xref: /linux/fs/ext4/fast_commit.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167 
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170 
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 	BUFFER_TRACE(bh, "");
174 	if (uptodate) {
175 		ext4_debug("%s: Block %lld up-to-date",
176 			   __func__, bh->b_blocknr);
177 		set_buffer_uptodate(bh);
178 	} else {
179 		ext4_debug("%s: Block %lld not up-to-date",
180 			   __func__, bh->b_blocknr);
181 		clear_buffer_uptodate(bh);
182 	}
183 
184 	unlock_buffer(bh);
185 }
186 
ext4_fc_reset_inode(struct inode * inode)187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 	struct ext4_inode_info *ei = EXT4_I(inode);
190 
191 	ei->i_fc_lblk_start = 0;
192 	ei->i_fc_lblk_len = 0;
193 }
194 
ext4_fc_init_inode(struct inode * inode)195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 	struct ext4_inode_info *ei = EXT4_I(inode);
198 
199 	ext4_fc_reset_inode(inode);
200 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 	INIT_LIST_HEAD(&ei->i_fc_list);
202 	INIT_LIST_HEAD(&ei->i_fc_dilist);
203 	init_waitqueue_head(&ei->i_fc_wait);
204 	atomic_set(&ei->i_fc_updates, 0);
205 }
206 
207 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 	wait_queue_head_t *wq;
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 #if (BITS_PER_LONG < 64)
215 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 			EXT4_STATE_FC_COMMITTING);
217 	wq = bit_waitqueue(&ei->i_state_flags,
218 				EXT4_STATE_FC_COMMITTING);
219 #else
220 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 			EXT4_STATE_FC_COMMITTING);
222 	wq = bit_waitqueue(&ei->i_flags,
223 				EXT4_STATE_FC_COMMITTING);
224 #endif
225 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 	schedule();
229 	finish_wait(wq, &wait.wq_entry);
230 }
231 
ext4_fc_disabled(struct super_block * sb)232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237 
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
ext4_fc_start_update(struct inode * inode)245 void ext4_fc_start_update(struct inode *inode)
246 {
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 
249 	if (ext4_fc_disabled(inode->i_sb))
250 		return;
251 
252 restart:
253 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 	if (list_empty(&ei->i_fc_list))
255 		goto out;
256 
257 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 		ext4_fc_wait_committing_inode(inode);
259 		goto restart;
260 	}
261 out:
262 	atomic_inc(&ei->i_fc_updates);
263 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265 
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
ext4_fc_stop_update(struct inode * inode)269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 	struct ext4_inode_info *ei = EXT4_I(inode);
272 
273 	if (ext4_fc_disabled(inode->i_sb))
274 		return;
275 
276 	if (atomic_dec_and_test(&ei->i_fc_updates))
277 		wake_up_all(&ei->i_fc_wait);
278 }
279 
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
ext4_fc_del(struct inode * inode)284 void ext4_fc_del(struct inode *inode)
285 {
286 	struct ext4_inode_info *ei = EXT4_I(inode);
287 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 	struct ext4_fc_dentry_update *fc_dentry;
289 
290 	if (ext4_fc_disabled(inode->i_sb))
291 		return;
292 
293 restart:
294 	spin_lock(&sbi->s_fc_lock);
295 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 		spin_unlock(&sbi->s_fc_lock);
297 		return;
298 	}
299 
300 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 		ext4_fc_wait_committing_inode(inode);
302 		goto restart;
303 	}
304 
305 	if (!list_empty(&ei->i_fc_list))
306 		list_del_init(&ei->i_fc_list);
307 
308 	/*
309 	 * Since this inode is getting removed, let's also remove all FC
310 	 * dentry create references, since it is not needed to log it anyways.
311 	 */
312 	if (list_empty(&ei->i_fc_dilist)) {
313 		spin_unlock(&sbi->s_fc_lock);
314 		return;
315 	}
316 
317 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 	list_del_init(&fc_dentry->fcd_list);
320 	list_del_init(&fc_dentry->fcd_dilist);
321 
322 	WARN_ON(!list_empty(&ei->i_fc_dilist));
323 	spin_unlock(&sbi->s_fc_lock);
324 
325 	if (fc_dentry->fcd_name.name &&
326 		fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 		kfree(fc_dentry->fcd_name.name);
328 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329 
330 	return;
331 }
332 
333 /*
334  * Mark file system as fast commit ineligible, and record latest
335  * ineligible transaction tid. This means until the recorded
336  * transaction, commit operation would result in a full jbd2 commit.
337  */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
341 	tid_t tid;
342 	bool has_transaction = true;
343 	bool is_ineligible;
344 
345 	if (ext4_fc_disabled(sb))
346 		return;
347 
348 	if (handle && !IS_ERR(handle))
349 		tid = handle->h_transaction->t_tid;
350 	else {
351 		read_lock(&sbi->s_journal->j_state_lock);
352 		if (sbi->s_journal->j_running_transaction)
353 			tid = sbi->s_journal->j_running_transaction->t_tid;
354 		else
355 			has_transaction = false;
356 		read_unlock(&sbi->s_journal->j_state_lock);
357 	}
358 	spin_lock(&sbi->s_fc_lock);
359 	is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
361 		sbi->s_fc_ineligible_tid = tid;
362 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
363 	spin_unlock(&sbi->s_fc_lock);
364 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
365 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
366 }
367 
368 /*
369  * Generic fast commit tracking function. If this is the first time this we are
370  * called after a full commit, we initialize fast commit fields and then call
371  * __fc_track_fn() with update = 0. If we have already been called after a full
372  * commit, we pass update = 1. Based on that, the track function can determine
373  * if it needs to track a field for the first time or if it needs to just
374  * update the previously tracked value.
375  *
376  * If enqueue is set, this function enqueues the inode in fast commit list.
377  */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(handle_t * handle,struct inode *,void *,bool),void * args,int enqueue)378 static int ext4_fc_track_template(
379 	handle_t *handle, struct inode *inode,
380 	int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
381 	void *args, int enqueue)
382 {
383 	bool update = false;
384 	struct ext4_inode_info *ei = EXT4_I(inode);
385 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
386 	tid_t tid = 0;
387 	int ret;
388 
389 	tid = handle->h_transaction->t_tid;
390 	mutex_lock(&ei->i_fc_lock);
391 	if (tid == ei->i_sync_tid) {
392 		update = true;
393 	} else {
394 		ext4_fc_reset_inode(inode);
395 		ei->i_sync_tid = tid;
396 	}
397 	ret = __fc_track_fn(handle, inode, args, update);
398 	mutex_unlock(&ei->i_fc_lock);
399 
400 	if (!enqueue)
401 		return ret;
402 
403 	spin_lock(&sbi->s_fc_lock);
404 	if (list_empty(&EXT4_I(inode)->i_fc_list))
405 		list_add_tail(&EXT4_I(inode)->i_fc_list,
406 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
407 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
408 				&sbi->s_fc_q[FC_Q_STAGING] :
409 				&sbi->s_fc_q[FC_Q_MAIN]);
410 	spin_unlock(&sbi->s_fc_lock);
411 
412 	return ret;
413 }
414 
415 struct __track_dentry_update_args {
416 	struct dentry *dentry;
417 	int op;
418 };
419 
420 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(handle_t * handle,struct inode * inode,void * arg,bool update)421 static int __track_dentry_update(handle_t *handle, struct inode *inode,
422 				 void *arg, bool update)
423 {
424 	struct ext4_fc_dentry_update *node;
425 	struct ext4_inode_info *ei = EXT4_I(inode);
426 	struct __track_dentry_update_args *dentry_update =
427 		(struct __track_dentry_update_args *)arg;
428 	struct dentry *dentry = dentry_update->dentry;
429 	struct inode *dir = dentry->d_parent->d_inode;
430 	struct super_block *sb = inode->i_sb;
431 	struct ext4_sb_info *sbi = EXT4_SB(sb);
432 
433 	mutex_unlock(&ei->i_fc_lock);
434 
435 	if (IS_ENCRYPTED(dir)) {
436 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
437 					handle);
438 		mutex_lock(&ei->i_fc_lock);
439 		return -EOPNOTSUPP;
440 	}
441 
442 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
443 	if (!node) {
444 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
445 		mutex_lock(&ei->i_fc_lock);
446 		return -ENOMEM;
447 	}
448 
449 	node->fcd_op = dentry_update->op;
450 	node->fcd_parent = dir->i_ino;
451 	node->fcd_ino = inode->i_ino;
452 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
453 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
454 		if (!node->fcd_name.name) {
455 			kmem_cache_free(ext4_fc_dentry_cachep, node);
456 			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
457 			mutex_lock(&ei->i_fc_lock);
458 			return -ENOMEM;
459 		}
460 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
461 			dentry->d_name.len);
462 	} else {
463 		memcpy(node->fcd_iname, dentry->d_name.name,
464 			dentry->d_name.len);
465 		node->fcd_name.name = node->fcd_iname;
466 	}
467 	node->fcd_name.len = dentry->d_name.len;
468 	INIT_LIST_HEAD(&node->fcd_dilist);
469 	spin_lock(&sbi->s_fc_lock);
470 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
471 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
472 		list_add_tail(&node->fcd_list,
473 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
474 	else
475 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
476 
477 	/*
478 	 * This helps us keep a track of all fc_dentry updates which is part of
479 	 * this ext4 inode. So in case the inode is getting unlinked, before
480 	 * even we get a chance to fsync, we could remove all fc_dentry
481 	 * references while evicting the inode in ext4_fc_del().
