) 5845 return error; 5846 } 5847 5848 if (i_uid_needs_update(idmap, attr, inode) || 5849 i_gid_needs_update(idmap, attr, inode)) { 5850 handle_t *handle; 5851 5852 /* (user+group)*(old+new) structure, inode write (sb, 5853 * inode block, ? - but truncate inode update has it) */ 5854 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5855 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5856 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5857 if (IS_ERR(handle)) { 5858 error = PTR_ERR(handle); 5859 goto err_out; 5860 } 5861 5862 /* dquot_transfer() calls back ext4_get_inode_usage() which 5863 * counts xattr inode references. 5864 */ 5865 down_read(&EXT4_I(inode)->xattr_sem); 5866 error = dquot_transfer(idmap, inode, attr); 5867 up_read(&EXT4_I(inode)->xattr_sem); 5868 5869 if (error) { 5870 ext4_journal_stop(handle); 5871 return error; 5872 } 5873 /* Update corresponding info in inode so that everything is in 5874 * one transaction */ 5875 i_uid_update(idmap, attr, inode); 5876 i_gid_update(idmap, attr, inode); 5877 error = ext4_mark_inode_dirty(handle, inode); 5878 ext4_journal_stop(handle); 5879 if (unlikely(error)) { 5880 return error; 5881 } 5882 } 5883 5884 if (attr->ia_valid & ATTR_SIZE) { 5885 handle_t *handle; 5886 loff_t oldsize = inode->i_size; 5887 loff_t old_disksize; 5888 int shrink = (attr->ia_size < inode->i_size); 5889 5890 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5891 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5892 5893 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5894 return -EFBIG; 5895 } 5896 } 5897 if (!S_ISREG(inode->i_mode)) { 5898 return -EINVAL; 5899 } 5900 5901 if (attr->ia_size == inode->i_size) 5902 inc_ivers = false; 5903 5904 if (shrink) { 5905 if (ext4_should_order_data(inode)) { 5906 error = ext4_begin_ordered_truncate(inode, 5907 attr->ia_size); 5908 if (error) 5909 goto err_out; 5910 } 5911 /* 5912 * Blocks are going to be removed from the inode. Wait 5913 * for dio in flight. 5914 */ 5915 inode_dio_wait(inode); 5916 } 5917 5918 filemap_invalidate_lock(inode->i_mapping); 5919 5920 rc = ext4_break_layouts(inode); 5921 if (rc) { 5922 filemap_invalidate_unlock(inode->i_mapping); 5923 goto err_out; 5924 } 5925 5926 if (attr->ia_size != inode->i_size) { 5927 /* attach jbd2 jinode for EOF folio tail zeroing */ 5928 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5929 oldsize & (inode->i_sb->s_blocksize - 1)) { 5930 error = ext4_inode_attach_jinode(inode); 5931 if (error) 5932 goto out_mmap_sem; 5933 } 5934 5935 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5936 if (IS_ERR(handle)) { 5937 error = PTR_ERR(handle); 5938 goto out_mmap_sem; 5939 } 5940 if (ext4_handle_valid(handle) && shrink) { 5941 error = ext4_orphan_add(handle, inode); 5942 orphan = 1; 5943 } 5944 /* 5945 * Update c/mtime and tail zero the EOF folio on 5946 * truncate up. ext4_truncate() handles the shrink case 5947 * below. 5948 */ 5949 if (!shrink) { 5950 inode_set_mtime_to_ts(inode, 5951 inode_set_ctime_current(inode)); 5952 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5953 ext4_block_truncate_page(handle, 5954 inode->i_mapping, oldsize); 5955 } 5956 5957 if (shrink) 5958 ext4_fc_track_range(handle, inode, 5959 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5960 inode->i_sb->s_blocksize_bits, 5961 EXT_MAX_BLOCKS - 1); 5962 else 5963 ext4_fc_track_range( 5964 handle, inode, 5965 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5966 inode->i_sb->s_blocksize_bits, 5967 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5968 inode->i_sb->s_blocksize_bits); 5969 5970 down_write(&EXT4_I(inode)->i_data_sem); 5971 old_disksize = EXT4_I(inode)->i_disksize; 5972 EXT4_I(inode)->i_disksize = attr->ia_size; 5973 5974 /* 5975 * We have to update i_size under i_data_sem together 5976 * with i_disksize to avoid races with writeback code 5977 * running ext4_wb_update_i_disksize(). 