1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22
23 /*
24 * MUSTDO:
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
27 *
28 * TODO v4:
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
32 * - quota
33 * - reservation for superuser
34 *
35 * TODO v3:
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
40 * - error handling
41 */
42
43 /*
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
46 *
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
56 *
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
59 *
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
63 * represented as:
64 *
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
69 *
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
74 *
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
77 * pa_free.
78 *
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
82 *
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
84 *
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
87 *
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
90 *
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
99 * inode as:
100 *
101 * { page }
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 *
104 *
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107 * blocksize) blocks. So it can have information regarding groups_per_page
108 * which is blocks_per_page/2
109 *
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
112 *
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
116 *
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
131 *
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
134 *
135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136 *
137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138 *
139 * This is an array of lists where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of lists. Group-infos are
143 * placed in appropriate lists.
144 *
145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146 *
147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148 *
149 * This is an array of lists where in the i-th list there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special list for completely empty groups
153 * so we only have MB_NUM_ORDERS(sb) lists.
154 *
155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156 * structures to decide the order in which groups are to be traversed for
157 * fulfilling an allocation request.
158 *
159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160 * >= the order of the request. We directly look at the largest free order list
161 * in the data structure (1) above where largest_free_order = order of the
162 * request. If that list is empty, we look at remaining list in the increasing
163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164 * lookup in O(1) time.
165 *
166 * At CR_GOAL_LEN_FAST, we only consider groups where
167 * average fragment size > request size. So, we lookup a group which has average
168 * fragment size just above or equal to request size using our average fragment
169 * size group lists (data structure 2) in O(1) time.
170 *
171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174 * fragment size > goal length. So before falling to the slower
175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177 * enough average fragment size. This increases the chances of finding a
178 * suitable block group in O(1) time and results in faster allocation at the
179 * cost of reduced size of allocation.
180 *
181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183 * CR_GOAL_LEN_FAST phase.
184 *
185 * The regular allocator (using the buddy cache) supports a few tunables.
186 *
187 * /sys/fs/ext4/<partition>/mb_min_to_scan
188 * /sys/fs/ext4/<partition>/mb_max_to_scan
189 * /sys/fs/ext4/<partition>/mb_order2_req
190 * /sys/fs/ext4/<partition>/mb_max_linear_groups
191 *
192 * The regular allocator uses buddy scan only if the request len is power of
193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194 * value of s_mb_order2_reqs can be tuned via
195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
196 * stripe size (sbi->s_stripe), we try to search for contiguous block in
197 * stripe size. This should result in better allocation on RAID setups. If
198 * not, we search in the specific group using bitmap for best extents. The
199 * tunable min_to_scan and max_to_scan control the behaviour here.
200 * min_to_scan indicate how long the mballoc __must__ look for a best
201 * extent and max_to_scan indicates how long the mballoc __can__ look for a
202 * best extent in the found extents. Searching for the blocks starts with
203 * the group specified as the goal value in allocation context via
204 * ac_g_ex. Each group is first checked based on the criteria whether it
205 * can be used for allocation. ext4_mb_good_group explains how the groups are
206 * checked.
207 *
208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209 * get traversed linearly. That may result in subsequent allocations being not
210 * close to each other. And so, the underlying device may get filled up in a
211 * non-linear fashion. While that may not matter on non-rotational devices, for
212 * rotational devices that may result in higher seek times. "mb_max_linear_groups"
213 * tells mballoc how many groups mballoc should search linearly before
214 * performing consulting above data structures for more efficient lookups. For
215 * non rotational devices, this value defaults to 0 and for rotational devices
216 * this is set to MB_DEFAULT_LINEAR_LIMIT.
217 *
218 * Both the prealloc space are getting populated as above. So for the first
219 * request we will hit the buddy cache which will result in this prealloc
220 * space getting filled. The prealloc space is then later used for the
221 * subsequent request.
222 */
223
224 /*
225 * mballoc operates on the following data:
226 * - on-disk bitmap
227 * - in-core buddy (actually includes buddy and bitmap)
228 * - preallocation descriptors (PAs)
229 *
230 * there are two types of preallocations:
231 * - inode
232 * assiged to specific inode and can be used for this inode only.
233 * it describes part of inode's space preallocated to specific
234 * physical blocks. any block from that preallocated can be used
235 * independent. the descriptor just tracks number of blocks left
236 * unused. so, before taking some block from descriptor, one must
237 * make sure corresponded logical block isn't allocated yet. this
238 * also means that freeing any block within descriptor's range
239 * must discard all preallocated blocks.
240 * - locality group
241 * assigned to specific locality group which does not translate to
242 * permanent set of inodes: inode can join and leave group. space
243 * from this type of preallocation can be used for any inode. thus
244 * it's consumed from the beginning to the end.
245 *
246 * relation between them can be expressed as:
247 * in-core buddy = on-disk bitmap + preallocation descriptors
248 *
249 * this mean blocks mballoc considers used are:
250 * - allocated blocks (persistent)
251 * - preallocated blocks (non-persistent)
252 *
253 * consistency in mballoc world means that at any time a block is either
254 * free or used in ALL structures. notice: "any time" should not be read
255 * literally -- time is discrete and delimited by locks.
256 *
257 * to keep it simple, we don't use block numbers, instead we count number of
258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259 *
260 * all operations can be expressed as:
261 * - init buddy: buddy = on-disk + PAs
262 * - new PA: buddy += N; PA = N
263 * - use inode PA: on-disk += N; PA -= N
264 * - discard inode PA buddy -= on-disk - PA; PA = 0
265 * - use locality group PA on-disk += N; PA -= N
266 * - discard locality group PA buddy -= PA; PA = 0
267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268 * is used in real operation because we can't know actual used
269 * bits from PA, only from on-disk bitmap
270 *
271 * if we follow this strict logic, then all operations above should be atomic.
272 * given some of them can block, we'd have to use something like semaphores
273 * killing performance on high-end SMP hardware. let's try to relax it using
274 * the following knowledge:
275 * 1) if buddy is referenced, it's already initialized
276 * 2) while block is used in buddy and the buddy is referenced,
277 * nobody can re-allocate that block
278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279 * bit set and PA claims same block, it's OK. IOW, one can set bit in
280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281 * block
282 *
283 * so, now we're building a concurrency table:
284 * - init buddy vs.
285 * - new PA
286 * blocks for PA are allocated in the buddy, buddy must be referenced
287 * until PA is linked to allocation group to avoid concurrent buddy init
288 * - use inode PA
289 * we need to make sure that either on-disk bitmap or PA has uptodate data
290 * given (3) we care that PA-=N operation doesn't interfere with init
291 * - discard inode PA
292 * the simplest way would be to have buddy initialized by the discard
293 * - use locality group PA
294 * again PA-=N must be serialized with init
295 * - discard locality group PA
296 * the simplest way would be to have buddy initialized by the discard
297 * - new PA vs.
298 * - use inode PA
299 * i_data_sem serializes them
300 * - discard inode PA
301 * discard process must wait until PA isn't used by another process
302 * - use locality group PA
303 * some mutex should serialize them
304 * - discard locality group PA
305 * discard process must wait until PA isn't used by another process
306 * - use inode PA
307 * - use inode PA
308 * i_data_sem or another mutex should serializes them
309 * - discard inode PA
310 * discard process must wait until PA isn't used by another process
311 * - use locality group PA
312 * nothing wrong here -- they're different PAs covering different blocks
313 * - discard locality group PA
314 * discard process must wait until PA isn't used by another process
315 *
316 * now we're ready to make few consequences:
317 * - PA is referenced and while it is no discard is possible
318 * - PA is referenced until block isn't marked in on-disk bitmap
319 * - PA changes only after on-disk bitmap
320 * - discard must not compete with init. either init is done before
321 * any discard or they're serialized somehow
322 * - buddy init as sum of on-disk bitmap and PAs is done atomically
323 *
324 * a special case when we've used PA to emptiness. no need to modify buddy
325 * in this case, but we should care about concurrent init
326 *
327 */
328
329 /*
330 * Logic in few words:
331 *
332 * - allocation:
333 * load group
334 * find blocks
335 * mark bits in on-disk bitmap
336 * release group
337 *
338 * - use preallocation:
339 * find proper PA (per-inode or group)
340 * load group
341 * mark bits in on-disk bitmap
342 * release group
343 * release PA
344 *
345 * - free:
346 * load group
347 * mark bits in on-disk bitmap
348 * release group
349 *
350 * - discard preallocations in group:
351 * mark PAs deleted
352 * move them onto local list
353 * load on-disk bitmap
354 * load group
355 * remove PA from object (inode or locality group)
356 * mark free blocks in-core
357 *
358 * - discard inode's preallocations:
359 */
360
361 /*
362 * Locking rules
363 *
364 * Locks:
365 * - bitlock on a group (group)
366 * - object (inode/locality) (object)
367 * - per-pa lock (pa)
368 * - cr_power2_aligned lists lock (cr_power2_aligned)
369 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
370 *
371 * Paths:
372 * - new pa
373 * object
374 * group
375 *
376 * - find and use pa:
377 * pa
378 *
379 * - release consumed pa:
380 * pa
381 * group
382 * object
383 *
384 * - generate in-core bitmap:
385 * group
386 * pa
387 *
388 * - discard all for given object (inode, locality group):
389 * object
390 * pa
391 * group
392 *
393 * - discard all for given group:
394 * group
395 * pa
396 * group
397 * object
398 *
399 * - allocation path (ext4_mb_regular_allocator)
400 * group
401 * cr_power2_aligned/cr_goal_len_fast
402 */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406
407 /* We create slab caches for groupinfo data structures based on the
408 * superblock block size. There will be one per mounted filesystem for
409 * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 ext4_group_t group, enum criteria cr);
425
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 struct ext4_buddy *e4b, ext4_grpblk_t start,
428 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430 /*
431 * The algorithm using this percpu seq counter goes below:
432 * 1. We sample the percpu discard_pa_seq counter before trying for block
433 * allocation in ext4_mb_new_blocks().
434 * 2. We increment this percpu discard_pa_seq counter when we either allocate
435 * or free these blocks i.e. while marking those blocks as used/free in
436 * mb_mark_used()/mb_free_blocks().
437 * 3. We also increment this percpu seq counter when we successfully identify
438 * that the bb_prealloc_list is not empty and hence proceed for discarding
439 * of those PAs inside ext4_mb_discard_group_preallocations().
440 *
441 * Now to make sure that the regular fast path of block allocation is not
442 * affected, as a small optimization we only sample the percpu seq counter
443 * on that cpu. Only when the block allocation fails and when freed blocks
444 * found were 0, that is when we sample percpu seq counter for all cpus using
445 * below function ext4_get_discard_pa_seq_sum(). This happens after making
446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447 */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 int __cpu;
452 u64 __seq = 0;
453
454 for_each_possible_cpu(__cpu)
455 __seq += per_cpu(discard_pa_seq, __cpu);
456 return __seq;
457 }
458
mb_correct_addr_and_bit(int * bit,void * addr)459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 *bit += ((unsigned long) addr & 7UL) << 3;
463 addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 *bit += ((unsigned long) addr & 3UL) << 3;
466 addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 return addr;
471 }
472
mb_test_bit(int bit,void * addr)473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 /*
476 * ext4_test_bit on architecture like powerpc
477 * needs unsigned long aligned address
478 */
479 addr = mb_correct_addr_and_bit(&bit, addr);
480 return ext4_test_bit(bit, addr);
481 }
482
mb_set_bit(int bit,void * addr)483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 addr = mb_correct_addr_and_bit(&bit, addr);
486 ext4_set_bit(bit, addr);
487 }
488
mb_clear_bit(int bit,void * addr)489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 addr = mb_correct_addr_and_bit(&bit, addr);
492 ext4_clear_bit(bit, addr);
493 }
494
mb_test_and_clear_bit(int bit,void * addr)495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 addr = mb_correct_addr_and_bit(&bit, addr);
498 return ext4_test_and_clear_bit(bit, addr);
499 }
500
mb_find_next_zero_bit(void * addr,int max,int start)501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 int fix = 0, ret, tmpmax;
504 addr = mb_correct_addr_and_bit(&fix, addr);
505 tmpmax = max + fix;
506 start += fix;
507
508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 if (ret > max)
510 return max;
511 return ret;
512 }
513
mb_find_next_bit(void * addr,int max,int start)514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 int fix = 0, ret, tmpmax;
517 addr = mb_correct_addr_and_bit(&fix, addr);
518 tmpmax = max + fix;
519 start += fix;
520
521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 if (ret > max)
523 return max;
524 return ret;
525 }
526
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 char *bb;
530
531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 BUG_ON(max == NULL);
533
534 if (order > e4b->bd_blkbits + 1) {
535 *max = 0;
536 return NULL;
537 }
538
539 /* at order 0 we see each particular block */
540 if (order == 0) {
541 *max = 1 << (e4b->bd_blkbits + 3);
542 return e4b->bd_bitmap;
543 }
544
545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548 return bb;
549 }
550
551 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 int first, int count)
554 {
555 int i;
556 struct super_block *sb = e4b->bd_sb;
557
558 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 return;
560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 for (i = 0; i < count; i++) {
562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 ext4_fsblk_t blocknr;
564
565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 ext4_grp_locked_error(sb, e4b->bd_group,
570 inode ? inode->i_ino : 0,
571 blocknr,
572 "freeing block already freed "
573 "(bit %u)",
574 first + i);
575 }
576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 }
578 }
579
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 int i;
583
584 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 return;
586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 for (i = 0; i < count; i++) {
588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 }
591 }
592
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 return;
597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 unsigned char *b1, *b2;
599 int i;
600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 b2 = (unsigned char *) bitmap;
602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 if (b1[i] != b2[i]) {
604 ext4_msg(e4b->bd_sb, KERN_ERR,
605 "corruption in group %u "
606 "at byte %u(%u): %x in copy != %x "
607 "on disk/prealloc",
608 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 BUG();
610 }
611 }
612 }
613 }
614
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 struct ext4_group_info *grp, ext4_group_t group)
617 {
618 struct buffer_head *bh;
619
620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 if (!grp->bb_bitmap)
622 return;
623
624 bh = ext4_read_block_bitmap(sb, group);
625 if (IS_ERR_OR_NULL(bh)) {
626 kfree(grp->bb_bitmap);
627 grp->bb_bitmap = NULL;
628 return;
629 }
630
631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 put_bh(bh);
633 }
634
mb_group_bb_bitmap_free(struct ext4_group_info * grp)635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 kfree(grp->bb_bitmap);
638 }
639
640 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)641 static inline void mb_free_blocks_double(struct inode *inode,
642 struct ext4_buddy *e4b, int first, int count)
643 {
644 return;
645 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 int first, int count)
648 {
649 return;
650 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 return;
654 }
655
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 struct ext4_group_info *grp, ext4_group_t group)
658 {
659 return;
660 }
661
mb_group_bb_bitmap_free(struct ext4_group_info * grp)662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 return;
665 }
666 #endif
667
668 #ifdef AGGRESSIVE_CHECK
669
670 #define MB_CHECK_ASSERT(assert) \
671 do { \
672 if (!(assert)) { \
673 printk(KERN_EMERG \
674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675 function, file, line, # assert); \
676 BUG(); \
677 } \
678 } while (0)
679
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 const char *function, int line)
682 {
683 struct super_block *sb = e4b->bd_sb;
684 int order = e4b->bd_blkbits + 1;
685 int max;
686 int max2;
687 int i;
688 int j;
689 int k;
690 int count;
691 struct ext4_group_info *grp;
692 int fragments = 0;
693 int fstart;
694 struct list_head *cur;
695 void *buddy;
696 void *buddy2;
697
698 if (e4b->bd_info->bb_check_counter++ % 10)
699 return;
700
701 while (order > 1) {
702 buddy = mb_find_buddy(e4b, order, &max);
703 MB_CHECK_ASSERT(buddy);
704 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 MB_CHECK_ASSERT(buddy2);
706 MB_CHECK_ASSERT(buddy != buddy2);
707 MB_CHECK_ASSERT(max * 2 == max2);
708
709 count = 0;
710 for (i = 0; i < max; i++) {
711
712 if (mb_test_bit(i, buddy)) {
713 /* only single bit in buddy2 may be 0 */
714 if (!mb_test_bit(i << 1, buddy2)) {
715 MB_CHECK_ASSERT(
716 mb_test_bit((i<<1)+1, buddy2));
717 }
718 continue;
719 }
720
721 /* both bits in buddy2 must be 1 */
722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725 for (j = 0; j < (1 << order); j++) {
726 k = (i * (1 << order)) + j;
727 MB_CHECK_ASSERT(
728 !mb_test_bit(k, e4b->bd_bitmap));
729 }
730 count++;
731 }
732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 order--;
734 }
735
736 fstart = -1;
737 buddy = mb_find_buddy(e4b, 0, &max);
738 for (i = 0; i < max; i++) {
739 if (!mb_test_bit(i, buddy)) {
740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 if (fstart == -1) {
742 fragments++;
743 fstart = i;
744 }
745 continue;
746 }
747 fstart = -1;
748 /* check used bits only */
749 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 buddy2 = mb_find_buddy(e4b, j, &max2);
751 k = i >> j;
752 MB_CHECK_ASSERT(k < max2);
753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 }
755 }
756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759 grp = ext4_get_group_info(sb, e4b->bd_group);
760 if (!grp)
761 return;
762 list_for_each(cur, &grp->bb_prealloc_list) {
763 ext4_group_t groupnr;
764 struct ext4_prealloc_space *pa;
765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 for (i = 0; i < pa->pa_len; i++)
769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 }
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
774 __FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778
779 /*
780 * Divide blocks started from @first with length @len into
781 * smaller chunks with power of 2 blocks.
782 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783 * then increase bb_counters[] for corresponded chunk size.
784 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 struct ext4_group_info *grp)
788 {
789 struct ext4_sb_info *sbi = EXT4_SB(sb);
790 ext4_grpblk_t min;
791 ext4_grpblk_t max;
792 ext4_grpblk_t chunk;
793 unsigned int border;
794
795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797 border = 2 << sb->s_blocksize_bits;
798
799 while (len > 0) {
800 /* find how many blocks can be covered since this position */
801 max = ffs(first | border) - 1;
802
803 /* find how many blocks of power 2 we need to mark */
804 min = fls(len) - 1;
805
806 if (max < min)
807 min = max;
808 chunk = 1 << min;
809
810 /* mark multiblock chunks only */
811 grp->bb_counters[min]++;
812 if (min > 0)
813 mb_clear_bit(first >> min,
814 buddy + sbi->s_mb_offsets[min]);
815
816 len -= chunk;
817 first += chunk;
818 }
819 }
820
mb_avg_fragment_size_order(struct super_block * sb,ext4_grpblk_t len)821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823 int order;
824
825 /*
826 * We don't bother with a special lists groups with only 1 block free
827 * extents and for completely empty groups.
828 */
829 order = fls(len) - 2;
830 if (order < 0)
831 return 0;
832 if (order == MB_NUM_ORDERS(sb))
833 order--;
834 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
835 order = MB_NUM_ORDERS(sb) - 1;
836 return order;
837 }
838
839 /* Move group to appropriate avg_fragment_size list */
840 static void
mb_update_avg_fragment_size(struct super_block * sb,struct ext4_group_info * grp)841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842 {
843 struct ext4_sb_info *sbi = EXT4_SB(sb);
844 int new_order;
845
846 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
847 return;
848
849 new_order = mb_avg_fragment_size_order(sb,
850 grp->bb_free / grp->bb_fragments);
851 if (new_order == grp->bb_avg_fragment_size_order)
852 return;
853
854 if (grp->bb_avg_fragment_size_order != -1) {
855 write_lock(&sbi->s_mb_avg_fragment_size_locks[
856 grp->bb_avg_fragment_size_order]);
857 list_del(&grp->bb_avg_fragment_size_node);
858 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
859 grp->bb_avg_fragment_size_order]);
860 }
861 grp->bb_avg_fragment_size_order = new_order;
862 write_lock(&sbi->s_mb_avg_fragment_size_locks[
863 grp->bb_avg_fragment_size_order]);
864 list_add_tail(&grp->bb_avg_fragment_size_node,
865 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
866 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
867 grp->bb_avg_fragment_size_order]);
868 }
869
870 /*
871 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872 * cr level needs an update.
873 */
ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group)874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875 enum criteria *new_cr, ext4_group_t *group)
876 {
877 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878 struct ext4_group_info *iter;
879 int i;
880
881 if (ac->ac_status == AC_STATUS_FOUND)
882 return;
883
884 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886
887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 continue;
890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 continue;
894 }
895 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896 bb_largest_free_order_node) {
897 if (sbi->s_mb_stats)
898 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900 *group = iter->bb_group;
901 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903 return;
904 }
905 }
906 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
907 }
908
909 /* Increment cr and search again if no group is found */
910 *new_cr = CR_GOAL_LEN_FAST;
911 }
912
913 /*
914 * Find a suitable group of given order from the average fragments list.
915 */
916 static struct ext4_group_info *
ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context * ac,int order)917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918 {
919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922 struct ext4_group_info *grp = NULL, *iter;
923 enum criteria cr = ac->ac_criteria;
924
925 if (list_empty(frag_list))
926 return NULL;
927 read_lock(frag_list_lock);
928 if (list_empty(frag_list)) {
929 read_unlock(frag_list_lock);
930 return NULL;
931 }
932 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933 if (sbi->s_mb_stats)
934 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
936 grp = iter;
937 break;
938 }
939 }
940 read_unlock(frag_list_lock);
941 return grp;
942 }
943
944 /*
945 * Choose next group by traversing average fragment size list of suitable
946 * order. Updates *new_cr if cr level needs an update.
947 */
ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group)948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949 enum criteria *new_cr, ext4_group_t *group)
950 {
951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952 struct ext4_group_info *grp = NULL;
953 int i;
954
955 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956 if (sbi->s_mb_stats)
957 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
958 }
959
960 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961 i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963 if (grp) {
964 *group = grp->bb_group;
965 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
966 return;
967 }
968 }
969
970 /*
971 * CR_BEST_AVAIL_LEN works based on the concept that we have
972 * a larger normalized goal len request which can be trimmed to
973 * a smaller goal len such that it can still satisfy original
974 * request len. However, allocation request for non-regular
975 * files never gets normalized.
976 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977 */
978 if (ac->ac_flags & EXT4_MB_HINT_DATA)
979 *new_cr = CR_BEST_AVAIL_LEN;
980 else
981 *new_cr = CR_GOAL_LEN_SLOW;
982 }
983
984 /*
985 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986 * order we have and proactively trim the goal request length to that order to
987 * find a suitable group faster.
988 *
989 * This optimizes allocation speed at the cost of slightly reduced
990 * preallocations. However, we make sure that we don't trim the request too
991 * much and fall to CR_GOAL_LEN_SLOW in that case.
992 */
ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group)993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994 enum criteria *new_cr, ext4_group_t *group)
995 {
996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997 struct ext4_group_info *grp = NULL;
998 int i, order, min_order;
999 unsigned long num_stripe_clusters = 0;
1000
1001 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002 if (sbi->s_mb_stats)
1003 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1004 }
1005
1006 /*
1007 * mb_avg_fragment_size_order() returns order in a way that makes
1008 * retrieving back the length using (1 << order) inaccurate. Hence, use
1009 * fls() instead since we need to know the actual length while modifying
1010 * goal length.
1011 */
1012 order = fls(ac->ac_g_ex.fe_len) - 1;
1013 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1014 order = MB_NUM_ORDERS(ac->ac_sb);
1015 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1016 if (min_order < 0)
1017 min_order = 0;
1018
1019 if (sbi->s_stripe > 0) {
1020 /*
1021 * We are assuming that stripe size is always a multiple of
1022 * cluster ratio otherwise __ext4_fill_super exists early.
1023 */
1024 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1025 if (1 << min_order < num_stripe_clusters)
1026 /*
1027 * We consider 1 order less because later we round
1028 * up the goal len to num_stripe_clusters
1029 */
1030 min_order = fls(num_stripe_clusters) - 1;
1031 }
1032
1033 if (1 << min_order < ac->ac_o_ex.fe_len)
1034 min_order = fls(ac->ac_o_ex.fe_len);
1035
1036 for (i = order; i >= min_order; i--) {
1037 int frag_order;
1038 /*
1039 * Scale down goal len to make sure we find something
1040 * in the free fragments list. Basically, reduce
1041 * preallocations.
1042 */
1043 ac->ac_g_ex.fe_len = 1 << i;
1044
1045 if (num_stripe_clusters > 0) {
1046 /*
1047 * Try to round up the adjusted goal length to
1048 * stripe size (in cluster units) multiple for
1049 * efficiency.
1050 */
1051 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1052 num_stripe_clusters);
1053 }
1054
1055 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1056 ac->ac_g_ex.fe_len);
1057
1058 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1059 if (grp) {
1060 *group = grp->bb_group;
1061 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1062 return;
1063 }
1064 }
1065
1066 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1067 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1068 *new_cr = CR_GOAL_LEN_SLOW;
1069 }
1070
should_optimize_scan(struct ext4_allocation_context * ac)1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1072 {
1073 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1074 return 0;
1075 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1076 return 0;
1077 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1078 return 0;
1079 return 1;
1080 }
1081
1082 /*
1083 * Return next linear group for allocation.
1084 */
1085 static ext4_group_t
next_linear_group(ext4_group_t group,ext4_group_t ngroups)1086 next_linear_group(ext4_group_t group, ext4_group_t ngroups)
1087 {
1088 /*
1089 * Artificially restricted ngroups for non-extent
1090 * files makes group > ngroups possible on first loop.
1091 */
1092 return group + 1 >= ngroups ? 0 : group + 1;
1093 }
1094
1095 /*
1096 * ext4_mb_choose_next_group: choose next group for allocation.
1097 *
1098 * @ac Allocation Context
1099 * @new_cr This is an output parameter. If the there is no good group
1100 * available at current CR level, this field is updated to indicate
1101 * the new cr level that should be used.
1102 * @group This is an input / output parameter. As an input it indicates the
1103 * next group that the allocator intends to use for allocation. As
1104 * output, this field indicates the next group that should be used as
1105 * determined by the optimization functions.
