1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 unsigned int journal_inum);
86 static int ext4_validate_options(struct fs_context *fc);
87 static int ext4_check_opt_consistency(struct fs_context *fc,
88 struct super_block *sb);
89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91 static int ext4_get_tree(struct fs_context *fc);
92 static int ext4_reconfigure(struct fs_context *fc);
93 static void ext4_fc_free(struct fs_context *fc);
94 static int ext4_init_fs_context(struct fs_context *fc);
95 static void ext4_kill_sb(struct super_block *sb);
96 static const struct fs_parameter_spec ext4_param_specs[];
97
98 /*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124 static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129 };
130
131
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = ext4_kill_sb,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147
148
149 static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = ext4_kill_sb,
155 .fs_flags = FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160
161
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io, bool simu_fail)
164 {
165 if (simu_fail) {
166 clear_buffer_uptodate(bh);
167 unlock_buffer(bh);
168 return;
169 }
170
171 /*
172 * buffer's verified bit is no longer valid after reading from
173 * disk again due to write out error, clear it to make sure we
174 * recheck the buffer contents.
175 */
176 clear_buffer_verified(bh);
177
178 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 get_bh(bh);
180 submit_bh(REQ_OP_READ | op_flags, bh);
181 }
182
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 bh_end_io_t *end_io, bool simu_fail)
185 {
186 BUG_ON(!buffer_locked(bh));
187
188 if (ext4_buffer_uptodate(bh)) {
189 unlock_buffer(bh);
190 return;
191 }
192 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
193 }
194
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 bh_end_io_t *end_io, bool simu_fail)
197 {
198 BUG_ON(!buffer_locked(bh));
199
200 if (ext4_buffer_uptodate(bh)) {
201 unlock_buffer(bh);
202 return 0;
203 }
204
205 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
206
207 wait_on_buffer(bh);
208 if (buffer_uptodate(bh))
209 return 0;
210 return -EIO;
211 }
212
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214 {
215 lock_buffer(bh);
216 if (!wait) {
217 ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 return 0;
219 }
220 return ext4_read_bh(bh, op_flags, NULL, false);
221 }
222
223 /*
224 * This works like __bread_gfp() except it uses ERR_PTR for error
225 * returns. Currently with sb_bread it's impossible to distinguish
226 * between ENOMEM and EIO situations (since both result in a NULL
227 * return.
228 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 sector_t block,
231 blk_opf_t op_flags, gfp_t gfp)
232 {
233 struct buffer_head *bh;
234 int ret;
235
236 bh = sb_getblk_gfp(sb, block, gfp);
237 if (bh == NULL)
238 return ERR_PTR(-ENOMEM);
239 if (ext4_buffer_uptodate(bh))
240 return bh;
241
242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 if (ret) {
244 put_bh(bh);
245 return ERR_PTR(ret);
246 }
247 return bh;
248 }
249
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 blk_opf_t op_flags)
252 {
253 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 ~__GFP_FS) | __GFP_MOVABLE;
255
256 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257 }
258
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 sector_t block)
261 {
262 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 ~__GFP_FS);
264
265 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266 }
267
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)268 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
269 {
270 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
271 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
272
273 if (likely(bh)) {
274 if (trylock_buffer(bh))
275 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
276 brelse(bh);
277 }
278 }
279
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)280 static int ext4_verify_csum_type(struct super_block *sb,
281 struct ext4_super_block *es)
282 {
283 if (!ext4_has_feature_metadata_csum(sb))
284 return 1;
285
286 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
287 }
288
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)289 __le32 ext4_superblock_csum(struct super_block *sb,
290 struct ext4_super_block *es)
291 {
292 struct ext4_sb_info *sbi = EXT4_SB(sb);
293 int offset = offsetof(struct ext4_super_block, s_checksum);
294 __u32 csum;
295
296 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
297
298 return cpu_to_le32(csum);
299 }
300
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)301 static int ext4_superblock_csum_verify(struct super_block *sb,
302 struct ext4_super_block *es)
303 {
304 if (!ext4_has_feature_metadata_csum(sb))
305 return 1;
306
307 return es->s_checksum == ext4_superblock_csum(sb, es);
308 }
309
ext4_superblock_csum_set(struct super_block * sb)310 void ext4_superblock_csum_set(struct super_block *sb)
311 {
312 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
313
314 if (!ext4_has_feature_metadata_csum(sb))
315 return;
316
