xref: /linux/fs/ext4/inode.c (revision fbeea4db51a6eaf62b4784f718844726dd2199b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 					    struct inode *inode,
55 					    struct folio *folio,
56 					    unsigned from, unsigned to);
57 
58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 			      struct ext4_inode_info *ei)
60 {
61 	__u32 csum;
62 	__u16 dummy_csum = 0;
63 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 	unsigned int csum_size = sizeof(dummy_csum);
65 
66 	csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset);
67 	csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size);
68 	offset += csum_size;
69 	csum = ext4_chksum(csum, (__u8 *)raw + offset,
70 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
71 
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 		offset = offsetof(struct ext4_inode, i_checksum_hi);
74 		csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE,
75 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
76 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
77 			csum = ext4_chksum(csum, (__u8 *)&dummy_csum,
78 					   csum_size);
79 			offset += csum_size;
80 		}
81 		csum = ext4_chksum(csum, (__u8 *)raw + offset,
82 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
83 	}
84 
85 	return csum;
86 }
87 
88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
89 				  struct ext4_inode_info *ei)
90 {
91 	__u32 provided, calculated;
92 
93 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
94 	    cpu_to_le32(EXT4_OS_LINUX) ||
95 	    !ext4_has_feature_metadata_csum(inode->i_sb))
96 		return 1;
97 
98 	provided = le16_to_cpu(raw->i_checksum_lo);
99 	calculated = ext4_inode_csum(inode, raw, ei);
100 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
101 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
102 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
103 	else
104 		calculated &= 0xFFFF;
105 
106 	return provided == calculated;
107 }
108 
109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
110 			 struct ext4_inode_info *ei)
111 {
112 	__u32 csum;
113 
114 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
115 	    cpu_to_le32(EXT4_OS_LINUX) ||
116 	    !ext4_has_feature_metadata_csum(inode->i_sb))
117 		return;
118 
119 	csum = ext4_inode_csum(inode, raw, ei);
120 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
121 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
122 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
123 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
124 }
125 
126 static inline int ext4_begin_ordered_truncate(struct inode *inode,
127 					      loff_t new_size)
128 {
129 	trace_ext4_begin_ordered_truncate(inode, new_size);
130 	/*
131 	 * If jinode is zero, then we never opened the file for
132 	 * writing, so there's no need to call
133 	 * jbd2_journal_begin_ordered_truncate() since there's no
134 	 * outstanding writes we need to flush.
135 	 */
136 	if (!EXT4_I(inode)->jinode)
137 		return 0;
138 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
139 						   EXT4_I(inode)->jinode,
140 						   new_size);
141 }
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!ext4_has_feature_ea_inode(inode->i_sb)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	dax_break_layout_final(inode);
181 
182 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 		ext4_evict_ea_inode(inode);
184 	if (inode->i_nlink) {
185 		truncate_inode_pages_final(&inode->i_data);
186 
187 		goto no_delete;
188 	}
189 
190 	if (is_bad_inode(inode))
191 		goto no_delete;
192 	dquot_initialize(inode);
193 
194 	if (ext4_should_order_data(inode))
195 		ext4_begin_ordered_truncate(inode, 0);
196 	truncate_inode_pages_final(&inode->i_data);
197 
198 	/*
199 	 * For inodes with journalled data, transaction commit could have
200 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
201 	 * extents converting worker could merge extents and also have dirtied
202 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
203 	 * we still need to remove the inode from the writeback lists.
204 	 */
205 	inode_io_list_del(inode);
206 
207 	/*
208 	 * Protect us against freezing - iput() caller didn't have to have any
209 	 * protection against it. When we are in a running transaction though,
210 	 * we are already protected against freezing and we cannot grab further
211 	 * protection due to lock ordering constraints.
212 	 */
213 	if (!ext4_journal_current_handle()) {
214 		sb_start_intwrite(inode->i_sb);
215 		freeze_protected = true;
216 	}
217 
218 	if (!IS_NOQUOTA(inode))
219 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
220 
221 	/*
222 	 * Block bitmap, group descriptor, and inode are accounted in both
223 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
224 	 */
225 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
226 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
227 	if (IS_ERR(handle)) {
228 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
229 		/*
230 		 * If we're going to skip the normal cleanup, we still need to
231 		 * make sure that the in-core orphan linked list is properly
232 		 * cleaned up.
233 		 */
234 		ext4_orphan_del(NULL, inode);
235 		if (freeze_protected)
236 			sb_end_intwrite(inode->i_sb);
237 		goto no_delete;
238 	}
239 
240 	if (IS_SYNC(inode))
241 		ext4_handle_sync(handle);
242 
243 	/*
244 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
245 	 * special handling of symlinks here because i_size is used to
246 	 * determine whether ext4_inode_info->i_data contains symlink data or
247 	 * block mappings. Setting i_size to 0 will remove its fast symlink
248 	 * status. Erase i_data so that it becomes a valid empty block map.
249 	 */
250 	if (ext4_inode_is_fast_symlink(inode))
251 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
252 	inode->i_size = 0;
253 	err = ext4_mark_inode_dirty(handle, inode);
254 	if (err) {
255 		ext4_warning(inode->i_sb,
256 			     "couldn't mark inode dirty (err %d)", err);
257 		goto stop_handle;
258 	}
259 	if (inode->i_blocks) {
260 		err = ext4_truncate(inode);
261 		if (err) {
262 			ext4_error_err(inode->i_sb, -err,
263 				       "couldn't truncate inode %lu (err %d)",
264 				       inode->i_ino, err);
265 			goto stop_handle;
266 		}
267 	}
268 
269 	/* Remove xattr references. */
270 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
271 				      extra_credits);
272 	if (err) {
273 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
274 stop_handle:
275 		ext4_journal_stop(handle);
276 		ext4_orphan_del(NULL, inode);
277 		if (freeze_protected)
278 			sb_end_intwrite(inode->i_sb);
279 		ext4_xattr_inode_array_free(ea_inode_array);
280 		goto no_delete;
281 	}
282 
283 	/*
284 	 * Kill off the orphan record which ext4_truncate created.
285 	 * AKPM: I think this can be inside the above `if'.
286 	 * Note that ext4_orphan_del() has to be able to cope with the
287 	 * deletion of a non-existent orphan - this is because we don't
288 	 * know if ext4_truncate() actually created an orphan record.
289 	 * (Well, we could do this if we need to, but heck - it works)
290 	 */
291 	ext4_orphan_del(handle, inode);
292 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
293 
294 	/*
295 	 * One subtle ordering requirement: if anything has gone wrong
296 	 * (transaction abort, IO errors, whatever), then we can still
297 	 * do these next steps (the fs will already have been marked as
298 	 * having errors), but we can't free the inode if the mark_dirty
299 	 * fails.
300 	 */
301 	if (ext4_mark_inode_dirty(handle, inode))
302 		/* If that failed, just do the required in-core inode clear. */
303 		ext4_clear_inode(inode);
304 	else
305 		ext4_free_inode(handle, inode);
306 	ext4_journal_stop(handle);
307 	if (freeze_protected)
308 		sb_end_intwrite(inode->i_sb);
309 	ext4_xattr_inode_array_free(ea_inode_array);
310 	return;
311 no_delete:
312 	/*
313 	 * Check out some where else accidentally dirty the evicting inode,
314 	 * which may probably cause inode use-after-free issues later.
315 	 */
316 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
317 
318 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
319 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
320 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
321 }
322 
323 #ifdef CONFIG_QUOTA
324 qsize_t *ext4_get_reserved_space(struct inode *inode)
325 {
326 	return &EXT4_I(inode)->i_reserved_quota;
327 }
328 #endif
329 
330 /*
331  * Called with i_data_sem down, which is important since we can call
332  * ext4_discard_preallocations() from here.
333  */
334 void ext4_da_update_reserve_space(struct inode *inode,
335 					int used, int quota_claim)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
338 	struct ext4_inode_info *ei = EXT4_I(inode);
339 
340 	spin_lock(&ei->i_block_reservation_lock);
341 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
342 	if (unlikely(used > ei->i_reserved_data_blocks)) {
343 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
344 			 "with only %d reserved data blocks",
345 			 __func__, inode->i_ino, used,
346 			 ei->i_reserved_data_blocks);
347 		WARN_ON(1);
348 		used = ei->i_reserved_data_blocks;
349 	}
350 
351 	/* Update per-inode reservations */
352 	ei->i_reserved_data_blocks -= used;
353 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
354 
355 	spin_unlock(&ei->i_block_reservation_lock);
356 
357 	/* Update quota subsystem for data blocks */
358 	if (quota_claim)
359 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
360 	else {
361 		/*
362 		 * We did fallocate with an offset that is already delayed
363 		 * allocated. So on delayed allocated writeback we should
364 		 * not re-claim the quota for fallocated blocks.
365 		 */
366 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 	}
368 
369 	/*
370 	 * If we have done all the pending block allocations and if
371 	 * there aren't any writers on the inode, we can discard the
372 	 * inode's preallocations.
373 	 */
374 	if ((ei->i_reserved_data_blocks == 0) &&
375 	    !inode_is_open_for_write(inode))
376 		ext4_discard_preallocations(inode);
377 }
378 
379 static int __check_block_validity(struct inode *inode, const char *func,
380 				unsigned int line,
381 				struct ext4_map_blocks *map)
382 {
383 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
384 
385 	if (journal && inode == journal->j_inode)
386 		return 0;
387 
388 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
389 		ext4_error_inode(inode, func, line, map->m_pblk,
390 				 "lblock %lu mapped to illegal pblock %llu "
391 				 "(length %d)", (unsigned long) map->m_lblk,
392 				 map->m_pblk, map->m_len);
393 		return -EFSCORRUPTED;
394 	}
395 	return 0;
396 }
397 
398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
399 		       ext4_lblk_t len)
400 {
401 	int ret;
402 
403 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
404 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
405 
406 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
407 	if (ret > 0)
408 		ret = 0;
409 
410 	return ret;
411 }
412 
413 /*
414  * For generic regular files, when updating the extent tree, Ext4 should
415  * hold the i_rwsem and invalidate_lock exclusively. This ensures
416  * exclusion against concurrent page faults, as well as reads and writes.
417  */
418 #ifdef CONFIG_EXT4_DEBUG
419 void ext4_check_map_extents_env(struct inode *inode)
420 {
421 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
422 		return;
423 
424 	if (!S_ISREG(inode->i_mode) ||
425 	    IS_NOQUOTA(inode) || IS_VERITY(inode) ||
426 	    is_special_ino(inode->i_sb, inode->i_ino) ||
427 	    (inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) ||
428 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) ||
429 	    ext4_verity_in_progress(inode))
430 		return;
431 
432 	WARN_ON_ONCE(!inode_is_locked(inode) &&
433 		     !rwsem_is_locked(&inode->i_mapping->invalidate_lock));
434 }
435 #else
436 void ext4_check_map_extents_env(struct inode *inode) {}
437 #endif
438 
439 #define check_block_validity(inode, map)	\
440 	__check_block_validity((inode), __func__, __LINE__, (map))
441 
442 #ifdef ES_AGGRESSIVE_TEST
443 static void ext4_map_blocks_es_recheck(handle_t *handle,
444 				       struct inode *inode,
445 				       struct ext4_map_blocks *es_map,
446 				       struct ext4_map_blocks *map,
447 				       int flags)
448 {
449 	int retval;
450 
451 	map->m_flags = 0;
452 	/*
453 	 * There is a race window that the result is not the same.
454 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
455 	 * is that we lookup a block mapping in extent status tree with
456 	 * out taking i_data_sem.  So at the time the unwritten extent
457 	 * could be converted.
458 	 */
459 	down_read(&EXT4_I(inode)->i_data_sem);
460 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
461 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
462 	} else {
463 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
464 	}
465 	up_read((&EXT4_I(inode)->i_data_sem));
466 
467 	/*
468 	 * We don't check m_len because extent will be collpased in status
469 	 * tree.  So the m_len might not equal.
470 	 */
471 	if (es_map->m_lblk != map->m_lblk ||
472 	    es_map->m_flags != map->m_flags ||
473 	    es_map->m_pblk != map->m_pblk) {
474 		printk("ES cache assertion failed for inode: %lu "
475 		       "es_cached ex [%d/%d/%llu/%x] != "
476 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
477 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
478 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
479 		       map->m_len, map->m_pblk, map->m_flags,
480 		       retval, flags);
481 	}
482 }
483 #endif /* ES_AGGRESSIVE_TEST */
484 
485 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle,
486 			struct inode *inode, struct ext4_map_blocks *map,
487 			unsigned int orig_mlen)
488 {
489 	struct ext4_map_blocks map2;
490 	unsigned int status, status2;
491 	int retval;
492 
493 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
494 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
495 
496 	WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF));
497 	WARN_ON_ONCE(orig_mlen <= map->m_len);
498 
499 	/* Prepare map2 for lookup in next leaf block */
500 	map2.m_lblk = map->m_lblk + map->m_len;
501 	map2.m_len = orig_mlen - map->m_len;
502 	map2.m_flags = 0;
503 	retval = ext4_ext_map_blocks(handle, inode, &map2, 0);
504 
505 	if (retval <= 0) {
506 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
507 				      map->m_pblk, status, false);
508 		return map->m_len;
509 	}
510 
511 	if (unlikely(retval != map2.m_len)) {
512 		ext4_warning(inode->i_sb,
513 			     "ES len assertion failed for inode "
514 			     "%lu: retval %d != map->m_len %d",
515 			     inode->i_ino, retval, map2.m_len);
516 		WARN_ON(1);
517 	}
518 
519 	status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ?
520 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
521 
522 	/*
523 	 * If map2 is contiguous with map, then let's insert it as a single
524 	 * extent in es cache and return the combined length of both the maps.
525 	 */
526 	if (map->m_pblk + map->m_len == map2.m_pblk &&
527 			status == status2) {
528 		ext4_es_insert_extent(inode, map->m_lblk,
529 				      map->m_len + map2.m_len, map->m_pblk,
530 				      status, false);
531 		map->m_len += map2.m_len;
532 	} else {
533 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
534 				      map->m_pblk, status, false);
535 	}
536 
537 	return map->m_len;
538 }
539 
540 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
541 				 struct ext4_map_blocks *map, int flags)
542 {
543 	unsigned int status;
544 	int retval;
545 	unsigned int orig_mlen = map->m_len;
546 
547 	flags &= EXT4_EX_QUERY_FILTER;
548 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
549 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
550 	else
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
552 	if (retval < 0)
553 		return retval;
554 
555 	/* A hole? */
556 	if (retval == 0)
557 		goto out;
558 
559 	if (unlikely(retval != map->m_len)) {
560 		ext4_warning(inode->i_sb,
561 			     "ES len assertion failed for inode "
562 			     "%lu: retval %d != map->m_len %d",
563 			     inode->i_ino, retval, map->m_len);
564 		WARN_ON(1);
565 	}
566 
567 	/*
568 	 * No need to query next in leaf:
569 	 * - if returned extent is not last in leaf or
570 	 * - if the last in leaf is the full requested range
571 	 */
572 	if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) ||
573 			map->m_len == orig_mlen) {
574 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
575 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
576 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
577 				      map->m_pblk, status, false);
578 	} else {
579 		retval = ext4_map_query_blocks_next_in_leaf(handle, inode, map,
580 							    orig_mlen);
581 	}
582 out:
583 	map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq);
584 	return retval;
585 }
586 
587 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
588 				  struct ext4_map_blocks *map, int flags)
589 {
590 	struct extent_status es;
591 	unsigned int status;
592 	int err, retval = 0;
593 
594 	/*
595 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
596 	 * indicates that the blocks and quotas has already been
597 	 * checked when the data was copied into the page cache.
598 	 */
599 	if (map->m_flags & EXT4_MAP_DELAYED)
600 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
601 
602 	/*
603 	 * Here we clear m_flags because after allocating an new extent,
604 	 * it will be set again.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_FLAGS;
607 
608 	/*
609 	 * We need to check for EXT4 here because migrate could have
610 	 * changed the inode type in between.
611 	 */
612 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
613 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
614 	} else {
615 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
616 
617 		/*
618 		 * We allocated new blocks which will result in i_data's
619 		 * format changing. Force the migrate to fail by clearing
620 		 * migrate flags.
621 		 */
622 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
623 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
624 	}
625 	if (retval <= 0)
626 		return retval;
627 
628 	if (unlikely(retval != map->m_len)) {
629 		ext4_warning(inode->i_sb,
630 			     "ES len assertion failed for inode %lu: "
631 			     "retval %d != map->m_len %d",
632 			     inode->i_ino, retval, map->m_len);
633 		WARN_ON(1);
634 	}
635 
636 	/*
637 	 * We have to zeroout blocks before inserting them into extent
638 	 * status tree. Otherwise someone could look them up there and
639 	 * use them before they are really zeroed. We also have to
640 	 * unmap metadata before zeroing as otherwise writeback can
641 	 * overwrite zeros with stale data from block device.
642 	 */
643 	if (flags & EXT4_GET_BLOCKS_ZERO &&
644 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
645 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
646 					 map->m_len);
647 		if (err)
648 			return err;
649 	}
650 
651 	/*
652 	 * If the extent has been zeroed out, we don't need to update
653 	 * extent status tree.
654 	 */
655 	if (flags & EXT4_GET_BLOCKS_SPLIT_NOMERGE &&
656 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, &map->m_seq)) {
657 		if (ext4_es_is_written(&es))
658 			return retval;
659 	}
660 
661 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
662 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
663 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
664 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
665 	map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq);
666 
667 	return retval;
668 }
669 
670 /*
671  * The ext4_map_blocks() function tries to look up the requested blocks,
672  * and returns if the blocks are already mapped.
673  *
674  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
675  * and store the allocated blocks in the result buffer head and mark it
676  * mapped.
677  *
678  * If file type is extents based, it will call ext4_ext_map_blocks(),
679  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
680  * based files
681  *
682  * On success, it returns the number of blocks being mapped or allocated.
683  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
684  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
685  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
686  *
687  * It returns 0 if plain look up failed (blocks have not been allocated), in
688  * that case, @map is returned as unmapped but we still do fill map->m_len to
689  * indicate the length of a hole starting at map->m_lblk.
690  *
691  * It returns the error in case of allocation failure.
692  */
693 int ext4_map_blocks(handle_t *handle, struct inode *inode,
694 		    struct ext4_map_blocks *map, int flags)
695 {
696 	struct extent_status es;
697 	int retval;
698 	int ret = 0;
699 	unsigned int orig_mlen = map->m_len;
700 #ifdef ES_AGGRESSIVE_TEST
701 	struct ext4_map_blocks orig_map;
702 
703 	memcpy(&orig_map, map, sizeof(*map));
704 #endif
705 
706 	map->m_flags = 0;
707 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
708 		  flags, map->m_len, (unsigned long) map->m_lblk);
709 
710 	/*
711 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
712 	 */
713 	if (unlikely(map->m_len > INT_MAX))
714 		map->m_len = INT_MAX;
715 
716 	/* We can handle the block number less than EXT_MAX_BLOCKS */
717 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
718 		return -EFSCORRUPTED;
719 
720 	/*
721 	 * Callers from the context of data submission are the only exceptions
722 	 * for regular files that do not hold the i_rwsem or invalidate_lock.
723 	 * However, caching unrelated ranges is not permitted.
724 	 */
725 	if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
726 		WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE));
727 	else
728 		ext4_check_map_extents_env(inode);
729 
730 	/* Lookup extent status tree firstly */
731 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, &map->m_seq)) {
732 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
733 			map->m_pblk = ext4_es_pblock(&es) +
734 					map->m_lblk - es.es_lblk;
735 			map->m_flags |= ext4_es_is_written(&es) ?
736 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
737 			retval = es.es_len - (map->m_lblk - es.es_lblk);
738 			if (retval > map->m_len)
739 				retval = map->m_len;
740 			map->m_len = retval;
741 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
742 			map->m_pblk = 0;
743 			map->m_flags |= ext4_es_is_delayed(&es) ?
744 					EXT4_MAP_DELAYED : 0;
745 			retval = es.es_len - (map->m_lblk - es.es_lblk);
746 			if (retval > map->m_len)
747 				retval = map->m_len;
748 			map->m_len = retval;
749 			retval = 0;
750 		} else {
751 			BUG();
752 		}
753 
754 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
755 			return retval;
756 #ifdef ES_AGGRESSIVE_TEST
757 		ext4_map_blocks_es_recheck(handle, inode, map,
758 					   &orig_map, flags);
759 #endif
760 		if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) ||
761 				orig_mlen == map->m_len)
762 			goto found;
763 
764 		map->m_len = orig_mlen;
765 	}
766 	/*
767 	 * In the query cache no-wait mode, nothing we can do more if we
768 	 * cannot find extent in the cache.
769 	 */
770 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
771 		return 0;
772 
773 	/*
774 	 * Try to see if we can get the block without requesting a new
775 	 * file system block.
776 	 */
777 	down_read(&EXT4_I(inode)->i_data_sem);
778 	retval = ext4_map_query_blocks(handle, inode, map, flags);
779 	up_read((&EXT4_I(inode)->i_data_sem));
780 
781 found:
782 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
783 		ret = check_block_validity(inode, map);
784 		if (ret != 0)
785 			return ret;
786 	}
787 
788 	/* If it is only a block(s) look up */
789 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
790 		return retval;
791 
792 	/*
793 	 * Returns if the blocks have already allocated
794 	 *
795 	 * Note that if blocks have been preallocated
796 	 * ext4_ext_map_blocks() returns with buffer head unmapped
797 	 */
798 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
799 		/*
800 		 * If we need to convert extent to unwritten
801 		 * we continue and do the actual work in
802 		 * ext4_ext_map_blocks()
803 		 */
804 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
805 			return retval;
806 
807 
808 	ext4_fc_track_inode(handle, inode);
809 	/*
810 	 * New blocks allocate and/or writing to unwritten extent
811 	 * will possibly result in updating i_data, so we take
812 	 * the write lock of i_data_sem, and call get_block()
813 	 * with create == 1 flag.
814 	 */
815 	down_write(&EXT4_I(inode)->i_data_sem);
816 	retval = ext4_map_create_blocks(handle, inode, map, flags);
817 	up_write((&EXT4_I(inode)->i_data_sem));
818 
819 	if (retval < 0)
820 		ext_debug(inode, "failed with err %d\n", retval);
821 	if (retval <= 0)
822 		return retval;
823 
824 	if (map->m_flags & EXT4_MAP_MAPPED) {
825 		ret = check_block_validity(inode, map);
826 		if (ret != 0)
827 			return ret;
828 
829 		/*
830 		 * Inodes with freshly allocated blocks where contents will be
831 		 * visible after transaction commit must be on transaction's
832 		 * ordered data list.
833 		 */
834 		if (map->m_flags & EXT4_MAP_NEW &&
835 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
836 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
837 		    !ext4_is_quota_file(inode) &&
838 		    ext4_should_order_data(inode)) {
839 			loff_t start_byte = EXT4_LBLK_TO_B(inode, map->m_lblk);
840 			loff_t length = EXT4_LBLK_TO_B(inode, map->m_len);
841 
842 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
843 				ret = ext4_jbd2_inode_add_wait(handle, inode,
844 						start_byte, length);
845 			else
846 				ret = ext4_jbd2_inode_add_write(handle, inode,
847 						start_byte, length);
848 			if (ret)
849 				return ret;
850 		}
851 	}
852 	ext4_fc_track_range(handle, inode, map->m_lblk, map->m_lblk +
853 			    map->m_len - 1);
854 	return retval;
855 }
856 
857 /*
858  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
859  * we have to be careful as someone else may be manipulating b_state as well.
860  */
861 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
862 {
863 	unsigned long old_state;
864 	unsigned long new_state;
865 
866 	flags &= EXT4_MAP_FLAGS;
867 
868 	/* Dummy buffer_head? Set non-atomically. */
869 	if (!bh->b_folio) {
870 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
871 		return;
872 	}
873 	/*
874 	 * Someone else may be modifying b_state. Be careful! This is ugly but
875 	 * once we get rid of using bh as a container for mapping information
876 	 * to pass to / from get_block functions, this can go away.
877 	 */
878 	old_state = READ_ONCE(bh->b_state);
879 	do {
880 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
881 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
882 }
883 
884 /*
885  * Make sure that the current journal transaction has enough credits to map
886  * one extent. Return -EAGAIN if it cannot extend the current running
887  * transaction.
888  */
889 static inline int ext4_journal_ensure_extent_credits(handle_t *handle,
890 						     struct inode *inode)
891 {
892 	int credits;
893 	int ret;
894 
895 	/* Called from ext4_da_write_begin() which has no handle started? */
896 	if (!handle)
897 		return 0;
898 
899 	credits = ext4_chunk_trans_blocks(inode, 1);
900 	ret = __ext4_journal_ensure_credits(handle, credits, credits, 0);
901 	return ret <= 0 ? ret : -EAGAIN;
902 }
903 
904 static int _ext4_get_block(struct inode *inode, sector_t iblock,
905 			   struct buffer_head *bh, int flags)
906 {
907 	struct ext4_map_blocks map;
908 	int ret = 0;
909 
910 	if (ext4_has_inline_data(inode))
911 		return -ERANGE;
912 
913 	map.m_lblk = iblock;
914 	map.m_len = bh->b_size >> inode->i_blkbits;
915 
916 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
917 			      flags);
918 	if (ret > 0) {
919 		map_bh(bh, inode->i_sb, map.m_pblk);
920 		ext4_update_bh_state(bh, map.m_flags);
921 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
922 		ret = 0;
923 	} else if (ret == 0) {
924 		/* hole case, need to fill in bh->b_size */
925 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
926 	}
927 	return ret;
928 }
929 
930 int ext4_get_block(struct inode *inode, sector_t iblock,
931 		   struct buffer_head *bh, int create)
932 {
933 	return _ext4_get_block(inode, iblock, bh,
934 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
935 }
936 
937 /*
938  * Get block function used when preparing for buffered write if we require
939  * creating an unwritten extent if blocks haven't been allocated.  The extent
940  * will be converted to written after the IO is complete.
941  */
942 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
943 			     struct buffer_head *bh_result, int create)
944 {
945 	int ret = 0;
946 
947 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
948 		   inode->i_ino, create);
949 	ret = _ext4_get_block(inode, iblock, bh_result,
950 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
951 
952 	/*
953 	 * If the buffer is marked unwritten, mark it as new to make sure it is
954 	 * zeroed out correctly in case of partial writes. Otherwise, there is
955 	 * a chance of stale data getting exposed.
956 	 */
957 	if (ret == 0 && buffer_unwritten(bh_result))
958 		set_buffer_new(bh_result);
959 
960 	return ret;
961 }
962 
963 /* Maximum number of blocks we map for direct IO at once. */
964 #define DIO_MAX_BLOCKS 4096
965 
966 /*
967  * `handle' can be NULL if create is zero
968  */
969 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
970 				ext4_lblk_t block, int map_flags)
971 {
972 	struct ext4_map_blocks map;
973 	struct buffer_head *bh;
974 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
975 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
976 	int err;
977 
978 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
979 		    || handle != NULL || create == 0);
980 	ASSERT(create == 0 || !nowait);
981 
982 	map.m_lblk = block;
983 	map.m_len = 1;
984 	err = ext4_map_blocks(handle, inode, &map, map_flags);
985 
986 	if (err == 0)
987 		return create ? ERR_PTR(-ENOSPC) : NULL;
988 	if (err < 0)
989 		return ERR_PTR(err);
990 
991 	if (nowait)
992 		return sb_find_get_block(inode->i_sb, map.m_pblk);
993 
994 	/*
995 	 * Since bh could introduce extra ref count such as referred by
996 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
997 	 * as it may fail the migration when journal_head remains.