1106 * @ngroups Total number of groups
1107 */
ext4_mb_choose_next_group(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group,ext4_group_t ngroups)1108 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1109 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1110 {
1111 *new_cr = ac->ac_criteria;
1112
1113 if (!should_optimize_scan(ac)) {
1114 *group = next_linear_group(*group, ngroups);
1115 return;
1116 }
1117
1118 /*
1119 * Optimized scanning can return non adjacent groups which can cause
1120 * seek overhead for rotational disks. So try few linear groups before
1121 * trying optimized scan.
1122 */
1123 if (ac->ac_groups_linear_remaining) {
1124 *group = next_linear_group(*group, ngroups);
1125 ac->ac_groups_linear_remaining--;
1126 return;
1127 }
1128
1129 if (*new_cr == CR_POWER2_ALIGNED) {
1130 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1131 } else if (*new_cr == CR_GOAL_LEN_FAST) {
1132 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1133 } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1134 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1135 } else {
1136 /*
1137 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1138 * rb tree sorted by bb_free. But until that happens, we should
1139 * never come here.
1140 */
1141 WARN_ON(1);
1142 }
1143 }
1144
1145 /*
1146 * Cache the order of the largest free extent we have available in this block
1147 * group.
1148 */
1149 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1151 {
1152 struct ext4_sb_info *sbi = EXT4_SB(sb);
1153 int i;
1154
1155 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1156 if (grp->bb_counters[i] > 0)
1157 break;
1158 /* No need to move between order lists? */
1159 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1160 i == grp->bb_largest_free_order) {
1161 grp->bb_largest_free_order = i;
1162 return;
1163 }
1164
1165 if (grp->bb_largest_free_order >= 0) {
1166 write_lock(&sbi->s_mb_largest_free_orders_locks[
1167 grp->bb_largest_free_order]);
1168 list_del_init(&grp->bb_largest_free_order_node);
1169 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1170 grp->bb_largest_free_order]);
1171 }
1172 grp->bb_largest_free_order = i;
1173 if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1174 write_lock(&sbi->s_mb_largest_free_orders_locks[
1175 grp->bb_largest_free_order]);
1176 list_add_tail(&grp->bb_largest_free_order_node,
1177 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1178 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1179 grp->bb_largest_free_order]);
1180 }
1181 }
1182
1183 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group,struct ext4_group_info * grp)1184 void ext4_mb_generate_buddy(struct super_block *sb,
1185 void *buddy, void *bitmap, ext4_group_t group,
1186 struct ext4_group_info *grp)
1187 {
1188 struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1190 ext4_grpblk_t i = 0;
1191 ext4_grpblk_t first;
1192 ext4_grpblk_t len;
1193 unsigned free = 0;
1194 unsigned fragments = 0;
1195 unsigned long long period = get_cycles();
1196
1197 /* initialize buddy from bitmap which is aggregation
1198 * of on-disk bitmap and preallocations */
1199 i = mb_find_next_zero_bit(bitmap, max, 0);
1200 grp->bb_first_free = i;
1201 while (i < max) {
1202 fragments++;
1203 first = i;
1204 i = mb_find_next_bit(bitmap, max, i);
1205 len = i - first;
1206 free += len;
1207 if (len > 1)
1208 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1209 else
1210 grp->bb_counters[0]++;
1211 if (i < max)
1212 i = mb_find_next_zero_bit(bitmap, max, i);
1213 }
1214 grp->bb_fragments = fragments;
1215
1216 if (free != grp->bb_free) {
1217 ext4_grp_locked_error(sb, group, 0, 0,
1218 "block bitmap and bg descriptor "
1219 "inconsistent: %u vs %u free clusters",
1220 free, grp->bb_free);
1221 /*
1222 * If we intend to continue, we consider group descriptor
1223 * corrupt and update bb_free using bitmap value
1224 */
1225 grp->bb_free = free;
1226 ext4_mark_group_bitmap_corrupted(sb, group,
1227 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1228 }
1229 mb_set_largest_free_order(sb, grp);
1230 mb_update_avg_fragment_size(sb, grp);
1231
1232 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1233
1234 period = get_cycles() - period;
1235 atomic_inc(&sbi->s_mb_buddies_generated);
1236 atomic64_add(period, &sbi->s_mb_generation_time);
1237 }
1238
mb_regenerate_buddy(struct ext4_buddy * e4b)1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1240 {
1241 int count;
1242 int order = 1;
1243 void *buddy;
1244
1245 while ((buddy = mb_find_buddy(e4b, order++, &count)))
1246 mb_set_bits(buddy, 0, count);
1247
1248 e4b->bd_info->bb_fragments = 0;
1249 memset(e4b->bd_info->bb_counters, 0,
1250 sizeof(*e4b->bd_info->bb_counters) *
1251 (e4b->bd_sb->s_blocksize_bits + 2));
1252
1253 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1254 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1255 }
1256
1257 /* The buddy information is attached the buddy cache inode
1258 * for convenience. The information regarding each group
1259 * is loaded via ext4_mb_load_buddy. The information involve
1260 * block bitmap and buddy information. The information are
1261 * stored in the inode as
1262 *
1263 * { page }
1264 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1265 *
1266 *
1267 * one block each for bitmap and buddy information.
1268 * So for each group we take up 2 blocks. A page can
1269 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1270 * So it can have information regarding groups_per_page which
1271 * is blocks_per_page/2
1272 *
1273 * Locking note: This routine takes the block group lock of all groups
1274 * for this page; do not hold this lock when calling this routine!
1275 */
1276
ext4_mb_init_cache(struct folio * folio,char * incore,gfp_t gfp)1277 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1278 {
1279 ext4_group_t ngroups;
1280 unsigned int blocksize;
1281 int blocks_per_page;
1282 int groups_per_page;
1283 int err = 0;
1284 int i;
1285 ext4_group_t first_group, group;
1286 int first_block;
1287 struct super_block *sb;
1288 struct buffer_head *bhs;
1289 struct buffer_head **bh = NULL;
1290 struct inode *inode;
1291 char *data;
1292 char *bitmap;
1293 struct ext4_group_info *grinfo;
1294
1295 inode = folio->mapping->host;
1296 sb = inode->i_sb;
1297 ngroups = ext4_get_groups_count(sb);
1298 blocksize = i_blocksize(inode);
1299 blocks_per_page = PAGE_SIZE / blocksize;
1300
1301 mb_debug(sb, "init folio %lu\n", folio->index);
1302
1303 groups_per_page = blocks_per_page >> 1;
1304 if (groups_per_page == 0)
1305 groups_per_page = 1;
1306
1307 /* allocate buffer_heads to read bitmaps */
1308 if (groups_per_page > 1) {
1309 i = sizeof(struct buffer_head *) * groups_per_page;
1310 bh = kzalloc(i, gfp);
1311 if (bh == NULL)
1312 return -ENOMEM;
1313 } else
1314 bh = &bhs;
1315
1316 first_group = folio->index * blocks_per_page / 2;
1317
1318 /* read all groups the folio covers into the cache */
1319 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1320 if (group >= ngroups)
1321 break;
1322
1323 grinfo = ext4_get_group_info(sb, group);
1324 if (!grinfo)
1325 continue;
1326 /*
1327 * If page is uptodate then we came here after online resize
1328 * which added some new uninitialized group info structs, so
1329 * we must skip all initialized uptodate buddies on the folio,
1330 * which may be currently in use by an allocating task.
1331 */
1332 if (folio_test_uptodate(folio) &&
1333 !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1334 bh[i] = NULL;
1335 continue;
1336 }
1337 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1338 if (IS_ERR(bh[i])) {
1339 err = PTR_ERR(bh[i]);
1340 bh[i] = NULL;
1341 goto out;
1342 }
1343 mb_debug(sb, "read bitmap for group %u\n", group);
1344 }
1345
1346 /* wait for I/O completion */
1347 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1348 int err2;
1349
1350 if (!bh[i])
1351 continue;
1352 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1353 if (!err)
1354 err = err2;
1355 }
1356
1357 first_block = folio->index * blocks_per_page;
1358 for (i = 0; i < blocks_per_page; i++) {
1359 group = (first_block + i) >> 1;
1360 if (group >= ngroups)
1361 break;
1362
1363 if (!bh[group - first_group])
1364 /* skip initialized uptodate buddy */
1365 continue;
1366
1367 if (!buffer_verified(bh[group - first_group]))
1368 /* Skip faulty bitmaps */
1369 continue;
1370 err = 0;
1371
1372 /*
1373 * data carry information regarding this
1374 * particular group in the format specified
1375 * above
1376 *
1377 */
1378 data = folio_address(folio) + (i * blocksize);
1379 bitmap = bh[group - first_group]->b_data;
1380
1381 /*
1382 * We place the buddy block and bitmap block
1383 * close together
1384 */
1385 grinfo = ext4_get_group_info(sb, group);
1386 if (!grinfo) {
1387 err = -EFSCORRUPTED;
1388 goto out;
1389 }
1390 if ((first_block + i) & 1) {
1391 /* this is block of buddy */
1392 BUG_ON(incore == NULL);
1393 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1394 group, folio->index, i * blocksize);
1395 trace_ext4_mb_buddy_bitmap_load(sb, group);
1396 grinfo->bb_fragments = 0;
1397 memset(grinfo->bb_counters, 0,
1398 sizeof(*grinfo->bb_counters) *
1399 (MB_NUM_ORDERS(sb)));
1400 /*
1401 * incore got set to the group block bitmap below
1402 */
1403 ext4_lock_group(sb, group);
1404 /* init the buddy */
1405 memset(data, 0xff, blocksize);
1406 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1407 ext4_unlock_group(sb, group);
1408 incore = NULL;
1409 } else {
1410 /* this is block of bitmap */
1411 BUG_ON(incore != NULL);
1412 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1413 group, folio->index, i * blocksize);
1414 trace_ext4_mb_bitmap_load(sb, group);
1415
1416 /* see comments in ext4_mb_put_pa() */
1417 ext4_lock_group(sb, group);
1418 memcpy(data, bitmap, blocksize);
1419
1420 /* mark all preallocated blks used in in-core bitmap */
1421 ext4_mb_generate_from_pa(sb, data, group);
1422 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1423 ext4_unlock_group(sb, group);
1424
1425 /* set incore so that the buddy information can be
1426 * generated using this
1427 */
1428 incore = data;
1429 }
1430 }
1431 folio_mark_uptodate(folio);
1432
1433 out:
1434 if (bh) {
1435 for (i = 0; i < groups_per_page; i++)
1436 brelse(bh[i]);
1437 if (bh != &bhs)
1438 kfree(bh);
1439 }
1440 return err;
1441 }
1442
1443 /*
1444 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1445 * on the same buddy page doesn't happen whild holding the buddy page lock.
1446 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1447 * are on the same page e4b->bd_buddy_folio is NULL and return value is 0.
1448 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1449 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1450 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1451 {
1452 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1453 int block, pnum, poff;
1454 int blocks_per_page;
1455 struct folio *folio;
1456
1457 e4b->bd_buddy_folio = NULL;
1458 e4b->bd_bitmap_folio = NULL;
1459
1460 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1461 /*
1462 * the buddy cache inode stores the block bitmap
1463 * and buddy information in consecutive blocks.
1464 * So for each group we need two blocks.
1465 */
1466 block = group * 2;
1467 pnum = block / blocks_per_page;
1468 poff = block % blocks_per_page;
1469 folio = __filemap_get_folio(inode->i_mapping, pnum,
1470 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1471 if (IS_ERR(folio))
1472 return PTR_ERR(folio);
1473 BUG_ON(folio->mapping != inode->i_mapping);
1474 e4b->bd_bitmap_folio = folio;
1475 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1476
1477 if (blocks_per_page >= 2) {
1478 /* buddy and bitmap are on the same page */
1479 return 0;
1480 }
1481
1482 /* blocks_per_page == 1, hence we need another page for the buddy */
1483 folio = __filemap_get_folio(inode->i_mapping, block + 1,
1484 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1485 if (IS_ERR(folio))
1486 return PTR_ERR(folio);
1487 BUG_ON(folio->mapping != inode->i_mapping);
1488 e4b->bd_buddy_folio = folio;
1489 return 0;
1490 }
1491
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1492 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1493 {
1494 if (e4b->bd_bitmap_folio) {
1495 folio_unlock(e4b->bd_bitmap_folio);
1496 folio_put(e4b->bd_bitmap_folio);
1497 }
1498 if (e4b->bd_buddy_folio) {
1499 folio_unlock(e4b->bd_buddy_folio);
1500 folio_put(e4b->bd_buddy_folio);
1501 }
1502 }
1503
1504 /*
1505 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1506 * block group lock of all groups for this page; do not hold the BG lock when
1507 * calling this routine!
1508 */
1509 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1510 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1511 {
1512
1513 struct ext4_group_info *this_grp;
1514 struct ext4_buddy e4b;
1515 struct folio *folio;
1516 int ret = 0;
1517
1518 might_sleep();
1519 mb_debug(sb, "init group %u\n", group);
1520 this_grp = ext4_get_group_info(sb, group);
1521 if (!this_grp)
1522 return -EFSCORRUPTED;
1523
1524 /*
1525 * This ensures that we don't reinit the buddy cache
1526 * page which map to the group from which we are already
1527 * allocating. If we are looking at the buddy cache we would
1528 * have taken a reference using ext4_mb_load_buddy and that
1529 * would have pinned buddy page to page cache.
1530 * The call to ext4_mb_get_buddy_page_lock will mark the
1531 * page accessed.
1532 */
1533 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1534 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1535 /*
1536 * somebody initialized the group
1537 * return without doing anything
1538 */
1539 goto err;
1540 }
1541
1542 folio = e4b.bd_bitmap_folio;
1543 ret = ext4_mb_init_cache(folio, NULL, gfp);
1544 if (ret)
1545 goto err;
1546 if (!folio_test_uptodate(folio)) {
1547 ret = -EIO;
1548 goto err;
1549 }
1550
1551 if (e4b.bd_buddy_folio == NULL) {
1552 /*
1553 * If both the bitmap and buddy are in
1554 * the same page we don't need to force
1555 * init the buddy
1556 */
1557 ret = 0;
1558 goto err;
1559 }
1560 /* init buddy cache */
1561 folio = e4b.bd_buddy_folio;
1562 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1563 if (ret)
1564 goto err;
1565 if (!folio_test_uptodate(folio)) {
1566 ret = -EIO;
1567 goto err;
1568 }
1569 err:
1570 ext4_mb_put_buddy_page_lock(&e4b);
1571 return ret;
1572 }
1573
1574 /*
1575 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1576 * block group lock of all groups for this page; do not hold the BG lock when
1577 * calling this routine!
1578 */
1579 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1580 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1581 struct ext4_buddy *e4b, gfp_t gfp)
1582 {
1583 int blocks_per_page;
1584 int block;
1585 int pnum;
1586 int poff;
1587 struct folio *folio;
1588 int ret;
1589 struct ext4_group_info *grp;
1590 struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 struct inode *inode = sbi->s_buddy_cache;
1592
1593 might_sleep();
1594 mb_debug(sb, "load group %u\n", group);
1595
1596 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1597 grp = ext4_get_group_info(sb, group);
1598 if (!grp)
1599 return -EFSCORRUPTED;
1600
1601 e4b->bd_blkbits = sb->s_blocksize_bits;
1602 e4b->bd_info = grp;
1603 e4b->bd_sb = sb;
1604 e4b->bd_group = group;
1605 e4b->bd_buddy_folio = NULL;
1606 e4b->bd_bitmap_folio = NULL;
1607
1608 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1609 /*
1610 * we need full data about the group
1611 * to make a good selection
1612 */
1613 ret = ext4_mb_init_group(sb, group, gfp);
1614 if (ret)
1615 return ret;
1616 }
1617
1618 /*
1619 * the buddy cache inode stores the block bitmap
1620 * and buddy information in consecutive blocks.
1621 * So for each group we need two blocks.
1622 */
1623 block = group * 2;
1624 pnum = block / blocks_per_page;
1625 poff = block % blocks_per_page;
1626
1627 /* Avoid locking the folio in the fast path ... */
1628 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1629 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1630 if (!IS_ERR(folio))
1631 /*
1632 * drop the folio reference and try
1633 * to get the folio with lock. If we
1634 * are not uptodate that implies
1635 * somebody just created the folio but
1636 * is yet to initialize it. So
1637 * wait for it to initialize.
1638 */
1639 folio_put(folio);
1640 folio = __filemap_get_folio(inode->i_mapping, pnum,
1641 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1642 if (!IS_ERR(folio)) {
1643 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1644 "ext4: bitmap's mapping != inode->i_mapping\n")) {
1645 /* should never happen */
1646 folio_unlock(folio);
1647 ret = -EINVAL;
1648 goto err;
1649 }
1650 if (!folio_test_uptodate(folio)) {
1651 ret = ext4_mb_init_cache(folio, NULL, gfp);
1652 if (ret) {
1653 folio_unlock(folio);
1654 goto err;
1655 }
1656 mb_cmp_bitmaps(e4b, folio_address(folio) +
1657 (poff * sb->s_blocksize));
1658 }
1659 folio_unlock(folio);
1660 }
1661 }
1662 if (IS_ERR(folio)) {
1663 ret = PTR_ERR(folio);
1664 goto err;
1665 }
1666 if (!folio_test_uptodate(folio)) {
1667 ret = -EIO;
1668 goto err;
1669 }
1670
1671 /* Folios marked accessed already */
1672 e4b->bd_bitmap_folio = folio;
1673 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1674
1675 block++;
1676 pnum = block / blocks_per_page;
1677 poff = block % blocks_per_page;
1678
1679 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1680 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1681 if (!IS_ERR(folio))
1682 folio_put(folio);
1683 folio = __filemap_get_folio(inode->i_mapping, pnum,
1684 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1685 if (!IS_ERR(folio)) {
1686 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1687 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1688 /* should never happen */
1689 folio_unlock(folio);
1690 ret = -EINVAL;
1691 goto err;
1692 }
1693 if (!folio_test_uptodate(folio)) {
1694 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1695 gfp);
1696 if (ret) {
1697 folio_unlock(folio);
1698 goto err;
1699 }
1700 }
1701 folio_unlock(folio);
1702 }
1703 }
1704 if (IS_ERR(folio)) {
1705 ret = PTR_ERR(folio);
1706 goto err;
1707 }
1708 if (!folio_test_uptodate(folio)) {
1709 ret = -EIO;
1710 goto err;
1711 }
1712
1713 /* Folios marked accessed already */
1714 e4b->bd_buddy_folio = folio;
1715 e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize);
1716
1717 return 0;
1718
1719 err:
1720 if (!IS_ERR_OR_NULL(folio))
1721 folio_put(folio);
1722 if (e4b->bd_bitmap_folio)
1723 folio_put(e4b->bd_bitmap_folio);
1724
1725 e4b->bd_buddy = NULL;
1726 e4b->bd_bitmap = NULL;
1727 return ret;
1728 }
1729
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1730 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1731 struct ext4_buddy *e4b)
1732 {
1733 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1734 }
1735
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1736 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1737 {
1738 if (e4b->bd_bitmap_folio)
1739 folio_put(e4b->bd_bitmap_folio);
1740 if (e4b->bd_buddy_folio)
1741 folio_put(e4b->bd_buddy_folio);
1742 }
1743
1744
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1745 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1746 {
1747 int order = 1, max;
1748 void *bb;
1749
1750 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1751 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1752
1753 while (order <= e4b->bd_blkbits + 1) {
1754 bb = mb_find_buddy(e4b, order, &max);
1755 if (!mb_test_bit(block >> order, bb)) {
1756 /* this block is part of buddy of order 'order' */
1757 return order;
1758 }
1759 order++;
1760 }
1761 return 0;
1762 }
1763
mb_clear_bits(void * bm,int cur,int len)1764 static void mb_clear_bits(void *bm, int cur, int len)
1765 {
1766 __u32 *addr;
1767
1768 len = cur + len;
1769 while (cur < len) {
1770 if ((cur & 31) == 0 && (len - cur) >= 32) {
1771 /* fast path: clear whole word at once */
1772 addr = bm + (cur >> 3);
1773 *addr = 0;
1774 cur += 32;
1775 continue;
1776 }
1777 mb_clear_bit(cur, bm);
1778 cur++;
1779 }
1780 }
1781
1782 /* clear bits in given range
1783 * will return first found zero bit if any, -1 otherwise
1784 */
mb_test_and_clear_bits(void * bm,int cur,int len)1785 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1786 {
1787 __u32 *addr;
1788 int zero_bit = -1;
1789
1790 len = cur + len;
1791 while (cur < len) {
1792 if ((cur & 31) == 0 && (len - cur) >= 32) {
1793 /* fast path: clear whole word at once */
1794 addr = bm + (cur >> 3);
1795 if (*addr != (__u32)(-1) && zero_bit == -1)
1796 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1797 *addr = 0;
1798 cur += 32;
1799 continue;
1800 }
1801 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1802 zero_bit = cur;
1803 cur++;
1804 }
1805
1806 return zero_bit;
1807 }
1808
mb_set_bits(void * bm,int cur,int len)1809 void mb_set_bits(void *bm, int cur, int len)
1810 {
1811 __u32 *addr;
1812
1813 len = cur + len;
1814 while (cur < len) {
1815 if ((cur & 31) == 0 && (len - cur) >= 32) {
1816 /* fast path: set whole word at once */
1817 addr = bm + (cur >> 3);
1818 *addr = 0xffffffff;
1819 cur += 32;
1820 continue;
1821 }
1822 mb_set_bit(cur, bm);
1823 cur++;
1824 }
1825 }
1826
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1827 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1828 {
1829 if (mb_test_bit(*bit + side, bitmap)) {
1830 mb_clear_bit(*bit, bitmap);
1831 (*bit) -= side;
1832 return 1;
1833 }
1834 else {
1835 (*bit) += side;
1836 mb_set_bit(*bit, bitmap);
1837 return -1;
1838 }
1839 }
1840
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1841 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1842 {
1843 int max;
1844 int order = 1;
1845 void *buddy = mb_find_buddy(e4b, order, &max);
1846
1847 while (buddy) {
1848 void *buddy2;
1849
1850 /* Bits in range [first; last] are known to be set since
1851 * corresponding blocks were allocated. Bits in range
1852 * (first; last) will stay set because they form buddies on
1853 * upper layer. We just deal with borders if they don't
1854 * align with upper layer and then go up.
1855 * Releasing entire group is all about clearing
1856 * single bit of highest order buddy.
1857 */
1858
1859 /* Example:
1860 * ---------------------------------
1861 * | 1 | 1 | 1 | 1 |
1862 * ---------------------------------
1863 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1864 * ---------------------------------
1865 * 0 1 2 3 4 5 6 7
1866 * \_____________________/
1867 *
1868 * Neither [1] nor [6] is aligned to above layer.
1869 * Left neighbour [0] is free, so mark it busy,
1870 * decrease bb_counters and extend range to
1871 * [0; 6]
1872 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1873 * mark [6] free, increase bb_counters and shrink range to
1874 * [0; 5].
1875 * Then shift range to [0; 2], go up and do the same.
1876 */
1877
1878
1879 if (first & 1)
1880 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1881 if (!(last & 1))
1882 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1883 if (first > last)
1884 break;
1885 order++;
1886
1887 buddy2 = mb_find_buddy(e4b, order, &max);
1888 if (!buddy2) {
1889 mb_clear_bits(buddy, first, last - first + 1);
1890 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1891 break;
1892 }
1893 first >>= 1;
1894 last >>= 1;
1895 buddy = buddy2;
1896 }
1897 }
1898
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1899 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1900 int first, int count)
1901 {
1902 int left_is_free = 0;
1903 int right_is_free = 0;
1904 int block;
1905 int last = first + count - 1;
1906 struct super_block *sb = e4b->bd_sb;
1907
1908 if (WARN_ON(count == 0))
1909 return;
1910 BUG_ON(last >= (sb->s_blocksize << 3));
1911 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1912 /* Don't bother if the block group is corrupt. */
1913 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1914 return;
1915
1916 mb_check_buddy(e4b);
1917 mb_free_blocks_double(inode, e4b, first, count);
1918
1919 /* access memory sequentially: check left neighbour,
1920 * clear range and then check right neighbour
1921 */
1922 if (first != 0)
1923 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1924 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1925 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1926 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1927
1928 if (unlikely(block != -1)) {
1929 struct ext4_sb_info *sbi = EXT4_SB(sb);
1930 ext4_fsblk_t blocknr;
1931
1932 /*
1933 * Fastcommit replay can free already freed blocks which
1934 * corrupts allocation info. Regenerate it.
1935 */
1936 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1937 mb_regenerate_buddy(e4b);
1938 goto check;
1939 }
1940
1941 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1942 blocknr += EXT4_C2B(sbi, block);
1943 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1944 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1945 ext4_grp_locked_error(sb, e4b->bd_group,
1946 inode ? inode->i_ino : 0, blocknr,
1947 "freeing already freed block (bit %u); block bitmap corrupt.",
1948 block);
1949 return;
1950 }
1951
1952 this_cpu_inc(discard_pa_seq);
1953 e4b->bd_info->bb_free += count;
1954 if (first < e4b->bd_info->bb_first_free)
1955 e4b->bd_info->bb_first_free = first;
1956
1957 /* let's maintain fragments counter */
1958 if (left_is_free && right_is_free)
1959 e4b->bd_info->bb_fragments--;
1960 else if (!left_is_free && !right_is_free)
1961 e4b->bd_info->bb_fragments++;
1962
1963 /* buddy[0] == bd_bitmap is a special case, so handle
1964 * it right away and let mb_buddy_mark_free stay free of
1965 * zero order checks.
1966 * Check if neighbours are to be coaleasced,
1967 * adjust bitmap bb_counters and borders appropriately.