482 	 * Also with this, we don't need to loop over all the inodes in
483 	 * sbi->s_fc_q to get the corresponding inode in
484 	 * ext4_fc_commit_dentry_updates().
485 	 */
486 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
487 		WARN_ON(!list_empty(&ei->i_fc_dilist));
488 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
489 	}
490 	spin_unlock(&sbi->s_fc_lock);
491 	mutex_lock(&ei->i_fc_lock);
492 
493 	return 0;
494 }
495 
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)496 void __ext4_fc_track_unlink(handle_t *handle,
497 		struct inode *inode, struct dentry *dentry)
498 {
499 	struct __track_dentry_update_args args;
500 	int ret;
501 
502 	args.dentry = dentry;
503 	args.op = EXT4_FC_TAG_UNLINK;
504 
505 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
506 					(void *)&args, 0);
507 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
508 }
509 
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)510 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
511 {
512 	struct inode *inode = d_inode(dentry);
513 
514 	if (ext4_fc_disabled(inode->i_sb))
515 		return;
516 
517 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
518 		return;
519 
520 	__ext4_fc_track_unlink(handle, inode, dentry);
521 }
522 
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)523 void __ext4_fc_track_link(handle_t *handle,
524 	struct inode *inode, struct dentry *dentry)
525 {
526 	struct __track_dentry_update_args args;
527 	int ret;
528 
529 	args.dentry = dentry;
530 	args.op = EXT4_FC_TAG_LINK;
531 
532 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
533 					(void *)&args, 0);
534 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
535 }
536 
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)537 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
538 {
539 	struct inode *inode = d_inode(dentry);
540 
541 	if (ext4_fc_disabled(inode->i_sb))
542 		return;
543 
544 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
545 		return;
546 
547 	__ext4_fc_track_link(handle, inode, dentry);
548 }
549 
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)550 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
551 			  struct dentry *dentry)
552 {
553 	struct __track_dentry_update_args args;
554 	int ret;
555 
556 	args.dentry = dentry;
557 	args.op = EXT4_FC_TAG_CREAT;
558 
559 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
560 					(void *)&args, 0);
561 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
562 }
563 
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)564 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
565 {
566 	struct inode *inode = d_inode(dentry);
567 
568 	if (ext4_fc_disabled(inode->i_sb))
569 		return;
570 
571 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
572 		return;
573 
574 	__ext4_fc_track_create(handle, inode, dentry);
575 }
576 
577 /* __track_fn for inode tracking */
__track_inode(handle_t * handle,struct inode * inode,void * arg,bool update)578 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
579 			 bool update)
580 {
581 	if (update)
582 		return -EEXIST;
583 
584 	EXT4_I(inode)->i_fc_lblk_len = 0;
585 
586 	return 0;
587 }
588 
ext4_fc_track_inode(handle_t * handle,struct inode * inode)589 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
590 {
591 	int ret;
592 
593 	if (S_ISDIR(inode->i_mode))
594 		return;
595 
596 	if (ext4_fc_disabled(inode->i_sb))
597 		return;
598 
599 	if (ext4_should_journal_data(inode)) {
600 		ext4_fc_mark_ineligible(inode->i_sb,
601 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
602 		return;
603 	}
604 
605 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
606 		return;
607 
608 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
609 	trace_ext4_fc_track_inode(handle, inode, ret);
610 }
611 
612 struct __track_range_args {
613 	ext4_lblk_t start, end;
614 };
615 
616 /* __track_fn for tracking data updates */
__track_range(handle_t * handle,struct inode * inode,void * arg,bool update)617 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
618 			 bool update)
619 {
620 	struct ext4_inode_info *ei = EXT4_I(inode);
621 	ext4_lblk_t oldstart;
622 	struct __track_range_args *__arg =
623 		(struct __track_range_args *)arg;
624 
625 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
626 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
627 		return -ECANCELED;
628 	}
629 
630 	oldstart = ei->i_fc_lblk_start;
631 
632 	if (update && ei->i_fc_lblk_len > 0) {
633 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
634 		ei->i_fc_lblk_len =
635 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
636 				ei->i_fc_lblk_start + 1;
637 	} else {
638 		ei->i_fc_lblk_start = __arg->start;
639 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
640 	}
641 
642 	return 0;
643 }
644 
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)645 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
646 			 ext4_lblk_t end)
647 {
648 	struct __track_range_args args;
649 	int ret;
650 
651 	if (S_ISDIR(inode->i_mode))
652 		return;
653 
654 	if (ext4_fc_disabled(inode->i_sb))
655 		return;
656 
657 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
658 		return;
659 
660 	if (ext4_has_inline_data(inode)) {
661 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
662 					handle);
663 		return;
664 	}
665 
666 	args.start = start;
667 	args.end = end;
668 
669 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
670 
671 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
672 }
673 
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)674 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
675 {
676 	blk_opf_t write_flags = REQ_SYNC;
677 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
678 
679 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
680 	if (test_opt(sb, BARRIER) && is_tail)
681 		write_flags |= REQ_FUA | REQ_PREFLUSH;
682 	lock_buffer(bh);
683 	set_buffer_dirty(bh);
684 	set_buffer_uptodate(bh);
685 	bh->b_end_io = ext4_end_buffer_io_sync;
686 	submit_bh(REQ_OP_WRITE | write_flags, bh);
687 	EXT4_SB(sb)->s_fc_bh = NULL;
688 }
689 
690 /* Ext4 commit path routines */
691 
692 /*
693  * Allocate len bytes on a fast commit buffer.
694  *
695  * During the commit time this function is used to manage fast commit
696  * block space. We don't split a fast commit log onto different
697  * blocks. So this function makes sure that if there's not enough space
698  * on the current block, the remaining space in the current block is
699  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
700  * new block is from jbd2 and CRC is updated to reflect the padding
701  * we added.
702  */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)703 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
704 {
705 	struct ext4_fc_tl tl;
706 	struct ext4_sb_info *sbi = EXT4_SB(sb);
707 	struct buffer_head *bh;
708 	int bsize = sbi->s_journal->j_blocksize;
709 	int ret, off = sbi->s_fc_bytes % bsize;
710 	int remaining;
711 	u8 *dst;
712 
713 	/*
714 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
715 	 * cannot fulfill the request.
716 	 */
717 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
718 		return NULL;
719 
720 	if (!sbi->s_fc_bh) {
721 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
722 		if (ret)
723 			return NULL;
724 		sbi->s_fc_bh = bh;
725 	}
726 	dst = sbi->s_fc_bh->b_data + off;
727 
728 	/*
729 	 * Allocate the bytes in the current block if we can do so while still
730 	 * leaving enough space for a PAD tlv.
731 	 */
732 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
733 	if (len <= remaining) {
734 		sbi->s_fc_bytes += len;
735 		return dst;
736 	}
737 
738 	/*
739 	 * Else, terminate the current block with a PAD tlv, then allocate a new
740 	 * block and allocate the bytes at the start of that new block.
741 	 */
742 
743 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
744 	tl.fc_len = cpu_to_le16(remaining);
745 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
746 	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
747 	*crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
748 
749 	ext4_fc_submit_bh(sb, false);
750 
751 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
752 	if (ret)
753 		return NULL;
754 	sbi->s_fc_bh = bh;
755 	sbi->s_fc_bytes += bsize - off + len;
756 	return sbi->s_fc_bh->b_data;
757 }
758 
759 /*
760  * Complete a fast commit by writing tail tag.