998 	 */
999 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
1000 				inode->i_sb->s_blocksize);
1001 
1002 	if (unlikely(!bh))
1003 		return ERR_PTR(-ENOMEM);
1004 	if (map.m_flags & EXT4_MAP_NEW) {
1005 		ASSERT(create != 0);
1006 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1007 			    || (handle != NULL));
1008 
1009 		/*
1010 		 * Now that we do not always journal data, we should
1011 		 * keep in mind whether this should always journal the
1012 		 * new buffer as metadata.  For now, regular file
1013 		 * writes use ext4_get_block instead, so it's not a
1014 		 * problem.
1015 		 */
1016 		lock_buffer(bh);
1017 		BUFFER_TRACE(bh, "call get_create_access");
1018 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
1019 						     EXT4_JTR_NONE);
1020 		if (unlikely(err)) {
1021 			unlock_buffer(bh);
1022 			goto errout;
1023 		}
1024 		if (!buffer_uptodate(bh)) {
1025 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1026 			set_buffer_uptodate(bh);
1027 		}
1028 		unlock_buffer(bh);
1029 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1030 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1031 		if (unlikely(err))
1032 			goto errout;
1033 	} else
1034 		BUFFER_TRACE(bh, "not a new buffer");
1035 	return bh;
1036 errout:
1037 	brelse(bh);
1038 	return ERR_PTR(err);
1039 }
1040 
1041 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1042 			       ext4_lblk_t block, int map_flags)
1043 {
1044 	struct buffer_head *bh;
1045 	int ret;
1046 
1047 	bh = ext4_getblk(handle, inode, block, map_flags);
1048 	if (IS_ERR(bh))
1049 		return bh;
1050 	if (!bh || ext4_buffer_uptodate(bh))
1051 		return bh;
1052 
1053 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
1054 	if (ret) {
1055 		put_bh(bh);
1056 		return ERR_PTR(ret);
1057 	}
1058 	return bh;
1059 }
1060 
1061 /* Read a contiguous batch of blocks. */
1062 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1063 		     bool wait, struct buffer_head **bhs)
1064 {
1065 	int i, err;
1066 
1067 	for (i = 0; i < bh_count; i++) {
1068 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1069 		if (IS_ERR(bhs[i])) {
1070 			err = PTR_ERR(bhs[i]);
1071 			bh_count = i;
1072 			goto out_brelse;
1073 		}
1074 	}
1075 
1076 	for (i = 0; i < bh_count; i++)
1077 		/* Note that NULL bhs[i] is valid because of holes. */
1078 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1079 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
1080 
1081 	if (!wait)
1082 		return 0;
1083 
1084 	for (i = 0; i < bh_count; i++)
1085 		if (bhs[i])
1086 			wait_on_buffer(bhs[i]);
1087 
1088 	for (i = 0; i < bh_count; i++) {
1089 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1090 			err = -EIO;
1091 			goto out_brelse;
1092 		}
1093 	}
1094 	return 0;
1095 
1096 out_brelse:
1097 	for (i = 0; i < bh_count; i++) {
1098 		brelse(bhs[i]);
1099 		bhs[i] = NULL;
1100 	}
1101 	return err;
1102 }
1103 
1104 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
1105 			   struct buffer_head *head,
1106 			   unsigned from,
1107 			   unsigned to,
1108 			   int *partial,
1109 			   int (*fn)(handle_t *handle, struct inode *inode,
1110 				     struct buffer_head *bh))
1111 {
1112 	struct buffer_head *bh;
1113 	unsigned block_start, block_end;
1114 	unsigned blocksize = head->b_size;
1115 	int err, ret = 0;
1116 	struct buffer_head *next;
1117 
1118 	for (bh = head, block_start = 0;
1119 	     ret == 0 && (bh != head || !block_start);
1120 	     block_start = block_end, bh = next) {
1121 		next = bh->b_this_page;
1122 		block_end = block_start + blocksize;
1123 		if (block_end <= from || block_start >= to) {
1124 			if (partial && !buffer_uptodate(bh))
1125 				*partial = 1;
1126 			continue;
1127 		}
1128 		err = (*fn)(handle, inode, bh);
1129 		if (!ret)
1130 			ret = err;
1131 	}
1132 	return ret;
1133 }
1134 
1135 /*
1136  * Helper for handling dirtying of journalled data. We also mark the folio as
1137  * dirty so that writeback code knows about this page (and inode) contains
1138  * dirty data. ext4_writepages() then commits appropriate transaction to
1139  * make data stable.
1140  */
1141 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1142 {
1143 	struct folio *folio = bh->b_folio;
1144 	struct inode *inode = folio->mapping->host;
1145 
1146 	/* only regular files have a_ops */
1147 	if (S_ISREG(inode->i_mode))
1148 		folio_mark_dirty(folio);
1149 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1150 }
1151 
1152 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1153 				struct buffer_head *bh)
1154 {
1155 	if (!buffer_mapped(bh) || buffer_freed(bh))
1156 		return 0;
1157 	BUFFER_TRACE(bh, "get write access");
1158 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1159 					    EXT4_JTR_NONE);
1160 }
1161 
1162 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1163 			   loff_t pos, unsigned len,
1164 			   get_block_t *get_block)
1165 {
1166 	unsigned int from = offset_in_folio(folio, pos);
1167 	unsigned to = from + len;
1168 	struct inode *inode = folio->mapping->host;
1169 	unsigned block_start, block_end;
1170 	sector_t block;
1171 	int err = 0;
1172 	unsigned int blocksize = i_blocksize(inode);
1173 	struct buffer_head *bh, *head, *wait[2];
1174 	int nr_wait = 0;
1175 	int i;
1176 	bool should_journal_data = ext4_should_journal_data(inode);
1177 
1178 	BUG_ON(!folio_test_locked(folio));
1179 	BUG_ON(to > folio_size(folio));
1180 	BUG_ON(from > to);
1181 	WARN_ON_ONCE(blocksize > folio_size(folio));
1182 
1183 	head = folio_buffers(folio);
1184 	if (!head)
1185 		head = create_empty_buffers(folio, blocksize, 0);
1186 	block = EXT4_PG_TO_LBLK(inode, folio->index);
1187 
1188 	for (bh = head, block_start = 0; bh != head || !block_start;
1189 	    block++, block_start = block_end, bh = bh->b_this_page) {
1190 		block_end = block_start + blocksize;
1191 		if (block_end <= from || block_start >= to) {
1192 			if (folio_test_uptodate(folio)) {
1193 				set_buffer_uptodate(bh);
1194 			}
1195 			continue;
1196 		}
1197 		if (WARN_ON_ONCE(buffer_new(bh)))
1198 			clear_buffer_new(bh);
1199 		if (!buffer_mapped(bh)) {
1200 			WARN_ON(bh->b_size != blocksize);
1201 			err = ext4_journal_ensure_extent_credits(handle, inode);
1202 			if (!err)
1203 				err = get_block(inode, block, bh, 1);
1204 			if (err)
1205 				break;
1206 			if (buffer_new(bh)) {
1207 				/*
1208 				 * We may be zeroing partial buffers or all new
1209 				 * buffers in case of failure. Prepare JBD2 for
1210 				 * that.
1211 				 */
1212 				if (should_journal_data)
1213 					do_journal_get_write_access(handle,
1214 								    inode, bh);
1215 				if (folio_test_uptodate(folio)) {
1216 					/*
1217 					 * Unlike __block_write_begin() we leave
1218 					 * dirtying of new uptodate buffers to
1219 					 * ->write_end() time or
1220 					 * folio_zero_new_buffers().
1221 					 */
1222 					set_buffer_uptodate(bh);
1223 					continue;
1224 				}
1225 				if (block_end > to || block_start < from)
1226 					folio_zero_segments(folio, to,
1227 							    block_end,
1228 							    block_start, from);
1229 				continue;
1230 			}
1231 		}
1232 		if (folio_test_uptodate(folio)) {
1233 			set_buffer_uptodate(bh);
1234 			continue;
1235 		}
1236 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1237 		    !buffer_unwritten(bh) &&
1238 		    (block_start < from || block_end > to)) {
1239 			ext4_read_bh_lock(bh, 0, false);
1240 			wait[nr_wait++] = bh;
1241 		}
1242 	}
1243 	/*
1244 	 * If we issued read requests, let them complete.
1245 	 */
1246 	for (i = 0; i < nr_wait; i++) {
1247 		wait_on_buffer(wait[i]);
1248 		if (!buffer_uptodate(wait[i]))
1249 			err = -EIO;
1250 	}
1251 	if (unlikely(err)) {
1252 		if (should_journal_data)
1253 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1254 							 from, to);
1255 		else
1256 			folio_zero_new_buffers(folio, from, to);
1257 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1258 		for (i = 0; i < nr_wait; i++) {
1259 			int err2;
1260 
1261 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1262 						blocksize, bh_offset(wait[i]));
1263 			if (err2) {
1264 				clear_buffer_uptodate(wait[i]);
1265 				err = err2;
1266 			}
1267 		}
1268 	}
1269 
1270 	return err;
1271 }
1272 
1273 /*
1274  * To preserve ordering, it is essential that the hole instantiation and
1275  * the data write be encapsulated in a single transaction.  We cannot
1276  * close off a transaction and start a new one between the ext4_get_block()
1277  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1278  * ext4_write_begin() is the right place.
1279  */
1280 static int ext4_write_begin(const struct kiocb *iocb,
1281 			    struct address_space *mapping,
1282 			    loff_t pos, unsigned len,
1283 			    struct folio **foliop, void **fsdata)
1284 {
1285 	struct inode *inode = mapping->host;
1286 	int ret, needed_blocks;
1287 	handle_t *handle;
1288 	int retries = 0;
1289 	struct folio *folio;
1290 	pgoff_t index;
1291 	unsigned from, to;
1292 
1293 	ret = ext4_emergency_state(inode->i_sb);
1294 	if (unlikely(ret))
1295 		return ret;
1296 
1297 	trace_ext4_write_begin(inode, pos, len);
1298 	/*
1299 	 * Reserve one block more for addition to orphan list in case
1300 	 * we allocate blocks but write fails for some reason
1301 	 */
1302 	needed_blocks = ext4_chunk_trans_extent(inode,
1303 			ext4_journal_blocks_per_folio(inode)) + 1;
1304 	index = pos >> PAGE_SHIFT;
1305 
1306 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1307 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1308 						    foliop);
1309 		if (ret < 0)
1310 			return ret;
1311 		if (ret == 1)
1312 			return 0;
1313 	}
1314 
1315 	/*
1316 	 * write_begin_get_folio() can take a long time if the
1317 	 * system is thrashing due to memory pressure, or if the folio
1318 	 * is being written back.  So grab it first before we start
1319 	 * the transaction handle.  This also allows us to allocate
1320 	 * the folio (if needed) without using GFP_NOFS.
1321 	 */
1322 retry_grab:
1323 	folio = write_begin_get_folio(iocb, mapping, index, len);
1324 	if (IS_ERR(folio))
1325 		return PTR_ERR(folio);
1326 
1327 	if (len > folio_next_pos(folio) - pos)
1328 		len = folio_next_pos(folio) - pos;
1329 
1330 	from = offset_in_folio(folio, pos);
1331 	to = from + len;
1332 
1333 	/*
1334 	 * The same as page allocation, we prealloc buffer heads before
1335 	 * starting the handle.
1336 	 */
1337 	if (!folio_buffers(folio))
1338 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1339 
1340 	folio_unlock(folio);
1341 
1342 retry_journal:
1343 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1344 	if (IS_ERR(handle)) {
1345 		folio_put(folio);
1346 		return PTR_ERR(handle);
1347 	}
1348 
1349 	folio_lock(folio);
1350 	if (folio->mapping != mapping) {
1351 		/* The folio got truncated from under us */
1352 		folio_unlock(folio);
1353 		folio_put(folio);
1354 		ext4_journal_stop(handle);
1355 		goto retry_grab;
1356 	}
1357 	/* In case writeback began while the folio was unlocked */
1358 	folio_wait_stable(folio);
1359 
1360 	if (ext4_should_dioread_nolock(inode))
1361 		ret = ext4_block_write_begin(handle, folio, pos, len,
1362 					     ext4_get_block_unwritten);
1363 	else
1364 		ret = ext4_block_write_begin(handle, folio, pos, len,
1365 					     ext4_get_block);
1366 	if (!ret && ext4_should_journal_data(inode)) {
1367 		ret = ext4_walk_page_buffers(handle, inode,
1368 					     folio_buffers(folio), from, to,
1369 					     NULL, do_journal_get_write_access);
1370 	}
1371 
1372 	if (ret) {
1373 		bool extended = (pos + len > inode->i_size) &&
1374 				!ext4_verity_in_progress(inode);
1375 
1376 		folio_unlock(folio);
1377 		/*
1378 		 * ext4_block_write_begin may have instantiated a few blocks
1379 		 * outside i_size.  Trim these off again. Don't need
1380 		 * i_size_read because we hold i_rwsem.
1381 		 *
1382 		 * Add inode to orphan list in case we crash before
1383 		 * truncate finishes
1384 		 */
1385 		if (extended && ext4_can_truncate(inode))
1386 			ext4_orphan_add(handle, inode);
1387 
1388 		ext4_journal_stop(handle);
1389 		if (extended) {
1390 			ext4_truncate_failed_write(inode);
1391 			/*
1392 			 * If truncate failed early the inode might
1393 			 * still be on the orphan list; we need to
1394 			 * make sure the inode is removed from the
1395 			 * orphan list in that case.
1396 			 */
1397 			if (inode->i_nlink)
1398 				ext4_orphan_del(NULL, inode);
1399 		}
1400 
1401 		if (ret == -EAGAIN ||
1402 		    (ret == -ENOSPC &&
1403 		     ext4_should_retry_alloc(inode->i_sb, &retries)))
1404 			goto retry_journal;
1405 		folio_put(folio);
1406 		return ret;
1407 	}
1408 	*foliop = folio;
1409 	return ret;
1410 }
1411 
1412 /* For write_end() in data=journal mode */
1413 static int write_end_fn(handle_t *handle, struct inode *inode,
1414 			struct buffer_head *bh)
1415 {
1416 	int ret;
1417 	if (!buffer_mapped(bh) || buffer_freed(bh))
1418 		return 0;
1419 	set_buffer_uptodate(bh);
1420 	ret = ext4_dirty_journalled_data(handle, bh);
1421 	clear_buffer_meta(bh);
1422 	clear_buffer_prio(bh);
1423 	clear_buffer_new(bh);
1424 	return ret;
1425 }
1426 
1427 /*
1428  * We need to pick up the new inode size which generic_commit_write gave us
1429  * `iocb` can be NULL - eg, when called from page_symlink().
1430  *
1431  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1432  * buffers are managed internally.
1433  */
1434 static int ext4_write_end(const struct kiocb *iocb,
1435 			  struct address_space *mapping,
1436 			  loff_t pos, unsigned len, unsigned copied,
1437 			  struct folio *folio, void *fsdata)
1438 {
1439 	handle_t *handle = ext4_journal_current_handle();
1440 	struct inode *inode = mapping->host;
1441 	loff_t old_size = inode->i_size;
1442 	int ret = 0, ret2;
1443 	int i_size_changed = 0;
1444 	bool verity = ext4_verity_in_progress(inode);
1445 
1446 	trace_ext4_write_end(inode, pos, len, copied);
1447 
1448 	if (ext4_has_inline_data(inode) &&
1449 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1450 		return ext4_write_inline_data_end(inode, pos, len, copied,
1451 						  folio);
1452 
1453 	copied = block_write_end(pos, len, copied, folio);
1454 	/*
1455 	 * it's important to update i_size while still holding folio lock:
1456 	 * page writeout could otherwise come in and zero beyond i_size.
1457 	 *
1458 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1459 	 * blocks are being written past EOF, so skip the i_size update.
1460 	 */
1461 	if (!verity)
1462 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1463 	folio_unlock(folio);
1464 	folio_put(folio);
1465 
1466 	if (old_size < pos && !verity) {
1467 		pagecache_isize_extended(inode, old_size, pos);
1468 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1469 	}
1470 	/*
1471 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1472 	 * makes the holding time of folio lock longer. Second, it forces lock
1473 	 * ordering of folio lock and transaction start for journaling
1474 	 * filesystems.
1475 	 */
1476 	if (i_size_changed)
1477 		ret = ext4_mark_inode_dirty(handle, inode);
1478 
1479 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1480 		/* if we have allocated more blocks and copied
1481 		 * less. We will have blocks allocated outside
1482 		 * inode->i_size. So truncate them
1483 		 */
1484 		ext4_orphan_add(handle, inode);
1485 
1486 	ret2 = ext4_journal_stop(handle);
1487 	if (!ret)
1488 		ret = ret2;
1489 
1490 	if (pos + len > inode->i_size && !verity) {
1491 		ext4_truncate_failed_write(inode);
1492 		/*
1493 		 * If truncate failed early the inode might still be
1494 		 * on the orphan list; we need to make sure the inode
1495 		 * is removed from the orphan list in that case.
1496 		 */
1497 		if (inode->i_nlink)
1498 			ext4_orphan_del(NULL, inode);
1499 	}
1500 
1501 	return ret ? ret : copied;
1502 }
1503 
1504 /*
1505  * This is a private version of folio_zero_new_buffers() which doesn't
1506  * set the buffer to be dirty, since in data=journalled mode we need
1507  * to call ext4_dirty_journalled_data() instead.
1508  */
1509 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1510 					    struct inode *inode,
1511 					    struct folio *folio,
1512 					    unsigned from, unsigned to)
1513 {
1514 	unsigned int block_start = 0, block_end;
1515 	struct buffer_head *head, *bh;
1516 
1517 	bh = head = folio_buffers(folio);
1518 	do {
1519 		block_end = block_start + bh->b_size;
1520 		if (buffer_new(bh)) {
1521 			if (block_end > from && block_start < to) {
1522 				if (!folio_test_uptodate(folio)) {
1523 					unsigned start, size;
1524 
1525 					start = max(from, block_start);
1526 					size = min(to, block_end) - start;
1527 
1528 					folio_zero_range(folio, start, size);
1529 				}
1530 				clear_buffer_new(bh);
1531 				write_end_fn(handle, inode, bh);
1532 			}
1533 		}
1534 		block_start = block_end;
1535 		bh = bh->b_this_page;
1536 	} while (bh != head);
1537 }
1538 
1539 static int ext4_journalled_write_end(const struct kiocb *iocb,
1540 				     struct address_space *mapping,
1541 				     loff_t pos, unsigned len, unsigned copied,
1542 				     struct folio *folio, void *fsdata)
1543 {
1544 	handle_t *handle = ext4_journal_current_handle();
1545 	struct inode *inode = mapping->host;
1546 	loff_t old_size = inode->i_size;
1547 	int ret = 0, ret2;
1548 	int partial = 0;
1549 	unsigned from, to;
1550 	int size_changed = 0;
1551 	bool verity = ext4_verity_in_progress(inode);
1552 
1553 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1554 	from = pos & (PAGE_SIZE - 1);
1555 	to = from + len;
1556 
1557 	BUG_ON(!ext4_handle_valid(handle));
1558 
1559 	if (ext4_has_inline_data(inode))
1560 		return ext4_write_inline_data_end(inode, pos, len, copied,
1561 						  folio);
1562 
1563 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1564 		copied = 0;
1565 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1566 						 from, to);
1567 	} else {
1568 		if (unlikely(copied < len))
1569 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1570 							 from + copied, to);
1571 		ret = ext4_walk_page_buffers(handle, inode,
1572 					     folio_buffers(folio),
1573 					     from, from + copied, &partial,
1574 					     write_end_fn);
1575 		if (!partial)
1576 			folio_mark_uptodate(folio);
1577 	}
1578 	if (!verity)
1579 		size_changed = ext4_update_inode_size(inode, pos + copied);
1580 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1581 	folio_unlock(folio);
1582 	folio_put(folio);
1583 
1584 	if (old_size < pos && !verity) {
1585 		pagecache_isize_extended(inode, old_size, pos);
1586 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1587 	}
1588 
1589 	if (size_changed) {
1590 		ret2 = ext4_mark_inode_dirty(handle, inode);
1591 		if (!ret)
1592 			ret = ret2;
1593 	}
1594 
1595 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1596 		/* if we have allocated more blocks and copied
1597 		 * less. We will have blocks allocated outside
1598 		 * inode->i_size. So truncate them
1599 		 */
1600 		ext4_orphan_add(handle, inode);
1601 
1602 	ret2 = ext4_journal_stop(handle);
1603 	if (!ret)
1604 		ret = ret2;
1605 	if (pos + len > inode->i_size && !verity) {
1606 		ext4_truncate_failed_write(inode);
1607 		/*
1608 		 * If truncate failed early the inode might still be
1609 		 * on the orphan list; we need to make sure the inode
1610 		 * is removed from the orphan list in that case.
1611 		 */
1612 		if (inode->i_nlink)
1613 			ext4_orphan_del(NULL, inode);
1614 	}
1615 
1616 	return ret ? ret : copied;
1617 }
1618 
1619 /*
1620  * Reserve space for 'nr_resv' clusters
1621  */
1622 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1623 {
1624 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625 	struct ext4_inode_info *ei = EXT4_I(inode);
1626 	int ret;
1627 
1628 	/*
1629 	 * We will charge metadata quota at writeout time; this saves
1630 	 * us from metadata over-estimation, though we may go over by
1631 	 * a small amount in the end.  Here we just reserve for data.
1632 	 */
1633 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1634 	if (ret)
1635 		return ret;
1636 
1637 	spin_lock(&ei->i_block_reservation_lock);
1638 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1639 		spin_unlock(&ei->i_block_reservation_lock);
1640 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1641 		return -ENOSPC;
1642 	}
1643 	ei->i_reserved_data_blocks += nr_resv;
1644 	trace_ext4_da_reserve_space(inode, nr_resv);
1645 	spin_unlock(&ei->i_block_reservation_lock);
1646 
1647 	return 0;       /* success */
1648 }
1649 
1650 void ext4_da_release_space(struct inode *inode, int to_free)
1651 {
1652 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1653 	struct ext4_inode_info *ei = EXT4_I(inode);
1654 
1655 	if (!to_free)
1656 		return;		/* Nothing to release, exit */
1657 
1658 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1659 
1660 	trace_ext4_da_release_space(inode, to_free);
1661 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1662 		/*
1663 		 * if there aren't enough reserved blocks, then the
1664 		 * counter is messed up somewhere.  Since this
1665 		 * function is called from invalidate page, it's
1666 		 * harmless to return without any action.
1667 		 */
1668 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1669 			 "ino %lu, to_free %d with only %d reserved "
1670 			 "data blocks", inode->i_ino, to_free,
1671 			 ei->i_reserved_data_blocks);
1672 		WARN_ON(1);
1673 		to_free = ei->i_reserved_data_blocks;
1674 	}
1675 	ei->i_reserved_data_blocks -= to_free;
1676 
1677 	/* update fs dirty data blocks counter */
1678 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1679 
1680 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1681 
1682 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1683 }
1684 
1685 /*
1686  * Delayed allocation stuff
1687  */
1688 
1689 struct mpage_da_data {
1690 	/* These are input fields for ext4_do_writepages() */
1691 	struct inode *inode;
1692 	struct writeback_control *wbc;
1693 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1694 
1695 	/* These are internal state of ext4_do_writepages() */
1696 	loff_t start_pos;	/* The start pos to write */
1697 	loff_t next_pos;	/* Current pos to examine */
1698 	loff_t end_pos;		/* Last pos to examine */
1699 
1700 	/*
1701 	 * Extent to map - this can be after start_pos because that can be
1702 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703 	 * is delalloc or unwritten.
1704 	 */
1705 	struct ext4_map_blocks map;
1706 	struct ext4_io_submit io_submit;	/* IO submission data */
1707 	unsigned int do_map:1;
1708 	unsigned int scanned_until_end:1;
1709 	unsigned int journalled_more_data:1;
1710 };
1711 
1712 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1713 				       bool invalidate)
1714 {
1715 	unsigned nr, i;
1716 	pgoff_t index, end;
1717 	struct folio_batch fbatch;
1718 	struct inode *inode = mpd->inode;
1719 	struct address_space *mapping = inode->i_mapping;
1720 
1721 	/* This is necessary when next_pos == 0. */
1722 	if (mpd->start_pos >= mpd->next_pos)
1723 		return;
1724 
1725 	mpd->scanned_until_end = 0;
1726 	if (invalidate) {
1727 		ext4_lblk_t start, last;
1728 		start = EXT4_B_TO_LBLK(inode, mpd->start_pos);
1729 		last = mpd->next_pos >> inode->i_blkbits;
1730 
1731 		/*
1732 		 * avoid racing with extent status tree scans made by
1733 		 * ext4_insert_delayed_block()
1734 		 */
1735 		down_write(&EXT4_I(inode)->i_data_sem);
1736 		ext4_es_remove_extent(inode, start, last - start);
1737 		up_write(&EXT4_I(inode)->i_data_sem);
1738 	}
1739 
1740 	folio_batch_init(&fbatch);
1741 	index = mpd->start_pos >> PAGE_SHIFT;
1742 	end = mpd->next_pos >> PAGE_SHIFT;
1743 	while (index < end) {
1744 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1745 		if (nr == 0)
1746 			break;
1747 		for (i = 0; i < nr; i++) {
1748 			struct folio *folio = fbatch.folios[i];
1749 
1750 			if (folio_pos(folio) < mpd->start_pos)
1751 				continue;
1752 			if (folio_next_index(folio) > end)
1753 				continue;
1754 			BUG_ON(!folio_test_locked(folio));
1755 			BUG_ON(folio_test_writeback(folio));
1756 			if (invalidate) {
1757 				if (folio_mapped(folio))
1758 					folio_clear_dirty_for_io(folio);
1759 				block_invalidate_folio(folio, 0,
1760 						folio_size(folio));
1761 				folio_clear_uptodate(folio);
1762 			}
1763 			folio_unlock(folio);
1764 		}
1765 		folio_batch_release(&fbatch);
1766 	}
1767 }
1768 
1769 static void ext4_print_free_blocks(struct inode *inode)
1770 {
1771 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1772 	struct super_block *sb = inode->i_sb;
1773 	struct ext4_inode_info *ei = EXT4_I(inode);
1774 
1775 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1776 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1777 			ext4_count_free_clusters(sb)));
1778 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1779 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1780 	       (long long) EXT4_C2B(EXT4_SB(sb),
1781 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1782 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1783 	       (long long) EXT4_C2B(EXT4_SB(sb),
1784 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1785 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1786 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1787 		 ei->i_reserved_data_blocks);
1788 	return;
1789 }
1790 
1791 /*
1792  * Check whether the cluster containing lblk has been allocated or has
1793  * delalloc reservation.
1794  *
1795  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1796  * reservation, 2 if it's already been allocated, negative error code on
1797  * failure.
1798  */
1799 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1800 {
1801 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1802 	int ret;
1803 
1804 	/* Has delalloc reservation? */
1805 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1806 		return 1;
1807 
1808 	/* Already been allocated? */
1809 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1810 		return 2;
1811 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1812 	if (ret < 0)
1813 		return ret;
1814 	if (ret > 0)
1815 		return 2;
1816 
1817 	return 0;
1818 }
1819 
1820 /*
1821  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1822  *                              status tree, incrementing the reserved
1823  *                              cluster/block count or making pending
1824  *                              reservations where needed
1825  *
1826  * @inode - file containing the newly added block
1827  * @lblk - start logical block to be added
1828  * @len - length of blocks to be added
1829  *
1830  * Returns 0 on success, negative error code on failure.
1831  */
1832 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1833 				      ext4_lblk_t len)
1834 {
1835 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1836 	int ret;
1837 	bool lclu_allocated = false;
1838 	bool end_allocated = false;
1839 	ext4_lblk_t resv_clu;
1840 	ext4_lblk_t end = lblk + len - 1;
1841 
1842 	/*
1843 	 * If the cluster containing lblk or end is shared with a delayed,
1844 	 * written, or unwritten extent in a bigalloc file system, it's
1845 	 * already been accounted for and does not need to be reserved.