1968 */
1969 if (first & 1) {
1970 first += !left_is_free;
1971 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1972 }
1973 if (!(last & 1)) {
1974 last -= !right_is_free;
1975 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1976 }
1977
1978 if (first <= last)
1979 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1980
1981 mb_set_largest_free_order(sb, e4b->bd_info);
1982 mb_update_avg_fragment_size(sb, e4b->bd_info);
1983 check:
1984 mb_check_buddy(e4b);
1985 }
1986
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1987 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1988 int needed, struct ext4_free_extent *ex)
1989 {
1990 int max, order, next;
1991 void *buddy;
1992
1993 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1994 BUG_ON(ex == NULL);
1995
1996 buddy = mb_find_buddy(e4b, 0, &max);
1997 BUG_ON(buddy == NULL);
1998 BUG_ON(block >= max);
1999 if (mb_test_bit(block, buddy)) {
2000 ex->fe_len = 0;
2001 ex->fe_start = 0;
2002 ex->fe_group = 0;
2003 return 0;
2004 }
2005
2006 /* find actual order */
2007 order = mb_find_order_for_block(e4b, block);
2008
2009 ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2010 ex->fe_start = block;
2011 ex->fe_group = e4b->bd_group;
2012
2013 block = block >> order;
2014
2015 while (needed > ex->fe_len &&
2016 mb_find_buddy(e4b, order, &max)) {
2017
2018 if (block + 1 >= max)
2019 break;
2020
2021 next = (block + 1) * (1 << order);
2022 if (mb_test_bit(next, e4b->bd_bitmap))
2023 break;
2024
2025 order = mb_find_order_for_block(e4b, next);
2026
2027 block = next >> order;
2028 ex->fe_len += 1 << order;
2029 }
2030
2031 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2032 /* Should never happen! (but apparently sometimes does?!?) */
2033 WARN_ON(1);
2034 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2035 "corruption or bug in mb_find_extent "
2036 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2037 block, order, needed, ex->fe_group, ex->fe_start,
2038 ex->fe_len, ex->fe_logical);
2039 ex->fe_len = 0;
2040 ex->fe_start = 0;
2041 ex->fe_group = 0;
2042 }
2043 return ex->fe_len;
2044 }
2045
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)2046 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2047 {
2048 int ord;
2049 int mlen = 0;
2050 int max = 0;
2051 int start = ex->fe_start;
2052 int len = ex->fe_len;
2053 unsigned ret = 0;
2054 int len0 = len;
2055 void *buddy;
2056 int ord_start, ord_end;
2057
2058 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2059 BUG_ON(e4b->bd_group != ex->fe_group);
2060 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2061 mb_check_buddy(e4b);
2062 mb_mark_used_double(e4b, start, len);
2063
2064 this_cpu_inc(discard_pa_seq);
2065 e4b->bd_info->bb_free -= len;
2066 if (e4b->bd_info->bb_first_free == start)
2067 e4b->bd_info->bb_first_free += len;
2068
2069 /* let's maintain fragments counter */
2070 if (start != 0)
2071 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2072 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2073 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2074 if (mlen && max)
2075 e4b->bd_info->bb_fragments++;
2076 else if (!mlen && !max)
2077 e4b->bd_info->bb_fragments--;
2078
2079 /* let's maintain buddy itself */
2080 while (len) {
2081 ord = mb_find_order_for_block(e4b, start);
2082
2083 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2084 /* the whole chunk may be allocated at once! */
2085 mlen = 1 << ord;
2086 buddy = mb_find_buddy(e4b, ord, &max);
2087 BUG_ON((start >> ord) >= max);
2088 mb_set_bit(start >> ord, buddy);
2089 e4b->bd_info->bb_counters[ord]--;
2090 start += mlen;
2091 len -= mlen;
2092 BUG_ON(len < 0);
2093 continue;
2094 }
2095
2096 /* store for history */
2097 if (ret == 0)
2098 ret = len | (ord << 16);
2099
2100 BUG_ON(ord <= 0);
2101 buddy = mb_find_buddy(e4b, ord, &max);
2102 mb_set_bit(start >> ord, buddy);
2103 e4b->bd_info->bb_counters[ord]--;
2104
2105 ord_start = (start >> ord) << ord;
2106 ord_end = ord_start + (1 << ord);
2107 /* first chunk */
2108 if (start > ord_start)
2109 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2110 ord_start, start - ord_start,
2111 e4b->bd_info);
2112
2113 /* last chunk */
2114 if (start + len < ord_end) {
2115 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2116 start + len,
2117 ord_end - (start + len),
2118 e4b->bd_info);
2119 break;
2120 }
2121 len = start + len - ord_end;
2122 start = ord_end;
2123 }
2124 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2125
2126 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2127 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2128 mb_check_buddy(e4b);
2129
2130 return ret;
2131 }
2132
2133 /*
2134 * Must be called under group lock!
2135 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2136 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2137 struct ext4_buddy *e4b)
2138 {
2139 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2140 int ret;
2141
2142 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2143 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2144
2145 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2146 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2147 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2148
2149 /* preallocation can change ac_b_ex, thus we store actually
2150 * allocated blocks for history */
2151 ac->ac_f_ex = ac->ac_b_ex;
2152
2153 ac->ac_status = AC_STATUS_FOUND;
2154 ac->ac_tail = ret & 0xffff;
2155 ac->ac_buddy = ret >> 16;
2156
2157 /*
2158 * take the page reference. We want the page to be pinned
2159 * so that we don't get a ext4_mb_init_cache_call for this
2160 * group until we update the bitmap. That would mean we
2161 * double allocate blocks. The reference is dropped
2162 * in ext4_mb_release_context
2163 */
2164 ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2165 folio_get(ac->ac_bitmap_folio);
2166 ac->ac_buddy_folio = e4b->bd_buddy_folio;
2167 folio_get(ac->ac_buddy_folio);
2168 /* store last allocated for subsequent stream allocation */
2169 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2170 spin_lock(&sbi->s_md_lock);
2171 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2172 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2173 spin_unlock(&sbi->s_md_lock);
2174 }
2175 /*
2176 * As we've just preallocated more space than
2177 * user requested originally, we store allocated
2178 * space in a special descriptor.
2179 */
2180 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2181 ext4_mb_new_preallocation(ac);
2182
2183 }
2184
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)2185 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2186 struct ext4_buddy *e4b,
2187 int finish_group)
2188 {
2189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2190 struct ext4_free_extent *bex = &ac->ac_b_ex;
2191 struct ext4_free_extent *gex = &ac->ac_g_ex;
2192
2193 if (ac->ac_status == AC_STATUS_FOUND)
2194 return;
2195 /*
2196 * We don't want to scan for a whole year
2197 */
2198 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2199 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2200 ac->ac_status = AC_STATUS_BREAK;
2201 return;
2202 }
2203
2204 /*
2205 * Haven't found good chunk so far, let's continue
2206 */
2207 if (bex->fe_len < gex->fe_len)
2208 return;
2209
2210 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2211 ext4_mb_use_best_found(ac, e4b);
2212 }
2213
2214 /*
2215 * The routine checks whether found extent is good enough. If it is,
2216 * then the extent gets marked used and flag is set to the context
2217 * to stop scanning. Otherwise, the extent is compared with the
2218 * previous found extent and if new one is better, then it's stored
2219 * in the context. Later, the best found extent will be used, if
2220 * mballoc can't find good enough extent.
2221 *
2222 * The algorithm used is roughly as follows:
2223 *
2224 * * If free extent found is exactly as big as goal, then
2225 * stop the scan and use it immediately
2226 *
2227 * * If free extent found is smaller than goal, then keep retrying
2228 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2229 * that stop scanning and use whatever we have.
2230 *
2231 * * If free extent found is bigger than goal, then keep retrying
2232 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2233 * stopping the scan and using the extent.
2234 *
2235 *
2236 * FIXME: real allocation policy is to be designed yet!
2237 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)2238 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2239 struct ext4_free_extent *ex,
2240 struct ext4_buddy *e4b)
2241 {
2242 struct ext4_free_extent *bex = &ac->ac_b_ex;
2243 struct ext4_free_extent *gex = &ac->ac_g_ex;
2244
2245 BUG_ON(ex->fe_len <= 0);
2246 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2247 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2248 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2249
2250 ac->ac_found++;
2251 ac->ac_cX_found[ac->ac_criteria]++;
2252
2253 /*
2254 * The special case - take what you catch first
2255 */
2256 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2257 *bex = *ex;
2258 ext4_mb_use_best_found(ac, e4b);
2259 return;
2260 }
2261
2262 /*
2263 * Let's check whether the chuck is good enough
2264 */
2265 if (ex->fe_len == gex->fe_len) {
2266 *bex = *ex;
2267 ext4_mb_use_best_found(ac, e4b);
2268 return;
2269 }
2270
2271 /*
2272 * If this is first found extent, just store it in the context
2273 */
2274 if (bex->fe_len == 0) {
2275 *bex = *ex;
2276 return;
2277 }
2278
2279 /*
2280 * If new found extent is better, store it in the context
2281 */
2282 if (bex->fe_len < gex->fe_len) {
2283 /* if the request isn't satisfied, any found extent
2284 * larger than previous best one is better */
2285 if (ex->fe_len > bex->fe_len)
2286 *bex = *ex;
2287 } else if (ex->fe_len > gex->fe_len) {
2288 /* if the request is satisfied, then we try to find
2289 * an extent that still satisfy the request, but is
2290 * smaller than previous one */
2291 if (ex->fe_len < bex->fe_len)
2292 *bex = *ex;
2293 }
2294
2295 ext4_mb_check_limits(ac, e4b, 0);
2296 }
2297
2298 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2299 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2300 struct ext4_buddy *e4b)
2301 {
2302 struct ext4_free_extent ex = ac->ac_b_ex;
2303 ext4_group_t group = ex.fe_group;
2304 int max;
2305 int err;
2306
2307 BUG_ON(ex.fe_len <= 0);
2308 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2309 if (err)
2310 return;
2311
2312 ext4_lock_group(ac->ac_sb, group);
2313 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2314 goto out;
2315
2316 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2317
2318 if (max > 0) {
2319 ac->ac_b_ex = ex;
2320 ext4_mb_use_best_found(ac, e4b);
2321 }
2322
2323 out:
2324 ext4_unlock_group(ac->ac_sb, group);
2325 ext4_mb_unload_buddy(e4b);
2326 }
2327
2328 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2329 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2330 struct ext4_buddy *e4b)
2331 {
2332 ext4_group_t group = ac->ac_g_ex.fe_group;
2333 int max;
2334 int err;
2335 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2336 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2337 struct ext4_free_extent ex;
2338
2339 if (!grp)
2340 return -EFSCORRUPTED;
2341 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2342 return 0;
2343 if (grp->bb_free == 0)
2344 return 0;
2345
2346 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2347 if (err)
2348 return err;
2349
2350 ext4_lock_group(ac->ac_sb, group);
2351 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2352 goto out;
2353
2354 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2355 ac->ac_g_ex.fe_len, &ex);
2356 ex.fe_logical = 0xDEADFA11; /* debug value */
2357
2358 if (max >= ac->ac_g_ex.fe_len &&
2359 ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) {
2360 ext4_fsblk_t start;
2361
2362 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2363 /* use do_div to get remainder (would be 64-bit modulo) */
2364 if (do_div(start, sbi->s_stripe) == 0) {
2365 ac->ac_found++;
2366 ac->ac_b_ex = ex;
2367 ext4_mb_use_best_found(ac, e4b);
2368 }
2369 } else if (max >= ac->ac_g_ex.fe_len) {
2370 BUG_ON(ex.fe_len <= 0);
2371 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2372 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2373 ac->ac_found++;
2374 ac->ac_b_ex = ex;
2375 ext4_mb_use_best_found(ac, e4b);
2376 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2377 /* Sometimes, caller may want to merge even small
2378 * number of blocks to an existing extent */
2379 BUG_ON(ex.fe_len <= 0);
2380 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2381 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2382 ac->ac_found++;
2383 ac->ac_b_ex = ex;
2384 ext4_mb_use_best_found(ac, e4b);
2385 }
2386 out:
2387 ext4_unlock_group(ac->ac_sb, group);
2388 ext4_mb_unload_buddy(e4b);
2389
2390 return 0;
2391 }
2392
2393 /*
2394 * The routine scans buddy structures (not bitmap!) from given order
2395 * to max order and tries to find big enough chunk to satisfy the req
2396 */
2397 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2398 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2399 struct ext4_buddy *e4b)
2400 {
2401 struct super_block *sb = ac->ac_sb;
2402 struct ext4_group_info *grp = e4b->bd_info;
2403 void *buddy;
2404 int i;
2405 int k;
2406 int max;
2407
2408 BUG_ON(ac->ac_2order <= 0);
2409 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2410 if (grp->bb_counters[i] == 0)
2411 continue;
2412
2413 buddy = mb_find_buddy(e4b, i, &max);
2414 if (WARN_RATELIMIT(buddy == NULL,
2415 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2416 continue;
2417
2418 k = mb_find_next_zero_bit(buddy, max, 0);
2419 if (k >= max) {
2420 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2421 e4b->bd_group,
2422 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2423 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2424 "%d free clusters of order %d. But found 0",
2425 grp->bb_counters[i], i);
2426 break;
2427 }
2428 ac->ac_found++;
2429 ac->ac_cX_found[ac->ac_criteria]++;
2430
2431 ac->ac_b_ex.fe_len = 1 << i;
2432 ac->ac_b_ex.fe_start = k << i;
2433 ac->ac_b_ex.fe_group = e4b->bd_group;
2434
2435 ext4_mb_use_best_found(ac, e4b);
2436
2437 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2438
2439 if (EXT4_SB(sb)->s_mb_stats)
2440 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2441
2442 break;
2443 }
2444 }
2445
2446 /*
2447 * The routine scans the group and measures all found extents.
2448 * In order to optimize scanning, caller must pass number of
2449 * free blocks in the group, so the routine can know upper limit.
2450 */
2451 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2452 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2453 struct ext4_buddy *e4b)
2454 {
2455 struct super_block *sb = ac->ac_sb;
2456 void *bitmap = e4b->bd_bitmap;
2457 struct ext4_free_extent ex;
2458 int i, j, freelen;
2459 int free;
2460
2461 free = e4b->bd_info->bb_free;
2462 if (WARN_ON(free <= 0))
2463 return;
2464
2465 i = e4b->bd_info->bb_first_free;
2466
2467 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2468 i = mb_find_next_zero_bit(bitmap,
2469 EXT4_CLUSTERS_PER_GROUP(sb), i);
2470 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2471 /*
2472 * IF we have corrupt bitmap, we won't find any
2473 * free blocks even though group info says we
2474 * have free blocks
2475 */
2476 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2477 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2478 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2479 "%d free clusters as per "
2480 "group info. But bitmap says 0",
2481 free);
2482 break;
2483 }
2484
2485 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2486 /*
2487 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2488 * sure that this group will have a large enough
2489 * continuous free extent, so skip over the smaller free
2490 * extents
2491 */
2492 j = mb_find_next_bit(bitmap,
2493 EXT4_CLUSTERS_PER_GROUP(sb), i);
2494 freelen = j - i;
2495
2496 if (freelen < ac->ac_g_ex.fe_len) {
2497 i = j;
2498 free -= freelen;
2499 continue;
2500 }
2501 }
2502
2503 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2504 if (WARN_ON(ex.fe_len <= 0))
2505 break;
2506 if (free < ex.fe_len) {
2507 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2508 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2509 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2510 "%d free clusters as per "
2511 "group info. But got %d blocks",
2512 free, ex.fe_len);
2513 /*
2514 * The number of free blocks differs. This mostly
2515 * indicate that the bitmap is corrupt. So exit
2516 * without claiming the space.
2517 */
2518 break;
2519 }
2520 ex.fe_logical = 0xDEADC0DE; /* debug value */
2521 ext4_mb_measure_extent(ac, &ex, e4b);
2522
2523 i += ex.fe_len;
2524 free -= ex.fe_len;
2525 }
2526
2527 ext4_mb_check_limits(ac, e4b, 1);
2528 }
2529
2530 /*
2531 * This is a special case for storages like raid5
2532 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2533 */
2534 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2535 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2536 struct ext4_buddy *e4b)
2537 {
2538 struct super_block *sb = ac->ac_sb;
2539 struct ext4_sb_info *sbi = EXT4_SB(sb);
2540 void *bitmap = e4b->bd_bitmap;
2541 struct ext4_free_extent ex;
2542 ext4_fsblk_t first_group_block;
2543 ext4_fsblk_t a;
2544 ext4_grpblk_t i, stripe;
2545 int max;
2546
2547 BUG_ON(sbi->s_stripe == 0);
2548
2549 /* find first stripe-aligned block in group */
2550 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2551
2552 a = first_group_block + sbi->s_stripe - 1;
2553 do_div(a, sbi->s_stripe);
2554 i = (a * sbi->s_stripe) - first_group_block;
2555
2556 stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe);
2557 i = EXT4_B2C(sbi, i);
2558 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2559 if (!mb_test_bit(i, bitmap)) {
2560 max = mb_find_extent(e4b, i, stripe, &ex);
2561 if (max >= stripe) {
2562 ac->ac_found++;
2563 ac->ac_cX_found[ac->ac_criteria]++;
2564 ex.fe_logical = 0xDEADF00D; /* debug value */
2565 ac->ac_b_ex = ex;
2566 ext4_mb_use_best_found(ac, e4b);
2567 break;
2568 }
2569 }
2570 i += stripe;
2571 }
2572 }
2573
2574 /*
2575 * This is also called BEFORE we load the buddy bitmap.
2576 * Returns either 1 or 0 indicating that the group is either suitable
2577 * for the allocation or not.
2578 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,enum criteria cr)2579 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2580 ext4_group_t group, enum criteria cr)
2581 {
2582 ext4_grpblk_t free, fragments;
2583 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2584 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2585
2586 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2587
2588 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2589 return false;
2590
2591 free = grp->bb_free;
2592 if (free == 0)
2593 return false;
2594
2595 fragments = grp->bb_fragments;
2596 if (fragments == 0)
2597 return false;
2598
2599 switch (cr) {
2600 case CR_POWER2_ALIGNED:
2601 BUG_ON(ac->ac_2order == 0);
2602
2603 /* Avoid using the first bg of a flexgroup for data files */
2604 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2605 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2606 ((group % flex_size) == 0))
2607 return false;
2608
2609 if (free < ac->ac_g_ex.fe_len)
2610 return false;
2611
2612 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2613 return true;
2614
2615 if (grp->bb_largest_free_order < ac->ac_2order)
2616 return false;
2617
2618 return true;
2619 case CR_GOAL_LEN_FAST:
2620 case CR_BEST_AVAIL_LEN:
2621 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2622 return true;
2623 break;
2624 case CR_GOAL_LEN_SLOW:
2625 if (free >= ac->ac_g_ex.fe_len)
2626 return true;
2627 break;
2628 case CR_ANY_FREE:
2629 return true;
2630 default:
2631 BUG();
2632 }
2633
2634 return false;
2635 }
2636
2637 /*
2638 * This could return negative error code if something goes wrong
2639 * during ext4_mb_init_group(). This should not be called with
2640 * ext4_lock_group() held.
2641 *
2642 * Note: because we are conditionally operating with the group lock in
2643 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2644 * function using __acquire and __release. This means we need to be
2645 * super careful before messing with the error path handling via "goto
2646 * out"!
2647 */
ext4_mb_good_group_nolock(struct ext4_allocation_context * ac,ext4_group_t group,enum criteria cr)2648 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2649 ext4_group_t group, enum criteria cr)
2650 {
2651 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2652 struct super_block *sb = ac->ac_sb;
2653 struct ext4_sb_info *sbi = EXT4_SB(sb);
2654 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2655 ext4_grpblk_t free;
2656 int ret = 0;
2657
2658 if (!grp)
2659 return -EFSCORRUPTED;
2660 if (sbi->s_mb_stats)
2661 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2662 if (should_lock) {
2663 ext4_lock_group(sb, group);
2664 __release(ext4_group_lock_ptr(sb, group));
2665 }
2666 free = grp->bb_free;
2667 if (free == 0)
2668 goto out;
2669 /*
2670 * In all criterias except CR_ANY_FREE we try to avoid groups that
2671 * can't possibly satisfy the full goal request due to insufficient
2672 * free blocks.
2673 */
2674 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2675 goto out;
2676 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2677 goto out;
2678 if (should_lock) {
2679 __acquire(ext4_group_lock_ptr(sb, group));
2680 ext4_unlock_group(sb, group);
2681 }
2682
2683 /* We only do this if the grp has never been initialized */
2684 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2685 struct ext4_group_desc *gdp =
2686 ext4_get_group_desc(sb, group, NULL);
2687 int ret;
2688
2689 /*
2690 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2691 * search to find large good chunks almost for free. If buddy
2692 * data is not ready, then this optimization makes no sense. But
2693 * we never skip the first block group in a flex_bg, since this
2694 * gets used for metadata block allocation, and we want to make
2695 * sure we locate metadata blocks in the first block group in
2696 * the flex_bg if possible.
2697 */
2698 if (!ext4_mb_cr_expensive(cr) &&
2699 (!sbi->s_log_groups_per_flex ||
2700 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2701 !(ext4_has_group_desc_csum(sb) &&
2702 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2703 return 0;
2704 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2705 if (ret)
2706 return ret;
2707 }
2708
2709 if (should_lock) {
2710 ext4_lock_group(sb, group);
2711 __release(ext4_group_lock_ptr(sb, group));
2712 }
2713 ret = ext4_mb_good_group(ac, group, cr);
2714 out:
2715 if (should_lock) {
2716 __acquire(ext4_group_lock_ptr(sb, group));
2717 ext4_unlock_group(sb, group);
2718 }
2719 return ret;
2720 }
2721
2722 /*
2723 * Start prefetching @nr block bitmaps starting at @group.
2724 * Return the next group which needs to be prefetched.
2725 */
ext4_mb_prefetch(struct super_block * sb,ext4_group_t group,unsigned int nr,int * cnt)2726 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2727 unsigned int nr, int *cnt)
2728 {
2729 ext4_group_t ngroups = ext4_get_groups_count(sb);
2730 struct buffer_head *bh;
2731 struct blk_plug plug;
2732
2733 blk_start_plug(&plug);
2734 while (nr-- > 0) {
2735 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2736 NULL);
2737 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2738
2739 /*
2740 * Prefetch block groups with free blocks; but don't
2741 * bother if it is marked uninitialized on disk, since
2742 * it won't require I/O to read. Also only try to
2743 * prefetch once, so we avoid getblk() call, which can
2744 * be expensive.
2745 */
2746 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2747 EXT4_MB_GRP_NEED_INIT(grp) &&
2748 ext4_free_group_clusters(sb, gdp) > 0 ) {
2749 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2750 if (bh && !IS_ERR(bh)) {
2751 if (!buffer_uptodate(bh) && cnt)
2752 (*cnt)++;
2753 brelse(bh);
2754 }
2755 }
2756 if (++group >= ngroups)
2757 group = 0;
2758 }
2759 blk_finish_plug(&plug);
2760 return group;
2761 }
2762
2763 /*
2764 * Prefetching reads the block bitmap into the buffer cache; but we
2765 * need to make sure that the buddy bitmap in the page cache has been
2766 * initialized. Note that ext4_mb_init_group() will block if the I/O
2767 * is not yet completed, or indeed if it was not initiated by
2768 * ext4_mb_prefetch did not start the I/O.
2769 *
2770 * TODO: We should actually kick off the buddy bitmap setup in a work
2771 * queue when the buffer I/O is completed, so that we don't block
2772 * waiting for the block allocation bitmap read to finish when
2773 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2774 */
ext4_mb_prefetch_fini(struct super_block * sb,ext4_group_t group,unsigned int nr)2775 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2776 unsigned int nr)
2777 {
2778 struct ext4_group_desc *gdp;
2779 struct ext4_group_info *grp;
2780
2781 while (nr-- > 0) {
2782 if (!group)
2783 group = ext4_get_groups_count(sb);
2784 group--;
2785 gdp = ext4_get_group_desc(sb, group, NULL);
2786 grp = ext4_get_group_info(sb, group);
2787
2788 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2789 ext4_free_group_clusters(sb, gdp) > 0) {
2790 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2791 break;
2792 }
2793 }
2794 }
2795
2796 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2797 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2798 {
2799 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2800 enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2801 int err = 0, first_err = 0;
2802 unsigned int nr = 0, prefetch_ios = 0;
2803 struct ext4_sb_info *sbi;
2804 struct super_block *sb;
2805 struct ext4_buddy e4b;
2806 int lost;
2807
2808 sb = ac->ac_sb;
2809 sbi = EXT4_SB(sb);
2810 ngroups = ext4_get_groups_count(sb);
2811 /* non-extent files are limited to low blocks/groups */
2812 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2813 ngroups = sbi->s_blockfile_groups;
2814
2815 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2816
2817 /* first, try the goal */
2818 err = ext4_mb_find_by_goal(ac, &e4b);
2819 if (err || ac->ac_status == AC_STATUS_FOUND)
2820 goto out;
2821
2822 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2823 goto out;
2824
2825 /*
2826 * ac->ac_2order is set only if the fe_len is a power of 2
2827 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2828 * so that we try exact allocation using buddy.
2829 */
2830 i = fls(ac->ac_g_ex.fe_len);
2831 ac->ac_2order = 0;
2832 /*
2833 * We search using buddy data only if the order of the request
2834 * is greater than equal to the sbi_s_mb_order2_reqs
2835 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2836 * We also support searching for power-of-two requests only for
2837 * requests upto maximum buddy size we have constructed.
2838 */
2839 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2840 if (is_power_of_2(ac->ac_g_ex.fe_len))
2841 ac->ac_2order = array_index_nospec(i - 1,
2842 MB_NUM_ORDERS(sb));
2843 }
2844
2845 /* if stream allocation is enabled, use global goal */
2846 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2847 /* TBD: may be hot point */
2848 spin_lock(&sbi->s_md_lock);
2849 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2850 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2851 spin_unlock(&sbi->s_md_lock);
2852 }
2853
2854 /*
2855 * Let's just scan groups to find more-less suitable blocks We
2856 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2857 * aligned, in which case let's do that faster approach first.