5978 */ 5979 if (!error) 5980 i_size_write(inode, attr->ia_size); 5981 else 5982 EXT4_I(inode)->i_disksize = old_disksize; 5983 up_write(&EXT4_I(inode)->i_data_sem); 5984 rc = ext4_mark_inode_dirty(handle, inode); 5985 if (!error) 5986 error = rc; 5987 ext4_journal_stop(handle); 5988 if (error) 5989 goto out_mmap_sem; 5990 if (!shrink) { 5991 pagecache_isize_extended(inode, oldsize, 5992 inode->i_size); 5993 } else if (ext4_should_journal_data(inode)) { 5994 ext4_wait_for_tail_page_commit(inode); 5995 } 5996 } 5997 5998 /* 5999 * Truncate pagecache after we've waited for commit 6000 * in data=journal mode to make pages freeable. 6001 */ 6002 truncate_pagecache(inode, inode->i_size); 6003 /* 6004 * Call ext4_truncate() even if i_size didn't change to 6005 * truncate possible preallocated blocks. 6006 */ 6007 if (attr->ia_size <= oldsize) { 6008 rc = ext4_truncate(inode); 6009 if (rc) 6010 error = rc; 6011 } 6012 out_mmap_sem: 6013 filemap_invalidate_unlock(inode->i_mapping); 6014 } 6015 6016 if (!error) { 6017 if (inc_ivers) 6018 inode_inc_iversion(inode); 6019 setattr_copy(idmap, inode, attr); 6020 mark_inode_dirty(inode); 6021 } 6022 6023 /* 6024 * If the call to ext4_truncate failed to get a transaction handle at 6025 * all, we need to clean up the in-core orphan list manually. 6026 */ 6027 if (orphan && inode->i_nlink) 6028 ext4_orphan_del(NULL, inode); 6029 6030 if (!error && (ia_valid & ATTR_MODE)) 6031 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 6032 6033 err_out: 6034 if (error) 6035 ext4_std_error(inode->i_sb, error); 6036 if (!error) 6037 error = rc; 6038 return error; 6039 } 6040 6041 u32 ext4_dio_alignment(struct inode *inode) 6042 { 6043 if (fsverity_active(inode)) 6044 return 0; 6045 if (ext4_should_journal_data(inode)) 6046 return 0; 6047 if (ext4_has_inline_data(inode)) 6048 return 0; 6049 if (IS_ENCRYPTED(inode)) { 6050 if (!fscrypt_dio_supported(inode)) 6051 return 0; 6052 return i_blocksize(inode); 6053 } 6054 return 1; /* use the iomap defaults */ 6055 } 6056 6057 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 6058 struct kstat *stat, u32 request_mask, unsigned int query_flags) 6059 { 6060 struct inode *inode = d_inode(path->dentry); 6061 struct ext4_inode *raw_inode; 6062 struct ext4_inode_info *ei = EXT4_I(inode); 6063 unsigned int flags; 6064 6065 if ((request_mask & STATX_BTIME) && 6066 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 6067 stat->result_mask |= STATX_BTIME; 6068 stat->btime.tv_sec = ei->i_crtime.tv_sec; 6069 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 6070 } 6071 6072 /* 6073 * Return the DIO alignment restrictions if requested. We only return 6074 * this information when requested, since on encrypted files it might 6075 * take a fair bit of work to get if the file wasn't opened recently. 6076 */ 6077 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 6078 u32 dio_align = ext4_dio_alignment(inode); 6079 6080 stat->result_mask |= STATX_DIOALIGN; 6081 if (dio_align == 1) { 6082 struct block_device *bdev = inode->i_sb->s_bdev; 6083 6084 /* iomap defaults */ 6085 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 6086 stat->dio_offset_align = bdev_logical_block_size(bdev); 6087 } else { 6088 stat->dio_mem_align = dio_align; 6089 stat->dio_offset_align = dio_align; 6090 } 6091 } 6092 6093 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 6094 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6095 unsigned int awu_min = 0, awu_max = 0; 6096 6097 if (ext4_inode_can_atomic_write(inode)) { 6098 awu_min = sbi->s_awu_min; 6099 awu_max = sbi->s_awu_max; 6100 } 6101 6102 generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0); 6103 } 6104 6105 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 6106 if (flags & EXT4_APPEND_FL) 6107 stat->attributes |= STATX_ATTR_APPEND; 6108 if (flags & EXT4_COMPR_FL) 6109 stat->attributes |= STATX_ATTR_COMPRESSED; 6110 if (flags & EXT4_ENCRYPT_FL) 6111 stat->attributes |= STATX_ATTR_ENCRYPTED; 6112 if (flags & EXT4_IMMUTABLE_FL) 6113 stat->attributes |= STATX_ATTR_IMMUTABLE; 6114 if (flags & EXT4_NODUMP_FL) 6115 stat->attributes |= STATX_ATTR_NODUMP; 6116 if (flags & EXT4_VERITY_FL) 6117 stat->attributes |= STATX_ATTR_VERITY; 6118 6119 stat->attributes_mask |= (STATX_ATTR_APPEND | 6120 STATX_ATTR_COMPRESSED | 6121 STATX_ATTR_ENCRYPTED | 6122 STATX_ATTR_IMMUTABLE | 6123 STATX_ATTR_NODUMP | 6124 STATX_ATTR_VERITY); 6125 6126 generic_fillattr(idmap, request_mask, inode, stat); 6127 return 0; 6128 } 6129 6130 int ext4_file_getattr(struct mnt_idmap *idmap, 6131 const struct path *path, struct kstat *stat, 6132 u32 request_mask, unsigned int query_flags) 6133 { 6134 struct inode *inode = d_inode(path->dentry); 6135 u64 delalloc_blocks; 6136 6137 ext4_getattr(idmap, path, stat, request_mask, query_flags); 6138 6139 /* 6140 * If there is inline data in the inode, the inode will normally not 6141 * have data blocks allocated (it may have an external xattr block). 6142 * Report at least one sector for such files, so tools like tar, rsync, 6143 * others don't incorrectly think the file is completely sparse. 6144 */ 6145 if (unlikely(ext4_has_inline_data(inode))) 6146 stat->blocks += (stat->size + 511) >> 9; 6147 6148 /* 6149 * We can't update i_blocks if the block allocation is delayed 6150 * otherwise in the case of system crash before the real block 6151 * allocation is done, we will have i_blocks inconsistent with 6152 * on-disk file blocks. 6153 * We always keep i_blocks updated together with real 6154 * allocation. But to not confuse with user, stat 6155 * will return the blocks that include the delayed allocation 6156 * blocks for this file. 6157 */ 6158 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 6159 EXT4_I(inode)->i_reserved_data_blocks); 6160 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 6161 return 0; 6162 } 6163 6164 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 6165 int pextents) 6166 { 6167 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 6168 return ext4_ind_trans_blocks(inode, lblocks); 6169 return ext4_ext_index_trans_blocks(inode, pextents); 6170 } 6171 6172 /* 6173 * Account for index blocks, block groups bitmaps and block group 6174 * descriptor blocks if modify datablocks and index blocks 6175 * worse case, the indexs blocks spread over different block groups 6176 * 6177 * If datablocks are discontiguous, they are possible to spread over 6178 * different block groups too. If they are contiguous, with flexbg, 6179 * they could still across block group boundary. 6180 * 6181 * Also account for superblock, inode, quota and xattr blocks 6182 */ 6183 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents) 6184 { 6185 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 6186 int gdpblocks; 6187 int idxblocks; 6188 int ret; 6189 6190 /* 6191 * How many index and leaf blocks need to touch to map @lblocks 6192 * logical blocks to @pextents physical extents? 6193 */ 6194 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 6195 6196 /* 6197 * Now let's see how many group bitmaps and group descriptors need 6198 * to account 6199 */ 6200 groups = idxblocks + pextents; 6201 gdpblocks = groups; 6202 if (groups > ngroups) 6203 groups = ngroups; 6204 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 6205 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 6206 6207 /* bitmaps and block group descriptor blocks */ 6208 ret = idxblocks + groups + gdpblocks; 6209 6210 /* Blocks for super block, inode, quota and xattr blocks */ 6211 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 6212 6213 return ret; 6214 } 6215 6216 /* 6217 * Calculate the journal credits for modifying the number of blocks 6218 * in a single extent within one transaction. 'nrblocks' is used only 6219 * for non-extent inodes. For extent type inodes, 'nrblocks' can be 6220 * zero if the exact number of blocks is unknown. 6221 */ 6222 int ext4_chunk_trans_extent(struct inode *inode, int nrblocks) 6223 { 6224 int ret; 6225 6226 ret = ext4_meta_trans_blocks(inode, nrblocks, 1); 6227 /* Account for data blocks for journalled mode */ 6228 if (ext4_should_journal_data(inode)) 6229 ret += nrblocks; 6230 return ret; 6231 } 6232 6233 /* 6234 * Calculate the journal credits for a chunk of data modification. 