1846 	 * A pending reservation must be made for the cluster if it's
1847 	 * shared with a written or unwritten extent and doesn't already
1848 	 * have one.  Written and unwritten extents can be purged from the
1849 	 * extents status tree if the system is under memory pressure, so
1850 	 * it's necessary to examine the extent tree if a search of the
1851 	 * extents status tree doesn't get a match.
1852 	 */
1853 	if (sbi->s_cluster_ratio == 1) {
1854 		ret = ext4_da_reserve_space(inode, len);
1855 		if (ret != 0)   /* ENOSPC */
1856 			return ret;
1857 	} else {   /* bigalloc */
1858 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1859 
1860 		ret = ext4_clu_alloc_state(inode, lblk);
1861 		if (ret < 0)
1862 			return ret;
1863 		if (ret > 0) {
1864 			resv_clu--;
1865 			lclu_allocated = (ret == 2);
1866 		}
1867 
1868 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1869 			ret = ext4_clu_alloc_state(inode, end);
1870 			if (ret < 0)
1871 				return ret;
1872 			if (ret > 0) {
1873 				resv_clu--;
1874 				end_allocated = (ret == 2);
1875 			}
1876 		}
1877 
1878 		if (resv_clu) {
1879 			ret = ext4_da_reserve_space(inode, resv_clu);
1880 			if (ret != 0)   /* ENOSPC */
1881 				return ret;
1882 		}
1883 	}
1884 
1885 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1886 				      end_allocated);
1887 	return 0;
1888 }
1889 
1890 /*
1891  * Looks up the requested blocks and sets the delalloc extent map.
1892  * First try to look up for the extent entry that contains the requested
1893  * blocks in the extent status tree without i_data_sem, then try to look
1894  * up for the ondisk extent mapping with i_data_sem in read mode,
1895  * finally hold i_data_sem in write mode, looks up again and add a
1896  * delalloc extent entry if it still couldn't find any extent. Pass out
1897  * the mapped extent through @map and return 0 on success.
1898  */
1899 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1900 {
1901 	struct extent_status es;
1902 	int retval;
1903 #ifdef ES_AGGRESSIVE_TEST
1904 	struct ext4_map_blocks orig_map;
1905 
1906 	memcpy(&orig_map, map, sizeof(*map));
1907 #endif
1908 
1909 	map->m_flags = 0;
1910 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1911 		  (unsigned long) map->m_lblk);
1912 
1913 	ext4_check_map_extents_env(inode);
1914 
1915 	/* Lookup extent status tree firstly */
1916 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) {
1917 		map->m_len = min_t(unsigned int, map->m_len,
1918 				   es.es_len - (map->m_lblk - es.es_lblk));
1919 
1920 		if (ext4_es_is_hole(&es))
1921 			goto add_delayed;
1922 
1923 found:
1924 		/*
1925 		 * Delayed extent could be allocated by fallocate.
1926 		 * So we need to check it.
1927 		 */
1928 		if (ext4_es_is_delayed(&es)) {
1929 			map->m_flags |= EXT4_MAP_DELAYED;
1930 			return 0;
1931 		}
1932 
1933 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1934 		if (ext4_es_is_written(&es))
1935 			map->m_flags |= EXT4_MAP_MAPPED;
1936 		else if (ext4_es_is_unwritten(&es))
1937 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1938 		else
1939 			BUG();
1940 
1941 #ifdef ES_AGGRESSIVE_TEST
1942 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1943 #endif
1944 		return 0;
1945 	}
1946 
1947 	/*
1948 	 * Try to see if we can get the block without requesting a new
1949 	 * file system block.
1950 	 */
1951 	down_read(&EXT4_I(inode)->i_data_sem);
1952 	if (ext4_has_inline_data(inode))
1953 		retval = 0;
1954 	else
1955 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1956 	up_read(&EXT4_I(inode)->i_data_sem);
1957 	if (retval)
1958 		return retval < 0 ? retval : 0;
1959 
1960 add_delayed:
1961 	down_write(&EXT4_I(inode)->i_data_sem);
1962 	/*
1963 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1964 	 * and fallocate path (no folio lock) can race. Make sure we
1965 	 * lookup the extent status tree here again while i_data_sem
1966 	 * is held in write mode, before inserting a new da entry in
1967 	 * the extent status tree.
1968 	 */
1969 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) {
1970 		map->m_len = min_t(unsigned int, map->m_len,
1971 				   es.es_len - (map->m_lblk - es.es_lblk));
1972 
1973 		if (!ext4_es_is_hole(&es)) {
1974 			up_write(&EXT4_I(inode)->i_data_sem);
1975 			goto found;
1976 		}
1977 	} else if (!ext4_has_inline_data(inode)) {
1978 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1979 		if (retval) {
1980 			up_write(&EXT4_I(inode)->i_data_sem);
1981 			return retval < 0 ? retval : 0;
1982 		}
1983 	}
1984 
1985 	map->m_flags |= EXT4_MAP_DELAYED;
1986 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1987 	if (!retval)
1988 		map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq);
1989 	up_write(&EXT4_I(inode)->i_data_sem);
1990 
1991 	return retval;
1992 }
1993 
1994 /*
1995  * This is a special get_block_t callback which is used by
1996  * ext4_da_write_begin().  It will either return mapped block or
1997  * reserve space for a single block.
1998  *
1999  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2000  * We also have b_blocknr = -1 and b_bdev initialized properly
2001  *
2002  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2003  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2004  * initialized properly.
2005  */
2006 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2007 			   struct buffer_head *bh, int create)
2008 {
2009 	struct ext4_map_blocks map;
2010 	sector_t invalid_block = ~((sector_t) 0xffff);
2011 	int ret = 0;
2012 
2013 	BUG_ON(create == 0);
2014 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2015 
2016 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2017 		invalid_block = ~0;
2018 
2019 	map.m_lblk = iblock;
2020 	map.m_len = 1;
2021 
2022 	/*
2023 	 * first, we need to know whether the block is allocated already
2024 	 * preallocated blocks are unmapped but should treated
2025 	 * the same as allocated blocks.
2026 	 */
2027 	ret = ext4_da_map_blocks(inode, &map);
2028 	if (ret < 0)
2029 		return ret;
2030 
2031 	if (map.m_flags & EXT4_MAP_DELAYED) {
2032 		map_bh(bh, inode->i_sb, invalid_block);
2033 		set_buffer_new(bh);
2034 		set_buffer_delay(bh);
2035 		return 0;
2036 	}
2037 
2038 	map_bh(bh, inode->i_sb, map.m_pblk);
2039 	ext4_update_bh_state(bh, map.m_flags);
2040 
2041 	if (buffer_unwritten(bh)) {
2042 		/* A delayed write to unwritten bh should be marked
2043 		 * new and mapped.  Mapped ensures that we don't do
2044 		 * get_block multiple times when we write to the same
2045 		 * offset and new ensures that we do proper zero out
2046 		 * for partial write.
2047 		 */
2048 		set_buffer_new(bh);
2049 		set_buffer_mapped(bh);
2050 	}
2051 	return 0;
2052 }
2053 
2054 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
2055 {
2056 	mpd->start_pos += folio_size(folio);
2057 	mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2058 	folio_unlock(folio);
2059 }
2060 
2061 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
2062 {
2063 	size_t len;
2064 	loff_t size;
2065 	int err;
2066 
2067 	WARN_ON_ONCE(folio_pos(folio) != mpd->start_pos);
2068 	folio_clear_dirty_for_io(folio);
2069 	/*
2070 	 * We have to be very careful here!  Nothing protects writeback path
2071 	 * against i_size changes and the page can be writeably mapped into
2072 	 * page tables. So an application can be growing i_size and writing
2073 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
2074 	 * write-protects our page in page tables and the page cannot get
2075 	 * written to again until we release folio lock. So only after
2076 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
2077 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
2078 	 * on the barrier provided by folio_test_clear_dirty() in
2079 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
2080 	 * after page tables are updated.
2081 	 */
2082 	size = i_size_read(mpd->inode);
2083 	len = folio_size(folio);
2084 	if (folio_pos(folio) + len > size &&
2085 	    !ext4_verity_in_progress(mpd->inode))
2086 		len = size & (len - 1);
2087 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
2088 
2089 	return err;
2090 }
2091 
2092 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2093 
2094 /*
2095  * mballoc gives us at most this number of blocks...
2096  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2097  * The rest of mballoc seems to handle chunks up to full group size.
2098  */
2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100 
2101 /*
2102  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2103  *
2104  * @mpd - extent of blocks
2105  * @lblk - logical number of the block in the file
2106  * @bh - buffer head we want to add to the extent
2107  *
2108  * The function is used to collect contig. blocks in the same state. If the
2109  * buffer doesn't require mapping for writeback and we haven't started the
2110  * extent of buffers to map yet, the function returns 'true' immediately - the
2111  * caller can write the buffer right away. Otherwise the function returns true
2112  * if the block has been added to the extent, false if the block couldn't be
2113  * added.
2114  */
2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2116 				   struct buffer_head *bh)
2117 {
2118 	struct ext4_map_blocks *map = &mpd->map;
2119 
2120 	/* Buffer that doesn't need mapping for writeback? */
2121 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2122 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2123 		/* So far no extent to map => we write the buffer right away */
2124 		if (map->m_len == 0)
2125 			return true;
2126 		return false;
2127 	}
2128 
2129 	/* First block in the extent? */
2130 	if (map->m_len == 0) {
2131 		/* We cannot map unless handle is started... */
2132 		if (!mpd->do_map)
2133 			return false;
2134 		map->m_lblk = lblk;
2135 		map->m_len = 1;
2136 		map->m_flags = bh->b_state & BH_FLAGS;
2137 		return true;
2138 	}
2139 
2140 	/* Don't go larger than mballoc is willing to allocate */
2141 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2142 		return false;
2143 
2144 	/* Can we merge the block to our big extent? */
2145 	if (lblk == map->m_lblk + map->m_len &&
2146 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2147 		map->m_len++;
2148 		return true;
2149 	}
2150 	return false;
2151 }
2152 
2153 /*
2154  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2155  *
2156  * @mpd - extent of blocks for mapping
2157  * @head - the first buffer in the page
2158  * @bh - buffer we should start processing from
2159  * @lblk - logical number of the block in the file corresponding to @bh
2160  *
2161  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2162  * the page for IO if all buffers in this page were mapped and there's no
2163  * accumulated extent of buffers to map or add buffers in the page to the
2164  * extent of buffers to map. The function returns 1 if the caller can continue
2165  * by processing the next page, 0 if it should stop adding buffers to the
2166  * extent to map because we cannot extend it anymore. It can also return value
2167  * < 0 in case of error during IO submission.
2168  */
2169 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2170 				   struct buffer_head *head,
2171 				   struct buffer_head *bh,
2172 				   ext4_lblk_t lblk)
2173 {
2174 	struct inode *inode = mpd->inode;
2175 	int err;
2176 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2177 							>> inode->i_blkbits;
2178 
2179 	if (ext4_verity_in_progress(inode))
2180 		blocks = EXT_MAX_BLOCKS;
2181 
2182 	do {
2183 		BUG_ON(buffer_locked(bh));
2184 
2185 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2186 			/* Found extent to map? */
2187 			if (mpd->map.m_len)
2188 				return 0;
2189 			/* Buffer needs mapping and handle is not started? */
2190 			if (!mpd->do_map)
2191 				return 0;
2192 			/* Everything mapped so far and we hit EOF */
2193 			break;
2194 		}
2195 	} while (lblk++, (bh = bh->b_this_page) != head);
2196 	/* So far everything mapped? Submit the page for IO. */
2197 	if (mpd->map.m_len == 0) {
2198 		err = mpage_submit_folio(mpd, head->b_folio);
2199 		if (err < 0)
2200 			return err;
2201 		mpage_folio_done(mpd, head->b_folio);
2202 	}
2203 	if (lblk >= blocks) {
2204 		mpd->scanned_until_end = 1;
2205 		return 0;
2206 	}
2207 	return 1;
2208 }
2209 
2210 /*
2211  * mpage_process_folio - update folio buffers corresponding to changed extent
2212  *			 and may submit fully mapped page for IO
2213  * @mpd: description of extent to map, on return next extent to map
2214  * @folio: Contains these buffers.
2215  * @m_lblk: logical block mapping.
2216  * @m_pblk: corresponding physical mapping.
2217  * @map_bh: determines on return whether this page requires any further
2218  *		  mapping or not.
2219  *
2220  * Scan given folio buffers corresponding to changed extent and update buffer
2221  * state according to new extent state.
2222  * We map delalloc buffers to their physical location, clear unwritten bits.
2223  * If the given folio is not fully mapped, we update @mpd to the next extent in
2224  * the given folio that needs mapping & return @map_bh as true.
2225  */
2226 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2227 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2228 			      bool *map_bh)
2229 {
2230 	struct buffer_head *head, *bh;
2231 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2232 	ext4_lblk_t lblk = *m_lblk;
2233 	ext4_fsblk_t pblock = *m_pblk;
2234 	int err = 0;
2235 	ssize_t io_end_size = 0;
2236 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2237 
2238 	bh = head = folio_buffers(folio);
2239 	do {
2240 		if (lblk < mpd->map.m_lblk)
2241 			continue;
2242 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243 			/*
2244 			 * Buffer after end of mapped extent.
2245 			 * Find next buffer in the folio to map.
2246 			 */
2247 			mpd->map.m_len = 0;
2248 			mpd->map.m_flags = 0;
2249 			io_end_vec->size += io_end_size;
2250 
2251 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2252 			if (err > 0)
2253 				err = 0;
2254 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2255 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2256 				if (IS_ERR(io_end_vec)) {
2257 					err = PTR_ERR(io_end_vec);
2258 					goto out;
2259 				}
2260 				io_end_vec->offset = EXT4_LBLK_TO_B(mpd->inode,
2261 								mpd->map.m_lblk);
2262 			}
2263 			*map_bh = true;
2264 			goto out;
2265 		}
2266 		if (buffer_delay(bh)) {
2267 			clear_buffer_delay(bh);
2268 			bh->b_blocknr = pblock++;
2269 		}
2270 		clear_buffer_unwritten(bh);
2271 		io_end_size += i_blocksize(mpd->inode);
2272 	} while (lblk++, (bh = bh->b_this_page) != head);
2273 
2274 	io_end_vec->size += io_end_size;
2275 	*map_bh = false;
2276 out:
2277 	*m_lblk = lblk;
2278 	*m_pblk = pblock;
2279 	return err;
2280 }
2281 
2282 /*
2283  * mpage_map_buffers - update buffers corresponding to changed extent and
2284  *		       submit fully mapped pages for IO
2285  *
2286  * @mpd - description of extent to map, on return next extent to map
2287  *
2288  * Scan buffers corresponding to changed extent (we expect corresponding pages
2289  * to be already locked) and update buffer state according to new extent state.
2290  * We map delalloc buffers to their physical location, clear unwritten bits,
2291  * and mark buffers as uninit when we perform writes to unwritten extents
2292  * and do extent conversion after IO is finished. If the last page is not fully
2293  * mapped, we update @map to the next extent in the last page that needs
2294  * mapping. Otherwise we submit the page for IO.
2295  */
2296 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2297 {
2298 	struct folio_batch fbatch;
2299 	unsigned nr, i;
2300 	struct inode *inode = mpd->inode;
2301 	pgoff_t start, end;
2302 	ext4_lblk_t lblk;
2303 	ext4_fsblk_t pblock;
2304 	int err;
2305 	bool map_bh = false;
2306 
2307 	start = EXT4_LBLK_TO_PG(inode, mpd->map.m_lblk);
2308 	end = EXT4_LBLK_TO_PG(inode, mpd->map.m_lblk + mpd->map.m_len - 1);
2309 	pblock = mpd->map.m_pblk;
2310 
2311 	folio_batch_init(&fbatch);
2312 	while (start <= end) {
2313 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2314 		if (nr == 0)
2315 			break;
2316 		for (i = 0; i < nr; i++) {
2317 			struct folio *folio = fbatch.folios[i];
2318 
2319 			lblk = EXT4_PG_TO_LBLK(inode, folio->index);
2320 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2321 						 &map_bh);
2322 			/*
2323 			 * If map_bh is true, means page may require further bh
2324 			 * mapping, or maybe the page was submitted for IO.
2325 			 * So we return to call further extent mapping.
2326 			 */
2327 			if (err < 0 || map_bh)
2328 				goto out;
2329 			/* Page fully mapped - let IO run! */
2330 			err = mpage_submit_folio(mpd, folio);
2331 			if (err < 0)
2332 				goto out;
2333 			mpage_folio_done(mpd, folio);
2334 		}
2335 		folio_batch_release(&fbatch);
2336 	}
2337 	/* Extent fully mapped and matches with page boundary. We are done. */
2338 	mpd->map.m_len = 0;
2339 	mpd->map.m_flags = 0;
2340 	return 0;
2341 out:
2342 	folio_batch_release(&fbatch);
2343 	return err;
2344 }
2345 
2346 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2347 {
2348 	struct inode *inode = mpd->inode;
2349 	struct ext4_map_blocks *map = &mpd->map;
2350 	int get_blocks_flags;
2351 	int err, dioread_nolock;
2352 
2353 	/* Make sure transaction has enough credits for this extent */
2354 	err = ext4_journal_ensure_extent_credits(handle, inode);
2355 	if (err < 0)
2356 		return err;
2357 
2358 	trace_ext4_da_write_pages_extent(inode, map);
2359 	/*
2360 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2361 	 * to convert an unwritten extent to be initialized (in the case
2362 	 * where we have written into one or more preallocated blocks).  It is
2363 	 * possible that we're going to need more metadata blocks than
2364 	 * previously reserved. However we must not fail because we're in
2365 	 * writeback and there is nothing we can do about it so it might result
2366 	 * in data loss.  So use reserved blocks to allocate metadata if
2367 	 * possible. In addition, do not cache any unrelated extents, as it
2368 	 * only holds the folio lock but does not hold the i_rwsem or
2369 	 * invalidate_lock, which could corrupt the extent status tree.
2370 	 */
2371 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2372 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2373 			   EXT4_GET_BLOCKS_IO_SUBMIT |
2374 			   EXT4_EX_NOCACHE;
2375 
2376 	dioread_nolock = ext4_should_dioread_nolock(inode);
2377 	if (dioread_nolock)
2378 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2379 
2380 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2381 	if (err < 0)
2382 		return err;
2383 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2384 		if (!mpd->io_submit.io_end->handle &&
2385 		    ext4_handle_valid(handle)) {
2386 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2387 			handle->h_rsv_handle = NULL;
2388 		}
2389 		ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2390 	}
2391 
2392 	BUG_ON(map->m_len == 0);
2393 	return 0;
2394 }
2395 
2396 /*
2397  * This is used to submit mapped buffers in a single folio that is not fully
2398  * mapped for various reasons, such as insufficient space or journal credits.
2399  */
2400 static int mpage_submit_partial_folio(struct mpage_da_data *mpd)
2401 {
2402 	struct inode *inode = mpd->inode;
2403 	struct folio *folio;
2404 	loff_t pos;
2405 	int ret;
2406 
2407 	folio = filemap_get_folio(inode->i_mapping,
2408 				  mpd->start_pos >> PAGE_SHIFT);
2409 	if (IS_ERR(folio))
2410 		return PTR_ERR(folio);
2411 	/*
2412 	 * The mapped position should be within the current processing folio
2413 	 * but must not be the folio start position.
2414 	 */
2415 	pos = ((loff_t)mpd->map.m_lblk) << inode->i_blkbits;
2416 	if (WARN_ON_ONCE((folio_pos(folio) == pos) ||
2417 			 !folio_contains(folio, pos >> PAGE_SHIFT)))
2418 		return -EINVAL;
2419 
2420 	ret = mpage_submit_folio(mpd, folio);
2421 	if (ret)
2422 		goto out;
2423 	/*
2424 	 * Update start_pos to prevent this folio from being released in
2425 	 * mpage_release_unused_pages(), it will be reset to the aligned folio
2426 	 * pos when this folio is written again in the next round. Additionally,
2427 	 * do not update wbc->nr_to_write here, as it will be updated once the
2428 	 * entire folio has finished processing.
2429 	 */
2430 	mpd->start_pos = pos;
2431 out:
2432 	folio_unlock(folio);
2433 	folio_put(folio);
2434 	return ret;
2435 }
2436 
2437 /*
2438  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2439  *				 mpd->len and submit pages underlying it for IO
2440  *
2441  * @handle - handle for journal operations
2442  * @mpd - extent to map
2443  * @give_up_on_write - we set this to true iff there is a fatal error and there
2444  *                     is no hope of writing the data. The caller should discard
2445  *                     dirty pages to avoid infinite loops.
2446  *
2447  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2448  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2449  * them to initialized or split the described range from larger unwritten
2450  * extent. Note that we need not map all the described range since allocation
2451  * can return less blocks or the range is covered by more unwritten extents. We
2452  * cannot map more because we are limited by reserved transaction credits. On
2453  * the other hand we always make sure that the last touched page is fully
2454  * mapped so that it can be written out (and thus forward progress is
2455  * guaranteed). After mapping we submit all mapped pages for IO.
2456  */
2457 static int mpage_map_and_submit_extent(handle_t *handle,
2458 				       struct mpage_da_data *mpd,
2459 				       bool *give_up_on_write)
2460 {
2461 	struct inode *inode = mpd->inode;
2462 	struct ext4_map_blocks *map = &mpd->map;
2463 	int err;
2464 	loff_t disksize;
2465 	int progress = 0;
2466 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2467 	struct ext4_io_end_vec *io_end_vec;
2468 
2469 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2470 	if (IS_ERR(io_end_vec))
2471 		return PTR_ERR(io_end_vec);
2472 	io_end_vec->offset = EXT4_LBLK_TO_B(inode, map->m_lblk);
2473 	do {
2474 		err = mpage_map_one_extent(handle, mpd);
2475 		if (err < 0) {
2476 			struct super_block *sb = inode->i_sb;
2477 
2478 			if (ext4_emergency_state(sb))
2479 				goto invalidate_dirty_pages;
2480 			/*
2481 			 * Let the uper layers retry transient errors.
2482 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2483 			 * is non-zero, a commit should free up blocks.
2484 			 */
2485 			if ((err == -ENOMEM) || (err == -EAGAIN) ||
2486 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2487 				/*
2488 				 * We may have already allocated extents for
2489 				 * some bhs inside the folio, issue the
2490 				 * corresponding data to prevent stale data.
2491 				 */
2492 				if (progress) {
2493 					if (mpage_submit_partial_folio(mpd))
2494 						goto invalidate_dirty_pages;
2495 					goto update_disksize;
2496 				}
2497 				return err;
2498 			}
2499 			ext4_msg(sb, KERN_CRIT,
2500 				 "Delayed block allocation failed for "
2501 				 "inode %lu at logical offset %llu with"
2502 				 " max blocks %u with error %d",
2503 				 inode->i_ino,
2504 				 (unsigned long long)map->m_lblk,
2505 				 (unsigned)map->m_len, -err);
2506 			ext4_msg(sb, KERN_CRIT,
2507 				 "This should not happen!! Data will "
2508 				 "be lost\n");
2509 			if (err == -ENOSPC)
2510 				ext4_print_free_blocks(inode);
2511 		invalidate_dirty_pages:
2512 			*give_up_on_write = true;
2513 			return err;
2514 		}
2515 		progress = 1;
2516 		/*
2517 		 * Update buffer state, submit mapped pages, and get us new
2518 		 * extent to map
2519 		 */
2520 		err = mpage_map_and_submit_buffers(mpd);
2521 		if (err < 0)
2522 			goto update_disksize;
2523 	} while (map->m_len);
2524 
2525 update_disksize:
2526 	/*
2527 	 * Update on-disk size after IO is submitted.  Races with
2528 	 * truncate are avoided by checking i_size under i_data_sem.
2529 	 */
2530 	disksize = mpd->start_pos;
2531 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2532 		int err2;
2533 		loff_t i_size;
2534 
2535 		down_write(&EXT4_I(inode)->i_data_sem);
2536 		i_size = i_size_read(inode);
2537 		if (disksize > i_size)
2538 			disksize = i_size;
2539 		if (disksize > EXT4_I(inode)->i_disksize)
2540 			EXT4_I(inode)->i_disksize = disksize;
2541 		up_write(&EXT4_I(inode)->i_data_sem);
2542 		err2 = ext4_mark_inode_dirty(handle, inode);
2543 		if (err2) {
2544 			ext4_error_err(inode->i_sb, -err2,
2545 				       "Failed to mark inode %lu dirty",
2546 				       inode->i_ino);
2547 		}
2548 		if (!err)
2549 			err = err2;
2550 	}
2551 	return err;
2552 }
2553 
2554 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2555 				     size_t len)
2556 {
2557 	struct buffer_head *page_bufs = folio_buffers(folio);
2558 	struct inode *inode = folio->mapping->host;
2559 	int ret, err;
2560 
2561 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2562 				     NULL, do_journal_get_write_access);
2563 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2564 				     NULL, write_end_fn);
2565 	if (ret == 0)
2566 		ret = err;
2567 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2568 	if (ret == 0)
2569 		ret = err;
2570 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2571 
2572 	return ret;
2573 }
2574 
2575 static int mpage_journal_page_buffers(handle_t *handle,
2576 				      struct mpage_da_data *mpd,
2577 				      struct folio *folio)
2578 {
2579 	struct inode *inode = mpd->inode;
2580 	loff_t size = i_size_read(inode);
2581 	size_t len = folio_size(folio);
2582 
2583 	folio_clear_checked(folio);
2584 	mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2585 
2586 	if (folio_pos(folio) + len > size &&
2587 	    !ext4_verity_in_progress(inode))
2588 		len = size & (len - 1);
2589 
2590 	return ext4_journal_folio_buffers(handle, folio, len);
2591 }
2592 
2593 /*
2594  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2595  * 				 needing mapping, submit mapped pages
2596  *
2597  * @mpd - where to look for pages
2598  *
2599  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2600  * IO immediately. If we cannot map blocks, we submit just already mapped
2601  * buffers in the page for IO and keep page dirty. When we can map blocks and
2602  * we find a page which isn't mapped we start accumulating extent of buffers
2603  * underlying these pages that needs mapping (formed by either delayed or
2604  * unwritten buffers). We also lock the pages containing these buffers. The
2605  * extent found is returned in @mpd structure (starting at mpd->lblk with
2606  * length mpd->len blocks).
2607  *
2608  * Note that this function can attach bios to one io_end structure which are
2609  * neither logically nor physically contiguous. Although it may seem as an
2610  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2611  * case as we need to track IO to all buffers underlying a page in one io_end.
2612  */
2613 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2614 {
2615 	struct address_space *mapping = mpd->inode->i_mapping;
2616 	struct folio_batch fbatch;
2617 	unsigned int nr_folios;
2618 	pgoff_t index = mpd->start_pos >> PAGE_SHIFT;
2619 	pgoff_t end = mpd->end_pos >> PAGE_SHIFT;
2620 	xa_mark_t tag;
2621 	int i, err = 0;
2622 	ext4_lblk_t lblk;
2623 	struct buffer_head *head;
2624 	handle_t *handle = NULL;
2625 	int bpp = ext4_journal_blocks_per_folio(mpd->inode);
2626 
2627 	tag = wbc_to_tag(mpd->wbc);
2628 
2629 	mpd->map.m_len = 0;
2630 	mpd->next_pos = mpd->start_pos;
2631 	if (ext4_should_journal_data(mpd->inode)) {
2632 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2633 					    bpp);
2634 		if (IS_ERR(handle))
2635 			return PTR_ERR(handle);
2636 	}
2637 	folio_batch_init(&fbatch);
2638 	while (index <= end) {
2639 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2640 				tag, &fbatch);
2641 		if (nr_folios == 0)
2642 			break;
2643 
2644 		for (i = 0; i < nr_folios; i++) {
2645 			struct folio *folio = fbatch.folios[i];
2646 
2647 			/*
2648 			 * Accumulated enough dirty pages? This doesn't apply
2649 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2650 			 * keep going because someone may be concurrently
2651 			 * dirtying pages, and we might have synced a lot of
2652 			 * newly appeared dirty pages, but have not synced all
2653 			 * of the old dirty pages.