2858 */
2859 if (ac->ac_2order)
2860 cr = CR_POWER2_ALIGNED;
2861 repeat:
2862 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2863 ac->ac_criteria = cr;
2864 /*
2865 * searching for the right group start
2866 * from the goal value specified
2867 */
2868 group = ac->ac_g_ex.fe_group;
2869 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2870 prefetch_grp = group;
2871 nr = 0;
2872
2873 for (i = 0, new_cr = cr; i < ngroups; i++,
2874 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2875 int ret = 0;
2876
2877 cond_resched();
2878 if (new_cr != cr) {
2879 cr = new_cr;
2880 goto repeat;
2881 }
2882
2883 /*
2884 * Batch reads of the block allocation bitmaps
2885 * to get multiple READs in flight; limit
2886 * prefetching at inexpensive CR, otherwise mballoc
2887 * can spend a lot of time loading imperfect groups
2888 */
2889 if ((prefetch_grp == group) &&
2890 (ext4_mb_cr_expensive(cr) ||
2891 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2892 nr = sbi->s_mb_prefetch;
2893 if (ext4_has_feature_flex_bg(sb)) {
2894 nr = 1 << sbi->s_log_groups_per_flex;
2895 nr -= group & (nr - 1);
2896 nr = min(nr, sbi->s_mb_prefetch);
2897 }
2898 prefetch_grp = ext4_mb_prefetch(sb, group,
2899 nr, &prefetch_ios);
2900 }
2901
2902 /* This now checks without needing the buddy page */
2903 ret = ext4_mb_good_group_nolock(ac, group, cr);
2904 if (ret <= 0) {
2905 if (!first_err)
2906 first_err = ret;
2907 continue;
2908 }
2909
2910 err = ext4_mb_load_buddy(sb, group, &e4b);
2911 if (err)
2912 goto out;
2913
2914 ext4_lock_group(sb, group);
2915
2916 /*
2917 * We need to check again after locking the
2918 * block group
2919 */
2920 ret = ext4_mb_good_group(ac, group, cr);
2921 if (ret == 0) {
2922 ext4_unlock_group(sb, group);
2923 ext4_mb_unload_buddy(&e4b);
2924 continue;
2925 }
2926
2927 ac->ac_groups_scanned++;
2928 if (cr == CR_POWER2_ALIGNED)
2929 ext4_mb_simple_scan_group(ac, &e4b);
2930 else {
2931 bool is_stripe_aligned =
2932 (sbi->s_stripe >=
2933 sbi->s_cluster_ratio) &&
2934 !(ac->ac_g_ex.fe_len %
2935 EXT4_NUM_B2C(sbi, sbi->s_stripe));
2936
2937 if ((cr == CR_GOAL_LEN_FAST ||
2938 cr == CR_BEST_AVAIL_LEN) &&
2939 is_stripe_aligned)
2940 ext4_mb_scan_aligned(ac, &e4b);
2941
2942 if (ac->ac_status == AC_STATUS_CONTINUE)
2943 ext4_mb_complex_scan_group(ac, &e4b);
2944 }
2945
2946 ext4_unlock_group(sb, group);
2947 ext4_mb_unload_buddy(&e4b);
2948
2949 if (ac->ac_status != AC_STATUS_CONTINUE)
2950 break;
2951 }
2952 /* Processed all groups and haven't found blocks */
2953 if (sbi->s_mb_stats && i == ngroups)
2954 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2955
2956 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2957 /* Reset goal length to original goal length before
2958 * falling into CR_GOAL_LEN_SLOW */
2959 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2960 }
2961
2962 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2963 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2964 /*
2965 * We've been searching too long. Let's try to allocate
2966 * the best chunk we've found so far
2967 */
2968 ext4_mb_try_best_found(ac, &e4b);
2969 if (ac->ac_status != AC_STATUS_FOUND) {
2970 /*
2971 * Someone more lucky has already allocated it.
2972 * The only thing we can do is just take first
2973 * found block(s)
2974 */
2975 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2976 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2977 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2978 ac->ac_b_ex.fe_len, lost);
2979
2980 ac->ac_b_ex.fe_group = 0;
2981 ac->ac_b_ex.fe_start = 0;
2982 ac->ac_b_ex.fe_len = 0;
2983 ac->ac_status = AC_STATUS_CONTINUE;
2984 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2985 cr = CR_ANY_FREE;
2986 goto repeat;
2987 }
2988 }
2989
2990 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2991 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2992 out:
2993 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2994 err = first_err;
2995
2996 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2997 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2998 ac->ac_flags, cr, err);
2999
3000 if (nr)
3001 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
3002
3003 return err;
3004 }
3005
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)3006 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3007 {
3008 struct super_block *sb = pde_data(file_inode(seq->file));
3009 ext4_group_t group;
3010
3011 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3012 return NULL;
3013 group = *pos + 1;
3014 return (void *) ((unsigned long) group);
3015 }
3016
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)3017 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3018 {
3019 struct super_block *sb = pde_data(file_inode(seq->file));
3020 ext4_group_t group;
3021
3022 ++*pos;
3023 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3024 return NULL;
3025 group = *pos + 1;
3026 return (void *) ((unsigned long) group);
3027 }
3028
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)3029 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3030 {
3031 struct super_block *sb = pde_data(file_inode(seq->file));
3032 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3033 int i, err;
3034 char nbuf[16];
3035 struct ext4_buddy e4b;
3036 struct ext4_group_info *grinfo;
3037 unsigned char blocksize_bits = min_t(unsigned char,
3038 sb->s_blocksize_bits,
3039 EXT4_MAX_BLOCK_LOG_SIZE);
3040 DEFINE_RAW_FLEX(struct ext4_group_info, sg, bb_counters,
3041 EXT4_MAX_BLOCK_LOG_SIZE + 2);
3042
3043 group--;
3044 if (group == 0)
3045 seq_puts(seq, "#group: free frags first ["
3046 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3047 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3048
3049 i = (blocksize_bits + 2) * sizeof(sg->bb_counters[0]) +
3050 sizeof(struct ext4_group_info);
3051
3052 grinfo = ext4_get_group_info(sb, group);
3053 if (!grinfo)
3054 return 0;
3055 /* Load the group info in memory only if not already loaded. */
3056 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3057 err = ext4_mb_load_buddy(sb, group, &e4b);
3058 if (err) {
3059 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3060 return 0;
3061 }
3062 ext4_mb_unload_buddy(&e4b);
3063 }
3064
3065 /*
3066 * We care only about free space counters in the group info and
3067 * these are safe to access even after the buddy has been unloaded
3068 */
3069 memcpy(sg, grinfo, i);
3070 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg->bb_free,
3071 sg->bb_fragments, sg->bb_first_free);
3072 for (i = 0; i <= 13; i++)
3073 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3074 sg->bb_counters[i] : 0);
3075 seq_puts(seq, " ]");
3076 if (EXT4_MB_GRP_BBITMAP_CORRUPT(sg))
3077 seq_puts(seq, " Block bitmap corrupted!");
3078 seq_putc(seq, '\n');
3079 return 0;
3080 }
3081
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)3082 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3083 {
3084 }
3085
3086 const struct seq_operations ext4_mb_seq_groups_ops = {
3087 .start = ext4_mb_seq_groups_start,
3088 .next = ext4_mb_seq_groups_next,
3089 .stop = ext4_mb_seq_groups_stop,
3090 .show = ext4_mb_seq_groups_show,
3091 };
3092
ext4_seq_mb_stats_show(struct seq_file * seq,void * offset)3093 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3094 {
3095 struct super_block *sb = seq->private;
3096 struct ext4_sb_info *sbi = EXT4_SB(sb);
3097
3098 seq_puts(seq, "mballoc:\n");
3099 if (!sbi->s_mb_stats) {
3100 seq_puts(seq, "\tmb stats collection turned off.\n");
3101 seq_puts(
3102 seq,
3103 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3104 return 0;
3105 }
3106 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3107 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3108
3109 seq_printf(seq, "\tgroups_scanned: %u\n",
3110 atomic_read(&sbi->s_bal_groups_scanned));
3111
3112 /* CR_POWER2_ALIGNED stats */
3113 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3114 seq_printf(seq, "\t\thits: %llu\n",
3115 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3116 seq_printf(
3117 seq, "\t\tgroups_considered: %llu\n",
3118 atomic64_read(
3119 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3120 seq_printf(seq, "\t\textents_scanned: %u\n",
3121 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3122 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3123 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3124 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3125 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3126
3127 /* CR_GOAL_LEN_FAST stats */
3128 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3129 seq_printf(seq, "\t\thits: %llu\n",
3130 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3131 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3132 atomic64_read(
3133 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3134 seq_printf(seq, "\t\textents_scanned: %u\n",
3135 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3136 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3137 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3138 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3139 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3140
3141 /* CR_BEST_AVAIL_LEN stats */
3142 seq_puts(seq, "\tcr_best_avail_stats:\n");
3143 seq_printf(seq, "\t\thits: %llu\n",
3144 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3145 seq_printf(
3146 seq, "\t\tgroups_considered: %llu\n",
3147 atomic64_read(
3148 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3149 seq_printf(seq, "\t\textents_scanned: %u\n",
3150 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3151 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3152 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3153 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3154 atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3155
3156 /* CR_GOAL_LEN_SLOW stats */
3157 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3158 seq_printf(seq, "\t\thits: %llu\n",
3159 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3160 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3161 atomic64_read(
3162 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3163 seq_printf(seq, "\t\textents_scanned: %u\n",
3164 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3165 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3166 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3167
3168 /* CR_ANY_FREE stats */
3169 seq_puts(seq, "\tcr_any_free_stats:\n");
3170 seq_printf(seq, "\t\thits: %llu\n",
3171 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3172 seq_printf(
3173 seq, "\t\tgroups_considered: %llu\n",
3174 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3175 seq_printf(seq, "\t\textents_scanned: %u\n",
3176 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3177 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3178 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3179
3180 /* Aggregates */
3181 seq_printf(seq, "\textents_scanned: %u\n",
3182 atomic_read(&sbi->s_bal_ex_scanned));
3183 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3184 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3185 atomic_read(&sbi->s_bal_len_goals));
3186 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3187 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3188 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3189 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3190 atomic_read(&sbi->s_mb_buddies_generated),
3191 ext4_get_groups_count(sb));
3192 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3193 atomic64_read(&sbi->s_mb_generation_time));
3194 seq_printf(seq, "\tpreallocated: %u\n",
3195 atomic_read(&sbi->s_mb_preallocated));
3196 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3197 return 0;
3198 }
3199
ext4_mb_seq_structs_summary_start(struct seq_file * seq,loff_t * pos)3200 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3201 {
3202 struct super_block *sb = pde_data(file_inode(seq->file));
3203 unsigned long position;
3204
3205 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3206 return NULL;
3207 position = *pos + 1;
3208 return (void *) ((unsigned long) position);
3209 }
3210
ext4_mb_seq_structs_summary_next(struct seq_file * seq,void * v,loff_t * pos)3211 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3212 {
3213 struct super_block *sb = pde_data(file_inode(seq->file));
3214 unsigned long position;
3215
3216 ++*pos;
3217 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3218 return NULL;
3219 position = *pos + 1;
3220 return (void *) ((unsigned long) position);
3221 }
3222
ext4_mb_seq_structs_summary_show(struct seq_file * seq,void * v)3223 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3224 {
3225 struct super_block *sb = pde_data(file_inode(seq->file));
3226 struct ext4_sb_info *sbi = EXT4_SB(sb);
3227 unsigned long position = ((unsigned long) v);
3228 struct ext4_group_info *grp;
3229 unsigned int count;
3230
3231 position--;
3232 if (position >= MB_NUM_ORDERS(sb)) {
3233 position -= MB_NUM_ORDERS(sb);
3234 if (position == 0)
3235 seq_puts(seq, "avg_fragment_size_lists:\n");
3236
3237 count = 0;
3238 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3239 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3240 bb_avg_fragment_size_node)
3241 count++;
3242 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3243 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3244 (unsigned int)position, count);
3245 return 0;
3246 }
3247
3248 if (position == 0) {
3249 seq_printf(seq, "optimize_scan: %d\n",
3250 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3251 seq_puts(seq, "max_free_order_lists:\n");
3252 }
3253 count = 0;
3254 read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3255 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3256 bb_largest_free_order_node)
3257 count++;
3258 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3259 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3260 (unsigned int)position, count);
3261
3262 return 0;
3263 }
3264
ext4_mb_seq_structs_summary_stop(struct seq_file * seq,void * v)3265 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3266 {
3267 }
3268
3269 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3270 .start = ext4_mb_seq_structs_summary_start,
3271 .next = ext4_mb_seq_structs_summary_next,
3272 .stop = ext4_mb_seq_structs_summary_stop,
3273 .show = ext4_mb_seq_structs_summary_show,
3274 };
3275
get_groupinfo_cache(int blocksize_bits)3276 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3277 {
3278 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3279 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3280
3281 BUG_ON(!cachep);
3282 return cachep;
3283 }
3284
3285 /*
3286 * Allocate the top-level s_group_info array for the specified number
3287 * of groups
3288 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)3289 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3290 {
3291 struct ext4_sb_info *sbi = EXT4_SB(sb);
3292 unsigned size;
3293 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3294
3295 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3296 EXT4_DESC_PER_BLOCK_BITS(sb);
3297 if (size <= sbi->s_group_info_size)
3298 return 0;
3299
3300 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3301 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3302 if (!new_groupinfo) {
3303 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3304 return -ENOMEM;
3305 }
3306 rcu_read_lock();
3307 old_groupinfo = rcu_dereference(sbi->s_group_info);
3308 if (old_groupinfo)
3309 memcpy(new_groupinfo, old_groupinfo,
3310 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3311 rcu_read_unlock();
3312 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3313 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3314 if (old_groupinfo)
3315 ext4_kvfree_array_rcu(old_groupinfo);
3316 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3317 sbi->s_group_info_size);
3318 return 0;
3319 }
3320
3321 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)3322 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3323 struct ext4_group_desc *desc)
3324 {
3325 int i;
3326 int metalen = 0;
3327 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3328 struct ext4_sb_info *sbi = EXT4_SB(sb);
3329 struct ext4_group_info **meta_group_info;
3330 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3331
3332 /*
3333 * First check if this group is the first of a reserved block.
3334 * If it's true, we have to allocate a new table of pointers
3335 * to ext4_group_info structures
3336 */
3337 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3338 metalen = sizeof(*meta_group_info) <<
3339 EXT4_DESC_PER_BLOCK_BITS(sb);
3340 meta_group_info = kmalloc(metalen, GFP_NOFS);
3341 if (meta_group_info == NULL) {
3342 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3343 "for a buddy group");
3344 return -ENOMEM;
3345 }
3346 rcu_read_lock();
3347 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3348 rcu_read_unlock();
3349 }
3350
3351 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3352 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3353
3354 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3355 if (meta_group_info[i] == NULL) {
3356 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3357 goto exit_group_info;
3358 }
3359 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3360 &(meta_group_info[i]->bb_state));
3361
3362 /*
3363 * initialize bb_free to be able to skip
3364 * empty groups without initialization
3365 */
3366 if (ext4_has_group_desc_csum(sb) &&
3367 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3368 meta_group_info[i]->bb_free =
3369 ext4_free_clusters_after_init(sb, group, desc);
3370 } else {
3371 meta_group_info[i]->bb_free =
3372 ext4_free_group_clusters(sb, desc);
3373 }
3374
3375 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3376 init_rwsem(&meta_group_info[i]->alloc_sem);
3377 meta_group_info[i]->bb_free_root = RB_ROOT;
3378 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3379 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3380 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3381 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3382 meta_group_info[i]->bb_group = group;
3383
3384 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3385 return 0;
3386
3387 exit_group_info:
3388 /* If a meta_group_info table has been allocated, release it now */
3389 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3390 struct ext4_group_info ***group_info;
3391
3392 rcu_read_lock();
3393 group_info = rcu_dereference(sbi->s_group_info);
3394 kfree(group_info[idx]);
3395 group_info[idx] = NULL;
3396 rcu_read_unlock();
3397 }
3398 return -ENOMEM;
3399 } /* ext4_mb_add_groupinfo */
3400
ext4_mb_init_backend(struct super_block * sb)3401 static int ext4_mb_init_backend(struct super_block *sb)
3402 {
3403 ext4_group_t ngroups = ext4_get_groups_count(sb);
3404 ext4_group_t i;
3405 struct ext4_sb_info *sbi = EXT4_SB(sb);
3406 int err;
3407 struct ext4_group_desc *desc;
3408 struct ext4_group_info ***group_info;
3409 struct kmem_cache *cachep;
3410
3411 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3412 if (err)
3413 return err;
3414
3415 sbi->s_buddy_cache = new_inode(sb);
3416 if (sbi->s_buddy_cache == NULL) {
3417 ext4_msg(sb, KERN_ERR, "can't get new inode");
3418 goto err_freesgi;
3419 }
3420 /* To avoid potentially colliding with an valid on-disk inode number,
3421 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3422 * not in the inode hash, so it should never be found by iget(), but
3423 * this will avoid confusion if it ever shows up during debugging. */
3424 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3425 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3426 for (i = 0; i < ngroups; i++) {
3427 cond_resched();
3428 desc = ext4_get_group_desc(sb, i, NULL);
3429 if (desc == NULL) {
3430 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3431 goto err_freebuddy;
3432 }
3433 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3434 goto err_freebuddy;
3435 }
3436
3437 if (ext4_has_feature_flex_bg(sb)) {
3438 /* a single flex group is supposed to be read by a single IO.
3439 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3440 * unsigned integer, so the maximum shift is 32.
3441 */
3442 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3443 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3444 goto err_freebuddy;
3445 }
3446 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3447 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3448 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3449 } else {
3450 sbi->s_mb_prefetch = 32;
3451 }
3452 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3453 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3454 /*
3455 * now many real IOs to prefetch within a single allocation at
3456 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3457 * optimization we shouldn't try to load too many groups, at some point
3458 * we should start to use what we've got in memory.
3459 * with an average random access time 5ms, it'd take a second to get
3460 * 200 groups (* N with flex_bg), so let's make this limit 4
3461 */
3462 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3463 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3464 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3465
3466 return 0;
3467
3468 err_freebuddy:
3469 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3470 while (i-- > 0) {
3471 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3472
3473 if (grp)
3474 kmem_cache_free(cachep, grp);
3475 }
3476 i = sbi->s_group_info_size;
3477 rcu_read_lock();
3478 group_info = rcu_dereference(sbi->s_group_info);
3479 while (i-- > 0)
3480 kfree(group_info[i]);
3481 rcu_read_unlock();
3482 iput(sbi->s_buddy_cache);
3483 err_freesgi:
3484 rcu_read_lock();
3485 kvfree(rcu_dereference(sbi->s_group_info));
3486 rcu_read_unlock();
3487 return -ENOMEM;
3488 }
3489
ext4_groupinfo_destroy_slabs(void)3490 static void ext4_groupinfo_destroy_slabs(void)
3491 {
3492 int i;
3493
3494 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3495 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3496 ext4_groupinfo_caches[i] = NULL;
3497 }
3498 }
3499
ext4_groupinfo_create_slab(size_t size)3500 static int ext4_groupinfo_create_slab(size_t size)
3501 {
3502 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3503 int slab_size;
3504 int blocksize_bits = order_base_2(size);
3505 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3506 struct kmem_cache *cachep;
3507
3508 if (cache_index >= NR_GRPINFO_CACHES)
3509 return -EINVAL;
3510
3511 if (unlikely(cache_index < 0))
3512 cache_index = 0;
3513
3514 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3515 if (ext4_groupinfo_caches[cache_index]) {
3516 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3517 return 0; /* Already created */
3518 }
3519
3520 slab_size = offsetof(struct ext4_group_info,
3521 bb_counters[blocksize_bits + 2]);
3522
3523 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3524 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3525 NULL);
3526
3527 ext4_groupinfo_caches[cache_index] = cachep;
3528
3529 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3530 if (!cachep) {
3531 printk(KERN_EMERG
3532 "EXT4-fs: no memory for groupinfo slab cache\n");
3533 return -ENOMEM;
3534 }
3535
3536 return 0;
3537 }
3538
ext4_discard_work(struct work_struct * work)3539 static void ext4_discard_work(struct work_struct *work)
3540 {
3541 struct ext4_sb_info *sbi = container_of(work,
3542 struct ext4_sb_info, s_discard_work);
3543 struct super_block *sb = sbi->s_sb;
3544 struct ext4_free_data *fd, *nfd;
3545 struct ext4_buddy e4b;
3546 LIST_HEAD(discard_list);
3547 ext4_group_t grp, load_grp;
3548 int err = 0;
3549
3550 spin_lock(&sbi->s_md_lock);
3551 list_splice_init(&sbi->s_discard_list, &discard_list);
3552 spin_unlock(&sbi->s_md_lock);
3553
3554 load_grp = UINT_MAX;
3555 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3556 /*
3557 * If filesystem is umounting or no memory or suffering
3558 * from no space, give up the discard
3559 */
3560 if ((sb->s_flags & SB_ACTIVE) && !err &&
3561 !atomic_read(&sbi->s_retry_alloc_pending)) {
3562 grp = fd->efd_group;
3563 if (grp != load_grp) {
3564 if (load_grp != UINT_MAX)
3565 ext4_mb_unload_buddy(&e4b);
3566
3567 err = ext4_mb_load_buddy(sb, grp, &e4b);
3568 if (err) {
3569 kmem_cache_free(ext4_free_data_cachep, fd);
3570 load_grp = UINT_MAX;
3571 continue;
3572 } else {
3573 load_grp = grp;
3574 }
3575 }
3576
3577 ext4_lock_group(sb, grp);
3578 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3579 fd->efd_start_cluster + fd->efd_count - 1, 1);
3580 ext4_unlock_group(sb, grp);
3581 }
3582 kmem_cache_free(ext4_free_data_cachep, fd);
3583 }
3584
3585 if (load_grp != UINT_MAX)
3586 ext4_mb_unload_buddy(&e4b);
3587 }
3588
ext4_mb_init(struct super_block * sb)3589 int ext4_mb_init(struct super_block *sb)
3590 {
3591 struct ext4_sb_info *sbi = EXT4_SB(sb);
3592 unsigned i, j;
3593 unsigned offset, offset_incr;
3594 unsigned max;
3595 int ret;
3596
3597 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3598
3599 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3600 if (sbi->s_mb_offsets == NULL) {
3601 ret = -ENOMEM;
3602 goto out;
3603 }
3604
3605 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3606 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3607 if (sbi->s_mb_maxs == NULL) {
3608 ret = -ENOMEM;
3609 goto out;
3610 }
3611
3612 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3613 if (ret < 0)
3614 goto out;
3615
3616 /* order 0 is regular bitmap */
3617 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3618 sbi->s_mb_offsets[0] = 0;
3619
3620 i = 1;
3621 offset = 0;
3622 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3623 max = sb->s_blocksize << 2;
3624 do {
3625 sbi->s_mb_offsets[i] = offset;
3626 sbi->s_mb_maxs[i] = max;
3627 offset += offset_incr;
3628 offset_incr = offset_incr >> 1;
3629 max = max >> 1;
3630 i++;
3631 } while (i < MB_NUM_ORDERS(sb));
3632
3633 sbi->s_mb_avg_fragment_size =
3634 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3635 GFP_KERNEL);
3636 if (!sbi->s_mb_avg_fragment_size) {
3637 ret = -ENOMEM;
3638 goto out;
3639 }
3640 sbi->s_mb_avg_fragment_size_locks =
3641 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3642 GFP_KERNEL);
3643 if (!sbi->s_mb_avg_fragment_size_locks) {
3644 ret = -ENOMEM;
3645 goto out;
3646 }
3647 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3648 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3649 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3650 }
3651 sbi->s_mb_largest_free_orders =
3652 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3653 GFP_KERNEL);
3654 if (!sbi->s_mb_largest_free_orders) {
3655 ret = -ENOMEM;
3656 goto out;
3657 }
3658 sbi->s_mb_largest_free_orders_locks =
3659 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3660 GFP_KERNEL);
3661 if (!sbi->s_mb_largest_free_orders_locks) {
3662 ret = -ENOMEM;
3663 goto out;
3664 }
3665 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3666 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3667 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3668 }
3669
3670 spin_lock_init(&sbi->s_md_lock);
3671 sbi->s_mb_free_pending = 0;
3672 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3673 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3674 INIT_LIST_HEAD(&sbi->s_discard_list);
3675 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3676 atomic_set(&sbi->s_retry_alloc_pending, 0);
3677
3678 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3679 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3680 sbi->s_mb_stats = MB_DEFAULT_STATS;
3681 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3682 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3683 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3684
3685 /*
3686 * The default group preallocation is 512, which for 4k block
3687 * sizes translates to 2 megabytes. However for bigalloc file
3688 * systems, this is probably too big (i.e, if the cluster size
3689 * is 1 megabyte, then group preallocation size becomes half a
3690 * gigabyte!). As a default, we will keep a two megabyte
3691 * group pralloc size for cluster sizes up to 64k, and after
3692 * that, we will force a minimum group preallocation size of
3693 * 32 clusters. This translates to 8 megs when the cluster
3694 * size is 256k, and 32 megs when the cluster size is 1 meg,
3695 * which seems reasonable as a default.
3696 */
3697 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3698 sbi->s_cluster_bits, 32);
3699 /*
3700 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3701 * to the lowest multiple of s_stripe which is bigger than
3702 * the s_mb_group_prealloc as determined above. We want
3703 * the preallocation size to be an exact multiple of the
3704 * RAID stripe size so that preallocations don't fragment
3705 * the stripes.