6235 * 6236 * This is called from DIO, fallocate or whoever calling 6237 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 6238 * 6239 * journal buffers for data blocks are not included here, as DIO 6240 * and fallocate do no need to journal data buffers. 6241 */ 6242 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 6243 { 6244 return ext4_meta_trans_blocks(inode, nrblocks, 1); 6245 } 6246 6247 /* 6248 * The caller must have previously called ext4_reserve_inode_write(). 6249 * Give this, we know that the caller already has write access to iloc->bh. 6250 */ 6251 int ext4_mark_iloc_dirty(handle_t *handle, 6252 struct inode *inode, struct ext4_iloc *iloc) 6253 { 6254 int err = 0; 6255 6256 err = ext4_emergency_state(inode->i_sb); 6257 if (unlikely(err)) { 6258 put_bh(iloc->bh); 6259 return err; 6260 } 6261 ext4_fc_track_inode(handle, inode); 6262 6263 /* the do_update_inode consumes one bh->b_count */ 6264 get_bh(iloc->bh); 6265 6266 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 6267 err = ext4_do_update_inode(handle, inode, iloc); 6268 put_bh(iloc->bh); 6269 return err; 6270 } 6271 6272 /* 6273 * On success, We end up with an outstanding reference count against 6274 * iloc->bh. This _must_ be cleaned up later. 6275 */ 6276 6277 int 6278 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 6279 struct ext4_iloc *iloc) 6280 { 6281 int err; 6282 6283 err = ext4_emergency_state(inode->i_sb); 6284 if (unlikely(err)) 6285 return err; 6286 6287 err = ext4_get_inode_loc(inode, iloc); 6288 if (!err) { 6289 BUFFER_TRACE(iloc->bh, "get_write_access"); 6290 err = ext4_journal_get_write_access(handle, inode->i_sb, 6291 iloc->bh, EXT4_JTR_NONE); 6292 if (err) { 6293 brelse(iloc->bh); 6294 iloc->bh = NULL; 6295 } 6296 ext4_fc_track_inode(handle, inode); 6297 } 6298 ext4_std_error(inode->i_sb, err); 6299 return err; 6300 } 6301 6302 static int __ext4_expand_extra_isize(struct inode *inode, 6303 unsigned int new_extra_isize, 6304 struct ext4_iloc *iloc, 6305 handle_t *handle, int *no_expand) 6306 { 6307 struct ext4_inode *raw_inode; 6308 struct ext4_xattr_ibody_header *header; 6309 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 6310 struct ext4_inode_info *ei = EXT4_I(inode); 6311 int error; 6312 6313 /* this was checked at iget time, but double check for good measure */ 6314 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 6315 (ei->i_extra_isize & 3)) { 6316 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 6317 ei->i_extra_isize, 6318 EXT4_INODE_SIZE(inode->i_sb)); 6319 return -EFSCORRUPTED; 6320 } 6321 if ((new_extra_isize < ei->i_extra_isize) || 6322 (new_extra_isize < 4) || 6323 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 6324 return -EINVAL; /* Should never happen */ 6325 6326 raw_inode = ext4_raw_inode(iloc); 6327 6328 header = IHDR(inode, raw_inode); 6329 6330 /* No extended attributes present */ 6331 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 6332 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 6333 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 6334 EXT4_I(inode)->i_extra_isize, 0, 6335 new_extra_isize - EXT4_I(inode)->i_extra_isize); 6336 EXT4_I(inode)->i_extra_isize = new_extra_isize; 6337 return 0; 6338 } 6339 6340 /* 6341 * We may need to allocate external xattr block so we need quotas 6342 * initialized. Here we can be called with various locks held so we 6343 * cannot affort to initialize quotas ourselves. So just bail. 6344 */ 6345 if (dquot_initialize_needed(inode)) 6346 return -EAGAIN; 6347 6348 /* try to expand with EAs present */ 6349 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 6350 raw_inode, handle); 6351 if (error) { 6352 /* 6353 * Inode size expansion failed; don't try again 6354 */ 6355 *no_expand = 1; 6356 } 6357 6358 return error; 6359 } 6360 6361 /* 6362 * Expand an inode by new_extra_isize bytes. 