2654 			 */
2655 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2656 			    mpd->wbc->nr_to_write <=
2657 			    EXT4_LBLK_TO_PG(mpd->inode, mpd->map.m_len))
2658 				goto out;
2659 
2660 			/* If we can't merge this page, we are done. */
2661 			if (mpd->map.m_len > 0 &&
2662 			    mpd->next_pos != folio_pos(folio))
2663 				goto out;
2664 
2665 			if (handle) {
2666 				err = ext4_journal_ensure_credits(handle, bpp,
2667 								  0);
2668 				if (err < 0)
2669 					goto out;
2670 			}
2671 
2672 			folio_lock(folio);
2673 			/*
2674 			 * If the page is no longer dirty, or its mapping no
2675 			 * longer corresponds to inode we are writing (which
2676 			 * means it has been truncated or invalidated), or the
2677 			 * page is already under writeback and we are not doing
2678 			 * a data integrity writeback, skip the page
2679 			 */
2680 			if (!folio_test_dirty(folio) ||
2681 			    (folio_test_writeback(folio) &&
2682 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2683 			    unlikely(folio->mapping != mapping)) {
2684 				folio_unlock(folio);
2685 				continue;
2686 			}
2687 
2688 			folio_wait_writeback(folio);
2689 			BUG_ON(folio_test_writeback(folio));
2690 
2691 			/*
2692 			 * Should never happen but for buggy code in
2693 			 * other subsystems that call
2694 			 * set_page_dirty() without properly warning
2695 			 * the file system first.  See [1] for more
2696 			 * information.
2697 			 *
2698 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2699 			 */
2700 			if (!folio_buffers(folio)) {
2701 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2702 				folio_clear_dirty(folio);
2703 				folio_unlock(folio);
2704 				continue;
2705 			}
2706 
2707 			if (mpd->map.m_len == 0)
2708 				mpd->start_pos = folio_pos(folio);
2709 			mpd->next_pos = folio_next_pos(folio);
2710 			/*
2711 			 * Writeout when we cannot modify metadata is simple.
2712 			 * Just submit the page. For data=journal mode we
2713 			 * first handle writeout of the page for checkpoint and
2714 			 * only after that handle delayed page dirtying. This
2715 			 * makes sure current data is checkpointed to the final
2716 			 * location before possibly journalling it again which
2717 			 * is desirable when the page is frequently dirtied
2718 			 * through a pin.
2719 			 */
2720 			if (!mpd->can_map) {
2721 				err = mpage_submit_folio(mpd, folio);
2722 				if (err < 0)
2723 					goto out;
2724 				/* Pending dirtying of journalled data? */
2725 				if (folio_test_checked(folio)) {
2726 					err = mpage_journal_page_buffers(handle,
2727 						mpd, folio);
2728 					if (err < 0)
2729 						goto out;
2730 					mpd->journalled_more_data = 1;
2731 				}
2732 				mpage_folio_done(mpd, folio);
2733 			} else {
2734 				/* Add all dirty buffers to mpd */
2735 				lblk = EXT4_PG_TO_LBLK(mpd->inode, folio->index);
2736 				head = folio_buffers(folio);
2737 				err = mpage_process_page_bufs(mpd, head, head,
2738 						lblk);
2739 				if (err <= 0)
2740 					goto out;
2741 				err = 0;
2742 			}
2743 		}
2744 		folio_batch_release(&fbatch);
2745 		cond_resched();
2746 	}
2747 	mpd->scanned_until_end = 1;
2748 	if (handle)
2749 		ext4_journal_stop(handle);
2750 	return 0;
2751 out:
2752 	folio_batch_release(&fbatch);
2753 	if (handle)
2754 		ext4_journal_stop(handle);
2755 	return err;
2756 }
2757 
2758 static int ext4_do_writepages(struct mpage_da_data *mpd)
2759 {
2760 	struct writeback_control *wbc = mpd->wbc;
2761 	pgoff_t	writeback_index = 0;
2762 	long nr_to_write = wbc->nr_to_write;
2763 	int range_whole = 0;
2764 	int cycled = 1;
2765 	handle_t *handle = NULL;
2766 	struct inode *inode = mpd->inode;
2767 	struct address_space *mapping = inode->i_mapping;
2768 	int needed_blocks, rsv_blocks = 0, ret = 0;
2769 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2770 	struct blk_plug plug;
2771 	bool give_up_on_write = false;
2772 
2773 	trace_ext4_writepages(inode, wbc);
2774 
2775 	/*
2776 	 * No pages to write? This is mainly a kludge to avoid starting
2777 	 * a transaction for special inodes like journal inode on last iput()
2778 	 * because that could violate lock ordering on umount
2779 	 */
2780 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2781 		goto out_writepages;
2782 
2783 	/*
2784 	 * If the filesystem has aborted, it is read-only, so return
2785 	 * right away instead of dumping stack traces later on that
2786 	 * will obscure the real source of the problem.  We test
2787 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2788 	 * the latter could be true if the filesystem is mounted
2789 	 * read-only, and in that case, ext4_writepages should
2790 	 * *never* be called, so if that ever happens, we would want
2791 	 * the stack trace.
2792 	 */
2793 	ret = ext4_emergency_state(mapping->host->i_sb);
2794 	if (unlikely(ret))
2795 		goto out_writepages;
2796 
2797 	/*
2798 	 * If we have inline data and arrive here, it means that
2799 	 * we will soon create the block for the 1st page, so
2800 	 * we'd better clear the inline data here.
2801 	 */
2802 	if (ext4_has_inline_data(inode)) {
2803 		/* Just inode will be modified... */
2804 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2805 		if (IS_ERR(handle)) {
2806 			ret = PTR_ERR(handle);
2807 			goto out_writepages;
2808 		}
2809 		BUG_ON(ext4_test_inode_state(inode,
2810 				EXT4_STATE_MAY_INLINE_DATA));
2811 		ext4_destroy_inline_data(handle, inode);
2812 		ext4_journal_stop(handle);
2813 	}
2814 
2815 	/*
2816 	 * data=journal mode does not do delalloc so we just need to writeout /
2817 	 * journal already mapped buffers. On the other hand we need to commit
2818 	 * transaction to make data stable. We expect all the data to be
2819 	 * already in the journal (the only exception are DMA pinned pages
2820 	 * dirtied behind our back) so we commit transaction here and run the
2821 	 * writeback loop to checkpoint them. The checkpointing is not actually
2822 	 * necessary to make data persistent *but* quite a few places (extent
2823 	 * shifting operations, fsverity, ...) depend on being able to drop
2824 	 * pagecache pages after calling filemap_write_and_wait() and for that
2825 	 * checkpointing needs to happen.
2826 	 */
2827 	if (ext4_should_journal_data(inode)) {
2828 		mpd->can_map = 0;
2829 		if (wbc->sync_mode == WB_SYNC_ALL)
2830 			ext4_fc_commit(sbi->s_journal,
2831 				       EXT4_I(inode)->i_datasync_tid);
2832 	}
2833 	mpd->journalled_more_data = 0;
2834 
2835 	if (ext4_should_dioread_nolock(inode)) {
2836 		int bpf = ext4_journal_blocks_per_folio(inode);
2837 		/*
2838 		 * We may need to convert up to one extent per block in
2839 		 * the folio and we may dirty the inode.
2840 		 */
2841 		rsv_blocks = 1 + ext4_ext_index_trans_blocks(inode, bpf);
2842 	}
2843 
2844 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2845 		range_whole = 1;
2846 
2847 	if (wbc->range_cyclic) {
2848 		writeback_index = mapping->writeback_index;
2849 		if (writeback_index)
2850 			cycled = 0;
2851 		mpd->start_pos = writeback_index << PAGE_SHIFT;
2852 		mpd->end_pos = LLONG_MAX;
2853 	} else {
2854 		mpd->start_pos = wbc->range_start;
2855 		mpd->end_pos = wbc->range_end;
2856 	}
2857 
2858 	ext4_io_submit_init(&mpd->io_submit, wbc);
2859 retry:
2860 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2861 		tag_pages_for_writeback(mapping, mpd->start_pos >> PAGE_SHIFT,
2862 					mpd->end_pos >> PAGE_SHIFT);
2863 	blk_start_plug(&plug);
2864 
2865 	/*
2866 	 * First writeback pages that don't need mapping - we can avoid
2867 	 * starting a transaction unnecessarily and also avoid being blocked
2868 	 * in the block layer on device congestion while having transaction
2869 	 * started.
2870 	 */
2871 	mpd->do_map = 0;
2872 	mpd->scanned_until_end = 0;
2873 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2874 	if (!mpd->io_submit.io_end) {
2875 		ret = -ENOMEM;
2876 		goto unplug;
2877 	}
2878 	ret = mpage_prepare_extent_to_map(mpd);
2879 	/* Unlock pages we didn't use */
2880 	mpage_release_unused_pages(mpd, false);
2881 	/* Submit prepared bio */
2882 	ext4_io_submit(&mpd->io_submit);
2883 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2884 	mpd->io_submit.io_end = NULL;
2885 	if (ret < 0)
2886 		goto unplug;
2887 
2888 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2889 		/* For each extent of pages we use new io_end */
2890 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2891 		if (!mpd->io_submit.io_end) {
2892 			ret = -ENOMEM;
2893 			break;
2894 		}
2895 
2896 		WARN_ON_ONCE(!mpd->can_map);
2897 		/*
2898 		 * We have two constraints: We find one extent to map and we
2899 		 * must always write out whole page (makes a difference when
2900 		 * blocksize < pagesize) so that we don't block on IO when we
2901 		 * try to write out the rest of the page. Journalled mode is
2902 		 * not supported by delalloc.
2903 		 */
2904 		BUG_ON(ext4_should_journal_data(inode));
2905 		/*
2906 		 * Calculate the number of credits needed to reserve for one
2907 		 * extent of up to MAX_WRITEPAGES_EXTENT_LEN blocks. It will
2908 		 * attempt to extend the transaction or start a new iteration
2909 		 * if the reserved credits are insufficient.
2910 		 */
2911 		needed_blocks = ext4_chunk_trans_blocks(inode,
2912 						MAX_WRITEPAGES_EXTENT_LEN);
2913 		/* start a new transaction */
2914 		handle = ext4_journal_start_with_reserve(inode,
2915 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2916 		if (IS_ERR(handle)) {
2917 			ret = PTR_ERR(handle);
2918 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2919 			       "%ld pages, ino %lu; err %d", __func__,
2920 				wbc->nr_to_write, inode->i_ino, ret);
2921 			/* Release allocated io_end */
2922 			ext4_put_io_end(mpd->io_submit.io_end);
2923 			mpd->io_submit.io_end = NULL;
2924 			break;
2925 		}
2926 		mpd->do_map = 1;
2927 
2928 		trace_ext4_da_write_folios_start(inode, mpd->start_pos,
2929 				mpd->next_pos, wbc);
2930 		ret = mpage_prepare_extent_to_map(mpd);
2931 		if (!ret && mpd->map.m_len)
2932 			ret = mpage_map_and_submit_extent(handle, mpd,
2933 					&give_up_on_write);
2934 		/*
2935 		 * Caution: If the handle is synchronous,
2936 		 * ext4_journal_stop() can wait for transaction commit
2937 		 * to finish which may depend on writeback of pages to
2938 		 * complete or on page lock to be released.  In that
2939 		 * case, we have to wait until after we have
2940 		 * submitted all the IO, released page locks we hold,
2941 		 * and dropped io_end reference (for extent conversion
2942 		 * to be able to complete) before stopping the handle.
2943 		 */
2944 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2945 			ext4_journal_stop(handle);
2946 			handle = NULL;
2947 			mpd->do_map = 0;
2948 		}
2949 		/* Unlock pages we didn't use */
2950 		mpage_release_unused_pages(mpd, give_up_on_write);
2951 		/* Submit prepared bio */
2952 		ext4_io_submit(&mpd->io_submit);
2953 
2954 		/*
2955 		 * Drop our io_end reference we got from init. We have
2956 		 * to be careful and use deferred io_end finishing if
2957 		 * we are still holding the transaction as we can
2958 		 * release the last reference to io_end which may end
2959 		 * up doing unwritten extent conversion.
2960 		 */
2961 		if (handle) {
2962 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2963 			ext4_journal_stop(handle);
2964 		} else
2965 			ext4_put_io_end(mpd->io_submit.io_end);
2966 		mpd->io_submit.io_end = NULL;
2967 		trace_ext4_da_write_folios_end(inode, mpd->start_pos,
2968 				mpd->next_pos, wbc, ret);
2969 
2970 		if (ret == -ENOSPC && sbi->s_journal) {
2971 			/*
2972 			 * Commit the transaction which would
2973 			 * free blocks released in the transaction
2974 			 * and try again
2975 			 */
2976 			jbd2_journal_force_commit_nested(sbi->s_journal);
2977 			ret = 0;
2978 			continue;
2979 		}
2980 		if (ret == -EAGAIN)
2981 			ret = 0;
2982 		/* Fatal error - ENOMEM, EIO... */
2983 		if (ret)
2984 			break;
2985 	}
2986 unplug:
2987 	blk_finish_plug(&plug);
2988 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2989 		cycled = 1;
2990 		mpd->end_pos = (writeback_index << PAGE_SHIFT) - 1;
2991 		mpd->start_pos = 0;
2992 		goto retry;
2993 	}
2994 
2995 	/* Update index */
2996 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2997 		/*
2998 		 * Set the writeback_index so that range_cyclic
2999 		 * mode will write it back later
3000 		 */
3001 		mapping->writeback_index = mpd->start_pos >> PAGE_SHIFT;
3002 
3003 out_writepages:
3004 	trace_ext4_writepages_result(inode, wbc, ret,
3005 				     nr_to_write - wbc->nr_to_write);
3006 	return ret;
3007 }
3008 
3009 static int ext4_writepages(struct address_space *mapping,
3010 			   struct writeback_control *wbc)
3011 {
3012 	struct super_block *sb = mapping->host->i_sb;
3013 	struct mpage_da_data mpd = {
3014 		.inode = mapping->host,
3015 		.wbc = wbc,
3016 		.can_map = 1,
3017 	};
3018 	int ret;
3019 	int alloc_ctx;
3020 
3021 	ret = ext4_emergency_state(sb);
3022 	if (unlikely(ret))
3023 		return ret;
3024 
3025 	alloc_ctx = ext4_writepages_down_read(sb);
3026 	ret = ext4_do_writepages(&mpd);
3027 	/*
3028 	 * For data=journal writeback we could have come across pages marked
3029 	 * for delayed dirtying (PageChecked) which were just added to the
3030 	 * running transaction. Try once more to get them to stable storage.
3031 	 */
3032 	if (!ret && mpd.journalled_more_data)
3033 		ret = ext4_do_writepages(&mpd);
3034 	ext4_writepages_up_read(sb, alloc_ctx);
3035 
3036 	return ret;
3037 }
3038 
3039 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
3040 {
3041 	struct writeback_control wbc = {
3042 		.sync_mode = WB_SYNC_ALL,
3043 		.nr_to_write = LONG_MAX,
3044 		.range_start = jinode->i_dirty_start,
3045 		.range_end = jinode->i_dirty_end,
3046 	};
3047 	struct mpage_da_data mpd = {
3048 		.inode = jinode->i_vfs_inode,
3049 		.wbc = &wbc,
3050 		.can_map = 0,
3051 	};
3052 	return ext4_do_writepages(&mpd);
3053 }
3054 
3055 static int ext4_dax_writepages(struct address_space *mapping,
3056 			       struct writeback_control *wbc)
3057 {
3058 	int ret;
3059 	long nr_to_write = wbc->nr_to_write;
3060 	struct inode *inode = mapping->host;
3061 	int alloc_ctx;
3062 
3063 	ret = ext4_emergency_state(inode->i_sb);
3064 	if (unlikely(ret))
3065 		return ret;
3066 
3067 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
3068 	trace_ext4_writepages(inode, wbc);
3069 
3070 	ret = dax_writeback_mapping_range(mapping,
3071 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
3072 	trace_ext4_writepages_result(inode, wbc, ret,
3073 				     nr_to_write - wbc->nr_to_write);
3074 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
3075 	return ret;
3076 }
3077 
3078 static int ext4_nonda_switch(struct super_block *sb)
3079 {
3080 	s64 free_clusters, dirty_clusters;
3081 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3082 
3083 	/*
3084 	 * switch to non delalloc mode if we are running low
3085 	 * on free block. The free block accounting via percpu
3086 	 * counters can get slightly wrong with percpu_counter_batch getting
3087 	 * accumulated on each CPU without updating global counters
3088 	 * Delalloc need an accurate free block accounting. So switch
3089 	 * to non delalloc when we are near to error range.
3090 	 */
3091 	free_clusters =
3092 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3093 	dirty_clusters =
3094 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3095 	/*
3096 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3097 	 */
3098 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3099 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3100 
3101 	if (2 * free_clusters < 3 * dirty_clusters ||
3102 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3103 		/*
3104 		 * free block count is less than 150% of dirty blocks
3105 		 * or free blocks is less than watermark
3106 		 */
3107 		return 1;
3108 	}
3109 	return 0;
3110 }
3111 
3112 static int ext4_da_write_begin(const struct kiocb *iocb,
3113 			       struct address_space *mapping,
3114 			       loff_t pos, unsigned len,
3115 			       struct folio **foliop, void **fsdata)
3116 {
3117 	int ret, retries = 0;
3118 	struct folio *folio;
3119 	pgoff_t index;
3120 	struct inode *inode = mapping->host;
3121 
3122 	ret = ext4_emergency_state(inode->i_sb);
3123 	if (unlikely(ret))
3124 		return ret;
3125 
3126 	index = pos >> PAGE_SHIFT;
3127 
3128 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3129 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3130 		return ext4_write_begin(iocb, mapping, pos,
3131 					len, foliop, fsdata);
3132 	}
3133 	*fsdata = (void *)0;
3134 	trace_ext4_da_write_begin(inode, pos, len);
3135 
3136 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3137 		ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
3138 						     foliop, fsdata, true);
3139 		if (ret < 0)
3140 			return ret;
3141 		if (ret == 1)
3142 			return 0;
3143 	}
3144 
3145 retry:
3146 	folio = write_begin_get_folio(iocb, mapping, index, len);
3147 	if (IS_ERR(folio))
3148 		return PTR_ERR(folio);
3149 
3150 	if (len > folio_next_pos(folio) - pos)
3151 		len = folio_next_pos(folio) - pos;
3152 
3153 	ret = ext4_block_write_begin(NULL, folio, pos, len,
3154 				     ext4_da_get_block_prep);
3155 	if (ret < 0) {
3156 		folio_unlock(folio);
3157 		folio_put(folio);
3158 		/*
3159 		 * ext4_block_write_begin may have instantiated a few blocks
3160 		 * outside i_size.  Trim these off again. Don't need
3161 		 * i_size_read because we hold inode lock.
3162 		 */
3163 		if (pos + len > inode->i_size)
3164 			ext4_truncate_failed_write(inode);
3165 
3166 		if (ret == -ENOSPC &&
3167 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3168 			goto retry;
3169 		return ret;
3170 	}
3171 
3172 	*foliop = folio;
3173 	return ret;
3174 }
3175 
3176 /*
3177  * Check if we should update i_disksize
3178  * when write to the end of file but not require block allocation
3179  */
3180 static int ext4_da_should_update_i_disksize(struct folio *folio,
3181 					    unsigned long offset)
3182 {
3183 	struct buffer_head *bh;
3184 	struct inode *inode = folio->mapping->host;
3185 	unsigned int idx;
3186 	int i;
3187 
3188 	bh = folio_buffers(folio);
3189 	idx = offset >> inode->i_blkbits;
3190 
3191 	for (i = 0; i < idx; i++)
3192 		bh = bh->b_this_page;
3193 
3194 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3195 		return 0;
3196 	return 1;
3197 }
3198 
3199 static int ext4_da_do_write_end(struct address_space *mapping,
3200 			loff_t pos, unsigned len, unsigned copied,
3201 			struct folio *folio)
3202 {
3203 	struct inode *inode = mapping->host;
3204 	loff_t old_size = inode->i_size;
3205 	bool disksize_changed = false;
3206 	loff_t new_i_size, zero_len = 0;
3207 	handle_t *handle;
3208 
3209 	if (unlikely(!folio_buffers(folio))) {
3210 		folio_unlock(folio);
3211 		folio_put(folio);
3212 		return -EIO;
3213 	}
3214 	/*
3215 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3216 	 * flag, which all that's needed to trigger page writeback.
3217 	 */
3218 	copied = block_write_end(pos, len, copied, folio);
3219 	new_i_size = pos + copied;
3220 
3221 	/*
3222 	 * It's important to update i_size while still holding folio lock,
3223 	 * because folio writeout could otherwise come in and zero beyond
3224 	 * i_size.
3225 	 *
3226 	 * Since we are holding inode lock, we are sure i_disksize <=
3227 	 * i_size. We also know that if i_disksize < i_size, there are
3228 	 * delalloc writes pending in the range up to i_size. If the end of
3229 	 * the current write is <= i_size, there's no need to touch
3230 	 * i_disksize since writeback will push i_disksize up to i_size
3231 	 * eventually. If the end of the current write is > i_size and
3232 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3233 	 * checked, we need to update i_disksize here as certain
3234 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3235 	 */
3236 	if (new_i_size > inode->i_size) {
3237 		unsigned long end;
3238 
3239 		i_size_write(inode, new_i_size);
3240 		end = offset_in_folio(folio, new_i_size - 1);
3241 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3242 			ext4_update_i_disksize(inode, new_i_size);
3243 			disksize_changed = true;
3244 		}
3245 	}
3246 
3247 	folio_unlock(folio);
3248 	folio_put(folio);
3249 
3250 	if (pos > old_size) {
3251 		pagecache_isize_extended(inode, old_size, pos);
3252 		zero_len = pos - old_size;
3253 	}
3254 
3255 	if (!disksize_changed && !zero_len)
3256 		return copied;
3257 
3258 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3259 	if (IS_ERR(handle))
3260 		return PTR_ERR(handle);
3261 	if (zero_len)
3262 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3263 	ext4_mark_inode_dirty(handle, inode);
3264 	ext4_journal_stop(handle);
3265 
3266 	return copied;
3267 }
3268 
3269 static int ext4_da_write_end(const struct kiocb *iocb,
3270 			     struct address_space *mapping,
3271 			     loff_t pos, unsigned len, unsigned copied,
3272 			     struct folio *folio, void *fsdata)
3273 {
3274 	struct inode *inode = mapping->host;
3275 	int write_mode = (int)(unsigned long)fsdata;
3276 
3277 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3278 		return ext4_write_end(iocb, mapping, pos,
3279 				      len, copied, folio, fsdata);
3280 
3281 	trace_ext4_da_write_end(inode, pos, len, copied);
3282 
3283 	if (write_mode != CONVERT_INLINE_DATA &&
3284 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3285 	    ext4_has_inline_data(inode))
3286 		return ext4_write_inline_data_end(inode, pos, len, copied,
3287 						  folio);
3288 
3289 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3290 		copied = 0;
3291 
3292 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3293 }
3294 
3295 /*
3296  * Force all delayed allocation blocks to be allocated for a given inode.
3297  */
3298 int ext4_alloc_da_blocks(struct inode *inode)
3299 {
3300 	trace_ext4_alloc_da_blocks(inode);
3301 
3302 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3303 		return 0;
3304 
3305 	/*
3306 	 * We do something simple for now.  The filemap_flush() will
3307 	 * also start triggering a write of the data blocks, which is
3308 	 * not strictly speaking necessary (and for users of
3309 	 * laptop_mode, not even desirable).  However, to do otherwise
3310 	 * would require replicating code paths in:
3311 	 *
3312 	 * ext4_writepages() ->
3313 	 *    write_cache_pages() ---> (via passed in callback function)
3314 	 *        __mpage_da_writepage() -->
3315 	 *           mpage_add_bh_to_extent()
3316 	 *           mpage_da_map_blocks()
3317 	 *
3318 	 * The problem is that write_cache_pages(), located in
3319 	 * mm/page-writeback.c, marks pages clean in preparation for
3320 	 * doing I/O, which is not desirable if we're not planning on
3321 	 * doing I/O at all.
3322 	 *
3323 	 * We could call write_cache_pages(), and then redirty all of
3324 	 * the pages by calling redirty_page_for_writepage() but that
3325 	 * would be ugly in the extreme.  So instead we would need to
3326 	 * replicate parts of the code in the above functions,
3327 	 * simplifying them because we wouldn't actually intend to
3328 	 * write out the pages, but rather only collect contiguous
3329 	 * logical block extents, call the multi-block allocator, and
3330 	 * then update the buffer heads with the block allocations.
3331 	 *
3332 	 * For now, though, we'll cheat by calling filemap_flush(),
3333 	 * which will map the blocks, and start the I/O, but not
3334 	 * actually wait for the I/O to complete.
3335 	 */
3336 	return filemap_flush(inode->i_mapping);
3337 }
3338 
3339 /*
3340  * bmap() is special.  It gets used by applications such as lilo and by
3341  * the swapper to find the on-disk block of a specific piece of data.
3342  *
3343  * Naturally, this is dangerous if the block concerned is still in the
3344  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3345  * filesystem and enables swap, then they may get a nasty shock when the
3346  * data getting swapped to that swapfile suddenly gets overwritten by
3347  * the original zero's written out previously to the journal and
3348  * awaiting writeback in the kernel's buffer cache.
3349  *
3350  * So, if we see any bmap calls here on a modified, data-journaled file,
3351  * take extra steps to flush any blocks which might be in the cache.
3352  */
3353 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3354 {
3355 	struct inode *inode = mapping->host;
3356 	sector_t ret = 0;
3357 
3358 	inode_lock_shared(inode);
3359 	/*
3360 	 * We can get here for an inline file via the FIBMAP ioctl
3361 	 */
3362 	if (ext4_has_inline_data(inode))
3363 		goto out;
3364 
3365 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3366 	    (test_opt(inode->i_sb, DELALLOC) ||
3367 	     ext4_should_journal_data(inode))) {
3368 		/*
3369 		 * With delalloc or journalled data we want to sync the file so
3370 		 * that we can make sure we allocate blocks for file and data
3371 		 * is in place for the user to see it
3372 		 */
3373 		filemap_write_and_wait(mapping);
3374 	}
3375 
3376 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3377 
3378 out:
3379 	inode_unlock_shared(inode);
3380 	return ret;
3381 }
3382 
3383 static int ext4_read_folio(struct file *file, struct folio *folio)
3384 {
3385 	int ret = -EAGAIN;
3386 	struct inode *inode = folio->mapping->host;
3387 
3388 	trace_ext4_read_folio(inode, folio);
3389 
3390 	if (ext4_has_inline_data(inode))
3391 		ret = ext4_readpage_inline(inode, folio);
3392 
3393 	if (ret == -EAGAIN)
3394 		return ext4_mpage_readpages(inode, NULL, folio);
3395 
3396 	return ret;
3397 }
3398 
3399 static void ext4_readahead(struct readahead_control *rac)
3400 {
3401 	struct inode *inode = rac->mapping->host;
3402 
3403 	/* If the file has inline data, no need to do readahead. */
3404 	if (ext4_has_inline_data(inode))
3405 		return;
3406 
3407 	ext4_mpage_readpages(inode, rac, NULL);
3408 }
3409 
3410 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3411 				size_t length)
3412 {
3413 	trace_ext4_invalidate_folio(folio, offset, length);
3414 
3415 	/* No journalling happens on data buffers when this function is used */
3416 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3417 
3418 	block_invalidate_folio(folio, offset, length);
3419 }
3420 
3421 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3422 					    size_t offset, size_t length)
3423 {
3424 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3425 
3426 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3427 
3428 	/*
3429 	 * If it's a full truncate we just forget about the pending dirtying
3430 	 */
3431 	if (offset == 0 && length == folio_size(folio))
3432 		folio_clear_checked(folio);
3433 
3434 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3435 }
3436 
3437 /* Wrapper for aops... */
3438 static void ext4_journalled_invalidate_folio(struct folio *folio,
3439 					   size_t offset,
3440 					   size_t length)
3441 {
3442 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3443 }
3444 
3445 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3446 {
3447 	struct inode *inode = folio->mapping->host;
3448 	journal_t *journal = EXT4_JOURNAL(inode);
3449 
3450 	trace_ext4_release_folio(inode, folio);
3451 
3452 	/* Page has dirty journalled data -> cannot release */
3453 	if (folio_test_checked(folio))
3454 		return false;
3455 	if (journal)
3456 		return jbd2_journal_try_to_free_buffers(journal, folio);
3457 	else
3458 		return try_to_free_buffers(folio);
3459 }
3460 
3461 static bool ext4_inode_datasync_dirty(struct inode *inode)
3462 {
3463 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3464 
3465 	if (journal) {
3466 		if (jbd2_transaction_committed(journal,
3467 			EXT4_I(inode)->i_datasync_tid))
3468 			return false;
3469 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3470 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3471 		return true;
3472 	}
3473 
3474 	/* Any metadata buffers to write? */
3475 	if (!list_empty(&inode->i_mapping->i_private_list))
3476 		return true;
3477 	return inode_state_read_once(inode) & I_DIRTY_DATASYNC;
3478 }
3479 
3480 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3481 			   struct ext4_map_blocks *map, loff_t offset,
3482 			   loff_t length, unsigned int flags)
3483 {
3484 	u8 blkbits = inode->i_blkbits;
3485 
3486 	/*
3487 	 * Writes that span EOF might trigger an I/O size update on completion,
3488 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3489 	 * there is no other metadata changes being made or are pending.