3706 */
3707 if (sbi->s_stripe > 1) {
3708 sbi->s_mb_group_prealloc = roundup(
3709 sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe));
3710 }
3711
3712 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3713 if (sbi->s_locality_groups == NULL) {
3714 ret = -ENOMEM;
3715 goto out;
3716 }
3717 for_each_possible_cpu(i) {
3718 struct ext4_locality_group *lg;
3719 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3720 mutex_init(&lg->lg_mutex);
3721 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3722 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3723 spin_lock_init(&lg->lg_prealloc_lock);
3724 }
3725
3726 if (bdev_nonrot(sb->s_bdev))
3727 sbi->s_mb_max_linear_groups = 0;
3728 else
3729 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3730 /* init file for buddy data */
3731 ret = ext4_mb_init_backend(sb);
3732 if (ret != 0)
3733 goto out_free_locality_groups;
3734
3735 return 0;
3736
3737 out_free_locality_groups:
3738 free_percpu(sbi->s_locality_groups);
3739 sbi->s_locality_groups = NULL;
3740 out:
3741 kfree(sbi->s_mb_avg_fragment_size);
3742 kfree(sbi->s_mb_avg_fragment_size_locks);
3743 kfree(sbi->s_mb_largest_free_orders);
3744 kfree(sbi->s_mb_largest_free_orders_locks);
3745 kfree(sbi->s_mb_offsets);
3746 sbi->s_mb_offsets = NULL;
3747 kfree(sbi->s_mb_maxs);
3748 sbi->s_mb_maxs = NULL;
3749 return ret;
3750 }
3751
3752 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)3753 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3754 {
3755 struct ext4_prealloc_space *pa;
3756 struct list_head *cur, *tmp;
3757 int count = 0;
3758
3759 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3760 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3761 list_del(&pa->pa_group_list);
3762 count++;
3763 kmem_cache_free(ext4_pspace_cachep, pa);
3764 }
3765 return count;
3766 }
3767
ext4_mb_release(struct super_block * sb)3768 void ext4_mb_release(struct super_block *sb)
3769 {
3770 ext4_group_t ngroups = ext4_get_groups_count(sb);
3771 ext4_group_t i;
3772 int num_meta_group_infos;
3773 struct ext4_group_info *grinfo, ***group_info;
3774 struct ext4_sb_info *sbi = EXT4_SB(sb);
3775 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3776 int count;
3777
3778 if (test_opt(sb, DISCARD)) {
3779 /*
3780 * wait the discard work to drain all of ext4_free_data
3781 */
3782 flush_work(&sbi->s_discard_work);
3783 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3784 }
3785
3786 if (sbi->s_group_info) {
3787 for (i = 0; i < ngroups; i++) {
3788 cond_resched();
3789 grinfo = ext4_get_group_info(sb, i);
3790 if (!grinfo)
3791 continue;
3792 mb_group_bb_bitmap_free(grinfo);
3793 ext4_lock_group(sb, i);
3794 count = ext4_mb_cleanup_pa(grinfo);
3795 if (count)
3796 mb_debug(sb, "mballoc: %d PAs left\n",
3797 count);
3798 ext4_unlock_group(sb, i);
3799 kmem_cache_free(cachep, grinfo);
3800 }
3801 num_meta_group_infos = (ngroups +
3802 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3803 EXT4_DESC_PER_BLOCK_BITS(sb);
3804 rcu_read_lock();
3805 group_info = rcu_dereference(sbi->s_group_info);
3806 for (i = 0; i < num_meta_group_infos; i++)
3807 kfree(group_info[i]);
3808 kvfree(group_info);
3809 rcu_read_unlock();
3810 }
3811 kfree(sbi->s_mb_avg_fragment_size);
3812 kfree(sbi->s_mb_avg_fragment_size_locks);
3813 kfree(sbi->s_mb_largest_free_orders);
3814 kfree(sbi->s_mb_largest_free_orders_locks);
3815 kfree(sbi->s_mb_offsets);
3816 kfree(sbi->s_mb_maxs);
3817 iput(sbi->s_buddy_cache);
3818 if (sbi->s_mb_stats) {
3819 ext4_msg(sb, KERN_INFO,
3820 "mballoc: %u blocks %u reqs (%u success)",
3821 atomic_read(&sbi->s_bal_allocated),
3822 atomic_read(&sbi->s_bal_reqs),
3823 atomic_read(&sbi->s_bal_success));
3824 ext4_msg(sb, KERN_INFO,
3825 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3826 "%u 2^N hits, %u breaks, %u lost",
3827 atomic_read(&sbi->s_bal_ex_scanned),
3828 atomic_read(&sbi->s_bal_groups_scanned),
3829 atomic_read(&sbi->s_bal_goals),
3830 atomic_read(&sbi->s_bal_2orders),
3831 atomic_read(&sbi->s_bal_breaks),
3832 atomic_read(&sbi->s_mb_lost_chunks));
3833 ext4_msg(sb, KERN_INFO,
3834 "mballoc: %u generated and it took %llu",
3835 atomic_read(&sbi->s_mb_buddies_generated),
3836 atomic64_read(&sbi->s_mb_generation_time));
3837 ext4_msg(sb, KERN_INFO,
3838 "mballoc: %u preallocated, %u discarded",
3839 atomic_read(&sbi->s_mb_preallocated),
3840 atomic_read(&sbi->s_mb_discarded));
3841 }
3842
3843 free_percpu(sbi->s_locality_groups);
3844 }
3845
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count)3846 static inline int ext4_issue_discard(struct super_block *sb,
3847 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3848 {
3849 ext4_fsblk_t discard_block;
3850
3851 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3852 ext4_group_first_block_no(sb, block_group));
3853 count = EXT4_C2B(EXT4_SB(sb), count);
3854 trace_ext4_discard_blocks(sb,
3855 (unsigned long long) discard_block, count);
3856
3857 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3858 }
3859
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)3860 static void ext4_free_data_in_buddy(struct super_block *sb,
3861 struct ext4_free_data *entry)
3862 {
3863 struct ext4_buddy e4b;
3864 struct ext4_group_info *db;
3865 int err, count = 0;
3866
3867 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3868 entry->efd_count, entry->efd_group, entry);
3869
3870 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3871 /* we expect to find existing buddy because it's pinned */
3872 BUG_ON(err != 0);
3873
3874 spin_lock(&EXT4_SB(sb)->s_md_lock);
3875 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3876 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3877
3878 db = e4b.bd_info;
3879 /* there are blocks to put in buddy to make them really free */
3880 count += entry->efd_count;
3881 ext4_lock_group(sb, entry->efd_group);
3882 /* Take it out of per group rb tree */
3883 rb_erase(&entry->efd_node, &(db->bb_free_root));
3884 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3885
3886 /*
3887 * Clear the trimmed flag for the group so that the next
3888 * ext4_trim_fs can trim it.
3889 */
3890 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3891
3892 if (!db->bb_free_root.rb_node) {
3893 /* No more items in the per group rb tree
3894 * balance refcounts from ext4_mb_free_metadata()
3895 */
3896 folio_put(e4b.bd_buddy_folio);
3897 folio_put(e4b.bd_bitmap_folio);
3898 }
3899 ext4_unlock_group(sb, entry->efd_group);
3900 ext4_mb_unload_buddy(&e4b);
3901
3902 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3903 }
3904
3905 /*
3906 * This function is called by the jbd2 layer once the commit has finished,
3907 * so we know we can free the blocks that were released with that commit.
3908 */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)3909 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3910 {
3911 struct ext4_sb_info *sbi = EXT4_SB(sb);
3912 struct ext4_free_data *entry, *tmp;
3913 LIST_HEAD(freed_data_list);
3914 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3915 bool wake;
3916
3917 list_replace_init(s_freed_head, &freed_data_list);
3918
3919 list_for_each_entry(entry, &freed_data_list, efd_list)
3920 ext4_free_data_in_buddy(sb, entry);
3921
3922 if (test_opt(sb, DISCARD)) {
3923 spin_lock(&sbi->s_md_lock);
3924 wake = list_empty(&sbi->s_discard_list);
3925 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3926 spin_unlock(&sbi->s_md_lock);
3927 if (wake)
3928 queue_work(system_unbound_wq, &sbi->s_discard_work);
3929 } else {
3930 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3931 kmem_cache_free(ext4_free_data_cachep, entry);
3932 }
3933 }
3934
ext4_init_mballoc(void)3935 int __init ext4_init_mballoc(void)
3936 {
3937 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3938 SLAB_RECLAIM_ACCOUNT);
3939 if (ext4_pspace_cachep == NULL)
3940 goto out;
3941
3942 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3943 SLAB_RECLAIM_ACCOUNT);
3944 if (ext4_ac_cachep == NULL)
3945 goto out_pa_free;
3946
3947 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3948 SLAB_RECLAIM_ACCOUNT);
3949 if (ext4_free_data_cachep == NULL)
3950 goto out_ac_free;
3951
3952 return 0;
3953
3954 out_ac_free:
3955 kmem_cache_destroy(ext4_ac_cachep);
3956 out_pa_free:
3957 kmem_cache_destroy(ext4_pspace_cachep);
3958 out:
3959 return -ENOMEM;
3960 }
3961
ext4_exit_mballoc(void)3962 void ext4_exit_mballoc(void)
3963 {
3964 /*
3965 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3966 * before destroying the slab cache.
3967 */
3968 rcu_barrier();
3969 kmem_cache_destroy(ext4_pspace_cachep);
3970 kmem_cache_destroy(ext4_ac_cachep);
3971 kmem_cache_destroy(ext4_free_data_cachep);
3972 ext4_groupinfo_destroy_slabs();
3973 }
3974
3975 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3976 #define EXT4_MB_SYNC_UPDATE 0x0002
3977 static int
ext4_mb_mark_context(handle_t * handle,struct super_block * sb,bool state,ext4_group_t group,ext4_grpblk_t blkoff,ext4_grpblk_t len,int flags,ext4_grpblk_t * ret_changed)3978 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3979 ext4_group_t group, ext4_grpblk_t blkoff,
3980 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3981 {
3982 struct ext4_sb_info *sbi = EXT4_SB(sb);
3983 struct buffer_head *bitmap_bh = NULL;
3984 struct ext4_group_desc *gdp;
3985 struct buffer_head *gdp_bh;
3986 int err;
3987 unsigned int i, already, changed = len;
3988
3989 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3990 handle, sb, state, group, blkoff, len,
3991 flags, ret_changed);
3992
3993 if (ret_changed)
3994 *ret_changed = 0;
3995 bitmap_bh = ext4_read_block_bitmap(sb, group);
3996 if (IS_ERR(bitmap_bh))
3997 return PTR_ERR(bitmap_bh);
3998
3999 if (handle) {
4000 BUFFER_TRACE(bitmap_bh, "getting write access");
4001 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4002 EXT4_JTR_NONE);
4003 if (err)
4004 goto out_err;
4005 }
4006
4007 err = -EIO;
4008 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4009 if (!gdp)
4010 goto out_err;
4011
4012 if (handle) {
4013 BUFFER_TRACE(gdp_bh, "get_write_access");
4014 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4015 EXT4_JTR_NONE);
4016 if (err)
4017 goto out_err;
4018 }
4019
4020 ext4_lock_group(sb, group);
4021 if (ext4_has_group_desc_csum(sb) &&
4022 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4023 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4024 ext4_free_group_clusters_set(sb, gdp,
4025 ext4_free_clusters_after_init(sb, group, gdp));
4026 }
4027
4028 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4029 already = 0;
4030 for (i = 0; i < len; i++)
4031 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4032 state)
4033 already++;
4034 changed = len - already;
4035 }
4036
4037 if (state) {
4038 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4039 ext4_free_group_clusters_set(sb, gdp,
4040 ext4_free_group_clusters(sb, gdp) - changed);
4041 } else {
4042 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4043 ext4_free_group_clusters_set(sb, gdp,
4044 ext4_free_group_clusters(sb, gdp) + changed);
4045 }
4046
4047 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4048 ext4_group_desc_csum_set(sb, group, gdp);
4049 ext4_unlock_group(sb, group);
4050 if (ret_changed)
4051 *ret_changed = changed;
4052
4053 if (sbi->s_log_groups_per_flex) {
4054 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4055 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4056 s_flex_groups, flex_group);
4057
4058 if (state)
4059 atomic64_sub(changed, &fg->free_clusters);
4060 else
4061 atomic64_add(changed, &fg->free_clusters);
4062 }
4063
4064 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4065 if (err)
4066 goto out_err;
4067 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4068 if (err)
4069 goto out_err;
4070
4071 if (flags & EXT4_MB_SYNC_UPDATE) {
4072 sync_dirty_buffer(bitmap_bh);
4073 sync_dirty_buffer(gdp_bh);
4074 }
4075
4076 out_err:
4077 brelse(bitmap_bh);
4078 return err;
4079 }
4080
4081 /*
4082 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4083 * Returns 0 if success or error code
4084 */
4085 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)4086 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4087 handle_t *handle, unsigned int reserv_clstrs)
4088 {
4089 struct ext4_group_desc *gdp;
4090 struct ext4_sb_info *sbi;
4091 struct super_block *sb;
4092 ext4_fsblk_t block;
4093 int err, len;
4094 int flags = 0;
4095 ext4_grpblk_t changed;
4096
4097 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4098 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4099
4100 sb = ac->ac_sb;
4101 sbi = EXT4_SB(sb);
4102
4103 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4104 if (!gdp)
4105 return -EIO;
4106 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4107 ext4_free_group_clusters(sb, gdp));
4108
4109 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4110 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4111 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4112 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4113 "fs metadata", block, block+len);
4114 /* File system mounted not to panic on error
4115 * Fix the bitmap and return EFSCORRUPTED
4116 * We leak some of the blocks here.
4117 */
4118 err = ext4_mb_mark_context(handle, sb, true,
4119 ac->ac_b_ex.fe_group,
4120 ac->ac_b_ex.fe_start,
4121 ac->ac_b_ex.fe_len,
4122 0, NULL);
4123 if (!err)
4124 err = -EFSCORRUPTED;
4125 return err;
4126 }
4127
4128 #ifdef AGGRESSIVE_CHECK
4129 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4130 #endif
4131 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4132 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4133 flags, &changed);
4134
4135 if (err && changed == 0)
4136 return err;
4137
4138 #ifdef AGGRESSIVE_CHECK
4139 BUG_ON(changed != ac->ac_b_ex.fe_len);
4140 #endif
4141 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4142 /*
4143 * Now reduce the dirty block count also. Should not go negative
4144 */
4145 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4146 /* release all the reserved blocks if non delalloc */
4147 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4148 reserv_clstrs);
4149
4150 return err;
4151 }
4152
4153 /*
4154 * Idempotent helper for Ext4 fast commit replay path to set the state of
4155 * blocks in bitmaps and update counters.
4156 */
ext4_mb_mark_bb(struct super_block * sb,ext4_fsblk_t block,int len,bool state)4157 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4158 int len, bool state)
4159 {
4160 struct ext4_sb_info *sbi = EXT4_SB(sb);
4161 ext4_group_t group;
4162 ext4_grpblk_t blkoff;
4163 int err = 0;
4164 unsigned int clen, thisgrp_len;
4165
4166 while (len > 0) {
4167 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4168
4169 /*
4170 * Check to see if we are freeing blocks across a group
4171 * boundary.
4172 * In case of flex_bg, this can happen that (block, len) may
4173 * span across more than one group. In that case we need to
4174 * get the corresponding group metadata to work with.
4175 * For this we have goto again loop.
4176 */
4177 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4178 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4179 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4180
4181 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4182 ext4_error(sb, "Marking blocks in system zone - "
4183 "Block = %llu, len = %u",
4184 block, thisgrp_len);
4185 break;
4186 }
4187
4188 err = ext4_mb_mark_context(NULL, sb, state,
4189 group, blkoff, clen,
4190 EXT4_MB_BITMAP_MARKED_CHECK |
4191 EXT4_MB_SYNC_UPDATE,
4192 NULL);
4193 if (err)
4194 break;
4195
4196 block += thisgrp_len;
4197 len -= thisgrp_len;
4198 BUG_ON(len < 0);
4199 }
4200 }
4201
4202 /*
4203 * here we normalize request for locality group
4204 * Group request are normalized to s_mb_group_prealloc, which goes to
4205 * s_strip if we set the same via mount option.
4206 * s_mb_group_prealloc can be configured via
4207 * /sys/fs/ext4/<partition>/mb_group_prealloc
4208 *
4209 * XXX: should we try to preallocate more than the group has now?
4210 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)4211 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4212 {
4213 struct super_block *sb = ac->ac_sb;
4214 struct ext4_locality_group *lg = ac->ac_lg;
4215
4216 BUG_ON(lg == NULL);
4217 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4218 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4219 }
4220
4221 /*
4222 * This function returns the next element to look at during inode
4223 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4224 * (ei->i_prealloc_lock)
4225 *
4226 * new_start The start of the range we want to compare
4227 * cur_start The existing start that we are comparing against
4228 * node The node of the rb_tree
4229 */
4230 static inline struct rb_node*
ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start,ext4_lblk_t cur_start,struct rb_node * node)4231 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4232 {
4233 if (new_start < cur_start)
4234 return node->rb_left;
4235 else
4236 return node->rb_right;
4237 }
4238
4239 static inline void
ext4_mb_pa_assert_overlap(struct ext4_allocation_context * ac,ext4_lblk_t start,loff_t end)4240 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4241 ext4_lblk_t start, loff_t end)
4242 {
4243 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4244 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4245 struct ext4_prealloc_space *tmp_pa;
4246 ext4_lblk_t tmp_pa_start;
4247 loff_t tmp_pa_end;
4248 struct rb_node *iter;
4249
4250 read_lock(&ei->i_prealloc_lock);
4251 for (iter = ei->i_prealloc_node.rb_node; iter;
4252 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4253 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4254 pa_node.inode_node);
4255 tmp_pa_start = tmp_pa->pa_lstart;
4256 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4257
4258 spin_lock(&tmp_pa->pa_lock);
4259 if (tmp_pa->pa_deleted == 0)
4260 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4261 spin_unlock(&tmp_pa->pa_lock);
4262 }
4263 read_unlock(&ei->i_prealloc_lock);
4264 }
4265
4266 /*
4267 * Given an allocation context "ac" and a range "start", "end", check
4268 * and adjust boundaries if the range overlaps with any of the existing
4269 * preallocatoins stored in the corresponding inode of the allocation context.
4270 *
4271 * Parameters:
4272 * ac allocation context
4273 * start start of the new range
4274 * end end of the new range
4275 */
4276 static inline void
ext4_mb_pa_adjust_overlap(struct ext4_allocation_context * ac,ext4_lblk_t * start,loff_t * end)4277 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4278 ext4_lblk_t *start, loff_t *end)
4279 {
4280 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4281 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4282 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4283 struct rb_node *iter;
4284 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4285 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4286
4287 new_start = *start;
4288 new_end = *end;
4289
4290 /*
4291 * Adjust the normalized range so that it doesn't overlap with any
4292 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4293 * so it doesn't change underneath us.
4294 */
4295 read_lock(&ei->i_prealloc_lock);
4296
4297 /* Step 1: find any one immediate neighboring PA of the normalized range */
4298 for (iter = ei->i_prealloc_node.rb_node; iter;
4299 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4300 tmp_pa_start, iter)) {
4301 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4302 pa_node.inode_node);
4303 tmp_pa_start = tmp_pa->pa_lstart;
4304 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4305
4306 /* PA must not overlap original request */
4307 spin_lock(&tmp_pa->pa_lock);
4308 if (tmp_pa->pa_deleted == 0)
4309 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4310 ac->ac_o_ex.fe_logical < tmp_pa_start));
4311 spin_unlock(&tmp_pa->pa_lock);
4312 }
4313
4314 /*
4315 * Step 2: check if the found PA is left or right neighbor and
4316 * get the other neighbor
4317 */
4318 if (tmp_pa) {
4319 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4320 struct rb_node *tmp;
4321
4322 left_pa = tmp_pa;
4323 tmp = rb_next(&left_pa->pa_node.inode_node);
4324 if (tmp) {
4325 right_pa = rb_entry(tmp,
4326 struct ext4_prealloc_space,
4327 pa_node.inode_node);
4328 }
4329 } else {
4330 struct rb_node *tmp;
4331
4332 right_pa = tmp_pa;
4333 tmp = rb_prev(&right_pa->pa_node.inode_node);
4334 if (tmp) {
4335 left_pa = rb_entry(tmp,
4336 struct ext4_prealloc_space,
4337 pa_node.inode_node);
4338 }
4339 }
4340 }
4341
4342 /* Step 3: get the non deleted neighbors */
4343 if (left_pa) {
4344 for (iter = &left_pa->pa_node.inode_node;;
4345 iter = rb_prev(iter)) {
4346 if (!iter) {
4347 left_pa = NULL;
4348 break;
4349 }
4350
4351 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4352 pa_node.inode_node);
4353 left_pa = tmp_pa;
4354 spin_lock(&tmp_pa->pa_lock);
4355 if (tmp_pa->pa_deleted == 0) {
4356 spin_unlock(&tmp_pa->pa_lock);
4357 break;
4358 }
4359 spin_unlock(&tmp_pa->pa_lock);
4360 }
4361 }
4362
4363 if (right_pa) {
4364 for (iter = &right_pa->pa_node.inode_node;;
4365 iter = rb_next(iter)) {
4366 if (!iter) {
4367 right_pa = NULL;
4368 break;
4369 }
4370
4371 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4372 pa_node.inode_node);
4373 right_pa = tmp_pa;
4374 spin_lock(&tmp_pa->pa_lock);
4375 if (tmp_pa->pa_deleted == 0) {
4376 spin_unlock(&tmp_pa->pa_lock);
4377 break;
4378 }
4379 spin_unlock(&tmp_pa->pa_lock);
4380 }
4381 }
4382
4383 if (left_pa) {
4384 left_pa_end = pa_logical_end(sbi, left_pa);
4385 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4386 }
4387
4388 if (right_pa) {
4389 right_pa_start = right_pa->pa_lstart;
4390 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4391 }
4392
4393 /* Step 4: trim our normalized range to not overlap with the neighbors */
4394 if (left_pa) {
4395 if (left_pa_end > new_start)
4396 new_start = left_pa_end;
4397 }
4398
4399 if (right_pa) {
4400 if (right_pa_start < new_end)
4401 new_end = right_pa_start;
4402 }
4403 read_unlock(&ei->i_prealloc_lock);
4404
4405 /* XXX: extra loop to check we really don't overlap preallocations */
4406 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4407
4408 *start = new_start;
4409 *end = new_end;
4410 }
4411
4412 /*
4413 * Normalization means making request better in terms of
4414 * size and alignment
4415 */
4416 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4417 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4418 struct ext4_allocation_request *ar)
4419 {
4420 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4421 struct ext4_super_block *es = sbi->s_es;
4422 int bsbits, max;
4423 loff_t size, start_off, end;
4424 loff_t orig_size __maybe_unused;
4425 ext4_lblk_t start;
4426
4427 /* do normalize only data requests, metadata requests
4428 do not need preallocation */
4429 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4430 return;
4431
4432 /* sometime caller may want exact blocks */
4433 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4434 return;
4435
4436 /* caller may indicate that preallocation isn't
4437 * required (it's a tail, for example) */
4438 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4439 return;
4440
4441 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4442 ext4_mb_normalize_group_request(ac);
4443 return ;
4444 }
4445
4446 bsbits = ac->ac_sb->s_blocksize_bits;
4447
4448 /* first, let's learn actual file size
4449 * given current request is allocated */
4450 size = extent_logical_end(sbi, &ac->ac_o_ex);
4451 size = size << bsbits;
4452 if (size < i_size_read(ac->ac_inode))
4453 size = i_size_read(ac->ac_inode);
4454 orig_size = size;
4455
4456 /* max size of free chunks */
4457 max = 2 << bsbits;
4458
4459 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4460 (req <= (size) || max <= (chunk_size))
4461
4462 /* first, try to predict filesize */
4463 /* XXX: should this table be tunable? */
4464 start_off = 0;
4465 if (size <= 16 * 1024) {
4466 size = 16 * 1024;
4467 } else if (size <= 32 * 1024) {
4468 size = 32 * 1024;
4469 } else if (size <= 64 * 1024) {
4470 size = 64 * 1024;
4471 } else if (size <= 128 * 1024) {
4472 size = 128 * 1024;
4473 } else if (size <= 256 * 1024) {
4474 size = 256 * 1024;
4475 } else if (size <= 512 * 1024) {
4476 size = 512 * 1024;
4477 } else if (size <= 1024 * 1024) {
4478 size = 1024 * 1024;
4479 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4480 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4481 (21 - bsbits)) << 21;
4482 size = 2 * 1024 * 1024;
4483 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4484 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4485 (22 - bsbits)) << 22;
4486 size = 4 * 1024 * 1024;
4487 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4488 (8<<20)>>bsbits, max, 8 * 1024)) {
4489 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4490 (23 - bsbits)) << 23;
4491 size = 8 * 1024 * 1024;
4492 } else {
4493 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4494 size = (loff_t) EXT4_C2B(sbi,
4495 ac->ac_o_ex.fe_len) << bsbits;
4496 }
4497 size = size >> bsbits;
4498 start = start_off >> bsbits;
4499
4500 /*
4501 * For tiny groups (smaller than 8MB) the chosen allocation
4502 * alignment may be larger than group size. Make sure the
4503 * alignment does not move allocation to a different group which
4504 * makes mballoc fail assertions later.
4505 */
4506 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4507 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4508
4509 /* avoid unnecessary preallocation that may trigger assertions */
4510 if (start + size > EXT_MAX_BLOCKS)
4511 size = EXT_MAX_BLOCKS - start;
4512
4513 /* don't cover already allocated blocks in selected range */
4514 if (ar->pleft && start <= ar->lleft) {
4515 size -= ar->lleft + 1 - start;
4516 start = ar->lleft + 1;
4517 }
4518 if (ar->pright && start + size - 1 >= ar->lright)
4519 size -= start + size - ar->lright;
4520
4521 /*
4522 * Trim allocation request for filesystems with artificially small
4523 * groups.
4524 */
4525 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4526 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4527
4528 end = start + size;
4529
4530 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4531
4532 size = end - start;
4533
4534 /*
4535 * In this function "start" and "size" are normalized for better
4536 * alignment and length such that we could preallocate more blocks.
4537 * This normalization is done such that original request of
4538 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4539 * "size" boundaries.
4540 * (Note fe_len can be relaxed since FS block allocation API does not
4541 * provide gurantee on number of contiguous blocks allocation since that
4542 * depends upon free space left, etc).
4543 * In case of inode pa, later we use the allocated blocks
4544 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4545 * range of goal/best blocks [start, size] to put it at the
4546 * ac_o_ex.fe_logical extent of this inode.