6363 * Returns 0 on success or negative error number on failure. 6364 */ 6365 static int ext4_try_to_expand_extra_isize(struct inode *inode, 6366 unsigned int new_extra_isize, 6367 struct ext4_iloc iloc, 6368 handle_t *handle) 6369 { 6370 int no_expand; 6371 int error; 6372 6373 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 6374 return -EOVERFLOW; 6375 6376 /* 6377 * In nojournal mode, we can immediately attempt to expand 6378 * the inode. When journaled, we first need to obtain extra 6379 * buffer credits since we may write into the EA block 6380 * with this same handle. If journal_extend fails, then it will 6381 * only result in a minor loss of functionality for that inode. 6382 * If this is felt to be critical, then e2fsck should be run to 6383 * force a large enough s_min_extra_isize. 6384 */ 6385 if (ext4_journal_extend(handle, 6386 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 6387 return -ENOSPC; 6388 6389 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 6390 return -EBUSY; 6391 6392 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6393 handle, &no_expand); 6394 ext4_write_unlock_xattr(inode, &no_expand); 6395 6396 return error; 6397 } 6398 6399 int ext4_expand_extra_isize(struct inode *inode, 6400 unsigned int new_extra_isize, 6401 struct ext4_iloc *iloc) 6402 { 6403 handle_t *handle; 6404 int no_expand; 6405 int error, rc; 6406 6407 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6408 brelse(iloc->bh); 6409 return -EOVERFLOW; 6410 } 6411 6412 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6413 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6414 if (IS_ERR(handle)) { 6415 error = PTR_ERR(handle); 6416 brelse(iloc->bh); 6417 return error; 6418 } 6419 6420 ext4_write_lock_xattr(inode, &no_expand); 6421 6422 BUFFER_TRACE(iloc->bh, "get_write_access"); 6423 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6424 EXT4_JTR_NONE); 6425 if (error) { 6426 brelse(iloc->bh); 6427 goto out_unlock; 6428 } 6429 6430 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6431 handle, &no_expand); 6432 6433 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6434 if (!error) 6435 error = rc; 6436 6437 out_unlock: 6438 ext4_write_unlock_xattr(inode, &no_expand); 6439 ext4_journal_stop(handle); 6440 return error; 6441 } 6442 6443 /* 6444 * What we do here is to mark the in-core inode as clean with respect to inode 6445 * dirtiness (it may still be data-dirty). 6446 * This means that the in-core inode may be reaped by prune_icache 6447 * without having to perform any I/O. This is a very good thing, 6448 * because *any* task may call prune_icache - even ones which 6449 * have a transaction open against a different journal. 6450 * 6451 * Is this cheating? Not really. Sure, we haven't written the 6452 * inode out, but prune_icache isn't a user-visible syncing function. 6453 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6454 * we start and wait on commits. 6455 */ 6456 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6457 const char *func, unsigned int line) 6458 { 6459 struct ext4_iloc iloc; 6460 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6461 int err; 6462 6463 might_sleep(); 6464 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6465 err = ext4_reserve_inode_write(handle, inode, &iloc); 6466 if (err) 6467 goto out; 6468 6469 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6470 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6471 iloc, handle); 6472 6473 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6474 out: 6475 if (unlikely(err)) 6476 ext4_error_inode_err(inode, func, line, 0, err, 6477 "mark_inode_dirty error"); 6478 return err; 6479 } 6480 6481 /* 6482 * ext4_dirty_inode() is called from __mark_inode_dirty() 6483 * 6484 * We're really interested in the case where a file is being extended. 6485 * i_size has been changed by generic_commit_write() and we thus need 6486 * to include the updated inode in the current transaction. 