761  *
762  * Writing tail tag marks the end of a fast commit. In order to guarantee
763  * atomicity, after writing tail tag, even if there's space remaining
764  * in the block, next commit shouldn't use it. That's why tail tag
765  * has the length as that of the remaining space on the block.
766  */
ext4_fc_write_tail(struct super_block * sb,u32 crc)767 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
768 {
769 	struct ext4_sb_info *sbi = EXT4_SB(sb);
770 	struct ext4_fc_tl tl;
771 	struct ext4_fc_tail tail;
772 	int off, bsize = sbi->s_journal->j_blocksize;
773 	u8 *dst;
774 
775 	/*
776 	 * ext4_fc_reserve_space takes care of allocating an extra block if
777 	 * there's no enough space on this block for accommodating this tail.
778 	 */
779 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
780 	if (!dst)
781 		return -ENOSPC;
782 
783 	off = sbi->s_fc_bytes % bsize;
784 
785 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
786 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
787 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
788 
789 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
790 	dst += EXT4_FC_TAG_BASE_LEN;
791 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
792 	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
793 	dst += sizeof(tail.fc_tid);
794 	crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
795 			  dst - (u8 *)sbi->s_fc_bh->b_data);
796 	tail.fc_crc = cpu_to_le32(crc);
797 	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
798 	dst += sizeof(tail.fc_crc);
799 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
800 
801 	ext4_fc_submit_bh(sb, true);
802 
803 	return 0;
804 }
805 
806 /*
807  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
808  * Returns false if there's not enough space.
809  */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)810 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
811 			   u32 *crc)
812 {
813 	struct ext4_fc_tl tl;
814 	u8 *dst;
815 
816 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
817 	if (!dst)
818 		return false;
819 
820 	tl.fc_tag = cpu_to_le16(tag);
821 	tl.fc_len = cpu_to_le16(len);
822 
823 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
824 	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
825 
826 	return true;
827 }
828 
829 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)830 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
831 				   struct ext4_fc_dentry_update *fc_dentry)
832 {
833 	struct ext4_fc_dentry_info fcd;
834 	struct ext4_fc_tl tl;
835 	int dlen = fc_dentry->fcd_name.len;
836 	u8 *dst = ext4_fc_reserve_space(sb,
837 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
838 
839 	if (!dst)
840 		return false;
841 
842 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
843 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
844 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
845 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
846 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
847 	dst += EXT4_FC_TAG_BASE_LEN;
848 	memcpy(dst, &fcd, sizeof(fcd));
849 	dst += sizeof(fcd);
850 	memcpy(dst, fc_dentry->fcd_name.name, dlen);
851 
852 	return true;
853 }
854 
855 /*
856  * Writes inode in the fast commit space under TLV with tag @tag.
857  * Returns 0 on success, error on failure.
858  */
ext4_fc_write_inode(struct inode * inode,u32 * crc)859 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
860 {
861 	struct ext4_inode_info *ei = EXT4_I(inode);
862 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
863 	int ret;
864 	struct ext4_iloc iloc;
865 	struct ext4_fc_inode fc_inode;
866 	struct ext4_fc_tl tl;
867 	u8 *dst;
868 
869 	ret = ext4_get_inode_loc(inode, &iloc);
870 	if (ret)
871 		return ret;
872 
873 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
874 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
875 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
876 		inode_len += ei->i_extra_isize;
877 
878 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
879 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
880 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
881 
882 	ret = -ECANCELED;
883 	dst = ext4_fc_reserve_space(inode->i_sb,
884 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
885 	if (!dst)
886 		goto err;
887 
888 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
889 	dst += EXT4_FC_TAG_BASE_LEN;
890 	memcpy(dst, &fc_inode, sizeof(fc_inode));
891 	dst += sizeof(fc_inode);
892 	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
893 	ret = 0;
894 err:
895 	brelse(iloc.bh);
896 	return ret;
897 }
898 
899 /*
900  * Writes updated data ranges for the inode in question. Updates CRC.
901  * Returns 0 on success, error otherwise.
902  */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)903 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
904 {
905 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
906 	struct ext4_inode_info *ei = EXT4_I(inode);
907 	struct ext4_map_blocks map;
908 	struct ext4_fc_add_range fc_ext;
909 	struct ext4_fc_del_range lrange;
910 	struct ext4_extent *ex;
911 	int ret;
912 
913 	mutex_lock(&ei->i_fc_lock);
914 	if (ei->i_fc_lblk_len == 0) {
915 		mutex_unlock(&ei->i_fc_lock);
916 		return 0;
917 	}
918 	old_blk_size = ei->i_fc_lblk_start;
919 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
920 	ei->i_fc_lblk_len = 0;
921 	mutex_unlock(&ei->i_fc_lock);
922 
923 	cur_lblk_off = old_blk_size;
924 	ext4_debug("will try writing %d to %d for inode %ld\n",
925 		   cur_lblk_off, new_blk_size, inode->i_ino);
926 
927 	while (cur_lblk_off <= new_blk_size) {
928 		map.m_lblk = cur_lblk_off;
929 		map.m_len = new_blk_size - cur_lblk_off + 1;
930 		ret = ext4_map_blocks(NULL, inode, &map, 0);
931 		if (ret < 0)
932 			return -ECANCELED;
933 
934 		if (map.m_len == 0) {
935 			cur_lblk_off++;
936 			continue;
937 		}
938 
939 		if (ret == 0) {
940 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
941 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
942 			lrange.fc_len = cpu_to_le32(map.m_len);
943 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
944 					    sizeof(lrange), (u8 *)&lrange, crc))
945 				return -ENOSPC;
946 		} else {
947 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
948 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
949 
950 			/* Limit the number of blocks in one extent */
951 			map.m_len = min(max, map.m_len);
952 
953 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
954 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
955 			ex->ee_block = cpu_to_le32(map.m_lblk);
956 			ex->ee_len = cpu_to_le16(map.m_len);
957 			ext4_ext_store_pblock(ex, map.m_pblk);
958 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
959 				ext4_ext_mark_unwritten(ex);
960 			else
961 				ext4_ext_mark_initialized(ex);
962 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
963 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
964 				return -ENOSPC;
965 		}
966 
967 		cur_lblk_off += map.m_len;
968 	}
969 
970 	return 0;
971 }
972 
973 
974 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)975 static int ext4_fc_submit_inode_data_all(journal_t *journal)
976 {
977 	struct super_block *sb = journal->j_private;
978 	struct ext4_sb_info *sbi = EXT4_SB(sb);
979 	struct ext4_inode_info *ei;
980 	int ret = 0;
981 
982 	spin_lock(&sbi->s_fc_lock);
983 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
984 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
985 		while (atomic_read(&ei->i_fc_updates)) {
986 			DEFINE_WAIT(wait);
987 
988 			prepare_to_wait(&ei->i_fc_wait, &wait,
989 						TASK_UNINTERRUPTIBLE);
990 			if (atomic_read(&ei->i_fc_updates)) {
991 				spin_unlock(&sbi->s_fc_lock);
992 				schedule();
993 				spin_lock(&sbi->s_fc_lock);
994 			}
995 			finish_wait(&ei->i_fc_wait, &wait);
996 		}
997 		spin_unlock(&sbi->s_fc_lock);
998 		ret = jbd2_submit_inode_data(journal, ei->jinode);
999 		if (ret)
1000 			return ret;
1001 		spin_lock(&sbi->s_fc_lock);
1002 	}
1003 	spin_unlock(&sbi->s_fc_lock);
1004 
1005 	return ret;
1006 }
1007 
1008 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)1009 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1010 {
1011 	struct super_block *sb = journal->j_private;
1012 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1013 	struct ext4_inode_info *pos, *n;
1014 	int ret = 0;
1015 
1016 	spin_lock(&sbi->s_fc_lock);
1017 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1018 		if (!ext4_test_inode_state(&pos->vfs_inode,
1019 					   EXT4_STATE_FC_COMMITTING))
1020 			continue;
1021 		spin_unlock(&sbi->s_fc_lock);
1022 
1023 		ret = jbd2_wait_inode_data(journal, pos->jinode);
1024 		if (ret)
1025 			return ret;
1026 		spin_lock(&sbi->s_fc_lock);
1027 	}
1028 	spin_unlock(&sbi->s_fc_lock);
1029 
1030 	return 0;
1031 }
1032 
1033 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)1034 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1035 __acquires(&sbi->s_fc_lock)
1036 __releases(&sbi->s_fc_lock)
1037 {
1038 	struct super_block *sb = journal->j_private;
1039 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1040 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1041 	struct inode *inode;
1042 	struct ext4_inode_info *ei;
1043 	int ret;
1044 
1045 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1046 		return 0;
1047 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1048 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1049 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1050 			spin_unlock(&sbi->s_fc_lock);
1051 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1052 				ret = -ENOSPC;
1053 				goto lock_and_exit;
1054 			}
1055 			spin_lock(&sbi->s_fc_lock);
1056 			continue;
1057 		}
1058 		/*
1059 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1060 		 * corresponding inode pointer
1061 		 */
1062 		WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1063 		ei = list_first_entry(&fc_dentry->fcd_dilist,
1064 				struct ext4_inode_info, i_fc_dilist);
1065 		inode = &ei->vfs_inode;
1066 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1067 
1068 		spin_unlock(&sbi->s_fc_lock);
1069 
1070 		/*
1071 		 * We first write the inode and then the create dirent. This
1072 		 * allows the recovery code to create an unnamed inode first
1073 		 * and then link it to a directory entry. This allows us
1074 		 * to use namei.c routines almost as is and simplifies
1075 		 * the recovery code.