4547 * (See ext4_mb_use_inode_pa() for more details)
4548 */
4549 if (start + size <= ac->ac_o_ex.fe_logical ||
4550 start > ac->ac_o_ex.fe_logical) {
4551 ext4_msg(ac->ac_sb, KERN_ERR,
4552 "start %lu, size %lu, fe_logical %lu",
4553 (unsigned long) start, (unsigned long) size,
4554 (unsigned long) ac->ac_o_ex.fe_logical);
4555 BUG();
4556 }
4557 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4558
4559 /* now prepare goal request */
4560
4561 /* XXX: is it better to align blocks WRT to logical
4562 * placement or satisfy big request as is */
4563 ac->ac_g_ex.fe_logical = start;
4564 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4565 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4566
4567 /* define goal start in order to merge */
4568 if (ar->pright && (ar->lright == (start + size)) &&
4569 ar->pright >= size &&
4570 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4571 /* merge to the right */
4572 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4573 &ac->ac_g_ex.fe_group,
4574 &ac->ac_g_ex.fe_start);
4575 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4576 }
4577 if (ar->pleft && (ar->lleft + 1 == start) &&
4578 ar->pleft + 1 < ext4_blocks_count(es)) {
4579 /* merge to the left */
4580 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4581 &ac->ac_g_ex.fe_group,
4582 &ac->ac_g_ex.fe_start);
4583 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4584 }
4585
4586 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4587 orig_size, start);
4588 }
4589
ext4_mb_collect_stats(struct ext4_allocation_context * ac)4590 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4591 {
4592 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4593
4594 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4595 atomic_inc(&sbi->s_bal_reqs);
4596 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4597 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4598 atomic_inc(&sbi->s_bal_success);
4599
4600 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4601 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4602 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4603 }
4604
4605 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4606 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4607 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4608 atomic_inc(&sbi->s_bal_goals);
4609 /* did we allocate as much as normalizer originally wanted? */
4610 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4611 atomic_inc(&sbi->s_bal_len_goals);
4612
4613 if (ac->ac_found > sbi->s_mb_max_to_scan)
4614 atomic_inc(&sbi->s_bal_breaks);
4615 }
4616
4617 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4618 trace_ext4_mballoc_alloc(ac);
4619 else
4620 trace_ext4_mballoc_prealloc(ac);
4621 }
4622
4623 /*
4624 * Called on failure; free up any blocks from the inode PA for this
4625 * context. We don't need this for MB_GROUP_PA because we only change
4626 * pa_free in ext4_mb_release_context(), but on failure, we've already
4627 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4628 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)4629 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4630 {
4631 struct ext4_prealloc_space *pa = ac->ac_pa;
4632 struct ext4_buddy e4b;
4633 int err;
4634
4635 if (pa == NULL) {
4636 if (ac->ac_f_ex.fe_len == 0)
4637 return;
4638 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4639 if (WARN_RATELIMIT(err,
4640 "ext4: mb_load_buddy failed (%d)", err))
4641 /*
4642 * This should never happen since we pin the
4643 * pages in the ext4_allocation_context so
4644 * ext4_mb_load_buddy() should never fail.
4645 */
4646 return;
4647 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4648 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4649 ac->ac_f_ex.fe_len);
4650 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4651 ext4_mb_unload_buddy(&e4b);
4652 return;
4653 }
4654 if (pa->pa_type == MB_INODE_PA) {
4655 spin_lock(&pa->pa_lock);
4656 pa->pa_free += ac->ac_b_ex.fe_len;
4657 spin_unlock(&pa->pa_lock);
4658 }
4659 }
4660
4661 /*
4662 * use blocks preallocated to inode
4663 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4664 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4665 struct ext4_prealloc_space *pa)
4666 {
4667 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4668 ext4_fsblk_t start;
4669 ext4_fsblk_t end;
4670 int len;
4671
4672 /* found preallocated blocks, use them */
4673 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4674 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4675 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4676 len = EXT4_NUM_B2C(sbi, end - start);
4677 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4678 &ac->ac_b_ex.fe_start);
4679 ac->ac_b_ex.fe_len = len;
4680 ac->ac_status = AC_STATUS_FOUND;
4681 ac->ac_pa = pa;
4682
4683 BUG_ON(start < pa->pa_pstart);
4684 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4685 BUG_ON(pa->pa_free < len);
4686 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4687 pa->pa_free -= len;
4688
4689 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4690 }
4691
4692 /*
4693 * use blocks preallocated to locality group
4694 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4695 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4696 struct ext4_prealloc_space *pa)
4697 {
4698 unsigned int len = ac->ac_o_ex.fe_len;
4699
4700 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4701 &ac->ac_b_ex.fe_group,
4702 &ac->ac_b_ex.fe_start);
4703 ac->ac_b_ex.fe_len = len;
4704 ac->ac_status = AC_STATUS_FOUND;
4705 ac->ac_pa = pa;
4706
4707 /* we don't correct pa_pstart or pa_len here to avoid
4708 * possible race when the group is being loaded concurrently
4709 * instead we correct pa later, after blocks are marked
4710 * in on-disk bitmap -- see ext4_mb_release_context()
4711 * Other CPUs are prevented from allocating from this pa by lg_mutex
4712 */
4713 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4714 pa->pa_lstart, len, pa);
4715 }
4716
4717 /*
4718 * Return the prealloc space that have minimal distance
4719 * from the goal block. @cpa is the prealloc
4720 * space that is having currently known minimal distance
4721 * from the goal block.
4722 */
4723 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)4724 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4725 struct ext4_prealloc_space *pa,
4726 struct ext4_prealloc_space *cpa)
4727 {
4728 ext4_fsblk_t cur_distance, new_distance;
4729
4730 if (cpa == NULL) {
4731 atomic_inc(&pa->pa_count);
4732 return pa;
4733 }
4734 cur_distance = abs(goal_block - cpa->pa_pstart);
4735 new_distance = abs(goal_block - pa->pa_pstart);
4736
4737 if (cur_distance <= new_distance)
4738 return cpa;
4739
4740 /* drop the previous reference */
4741 atomic_dec(&cpa->pa_count);
4742 atomic_inc(&pa->pa_count);
4743 return pa;
4744 }
4745
4746 /*
4747 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4748 */
4749 static bool
ext4_mb_pa_goal_check(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4750 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4751 struct ext4_prealloc_space *pa)
4752 {
4753 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4754 ext4_fsblk_t start;
4755
4756 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4757 return true;
4758
4759 /*
4760 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4761 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4762 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4763 * consistent with ext4_mb_find_by_goal.
4764 */
4765 start = pa->pa_pstart +
4766 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4767 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4768 return false;
4769
4770 if (ac->ac_g_ex.fe_len > pa->pa_len -
4771 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4772 return false;
4773
4774 return true;
4775 }
4776
4777 /*
4778 * search goal blocks in preallocated space
4779 */
4780 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)4781 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4782 {
4783 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4784 int order, i;
4785 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4786 struct ext4_locality_group *lg;
4787 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4788 struct rb_node *iter;
4789 ext4_fsblk_t goal_block;
4790
4791 /* only data can be preallocated */
4792 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4793 return false;
4794
4795 /*
4796 * first, try per-file preallocation by searching the inode pa rbtree.
4797 *
4798 * Here, we can't do a direct traversal of the tree because
4799 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4800 * deleted and that can cause direct traversal to skip some entries.
4801 */
4802 read_lock(&ei->i_prealloc_lock);
4803
4804 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4805 goto try_group_pa;
4806 }
4807
4808 /*
4809 * Step 1: Find a pa with logical start immediately adjacent to the
4810 * original logical start. This could be on the left or right.
4811 *
4812 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4813 */
4814 for (iter = ei->i_prealloc_node.rb_node; iter;
4815 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4816 tmp_pa->pa_lstart, iter)) {
4817 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4818 pa_node.inode_node);
4819 }
4820
4821 /*
4822 * Step 2: The adjacent pa might be to the right of logical start, find
4823 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4824 * logical start is towards the left of original request's logical start
4825 */
4826 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4827 struct rb_node *tmp;
4828 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4829
4830 if (tmp) {
4831 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4832 pa_node.inode_node);
4833 } else {
4834 /*
4835 * If there is no adjacent pa to the left then finding
4836 * an overlapping pa is not possible hence stop searching
4837 * inode pa tree
4838 */
4839 goto try_group_pa;
4840 }
4841 }
4842
4843 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4844
4845 /*
4846 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4847 * the first non deleted adjacent pa. After this step we should have a
4848 * valid tmp_pa which is guaranteed to be non deleted.
4849 */
4850 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4851 if (!iter) {
4852 /*
4853 * no non deleted left adjacent pa, so stop searching
4854 * inode pa tree
4855 */
4856 goto try_group_pa;
4857 }
4858 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4859 pa_node.inode_node);
4860 spin_lock(&tmp_pa->pa_lock);
4861 if (tmp_pa->pa_deleted == 0) {
4862 /*
4863 * We will keep holding the pa_lock from
4864 * this point on because we don't want group discard
4865 * to delete this pa underneath us. Since group
4866 * discard is anyways an ENOSPC operation it
4867 * should be okay for it to wait a few more cycles.
4868 */
4869 break;
4870 } else {
4871 spin_unlock(&tmp_pa->pa_lock);
4872 }
4873 }
4874
4875 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4876 BUG_ON(tmp_pa->pa_deleted == 1);
4877
4878 /*
4879 * Step 4: We now have the non deleted left adjacent pa. Only this
4880 * pa can possibly satisfy the request hence check if it overlaps
4881 * original logical start and stop searching if it doesn't.
4882 */
4883 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4884 spin_unlock(&tmp_pa->pa_lock);
4885 goto try_group_pa;
4886 }
4887
4888 /* non-extent files can't have physical blocks past 2^32 */
4889 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4890 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4891 EXT4_MAX_BLOCK_FILE_PHYS)) {
4892 /*
4893 * Since PAs don't overlap, we won't find any other PA to
4894 * satisfy this.
4895 */
4896 spin_unlock(&tmp_pa->pa_lock);
4897 goto try_group_pa;
4898 }
4899
4900 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4901 atomic_inc(&tmp_pa->pa_count);
4902 ext4_mb_use_inode_pa(ac, tmp_pa);
4903 spin_unlock(&tmp_pa->pa_lock);
4904 read_unlock(&ei->i_prealloc_lock);
4905 return true;
4906 } else {
4907 /*
4908 * We found a valid overlapping pa but couldn't use it because
4909 * it had no free blocks. This should ideally never happen
4910 * because:
4911 *
4912 * 1. When a new inode pa is added to rbtree it must have
4913 * pa_free > 0 since otherwise we won't actually need
4914 * preallocation.
4915 *
4916 * 2. An inode pa that is in the rbtree can only have it's
4917 * pa_free become zero when another thread calls:
4918 * ext4_mb_new_blocks
4919 * ext4_mb_use_preallocated
4920 * ext4_mb_use_inode_pa
4921 *
4922 * 3. Further, after the above calls make pa_free == 0, we will
4923 * immediately remove it from the rbtree in:
4924 * ext4_mb_new_blocks
4925 * ext4_mb_release_context
4926 * ext4_mb_put_pa
4927 *
4928 * 4. Since the pa_free becoming 0 and pa_free getting removed
4929 * from tree both happen in ext4_mb_new_blocks, which is always
4930 * called with i_data_sem held for data allocations, we can be
4931 * sure that another process will never see a pa in rbtree with
4932 * pa_free == 0.
4933 */
4934 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4935 }
4936 spin_unlock(&tmp_pa->pa_lock);
4937 try_group_pa:
4938 read_unlock(&ei->i_prealloc_lock);
4939
4940 /* can we use group allocation? */
4941 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4942 return false;
4943
4944 /* inode may have no locality group for some reason */
4945 lg = ac->ac_lg;
4946 if (lg == NULL)
4947 return false;
4948 order = fls(ac->ac_o_ex.fe_len) - 1;
4949 if (order > PREALLOC_TB_SIZE - 1)
4950 /* The max size of hash table is PREALLOC_TB_SIZE */
4951 order = PREALLOC_TB_SIZE - 1;
4952
4953 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4954 /*
4955 * search for the prealloc space that is having
4956 * minimal distance from the goal block.
4957 */
4958 for (i = order; i < PREALLOC_TB_SIZE; i++) {
4959 rcu_read_lock();
4960 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4961 pa_node.lg_list) {
4962 spin_lock(&tmp_pa->pa_lock);
4963 if (tmp_pa->pa_deleted == 0 &&
4964 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4965
4966 cpa = ext4_mb_check_group_pa(goal_block,
4967 tmp_pa, cpa);
4968 }
4969 spin_unlock(&tmp_pa->pa_lock);
4970 }
4971 rcu_read_unlock();
4972 }
4973 if (cpa) {
4974 ext4_mb_use_group_pa(ac, cpa);
4975 return true;
4976 }
4977 return false;
4978 }
4979
4980 /*
4981 * the function goes through all preallocation in this group and marks them
4982 * used in in-core bitmap. buddy must be generated from this bitmap
4983 * Need to be called with ext4 group lock held
4984 */
4985 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)4986 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4987 ext4_group_t group)
4988 {
4989 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4990 struct ext4_prealloc_space *pa;
4991 struct list_head *cur;
4992 ext4_group_t groupnr;
4993 ext4_grpblk_t start;
4994 int preallocated = 0;
4995 int len;
4996
4997 if (!grp)
4998 return;
4999
5000 /* all form of preallocation discards first load group,
5001 * so the only competing code is preallocation use.
5002 * we don't need any locking here
5003 * notice we do NOT ignore preallocations with pa_deleted
5004 * otherwise we could leave used blocks available for
5005 * allocation in buddy when concurrent ext4_mb_put_pa()
5006 * is dropping preallocation
5007 */
5008 list_for_each(cur, &grp->bb_prealloc_list) {
5009 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5010 spin_lock(&pa->pa_lock);
5011 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5012 &groupnr, &start);
5013 len = pa->pa_len;
5014 spin_unlock(&pa->pa_lock);
5015 if (unlikely(len == 0))
5016 continue;
5017 BUG_ON(groupnr != group);
5018 mb_set_bits(bitmap, start, len);
5019 preallocated += len;
5020 }
5021 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5022 }
5023
ext4_mb_mark_pa_deleted(struct super_block * sb,struct ext4_prealloc_space * pa)5024 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5025 struct ext4_prealloc_space *pa)
5026 {
5027 struct ext4_inode_info *ei;
5028
5029 if (pa->pa_deleted) {
5030 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5031 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5032 pa->pa_len);
5033 return;
5034 }
5035
5036 pa->pa_deleted = 1;
5037
5038 if (pa->pa_type == MB_INODE_PA) {
5039 ei = EXT4_I(pa->pa_inode);
5040 atomic_dec(&ei->i_prealloc_active);
5041 }
5042 }
5043
ext4_mb_pa_free(struct ext4_prealloc_space * pa)5044 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5045 {
5046 BUG_ON(!pa);
5047 BUG_ON(atomic_read(&pa->pa_count));
5048 BUG_ON(pa->pa_deleted == 0);
5049 kmem_cache_free(ext4_pspace_cachep, pa);
5050 }
5051
ext4_mb_pa_callback(struct rcu_head * head)5052 static void ext4_mb_pa_callback(struct rcu_head *head)
5053 {
5054 struct ext4_prealloc_space *pa;
5055
5056 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5057 ext4_mb_pa_free(pa);
5058 }
5059
5060 /*
5061 * drops a reference to preallocated space descriptor
5062 * if this was the last reference and the space is consumed
5063 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)5064 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5065 struct super_block *sb, struct ext4_prealloc_space *pa)
5066 {
5067 ext4_group_t grp;
5068 ext4_fsblk_t grp_blk;
5069 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5070
5071 /* in this short window concurrent discard can set pa_deleted */
5072 spin_lock(&pa->pa_lock);
5073 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5074 spin_unlock(&pa->pa_lock);
5075 return;
5076 }
5077
5078 if (pa->pa_deleted == 1) {
5079 spin_unlock(&pa->pa_lock);
5080 return;
5081 }
5082
5083 ext4_mb_mark_pa_deleted(sb, pa);
5084 spin_unlock(&pa->pa_lock);
5085
5086 grp_blk = pa->pa_pstart;
5087 /*
5088 * If doing group-based preallocation, pa_pstart may be in the
5089 * next group when pa is used up
5090 */
5091 if (pa->pa_type == MB_GROUP_PA)
5092 grp_blk--;
5093
5094 grp = ext4_get_group_number(sb, grp_blk);
5095
5096 /*
5097 * possible race:
5098 *
5099 * P1 (buddy init) P2 (regular allocation)
5100 * find block B in PA
5101 * copy on-disk bitmap to buddy
5102 * mark B in on-disk bitmap
5103 * drop PA from group
5104 * mark all PAs in buddy
5105 *
5106 * thus, P1 initializes buddy with B available. to prevent this
5107 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5108 * against that pair
5109 */
5110 ext4_lock_group(sb, grp);
5111 list_del(&pa->pa_group_list);
5112 ext4_unlock_group(sb, grp);
5113
5114 if (pa->pa_type == MB_INODE_PA) {
5115 write_lock(pa->pa_node_lock.inode_lock);
5116 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5117 write_unlock(pa->pa_node_lock.inode_lock);
5118 ext4_mb_pa_free(pa);
5119 } else {
5120 spin_lock(pa->pa_node_lock.lg_lock);
5121 list_del_rcu(&pa->pa_node.lg_list);
5122 spin_unlock(pa->pa_node_lock.lg_lock);
5123 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5124 }
5125 }
5126
ext4_mb_pa_rb_insert(struct rb_root * root,struct rb_node * new)5127 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5128 {
5129 struct rb_node **iter = &root->rb_node, *parent = NULL;
5130 struct ext4_prealloc_space *iter_pa, *new_pa;
5131 ext4_lblk_t iter_start, new_start;
5132
5133 while (*iter) {
5134 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5135 pa_node.inode_node);
5136 new_pa = rb_entry(new, struct ext4_prealloc_space,
5137 pa_node.inode_node);
5138 iter_start = iter_pa->pa_lstart;
5139 new_start = new_pa->pa_lstart;
5140
5141 parent = *iter;
5142 if (new_start < iter_start)
5143 iter = &((*iter)->rb_left);
5144 else
5145 iter = &((*iter)->rb_right);
5146 }
5147
5148 rb_link_node(new, parent, iter);
5149 rb_insert_color(new, root);
5150 }
5151
5152 /*
5153 * creates new preallocated space for given inode
5154 */
5155 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)5156 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5157 {
5158 struct super_block *sb = ac->ac_sb;
5159 struct ext4_sb_info *sbi = EXT4_SB(sb);
5160 struct ext4_prealloc_space *pa;
5161 struct ext4_group_info *grp;
5162 struct ext4_inode_info *ei;
5163
5164 /* preallocate only when found space is larger then requested */
5165 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5166 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5167 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5168 BUG_ON(ac->ac_pa == NULL);
5169
5170 pa = ac->ac_pa;
5171
5172 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5173 struct ext4_free_extent ex = {
5174 .fe_logical = ac->ac_g_ex.fe_logical,
5175 .fe_len = ac->ac_orig_goal_len,
5176 };
5177 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5178 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5179
5180 /*
5181 * We can't allocate as much as normalizer wants, so we try
5182 * to get proper lstart to cover the original request, except
5183 * when the goal doesn't cover the original request as below:
5184 *
5185 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5186 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5187 */
5188 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5189 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5190
5191 /*
5192 * Use the below logic for adjusting best extent as it keeps
5193 * fragmentation in check while ensuring logical range of best
5194 * extent doesn't overflow out of goal extent:
5195 *
5196 * 1. Check if best ex can be kept at end of goal (before
5197 * cr_best_avail trimmed it) and still cover original start
5198 * 2. Else, check if best ex can be kept at start of goal and
5199 * still cover original end
5200 * 3. Else, keep the best ex at start of original request.
5201 */
5202 ex.fe_len = ac->ac_b_ex.fe_len;
5203
5204 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5205 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5206 goto adjust_bex;
5207
5208 ex.fe_logical = ac->ac_g_ex.fe_logical;
5209 if (o_ex_end <= extent_logical_end(sbi, &ex))
5210 goto adjust_bex;
5211
5212 ex.fe_logical = ac->ac_o_ex.fe_logical;
5213 adjust_bex:
5214 ac->ac_b_ex.fe_logical = ex.fe_logical;
5215
5216 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5217 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5218 }
5219
5220 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5221 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5222 pa->pa_len = ac->ac_b_ex.fe_len;
5223 pa->pa_free = pa->pa_len;
5224 spin_lock_init(&pa->pa_lock);
5225 INIT_LIST_HEAD(&pa->pa_group_list);
5226 pa->pa_deleted = 0;
5227 pa->pa_type = MB_INODE_PA;
5228
5229 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5230 pa->pa_len, pa->pa_lstart);
5231 trace_ext4_mb_new_inode_pa(ac, pa);
5232
5233 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5234 ext4_mb_use_inode_pa(ac, pa);
5235
5236 ei = EXT4_I(ac->ac_inode);
5237 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5238 if (!grp)
5239 return;
5240
5241 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5242 pa->pa_inode = ac->ac_inode;
5243
5244 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5245
5246 write_lock(pa->pa_node_lock.inode_lock);
5247 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5248 write_unlock(pa->pa_node_lock.inode_lock);
5249 atomic_inc(&ei->i_prealloc_active);
5250 }
5251
5252 /*
5253 * creates new preallocated space for locality group inodes belongs to
5254 */
5255 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)5256 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5257 {
5258 struct super_block *sb = ac->ac_sb;
5259 struct ext4_locality_group *lg;
5260 struct ext4_prealloc_space *pa;
5261 struct ext4_group_info *grp;
5262
5263 /* preallocate only when found space is larger then requested */
5264 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5265 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5266 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5267 BUG_ON(ac->ac_pa == NULL);
5268
5269 pa = ac->ac_pa;
5270
5271 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5272 pa->pa_lstart = pa->pa_pstart;
5273 pa->pa_len = ac->ac_b_ex.fe_len;
5274 pa->pa_free = pa->pa_len;
5275 spin_lock_init(&pa->pa_lock);
5276 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5277 INIT_LIST_HEAD(&pa->pa_group_list);
5278 pa->pa_deleted = 0;
5279 pa->pa_type = MB_GROUP_PA;
5280
5281 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5282 pa->pa_len, pa->pa_lstart);
5283 trace_ext4_mb_new_group_pa(ac, pa);
5284
5285 ext4_mb_use_group_pa(ac, pa);
5286 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5287
5288 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5289 if (!grp)
5290 return;
5291 lg = ac->ac_lg;
5292 BUG_ON(lg == NULL);
5293
5294 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5295 pa->pa_inode = NULL;
5296
5297 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5298
5299 /*
5300 * We will later add the new pa to the right bucket
5301 * after updating the pa_free in ext4_mb_release_context
5302 */
5303 }
5304
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)5305 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5306 {
5307 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5308 ext4_mb_new_group_pa(ac);
5309 else
5310 ext4_mb_new_inode_pa(ac);
5311 }
5312
5313 /*
5314 * finds all unused blocks in on-disk bitmap, frees them in
5315 * in-core bitmap and buddy.
5316 * @pa must be unlinked from inode and group lists, so that
5317 * nobody else can find/use it.
5318 * the caller MUST hold group/inode locks.
5319 * TODO: optimize the case when there are no in-core structures yet
5320 */
5321 static noinline_for_stack void
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)5322 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5323 struct ext4_prealloc_space *pa)
5324 {
5325 struct super_block *sb = e4b->bd_sb;
5326 struct ext4_sb_info *sbi = EXT4_SB(sb);
5327 unsigned int end;
5328 unsigned int next;
5329 ext4_group_t group;
5330 ext4_grpblk_t bit;
5331 unsigned long long grp_blk_start;
5332 int free = 0;
5333
5334 BUG_ON(pa->pa_deleted == 0);
5335 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5336 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5337 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5338 end = bit + pa->pa_len;
5339
5340 while (bit < end) {
5341 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5342 if (bit >= end)
5343 break;
5344 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5345 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5346 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5347 (unsigned) next - bit, (unsigned) group);
5348 free += next - bit;
5349
5350 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5351 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5352 EXT4_C2B(sbi, bit)),
5353 next - bit);
5354 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5355 bit = next + 1;
5356 }
5357 if (free != pa->pa_free) {
5358 ext4_msg(e4b->bd_sb, KERN_CRIT,
5359 "pa %p: logic %lu, phys. %lu, len %d",
5360 pa, (unsigned long) pa->pa_lstart,
5361 (unsigned long) pa->pa_pstart,
5362 pa->pa_len);
5363 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5364 free, pa->pa_free);
5365 /*
5366 * pa is already deleted so we use the value obtained
5367 * from the bitmap and continue.