6487 * 6488 * Also, dquot_alloc_block() will always dirty the inode when blocks 6489 * are allocated to the file. 6490 * 6491 * If the inode is marked synchronous, we don't honour that here - doing 6492 * so would cause a commit on atime updates, which we don't bother doing. 6493 * We handle synchronous inodes at the highest possible level. 6494 */ 6495 void ext4_dirty_inode(struct inode *inode, int flags) 6496 { 6497 handle_t *handle; 6498 6499 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6500 if (IS_ERR(handle)) 6501 return; 6502 ext4_mark_inode_dirty(handle, inode); 6503 ext4_journal_stop(handle); 6504 } 6505 6506 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6507 { 6508 journal_t *journal; 6509 handle_t *handle; 6510 int err; 6511 int alloc_ctx; 6512 6513 /* 6514 * We have to be very careful here: changing a data block's 6515 * journaling status dynamically is dangerous. If we write a 6516 * data block to the journal, change the status and then delete 6517 * that block, we risk forgetting to revoke the old log record 6518 * from the journal and so a subsequent replay can corrupt data. 6519 * So, first we make sure that the journal is empty and that 6520 * nobody is changing anything. 6521 */ 6522 6523 journal = EXT4_JOURNAL(inode); 6524 if (!journal) 6525 return 0; 6526 if (is_journal_aborted(journal)) 6527 return -EROFS; 6528 6529 /* Wait for all existing dio workers */ 6530 inode_dio_wait(inode); 6531 6532 /* 6533 * Before flushing the journal and switching inode's aops, we have 6534 * to flush all dirty data the inode has. There can be outstanding 6535 * delayed allocations, there can be unwritten extents created by 6536 * fallocate or buffered writes in dioread_nolock mode covered by 6537 * dirty data which can be converted only after flushing the dirty 6538 * data (and journalled aops don't know how to handle these cases). 6539 */ 6540 filemap_invalidate_lock(inode->i_mapping); 6541 err = filemap_write_and_wait(inode->i_mapping); 6542 if (err < 0) { 6543 filemap_invalidate_unlock(inode->i_mapping); 6544 return err; 6545 } 6546 /* Before switch the inode journalling mode evict all the page cache. */ 6547 truncate_pagecache(inode, 0); 6548 6549 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6550 jbd2_journal_lock_updates(journal); 6551 6552 /* 6553 * OK, there are no updates running now, and all cached data is 6554 * synced to disk. We are now in a completely consistent state 6555 * which doesn't have anything in the journal, and we know that 6556 * no filesystem updates are running, so it is safe to modify 6557 * the inode's in-core data-journaling state flag now. 6558 */ 6559 6560 if (val) 6561 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6562 else { 6563 err = jbd2_journal_flush(journal, 0); 6564 if (err < 0) { 6565 jbd2_journal_unlock_updates(journal); 6566 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6567 filemap_invalidate_unlock(inode->i_mapping); 6568 return err; 6569 } 6570 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6571 } 6572 ext4_set_aops(inode); 6573 ext4_set_inode_mapping_order(inode); 6574 6575 jbd2_journal_unlock_updates(journal); 6576 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6577 filemap_invalidate_unlock(inode->i_mapping); 6578 6579 /* Finally we can mark the inode as dirty. */ 6580 6581 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6582 if (IS_ERR(handle)) 6583 return PTR_ERR(handle); 6584 6585 ext4_fc_mark_ineligible(inode->i_sb, 6586 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6587 err = ext4_mark_inode_dirty(handle, inode); 6588 ext4_handle_sync(handle); 6589 ext4_journal_stop(handle); 6590 ext4_std_error(inode->i_sb, err); 6591 6592 return err; 6593 } 6594 6595 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6596 struct buffer_head *bh) 6597 { 6598 return !buffer_mapped(bh); 6599 } 6600 6601 static int ext4_block_page_mkwrite(struct inode *inode, struct folio *folio, 6602 get_block_t get_block) 6603 { 6604 handle_t *handle; 6605 loff_t size; 6606 unsigned long len; 6607 int credits; 6608 int ret; 