317 es->s_checksum = ext4_superblock_csum(sb, es);
318 }
319
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)320 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
321 struct ext4_group_desc *bg)
322 {
323 return le32_to_cpu(bg->bg_block_bitmap_lo) |
324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
326 }
327
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)328 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
329 struct ext4_group_desc *bg)
330 {
331 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
334 }
335
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)336 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
337 struct ext4_group_desc *bg)
338 {
339 return le32_to_cpu(bg->bg_inode_table_lo) |
340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
342 }
343
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)344 __u32 ext4_free_group_clusters(struct super_block *sb,
345 struct ext4_group_desc *bg)
346 {
347 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
350 }
351
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)352 __u32 ext4_free_inodes_count(struct super_block *sb,
353 struct ext4_group_desc *bg)
354 {
355 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
356 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
357 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
358 }
359
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)360 __u32 ext4_used_dirs_count(struct super_block *sb,
361 struct ext4_group_desc *bg)
362 {
363 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
364 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
365 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
366 }
367
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)368 __u32 ext4_itable_unused_count(struct super_block *sb,
369 struct ext4_group_desc *bg)
370 {
371 return le16_to_cpu(bg->bg_itable_unused_lo) |
372 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
373 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
374 }
375
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)376 void ext4_block_bitmap_set(struct super_block *sb,
377 struct ext4_group_desc *bg, ext4_fsblk_t blk)
378 {
379 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
382 }
383
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)384 void ext4_inode_bitmap_set(struct super_block *sb,
385 struct ext4_group_desc *bg, ext4_fsblk_t blk)
386 {
387 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
390 }
391
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)392 void ext4_inode_table_set(struct super_block *sb,
393 struct ext4_group_desc *bg, ext4_fsblk_t blk)
394 {
395 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
398 }
399
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)400 void ext4_free_group_clusters_set(struct super_block *sb,
401 struct ext4_group_desc *bg, __u32 count)
402 {
403 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
406 }
407
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)408 void ext4_free_inodes_set(struct super_block *sb,
409 struct ext4_group_desc *bg, __u32 count)
410 {
411 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
412 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
413 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
414 }
415
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)416 void ext4_used_dirs_set(struct super_block *sb,
417 struct ext4_group_desc *bg, __u32 count)
418 {
419 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
420 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
421 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
422 }
423
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)424 void ext4_itable_unused_set(struct super_block *sb,
425 struct ext4_group_desc *bg, __u32 count)
426 {
427 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
428 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
429 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
430 }
431
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)432 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
433 {
434 now = clamp_val(now, 0, (1ull << 40) - 1);
435
436 *lo = cpu_to_le32(lower_32_bits(now));
437 *hi = upper_32_bits(now);
438 }
439
__ext4_get_tstamp(__le32 * lo,__u8 * hi)440 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
441 {
442 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
443 }
444 #define ext4_update_tstamp(es, tstamp) \
445 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
446 ktime_get_real_seconds())
447 #define ext4_get_tstamp(es, tstamp) \
448 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
449
450 /*
451 * The ext4_maybe_update_superblock() function checks and updates the
452 * superblock if needed.
453 *
454 * This function is designed to update the on-disk superblock only under
455 * certain conditions to prevent excessive disk writes and unnecessary
456 * waking of the disk from sleep. The superblock will be updated if:
457 * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
458 * superblock update
459 * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
460 * last superblock update.