5368 */
5369 }
5370 atomic_add(free, &sbi->s_mb_discarded);
5371 }
5372
5373 static noinline_for_stack void
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)5374 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5375 struct ext4_prealloc_space *pa)
5376 {
5377 struct super_block *sb = e4b->bd_sb;
5378 ext4_group_t group;
5379 ext4_grpblk_t bit;
5380
5381 trace_ext4_mb_release_group_pa(sb, pa);
5382 BUG_ON(pa->pa_deleted == 0);
5383 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5384 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5385 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5386 e4b->bd_group, group, pa->pa_pstart);
5387 return;
5388 }
5389 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5390 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5391 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5392 }
5393
5394 /*
5395 * releases all preallocations in given group
5396 *
5397 * first, we need to decide discard policy:
5398 * - when do we discard
5399 * 1) ENOSPC
5400 * - how many do we discard
5401 * 1) how many requested
5402 */
5403 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int * busy)5404 ext4_mb_discard_group_preallocations(struct super_block *sb,
5405 ext4_group_t group, int *busy)
5406 {
5407 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5408 struct buffer_head *bitmap_bh = NULL;
5409 struct ext4_prealloc_space *pa, *tmp;
5410 LIST_HEAD(list);
5411 struct ext4_buddy e4b;
5412 struct ext4_inode_info *ei;
5413 int err;
5414 int free = 0;
5415
5416 if (!grp)
5417 return 0;
5418 mb_debug(sb, "discard preallocation for group %u\n", group);
5419 if (list_empty(&grp->bb_prealloc_list))
5420 goto out_dbg;
5421
5422 bitmap_bh = ext4_read_block_bitmap(sb, group);
5423 if (IS_ERR(bitmap_bh)) {
5424 err = PTR_ERR(bitmap_bh);
5425 ext4_error_err(sb, -err,
5426 "Error %d reading block bitmap for %u",
5427 err, group);
5428 goto out_dbg;
5429 }
5430
5431 err = ext4_mb_load_buddy(sb, group, &e4b);
5432 if (err) {
5433 ext4_warning(sb, "Error %d loading buddy information for %u",
5434 err, group);
5435 put_bh(bitmap_bh);
5436 goto out_dbg;
5437 }
5438
5439 ext4_lock_group(sb, group);
5440 list_for_each_entry_safe(pa, tmp,
5441 &grp->bb_prealloc_list, pa_group_list) {
5442 spin_lock(&pa->pa_lock);
5443 if (atomic_read(&pa->pa_count)) {
5444 spin_unlock(&pa->pa_lock);
5445 *busy = 1;
5446 continue;
5447 }
5448 if (pa->pa_deleted) {
5449 spin_unlock(&pa->pa_lock);
5450 continue;
5451 }
5452
5453 /* seems this one can be freed ... */
5454 ext4_mb_mark_pa_deleted(sb, pa);
5455
5456 if (!free)
5457 this_cpu_inc(discard_pa_seq);
5458
5459 /* we can trust pa_free ... */
5460 free += pa->pa_free;
5461
5462 spin_unlock(&pa->pa_lock);
5463
5464 list_del(&pa->pa_group_list);
5465 list_add(&pa->u.pa_tmp_list, &list);
5466 }
5467
5468 /* now free all selected PAs */
5469 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5470
5471 /* remove from object (inode or locality group) */
5472 if (pa->pa_type == MB_GROUP_PA) {
5473 spin_lock(pa->pa_node_lock.lg_lock);
5474 list_del_rcu(&pa->pa_node.lg_list);
5475 spin_unlock(pa->pa_node_lock.lg_lock);
5476 } else {
5477 write_lock(pa->pa_node_lock.inode_lock);
5478 ei = EXT4_I(pa->pa_inode);
5479 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5480 write_unlock(pa->pa_node_lock.inode_lock);
5481 }
5482
5483 list_del(&pa->u.pa_tmp_list);
5484
5485 if (pa->pa_type == MB_GROUP_PA) {
5486 ext4_mb_release_group_pa(&e4b, pa);
5487 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5488 } else {
5489 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5490 ext4_mb_pa_free(pa);
5491 }
5492 }
5493
5494 ext4_unlock_group(sb, group);
5495 ext4_mb_unload_buddy(&e4b);
5496 put_bh(bitmap_bh);
5497 out_dbg:
5498 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5499 free, group, grp->bb_free);
5500 return free;
5501 }
5502
5503 /*
5504 * releases all non-used preallocated blocks for given inode
5505 *
5506 * It's important to discard preallocations under i_data_sem
5507 * We don't want another block to be served from the prealloc
5508 * space when we are discarding the inode prealloc space.
5509 *
5510 * FIXME!! Make sure it is valid at all the call sites
5511 */
ext4_discard_preallocations(struct inode * inode)5512 void ext4_discard_preallocations(struct inode *inode)
5513 {
5514 struct ext4_inode_info *ei = EXT4_I(inode);
5515 struct super_block *sb = inode->i_sb;
5516 struct buffer_head *bitmap_bh = NULL;
5517 struct ext4_prealloc_space *pa, *tmp;
5518 ext4_group_t group = 0;
5519 LIST_HEAD(list);
5520 struct ext4_buddy e4b;
5521 struct rb_node *iter;
5522 int err;
5523
5524 if (!S_ISREG(inode->i_mode))
5525 return;
5526
5527 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5528 return;
5529
5530 mb_debug(sb, "discard preallocation for inode %lu\n",
5531 inode->i_ino);
5532 trace_ext4_discard_preallocations(inode,
5533 atomic_read(&ei->i_prealloc_active));
5534
5535 repeat:
5536 /* first, collect all pa's in the inode */
5537 write_lock(&ei->i_prealloc_lock);
5538 for (iter = rb_first(&ei->i_prealloc_node); iter;
5539 iter = rb_next(iter)) {
5540 pa = rb_entry(iter, struct ext4_prealloc_space,
5541 pa_node.inode_node);
5542 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5543
5544 spin_lock(&pa->pa_lock);
5545 if (atomic_read(&pa->pa_count)) {
5546 /* this shouldn't happen often - nobody should
5547 * use preallocation while we're discarding it */
5548 spin_unlock(&pa->pa_lock);
5549 write_unlock(&ei->i_prealloc_lock);
5550 ext4_msg(sb, KERN_ERR,
5551 "uh-oh! used pa while discarding");
5552 WARN_ON(1);
5553 schedule_timeout_uninterruptible(HZ);
5554 goto repeat;
5555
5556 }
5557 if (pa->pa_deleted == 0) {
5558 ext4_mb_mark_pa_deleted(sb, pa);
5559 spin_unlock(&pa->pa_lock);
5560 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5561 list_add(&pa->u.pa_tmp_list, &list);
5562 continue;
5563 }
5564
5565 /* someone is deleting pa right now */
5566 spin_unlock(&pa->pa_lock);
5567 write_unlock(&ei->i_prealloc_lock);
5568
5569 /* we have to wait here because pa_deleted
5570 * doesn't mean pa is already unlinked from
5571 * the list. as we might be called from
5572 * ->clear_inode() the inode will get freed
5573 * and concurrent thread which is unlinking
5574 * pa from inode's list may access already
5575 * freed memory, bad-bad-bad */
5576
5577 /* XXX: if this happens too often, we can
5578 * add a flag to force wait only in case
5579 * of ->clear_inode(), but not in case of
5580 * regular truncate */
5581 schedule_timeout_uninterruptible(HZ);
5582 goto repeat;
5583 }
5584 write_unlock(&ei->i_prealloc_lock);
5585
5586 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5587 BUG_ON(pa->pa_type != MB_INODE_PA);
5588 group = ext4_get_group_number(sb, pa->pa_pstart);
5589
5590 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5591 GFP_NOFS|__GFP_NOFAIL);
5592 if (err) {
5593 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5594 err, group);
5595 continue;
5596 }
5597
5598 bitmap_bh = ext4_read_block_bitmap(sb, group);
5599 if (IS_ERR(bitmap_bh)) {
5600 err = PTR_ERR(bitmap_bh);
5601 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5602 err, group);
5603 ext4_mb_unload_buddy(&e4b);
5604 continue;
5605 }
5606
5607 ext4_lock_group(sb, group);
5608 list_del(&pa->pa_group_list);
5609 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5610 ext4_unlock_group(sb, group);
5611
5612 ext4_mb_unload_buddy(&e4b);
5613 put_bh(bitmap_bh);
5614
5615 list_del(&pa->u.pa_tmp_list);
5616 ext4_mb_pa_free(pa);
5617 }
5618 }
5619
ext4_mb_pa_alloc(struct ext4_allocation_context * ac)5620 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5621 {
5622 struct ext4_prealloc_space *pa;
5623
5624 BUG_ON(ext4_pspace_cachep == NULL);
5625 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5626 if (!pa)
5627 return -ENOMEM;
5628 atomic_set(&pa->pa_count, 1);
5629 ac->ac_pa = pa;
5630 return 0;
5631 }
5632
ext4_mb_pa_put_free(struct ext4_allocation_context * ac)5633 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5634 {
5635 struct ext4_prealloc_space *pa = ac->ac_pa;
5636
5637 BUG_ON(!pa);
5638 ac->ac_pa = NULL;
5639 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5640 /*
5641 * current function is only called due to an error or due to
5642 * len of found blocks < len of requested blocks hence the PA has not
5643 * been added to grp->bb_prealloc_list. So we don't need to lock it
5644 */
5645 pa->pa_deleted = 1;
5646 ext4_mb_pa_free(pa);
5647 }
5648
5649 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block * sb)5650 static inline void ext4_mb_show_pa(struct super_block *sb)
5651 {
5652 ext4_group_t i, ngroups;
5653
5654 if (ext4_emergency_state(sb))
5655 return;
5656
5657 ngroups = ext4_get_groups_count(sb);
5658 mb_debug(sb, "groups: ");
5659 for (i = 0; i < ngroups; i++) {
5660 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5661 struct ext4_prealloc_space *pa;
5662 ext4_grpblk_t start;
5663 struct list_head *cur;
5664
5665 if (!grp)
5666 continue;
5667 ext4_lock_group(sb, i);
5668 list_for_each(cur, &grp->bb_prealloc_list) {
5669 pa = list_entry(cur, struct ext4_prealloc_space,
5670 pa_group_list);
5671 spin_lock(&pa->pa_lock);
5672 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5673 NULL, &start);
5674 spin_unlock(&pa->pa_lock);
5675 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5676 pa->pa_len);
5677 }
5678 ext4_unlock_group(sb, i);
5679 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5680 grp->bb_fragments);
5681 }
5682 }
5683
ext4_mb_show_ac(struct ext4_allocation_context * ac)5684 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5685 {
5686 struct super_block *sb = ac->ac_sb;
5687
5688 if (ext4_emergency_state(sb))
5689 return;
5690
5691 mb_debug(sb, "Can't allocate:"
5692 " Allocation context details:");
5693 mb_debug(sb, "status %u flags 0x%x",
5694 ac->ac_status, ac->ac_flags);
5695 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5696 "goal %lu/%lu/%lu@%lu, "
5697 "best %lu/%lu/%lu@%lu cr %d",
5698 (unsigned long)ac->ac_o_ex.fe_group,
5699 (unsigned long)ac->ac_o_ex.fe_start,
5700 (unsigned long)ac->ac_o_ex.fe_len,
5701 (unsigned long)ac->ac_o_ex.fe_logical,
5702 (unsigned long)ac->ac_g_ex.fe_group,
5703 (unsigned long)ac->ac_g_ex.fe_start,
5704 (unsigned long)ac->ac_g_ex.fe_len,
5705 (unsigned long)ac->ac_g_ex.fe_logical,
5706 (unsigned long)ac->ac_b_ex.fe_group,
5707 (unsigned long)ac->ac_b_ex.fe_start,
5708 (unsigned long)ac->ac_b_ex.fe_len,
5709 (unsigned long)ac->ac_b_ex.fe_logical,
5710 (int)ac->ac_criteria);
5711 mb_debug(sb, "%u found", ac->ac_found);
5712 mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa));
5713 if (ac->ac_pa)
5714 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5715 "group pa" : "inode pa");
5716 ext4_mb_show_pa(sb);
5717 }
5718 #else
ext4_mb_show_pa(struct super_block * sb)5719 static inline void ext4_mb_show_pa(struct super_block *sb)
5720 {
5721 }
ext4_mb_show_ac(struct ext4_allocation_context * ac)5722 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5723 {
5724 ext4_mb_show_pa(ac->ac_sb);
5725 }
5726 #endif
5727
5728 /*
5729 * We use locality group preallocation for small size file. The size of the
5730 * file is determined by the current size or the resulting size after
5731 * allocation which ever is larger
5732 *
5733 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5734 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)5735 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5736 {
5737 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5738 int bsbits = ac->ac_sb->s_blocksize_bits;
5739 loff_t size, isize;
5740 bool inode_pa_eligible, group_pa_eligible;
5741
5742 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5743 return;
5744
5745 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5746 return;
5747
5748 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5749 inode_pa_eligible = true;
5750 size = extent_logical_end(sbi, &ac->ac_o_ex);
5751 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5752 >> bsbits;
5753
5754 /* No point in using inode preallocation for closed files */
5755 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5756 !inode_is_open_for_write(ac->ac_inode))
5757 inode_pa_eligible = false;
5758
5759 size = max(size, isize);
5760 /* Don't use group allocation for large files */
5761 if (size > sbi->s_mb_stream_request)
5762 group_pa_eligible = false;
5763
5764 if (!group_pa_eligible) {
5765 if (inode_pa_eligible)
5766 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5767 else
5768 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5769 return;
5770 }
5771
5772 BUG_ON(ac->ac_lg != NULL);
5773 /*
5774 * locality group prealloc space are per cpu. The reason for having
5775 * per cpu locality group is to reduce the contention between block
5776 * request from multiple CPUs.
5777 */
5778 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5779
5780 /* we're going to use group allocation */
5781 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5782
5783 /* serialize all allocations in the group */
5784 mutex_lock(&ac->ac_lg->lg_mutex);
5785 }
5786
5787 static noinline_for_stack void
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)5788 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5789 struct ext4_allocation_request *ar)
5790 {
5791 struct super_block *sb = ar->inode->i_sb;
5792 struct ext4_sb_info *sbi = EXT4_SB(sb);
5793 struct ext4_super_block *es = sbi->s_es;
5794 ext4_group_t group;
5795 unsigned int len;
5796 ext4_fsblk_t goal;
5797 ext4_grpblk_t block;
5798
5799 /* we can't allocate > group size */
5800 len = ar->len;
5801
5802 /* just a dirty hack to filter too big requests */
5803 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5804 len = EXT4_CLUSTERS_PER_GROUP(sb);
5805
5806 /* start searching from the goal */
5807 goal = ar->goal;
5808 if (goal < le32_to_cpu(es->s_first_data_block) ||
5809 goal >= ext4_blocks_count(es))
5810 goal = le32_to_cpu(es->s_first_data_block);
5811 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5812
5813 /* set up allocation goals */
5814 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5815 ac->ac_status = AC_STATUS_CONTINUE;
5816 ac->ac_sb = sb;
5817 ac->ac_inode = ar->inode;
5818 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5819 ac->ac_o_ex.fe_group = group;
5820 ac->ac_o_ex.fe_start = block;
5821 ac->ac_o_ex.fe_len = len;
5822 ac->ac_g_ex = ac->ac_o_ex;
5823 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5824 ac->ac_flags = ar->flags;
5825
5826 /* we have to define context: we'll work with a file or
5827 * locality group. this is a policy, actually */
5828 ext4_mb_group_or_file(ac);
5829
5830 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5831 "left: %u/%u, right %u/%u to %swritable\n",
5832 (unsigned) ar->len, (unsigned) ar->logical,
5833 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5834 (unsigned) ar->lleft, (unsigned) ar->pleft,
5835 (unsigned) ar->lright, (unsigned) ar->pright,
5836 inode_is_open_for_write(ar->inode) ? "" : "non-");
5837 }
5838
5839 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)5840 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5841 struct ext4_locality_group *lg,
5842 int order, int total_entries)
5843 {
5844 ext4_group_t group = 0;
5845 struct ext4_buddy e4b;
5846 LIST_HEAD(discard_list);
5847 struct ext4_prealloc_space *pa, *tmp;
5848
5849 mb_debug(sb, "discard locality group preallocation\n");
5850
5851 spin_lock(&lg->lg_prealloc_lock);
5852 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5853 pa_node.lg_list,
5854 lockdep_is_held(&lg->lg_prealloc_lock)) {
5855 spin_lock(&pa->pa_lock);
5856 if (atomic_read(&pa->pa_count)) {
5857 /*
5858 * This is the pa that we just used
5859 * for block allocation. So don't
5860 * free that
5861 */
5862 spin_unlock(&pa->pa_lock);
5863 continue;
5864 }
5865 if (pa->pa_deleted) {
5866 spin_unlock(&pa->pa_lock);
5867 continue;
5868 }
5869 /* only lg prealloc space */
5870 BUG_ON(pa->pa_type != MB_GROUP_PA);
5871
5872 /* seems this one can be freed ... */
5873 ext4_mb_mark_pa_deleted(sb, pa);
5874 spin_unlock(&pa->pa_lock);
5875
5876 list_del_rcu(&pa->pa_node.lg_list);
5877 list_add(&pa->u.pa_tmp_list, &discard_list);
5878
5879 total_entries--;
5880 if (total_entries <= 5) {
5881 /*
5882 * we want to keep only 5 entries
5883 * allowing it to grow to 8. This
5884 * mak sure we don't call discard
5885 * soon for this list.
5886 */
5887 break;
5888 }
5889 }
5890 spin_unlock(&lg->lg_prealloc_lock);
5891
5892 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5893 int err;
5894
5895 group = ext4_get_group_number(sb, pa->pa_pstart);
5896 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5897 GFP_NOFS|__GFP_NOFAIL);
5898 if (err) {
5899 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5900 err, group);
5901 continue;
5902 }
5903 ext4_lock_group(sb, group);
5904 list_del(&pa->pa_group_list);
5905 ext4_mb_release_group_pa(&e4b, pa);
5906 ext4_unlock_group(sb, group);
5907
5908 ext4_mb_unload_buddy(&e4b);
5909 list_del(&pa->u.pa_tmp_list);
5910 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5911 }
5912 }
5913
5914 /*
5915 * We have incremented pa_count. So it cannot be freed at this
5916 * point. Also we hold lg_mutex. So no parallel allocation is
5917 * possible from this lg. That means pa_free cannot be updated.
5918 *
5919 * A parallel ext4_mb_discard_group_preallocations is possible.
5920 * which can cause the lg_prealloc_list to be updated.
5921 */
5922
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)5923 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5924 {
5925 int order, added = 0, lg_prealloc_count = 1;
5926 struct super_block *sb = ac->ac_sb;
5927 struct ext4_locality_group *lg = ac->ac_lg;
5928 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5929
5930 order = fls(pa->pa_free) - 1;
5931 if (order > PREALLOC_TB_SIZE - 1)
5932 /* The max size of hash table is PREALLOC_TB_SIZE */
5933 order = PREALLOC_TB_SIZE - 1;
5934 /* Add the prealloc space to lg */
5935 spin_lock(&lg->lg_prealloc_lock);
5936 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5937 pa_node.lg_list,
5938 lockdep_is_held(&lg->lg_prealloc_lock)) {
5939 spin_lock(&tmp_pa->pa_lock);
5940 if (tmp_pa->pa_deleted) {
5941 spin_unlock(&tmp_pa->pa_lock);
5942 continue;
5943 }
5944 if (!added && pa->pa_free < tmp_pa->pa_free) {
5945 /* Add to the tail of the previous entry */
5946 list_add_tail_rcu(&pa->pa_node.lg_list,
5947 &tmp_pa->pa_node.lg_list);
5948 added = 1;
5949 /*
5950 * we want to count the total
5951 * number of entries in the list
5952 */
5953 }
5954 spin_unlock(&tmp_pa->pa_lock);
5955 lg_prealloc_count++;
5956 }
5957 if (!added)
5958 list_add_tail_rcu(&pa->pa_node.lg_list,
5959 &lg->lg_prealloc_list[order]);
5960 spin_unlock(&lg->lg_prealloc_lock);
5961
5962 /* Now trim the list to be not more than 8 elements */
5963 if (lg_prealloc_count > 8)
5964 ext4_mb_discard_lg_preallocations(sb, lg,
5965 order, lg_prealloc_count);
5966 }
5967
5968 /*
5969 * release all resource we used in allocation
5970 */
ext4_mb_release_context(struct ext4_allocation_context * ac)5971 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5972 {
5973 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5974 struct ext4_prealloc_space *pa = ac->ac_pa;
5975 if (pa) {
5976 if (pa->pa_type == MB_GROUP_PA) {
5977 /* see comment in ext4_mb_use_group_pa() */
5978 spin_lock(&pa->pa_lock);
5979 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5980 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5981 pa->pa_free -= ac->ac_b_ex.fe_len;
5982 pa->pa_len -= ac->ac_b_ex.fe_len;
5983 spin_unlock(&pa->pa_lock);
5984
5985 /*
5986 * We want to add the pa to the right bucket.
5987 * Remove it from the list and while adding
5988 * make sure the list to which we are adding
5989 * doesn't grow big.
5990 */
5991 if (likely(pa->pa_free)) {
5992 spin_lock(pa->pa_node_lock.lg_lock);
5993 list_del_rcu(&pa->pa_node.lg_list);
5994 spin_unlock(pa->pa_node_lock.lg_lock);
5995 ext4_mb_add_n_trim(ac);
5996 }
5997 }
5998
5999 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6000 }
6001 if (ac->ac_bitmap_folio)
6002 folio_put(ac->ac_bitmap_folio);
6003 if (ac->ac_buddy_folio)
6004 folio_put(ac->ac_buddy_folio);
6005 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6006 mutex_unlock(&ac->ac_lg->lg_mutex);
6007 ext4_mb_collect_stats(ac);
6008 }
6009
ext4_mb_discard_preallocations(struct super_block * sb,int needed)6010 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6011 {
6012 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6013 int ret;
6014 int freed = 0, busy = 0;
6015 int retry = 0;
6016
6017 trace_ext4_mb_discard_preallocations(sb, needed);
6018
6019 if (needed == 0)
6020 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6021 repeat:
6022 for (i = 0; i < ngroups && needed > 0; i++) {
6023 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6024 freed += ret;
6025 needed -= ret;
6026 cond_resched();
6027 }
6028
6029 if (needed > 0 && busy && ++retry < 3) {
6030 busy = 0;
6031 goto repeat;
6032 }
6033
6034 return freed;
6035 }
6036
ext4_mb_discard_preallocations_should_retry(struct super_block * sb,struct ext4_allocation_context * ac,u64 * seq)6037 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6038 struct ext4_allocation_context *ac, u64 *seq)
6039 {
6040 int freed;
6041 u64 seq_retry = 0;
6042 bool ret = false;
6043
6044 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6045 if (freed) {
6046 ret = true;
6047 goto out_dbg;
6048 }
6049 seq_retry = ext4_get_discard_pa_seq_sum();
6050 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6051 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6052 *seq = seq_retry;
6053 ret = true;
6054 }
6055
6056 out_dbg:
6057 mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret));
6058 return ret;
6059 }
6060
6061 /*
6062 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6063 * linearly starting at the goal block and also excludes the blocks which
6064 * are going to be in use after fast commit replay.
6065 */
6066 static ext4_fsblk_t
ext4_mb_new_blocks_simple(struct ext4_allocation_request * ar,int * errp)6067 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6068 {
6069 struct buffer_head *bitmap_bh;
6070 struct super_block *sb = ar->inode->i_sb;
6071 struct ext4_sb_info *sbi = EXT4_SB(sb);
6072 ext4_group_t group, nr;
6073 ext4_grpblk_t blkoff;
6074 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6075 ext4_grpblk_t i = 0;
6076 ext4_fsblk_t goal, block;
6077 struct ext4_super_block *es = sbi->s_es;
6078
6079 goal = ar->goal;
6080 if (goal < le32_to_cpu(es->s_first_data_block) ||
6081 goal >= ext4_blocks_count(es))
6082 goal = le32_to_cpu(es->s_first_data_block);
6083
6084 ar->len = 0;
6085 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6086 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6087 bitmap_bh = ext4_read_block_bitmap(sb, group);
6088 if (IS_ERR(bitmap_bh)) {
6089 *errp = PTR_ERR(bitmap_bh);
6090 pr_warn("Failed to read block bitmap\n");
6091 return 0;
6092 }
6093
6094 while (1) {
6095 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6096 blkoff);
6097 if (i >= max)
6098 break;
6099 if (ext4_fc_replay_check_excluded(sb,
6100 ext4_group_first_block_no(sb, group) +
6101 EXT4_C2B(sbi, i))) {
6102 blkoff = i + 1;
6103 } else
6104 break;
6105 }
6106 brelse(bitmap_bh);
6107 if (i < max)
6108 break;
6109
6110 if (++group >= ext4_get_groups_count(sb))
6111 group = 0;
6112
6113 blkoff = 0;
6114 }
6115
6116 if (i >= max) {
6117 *errp = -ENOSPC;
6118 return 0;
6119 }
6120
6121 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6122 ext4_mb_mark_bb(sb, block, 1, true);
6123 ar->len = 1;
6124
6125 *errp = 0;
6126 return block;
6127 }
6128
6129 /*
6130 * Main entry point into mballoc to allocate blocks
6131 * it tries to use preallocation first, then falls back
6132 * to usual allocation
6133 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)6134 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6135 struct ext4_allocation_request *ar, int *errp)
6136 {
6137 struct ext4_allocation_context *ac = NULL;
6138 struct ext4_sb_info *sbi;
6139 struct super_block *sb;
6140 ext4_fsblk_t block = 0;
6141 unsigned int inquota = 0;
6142 unsigned int reserv_clstrs = 0;
6143 int retries = 0;
6144 u64 seq;
6145
6146 might_sleep();
6147 sb = ar->inode->i_sb;
6148 sbi = EXT4_SB(sb);
6149
6150 trace_ext4_request_blocks(ar);
6151 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6152 return ext4_mb_new_blocks_simple(ar, errp);
6153
6154 /* Allow to use superuser reservation for quota file */
6155 if (ext4_is_quota_file(ar->inode))
6156 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6157
6158 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6159 /* Without delayed allocation we need to verify
6160 * there is enough free blocks to do block allocation
6161 * and verify allocation doesn't exceed the quota limits.
6162 */
6163 while (ar->len &&
6164 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6165
6166 /* let others to free the space */
6167 cond_resched();
6168 ar->len = ar->len >> 1;
6169 }
6170 if (!ar->len) {
6171 ext4_mb_show_pa(sb);
6172 *errp = -ENOSPC;
6173 return 0;
6174 }
6175 reserv_clstrs = ar->len;
6176 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6177 dquot_alloc_block_nofail(ar->inode,
6178 EXT4_C2B(sbi, ar->len));
6179 } else {
6180 while (ar->len &&
6181 dquot_alloc_block(ar->inode,
6182 EXT4_C2B(sbi, ar->len))) {
6183
6184 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6185 ar->len--;
6186 }
6187 }
6188 inquota = ar->len;
6189 if (ar->len == 0) {
6190 *errp = -EDQUOT;
6191 goto out;
6192 }
6193 }
6194
6195 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6196 if (!ac) {
6197 ar->len = 0;
6198 *errp = -ENOMEM;
6199 goto out;
6200 }
6201
6202 ext4_mb_initialize_context(ac, ar);
6203
6204 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6205 seq = this_cpu_read(discard_pa_seq);
6206 if (!ext4_mb_use_preallocated(ac)) {
6207 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6208 ext4_mb_normalize_request(ac, ar);
6209
6210 *errp = ext4_mb_pa_alloc(ac);
6211 if (*errp)
6212 goto errout;
6213 repeat:
6214 /* allocate space in core */
6215 *errp = ext4_mb_regular_allocator(ac);
6216 /*
6217 * pa allocated above is added to grp->bb_prealloc_list only
6218 * when we were able to allocate some block i.e. when
6219 * ac->ac_status == AC_STATUS_FOUND.