1076 		 */
1077 		ret = ext4_fc_write_inode(inode, crc);
1078 		if (ret)
1079 			goto lock_and_exit;
1080 
1081 		ret = ext4_fc_write_inode_data(inode, crc);
1082 		if (ret)
1083 			goto lock_and_exit;
1084 
1085 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1086 			ret = -ENOSPC;
1087 			goto lock_and_exit;
1088 		}
1089 
1090 		spin_lock(&sbi->s_fc_lock);
1091 	}
1092 	return 0;
1093 lock_and_exit:
1094 	spin_lock(&sbi->s_fc_lock);
1095 	return ret;
1096 }
1097 
ext4_fc_perform_commit(journal_t * journal)1098 static int ext4_fc_perform_commit(journal_t *journal)
1099 {
1100 	struct super_block *sb = journal->j_private;
1101 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1102 	struct ext4_inode_info *iter;
1103 	struct ext4_fc_head head;
1104 	struct inode *inode;
1105 	struct blk_plug plug;
1106 	int ret = 0;
1107 	u32 crc = 0;
1108 
1109 	ret = ext4_fc_submit_inode_data_all(journal);
1110 	if (ret)
1111 		return ret;
1112 
1113 	ret = ext4_fc_wait_inode_data_all(journal);
1114 	if (ret)
1115 		return ret;
1116 
1117 	/*
1118 	 * If file system device is different from journal device, issue a cache
1119 	 * flush before we start writing fast commit blocks.
1120 	 */
1121 	if (journal->j_fs_dev != journal->j_dev)
1122 		blkdev_issue_flush(journal->j_fs_dev);
1123 
1124 	blk_start_plug(&plug);
1125 	if (sbi->s_fc_bytes == 0) {
1126 		/*
1127 		 * Add a head tag only if this is the first fast commit
1128 		 * in this TID.
1129 		 */
1130 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1131 		head.fc_tid = cpu_to_le32(
1132 			sbi->s_journal->j_running_transaction->t_tid);
1133 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1134 			(u8 *)&head, &crc)) {
1135 			ret = -ENOSPC;
1136 			goto out;
1137 		}
1138 	}
1139 
1140 	spin_lock(&sbi->s_fc_lock);
1141 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1142 	if (ret) {
1143 		spin_unlock(&sbi->s_fc_lock);
1144 		goto out;
1145 	}
1146 
1147 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1148 		inode = &iter->vfs_inode;
1149 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1150 			continue;
1151 
1152 		spin_unlock(&sbi->s_fc_lock);
1153 		ret = ext4_fc_write_inode_data(inode, &crc);
1154 		if (ret)
1155 			goto out;
1156 		ret = ext4_fc_write_inode(inode, &crc);
1157 		if (ret)
1158 			goto out;
1159 		spin_lock(&sbi->s_fc_lock);
1160 	}
1161 	spin_unlock(&sbi->s_fc_lock);
1162 
1163 	ret = ext4_fc_write_tail(sb, crc);
1164 
1165 out:
1166 	blk_finish_plug(&plug);
1167 	return ret;
1168 }
1169 
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks,tid_t commit_tid)1170 static void ext4_fc_update_stats(struct super_block *sb, int status,
1171 				 u64 commit_time, int nblks, tid_t commit_tid)
1172 {
1173 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1174 
1175 	ext4_debug("Fast commit ended with status = %d for tid %u",
1176 			status, commit_tid);
1177 	if (status == EXT4_FC_STATUS_OK) {
1178 		stats->fc_num_commits++;
1179 		stats->fc_numblks += nblks;
1180 		if (likely(stats->s_fc_avg_commit_time))
1181 			stats->s_fc_avg_commit_time =
1182 				(commit_time +
1183 				 stats->s_fc_avg_commit_time * 3) / 4;
1184 		else
1185 			stats->s_fc_avg_commit_time = commit_time;
1186 	} else if (status == EXT4_FC_STATUS_FAILED ||
1187 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1188 		if (status == EXT4_FC_STATUS_FAILED)
1189 			stats->fc_failed_commits++;
1190 		stats->fc_ineligible_commits++;
1191 	} else {
1192 		stats->fc_skipped_commits++;
1193 	}
1194 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1195 }
1196 
1197 /*
1198  * The main commit entry point. Performs a fast commit for transaction
1199  * commit_tid if needed. If it's not possible to perform a fast commit
1200  * due to various reasons, we fall back to full commit. Returns 0
1201  * on success, error otherwise.
1202  */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1203 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1204 {
1205 	struct super_block *sb = journal->j_private;
1206 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1207 	int nblks = 0, ret, bsize = journal->j_blocksize;
1208 	int subtid = atomic_read(&sbi->s_fc_subtid);
1209 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1210 	ktime_t start_time, commit_time;
1211 
1212 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1213 		return jbd2_complete_transaction(journal, commit_tid);
1214 
1215 	trace_ext4_fc_commit_start(sb, commit_tid);
1216 
1217 	start_time = ktime_get();
1218 
1219 restart_fc:
1220 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1221 	if (ret == -EALREADY) {
1222 		/* There was an ongoing commit, check if we need to restart */
1223 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1224 		    tid_gt(commit_tid, journal->j_commit_sequence))
1225 			goto restart_fc;
1226 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1227 				commit_tid);
1228 		return 0;
1229 	} else if (ret) {
1230 		/*
1231 		 * Commit couldn't start. Just update stats and perform a
1232 		 * full commit.
1233 		 */
1234 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1235 				commit_tid);
1236 		return jbd2_complete_transaction(journal, commit_tid);
1237 	}
1238 
1239 	/*
1240 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1241 	 * if we are fast commit ineligible.
1242 	 */
1243 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1244 		status = EXT4_FC_STATUS_INELIGIBLE;
1245 		goto fallback;
1246 	}
1247 
1248 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1249 	ret = ext4_fc_perform_commit(journal);
1250 	if (ret < 0) {
1251 		status = EXT4_FC_STATUS_FAILED;
1252 		goto fallback;
1253 	}
1254 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1255 	ret = jbd2_fc_wait_bufs(journal, nblks);
1256 	if (ret < 0) {
1257 		status = EXT4_FC_STATUS_FAILED;
1258 		goto fallback;
1259 	}
1260 	atomic_inc(&sbi->s_fc_subtid);
1261 	ret = jbd2_fc_end_commit(journal);
1262 	/*
1263 	 * weight the commit time higher than the average time so we
1264 	 * don't react too strongly to vast changes in the commit time
1265 	 */
1266 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1267 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1268 	return ret;
1269 
1270 fallback:
1271 	ret = jbd2_fc_end_commit_fallback(journal);
1272 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1273 	return ret;
1274 }
1275 
1276 /*
1277  * Fast commit cleanup routine. This is called after every fast commit and
1278  * full commit. full is true if we are called after a full commit.