3490 	 */
3491 	iomap->flags = 0;
3492 	if (ext4_inode_datasync_dirty(inode) ||
3493 	    offset + length > i_size_read(inode))
3494 		iomap->flags |= IOMAP_F_DIRTY;
3495 
3496 	if (map->m_flags & EXT4_MAP_NEW)
3497 		iomap->flags |= IOMAP_F_NEW;
3498 
3499 	/* HW-offload atomics are always used */
3500 	if (flags & IOMAP_ATOMIC)
3501 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3502 
3503 	if (flags & IOMAP_DAX)
3504 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3505 	else
3506 		iomap->bdev = inode->i_sb->s_bdev;
3507 	iomap->offset = EXT4_LBLK_TO_B(inode, map->m_lblk);
3508 	iomap->length = EXT4_LBLK_TO_B(inode, map->m_len);
3509 
3510 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3511 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3512 		iomap->flags |= IOMAP_F_MERGED;
3513 
3514 	/*
3515 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3516 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3517 	 * set. In order for any allocated unwritten extents to be converted
3518 	 * into written extents correctly within the ->end_io() handler, we
3519 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3520 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3521 	 * been set first.
3522 	 */
3523 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3524 		iomap->type = IOMAP_UNWRITTEN;
3525 		iomap->addr = (u64) map->m_pblk << blkbits;
3526 		if (flags & IOMAP_DAX)
3527 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3528 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3529 		iomap->type = IOMAP_MAPPED;
3530 		iomap->addr = (u64) map->m_pblk << blkbits;
3531 		if (flags & IOMAP_DAX)
3532 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3533 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3534 		iomap->type = IOMAP_DELALLOC;
3535 		iomap->addr = IOMAP_NULL_ADDR;
3536 	} else {
3537 		iomap->type = IOMAP_HOLE;
3538 		iomap->addr = IOMAP_NULL_ADDR;
3539 	}
3540 }
3541 
3542 static int ext4_map_blocks_atomic_write_slow(handle_t *handle,
3543 			struct inode *inode, struct ext4_map_blocks *map)
3544 {
3545 	ext4_lblk_t m_lblk = map->m_lblk;
3546 	unsigned int m_len = map->m_len;
3547 	unsigned int mapped_len = 0, m_flags = 0;
3548 	ext4_fsblk_t next_pblk = 0;
3549 	bool check_next_pblk = false;
3550 	int ret = 0;
3551 
3552 	WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb));
3553 
3554 	/*
3555 	 * This is a slow path in case of mixed mapping. We use
3556 	 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single
3557 	 * contiguous mapped mapping. This will ensure any unwritten or hole
3558 	 * regions within the requested range is zeroed out and we return
3559 	 * a single contiguous mapped extent.
3560 	 */
3561 	m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3562 
3563 	do {
3564 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3565 		if (ret < 0 && ret != -ENOSPC)
3566 			goto out_err;
3567 		/*
3568 		 * This should never happen, but let's return an error code to
3569 		 * avoid an infinite loop in here.
3570 		 */
3571 		if (ret == 0) {
3572 			ret = -EFSCORRUPTED;
3573 			ext4_warning_inode(inode,
3574 				"ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d",
3575 				m_flags, ret);
3576 			goto out_err;
3577 		}
3578 		/*
3579 		 * With bigalloc we should never get ENOSPC nor discontiguous
3580 		 * physical extents.
3581 		 */
3582 		if ((check_next_pblk && next_pblk != map->m_pblk) ||
3583 				ret == -ENOSPC) {
3584 			ext4_warning_inode(inode,
3585 				"Non-contiguous allocation detected: expected %llu, got %llu, "
3586 				"or ext4_map_blocks() returned out of space ret: %d",
3587 				next_pblk, map->m_pblk, ret);
3588 			ret = -EFSCORRUPTED;
3589 			goto out_err;
3590 		}
3591 		next_pblk = map->m_pblk + map->m_len;
3592 		check_next_pblk = true;
3593 
3594 		mapped_len += map->m_len;
3595 		map->m_lblk += map->m_len;
3596 		map->m_len = m_len - mapped_len;
3597 	} while (mapped_len < m_len);
3598 
3599 	/*
3600 	 * We might have done some work in above loop, so we need to query the
3601 	 * start of the physical extent, based on the origin m_lblk and m_len.
3602 	 * Let's also ensure we were able to allocate the required range for
3603 	 * mixed mapping case.
3604 	 */
3605 	map->m_lblk = m_lblk;
3606 	map->m_len = m_len;
3607 	map->m_flags = 0;
3608 
3609 	ret = ext4_map_blocks(handle, inode, map,
3610 			      EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF);
3611 	if (ret != m_len) {
3612 		ext4_warning_inode(inode,
3613 			"allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n",
3614 			m_lblk, m_len, ret);
3615 		ret = -EINVAL;
3616 	}
3617 	return ret;
3618 
3619 out_err:
3620 	/* reset map before returning an error */
3621 	map->m_lblk = m_lblk;
3622 	map->m_len = m_len;
3623 	map->m_flags = 0;
3624 	return ret;
3625 }
3626 
3627 /*
3628  * ext4_map_blocks_atomic: Helper routine to ensure the entire requested
3629  * range in @map [lblk, lblk + len) is one single contiguous extent with no
3630  * mixed mappings.
3631  *
3632  * We first use m_flags passed to us by our caller (ext4_iomap_alloc()).
3633  * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying
3634  * physical extent for the requested range does not have a single contiguous
3635  * mapping type i.e. (Hole, Mapped, or Unwritten) throughout.
3636  * In that case we will loop over the requested range to allocate and zero out
3637  * the unwritten / holes in between, to get a single mapped extent from
3638  * [m_lblk, m_lblk +  m_len). Note that this is only possible because we know
3639  * this can be called only with bigalloc enabled filesystem where the underlying
3640  * cluster is already allocated. This avoids allocating discontiguous extents
3641  * in the slow path due to multiple calls to ext4_map_blocks().
3642  * The slow path is mostly non-performance critical path, so it should be ok to
3643  * loop using ext4_map_blocks() with appropriate flags to allocate & zero the
3644  * underlying short holes/unwritten extents within the requested range.
3645  */
3646 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode,
3647 				struct ext4_map_blocks *map, int m_flags,
3648 				bool *force_commit)
3649 {
3650 	ext4_lblk_t m_lblk = map->m_lblk;
3651 	unsigned int m_len = map->m_len;
3652 	int ret = 0;
3653 
3654 	WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb));
3655 
3656 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3657 	if (ret < 0 || ret == m_len)
3658 		goto out;
3659 	/*
3660 	 * This is a mixed mapping case where we were not able to allocate
3661 	 * a single contiguous extent. In that case let's reset requested
3662 	 * mapping and call the slow path.
3663 	 */
3664 	map->m_lblk = m_lblk;
3665 	map->m_len = m_len;
3666 	map->m_flags = 0;
3667 
3668 	/*
3669 	 * slow path means we have mixed mapping, that means we will need
3670 	 * to force txn commit.
3671 	 */
3672 	*force_commit = true;
3673 	return ext4_map_blocks_atomic_write_slow(handle, inode, map);
3674 out:
3675 	return ret;
3676 }
3677 
3678 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3679 			    unsigned int flags)
3680 {
3681 	handle_t *handle;
3682 	int ret, dio_credits, m_flags = 0, retries = 0;
3683 	bool force_commit = false;
3684 
3685 	/*
3686 	 * Trim the mapping request to the maximum value that we can map at
3687 	 * once for direct I/O.
3688 	 */
3689 	if (map->m_len > DIO_MAX_BLOCKS)
3690 		map->m_len = DIO_MAX_BLOCKS;
3691 
3692 	/*
3693 	 * journal credits estimation for atomic writes. We call
3694 	 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes,
3695 	 * then let's assume the no. of pextents required can be m_len i.e.
3696 	 * every alternate block can be unwritten and hole.
3697 	 */
3698 	if (flags & IOMAP_ATOMIC) {
3699 		unsigned int orig_mlen = map->m_len;
3700 
3701 		ret = ext4_map_blocks(NULL, inode, map, 0);
3702 		if (ret < 0)
3703 			return ret;
3704 		if (map->m_len < orig_mlen) {
3705 			map->m_len = orig_mlen;
3706 			dio_credits = ext4_meta_trans_blocks(inode, orig_mlen,
3707 							     map->m_len);
3708 		} else {
3709 			dio_credits = ext4_chunk_trans_blocks(inode,
3710 							      map->m_len);
3711 		}
3712 	} else {
3713 		dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3714 	}
3715 
3716 retry:
3717 	/*
3718 	 * Either we allocate blocks and then don't get an unwritten extent, so
3719 	 * in that case we have reserved enough credits. Or, the blocks are
3720 	 * already allocated and unwritten. In that case, the extent conversion
3721 	 * fits into the credits as well.
3722 	 */
3723 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3724 	if (IS_ERR(handle))
3725 		return PTR_ERR(handle);
3726 
3727 	/*
3728 	 * DAX and direct I/O are the only two operations that are currently
3729 	 * supported with IOMAP_WRITE.
3730 	 */
3731 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3732 	if (flags & IOMAP_DAX)
3733 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3734 	/*
3735 	 * We use i_size instead of i_disksize here because delalloc writeback
3736 	 * can complete at any point during the I/O and subsequently push the
3737 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3738 	 * happening and thus expose allocated blocks to direct I/O reads.
3739 	 */
3740 	else if (EXT4_LBLK_TO_B(inode, map->m_lblk) >= i_size_read(inode))
3741 		m_flags = EXT4_GET_BLOCKS_CREATE;
3742 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3743 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3744 
3745 	if (flags & IOMAP_ATOMIC)
3746 		ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags,
3747 						   &force_commit);
3748 	else
3749 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3750 
3751 	/*
3752 	 * We cannot fill holes in indirect tree based inodes as that could
3753 	 * expose stale data in the case of a crash. Use the magic error code
3754 	 * to fallback to buffered I/O.
3755 	 */
3756 	if (!m_flags && !ret)
3757 		ret = -ENOTBLK;
3758 
3759 	ext4_journal_stop(handle);
3760 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3761 		goto retry;
3762 
3763 	/*
3764 	 * Force commit the current transaction if the allocation spans a mixed
3765 	 * mapping range. This ensures any pending metadata updates (like
3766 	 * unwritten to written extents conversion) in this range are in
3767 	 * consistent state with the file data blocks, before performing the
3768 	 * actual write I/O. If the commit fails, the whole I/O must be aborted
3769 	 * to prevent any possible torn writes.
3770 	 */
3771 	if (ret > 0 && force_commit) {
3772 		int ret2;
3773 
3774 		ret2 = ext4_force_commit(inode->i_sb);
3775 		if (ret2)
3776 			return ret2;
3777 	}
3778 
3779 	return ret;
3780 }
3781 
3782 
3783 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3784 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3785 {
3786 	int ret;
3787 	struct ext4_map_blocks map;
3788 	u8 blkbits = inode->i_blkbits;
3789 	unsigned int orig_mlen;
3790 
3791 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3792 		return -EINVAL;
3793 
3794 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3795 		return -ERANGE;
3796 
3797 	/*
3798 	 * Calculate the first and last logical blocks respectively.
3799 	 */
3800 	map.m_lblk = offset >> blkbits;
3801 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3802 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3803 	orig_mlen = map.m_len;
3804 
3805 	if (flags & IOMAP_WRITE) {
3806 		/*
3807 		 * We check here if the blocks are already allocated, then we
3808 		 * don't need to start a journal txn and we can directly return
3809 		 * the mapping information. This could boost performance
3810 		 * especially in multi-threaded overwrite requests.
3811 		 */
3812 		if (offset + length <= i_size_read(inode)) {
3813 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3814 			/*
3815 			 * For atomic writes the entire requested length should
3816 			 * be mapped.
3817 			 */
3818 			if (map.m_flags & EXT4_MAP_MAPPED) {
3819 				if ((!(flags & IOMAP_ATOMIC) && ret > 0) ||
3820 				   (flags & IOMAP_ATOMIC && ret >= orig_mlen))
3821 					goto out;
3822 			}
3823 			map.m_len = orig_mlen;
3824 		}
3825 		ret = ext4_iomap_alloc(inode, &map, flags);
3826 	} else {
3827 		/*
3828 		 * This can be called for overwrites path from
3829 		 * ext4_iomap_overwrite_begin().
3830 		 */
3831 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3832 	}
3833 
3834 	if (ret < 0)
3835 		return ret;
3836 out:
3837 	/*
3838 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3839 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3840 	 * limiting the length of the mapping returned.
3841 	 */
3842 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3843 
3844 	/*
3845 	 * Before returning to iomap, let's ensure the allocated mapping
3846 	 * covers the entire requested length for atomic writes.
3847 	 */
3848 	if (flags & IOMAP_ATOMIC) {
3849 		if (map.m_len < (length >> blkbits)) {
3850 			WARN_ON_ONCE(1);
3851 			return -EINVAL;
3852 		}
3853 	}
3854 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3855 
3856 	return 0;
3857 }
3858 
3859 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3860 		loff_t length, unsigned flags, struct iomap *iomap,
3861 		struct iomap *srcmap)
3862 {
3863 	int ret;
3864 
3865 	/*
3866 	 * Even for writes we don't need to allocate blocks, so just pretend
3867 	 * we are reading to save overhead of starting a transaction.
3868 	 */
3869 	flags &= ~IOMAP_WRITE;
3870 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3871 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3872 	return ret;
3873 }
3874 
3875 const struct iomap_ops ext4_iomap_ops = {
3876 	.iomap_begin		= ext4_iomap_begin,
3877 };
3878 
3879 const struct iomap_ops ext4_iomap_overwrite_ops = {
3880 	.iomap_begin		= ext4_iomap_overwrite_begin,
3881 };
3882 
3883 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3884 				   loff_t length, unsigned int flags,
3885 				   struct iomap *iomap, struct iomap *srcmap)
3886 {
3887 	int ret;
3888 	struct ext4_map_blocks map;
3889 	u8 blkbits = inode->i_blkbits;
3890 
3891 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3892 		return -EINVAL;
3893 
3894 	if (ext4_has_inline_data(inode)) {
3895 		ret = ext4_inline_data_iomap(inode, iomap);
3896 		if (ret != -EAGAIN) {
3897 			if (ret == 0 && offset >= iomap->length)
3898 				ret = -ENOENT;
3899 			return ret;
3900 		}
3901 	}
3902 
3903 	/*
3904 	 * Calculate the first and last logical block respectively.
3905 	 */
3906 	map.m_lblk = offset >> blkbits;
3907 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3908 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3909 
3910 	/*
3911 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3912 	 * So handle it here itself instead of querying ext4_map_blocks().
3913 	 * Since ext4_map_blocks() will warn about it and will return
3914 	 * -EIO error.
3915 	 */
3916 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3917 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3918 
3919 		if (offset >= sbi->s_bitmap_maxbytes) {
3920 			map.m_flags = 0;
3921 			goto set_iomap;
3922 		}
3923 	}
3924 
3925 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3926 	if (ret < 0)
3927 		return ret;
3928 set_iomap:
3929 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3930 
3931 	return 0;
3932 }
3933 
3934 const struct iomap_ops ext4_iomap_report_ops = {
3935 	.iomap_begin = ext4_iomap_begin_report,
3936 };
3937 
3938 /*
3939  * For data=journal mode, folio should be marked dirty only when it was
3940  * writeably mapped. When that happens, it was already attached to the
3941  * transaction and marked as jbddirty (we take care of this in
3942  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3943  * so we should have nothing to do here, except for the case when someone
3944  * had the page pinned and dirtied the page through this pin (e.g. by doing
3945  * direct IO to it). In that case we'd need to attach buffers here to the
3946  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3947  * folio and leave attached buffers clean, because the buffers' dirty state is
3948  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3949  * the journalling code will explode.  So what we do is to mark the folio
3950  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3951  * to the transaction appropriately.
3952  */
3953 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3954 		struct folio *folio)
3955 {
3956 	WARN_ON_ONCE(!folio_buffers(folio));
3957 	if (folio_maybe_dma_pinned(folio))
3958 		folio_set_checked(folio);
3959 	return filemap_dirty_folio(mapping, folio);
3960 }
3961 
3962 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3963 {
3964 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3965 	WARN_ON_ONCE(!folio_buffers(folio));
3966 	return block_dirty_folio(mapping, folio);
3967 }
3968 
3969 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3970 				    struct file *file, sector_t *span)
3971 {
3972 	return iomap_swapfile_activate(sis, file, span,
3973 				       &ext4_iomap_report_ops);
3974 }
3975 
3976 static const struct address_space_operations ext4_aops = {
3977 	.read_folio		= ext4_read_folio,
3978 	.readahead		= ext4_readahead,
3979 	.writepages		= ext4_writepages,
3980 	.write_begin		= ext4_write_begin,
3981 	.write_end		= ext4_write_end,
3982 	.dirty_folio		= ext4_dirty_folio,
3983 	.bmap			= ext4_bmap,
3984 	.invalidate_folio	= ext4_invalidate_folio,
3985 	.release_folio		= ext4_release_folio,
3986 	.migrate_folio		= buffer_migrate_folio,
3987 	.is_partially_uptodate  = block_is_partially_uptodate,
3988 	.error_remove_folio	= generic_error_remove_folio,
3989 	.swap_activate		= ext4_iomap_swap_activate,
3990 };
3991 
3992 static const struct address_space_operations ext4_journalled_aops = {
3993 	.read_folio		= ext4_read_folio,
3994 	.readahead		= ext4_readahead,
3995 	.writepages		= ext4_writepages,
3996 	.write_begin		= ext4_write_begin,
3997 	.write_end		= ext4_journalled_write_end,
3998 	.dirty_folio		= ext4_journalled_dirty_folio,
3999 	.bmap			= ext4_bmap,
4000 	.invalidate_folio	= ext4_journalled_invalidate_folio,
4001 	.release_folio		= ext4_release_folio,
4002 	.migrate_folio		= buffer_migrate_folio_norefs,
4003 	.is_partially_uptodate  = block_is_partially_uptodate,
4004 	.error_remove_folio	= generic_error_remove_folio,
4005 	.swap_activate		= ext4_iomap_swap_activate,
4006 };
4007 
4008 static const struct address_space_operations ext4_da_aops = {
4009 	.read_folio		= ext4_read_folio,
4010 	.readahead		= ext4_readahead,
4011 	.writepages		= ext4_writepages,
4012 	.write_begin		= ext4_da_write_begin,
4013 	.write_end		= ext4_da_write_end,
4014 	.dirty_folio		= ext4_dirty_folio,
4015 	.bmap			= ext4_bmap,
4016 	.invalidate_folio	= ext4_invalidate_folio,
4017 	.release_folio		= ext4_release_folio,
4018 	.migrate_folio		= buffer_migrate_folio,
4019 	.is_partially_uptodate  = block_is_partially_uptodate,
4020 	.error_remove_folio	= generic_error_remove_folio,
4021 	.swap_activate		= ext4_iomap_swap_activate,
4022 };
4023 
4024 static const struct address_space_operations ext4_dax_aops = {
4025 	.writepages		= ext4_dax_writepages,
4026 	.dirty_folio		= noop_dirty_folio,
4027 	.bmap			= ext4_bmap,
4028 	.swap_activate		= ext4_iomap_swap_activate,
4029 };
4030 
4031 void ext4_set_aops(struct inode *inode)
4032 {
4033 	switch (ext4_inode_journal_mode(inode)) {
4034 	case EXT4_INODE_ORDERED_DATA_MODE:
4035 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4036 		break;
4037 	case EXT4_INODE_JOURNAL_DATA_MODE:
4038 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4039 		return;
4040 	default:
4041 		BUG();
4042 	}
4043 	if (IS_DAX(inode))
4044 		inode->i_mapping->a_ops = &ext4_dax_aops;
4045 	else if (test_opt(inode->i_sb, DELALLOC))
4046 		inode->i_mapping->a_ops = &ext4_da_aops;
4047 	else
4048 		inode->i_mapping->a_ops = &ext4_aops;
4049 }
4050 
4051 /*
4052  * Here we can't skip an unwritten buffer even though it usually reads zero
4053  * because it might have data in pagecache (eg, if called from ext4_zero_range,
4054  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
4055  * racing writeback can come later and flush the stale pagecache to disk.
4056  */
4057 static int __ext4_block_zero_page_range(handle_t *handle,
4058 		struct address_space *mapping, loff_t from, loff_t length)
4059 {
4060 	unsigned int offset, blocksize, pos;
4061 	ext4_lblk_t iblock;
4062 	struct inode *inode = mapping->host;
4063 	struct buffer_head *bh;
4064 	struct folio *folio;
4065 	int err = 0;
4066 
4067 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
4068 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
4069 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
4070 	if (IS_ERR(folio))
4071 		return PTR_ERR(folio);
4072 
4073 	blocksize = inode->i_sb->s_blocksize;
4074 
4075 	iblock = EXT4_PG_TO_LBLK(inode, folio->index);
4076 
4077 	bh = folio_buffers(folio);
4078 	if (!bh)
4079 		bh = create_empty_buffers(folio, blocksize, 0);
4080 
4081 	/* Find the buffer that contains "offset" */
4082 	offset = offset_in_folio(folio, from);
4083 	pos = blocksize;
4084 	while (offset >= pos) {
4085 		bh = bh->b_this_page;
4086 		iblock++;
4087 		pos += blocksize;
4088 	}
4089 	if (buffer_freed(bh)) {
4090 		BUFFER_TRACE(bh, "freed: skip");
4091 		goto unlock;
4092 	}
4093 	if (!buffer_mapped(bh)) {
4094 		BUFFER_TRACE(bh, "unmapped");
4095 		ext4_get_block(inode, iblock, bh, 0);
4096 		/* unmapped? It's a hole - nothing to do */
4097 		if (!buffer_mapped(bh)) {
4098 			BUFFER_TRACE(bh, "still unmapped");
4099 			goto unlock;
4100 		}
4101 	}
4102 
4103 	/* Ok, it's mapped. Make sure it's up-to-date */
4104 	if (folio_test_uptodate(folio))
4105 		set_buffer_uptodate(bh);
4106 
4107 	if (!buffer_uptodate(bh)) {
4108 		err = ext4_read_bh_lock(bh, 0, true);
4109 		if (err)
4110 			goto unlock;
4111 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4112 			/* We expect the key to be set. */
4113 			BUG_ON(!fscrypt_has_encryption_key(inode));
4114 			err = fscrypt_decrypt_pagecache_blocks(folio,
4115 							       blocksize,
4116 							       bh_offset(bh));
4117 			if (err) {
4118 				clear_buffer_uptodate(bh);
4119 				goto unlock;
4120 			}
4121 		}
4122 	}
4123 	if (ext4_should_journal_data(inode)) {
4124 		BUFFER_TRACE(bh, "get write access");
4125 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
4126 						    EXT4_JTR_NONE);
4127 		if (err)
4128 			goto unlock;
4129 	}
4130 	folio_zero_range(folio, offset, length);
4131 	BUFFER_TRACE(bh, "zeroed end of block");
4132 
4133 	if (ext4_should_journal_data(inode)) {
4134 		err = ext4_dirty_journalled_data(handle, bh);
4135 	} else {
4136 		err = 0;
4137 		mark_buffer_dirty(bh);
4138 		if (ext4_should_order_data(inode))
4139 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4140 					length);
4141 	}
4142 
4143 unlock:
4144 	folio_unlock(folio);
4145 	folio_put(folio);
4146 	return err;
4147 }
4148 
4149 /*
4150  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4151  * starting from file offset 'from'.  The range to be zero'd must
4152  * be contained with in one block.  If the specified range exceeds
4153  * the end of the block it will be shortened to end of the block
4154  * that corresponds to 'from'
4155  */
4156 static int ext4_block_zero_page_range(handle_t *handle,
4157 		struct address_space *mapping, loff_t from, loff_t length)
4158 {
4159 	struct inode *inode = mapping->host;
4160 	unsigned blocksize = inode->i_sb->s_blocksize;
4161 	unsigned int max = blocksize - (from & (blocksize - 1));
4162 
4163 	/*
4164 	 * correct length if it does not fall between
4165 	 * 'from' and the end of the block
4166 	 */
4167 	if (length > max || length < 0)
4168 		length = max;
4169 
4170 	if (IS_DAX(inode)) {
4171 		return dax_zero_range(inode, from, length, NULL,
4172 				      &ext4_iomap_ops);
4173 	}
4174 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4175 }
4176 
4177 /*
4178  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4179  * up to the end of the block which corresponds to `from'.
4180  * This required during truncate. We need to physically zero the tail end
4181  * of that block so it doesn't yield old data if the file is later grown.