461 *
462 * @sb: The superblock
463 */
ext4_maybe_update_superblock(struct super_block * sb)464 static void ext4_maybe_update_superblock(struct super_block *sb)
465 {
466 struct ext4_sb_info *sbi = EXT4_SB(sb);
467 struct ext4_super_block *es = sbi->s_es;
468 journal_t *journal = sbi->s_journal;
469 time64_t now;
470 __u64 last_update;
471 __u64 lifetime_write_kbytes;
472 __u64 diff_size;
473
474 if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
475 !(sb->s_flags & SB_ACTIVE) || !journal ||
476 journal->j_flags & JBD2_UNMOUNT)
477 return;
478
479 now = ktime_get_real_seconds();
480 last_update = ext4_get_tstamp(es, s_wtime);
481
482 if (likely(now - last_update < sbi->s_sb_update_sec))
483 return;
484
485 lifetime_write_kbytes = sbi->s_kbytes_written +
486 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
487 sbi->s_sectors_written_start) >> 1);
488
489 /* Get the number of kilobytes not written to disk to account
490 * for statistics and compare with a multiple of 16 MB. This
491 * is used to determine when the next superblock commit should
492 * occur (i.e. not more often than once per 16MB if there was
493 * less written in an hour).
494 */
495 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
496
497 if (diff_size > sbi->s_sb_update_kb)
498 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
499 }
500
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)501 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
502 {
503 struct super_block *sb = journal->j_private;
504
505 BUG_ON(txn->t_state == T_FINISHED);
506
507 ext4_process_freed_data(sb, txn->t_tid);
508 ext4_maybe_update_superblock(sb);
509 }
510
511 /*
512 * This writepage callback for write_cache_pages()
513 * takes care of a few cases after page cleaning.
514 *
515 * write_cache_pages() already checks for dirty pages
516 * and calls clear_page_dirty_for_io(), which we want,
517 * to write protect the pages.
518 *
519 * However, we may have to redirty a page (see below.)
520 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)521 static int ext4_journalled_writepage_callback(struct folio *folio,
522 struct writeback_control *wbc,
523 void *data)
524 {
525 transaction_t *transaction = (transaction_t *) data;
526 struct buffer_head *bh, *head;
527 struct journal_head *jh;
528
529 bh = head = folio_buffers(folio);
530 do {
531 /*
532 * We have to redirty a page in these cases:
533 * 1) If buffer is dirty, it means the page was dirty because it
534 * contains a buffer that needs checkpointing. So the dirty bit
535 * needs to be preserved so that checkpointing writes the buffer
536 * properly.
537 * 2) If buffer is not part of the committing transaction
538 * (we may have just accidentally come across this buffer because
539 * inode range tracking is not exact) or if the currently running
540 * transaction already contains this buffer as well, dirty bit
541 * needs to be preserved so that the buffer gets writeprotected
542 * properly on running transaction's commit.
543 */
544 jh = bh2jh(bh);
545 if (buffer_dirty(bh) ||
546 (jh && (jh->b_transaction != transaction ||
547 jh->b_next_transaction))) {
548 folio_redirty_for_writepage(wbc, folio);
549 goto out;
550 }
551 } while ((bh = bh->b_this_page) != head);
552
553 out:
554 return AOP_WRITEPAGE_ACTIVATE;
555 }
556
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)557 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
558 {
559 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
560 struct writeback_control wbc = {
561 .sync_mode = WB_SYNC_ALL,
562 .nr_to_write = LONG_MAX,
563 .range_start = jinode->i_dirty_start,
564 .range_end = jinode->i_dirty_end,
565 };
566
567 return write_cache_pages(mapping, &wbc,
568 ext4_journalled_writepage_callback,
569 jinode->i_transaction);
570 }
571
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)572 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
573 {
574 int ret;
575
576 if (ext4_should_journal_data(jinode->i_vfs_inode))
577 ret = ext4_journalled_submit_inode_data_buffers(jinode);
578 else
579 ret = ext4_normal_submit_inode_data_buffers(jinode);
580 return ret;
581 }
582
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)583 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
584 {
585 int ret = 0;
586
587 if (!ext4_should_journal_data(jinode->i_vfs_inode))
588 ret = jbd2_journal_finish_inode_data_buffers(jinode);