1279  */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1280 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1281 {
1282 	struct super_block *sb = journal->j_private;
1283 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1284 	struct ext4_inode_info *iter, *iter_n;
1285 	struct ext4_fc_dentry_update *fc_dentry;
1286 
1287 	if (full && sbi->s_fc_bh)
1288 		sbi->s_fc_bh = NULL;
1289 
1290 	trace_ext4_fc_cleanup(journal, full, tid);
1291 	jbd2_fc_release_bufs(journal);
1292 
1293 	spin_lock(&sbi->s_fc_lock);
1294 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1295 				 i_fc_list) {
1296 		list_del_init(&iter->i_fc_list);
1297 		ext4_clear_inode_state(&iter->vfs_inode,
1298 				       EXT4_STATE_FC_COMMITTING);
1299 		if (tid_geq(tid, iter->i_sync_tid)) {
1300 			ext4_fc_reset_inode(&iter->vfs_inode);
1301 		} else if (full) {
1302 			/*
1303 			 * We are called after a full commit, inode has been
1304 			 * modified while the commit was running. Re-enqueue
1305 			 * the inode into STAGING, which will then be splice
1306 			 * back into MAIN. This cannot happen during
1307 			 * fastcommit because the journal is locked all the
1308 			 * time in that case (and tid doesn't increase so
1309 			 * tid check above isn't reliable).
1310 			 */
1311 			list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1312 				      &sbi->s_fc_q[FC_Q_STAGING]);
1313 		}
1314 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1315 		smp_mb();
1316 #if (BITS_PER_LONG < 64)
1317 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1318 #else
1319 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1320 #endif
1321 	}
1322 
1323 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1324 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1325 					     struct ext4_fc_dentry_update,
1326 					     fcd_list);
1327 		list_del_init(&fc_dentry->fcd_list);
1328 		list_del_init(&fc_dentry->fcd_dilist);
1329 		spin_unlock(&sbi->s_fc_lock);
1330 
1331 		if (fc_dentry->fcd_name.name &&
1332 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1333 			kfree(fc_dentry->fcd_name.name);
1334 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1335 		spin_lock(&sbi->s_fc_lock);
1336 	}
1337 
1338 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1339 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1340 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1341 				&sbi->s_fc_q[FC_Q_MAIN]);
1342 
1343 	if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1344 		sbi->s_fc_ineligible_tid = 0;
1345 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1346 	}
1347 
1348 	if (full)
1349 		sbi->s_fc_bytes = 0;
1350 	spin_unlock(&sbi->s_fc_lock);
1351 	trace_ext4_fc_stats(sb);
1352 }
1353 
1354 /* Ext4 Replay Path Routines */
1355 
1356 /* Helper struct for dentry replay routines */
1357 struct dentry_info_args {
1358 	int parent_ino, dname_len, ino, inode_len;
1359 	char *dname;
1360 };
1361 
1362 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1363 struct ext4_fc_tl_mem {
1364 	u16 fc_tag;
1365 	u16 fc_len;
1366 };
1367 
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl_mem * tl,u8 * val)1368 static inline void tl_to_darg(struct dentry_info_args *darg,
1369 			      struct ext4_fc_tl_mem *tl, u8 *val)
1370 {
1371 	struct ext4_fc_dentry_info fcd;
1372 
1373 	memcpy(&fcd, val, sizeof(fcd));
1374 
1375 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1376 	darg->ino = le32_to_cpu(fcd.fc_ino);
1377 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1378 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1379 }
1380 
ext4_fc_get_tl(struct ext4_fc_tl_mem * tl,u8 * val)1381 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1382 {
1383 	struct ext4_fc_tl tl_disk;
1384 
1385 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1386 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1387 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1388 }
1389 
1390 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1391 static int ext4_fc_replay_unlink(struct super_block *sb,
1392 				 struct ext4_fc_tl_mem *tl, u8 *val)
1393 {
1394 	struct inode *inode, *old_parent;
1395 	struct qstr entry;
1396 	struct dentry_info_args darg;
1397 	int ret = 0;
1398 
1399 	tl_to_darg(&darg, tl, val);
1400 
1401 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1402 			darg.parent_ino, darg.dname_len);
1403 
1404 	entry.name = darg.dname;
1405 	entry.len = darg.dname_len;
1406 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1407 
1408 	if (IS_ERR(inode)) {
1409 		ext4_debug("Inode %d not found", darg.ino);
1410 		return 0;
1411 	}
1412 
1413 	old_parent = ext4_iget(sb, darg.parent_ino,
1414 				EXT4_IGET_NORMAL);
1415 	if (IS_ERR(old_parent)) {
1416 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1417 		iput(inode);
1418 		return 0;
1419 	}
1420 
1421 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1422 	/* -ENOENT ok coz it might not exist anymore. */
1423 	if (ret == -ENOENT)
1424 		ret = 0;
1425 	iput(old_parent);
1426 	iput(inode);
1427 	return ret;
1428 }
1429 
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1430 static int ext4_fc_replay_link_internal(struct super_block *sb,
1431 				struct dentry_info_args *darg,
1432 				struct inode *inode)
1433 {
1434 	struct inode *dir = NULL;
1435 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1436 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1437 	int ret = 0;
1438 
1439 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1440 	if (IS_ERR(dir)) {
1441 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1442 		dir = NULL;
1443 		goto out;
1444 	}
1445 
1446 	dentry_dir = d_obtain_alias(dir);
1447 	if (IS_ERR(dentry_dir)) {
1448 		ext4_debug("Failed to obtain dentry");
1449 		dentry_dir = NULL;
1450 		goto out;
1451 	}
1452 
1453 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1454 	if (!dentry_inode) {
1455 		ext4_debug("Inode dentry not created.");
1456 		ret = -ENOMEM;
1457 		goto out;
1458 	}
1459 
1460 	ret = __ext4_link(dir, inode, dentry_inode);
1461 	/*
1462 	 * It's possible that link already existed since data blocks
1463 	 * for the dir in question got persisted before we crashed OR
1464 	 * we replayed this tag and crashed before the entire replay
1465 	 * could complete.
1466 	 */
1467 	if (ret && ret != -EEXIST) {
1468 		ext4_debug("Failed to link\n");
1469 		goto out;
1470 	}
1471 
1472 	ret = 0;
1473 out:
1474 	if (dentry_dir) {
1475 		d_drop(dentry_dir);
1476 		dput(dentry_dir);
1477 	} else if (dir) {
1478 		iput(dir);
1479 	}
1480 	if (dentry_inode) {
1481 		d_drop(dentry_inode);
1482 		dput(dentry_inode);
1483 	}
1484 
1485 	return ret;
1486 }
1487 
1488 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1489 static int ext4_fc_replay_link(struct super_block *sb,
1490 			       struct ext4_fc_tl_mem *tl, u8 *val)
1491 {
1492 	struct inode *inode;
1493 	struct dentry_info_args darg;
1494 	int ret = 0;
1495 
1496 	tl_to_darg(&darg, tl, val);
1497 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1498 			darg.parent_ino, darg.dname_len);
1499 
1500 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1501 	if (IS_ERR(inode)) {
1502 		ext4_debug("Inode not found.");
1503 		return 0;
1504 	}
1505 
1506 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1507 	iput(inode);
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Record all the modified inodes during replay. We use this later to setup
1513  * block bitmaps correctly.
1514  */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1515 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1516 {
1517 	struct ext4_fc_replay_state *state;
1518 	int i;
1519 
1520 	state = &EXT4_SB(sb)->s_fc_replay_state;
1521 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1522 		if (state->fc_modified_inodes[i] == ino)
1523 			return 0;
1524 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1525 		int *fc_modified_inodes;
1526 
1527 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1528 				sizeof(int) * (state->fc_modified_inodes_size +
1529 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1530 				GFP_KERNEL);
1531 		if (!fc_modified_inodes)
1532 			return -ENOMEM;
1533 		state->fc_modified_inodes = fc_modified_inodes;
1534 		state->fc_modified_inodes_size +=
1535 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1536 	}
1537 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Inode replay function
1543  */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1544 static int ext4_fc_replay_inode(struct super_block *sb,
1545 				struct ext4_fc_tl_mem *tl, u8 *val)
1546 {
1547 	struct ext4_fc_inode fc_inode;
1548 	struct ext4_inode *raw_inode;
1549 	struct ext4_inode *raw_fc_inode;
1550 	struct inode *inode = NULL;
1551 	struct ext4_iloc iloc;
1552 	int inode_len, ino, ret, tag = tl->fc_tag;
1553 	struct ext4_extent_header *eh;
1554 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1555 
1556 	memcpy(&fc_inode, val, sizeof(fc_inode));
1557 
1558 	ino = le32_to_cpu(fc_inode.fc_ino);
1559 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1560 
1561 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1562 	if (!IS_ERR(inode)) {
1563 		ext4_ext_clear_bb(inode);
1564 		iput(inode);
1565 	}
1566 	inode = NULL;
1567 
1568 	ret = ext4_fc_record_modified_inode(sb, ino);
1569 	if (ret)
1570 		goto out;
1571 
1572 	raw_fc_inode = (struct ext4_inode *)
1573 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1574 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1575 	if (ret)
1576 		goto out;
1577 
1578 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1579 	raw_inode = ext4_raw_inode(&iloc);
1580 
1581 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1582 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1583 	       inode_len - off_gen);
1584 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1585 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1586 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1587 			memset(eh, 0, sizeof(*eh));
1588 			eh->eh_magic = EXT4_EXT_MAGIC;
1589 			eh->eh_max = cpu_to_le16(
1590 				(sizeof(raw_inode->i_block) -
1591 				 sizeof(struct ext4_extent_header))
1592 				 / sizeof(struct ext4_extent));
1593 		}
1594 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1595 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1596 			sizeof(raw_inode->i_block));
1597 	}
1598 
1599 	/* Immediately update the inode on disk. */
1600 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1601 	if (ret)
1602 		goto out;
1603 	ret = sync_dirty_buffer(iloc.bh);
1604 	if (ret)
1605 		goto out;
1606 	ret = ext4_mark_inode_used(sb, ino);
1607 	if (ret)
1608 		goto out;
1609 
1610 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1611 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1612 	if (IS_ERR(inode)) {
1613 		ext4_debug("Inode not found.");
1614 		return -EFSCORRUPTED;
1615 	}
1616 
1617 	/*
1618 	 * Our allocator could have made different decisions than before
1619 	 * crashing. This should be fixed but until then, we calculate
1620 	 * the number of blocks the inode.