4182  */
4183 static int ext4_block_truncate_page(handle_t *handle,
4184 		struct address_space *mapping, loff_t from)
4185 {
4186 	unsigned length;
4187 	unsigned blocksize;
4188 	struct inode *inode = mapping->host;
4189 
4190 	/* If we are processing an encrypted inode during orphan list handling */
4191 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4192 		return 0;
4193 
4194 	blocksize = i_blocksize(inode);
4195 	length = blocksize - (from & (blocksize - 1));
4196 
4197 	return ext4_block_zero_page_range(handle, mapping, from, length);
4198 }
4199 
4200 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4201 			     loff_t lstart, loff_t length)
4202 {
4203 	struct super_block *sb = inode->i_sb;
4204 	struct address_space *mapping = inode->i_mapping;
4205 	unsigned partial_start, partial_end;
4206 	ext4_fsblk_t start, end;
4207 	loff_t byte_end = (lstart + length - 1);
4208 	int err = 0;
4209 
4210 	partial_start = lstart & (sb->s_blocksize - 1);
4211 	partial_end = byte_end & (sb->s_blocksize - 1);
4212 
4213 	start = lstart >> sb->s_blocksize_bits;
4214 	end = byte_end >> sb->s_blocksize_bits;
4215 
4216 	/* Handle partial zero within the single block */
4217 	if (start == end &&
4218 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4219 		err = ext4_block_zero_page_range(handle, mapping,
4220 						 lstart, length);
4221 		return err;
4222 	}
4223 	/* Handle partial zero out on the start of the range */
4224 	if (partial_start) {
4225 		err = ext4_block_zero_page_range(handle, mapping,
4226 						 lstart, sb->s_blocksize);
4227 		if (err)
4228 			return err;
4229 	}
4230 	/* Handle partial zero out on the end of the range */
4231 	if (partial_end != sb->s_blocksize - 1)
4232 		err = ext4_block_zero_page_range(handle, mapping,
4233 						 byte_end - partial_end,
4234 						 partial_end + 1);
4235 	return err;
4236 }
4237 
4238 int ext4_can_truncate(struct inode *inode)
4239 {
4240 	if (S_ISREG(inode->i_mode))
4241 		return 1;
4242 	if (S_ISDIR(inode->i_mode))
4243 		return 1;
4244 	if (S_ISLNK(inode->i_mode))
4245 		return !ext4_inode_is_fast_symlink(inode);
4246 	return 0;
4247 }
4248 
4249 /*
4250  * We have to make sure i_disksize gets properly updated before we truncate
4251  * page cache due to hole punching or zero range. Otherwise i_disksize update
4252  * can get lost as it may have been postponed to submission of writeback but
4253  * that will never happen if we remove the folio containing i_size from the
4254  * page cache. Also if we punch hole within i_size but above i_disksize,
4255  * following ext4_page_mkwrite() may mistakenly allocate written blocks over
4256  * the hole and thus introduce allocated blocks beyond i_disksize which is
4257  * not allowed (e2fsck would complain in case of crash).
4258  */
4259 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4260 				      loff_t len)
4261 {
4262 	handle_t *handle;
4263 	int ret;
4264 
4265 	loff_t size = i_size_read(inode);
4266 
4267 	WARN_ON(!inode_is_locked(inode));
4268 	if (offset > size)
4269 		return 0;
4270 
4271 	if (offset + len < size)
4272 		size = offset + len;
4273 	if (EXT4_I(inode)->i_disksize >= size)
4274 		return 0;
4275 
4276 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4277 	if (IS_ERR(handle))
4278 		return PTR_ERR(handle);
4279 	ext4_update_i_disksize(inode, size);
4280 	ret = ext4_mark_inode_dirty(handle, inode);
4281 	ext4_journal_stop(handle);
4282 
4283 	return ret;
4284 }
4285 
4286 static inline void ext4_truncate_folio(struct inode *inode,
4287 				       loff_t start, loff_t end)
4288 {
4289 	unsigned long blocksize = i_blocksize(inode);
4290 	struct folio *folio;
4291 
4292 	/* Nothing to be done if no complete block needs to be truncated. */
4293 	if (round_up(start, blocksize) >= round_down(end, blocksize))
4294 		return;
4295 
4296 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
4297 	if (IS_ERR(folio))
4298 		return;
4299 
4300 	if (folio_mkclean(folio))
4301 		folio_mark_dirty(folio);
4302 	folio_unlock(folio);
4303 	folio_put(folio);
4304 }
4305 
4306 int ext4_truncate_page_cache_block_range(struct inode *inode,
4307 					 loff_t start, loff_t end)
4308 {
4309 	unsigned long blocksize = i_blocksize(inode);
4310 	int ret;
4311 
4312 	/*
4313 	 * For journalled data we need to write (and checkpoint) pages
4314 	 * before discarding page cache to avoid inconsitent data on disk
4315 	 * in case of crash before freeing or unwritten converting trans
4316 	 * is committed.
4317 	 */
4318 	if (ext4_should_journal_data(inode)) {
4319 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
4320 						   end - 1);
4321 		if (ret)
4322 			return ret;
4323 		goto truncate_pagecache;
4324 	}
4325 
4326 	/*
4327 	 * If the block size is less than the page size, the file's mapped
4328 	 * blocks within one page could be freed or converted to unwritten.
4329 	 * So it's necessary to remove writable userspace mappings, and then
4330 	 * ext4_page_mkwrite() can be called during subsequent write access
4331 	 * to these partial folios.
4332 	 */
4333 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
4334 	    blocksize < PAGE_SIZE && start < inode->i_size) {
4335 		loff_t page_boundary = round_up(start, PAGE_SIZE);
4336 
4337 		ext4_truncate_folio(inode, start, min(page_boundary, end));
4338 		if (end > page_boundary)
4339 			ext4_truncate_folio(inode,
4340 					    round_down(end, PAGE_SIZE), end);
4341 	}
4342 
4343 truncate_pagecache:
4344 	truncate_pagecache_range(inode, start, end - 1);
4345 	return 0;
4346 }
4347 
4348 static void ext4_wait_dax_page(struct inode *inode)
4349 {
4350 	filemap_invalidate_unlock(inode->i_mapping);
4351 	schedule();
4352 	filemap_invalidate_lock(inode->i_mapping);
4353 }
4354 
4355 int ext4_break_layouts(struct inode *inode)
4356 {
4357 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4358 		return -EINVAL;
4359 
4360 	return dax_break_layout_inode(inode, ext4_wait_dax_page);
4361 }
4362 
4363 /*
4364  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4365  * associated with the given offset and length
4366  *
4367  * @inode:  File inode
4368  * @offset: The offset where the hole will begin
4369  * @len:    The length of the hole
4370  *
4371  * Returns: 0 on success or negative on failure
4372  */
4373 
4374 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4375 {
4376 	struct inode *inode = file_inode(file);
4377 	struct super_block *sb = inode->i_sb;
4378 	ext4_lblk_t start_lblk, end_lblk;
4379 	loff_t max_end = sb->s_maxbytes;
4380 	loff_t end = offset + length;
4381 	handle_t *handle;
4382 	unsigned int credits;
4383 	int ret;
4384 
4385 	trace_ext4_punch_hole(inode, offset, length, 0);
4386 	WARN_ON_ONCE(!inode_is_locked(inode));
4387 
4388 	/*
4389 	 * For indirect-block based inodes, make sure that the hole within
4390 	 * one block before last range.
4391 	 */
4392 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4393 		max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4394 
4395 	/* No need to punch hole beyond i_size */
4396 	if (offset >= inode->i_size || offset >= max_end)
4397 		return 0;
4398 
4399 	/*
4400 	 * If the hole extends beyond i_size, set the hole to end after
4401 	 * the block that contains i_size to save pointless tail block zeroing.
4402 	 */
4403 	if (end >= inode->i_size)
4404 		end = round_up(inode->i_size, sb->s_blocksize);
4405 	if (end > max_end)
4406 		end = max_end;
4407 	length = end - offset;
4408 
4409 	/*
4410 	 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4411 	 * block.
4412 	 */
4413 	if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4414 		ret = ext4_inode_attach_jinode(inode);
4415 		if (ret < 0)
4416 			return ret;
4417 	}
4418 
4419 
4420 	ret = ext4_update_disksize_before_punch(inode, offset, length);
4421 	if (ret)
4422 		return ret;
4423 
4424 	/* Now release the pages and zero block aligned part of pages*/
4425 	ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4426 	if (ret)
4427 		return ret;
4428 
4429 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4430 		credits = ext4_chunk_trans_extent(inode, 2);
4431 	else
4432 		credits = ext4_blocks_for_truncate(inode);
4433 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4434 	if (IS_ERR(handle)) {
4435 		ret = PTR_ERR(handle);
4436 		ext4_std_error(sb, ret);
4437 		return ret;
4438 	}
4439 
4440 	ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4441 	if (ret)
4442 		goto out_handle;
4443 
4444 	/* If there are blocks to remove, do it */
4445 	start_lblk = EXT4_B_TO_LBLK(inode, offset);
4446 	end_lblk = end >> inode->i_blkbits;
4447 
4448 	if (end_lblk > start_lblk) {
4449 		ext4_lblk_t hole_len = end_lblk - start_lblk;
4450 
4451 		ext4_fc_track_inode(handle, inode);
4452 		ext4_check_map_extents_env(inode);
4453 		down_write(&EXT4_I(inode)->i_data_sem);
4454 		ext4_discard_preallocations(inode);
4455 
4456 		ext4_es_remove_extent(inode, start_lblk, hole_len);
4457 
4458 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4459 			ret = ext4_ext_remove_space(inode, start_lblk,
4460 						    end_lblk - 1);
4461 		else
4462 			ret = ext4_ind_remove_space(handle, inode, start_lblk,
4463 						    end_lblk);
4464 		if (ret) {
4465 			up_write(&EXT4_I(inode)->i_data_sem);
4466 			goto out_handle;
4467 		}
4468 
4469 		ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4470 				      EXTENT_STATUS_HOLE, 0);
4471 		up_write(&EXT4_I(inode)->i_data_sem);
4472 	}
4473 	ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4474 
4475 	ret = ext4_mark_inode_dirty(handle, inode);
4476 	if (unlikely(ret))
4477 		goto out_handle;
4478 
4479 	ext4_update_inode_fsync_trans(handle, inode, 1);
4480 	if (IS_SYNC(inode))
4481 		ext4_handle_sync(handle);
4482 out_handle:
4483 	ext4_journal_stop(handle);
4484 	return ret;
4485 }
4486 
4487 int ext4_inode_attach_jinode(struct inode *inode)
4488 {
4489 	struct ext4_inode_info *ei = EXT4_I(inode);
4490 	struct jbd2_inode *jinode;
4491 
4492 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4493 		return 0;
4494 
4495 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4496 	spin_lock(&inode->i_lock);
4497 	if (!ei->jinode) {
4498 		if (!jinode) {
4499 			spin_unlock(&inode->i_lock);
4500 			return -ENOMEM;
4501 		}
4502 		ei->jinode = jinode;
4503 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4504 		jinode = NULL;
4505 	}
4506 	spin_unlock(&inode->i_lock);
4507 	if (unlikely(jinode != NULL))
4508 		jbd2_free_inode(jinode);
4509 	return 0;
4510 }
4511 
4512 /*
4513  * ext4_truncate()
4514  *
4515  * We block out ext4_get_block() block instantiations across the entire
4516  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4517  * simultaneously on behalf of the same inode.
4518  *
4519  * As we work through the truncate and commit bits of it to the journal there
4520  * is one core, guiding principle: the file's tree must always be consistent on
4521  * disk.  We must be able to restart the truncate after a crash.
4522  *
4523  * The file's tree may be transiently inconsistent in memory (although it
4524  * probably isn't), but whenever we close off and commit a journal transaction,
4525  * the contents of (the filesystem + the journal) must be consistent and
4526  * restartable.  It's pretty simple, really: bottom up, right to left (although
4527  * left-to-right works OK too).
4528  *
4529  * Note that at recovery time, journal replay occurs *before* the restart of
4530  * truncate against the orphan inode list.
4531  *
4532  * The committed inode has the new, desired i_size (which is the same as
4533  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4534  * that this inode's truncate did not complete and it will again call
4535  * ext4_truncate() to have another go.  So there will be instantiated blocks
4536  * to the right of the truncation point in a crashed ext4 filesystem.  But
4537  * that's fine - as long as they are linked from the inode, the post-crash
4538  * ext4_truncate() run will find them and release them.
4539  */
4540 int ext4_truncate(struct inode *inode)
4541 {
4542 	struct ext4_inode_info *ei = EXT4_I(inode);
4543 	unsigned int credits;
4544 	int err = 0, err2;
4545 	handle_t *handle;
4546 	struct address_space *mapping = inode->i_mapping;
4547 
4548 	/*
4549 	 * There is a possibility that we're either freeing the inode
4550 	 * or it's a completely new inode. In those cases we might not
4551 	 * have i_rwsem locked because it's not necessary.
4552 	 */
4553 	if (!(inode_state_read_once(inode) & (I_NEW | I_FREEING)))
4554 		WARN_ON(!inode_is_locked(inode));
4555 	trace_ext4_truncate_enter(inode);
4556 
4557 	if (!ext4_can_truncate(inode))
4558 		goto out_trace;
4559 
4560 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4561 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4562 
4563 	if (ext4_has_inline_data(inode)) {
4564 		int has_inline = 1;
4565 
4566 		err = ext4_inline_data_truncate(inode, &has_inline);
4567 		if (err || has_inline)
4568 			goto out_trace;
4569 	}
4570 
4571 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4572 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4573 		err = ext4_inode_attach_jinode(inode);
4574 		if (err)
4575 			goto out_trace;
4576 	}
4577 
4578 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4579 		credits = ext4_chunk_trans_extent(inode, 1);
4580 	else
4581 		credits = ext4_blocks_for_truncate(inode);
4582 
4583 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4584 	if (IS_ERR(handle)) {
4585 		err = PTR_ERR(handle);
4586 		goto out_trace;
4587 	}
4588 
4589 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4590 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4591 
4592 	/*
4593 	 * We add the inode to the orphan list, so that if this
4594 	 * truncate spans multiple transactions, and we crash, we will
4595 	 * resume the truncate when the filesystem recovers.  It also
4596 	 * marks the inode dirty, to catch the new size.
4597 	 *
4598 	 * Implication: the file must always be in a sane, consistent
4599 	 * truncatable state while each transaction commits.
4600 	 */
4601 	err = ext4_orphan_add(handle, inode);
4602 	if (err)
4603 		goto out_stop;
4604 
4605 	ext4_fc_track_inode(handle, inode);
4606 	ext4_check_map_extents_env(inode);
4607 
4608 	down_write(&EXT4_I(inode)->i_data_sem);
4609 	ext4_discard_preallocations(inode);
4610 
4611 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4612 		err = ext4_ext_truncate(handle, inode);
4613 	else
4614 		ext4_ind_truncate(handle, inode);
4615 
4616 	up_write(&ei->i_data_sem);
4617 	if (err)
4618 		goto out_stop;
4619 
4620 	if (IS_SYNC(inode))
4621 		ext4_handle_sync(handle);
4622 
4623 out_stop:
4624 	/*
4625 	 * If this was a simple ftruncate() and the file will remain alive,
4626 	 * then we need to clear up the orphan record which we created above.
4627 	 * However, if this was a real unlink then we were called by
4628 	 * ext4_evict_inode(), and we allow that function to clean up the
4629 	 * orphan info for us.
4630 	 */
4631 	if (inode->i_nlink)
4632 		ext4_orphan_del(handle, inode);
4633 
4634 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4635 	err2 = ext4_mark_inode_dirty(handle, inode);
4636 	if (unlikely(err2 && !err))
4637 		err = err2;
4638 	ext4_journal_stop(handle);
4639 
4640 out_trace:
4641 	trace_ext4_truncate_exit(inode);
4642 	return err;
4643 }
4644 
4645 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4646 {
4647 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4648 		return inode_peek_iversion_raw(inode);
4649 	else
4650 		return inode_peek_iversion(inode);
4651 }
4652 
4653 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4654 				 struct ext4_inode_info *ei)
4655 {
4656 	struct inode *inode = &(ei->vfs_inode);
4657 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4658 	struct super_block *sb = inode->i_sb;
4659 
4660 	if (i_blocks <= ~0U) {
4661 		/*
4662 		 * i_blocks can be represented in a 32 bit variable
4663 		 * as multiple of 512 bytes
4664 		 */
4665 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4666 		raw_inode->i_blocks_high = 0;
4667 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4668 		return 0;
4669 	}
4670 
4671 	/*
4672 	 * This should never happen since sb->s_maxbytes should not have
4673 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4674 	 * feature in ext4_fill_super().
4675 	 */
4676 	if (!ext4_has_feature_huge_file(sb))
4677 		return -EFSCORRUPTED;
4678 
4679 	if (i_blocks <= 0xffffffffffffULL) {
4680 		/*
4681 		 * i_blocks can be represented in a 48 bit variable
4682 		 * as multiple of 512 bytes
4683 		 */
4684 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4685 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4686 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4687 	} else {
4688 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4689 		/* i_block is stored in file system block size */
4690 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4691 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4692 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4693 	}
4694 	return 0;
4695 }
4696 
4697 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4698 {
4699 	struct ext4_inode_info *ei = EXT4_I(inode);
4700 	uid_t i_uid;
4701 	gid_t i_gid;
4702 	projid_t i_projid;
4703 	int block;
4704 	int err;
4705 
4706 	err = ext4_inode_blocks_set(raw_inode, ei);
4707 
4708 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4709 	i_uid = i_uid_read(inode);
4710 	i_gid = i_gid_read(inode);
4711 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4712 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4713 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4714 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4715 		/*
4716 		 * Fix up interoperability with old kernels. Otherwise,
4717 		 * old inodes get re-used with the upper 16 bits of the
4718 		 * uid/gid intact.
4719 		 */
4720 		if (ei->i_dtime && !ext4_inode_orphan_tracked(inode)) {
4721 			raw_inode->i_uid_high = 0;
4722 			raw_inode->i_gid_high = 0;
4723 		} else {
4724 			raw_inode->i_uid_high =
4725 				cpu_to_le16(high_16_bits(i_uid));
4726 			raw_inode->i_gid_high =
4727 				cpu_to_le16(high_16_bits(i_gid));
4728 		}
4729 	} else {
4730 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4731 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4732 		raw_inode->i_uid_high = 0;
4733 		raw_inode->i_gid_high = 0;
4734 	}
4735 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4736 
4737 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4738 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4739 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4740 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4741 
4742 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4743 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4744 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4745 		raw_inode->i_file_acl_high =
4746 			cpu_to_le16(ei->i_file_acl >> 32);
4747 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4748 	ext4_isize_set(raw_inode, ei->i_disksize);
4749 
4750 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4751 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4752 		if (old_valid_dev(inode->i_rdev)) {
4753 			raw_inode->i_block[0] =
4754 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4755 			raw_inode->i_block[1] = 0;
4756 		} else {
4757 			raw_inode->i_block[0] = 0;
4758 			raw_inode->i_block[1] =
4759 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4760 			raw_inode->i_block[2] = 0;
4761 		}
4762 	} else if (!ext4_has_inline_data(inode)) {
4763 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4764 			raw_inode->i_block[block] = ei->i_data[block];
4765 	}
4766 
4767 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4768 		u64 ivers = ext4_inode_peek_iversion(inode);
4769 
4770 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4771 		if (ei->i_extra_isize) {
4772 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4773 				raw_inode->i_version_hi =
4774 					cpu_to_le32(ivers >> 32);
4775 			raw_inode->i_extra_isize =
4776 				cpu_to_le16(ei->i_extra_isize);
4777 		}
4778 	}
4779 
4780 	if (i_projid != EXT4_DEF_PROJID &&
4781 	    !ext4_has_feature_project(inode->i_sb))
4782 		err = err ?: -EFSCORRUPTED;
4783 
4784 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4785 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4786 		raw_inode->i_projid = cpu_to_le32(i_projid);
4787 
4788 	ext4_inode_csum_set(inode, raw_inode, ei);
4789 	return err;
4790 }
4791 
4792 /*
4793  * ext4_get_inode_loc returns with an extra refcount against the inode's
4794  * underlying buffer_head on success. If we pass 'inode' and it does not
4795  * have in-inode xattr, we have all inode data in memory that is needed
4796  * to recreate the on-disk version of this inode.
4797  */
4798 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4799 				struct inode *inode, struct ext4_iloc *iloc,
4800 				ext4_fsblk_t *ret_block)
4801 {
4802 	struct ext4_group_desc	*gdp;
4803 	struct buffer_head	*bh;
4804 	ext4_fsblk_t		block;
4805 	struct blk_plug		plug;
4806 	int			inodes_per_block, inode_offset;
4807 
4808 	iloc->bh = NULL;
4809 	if (ino < EXT4_ROOT_INO ||
4810 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4811 		return -EFSCORRUPTED;
4812 
4813 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4814 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4815 	if (!gdp)
4816 		return -EIO;
4817 
4818 	/*
4819 	 * Figure out the offset within the block group inode table
4820 	 */
4821 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4822 	inode_offset = ((ino - 1) %
4823 			EXT4_INODES_PER_GROUP(sb));
4824 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4825 
4826 	block = ext4_inode_table(sb, gdp);
4827 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4828 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4829 		ext4_error(sb, "Invalid inode table block %llu in "
4830 			   "block_group %u", block, iloc->block_group);
4831 		return -EFSCORRUPTED;
4832 	}
4833 	block += (inode_offset / inodes_per_block);
4834 
4835 	bh = sb_getblk(sb, block);
4836 	if (unlikely(!bh))
4837 		return -ENOMEM;
4838 	if (ext4_buffer_uptodate(bh))
4839 		goto has_buffer;
4840 
4841 	lock_buffer(bh);
4842 	if (ext4_buffer_uptodate(bh)) {
4843 		/* Someone brought it uptodate while we waited */
4844 		unlock_buffer(bh);
4845 		goto has_buffer;
4846 	}
4847 
4848 	/*
4849 	 * If we have all information of the inode in memory and this
4850 	 * is the only valid inode in the block, we need not read the
4851 	 * block.
4852 	 */
4853 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4854 		struct buffer_head *bitmap_bh;
4855 		int i, start;
4856 
4857 		start = inode_offset & ~(inodes_per_block - 1);
4858 
4859 		/* Is the inode bitmap in cache? */
4860 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4861 		if (unlikely(!bitmap_bh))
4862 			goto make_io;
4863 
4864 		/*
4865 		 * If the inode bitmap isn't in cache then the
4866 		 * optimisation may end up performing two reads instead
4867 		 * of one, so skip it.
4868 		 */
4869 		if (!buffer_uptodate(bitmap_bh)) {
4870 			brelse(bitmap_bh);
4871 			goto make_io;
4872 		}
4873 		for (i = start; i < start + inodes_per_block; i++) {
4874 			if (i == inode_offset)
4875 				continue;
4876 			if (ext4_test_bit(i, bitmap_bh->b_data))
4877 				break;
4878 		}
4879 		brelse(bitmap_bh);
4880 		if (i == start + inodes_per_block) {
4881 			struct ext4_inode *raw_inode =
4882 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4883 
4884 			/* all other inodes are free, so skip I/O */
4885 			memset(bh->b_data, 0, bh->b_size);
4886 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4887 				ext4_fill_raw_inode(inode, raw_inode);
4888 			set_buffer_uptodate(bh);
4889 			unlock_buffer(bh);
4890 			goto has_buffer;
4891 		}
4892 	}
4893 
4894 make_io:
4895 	/*
4896 	 * If we need to do any I/O, try to pre-readahead extra
4897 	 * blocks from the inode table.
4898 	 */
4899 	blk_start_plug(&plug);
4900 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4901 		ext4_fsblk_t b, end, table;
4902 		unsigned num;
4903 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4904 
4905 		table = ext4_inode_table(sb, gdp);
4906 		/* s_inode_readahead_blks is always a power of 2 */
4907 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4908 		if (table > b)
4909 			b = table;
4910 		end = b + ra_blks;
4911 		num = EXT4_INODES_PER_GROUP(sb);
4912 		if (ext4_has_group_desc_csum(sb))
4913 			num -= ext4_itable_unused_count(sb, gdp);
4914 		table += num / inodes_per_block;
4915 		if (end > table)
4916 			end = table;
4917 		while (b <= end)
4918 			ext4_sb_breadahead_unmovable(sb, b++);
4919 	}
4920 
4921 	/*
4922 	 * There are other valid inodes in the buffer, this inode
4923 	 * has in-inode xattrs, or we don't have this inode in memory.
4924 	 * Read the block from disk.
4925 	 */
4926 	trace_ext4_load_inode(sb, ino);
4927 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4928 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4929 	blk_finish_plug(&plug);
4930 	wait_on_buffer(bh);
4931 	if (!buffer_uptodate(bh)) {
4932 		if (ret_block)
4933 			*ret_block = block;
4934 		brelse(bh);
4935 		return -EIO;
4936 	}
4937 has_buffer:
4938 	iloc->bh = bh;
4939 	return 0;
4940 }
4941 
4942 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4943 					struct ext4_iloc *iloc)
4944 {
4945 	ext4_fsblk_t err_blk = 0;
4946 	int ret;
4947 
4948 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4949 					&err_blk);
4950 
4951 	if (ret == -EIO)
4952 		ext4_error_inode_block(inode, err_blk, EIO,
4953 					"unable to read itable block");
4954 
4955 	return ret;
4956 }
4957 
4958 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4959 {
4960 	ext4_fsblk_t err_blk = 0;
4961 	int ret;
4962 
4963 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4964 					&err_blk);
4965 
4966 	if (ret == -EIO)
4967 		ext4_error_inode_block(inode, err_blk, EIO,
4968 					"unable to read itable block");
4969 
4970 	return ret;
4971 }
4972 
4973 
4974 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4975 			  struct ext4_iloc *iloc)
4976 {
4977 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4978 }
4979 
4980 static bool ext4_should_enable_dax(struct inode *inode)
4981 {
4982 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4983 
4984 	if (test_opt2(inode->i_sb, DAX_NEVER))
4985 		return false;
4986 	if (!S_ISREG(inode->i_mode))
4987 		return false;
4988 	if (ext4_should_journal_data(inode))
4989 		return false;
4990 	if (ext4_has_inline_data(inode))
4991 		return false;
4992 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4993 		return false;
4994 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4995 		return false;
4996 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4997 		return false;
4998 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4999 		return true;
5000 
5001 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
5002 }
5003 
5004 void ext4_set_inode_flags(struct inode *inode, bool init)
5005 {
5006 	unsigned int flags = EXT4_I(inode)->i_flags;
5007 	unsigned int new_fl = 0;
5008 
5009 	WARN_ON_ONCE(IS_DAX(inode) && init);
5010 
5011 	if (flags & EXT4_SYNC_FL)
5012 		new_fl |= S_SYNC;
5013 	if (flags & EXT4_APPEND_FL)
5014 		new_fl |= S_APPEND;
5015 	if (flags & EXT4_IMMUTABLE_FL)
5016 		new_fl |= S_IMMUTABLE;
5017 	if (flags & EXT4_NOATIME_FL)
5018 		new_fl |= S_NOATIME;
5019 	if (flags & EXT4_DIRSYNC_FL)
5020 		new_fl |= S_DIRSYNC;
5021 
5022 	/* Because of the way inode_set_flags() works we must preserve S_DAX
5023 	 * here if already set. */
5024 	new_fl |= (inode->i_flags & S_DAX);
5025 	if (init && ext4_should_enable_dax(inode))
5026 		new_fl |= S_DAX;
5027 
5028 	if (flags & EXT4_ENCRYPT_FL)
5029 		new_fl |= S_ENCRYPTED;
5030 	if (flags & EXT4_CASEFOLD_FL)
5031 		new_fl |= S_CASEFOLD;
5032 	if (flags & EXT4_VERITY_FL)
5033 		new_fl |= S_VERITY;
5034 	inode_set_flags(inode, new_fl,
5035 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
5036 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
5037 }
5038 
5039 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5040 				  struct ext4_inode_info *ei)
5041 {
5042 	blkcnt_t i_blocks ;
5043 	struct inode *inode = &(ei->vfs_inode);
5044 	struct super_block *sb = inode->i_sb;
5045 
5046 	if (ext4_has_feature_huge_file(sb)) {
5047 		/* we are using combined 48 bit field */
5048 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5049 					le32_to_cpu(raw_inode->i_blocks_lo);
5050 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5051 			/* i_blocks represent file system block size */
5052 			return i_blocks  << (inode->i_blkbits - 9);
5053 		} else {
5054 			return i_blocks;
5055 		}
5056 	} else {
5057 		return le32_to_cpu(raw_inode->i_blocks_lo);
5058 	}
5059 }
5060 
5061 static inline int ext4_iget_extra_inode(struct inode *inode,
5062 					 struct ext4_inode *raw_inode,
5063 					 struct ext4_inode_info *ei)
5064 {
5065 	__le32 *magic = (void *)raw_inode +
5066 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
5067 
5068 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
5069 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
5070 		int err;
5071 
5072 		err = xattr_check_inode(inode, IHDR(inode, raw_inode),
5073 					ITAIL(inode, raw_inode));
5074 		if (err)
5075 			return err;
5076 
5077 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5078 		err = ext4_find_inline_data_nolock(inode);
5079 		if (!err && ext4_has_inline_data(inode))
5080 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
5081 		return err;
5082 	} else
5083 		EXT4_I(inode)->i_inline_off = 0;
5084 	return 0;
5085 }
5086 
5087 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
5088 {
5089 	if (!ext4_has_feature_project(inode->i_sb))
5090 		return -EOPNOTSUPP;
5091 	*projid = EXT4_I(inode)->i_projid;
5092 	return 0;
5093 }
5094 
5095 /*
5096  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
5097  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
5098  * set.