6220 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6221 * So we have to free this pa here itself.
6222 */
6223 if (*errp) {
6224 ext4_mb_pa_put_free(ac);
6225 ext4_discard_allocated_blocks(ac);
6226 goto errout;
6227 }
6228 if (ac->ac_status == AC_STATUS_FOUND &&
6229 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6230 ext4_mb_pa_put_free(ac);
6231 }
6232 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6233 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6234 if (*errp) {
6235 ext4_discard_allocated_blocks(ac);
6236 goto errout;
6237 } else {
6238 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6239 ar->len = ac->ac_b_ex.fe_len;
6240 }
6241 } else {
6242 if (++retries < 3 &&
6243 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6244 goto repeat;
6245 /*
6246 * If block allocation fails then the pa allocated above
6247 * needs to be freed here itself.
6248 */
6249 ext4_mb_pa_put_free(ac);
6250 *errp = -ENOSPC;
6251 }
6252
6253 if (*errp) {
6254 errout:
6255 ac->ac_b_ex.fe_len = 0;
6256 ar->len = 0;
6257 ext4_mb_show_ac(ac);
6258 }
6259 ext4_mb_release_context(ac);
6260 kmem_cache_free(ext4_ac_cachep, ac);
6261 out:
6262 if (inquota && ar->len < inquota)
6263 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6264 if (!ar->len) {
6265 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6266 /* release all the reserved blocks if non delalloc */
6267 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6268 reserv_clstrs);
6269 }
6270
6271 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6272
6273 return block;
6274 }
6275
6276 /*
6277 * We can merge two free data extents only if the physical blocks
6278 * are contiguous, AND the extents were freed by the same transaction,
6279 * AND the blocks are associated with the same group.
6280 */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)6281 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6282 struct ext4_free_data *entry,
6283 struct ext4_free_data *new_entry,
6284 struct rb_root *entry_rb_root)
6285 {
6286 if ((entry->efd_tid != new_entry->efd_tid) ||
6287 (entry->efd_group != new_entry->efd_group))
6288 return;
6289 if (entry->efd_start_cluster + entry->efd_count ==
6290 new_entry->efd_start_cluster) {
6291 new_entry->efd_start_cluster = entry->efd_start_cluster;
6292 new_entry->efd_count += entry->efd_count;
6293 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6294 entry->efd_start_cluster) {
6295 new_entry->efd_count += entry->efd_count;
6296 } else
6297 return;
6298 spin_lock(&sbi->s_md_lock);
6299 list_del(&entry->efd_list);
6300 spin_unlock(&sbi->s_md_lock);
6301 rb_erase(&entry->efd_node, entry_rb_root);
6302 kmem_cache_free(ext4_free_data_cachep, entry);
6303 }
6304
6305 static noinline_for_stack void
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)6306 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6307 struct ext4_free_data *new_entry)
6308 {
6309 ext4_group_t group = e4b->bd_group;
6310 ext4_grpblk_t cluster;
6311 ext4_grpblk_t clusters = new_entry->efd_count;
6312 struct ext4_free_data *entry;
6313 struct ext4_group_info *db = e4b->bd_info;
6314 struct super_block *sb = e4b->bd_sb;
6315 struct ext4_sb_info *sbi = EXT4_SB(sb);
6316 struct rb_node **n = &db->bb_free_root.rb_node, *node;
6317 struct rb_node *parent = NULL, *new_node;
6318
6319 BUG_ON(!ext4_handle_valid(handle));
6320 BUG_ON(e4b->bd_bitmap_folio == NULL);
6321 BUG_ON(e4b->bd_buddy_folio == NULL);
6322
6323 new_node = &new_entry->efd_node;
6324 cluster = new_entry->efd_start_cluster;
6325
6326 if (!*n) {
6327 /* first free block exent. We need to
6328 protect buddy cache from being freed,
6329 * otherwise we'll refresh it from
6330 * on-disk bitmap and lose not-yet-available
6331 * blocks */
6332 folio_get(e4b->bd_buddy_folio);
6333 folio_get(e4b->bd_bitmap_folio);
6334 }
6335 while (*n) {
6336 parent = *n;
6337 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6338 if (cluster < entry->efd_start_cluster)
6339 n = &(*n)->rb_left;
6340 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6341 n = &(*n)->rb_right;
6342 else {
6343 ext4_grp_locked_error(sb, group, 0,
6344 ext4_group_first_block_no(sb, group) +
6345 EXT4_C2B(sbi, cluster),
6346 "Block already on to-be-freed list");
6347 kmem_cache_free(ext4_free_data_cachep, new_entry);
6348 return;
6349 }
6350 }
6351
6352 rb_link_node(new_node, parent, n);
6353 rb_insert_color(new_node, &db->bb_free_root);
6354
6355 /* Now try to see the extent can be merged to left and right */
6356 node = rb_prev(new_node);
6357 if (node) {
6358 entry = rb_entry(node, struct ext4_free_data, efd_node);
6359 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6360 &(db->bb_free_root));
6361 }
6362
6363 node = rb_next(new_node);
6364 if (node) {
6365 entry = rb_entry(node, struct ext4_free_data, efd_node);
6366 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6367 &(db->bb_free_root));
6368 }
6369
6370 spin_lock(&sbi->s_md_lock);
6371 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6372 sbi->s_mb_free_pending += clusters;
6373 spin_unlock(&sbi->s_md_lock);
6374 }
6375
ext4_free_blocks_simple(struct inode * inode,ext4_fsblk_t block,unsigned long count)6376 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6377 unsigned long count)
6378 {
6379 struct super_block *sb = inode->i_sb;
6380 ext4_group_t group;
6381 ext4_grpblk_t blkoff;
6382
6383 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6384 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6385 EXT4_MB_BITMAP_MARKED_CHECK |
6386 EXT4_MB_SYNC_UPDATE,
6387 NULL);
6388 }
6389
6390 /**
6391 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6392 * Used by ext4_free_blocks()
6393 * @handle: handle for this transaction
6394 * @inode: inode
6395 * @block: starting physical block to be freed
6396 * @count: number of blocks to be freed
6397 * @flags: flags used by ext4_free_blocks
6398 */
ext4_mb_clear_bb(handle_t * handle,struct inode * inode,ext4_fsblk_t block,unsigned long count,int flags)6399 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6400 ext4_fsblk_t block, unsigned long count,
6401 int flags)
6402 {
6403 struct super_block *sb = inode->i_sb;
6404 struct ext4_group_info *grp;
6405 unsigned int overflow;
6406 ext4_grpblk_t bit;
6407 ext4_group_t block_group;
6408 struct ext4_sb_info *sbi;
6409 struct ext4_buddy e4b;
6410 unsigned int count_clusters;
6411 int err = 0;
6412 int mark_flags = 0;
6413 ext4_grpblk_t changed;
6414
6415 sbi = EXT4_SB(sb);
6416
6417 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6418 !ext4_inode_block_valid(inode, block, count)) {
6419 ext4_error(sb, "Freeing blocks in system zone - "
6420 "Block = %llu, count = %lu", block, count);
6421 /* err = 0. ext4_std_error should be a no op */
6422 goto error_out;
6423 }
6424 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6425
6426 do_more:
6427 overflow = 0;
6428 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6429
6430 grp = ext4_get_group_info(sb, block_group);
6431 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6432 return;
6433
6434 /*
6435 * Check to see if we are freeing blocks across a group
6436 * boundary.
6437 */
6438 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6439 overflow = EXT4_C2B(sbi, bit) + count -
6440 EXT4_BLOCKS_PER_GROUP(sb);
6441 count -= overflow;
6442 /* The range changed so it's no longer validated */
6443 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6444 }
6445 count_clusters = EXT4_NUM_B2C(sbi, count);
6446 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6447
6448 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6449 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6450 GFP_NOFS|__GFP_NOFAIL);
6451 if (err)
6452 goto error_out;
6453
6454 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6455 !ext4_inode_block_valid(inode, block, count)) {
6456 ext4_error(sb, "Freeing blocks in system zone - "
6457 "Block = %llu, count = %lu", block, count);
6458 /* err = 0. ext4_std_error should be a no op */
6459 goto error_clean;
6460 }
6461
6462 #ifdef AGGRESSIVE_CHECK
6463 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6464 #endif
6465 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6466 count_clusters, mark_flags, &changed);
6467
6468
6469 if (err && changed == 0)
6470 goto error_clean;
6471
6472 #ifdef AGGRESSIVE_CHECK
6473 BUG_ON(changed != count_clusters);
6474 #endif
6475
6476 /*
6477 * We need to make sure we don't reuse the freed block until after the
6478 * transaction is committed. We make an exception if the inode is to be
6479 * written in writeback mode since writeback mode has weak data
6480 * consistency guarantees.
6481 */
6482 if (ext4_handle_valid(handle) &&
6483 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6484 !ext4_should_writeback_data(inode))) {
6485 struct ext4_free_data *new_entry;
6486 /*
6487 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6488 * to fail.
6489 */
6490 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6491 GFP_NOFS|__GFP_NOFAIL);
6492 new_entry->efd_start_cluster = bit;
6493 new_entry->efd_group = block_group;
6494 new_entry->efd_count = count_clusters;
6495 new_entry->efd_tid = handle->h_transaction->t_tid;
6496
6497 ext4_lock_group(sb, block_group);
6498 ext4_mb_free_metadata(handle, &e4b, new_entry);
6499 } else {
6500 if (test_opt(sb, DISCARD)) {
6501 err = ext4_issue_discard(sb, block_group, bit,
6502 count_clusters);
6503 /*
6504 * Ignore EOPNOTSUPP error. This is consistent with
6505 * what happens when using journal.
6506 */
6507 if (err == -EOPNOTSUPP)
6508 err = 0;
6509 if (err)
6510 ext4_msg(sb, KERN_WARNING, "discard request in"
6511 " group:%u block:%d count:%lu failed"
6512 " with %d", block_group, bit, count,
6513 err);
6514 }
6515
6516 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6517
6518 ext4_lock_group(sb, block_group);
6519 mb_free_blocks(inode, &e4b, bit, count_clusters);
6520 }
6521
6522 ext4_unlock_group(sb, block_group);
6523
6524 /*
6525 * on a bigalloc file system, defer the s_freeclusters_counter
6526 * update to the caller (ext4_remove_space and friends) so they
6527 * can determine if a cluster freed here should be rereserved
6528 */
6529 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6530 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6531 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6532 percpu_counter_add(&sbi->s_freeclusters_counter,
6533 count_clusters);
6534 }
6535
6536 if (overflow && !err) {
6537 block += count;
6538 count = overflow;
6539 ext4_mb_unload_buddy(&e4b);
6540 /* The range changed so it's no longer validated */
6541 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6542 goto do_more;
6543 }
6544
6545 error_clean:
6546 ext4_mb_unload_buddy(&e4b);
6547 error_out:
6548 ext4_std_error(sb, err);
6549 }
6550
6551 /**
6552 * ext4_free_blocks() -- Free given blocks and update quota
6553 * @handle: handle for this transaction
6554 * @inode: inode
6555 * @bh: optional buffer of the block to be freed
6556 * @block: starting physical block to be freed
6557 * @count: number of blocks to be freed
6558 * @flags: flags used by ext4_free_blocks
6559 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)6560 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6561 struct buffer_head *bh, ext4_fsblk_t block,
6562 unsigned long count, int flags)
6563 {
6564 struct super_block *sb = inode->i_sb;
6565 unsigned int overflow;
6566 struct ext4_sb_info *sbi;
6567
6568 sbi = EXT4_SB(sb);
6569
6570 if (bh) {
6571 if (block)
6572 BUG_ON(block != bh->b_blocknr);
6573 else
6574 block = bh->b_blocknr;
6575 }
6576
6577 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6578 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6579 return;
6580 }
6581
6582 might_sleep();
6583
6584 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6585 !ext4_inode_block_valid(inode, block, count)) {
6586 ext4_error(sb, "Freeing blocks not in datazone - "
6587 "block = %llu, count = %lu", block, count);
6588 return;
6589 }
6590 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6591
6592 ext4_debug("freeing block %llu\n", block);
6593 trace_ext4_free_blocks(inode, block, count, flags);
6594
6595 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6596 BUG_ON(count > 1);
6597
6598 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6599 inode, bh, block);
6600 }
6601
6602 /*
6603 * If the extent to be freed does not begin on a cluster
6604 * boundary, we need to deal with partial clusters at the
6605 * beginning and end of the extent. Normally we will free
6606 * blocks at the beginning or the end unless we are explicitly
6607 * requested to avoid doing so.
6608 */
6609 overflow = EXT4_PBLK_COFF(sbi, block);
6610 if (overflow) {
6611 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6612 overflow = sbi->s_cluster_ratio - overflow;
6613 block += overflow;
6614 if (count > overflow)
6615 count -= overflow;
6616 else
6617 return;
6618 } else {
6619 block -= overflow;
6620 count += overflow;
6621 }
6622 /* The range changed so it's no longer validated */
6623 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6624 }
6625 overflow = EXT4_LBLK_COFF(sbi, count);
6626 if (overflow) {
6627 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6628 if (count > overflow)
6629 count -= overflow;
6630 else
6631 return;
6632 } else
6633 count += sbi->s_cluster_ratio - overflow;
6634 /* The range changed so it's no longer validated */
6635 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6636 }
6637
6638 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6639 int i;
6640 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6641
6642 for (i = 0; i < count; i++) {
6643 cond_resched();
6644 if (is_metadata)
6645 bh = sb_find_get_block(inode->i_sb, block + i);
6646 ext4_forget(handle, is_metadata, inode, bh, block + i);
6647 }
6648 }
6649
6650 ext4_mb_clear_bb(handle, inode, block, count, flags);
6651 }
6652
6653 /**
6654 * ext4_group_add_blocks() -- Add given blocks to an existing group
6655 * @handle: handle to this transaction
6656 * @sb: super block
6657 * @block: start physical block to add to the block group
6658 * @count: number of blocks to free
6659 *
6660 * This marks the blocks as free in the bitmap and buddy.
6661 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)6662 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6663 ext4_fsblk_t block, unsigned long count)
6664 {
6665 ext4_group_t block_group;
6666 ext4_grpblk_t bit;
6667 struct ext4_sb_info *sbi = EXT4_SB(sb);
6668 struct ext4_buddy e4b;
6669 int err = 0;
6670 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6671 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6672 unsigned long cluster_count = last_cluster - first_cluster + 1;
6673 ext4_grpblk_t changed;
6674
6675 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6676
6677 if (cluster_count == 0)
6678 return 0;
6679
6680 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6681 /*
6682 * Check to see if we are freeing blocks across a group
6683 * boundary.
6684 */
6685 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6686 ext4_warning(sb, "too many blocks added to group %u",
6687 block_group);
6688 err = -EINVAL;
6689 goto error_out;
6690 }
6691
6692 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6693 if (err)
6694 goto error_out;
6695
6696 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6697 ext4_error(sb, "Adding blocks in system zones - "
6698 "Block = %llu, count = %lu",
6699 block, count);
6700 err = -EINVAL;
6701 goto error_clean;
6702 }
6703
6704 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6705 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6706 &changed);
6707 if (err && changed == 0)
6708 goto error_clean;
6709
6710 if (changed != cluster_count)
6711 ext4_error(sb, "bit already cleared in group %u", block_group);
6712
6713 ext4_lock_group(sb, block_group);
6714 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6715 ext4_unlock_group(sb, block_group);
6716 percpu_counter_add(&sbi->s_freeclusters_counter,
6717 changed);
6718
6719 error_clean:
6720 ext4_mb_unload_buddy(&e4b);
6721 error_out:
6722 ext4_std_error(sb, err);
6723 return err;
6724 }
6725
6726 /**
6727 * ext4_trim_extent -- function to TRIM one single free extent in the group
6728 * @sb: super block for the file system
6729 * @start: starting block of the free extent in the alloc. group
6730 * @count: number of blocks to TRIM
6731 * @e4b: ext4 buddy for the group
6732 *
6733 * Trim "count" blocks starting at "start" in the "group". To assure that no
6734 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6735 * be called with under the group lock.
6736 */
ext4_trim_extent(struct super_block * sb,int start,int count,struct ext4_buddy * e4b)6737 static int ext4_trim_extent(struct super_block *sb,
6738 int start, int count, struct ext4_buddy *e4b)
6739 __releases(bitlock)
6740 __acquires(bitlock)
6741 {
6742 struct ext4_free_extent ex;
6743 ext4_group_t group = e4b->bd_group;
6744 int ret = 0;
6745
6746 trace_ext4_trim_extent(sb, group, start, count);
6747
6748 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6749
6750 ex.fe_start = start;
6751 ex.fe_group = group;
6752 ex.fe_len = count;
6753
6754 /*
6755 * Mark blocks used, so no one can reuse them while
6756 * being trimmed.
6757 */
6758 mb_mark_used(e4b, &ex);
6759 ext4_unlock_group(sb, group);
6760 ret = ext4_issue_discard(sb, group, start, count);
6761 ext4_lock_group(sb, group);
6762 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6763 return ret;
6764 }
6765
ext4_last_grp_cluster(struct super_block * sb,ext4_group_t grp)6766 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6767 ext4_group_t grp)
6768 {
6769 unsigned long nr_clusters_in_group;
6770
6771 if (grp < (ext4_get_groups_count(sb) - 1))
6772 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6773 else
6774 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6775 ext4_group_first_block_no(sb, grp))
6776 >> EXT4_CLUSTER_BITS(sb);
6777
6778 return nr_clusters_in_group - 1;
6779 }
6780
ext4_trim_interrupted(void)6781 static bool ext4_trim_interrupted(void)
6782 {
6783 return fatal_signal_pending(current) || freezing(current);
6784 }
6785
ext4_try_to_trim_range(struct super_block * sb,struct ext4_buddy * e4b,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6786 static int ext4_try_to_trim_range(struct super_block *sb,
6787 struct ext4_buddy *e4b, ext4_grpblk_t start,
6788 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6789 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6790 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6791 {
6792 ext4_grpblk_t next, count, free_count, last, origin_start;
6793 bool set_trimmed = false;
6794 void *bitmap;
6795
6796 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6797 return 0;
6798
6799 last = ext4_last_grp_cluster(sb, e4b->bd_group);
6800 bitmap = e4b->bd_bitmap;
6801 if (start == 0 && max >= last)
6802 set_trimmed = true;
6803 origin_start = start;
6804 start = max(e4b->bd_info->bb_first_free, start);
6805 count = 0;
6806 free_count = 0;
6807
6808 while (start <= max) {
6809 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6810 if (start > max)
6811 break;
6812
6813 next = mb_find_next_bit(bitmap, last + 1, start);
6814 if (origin_start == 0 && next >= last)
6815 set_trimmed = true;
6816
6817 if ((next - start) >= minblocks) {
6818 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6819
6820 if (ret && ret != -EOPNOTSUPP)
6821 return count;
6822 count += next - start;
6823 }
6824 free_count += next - start;
6825 start = next + 1;
6826
6827 if (ext4_trim_interrupted())
6828 return count;
6829
6830 if (need_resched()) {
6831 ext4_unlock_group(sb, e4b->bd_group);
6832 cond_resched();
6833 ext4_lock_group(sb, e4b->bd_group);
6834 }
6835
6836 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6837 break;
6838 }
6839
6840 if (set_trimmed)
6841 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6842
6843 return count;
6844 }
6845
6846 /**
6847 * ext4_trim_all_free -- function to trim all free space in alloc. group
6848 * @sb: super block for file system
6849 * @group: group to be trimmed
6850 * @start: first group block to examine
6851 * @max: last group block to examine
6852 * @minblocks: minimum extent block count
6853 *
6854 * ext4_trim_all_free walks through group's block bitmap searching for free
6855 * extents. When the free extent is found, mark it as used in group buddy
6856 * bitmap. Then issue a TRIM command on this extent and free the extent in
6857 * the group buddy bitmap.
6858 */
6859 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6860 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6861 ext4_grpblk_t start, ext4_grpblk_t max,
6862 ext4_grpblk_t minblocks)
6863 {
6864 struct ext4_buddy e4b;
6865 int ret;
6866
6867 trace_ext4_trim_all_free(sb, group, start, max);
6868
6869 ret = ext4_mb_load_buddy(sb, group, &e4b);
6870 if (ret) {
6871 ext4_warning(sb, "Error %d loading buddy information for %u",
6872 ret, group);
6873 return ret;
6874 }
6875
6876 ext4_lock_group(sb, group);
6877
6878 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6879 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6880 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6881 else
6882 ret = 0;
6883
6884 ext4_unlock_group(sb, group);
6885 ext4_mb_unload_buddy(&e4b);
6886
6887 ext4_debug("trimmed %d blocks in the group %d\n",
6888 ret, group);
6889
6890 return ret;
6891 }
6892
6893 /**
6894 * ext4_trim_fs() -- trim ioctl handle function
6895 * @sb: superblock for filesystem
6896 * @range: fstrim_range structure
6897 *
6898 * start: First Byte to trim
6899 * len: number of Bytes to trim from start
6900 * minlen: minimum extent length in Bytes
6901 * ext4_trim_fs goes through all allocation groups containing Bytes from
6902 * start to start+len. For each such a group ext4_trim_all_free function
6903 * is invoked to trim all free space.
6904 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)6905 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6906 {
6907 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6908 struct ext4_group_info *grp;
6909 ext4_group_t group, first_group, last_group;
6910 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6911 uint64_t start, end, minlen, trimmed = 0;
6912 ext4_fsblk_t first_data_blk =
6913 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6914 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6915 int ret = 0;
6916
6917 start = range->start >> sb->s_blocksize_bits;
6918 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6919 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6920 range->minlen >> sb->s_blocksize_bits);
6921
6922 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6923 start >= max_blks ||
6924 range->len < sb->s_blocksize)
6925 return -EINVAL;
6926 /* No point to try to trim less than discard granularity */
6927 if (range->minlen < discard_granularity) {
6928 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6929 discard_granularity >> sb->s_blocksize_bits);
6930 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6931 goto out;
6932 }
6933 if (end >= max_blks - 1)
6934 end = max_blks - 1;
6935 if (end <= first_data_blk)
6936 goto out;
6937 if (start < first_data_blk)
6938 start = first_data_blk;
6939
6940 /* Determine first and last group to examine based on start and end */
6941 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6942 &first_group, &first_cluster);
6943 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6944 &last_group, &last_cluster);
6945
6946 /* end now represents the last cluster to discard in this group */
6947 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6948
6949 for (group = first_group; group <= last_group; group++) {
6950 if (ext4_trim_interrupted())
6951 break;
6952 grp = ext4_get_group_info(sb, group);
6953 if (!grp)
6954 continue;
6955 /* We only do this if the grp has never been initialized */
6956 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6957 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6958 if (ret)
6959 break;
6960 }
6961
6962 /*
6963 * For all the groups except the last one, last cluster will
6964 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6965 * change it for the last group, note that last_cluster is
6966 * already computed earlier by ext4_get_group_no_and_offset()
6967 */
6968 if (group == last_group)
6969 end = last_cluster;
6970 if (grp->bb_free >= minlen) {
6971 cnt = ext4_trim_all_free(sb, group, first_cluster,
6972 end, minlen);
6973 if (cnt < 0) {
6974 ret = cnt;
6975 break;
6976 }
6977 trimmed += cnt;
6978 }
6979
6980 /*
6981 * For every group except the first one, we are sure
6982 * that the first cluster to discard will be cluster #0.
6983 */
6984 first_cluster = 0;
6985 }
6986
6987 if (!ret)
6988 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6989
6990 out:
6991 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6992 return ret;
6993 }
6994
6995 /* Iterate all the free extents in the group. */
6996 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t first,ext4_grpblk_t end,ext4_mballoc_query_range_fn meta_formatter,ext4_mballoc_query_range_fn formatter,void * priv)6997 ext4_mballoc_query_range(
6998 struct super_block *sb,
6999 ext4_group_t group,
7000 ext4_grpblk_t first,
7001 ext4_grpblk_t end,
7002 ext4_mballoc_query_range_fn meta_formatter,
7003 ext4_mballoc_query_range_fn formatter,
7004 void *priv)
7005 {
7006 void *bitmap;
7007 ext4_grpblk_t start, next;
7008 struct ext4_buddy e4b;
7009 int error;
7010
7011 error = ext4_mb_load_buddy(sb, group, &e4b);
7012 if (error)
7013 return error;
7014 bitmap = e4b.bd_bitmap;
7015
7016 ext4_lock_group(sb, group);
7017
7018 start = max(e4b.bd_info->bb_first_free, first);
7019 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7020 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7021 if (meta_formatter && start != first) {
7022 if (start > end)
7023 start = end;
7024 ext4_unlock_group(sb, group);
7025 error = meta_formatter(sb, group, first, start - first,
7026 priv);
7027 if (error)
7028 goto out_unload;
7029 ext4_lock_group(sb, group);
7030 }
7031 while (start <= end) {
7032 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7033 if (start > end)
7034 break;
7035 next = mb_find_next_bit(bitmap, end + 1, start);
7036
7037 ext4_unlock_group(sb, group);
7038 error = formatter(sb, group, start, next - start, priv);
7039 if (error)
7040 goto out_unload;
7041 ext4_lock_group(sb, group);
7042
7043 start = next + 1;
7044 }
7045
7046 ext4_unlock_group(sb, group);
7047 out_unload:
7048 ext4_mb_unload_buddy(&e4b);
7049
7050 return error;
7051 }
7052
7053 #ifdef CONFIG_EXT4_KUNIT_TESTS
7054 #include "mballoc-test.c"
7055 #endif
7056