1621 	 */
1622 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1623 		ext4_ext_replay_set_iblocks(inode);
1624 
1625 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1626 	ext4_reset_inode_seed(inode);
1627 
1628 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1629 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1630 	sync_dirty_buffer(iloc.bh);
1631 	brelse(iloc.bh);
1632 out:
1633 	iput(inode);
1634 	if (!ret)
1635 		blkdev_issue_flush(sb->s_bdev);
1636 
1637 	return 0;
1638 }
1639 
1640 /*
1641  * Dentry create replay function.
1642  *
1643  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1644  * inode for which we are trying to create a dentry here, should already have
1645  * been replayed before we start here.
1646  */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1647 static int ext4_fc_replay_create(struct super_block *sb,
1648 				 struct ext4_fc_tl_mem *tl, u8 *val)
1649 {
1650 	int ret = 0;
1651 	struct inode *inode = NULL;
1652 	struct inode *dir = NULL;
1653 	struct dentry_info_args darg;
1654 
1655 	tl_to_darg(&darg, tl, val);
1656 
1657 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1658 			darg.parent_ino, darg.dname_len);
1659 
1660 	/* This takes care of update group descriptor and other metadata */
1661 	ret = ext4_mark_inode_used(sb, darg.ino);
1662 	if (ret)
1663 		goto out;
1664 
1665 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1666 	if (IS_ERR(inode)) {
1667 		ext4_debug("inode %d not found.", darg.ino);
1668 		inode = NULL;
1669 		ret = -EINVAL;
1670 		goto out;
1671 	}
1672 
1673 	if (S_ISDIR(inode->i_mode)) {
1674 		/*
1675 		 * If we are creating a directory, we need to make sure that the
1676 		 * dot and dot dot dirents are setup properly.
1677 		 */
1678 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1679 		if (IS_ERR(dir)) {
1680 			ext4_debug("Dir %d not found.", darg.ino);
1681 			goto out;
1682 		}
1683 		ret = ext4_init_new_dir(NULL, dir, inode);
1684 		iput(dir);
1685 		if (ret) {
1686 			ret = 0;
1687 			goto out;
1688 		}
1689 	}
1690 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1691 	if (ret)
1692 		goto out;
1693 	set_nlink(inode, 1);
1694 	ext4_mark_inode_dirty(NULL, inode);
1695 out:
1696 	iput(inode);
1697 	return ret;
1698 }
1699 
1700 /*
1701  * Record physical disk regions which are in use as per fast commit area,
1702  * and used by inodes during replay phase. Our simple replay phase
1703  * allocator excludes these regions from allocation.
1704  */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1705 int ext4_fc_record_regions(struct super_block *sb, int ino,
1706 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1707 {
1708 	struct ext4_fc_replay_state *state;
1709 	struct ext4_fc_alloc_region *region;
1710 
1711 	state = &EXT4_SB(sb)->s_fc_replay_state;
1712 	/*
1713 	 * during replay phase, the fc_regions_valid may not same as
1714 	 * fc_regions_used, update it when do new additions.
1715 	 */
1716 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1717 		state->fc_regions_used = state->fc_regions_valid;
1718 	if (state->fc_regions_used == state->fc_regions_size) {
1719 		struct ext4_fc_alloc_region *fc_regions;
1720 
1721 		fc_regions = krealloc(state->fc_regions,
1722 				      sizeof(struct ext4_fc_alloc_region) *
1723 				      (state->fc_regions_size +
1724 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1725 				      GFP_KERNEL);
1726 		if (!fc_regions)
1727 			return -ENOMEM;
1728 		state->fc_regions_size +=
1729 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1730 		state->fc_regions = fc_regions;
1731 	}
1732 	region = &state->fc_regions[state->fc_regions_used++];
1733 	region->ino = ino;
1734 	region->lblk = lblk;
1735 	region->pblk = pblk;
1736 	region->len = len;
1737 
1738 	if (replay)
1739 		state->fc_regions_valid++;
1740 
1741 	return 0;
1742 }
1743 
1744 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1745 static int ext4_fc_replay_add_range(struct super_block *sb,
1746 				    struct ext4_fc_tl_mem *tl, u8 *val)
1747 {
1748 	struct ext4_fc_add_range fc_add_ex;
1749 	struct ext4_extent newex, *ex;
1750 	struct inode *inode;
1751 	ext4_lblk_t start, cur;
1752 	int remaining, len;
1753 	ext4_fsblk_t start_pblk;
1754 	struct ext4_map_blocks map;
1755 	struct ext4_ext_path *path = NULL;
1756 	int ret;
1757 
1758 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1759 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1760 
1761 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1762 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1763 		ext4_ext_get_actual_len(ex));
1764 
1765 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1766 	if (IS_ERR(inode)) {
1767 		ext4_debug("Inode not found.");
1768 		return 0;
1769 	}
1770 
1771 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1772 	if (ret)
1773 		goto out;
1774 
1775 	start = le32_to_cpu(ex->ee_block);
1776 	start_pblk = ext4_ext_pblock(ex);
1777 	len = ext4_ext_get_actual_len(ex);
1778 
1779 	cur = start;
1780 	remaining = len;
1781 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1782 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1783 		  inode->i_ino);
1784 
1785 	while (remaining > 0) {
1786 		map.m_lblk = cur;
1787 		map.m_len = remaining;
1788 		map.m_pblk = 0;
1789 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1790 
1791 		if (ret < 0)
1792 			goto out;
1793 
1794 		if (ret == 0) {
1795 			/* Range is not mapped */
1796 			path = ext4_find_extent(inode, cur, path, 0);
1797 			if (IS_ERR(path))
1798 				goto out;
1799 			memset(&newex, 0, sizeof(newex));
1800 			newex.ee_block = cpu_to_le32(cur);
1801 			ext4_ext_store_pblock(
1802 				&newex, start_pblk + cur - start);
1803 			newex.ee_len = cpu_to_le16(map.m_len);
1804 			if (ext4_ext_is_unwritten(ex))
1805 				ext4_ext_mark_unwritten(&newex);
1806 			down_write(&EXT4_I(inode)->i_data_sem);
1807 			path = ext4_ext_insert_extent(NULL, inode,
1808 						      path, &newex, 0);
1809 			up_write((&EXT4_I(inode)->i_data_sem));
1810 			if (IS_ERR(path))
1811 				goto out;
1812 			goto next;
1813 		}
1814 
1815 		if (start_pblk + cur - start != map.m_pblk) {
1816 			/*
1817 			 * Logical to physical mapping changed. This can happen
1818 			 * if this range was removed and then reallocated to
1819 			 * map to new physical blocks during a fast commit.
1820 			 */
1821 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1822 					ext4_ext_is_unwritten(ex),
1823 					start_pblk + cur - start);
1824 			if (ret)
1825 				goto out;
1826 			/*
1827 			 * Mark the old blocks as free since they aren't used
1828 			 * anymore. We maintain an array of all the modified
1829 			 * inodes. In case these blocks are still used at either
1830 			 * a different logical range in the same inode or in
1831 			 * some different inode, we will mark them as allocated
1832 			 * at the end of the FC replay using our array of
1833 			 * modified inodes.