5099  */
5100 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
5101 {
5102 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5103 		inode_set_iversion_raw(inode, val);
5104 	else
5105 		inode_set_iversion_queried(inode, val);
5106 }
5107 
5108 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
5109 			    const char *function, unsigned int line)
5110 {
5111 	const char *err_str;
5112 
5113 	if (flags & EXT4_IGET_EA_INODE) {
5114 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5115 			err_str = "missing EA_INODE flag";
5116 			goto error;
5117 		}
5118 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5119 		    EXT4_I(inode)->i_file_acl) {
5120 			err_str = "ea_inode with extended attributes";
5121 			goto error;
5122 		}
5123 	} else {
5124 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5125 			/*
5126 			 * open_by_handle_at() could provide an old inode number
5127 			 * that has since been reused for an ea_inode; this does
5128 			 * not indicate filesystem corruption
5129 			 */
5130 			if (flags & EXT4_IGET_HANDLE)
5131 				return -ESTALE;
5132 			err_str = "unexpected EA_INODE flag";
5133 			goto error;
5134 		}
5135 	}
5136 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5137 		err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
5138 		goto error;
5139 	}
5140 	return 0;
5141 
5142 error:
5143 	ext4_error_inode(inode, function, line, 0, "%s", err_str);
5144 	return -EFSCORRUPTED;
5145 }
5146 
5147 void ext4_set_inode_mapping_order(struct inode *inode)
5148 {
5149 	struct super_block *sb = inode->i_sb;
5150 	u16 min_order, max_order;
5151 
5152 	max_order = EXT4_SB(sb)->s_max_folio_order;
5153 	if (!max_order)
5154 		return;
5155 
5156 	min_order = EXT4_SB(sb)->s_min_folio_order;
5157 	if (!min_order && !S_ISREG(inode->i_mode))
5158 		return;
5159 
5160 	if (ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA))
5161 		max_order = min_order;
5162 
5163 	mapping_set_folio_order_range(inode->i_mapping, min_order, max_order);
5164 }
5165 
5166 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
5167 			  ext4_iget_flags flags, const char *function,
5168 			  unsigned int line)
5169 {
5170 	struct ext4_iloc iloc;
5171 	struct ext4_inode *raw_inode;
5172 	struct ext4_inode_info *ei;
5173 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5174 	struct inode *inode;
5175 	journal_t *journal = EXT4_SB(sb)->s_journal;
5176 	long ret;
5177 	loff_t size;
5178 	int block;
5179 	uid_t i_uid;
5180 	gid_t i_gid;
5181 	projid_t i_projid;
5182 
5183 	if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) ||
5184 	    (ino < EXT4_ROOT_INO) ||
5185 	    (ino > le32_to_cpu(es->s_inodes_count))) {
5186 		if (flags & EXT4_IGET_HANDLE)
5187 			return ERR_PTR(-ESTALE);
5188 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
5189 			     "inode #%lu: comm %s: iget: illegal inode #",
5190 			     ino, current->comm);
5191 		return ERR_PTR(-EFSCORRUPTED);
5192 	}
5193 
5194 	inode = iget_locked(sb, ino);
5195 	if (!inode)
5196 		return ERR_PTR(-ENOMEM);
5197 	if (!(inode_state_read_once(inode) & I_NEW)) {
5198 		ret = check_igot_inode(inode, flags, function, line);
5199 		if (ret) {
5200 			iput(inode);
5201 			return ERR_PTR(ret);
5202 		}
5203 		return inode;
5204 	}
5205 
5206 	ei = EXT4_I(inode);
5207 	iloc.bh = NULL;
5208 
5209 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
5210 	if (ret < 0)
5211 		goto bad_inode;
5212 	raw_inode = ext4_raw_inode(&iloc);
5213 
5214 	if ((flags & EXT4_IGET_HANDLE) &&
5215 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
5216 		ret = -ESTALE;
5217 		goto bad_inode;
5218 	}
5219 
5220 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5221 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5222 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5223 			EXT4_INODE_SIZE(inode->i_sb) ||
5224 		    (ei->i_extra_isize & 3)) {
5225 			ext4_error_inode(inode, function, line, 0,
5226 					 "iget: bad extra_isize %u "
5227 					 "(inode size %u)",
5228 					 ei->i_extra_isize,
5229 					 EXT4_INODE_SIZE(inode->i_sb));
5230 			ret = -EFSCORRUPTED;
5231 			goto bad_inode;
5232 		}
5233 	} else
5234 		ei->i_extra_isize = 0;
5235 
5236 	/* Precompute checksum seed for inode metadata */
5237 	if (ext4_has_feature_metadata_csum(sb)) {
5238 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5239 		__u32 csum;
5240 		__le32 inum = cpu_to_le32(inode->i_ino);
5241 		__le32 gen = raw_inode->i_generation;
5242 		csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum,
5243 				   sizeof(inum));
5244 		ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen));
5245 	}
5246 
5247 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
5248 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
5249 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
5250 		ext4_error_inode_err(inode, function, line, 0,
5251 				EFSBADCRC, "iget: checksum invalid");
5252 		ret = -EFSBADCRC;
5253 		goto bad_inode;
5254 	}
5255 
5256 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5257 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5258 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5259 	if (ext4_has_feature_project(sb) &&
5260 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5261 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5262 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5263 	else
5264 		i_projid = EXT4_DEF_PROJID;
5265 
5266 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5267 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5268 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5269 	}
5270 	i_uid_write(inode, i_uid);
5271 	i_gid_write(inode, i_gid);
5272 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5273 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5274 
5275 	ei->i_inline_off = 0;
5276 	ei->i_dir_start_lookup = 0;
5277 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5278 	/* We now have enough fields to check if the inode was active or not.
5279 	 * This is needed because nfsd might try to access dead inodes
5280 	 * the test is that same one that e2fsck uses
5281 	 * NeilBrown 1999oct15
5282 	 */
5283 	if (inode->i_nlink == 0) {
5284 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5285 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5286 		    ino != EXT4_BOOT_LOADER_INO) {
5287 			/* this inode is deleted or unallocated */
5288 			if (flags & EXT4_IGET_SPECIAL) {
5289 				ext4_error_inode(inode, function, line, 0,
5290 						 "iget: special inode unallocated");
5291 				ret = -EFSCORRUPTED;
5292 			} else
5293 				ret = -ESTALE;
5294 			goto bad_inode;
5295 		}
5296 		/* The only unlinked inodes we let through here have
5297 		 * valid i_mode and are being read by the orphan
5298 		 * recovery code: that's fine, we're about to complete
5299 		 * the process of deleting those.
5300 		 * OR it is the EXT4_BOOT_LOADER_INO which is
5301 		 * not initialized on a new filesystem. */
5302 	}
5303 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5304 	ext4_set_inode_flags(inode, true);
5305 	/* Detect invalid flag combination - can't have both inline data and extents */
5306 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) &&
5307 	    ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5308 		ext4_error_inode(inode, function, line, 0,
5309 			"inode has both inline data and extents flags");
5310 		ret = -EFSCORRUPTED;
5311 		goto bad_inode;
5312 	}
5313 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5314 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5315 	if (ext4_has_feature_64bit(sb))
5316 		ei->i_file_acl |=
5317 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5318 	inode->i_size = ext4_isize(sb, raw_inode);
5319 	size = i_size_read(inode);
5320 	if (size < 0 || size > ext4_get_maxbytes(inode)) {
5321 		ext4_error_inode(inode, function, line, 0,
5322 				 "iget: bad i_size value: %lld", size);
5323 		ret = -EFSCORRUPTED;
5324 		goto bad_inode;
5325 	}
5326 	/*
5327 	 * If dir_index is not enabled but there's dir with INDEX flag set,
5328 	 * we'd normally treat htree data as empty space. But with metadata
5329 	 * checksumming that corrupts checksums so forbid that.
5330 	 */
5331 	if (!ext4_has_feature_dir_index(sb) &&
5332 	    ext4_has_feature_metadata_csum(sb) &&
5333 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5334 		ext4_error_inode(inode, function, line, 0,
5335 			 "iget: Dir with htree data on filesystem without dir_index feature.");
5336 		ret = -EFSCORRUPTED;
5337 		goto bad_inode;
5338 	}
5339 	ei->i_disksize = inode->i_size;
5340 #ifdef CONFIG_QUOTA
5341 	ei->i_reserved_quota = 0;
5342 #endif
5343 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5344 	ei->i_block_group = iloc.block_group;
5345 	ei->i_last_alloc_group = ~0;
5346 	/*
5347 	 * NOTE! The in-memory inode i_data array is in little-endian order
5348 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5349 	 */
5350 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5351 		ei->i_data[block] = raw_inode->i_block[block];
5352 	INIT_LIST_HEAD(&ei->i_orphan);
5353 	ext4_fc_init_inode(&ei->vfs_inode);
5354 
5355 	/*
5356 	 * Set transaction id's of transactions that have to be committed
5357 	 * to finish f[data]sync. We set them to currently running transaction
5358 	 * as we cannot be sure that the inode or some of its metadata isn't
5359 	 * part of the transaction - the inode could have been reclaimed and
5360 	 * now it is reread from disk.
5361 	 */
5362 	if (journal) {
5363 		transaction_t *transaction;
5364 		tid_t tid;
5365 
5366 		read_lock(&journal->j_state_lock);
5367 		if (journal->j_running_transaction)
5368 			transaction = journal->j_running_transaction;
5369 		else
5370 			transaction = journal->j_committing_transaction;
5371 		if (transaction)
5372 			tid = transaction->t_tid;
5373 		else
5374 			tid = journal->j_commit_sequence;
5375 		read_unlock(&journal->j_state_lock);
5376 		ei->i_sync_tid = tid;
5377 		ei->i_datasync_tid = tid;
5378 	}
5379 
5380 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5381 		if (ei->i_extra_isize == 0) {
5382 			/* The extra space is currently unused. Use it. */
5383 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5384 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5385 					    EXT4_GOOD_OLD_INODE_SIZE;
5386 		} else {
5387 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5388 			if (ret)
5389 				goto bad_inode;
5390 		}
5391 	}
5392 
5393 	EXT4_INODE_GET_CTIME(inode, raw_inode);
5394 	EXT4_INODE_GET_ATIME(inode, raw_inode);
5395 	EXT4_INODE_GET_MTIME(inode, raw_inode);
5396 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5397 
5398 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5399 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5400 
5401 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5402 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5403 				ivers |=
5404 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5405 		}
5406 		ext4_inode_set_iversion_queried(inode, ivers);
5407 	}
5408 
5409 	ret = 0;
5410 	if (ei->i_file_acl &&
5411 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5412 		ext4_error_inode(inode, function, line, 0,
5413 				 "iget: bad extended attribute block %llu",
5414 				 ei->i_file_acl);
5415 		ret = -EFSCORRUPTED;
5416 		goto bad_inode;
5417 	} else if (!ext4_has_inline_data(inode)) {
5418 		/* validate the block references in the inode */
5419 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5420 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5421 			(S_ISLNK(inode->i_mode) &&
5422 			!ext4_inode_is_fast_symlink(inode)))) {
5423 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5424 				ret = ext4_ext_check_inode(inode);
5425 			else
5426 				ret = ext4_ind_check_inode(inode);
5427 		}
5428 	}
5429 	if (ret)
5430 		goto bad_inode;
5431 
5432 	if (S_ISREG(inode->i_mode)) {
5433 		inode->i_op = &ext4_file_inode_operations;
5434 		inode->i_fop = &ext4_file_operations;
5435 		ext4_set_aops(inode);
5436 	} else if (S_ISDIR(inode->i_mode)) {
5437 		inode->i_op = &ext4_dir_inode_operations;
5438 		inode->i_fop = &ext4_dir_operations;
5439 	} else if (S_ISLNK(inode->i_mode)) {
5440 		/* VFS does not allow setting these so must be corruption */
5441 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5442 			ext4_error_inode(inode, function, line, 0,
5443 					 "iget: immutable or append flags "
5444 					 "not allowed on symlinks");
5445 			ret = -EFSCORRUPTED;
5446 			goto bad_inode;
5447 		}
5448 		if (IS_ENCRYPTED(inode)) {
5449 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5450 		} else if (ext4_inode_is_fast_symlink(inode)) {
5451 			inode->i_op = &ext4_fast_symlink_inode_operations;
5452 			if (inode->i_size == 0 ||
5453 			    inode->i_size >= sizeof(ei->i_data) ||
5454 			    strnlen((char *)ei->i_data, inode->i_size + 1) !=
5455 								inode->i_size) {
5456 				ext4_error_inode(inode, function, line, 0,
5457 					"invalid fast symlink length %llu",
5458 					 (unsigned long long)inode->i_size);
5459 				ret = -EFSCORRUPTED;
5460 				goto bad_inode;
5461 			}
5462 			inode_set_cached_link(inode, (char *)ei->i_data,
5463 					      inode->i_size);
5464 		} else {
5465 			inode->i_op = &ext4_symlink_inode_operations;
5466 		}
5467 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5468 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5469 		inode->i_op = &ext4_special_inode_operations;
5470 		if (raw_inode->i_block[0])
5471 			init_special_inode(inode, inode->i_mode,
5472 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5473 		else
5474 			init_special_inode(inode, inode->i_mode,
5475 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5476 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5477 		make_bad_inode(inode);
5478 	} else {
5479 		ret = -EFSCORRUPTED;
5480 		ext4_error_inode(inode, function, line, 0,
5481 				 "iget: bogus i_mode (%o)", inode->i_mode);
5482 		goto bad_inode;
5483 	}
5484 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5485 		ext4_error_inode(inode, function, line, 0,
5486 				 "casefold flag without casefold feature");
5487 		ret = -EFSCORRUPTED;
5488 		goto bad_inode;
5489 	}
5490 
5491 	ext4_set_inode_mapping_order(inode);
5492 
5493 	ret = check_igot_inode(inode, flags, function, line);
5494 	/*
5495 	 * -ESTALE here means there is nothing inherently wrong with the inode,
5496 	 * it's just not an inode we can return for an fhandle lookup.
5497 	 */
5498 	if (ret == -ESTALE) {
5499 		brelse(iloc.bh);
5500 		unlock_new_inode(inode);
5501 		iput(inode);
5502 		return ERR_PTR(-ESTALE);
5503 	}
5504 	if (ret)
5505 		goto bad_inode;
5506 	brelse(iloc.bh);
5507 	/* Initialize the "no ACL's" state for the simple cases */
5508 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) && !ei->i_file_acl)
5509 		cache_no_acl(inode);
5510 	unlock_new_inode(inode);
5511 	return inode;
5512 
5513 bad_inode:
5514 	brelse(iloc.bh);
5515 	iget_failed(inode);
5516 	return ERR_PTR(ret);
5517 }
5518 
5519 static void __ext4_update_other_inode_time(struct super_block *sb,
5520 					   unsigned long orig_ino,
5521 					   unsigned long ino,
5522 					   struct ext4_inode *raw_inode)
5523 {
5524 	struct inode *inode;
5525 
5526 	inode = find_inode_by_ino_rcu(sb, ino);
5527 	if (!inode)
5528 		return;
5529 
5530 	if (!inode_is_dirtytime_only(inode))
5531 		return;
5532 
5533 	spin_lock(&inode->i_lock);
5534 	if (inode_is_dirtytime_only(inode)) {
5535 		struct ext4_inode_info	*ei = EXT4_I(inode);
5536 
5537 		inode_state_clear(inode, I_DIRTY_TIME);
5538 		spin_unlock(&inode->i_lock);
5539 
5540 		spin_lock(&ei->i_raw_lock);
5541 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5542 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5543 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5544 		ext4_inode_csum_set(inode, raw_inode, ei);
5545 		spin_unlock(&ei->i_raw_lock);
5546 		trace_ext4_other_inode_update_time(inode, orig_ino);
5547 		return;
5548 	}
5549 	spin_unlock(&inode->i_lock);
5550 }
5551 
5552 /*
5553  * Opportunistically update the other time fields for other inodes in
5554  * the same inode table block.
5555  */
5556 static void ext4_update_other_inodes_time(struct super_block *sb,
5557 					  unsigned long orig_ino, char *buf)
5558 {
5559 	unsigned long ino;
5560 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5561 	int inode_size = EXT4_INODE_SIZE(sb);
5562 
5563 	/*
5564 	 * Calculate the first inode in the inode table block.  Inode
5565 	 * numbers are one-based.  That is, the first inode in a block
5566 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5567 	 */
5568 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5569 	rcu_read_lock();
5570 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5571 		if (ino == orig_ino)
5572 			continue;
5573 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5574 					       (struct ext4_inode *)buf);
5575 	}
5576 	rcu_read_unlock();
5577 }
5578 
5579 /*
5580  * Post the struct inode info into an on-disk inode location in the
5581  * buffer-cache.  This gobbles the caller's reference to the
5582  * buffer_head in the inode location struct.
5583  *
5584  * The caller must have write access to iloc->bh.
5585  */
5586 static int ext4_do_update_inode(handle_t *handle,
5587 				struct inode *inode,
5588 				struct ext4_iloc *iloc)
5589 {
5590 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5591 	struct ext4_inode_info *ei = EXT4_I(inode);
5592 	struct buffer_head *bh = iloc->bh;
5593 	struct super_block *sb = inode->i_sb;
5594 	int err;
5595 	int need_datasync = 0, set_large_file = 0;
5596 
5597 	spin_lock(&ei->i_raw_lock);
5598 
5599 	/*
5600 	 * For fields not tracked in the in-memory inode, initialise them
5601 	 * to zero for new inodes.
5602 	 */
5603 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5604 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5605 
5606 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5607 		need_datasync = 1;
5608 	if (ei->i_disksize > 0x7fffffffULL) {
5609 		if (!ext4_has_feature_large_file(sb) ||
5610 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5611 			set_large_file = 1;
5612 	}
5613 
5614 	err = ext4_fill_raw_inode(inode, raw_inode);
5615 	spin_unlock(&ei->i_raw_lock);
5616 	if (err) {
5617 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5618 		goto out_brelse;
5619 	}
5620 
5621 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5622 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5623 					      bh->b_data);
5624 
5625 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5626 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5627 	if (err)
5628 		goto out_error;
5629 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5630 	if (set_large_file) {
5631 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5632 		err = ext4_journal_get_write_access(handle, sb,
5633 						    EXT4_SB(sb)->s_sbh,
5634 						    EXT4_JTR_NONE);
5635 		if (err)
5636 			goto out_error;
5637 		lock_buffer(EXT4_SB(sb)->s_sbh);
5638 		ext4_set_feature_large_file(sb);
5639 		ext4_superblock_csum_set(sb);
5640 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5641 		ext4_handle_sync(handle);
5642 		err = ext4_handle_dirty_metadata(handle, NULL,
5643 						 EXT4_SB(sb)->s_sbh);
5644 	}
5645 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5646 out_error:
5647 	ext4_std_error(inode->i_sb, err);
5648 out_brelse:
5649 	brelse(bh);
5650 	return err;
5651 }
5652 
5653 /*
5654  * ext4_write_inode()
5655  *
5656  * We are called from a few places:
5657  *
5658  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5659  *   Here, there will be no transaction running. We wait for any running
5660  *   transaction to commit.
5661  *
5662  * - Within flush work (sys_sync(), kupdate and such).
5663  *   We wait on commit, if told to.
5664  *
5665  * - Within iput_final() -> write_inode_now()
5666  *   We wait on commit, if told to.
5667  *
5668  * In all cases it is actually safe for us to return without doing anything,
5669  * because the inode has been copied into a raw inode buffer in
5670  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5671  * writeback.
5672  *
5673  * Note that we are absolutely dependent upon all inode dirtiers doing the
5674  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5675  * which we are interested.
5676  *
5677  * It would be a bug for them to not do this.  The code:
5678  *
5679  *	mark_inode_dirty(inode)
5680  *	stuff();
5681  *	inode->i_size = expr;
5682  *
5683  * is in error because write_inode() could occur while `stuff()' is running,
5684  * and the new i_size will be lost.  Plus the inode will no longer be on the
5685  * superblock's dirty inode list.
5686  */
5687 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5688 {
5689 	int err;
5690 
5691 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5692 		return 0;
5693 
5694 	err = ext4_emergency_state(inode->i_sb);
5695 	if (unlikely(err))
5696 		return err;
5697 
5698 	if (EXT4_SB(inode->i_sb)->s_journal) {
5699 		if (ext4_journal_current_handle()) {
5700 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5701 			dump_stack();
5702 			return -EIO;
5703 		}
5704 
5705 		/*
5706 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5707 		 * ext4_sync_fs() will force the commit after everything is
5708 		 * written.
5709 		 */
5710 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5711 			return 0;
5712 
5713 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5714 						EXT4_I(inode)->i_sync_tid);
5715 	} else {
5716 		struct ext4_iloc iloc;
5717 
5718 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5719 		if (err)
5720 			return err;
5721 		/*
5722 		 * sync(2) will flush the whole buffer cache. No need to do
5723 		 * it here separately for each inode.
5724 		 */
5725 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5726 			sync_dirty_buffer(iloc.bh);
5727 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5728 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5729 					       "IO error syncing inode");
5730 			err = -EIO;
5731 		}
5732 		brelse(iloc.bh);
5733 	}
5734 	return err;
5735 }
5736 
5737 /*
5738  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5739  * buffers that are attached to a folio straddling i_size and are undergoing
5740  * commit. In that case we have to wait for commit to finish and try again.
5741  */
5742 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5743 {
5744 	unsigned offset;
5745 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5746 	tid_t commit_tid;
5747 	int ret;
5748 	bool has_transaction;
5749 
5750 	offset = inode->i_size & (PAGE_SIZE - 1);
5751 	/*
5752 	 * If the folio is fully truncated, we don't need to wait for any commit
5753 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5754 	 * strip all buffers from the folio but keep the folio dirty which can then
5755 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5756 	 * buffers). Also we don't need to wait for any commit if all buffers in
5757 	 * the folio remain valid. This is most beneficial for the common case of
5758 	 * blocksize == PAGESIZE.
5759 	 */
5760 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5761 		return;
5762 	while (1) {
5763 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5764 				      inode->i_size >> PAGE_SHIFT);
5765 		if (IS_ERR(folio))
5766 			return;
5767 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5768 						folio_size(folio) - offset);
5769 		folio_unlock(folio);
5770 		folio_put(folio);
5771 		if (ret != -EBUSY)
5772 			return;
5773 		has_transaction = false;
5774 		read_lock(&journal->j_state_lock);
5775 		if (journal->j_committing_transaction) {
5776 			commit_tid = journal->j_committing_transaction->t_tid;
5777 			has_transaction = true;
5778 		}
5779 		read_unlock(&journal->j_state_lock);
5780 		if (has_transaction)
5781 			jbd2_log_wait_commit(journal, commit_tid);
5782 	}
5783 }
5784 
5785 /*
5786  * ext4_setattr()
5787  *
5788  * Called from notify_change.
5789  *
5790  * We want to trap VFS attempts to truncate the file as soon as
5791  * possible.  In particular, we want to make sure that when the VFS
5792  * shrinks i_size, we put the inode on the orphan list and modify
5793  * i_disksize immediately, so that during the subsequent flushing of
5794  * dirty pages and freeing of disk blocks, we can guarantee that any
5795  * commit will leave the blocks being flushed in an unused state on
5796  * disk.  (On recovery, the inode will get truncated and the blocks will
5797  * be freed, so we have a strong guarantee that no future commit will
5798  * leave these blocks visible to the user.)
5799  *
5800  * Another thing we have to assure is that if we are in ordered mode
5801  * and inode is still attached to the committing transaction, we must
5802  * we start writeout of all the dirty pages which are being truncated.
5803  * This way we are sure that all the data written in the previous
5804  * transaction are already on disk (truncate waits for pages under
5805  * writeback).
5806  *
5807  * Called with inode->i_rwsem down.
5808  */
5809 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5810 		 struct iattr *attr)
5811 {
5812 	struct inode *inode = d_inode(dentry);
5813 	int error, rc = 0;
5814 	int orphan = 0;
5815 	const unsigned int ia_valid = attr->ia_valid;
5816 	bool inc_ivers = true;
5817 
5818 	error = ext4_emergency_state(inode->i_sb);
5819 	if (unlikely(error))
5820 		return error;
5821 
5822 	if (unlikely(IS_IMMUTABLE(inode)))
5823 		return -EPERM;
5824 
5825 	if (unlikely(IS_APPEND(inode) &&
5826 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5827 				  ATTR_GID | ATTR_TIMES_SET))))
5828 		return -EPERM;
5829 
5830 	error = setattr_prepare(idmap, dentry, attr);
5831 	if (error)
5832 		return error;
5833 
5834 	error = fscrypt_prepare_setattr(dentry, attr);
5835 	if (error)
5836 		return error;
5837 
5838 	error = fsverity_prepare_setattr(dentry, attr);
5839 	if (error)
5840 		return error;
5841 
5842 	if (is_quota_modification(idmap, inode, attr)) {
5843 		error = dquot_initialize(inode);
5844 		if (error)
5845 			return error;
5846 	}
5847 
5848 	if (i_uid_needs_update(idmap, attr, inode) ||
5849 	    i_gid_needs_update(idmap, attr, inode)) {
5850 		handle_t *handle;
5851 
5852 		/* (user+group)*(old+new) structure, inode write (sb,
5853 		 * inode block, ? - but truncate inode update has it) */
5854 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5855 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5856 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5857 		if (IS_ERR(handle)) {
5858 			error = PTR_ERR(handle);
5859 			goto err_out;
5860 		}
5861 
5862 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5863 		 * counts xattr inode references.
5864 		 */
5865 		down_read(&EXT4_I(inode)->xattr_sem);
5866 		error = dquot_transfer(idmap, inode, attr);
5867 		up_read(&EXT4_I(inode)->xattr_sem);
5868 
5869 		if (error) {
5870 			ext4_journal_stop(handle);
5871 			return error;
5872 		}
5873 		/* Update corresponding info in inode so that everything is in
5874 		 * one transaction */
5875 		i_uid_update(idmap, attr, inode);
5876 		i_gid_update(idmap, attr, inode);
5877 		error = ext4_mark_inode_dirty(handle, inode);
5878 		ext4_journal_stop(handle);
5879 		if (unlikely(error)) {
5880 			return error;
5881 		}
5882 	}
5883 
5884 	if (attr->ia_valid & ATTR_SIZE) {
5885 		handle_t *handle;
5886 		loff_t oldsize = inode->i_size;
5887 		loff_t old_disksize;
5888 		int shrink = (attr->ia_size < inode->i_size);
5889 
5890 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5891 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5892 
5893 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5894 				return -EFBIG;
5895 			}
5896 		}
5897 		if (!S_ISREG(inode->i_mode)) {
5898 			return -EINVAL;
5899 		}
5900 
5901 		if (attr->ia_size == inode->i_size)
5902 			inc_ivers = false;
5903 
5904 		if (shrink) {
5905 			if (ext4_should_order_data(inode)) {
5906 				error = ext4_begin_ordered_truncate(inode,
5907 							    attr->ia_size);
5908 				if (error)
5909 					goto err_out;
5910 			}
5911 			/*
5912 			 * Blocks are going to be removed from the inode. Wait
5913 			 * for dio in flight.