6609 6610 credits = ext4_chunk_trans_extent(inode, 6611 ext4_journal_blocks_per_folio(inode)); 6612 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, credits); 6613 if (IS_ERR(handle)) 6614 return PTR_ERR(handle); 6615 6616 folio_lock(folio); 6617 size = i_size_read(inode); 6618 /* Page got truncated from under us? */ 6619 if (folio->mapping != inode->i_mapping || folio_pos(folio) > size) { 6620 ret = -EFAULT; 6621 goto out_error; 6622 } 6623 6624 len = folio_size(folio); 6625 if (folio_pos(folio) + len > size) 6626 len = size - folio_pos(folio); 6627 6628 ret = ext4_block_write_begin(handle, folio, 0, len, get_block); 6629 if (ret) 6630 goto out_error; 6631 6632 if (!ext4_should_journal_data(inode)) { 6633 block_commit_write(folio, 0, len); 6634 folio_mark_dirty(folio); 6635 } else { 6636 ret = ext4_journal_folio_buffers(handle, folio, len); 6637 if (ret) 6638 goto out_error; 6639 } 6640 ext4_journal_stop(handle); 6641 folio_wait_stable(folio); 6642 return ret; 6643 6644 out_error: 6645 folio_unlock(folio); 6646 ext4_journal_stop(handle); 6647 return ret; 6648 } 6649 6650 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6651 { 6652 struct vm_area_struct *vma = vmf->vma; 6653 struct folio *folio = page_folio(vmf->page); 6654 loff_t size; 6655 unsigned long len; 6656 int err; 6657 vm_fault_t ret; 6658 struct file *file = vma->vm_file; 6659 struct inode *inode = file_inode(file); 6660 struct address_space *mapping = inode->i_mapping; 6661 get_block_t *get_block = ext4_get_block; 6662 int retries = 0; 6663 6664 if (unlikely(IS_IMMUTABLE(inode))) 6665 return VM_FAULT_SIGBUS; 6666 6667 sb_start_pagefault(inode->i_sb); 6668 file_update_time(vma->vm_file); 6669 6670 filemap_invalidate_lock_shared(mapping); 6671 6672 err = ext4_convert_inline_data(inode); 6673 if (err) 6674 goto out_ret; 6675 6676 /* 6677 * On data journalling we skip straight to the transaction handle: 6678 * there's no delalloc; page truncated will be checked later; the 6679 * early return w/ all buffers mapped (calculates size/len) can't 6680 * be used; and there's no dioread_nolock, so only ext4_get_block. 6681 */ 6682 if (ext4_should_journal_data(inode)) 6683 goto retry_alloc; 6684 6685 /* Delalloc case is easy... */ 6686 if (test_opt(inode->i_sb, DELALLOC) && 6687 !ext4_nonda_switch(inode->i_sb)) { 6688 do { 6689 err = block_page_mkwrite(vma, vmf, 6690 ext4_da_get_block_prep); 6691 } while (err == -ENOSPC && 6692 ext4_should_retry_alloc(inode->i_sb, &retries)); 6693 goto out_ret; 6694 } 6695 6696 folio_lock(folio); 6697 size = i_size_read(inode); 6698 /* Page got truncated from under us? */ 6699 if (folio->mapping != mapping || folio_pos(folio) > size) { 6700 folio_unlock(folio); 6701 ret = VM_FAULT_NOPAGE; 6702 goto out; 6703 } 6704 6705 len = folio_size(folio); 6706 if (folio_pos(folio) + len > size) 6707 len = size - folio_pos(folio); 6708 /* 6709 * Return if we have all the buffers mapped. This avoids the need to do 6710 * journal_start/journal_stop which can block and take a long time 6711 * 6712 * This cannot be done for data journalling, as we have to add the 6713 * inode to the transaction's list to writeprotect pages on commit. 6714 */ 6715 if (folio_buffers(folio)) { 6716 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6717 0, len, NULL, 6718 ext4_bh_unmapped)) { 6719 /* Wait so that we don't change page under IO */ 6720 folio_wait_stable(folio); 6721 ret = VM_FAULT_LOCKED; 6722 goto out; 6723 } 6724 } 6725 folio_unlock(folio); 6726 /* OK, we need to fill the hole... */ 6727 if (ext4_should_dioread_nolock(inode)) 6728 get_block = ext4_get_block_unwritten; 6729 retry_alloc: 6730 /* Start journal and allocate blocks */ 6731 err = ext4_block_page_mkwrite(inode, folio, get_block); 6732 if (err == -EAGAIN || 6733 (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))) 6734 goto retry_alloc; 6735 out_ret: 6736 ret = vmf_fs_error(err); 6737 out: 6738 filemap_invalidate_unlock_shared(mapping); 6739 sb_end_pagefault(inode->i_sb); 6740 return ret; 6741 } 6742