1834 			 */
1835 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1836 			goto next;
1837 		}
1838 
1839 		/* Range is mapped and needs a state change */
1840 		ext4_debug("Converting from %ld to %d %lld",
1841 				map.m_flags & EXT4_MAP_UNWRITTEN,
1842 			ext4_ext_is_unwritten(ex), map.m_pblk);
1843 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1844 					ext4_ext_is_unwritten(ex), map.m_pblk);
1845 		if (ret)
1846 			goto out;
1847 		/*
1848 		 * We may have split the extent tree while toggling the state.
1849 		 * Try to shrink the extent tree now.
1850 		 */
1851 		ext4_ext_replay_shrink_inode(inode, start + len);
1852 next:
1853 		cur += map.m_len;
1854 		remaining -= map.m_len;
1855 	}
1856 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1857 					sb->s_blocksize_bits);
1858 out:
1859 	ext4_free_ext_path(path);
1860 	iput(inode);
1861 	return 0;
1862 }
1863 
1864 /* Replay DEL_RANGE tag */
1865 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1866 ext4_fc_replay_del_range(struct super_block *sb,
1867 			 struct ext4_fc_tl_mem *tl, u8 *val)
1868 {
1869 	struct inode *inode;
1870 	struct ext4_fc_del_range lrange;
1871 	struct ext4_map_blocks map;
1872 	ext4_lblk_t cur, remaining;
1873 	int ret;
1874 
1875 	memcpy(&lrange, val, sizeof(lrange));
1876 	cur = le32_to_cpu(lrange.fc_lblk);
1877 	remaining = le32_to_cpu(lrange.fc_len);
1878 
1879 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1880 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1881 
1882 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1883 	if (IS_ERR(inode)) {
1884 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1885 		return 0;
1886 	}
1887 
1888 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1889 	if (ret)
1890 		goto out;
1891 
1892 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1893 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1894 			le32_to_cpu(lrange.fc_len));
1895 	while (remaining > 0) {
1896 		map.m_lblk = cur;
1897 		map.m_len = remaining;
1898 
1899 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1900 		if (ret < 0)
1901 			goto out;
1902 		if (ret > 0) {
1903 			remaining -= ret;
1904 			cur += ret;
1905 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1906 		} else {
1907 			remaining -= map.m_len;
1908 			cur += map.m_len;
1909 		}
1910 	}
1911 
1912 	down_write(&EXT4_I(inode)->i_data_sem);
1913 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1914 				le32_to_cpu(lrange.fc_lblk) +
1915 				le32_to_cpu(lrange.fc_len) - 1);
1916 	up_write(&EXT4_I(inode)->i_data_sem);
1917 	if (ret)
1918 		goto out;
1919 	ext4_ext_replay_shrink_inode(inode,
1920 		i_size_read(inode) >> sb->s_blocksize_bits);
1921 	ext4_mark_inode_dirty(NULL, inode);
1922 out:
1923 	iput(inode);
1924 	return 0;
1925 }
1926 
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1927 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1928 {
1929 	struct ext4_fc_replay_state *state;
1930 	struct inode *inode;
1931 	struct ext4_ext_path *path = NULL;
1932 	struct ext4_map_blocks map;
1933 	int i, ret, j;
1934 	ext4_lblk_t cur, end;
1935 
1936 	state = &EXT4_SB(sb)->s_fc_replay_state;
1937 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1938 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1939 			EXT4_IGET_NORMAL);
1940 		if (IS_ERR(inode)) {
1941 			ext4_debug("Inode %d not found.",
1942 				state->fc_modified_inodes[i]);
1943 			continue;
1944 		}
1945 		cur = 0;
1946 		end = EXT_MAX_BLOCKS;
1947 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1948 			iput(inode);
1949 			continue;
1950 		}
1951 		while (cur < end) {
1952 			map.m_lblk = cur;
1953 			map.m_len = end - cur;
1954 
1955 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1956 			if (ret < 0)
1957 				break;
1958 
1959 			if (ret > 0) {
1960 				path = ext4_find_extent(inode, map.m_lblk, path, 0);
1961 				if (!IS_ERR(path)) {
1962 					for (j = 0; j < path->p_depth; j++)
1963 						ext4_mb_mark_bb(inode->i_sb,
1964 							path[j].p_block, 1, true);
1965 				} else {
1966 					path = NULL;
1967 				}
1968 				cur += ret;
1969 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1970 							map.m_len, true);
1971 			} else {
1972 				cur = cur + (map.m_len ? map.m_len : 1);
1973 			}
1974 		}
1975 		iput(inode);
1976 	}
1977 
1978 	ext4_free_ext_path(path);
1979 }
1980 
1981 /*
1982  * Check if block is in excluded regions for block allocation. The simple
1983  * allocator that runs during replay phase is calls this function to see
1984  * if it is okay to use a block.
1985  */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1986 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1987 {
1988 	int i;
1989 	struct ext4_fc_replay_state *state;
1990 
1991 	state = &EXT4_SB(sb)->s_fc_replay_state;
1992 	for (i = 0; i < state->fc_regions_valid; i++) {
1993 		if (state->fc_regions[i].ino == 0 ||
1994 			state->fc_regions[i].len == 0)
1995 			continue;
1996 		if (in_range(blk, state->fc_regions[i].pblk,
1997 					state->fc_regions[i].len))
1998 			return true;
1999 	}
2000 	return false;
2001 }
2002 
2003 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)2004 void ext4_fc_replay_cleanup(struct super_block *sb)
2005 {
2006 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2007 
2008 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2009 	kfree(sbi->s_fc_replay_state.fc_regions);
2010 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2011 }
2012 
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)2013 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2014 				      int tag, int len)
2015 {
2016 	switch (tag) {
2017 	case EXT4_FC_TAG_ADD_RANGE:
2018 		return len == sizeof(struct ext4_fc_add_range);
2019 	case EXT4_FC_TAG_DEL_RANGE:
2020 		return len == sizeof(struct ext4_fc_del_range);
2021 	case EXT4_FC_TAG_CREAT:
2022 	case EXT4_FC_TAG_LINK:
2023 	case EXT4_FC_TAG_UNLINK:
2024 		len -= sizeof(struct ext4_fc_dentry_info);
2025 		return len >= 1 && len <= EXT4_NAME_LEN;
2026 	case EXT4_FC_TAG_INODE:
2027 		len -= sizeof(struct ext4_fc_inode);
2028 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2029 			len <= sbi->s_inode_size;
2030 	case EXT4_FC_TAG_PAD:
2031 		return true; /* padding can have any length */
2032 	case EXT4_FC_TAG_TAIL:
2033 		return len >= sizeof(struct ext4_fc_tail);
2034 	case EXT4_FC_TAG_HEAD:
2035 		return len == sizeof(struct ext4_fc_head);
2036 	}
2037 	return false;
2038 }
2039 
2040 /*
2041  * Recovery Scan phase handler
2042  *
2043  * This function is called during the scan phase and is responsible
2044  * for doing following things:
2045  * - Make sure the fast commit area has valid tags for replay
2046  * - Count number of tags that need to be replayed by the replay handler
2047  * - Verify CRC
2048  * - Create a list of excluded blocks for allocation during replay phase
2049  *
2050  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2051  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2052  * to indicate that scan has finished and JBD2 can now start replay phase.
2053  * It returns a negative error to indicate that there was an error. At the end
2054  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2055  * to indicate the number of tags that need to replayed during the replay phase.