5914 			 */
5915 			inode_dio_wait(inode);
5916 		}
5917 
5918 		filemap_invalidate_lock(inode->i_mapping);
5919 
5920 		rc = ext4_break_layouts(inode);
5921 		if (rc) {
5922 			filemap_invalidate_unlock(inode->i_mapping);
5923 			goto err_out;
5924 		}
5925 
5926 		if (attr->ia_size != inode->i_size) {
5927 			/* attach jbd2 jinode for EOF folio tail zeroing */
5928 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5929 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5930 				error = ext4_inode_attach_jinode(inode);
5931 				if (error)
5932 					goto out_mmap_sem;
5933 			}
5934 
5935 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5936 			if (IS_ERR(handle)) {
5937 				error = PTR_ERR(handle);
5938 				goto out_mmap_sem;
5939 			}
5940 			if (ext4_handle_valid(handle) && shrink) {
5941 				error = ext4_orphan_add(handle, inode);
5942 				orphan = 1;
5943 			}
5944 			/*
5945 			 * Update c/mtime and tail zero the EOF folio on
5946 			 * truncate up. ext4_truncate() handles the shrink case
5947 			 * below.
5948 			 */
5949 			if (!shrink) {
5950 				inode_set_mtime_to_ts(inode,
5951 						      inode_set_ctime_current(inode));
5952 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5953 					ext4_block_truncate_page(handle,
5954 							inode->i_mapping, oldsize);
5955 			}
5956 
5957 			if (shrink)
5958 				ext4_fc_track_range(handle, inode,
5959 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5960 					inode->i_sb->s_blocksize_bits,
5961 					EXT_MAX_BLOCKS - 1);
5962 			else
5963 				ext4_fc_track_range(
5964 					handle, inode,
5965 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5966 					inode->i_sb->s_blocksize_bits,
5967 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5968 					inode->i_sb->s_blocksize_bits);
5969 
5970 			down_write(&EXT4_I(inode)->i_data_sem);
5971 			old_disksize = EXT4_I(inode)->i_disksize;
5972 			EXT4_I(inode)->i_disksize = attr->ia_size;
5973 
5974 			/*
5975 			 * We have to update i_size under i_data_sem together
5976 			 * with i_disksize to avoid races with writeback code
5977 			 * running ext4_wb_update_i_disksize().
5978 			 */
5979 			if (!error)
5980 				i_size_write(inode, attr->ia_size);
5981 			else
5982 				EXT4_I(inode)->i_disksize = old_disksize;
5983 			up_write(&EXT4_I(inode)->i_data_sem);
5984 			rc = ext4_mark_inode_dirty(handle, inode);
5985 			if (!error)
5986 				error = rc;
5987 			ext4_journal_stop(handle);
5988 			if (error)
5989 				goto out_mmap_sem;
5990 			if (!shrink) {
5991 				pagecache_isize_extended(inode, oldsize,
5992 							 inode->i_size);
5993 			} else if (ext4_should_journal_data(inode)) {
5994 				ext4_wait_for_tail_page_commit(inode);
5995 			}
5996 		}
5997 
5998 		/*
5999 		 * Truncate pagecache after we've waited for commit
6000 		 * in data=journal mode to make pages freeable.
6001 		 */
6002 		truncate_pagecache(inode, inode->i_size);
6003 		/*
6004 		 * Call ext4_truncate() even if i_size didn't change to
6005 		 * truncate possible preallocated blocks.
6006 		 */
6007 		if (attr->ia_size <= oldsize) {
6008 			rc = ext4_truncate(inode);
6009 			if (rc)
6010 				error = rc;
6011 		}
6012 out_mmap_sem:
6013 		filemap_invalidate_unlock(inode->i_mapping);
6014 	}
6015 
6016 	if (!error) {
6017 		if (inc_ivers)
6018 			inode_inc_iversion(inode);
6019 		setattr_copy(idmap, inode, attr);
6020 		mark_inode_dirty(inode);
6021 	}
6022 
6023 	/*
6024 	 * If the call to ext4_truncate failed to get a transaction handle at
6025 	 * all, we need to clean up the in-core orphan list manually.
6026 	 */
6027 	if (orphan && inode->i_nlink)
6028 		ext4_orphan_del(NULL, inode);
6029 
6030 	if (!error && (ia_valid & ATTR_MODE))
6031 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
6032 
6033 err_out:
6034 	if  (error)
6035 		ext4_std_error(inode->i_sb, error);
6036 	if (!error)
6037 		error = rc;
6038 	return error;
6039 }
6040 
6041 u32 ext4_dio_alignment(struct inode *inode)
6042 {
6043 	if (fsverity_active(inode))
6044 		return 0;
6045 	if (ext4_should_journal_data(inode))
6046 		return 0;
6047 	if (ext4_has_inline_data(inode))
6048 		return 0;
6049 	if (IS_ENCRYPTED(inode)) {
6050 		if (!fscrypt_dio_supported(inode))
6051 			return 0;
6052 		return i_blocksize(inode);
6053 	}
6054 	return 1; /* use the iomap defaults */
6055 }
6056 
6057 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
6058 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
6059 {
6060 	struct inode *inode = d_inode(path->dentry);
6061 	struct ext4_inode *raw_inode;
6062 	struct ext4_inode_info *ei = EXT4_I(inode);
6063 	unsigned int flags;
6064 
6065 	if ((request_mask & STATX_BTIME) &&
6066 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
6067 		stat->result_mask |= STATX_BTIME;
6068 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
6069 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
6070 	}
6071 
6072 	/*
6073 	 * Return the DIO alignment restrictions if requested.  We only return
6074 	 * this information when requested, since on encrypted files it might
6075 	 * take a fair bit of work to get if the file wasn't opened recently.
6076 	 */
6077 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
6078 		u32 dio_align = ext4_dio_alignment(inode);
6079 
6080 		stat->result_mask |= STATX_DIOALIGN;
6081 		if (dio_align == 1) {
6082 			struct block_device *bdev = inode->i_sb->s_bdev;
6083 
6084 			/* iomap defaults */
6085 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
6086 			stat->dio_offset_align = bdev_logical_block_size(bdev);
6087 		} else {
6088 			stat->dio_mem_align = dio_align;
6089 			stat->dio_offset_align = dio_align;
6090 		}
6091 	}
6092 
6093 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
6094 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6095 		unsigned int awu_min = 0, awu_max = 0;
6096 
6097 		if (ext4_inode_can_atomic_write(inode)) {
6098 			awu_min = sbi->s_awu_min;
6099 			awu_max = sbi->s_awu_max;
6100 		}
6101 
6102 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0);
6103 	}
6104 
6105 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
6106 	if (flags & EXT4_APPEND_FL)
6107 		stat->attributes |= STATX_ATTR_APPEND;
6108 	if (flags & EXT4_COMPR_FL)
6109 		stat->attributes |= STATX_ATTR_COMPRESSED;
6110 	if (flags & EXT4_ENCRYPT_FL)
6111 		stat->attributes |= STATX_ATTR_ENCRYPTED;
6112 	if (flags & EXT4_IMMUTABLE_FL)
6113 		stat->attributes |= STATX_ATTR_IMMUTABLE;
6114 	if (flags & EXT4_NODUMP_FL)
6115 		stat->attributes |= STATX_ATTR_NODUMP;
6116 	if (flags & EXT4_VERITY_FL)
6117 		stat->attributes |= STATX_ATTR_VERITY;
6118 
6119 	stat->attributes_mask |= (STATX_ATTR_APPEND |
6120 				  STATX_ATTR_COMPRESSED |
6121 				  STATX_ATTR_ENCRYPTED |
6122 				  STATX_ATTR_IMMUTABLE |
6123 				  STATX_ATTR_NODUMP |
6124 				  STATX_ATTR_VERITY);
6125 
6126 	generic_fillattr(idmap, request_mask, inode, stat);
6127 	return 0;
6128 }
6129 
6130 int ext4_file_getattr(struct mnt_idmap *idmap,
6131 		      const struct path *path, struct kstat *stat,
6132 		      u32 request_mask, unsigned int query_flags)
6133 {
6134 	struct inode *inode = d_inode(path->dentry);
6135 	u64 delalloc_blocks;
6136 
6137 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
6138 
6139 	/*
6140 	 * If there is inline data in the inode, the inode will normally not
6141 	 * have data blocks allocated (it may have an external xattr block).
6142 	 * Report at least one sector for such files, so tools like tar, rsync,
6143 	 * others don't incorrectly think the file is completely sparse.
6144 	 */
6145 	if (unlikely(ext4_has_inline_data(inode)))
6146 		stat->blocks += (stat->size + 511) >> 9;
6147 
6148 	/*
6149 	 * We can't update i_blocks if the block allocation is delayed
6150 	 * otherwise in the case of system crash before the real block
6151 	 * allocation is done, we will have i_blocks inconsistent with
6152 	 * on-disk file blocks.
6153 	 * We always keep i_blocks updated together with real
6154 	 * allocation. But to not confuse with user, stat
6155 	 * will return the blocks that include the delayed allocation
6156 	 * blocks for this file.
6157 	 */
6158 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
6159 				   EXT4_I(inode)->i_reserved_data_blocks);
6160 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
6161 	return 0;
6162 }
6163 
6164 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
6165 				   int pextents)
6166 {
6167 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
6168 		return ext4_ind_trans_blocks(inode, lblocks);
6169 	return ext4_ext_index_trans_blocks(inode, pextents);
6170 }
6171 
6172 /*
6173  * Account for index blocks, block groups bitmaps and block group
6174  * descriptor blocks if modify datablocks and index blocks
6175  * worse case, the indexs blocks spread over different block groups
6176  *
6177  * If datablocks are discontiguous, they are possible to spread over
6178  * different block groups too. If they are contiguous, with flexbg,
6179  * they could still across block group boundary.
6180  *
6181  * Also account for superblock, inode, quota and xattr blocks
6182  */
6183 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents)
6184 {
6185 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
6186 	int gdpblocks;
6187 	int idxblocks;
6188 	int ret;
6189 
6190 	/*
6191 	 * How many index and leaf blocks need to touch to map @lblocks
6192 	 * logical blocks to @pextents physical extents?
6193 	 */
6194 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
6195 
6196 	/*
6197 	 * Now let's see how many group bitmaps and group descriptors need
6198 	 * to account
6199 	 */
6200 	groups = idxblocks + pextents;
6201 	gdpblocks = groups;
6202 	if (groups > ngroups)
6203 		groups = ngroups;
6204 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
6205 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
6206 
6207 	/* bitmaps and block group descriptor blocks */
6208 	ret = idxblocks + groups + gdpblocks;
6209 
6210 	/* Blocks for super block, inode, quota and xattr blocks */
6211 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
6212 
6213 	return ret;
6214 }
6215 
6216 /*
6217  * Calculate the journal credits for modifying the number of blocks
6218  * in a single extent within one transaction. 'nrblocks' is used only
6219  * for non-extent inodes. For extent type inodes, 'nrblocks' can be
6220  * zero if the exact number of blocks is unknown.
6221  */
6222 int ext4_chunk_trans_extent(struct inode *inode, int nrblocks)
6223 {
6224 	int ret;
6225 
6226 	ret = ext4_meta_trans_blocks(inode, nrblocks, 1);
6227 	/* Account for data blocks for journalled mode */
6228 	if (ext4_should_journal_data(inode))
6229 		ret += nrblocks;
6230 	return ret;
6231 }
6232 
6233 /*
6234  * Calculate the journal credits for a chunk of data modification.
6235  *
6236  * This is called from DIO, fallocate or whoever calling
6237  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
6238  *
6239  * journal buffers for data blocks are not included here, as DIO
6240  * and fallocate do no need to journal data buffers.
6241  */
6242 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
6243 {
6244 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
6245 }
6246 
6247 /*
6248  * The caller must have previously called ext4_reserve_inode_write().
6249  * Give this, we know that the caller already has write access to iloc->bh.
6250  */
6251 int ext4_mark_iloc_dirty(handle_t *handle,
6252 			 struct inode *inode, struct ext4_iloc *iloc)
6253 {
6254 	int err = 0;
6255 
6256 	err = ext4_emergency_state(inode->i_sb);
6257 	if (unlikely(err)) {
6258 		put_bh(iloc->bh);
6259 		return err;
6260 	}
6261 	ext4_fc_track_inode(handle, inode);
6262 
6263 	/* the do_update_inode consumes one bh->b_count */
6264 	get_bh(iloc->bh);
6265 
6266 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6267 	err = ext4_do_update_inode(handle, inode, iloc);
6268 	put_bh(iloc->bh);
6269 	return err;
6270 }
6271 
6272 /*
6273  * On success, We end up with an outstanding reference count against
6274  * iloc->bh.  This _must_ be cleaned up later.
6275  */
6276 
6277 int
6278 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6279 			 struct ext4_iloc *iloc)
6280 {
6281 	int err;
6282 
6283 	err = ext4_emergency_state(inode->i_sb);
6284 	if (unlikely(err))
6285 		return err;
6286 
6287 	err = ext4_get_inode_loc(inode, iloc);
6288 	if (!err) {
6289 		BUFFER_TRACE(iloc->bh, "get_write_access");
6290 		err = ext4_journal_get_write_access(handle, inode->i_sb,
6291 						    iloc->bh, EXT4_JTR_NONE);
6292 		if (err) {
6293 			brelse(iloc->bh);
6294 			iloc->bh = NULL;
6295 		}
6296 		ext4_fc_track_inode(handle, inode);
6297 	}
6298 	ext4_std_error(inode->i_sb, err);
6299 	return err;
6300 }
6301 
6302 static int __ext4_expand_extra_isize(struct inode *inode,
6303 				     unsigned int new_extra_isize,
6304 				     struct ext4_iloc *iloc,
6305 				     handle_t *handle, int *no_expand)
6306 {
6307 	struct ext4_inode *raw_inode;
6308 	struct ext4_xattr_ibody_header *header;
6309 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6310 	struct ext4_inode_info *ei = EXT4_I(inode);
6311 	int error;
6312 
6313 	/* this was checked at iget time, but double check for good measure */
6314 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6315 	    (ei->i_extra_isize & 3)) {
6316 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6317 				 ei->i_extra_isize,
6318 				 EXT4_INODE_SIZE(inode->i_sb));
6319 		return -EFSCORRUPTED;
6320 	}
6321 	if ((new_extra_isize < ei->i_extra_isize) ||
6322 	    (new_extra_isize < 4) ||
6323 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6324 		return -EINVAL;	/* Should never happen */
6325 
6326 	raw_inode = ext4_raw_inode(iloc);
6327 
6328 	header = IHDR(inode, raw_inode);
6329 
6330 	/* No extended attributes present */
6331 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6332 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6333 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6334 		       EXT4_I(inode)->i_extra_isize, 0,
6335 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
6336 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
6337 		return 0;
6338 	}
6339 
6340 	/*
6341 	 * We may need to allocate external xattr block so we need quotas
6342 	 * initialized. Here we can be called with various locks held so we
6343 	 * cannot affort to initialize quotas ourselves. So just bail.
6344 	 */
6345 	if (dquot_initialize_needed(inode))
6346 		return -EAGAIN;
6347 
6348 	/* try to expand with EAs present */
6349 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6350 					   raw_inode, handle);
6351 	if (error) {
6352 		/*
6353 		 * Inode size expansion failed; don't try again
6354 		 */
6355 		*no_expand = 1;
6356 	}
6357 
6358 	return error;
6359 }
6360 
6361 /*
6362  * Expand an inode by new_extra_isize bytes.
6363  * Returns 0 on success or negative error number on failure.
6364  */
6365 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6366 					  unsigned int new_extra_isize,
6367 					  struct ext4_iloc iloc,
6368 					  handle_t *handle)
6369 {
6370 	int no_expand;
6371 	int error;
6372 
6373 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6374 		return -EOVERFLOW;
6375 
6376 	/*
6377 	 * In nojournal mode, we can immediately attempt to expand
6378 	 * the inode.  When journaled, we first need to obtain extra
6379 	 * buffer credits since we may write into the EA block
6380 	 * with this same handle. If journal_extend fails, then it will
6381 	 * only result in a minor loss of functionality for that inode.
6382 	 * If this is felt to be critical, then e2fsck should be run to
6383 	 * force a large enough s_min_extra_isize.
6384 	 */
6385 	if (ext4_journal_extend(handle,
6386 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
6387 		return -ENOSPC;
6388 
6389 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6390 		return -EBUSY;
6391 
6392 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6393 					  handle, &no_expand);
6394 	ext4_write_unlock_xattr(inode, &no_expand);
6395 
6396 	return error;
6397 }
6398 
6399 int ext4_expand_extra_isize(struct inode *inode,
6400 			    unsigned int new_extra_isize,
6401 			    struct ext4_iloc *iloc)
6402 {
6403 	handle_t *handle;
6404 	int no_expand;
6405 	int error, rc;
6406 
6407 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6408 		brelse(iloc->bh);
6409 		return -EOVERFLOW;
6410 	}
6411 
6412 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6413 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6414 	if (IS_ERR(handle)) {
6415 		error = PTR_ERR(handle);
6416 		brelse(iloc->bh);
6417 		return error;
6418 	}
6419 
6420 	ext4_write_lock_xattr(inode, &no_expand);
6421 
6422 	BUFFER_TRACE(iloc->bh, "get_write_access");
6423 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6424 					      EXT4_JTR_NONE);
6425 	if (error) {
6426 		brelse(iloc->bh);
6427 		goto out_unlock;
6428 	}
6429 
6430 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6431 					  handle, &no_expand);
6432 
6433 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6434 	if (!error)
6435 		error = rc;
6436 
6437 out_unlock:
6438 	ext4_write_unlock_xattr(inode, &no_expand);
6439 	ext4_journal_stop(handle);
6440 	return error;
6441 }
6442 
6443 /*
6444  * What we do here is to mark the in-core inode as clean with respect to inode
6445  * dirtiness (it may still be data-dirty).
6446  * This means that the in-core inode may be reaped by prune_icache
6447  * without having to perform any I/O.  This is a very good thing,
6448  * because *any* task may call prune_icache - even ones which
6449  * have a transaction open against a different journal.
6450  *
6451  * Is this cheating?  Not really.  Sure, we haven't written the
6452  * inode out, but prune_icache isn't a user-visible syncing function.
6453  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6454  * we start and wait on commits.
6455  */
6456 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6457 				const char *func, unsigned int line)
6458 {
6459 	struct ext4_iloc iloc;
6460 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6461 	int err;
6462 
6463 	might_sleep();
6464 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6465 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6466 	if (err)
6467 		goto out;
6468 
6469 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6470 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6471 					       iloc, handle);
6472 
6473 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6474 out:
6475 	if (unlikely(err))
6476 		ext4_error_inode_err(inode, func, line, 0, err,
6477 					"mark_inode_dirty error");
6478 	return err;
6479 }
6480 
6481 /*
6482  * ext4_dirty_inode() is called from __mark_inode_dirty()
6483  *
6484  * We're really interested in the case where a file is being extended.
6485  * i_size has been changed by generic_commit_write() and we thus need
6486  * to include the updated inode in the current transaction.
6487  *
6488  * Also, dquot_alloc_block() will always dirty the inode when blocks
6489  * are allocated to the file.
6490  *
6491  * If the inode is marked synchronous, we don't honour that here - doing
6492  * so would cause a commit on atime updates, which we don't bother doing.
6493  * We handle synchronous inodes at the highest possible level.
6494  */
6495 void ext4_dirty_inode(struct inode *inode, int flags)
6496 {
6497 	handle_t *handle;
6498 
6499 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6500 	if (IS_ERR(handle))
6501 		return;
6502 	ext4_mark_inode_dirty(handle, inode);
6503 	ext4_journal_stop(handle);
6504 }
6505 
6506 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6507 {
6508 	journal_t *journal;
6509 	handle_t *handle;
6510 	int err;
6511 	int alloc_ctx;
6512 
6513 	/*
6514 	 * We have to be very careful here: changing a data block's
6515 	 * journaling status dynamically is dangerous.  If we write a
6516 	 * data block to the journal, change the status and then delete
6517 	 * that block, we risk forgetting to revoke the old log record
6518 	 * from the journal and so a subsequent replay can corrupt data.
6519 	 * So, first we make sure that the journal is empty and that
6520 	 * nobody is changing anything.
6521 	 */
6522 
6523 	journal = EXT4_JOURNAL(inode);
6524 	if (!journal)
6525 		return 0;
6526 	if (is_journal_aborted(journal))
6527 		return -EROFS;
6528 
6529 	/* Wait for all existing dio workers */
6530 	inode_dio_wait(inode);
6531 
6532 	/*
6533 	 * Before flushing the journal and switching inode's aops, we have
6534 	 * to flush all dirty data the inode has. There can be outstanding
6535 	 * delayed allocations, there can be unwritten extents created by
6536 	 * fallocate or buffered writes in dioread_nolock mode covered by
6537 	 * dirty data which can be converted only after flushing the dirty
6538 	 * data (and journalled aops don't know how to handle these cases).
6539 	 */
6540 	filemap_invalidate_lock(inode->i_mapping);
6541 	err = filemap_write_and_wait(inode->i_mapping);
6542 	if (err < 0) {
6543 		filemap_invalidate_unlock(inode->i_mapping);
6544 		return err;
6545 	}
6546 	/* Before switch the inode journalling mode evict all the page cache. */
6547 	truncate_pagecache(inode, 0);
6548 
6549 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6550 	jbd2_journal_lock_updates(journal);
6551 
6552 	/*
6553 	 * OK, there are no updates running now, and all cached data is
6554 	 * synced to disk.  We are now in a completely consistent state
6555 	 * which doesn't have anything in the journal, and we know that
6556 	 * no filesystem updates are running, so it is safe to modify
6557 	 * the inode's in-core data-journaling state flag now.
6558 	 */
6559 
6560 	if (val)
6561 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6562 	else {
6563 		err = jbd2_journal_flush(journal, 0);
6564 		if (err < 0) {
6565 			jbd2_journal_unlock_updates(journal);
6566 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6567 			filemap_invalidate_unlock(inode->i_mapping);
6568 			return err;
6569 		}
6570 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6571 	}
6572 	ext4_set_aops(inode);
6573 	ext4_set_inode_mapping_order(inode);
6574 
6575 	jbd2_journal_unlock_updates(journal);
6576 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6577 	filemap_invalidate_unlock(inode->i_mapping);
6578 
6579 	/* Finally we can mark the inode as dirty. */
6580 
6581 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6582 	if (IS_ERR(handle))
6583 		return PTR_ERR(handle);
6584 
6585 	ext4_fc_mark_ineligible(inode->i_sb,
6586 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6587 	err = ext4_mark_inode_dirty(handle, inode);
6588 	ext4_handle_sync(handle);
6589 	ext4_journal_stop(handle);
6590 	ext4_std_error(inode->i_sb, err);
6591 
6592 	return err;
6593 }
6594 
6595 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6596 			    struct buffer_head *bh)
6597 {
6598 	return !buffer_mapped(bh);
6599 }
6600 
6601 static int ext4_block_page_mkwrite(struct inode *inode, struct folio *folio,
6602 				   get_block_t get_block)
6603 {
6604 	handle_t *handle;
6605 	loff_t size;
6606 	unsigned long len;
6607 	int credits;
6608 	int ret;
6609 
6610 	credits = ext4_chunk_trans_extent(inode,
6611 			ext4_journal_blocks_per_folio(inode));
6612 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, credits);
6613 	if (IS_ERR(handle))
6614 		return PTR_ERR(handle);
6615 
6616 	folio_lock(folio);
6617 	size = i_size_read(inode);
6618 	/* Page got truncated from under us? */
6619 	if (folio->mapping != inode->i_mapping || folio_pos(folio) > size) {
6620 		ret = -EFAULT;
6621 		goto out_error;
6622 	}
6623 
6624 	len = folio_size(folio);
6625 	if (folio_pos(folio) + len > size)
6626 		len = size - folio_pos(folio);
6627 
6628 	ret = ext4_block_write_begin(handle, folio, 0, len, get_block);
6629 	if (ret)
6630 		goto out_error;
6631 
6632 	if (!ext4_should_journal_data(inode)) {
6633 		block_commit_write(folio, 0, len);
6634 		folio_mark_dirty(folio);
6635 	} else {
6636 		ret = ext4_journal_folio_buffers(handle, folio, len);
6637 		if (ret)
6638 			goto out_error;
6639 	}
6640 	ext4_journal_stop(handle);
6641 	folio_wait_stable(folio);
6642 	return ret;
6643 
6644 out_error:
6645 	folio_unlock(folio);
6646 	ext4_journal_stop(handle);
6647 	return ret;
6648 }
6649 
6650 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6651 {
6652 	struct vm_area_struct *vma = vmf->vma;
6653 	struct folio *folio = page_folio(vmf->page);
6654 	loff_t size;
6655 	unsigned long len;
6656 	int err;
6657 	vm_fault_t ret;
6658 	struct file *file = vma->vm_file;
6659 	struct inode *inode = file_inode(file);
6660 	struct address_space *mapping = inode->i_mapping;
6661 	get_block_t *get_block = ext4_get_block;
6662 	int retries = 0;
6663 
6664 	if (unlikely(IS_IMMUTABLE(inode)))
6665 		return VM_FAULT_SIGBUS;
6666 
6667 	sb_start_pagefault(inode->i_sb);
6668 	file_update_time(vma->vm_file);
6669 
6670 	filemap_invalidate_lock_shared(mapping);
6671 
6672 	err = ext4_convert_inline_data(inode);
6673 	if (err)
6674 		goto out_ret;
6675 
6676 	/*
6677 	 * On data journalling we skip straight to the transaction handle:
6678 	 * there's no delalloc; page truncated will be checked later; the
6679 	 * early return w/ all buffers mapped (calculates size/len) can't
6680 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6681 	 */
6682 	if (ext4_should_journal_data(inode))
6683 		goto retry_alloc;
6684 
6685 	/* Delalloc case is easy... */
6686 	if (test_opt(inode->i_sb, DELALLOC) &&
6687 	    !ext4_nonda_switch(inode->i_sb)) {
6688 		do {
6689 			err = block_page_mkwrite(vma, vmf,
6690 						   ext4_da_get_block_prep);
6691 		} while (err == -ENOSPC &&
6692 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6693 		goto out_ret;
6694 	}
6695 
6696 	folio_lock(folio);
6697 	size = i_size_read(inode);
6698 	/* Page got truncated from under us? */
6699 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6700 		folio_unlock(folio);
6701 		ret = VM_FAULT_NOPAGE;
6702 		goto out;
6703 	}
6704 
6705 	len = folio_size(folio);
6706 	if (folio_pos(folio) + len > size)
6707 		len = size - folio_pos(folio);
6708 	/*
6709 	 * Return if we have all the buffers mapped. This avoids the need to do
6710 	 * journal_start/journal_stop which can block and take a long time
6711 	 *
6712 	 * This cannot be done for data journalling, as we have to add the
6713 	 * inode to the transaction's list to writeprotect pages on commit.
6714 	 */
6715 	if (folio_buffers(folio)) {
6716 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6717 					    0, len, NULL,
6718 					    ext4_bh_unmapped)) {
6719 			/* Wait so that we don't change page under IO */
6720 			folio_wait_stable(folio);
6721 			ret = VM_FAULT_LOCKED;
6722 			goto out;
6723 		}
6724 	}
6725 	folio_unlock(folio);
6726 	/* OK, we need to fill the hole... */
6727 	if (ext4_should_dioread_nolock(inode))
6728 		get_block = ext4_get_block_unwritten;
6729 retry_alloc:
6730 	/* Start journal and allocate blocks */
6731 	err = ext4_block_page_mkwrite(inode, folio, get_block);
6732 	if (err == -EAGAIN ||
6733 	    (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)))
6734 		goto retry_alloc;
6735 out_ret:
6736 	ret = vmf_fs_error(err);
6737 out:
6738 	filemap_invalidate_unlock_shared(mapping);
6739 	sb_end_pagefault(inode->i_sb);
6740 	return ret;
6741 }
6742