2056  */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)2057 static int ext4_fc_replay_scan(journal_t *journal,
2058 				struct buffer_head *bh, int off,
2059 				tid_t expected_tid)
2060 {
2061 	struct super_block *sb = journal->j_private;
2062 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2063 	struct ext4_fc_replay_state *state;
2064 	int ret = JBD2_FC_REPLAY_CONTINUE;
2065 	struct ext4_fc_add_range ext;
2066 	struct ext4_fc_tl_mem tl;
2067 	struct ext4_fc_tail tail;
2068 	__u8 *start, *end, *cur, *val;
2069 	struct ext4_fc_head head;
2070 	struct ext4_extent *ex;
2071 
2072 	state = &sbi->s_fc_replay_state;
2073 
2074 	start = (u8 *)bh->b_data;
2075 	end = start + journal->j_blocksize;
2076 
2077 	if (state->fc_replay_expected_off == 0) {
2078 		state->fc_cur_tag = 0;
2079 		state->fc_replay_num_tags = 0;
2080 		state->fc_crc = 0;
2081 		state->fc_regions = NULL;
2082 		state->fc_regions_valid = state->fc_regions_used =
2083 			state->fc_regions_size = 0;
2084 		/* Check if we can stop early */
2085 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2086 			!= EXT4_FC_TAG_HEAD)
2087 			return 0;
2088 	}
2089 
2090 	if (off != state->fc_replay_expected_off) {
2091 		ret = -EFSCORRUPTED;
2092 		goto out_err;
2093 	}
2094 
2095 	state->fc_replay_expected_off++;
2096 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2097 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2098 		ext4_fc_get_tl(&tl, cur);
2099 		val = cur + EXT4_FC_TAG_BASE_LEN;
2100 		if (tl.fc_len > end - val ||
2101 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2102 			ret = state->fc_replay_num_tags ?
2103 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2104 			goto out_err;
2105 		}
2106 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2107 			   tag2str(tl.fc_tag), bh->b_blocknr);
2108 		switch (tl.fc_tag) {
2109 		case EXT4_FC_TAG_ADD_RANGE:
2110 			memcpy(&ext, val, sizeof(ext));
2111 			ex = (struct ext4_extent *)&ext.fc_ex;
2112 			ret = ext4_fc_record_regions(sb,
2113 				le32_to_cpu(ext.fc_ino),
2114 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2115 				ext4_ext_get_actual_len(ex), 0);
2116 			if (ret < 0)
2117 				break;
2118 			ret = JBD2_FC_REPLAY_CONTINUE;
2119 			fallthrough;
2120 		case EXT4_FC_TAG_DEL_RANGE:
2121 		case EXT4_FC_TAG_LINK:
2122 		case EXT4_FC_TAG_UNLINK:
2123 		case EXT4_FC_TAG_CREAT:
2124 		case EXT4_FC_TAG_INODE:
2125 		case EXT4_FC_TAG_PAD:
2126 			state->fc_cur_tag++;
2127 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2128 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2129 			break;
2130 		case EXT4_FC_TAG_TAIL:
2131 			state->fc_cur_tag++;
2132 			memcpy(&tail, val, sizeof(tail));
2133 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2134 						EXT4_FC_TAG_BASE_LEN +
2135 						offsetof(struct ext4_fc_tail,
2136 						fc_crc));
2137 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2138 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2139 				state->fc_replay_num_tags = state->fc_cur_tag;
2140 				state->fc_regions_valid =
2141 					state->fc_regions_used;
2142 			} else {
2143 				ret = state->fc_replay_num_tags ?
2144 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2145 			}
2146 			state->fc_crc = 0;
2147 			break;
2148 		case EXT4_FC_TAG_HEAD:
2149 			memcpy(&head, val, sizeof(head));
2150 			if (le32_to_cpu(head.fc_features) &
2151 				~EXT4_FC_SUPPORTED_FEATURES) {
2152 				ret = -EOPNOTSUPP;
2153 				break;
2154 			}
2155 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2156 				ret = JBD2_FC_REPLAY_STOP;
2157 				break;
2158 			}
2159 			state->fc_cur_tag++;
2160 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2161 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2162 			break;
2163 		default:
2164 			ret = state->fc_replay_num_tags ?
2165 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2166 		}
2167 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2168 			break;
2169 	}
2170 
2171 out_err:
2172 	trace_ext4_fc_replay_scan(sb, ret, off);
2173 	return ret;
2174 }
2175 
2176 /*
2177  * Main recovery path entry point.
2178  * The meaning of return codes is similar as above.
2179  */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2180 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2181 				enum passtype pass, int off, tid_t expected_tid)
2182 {
2183 	struct super_block *sb = journal->j_private;
2184 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2185 	struct ext4_fc_tl_mem tl;
2186 	__u8 *start, *end, *cur, *val;
2187 	int ret = JBD2_FC_REPLAY_CONTINUE;
2188 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2189 	struct ext4_fc_tail tail;
2190 
2191 	if (pass == PASS_SCAN) {
2192 		state->fc_current_pass = PASS_SCAN;
2193 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2194 	}
2195 
2196 	if (state->fc_current_pass != pass) {
2197 		state->fc_current_pass = pass;
2198 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2199 	}
2200 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2201 		ext4_debug("Replay stops\n");
2202 		ext4_fc_set_bitmaps_and_counters(sb);
2203 		return 0;
2204 	}
2205 
2206 #ifdef CONFIG_EXT4_DEBUG
2207 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2208 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2209 		return JBD2_FC_REPLAY_STOP;
2210 	}
2211 #endif
2212 
2213 	start = (u8 *)bh->b_data;
2214 	end = start + journal->j_blocksize;
2215 
2216 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2217 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2218 		ext4_fc_get_tl(&tl, cur);
2219 		val = cur + EXT4_FC_TAG_BASE_LEN;
2220 
2221 		if (state->fc_replay_num_tags == 0) {
2222 			ret = JBD2_FC_REPLAY_STOP;
2223 			ext4_fc_set_bitmaps_and_counters(sb);
2224 			break;
2225 		}
2226 
2227 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2228 		state->fc_replay_num_tags--;
2229 		switch (tl.fc_tag) {
2230 		case EXT4_FC_TAG_LINK:
2231 			ret = ext4_fc_replay_link(sb, &tl, val);
2232 			break;
2233 		case EXT4_FC_TAG_UNLINK:
2234 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2235 			break;
2236 		case EXT4_FC_TAG_ADD_RANGE:
2237 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2238 			break;
2239 		case EXT4_FC_TAG_CREAT:
2240 			ret = ext4_fc_replay_create(sb, &tl, val);
2241 			break;
2242 		case EXT4_FC_TAG_DEL_RANGE:
2243 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2244 			break;
2245 		case EXT4_FC_TAG_INODE:
2246 			ret = ext4_fc_replay_inode(sb, &tl, val);
2247 			break;
2248 		case EXT4_FC_TAG_PAD:
2249 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2250 					     tl.fc_len, 0);
2251 			break;
2252 		case EXT4_FC_TAG_TAIL:
2253 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2254 					     0, tl.fc_len, 0);
2255 			memcpy(&tail, val, sizeof(tail));
2256 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2257 			break;
2258 		case EXT4_FC_TAG_HEAD:
2259 			break;
2260 		default:
2261 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2262 			ret = -ECANCELED;
2263 			break;
2264 		}
2265 		if (ret < 0)
2266 			break;
2267 		ret = JBD2_FC_REPLAY_CONTINUE;
2268 	}
2269 	return ret;
2270 }
2271 
ext4_fc_init(struct super_block * sb,journal_t * journal)2272 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2273 {
2274 	/*
2275 	 * We set replay callback even if fast commit disabled because we may
2276 	 * could still have fast commit blocks that need to be replayed even if
2277 	 * fast commit has now been turned off.
2278 	 */
2279 	journal->j_fc_replay_callback = ext4_fc_replay;
2280 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2281 		return;
2282 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2283 }
2284 
2285 static const char * const fc_ineligible_reasons[] = {
2286 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2287 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2288 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2289 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2290 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2291 	[EXT4_FC_REASON_RESIZE] = "Resize",
2292 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2293 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2294 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2295 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2296 };
2297 
ext4_fc_info_show(struct seq_file * seq,void * v)2298 int ext4_fc_info_show(struct seq_file *seq, void *v)
2299 {
2300 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2301 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2302 	int i;
2303 
2304 	if (v != SEQ_START_TOKEN)
2305 		return 0;
2306 
2307 	seq_printf(seq,
2308 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2309 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2310 		   stats->fc_numblks,
2311 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2312 	seq_puts(seq, "Ineligible reasons:\n");
2313 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2314 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2315 			stats->fc_ineligible_reason_count[i]);
2316 
2317 	return 0;
2318 }
2319 
ext4_fc_init_dentry_cache(void)2320 int __init ext4_fc_init_dentry_cache(void)
2321 {
2322 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2323 					   SLAB_RECLAIM_ACCOUNT);
2324 
2325 	if (ext4_fc_dentry_cachep == NULL)
2326 		return -ENOMEM;
2327 
2328 	return 0;
2329 }
2330 
ext4_fc_destroy_dentry_cache(void)2331 void ext4_fc_destroy_dentry_cache(void)
2332 {
2333 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2334 }
2335