589
590 return ret;
591 }
592
system_going_down(void)593 static bool system_going_down(void)
594 {
595 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
596 || system_state == SYSTEM_RESTART;
597 }
598
599 struct ext4_err_translation {
600 int code;
601 int errno;
602 };
603
604 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
605
606 static struct ext4_err_translation err_translation[] = {
607 EXT4_ERR_TRANSLATE(EIO),
608 EXT4_ERR_TRANSLATE(ENOMEM),
609 EXT4_ERR_TRANSLATE(EFSBADCRC),
610 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
611 EXT4_ERR_TRANSLATE(ENOSPC),
612 EXT4_ERR_TRANSLATE(ENOKEY),
613 EXT4_ERR_TRANSLATE(EROFS),
614 EXT4_ERR_TRANSLATE(EFBIG),
615 EXT4_ERR_TRANSLATE(EEXIST),
616 EXT4_ERR_TRANSLATE(ERANGE),
617 EXT4_ERR_TRANSLATE(EOVERFLOW),
618 EXT4_ERR_TRANSLATE(EBUSY),
619 EXT4_ERR_TRANSLATE(ENOTDIR),
620 EXT4_ERR_TRANSLATE(ENOTEMPTY),
621 EXT4_ERR_TRANSLATE(ESHUTDOWN),
622 EXT4_ERR_TRANSLATE(EFAULT),
623 };
624
ext4_errno_to_code(int errno)625 static int ext4_errno_to_code(int errno)
626 {
627 int i;
628
629 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
630 if (err_translation[i].errno == errno)
631 return err_translation[i].code;
632 return EXT4_ERR_UNKNOWN;
633 }
634
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)635 static void save_error_info(struct super_block *sb, int error,
636 __u32 ino, __u64 block,
637 const char *func, unsigned int line)
638 {
639 struct ext4_sb_info *sbi = EXT4_SB(sb);
640
641 /* We default to EFSCORRUPTED error... */
642 if (error == 0)
643 error = EFSCORRUPTED;
644
645 spin_lock(&sbi->s_error_lock);
646 sbi->s_add_error_count++;
647 sbi->s_last_error_code = error;
648 sbi->s_last_error_line = line;
649 sbi->s_last_error_ino = ino;
650 sbi->s_last_error_block = block;
651 sbi->s_last_error_func = func;
652 sbi->s_last_error_time = ktime_get_real_seconds();
653 if (!sbi->s_first_error_time) {
654 sbi->s_first_error_code = error;
655 sbi->s_first_error_line = line;
656 sbi->s_first_error_ino = ino;
657 sbi->s_first_error_block = block;
658 sbi->s_first_error_func = func;
659 sbi->s_first_error_time = sbi->s_last_error_time;
660 }
661 spin_unlock(&sbi->s_error_lock);
662 }
663
664 /* Deal with the reporting of failure conditions on a filesystem such as
665 * inconsistencies detected or read IO failures.
666 *
667 * On ext2, we can store the error state of the filesystem in the
668 * superblock. That is not possible on ext4, because we may have other
669 * write ordering constraints on the superblock which prevent us from
670 * writing it out straight away; and given that the journal is about to
671 * be aborted, we can't rely on the current, or future, transactions to
672 * write out the superblock safely.
673 *
674 * We'll just use the jbd2_journal_abort() error code to record an error in
675 * the journal instead. On recovery, the journal will complain about
676 * that error until we've noted it down and cleared it.
677 *
678 * If force_ro is set, we unconditionally force the filesystem into an
679 * ABORT|READONLY state, unless the error response on the fs has been set to
680 * panic in which case we take the easy way out and panic immediately. This is
681 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
682 * at a critical moment in log management.
683 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)684 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
685 __u32 ino, __u64 block,
686 const char *func, unsigned int line)
687 {
688 journal_t *journal = EXT4_SB(sb)->s_journal;
689 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
690
691 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
692 if (test_opt(sb, WARN_ON_ERROR))
693 WARN_ON_ONCE(1);
694
695 if (!continue_fs && !ext4_emergency_ro(sb) && journal)
696 jbd2_journal_abort(journal, -EIO);
697
698 if (!bdev_read_only(sb->s_bdev)) {
699 save_error_info(sb, error, ino, block, func, line);
700 /*
701 * In case the fs should keep running, we need to writeout
702 * superblock through the journal. Due to lock ordering
703 * constraints, it may not be safe to do it right here so we
704 * defer superblock flushing to a workqueue. We just need to be
705 * careful when the journal is already shutting down. If we get
706 * here in that case, just update the sb directly as the last
707 * transaction won't commit anyway.
708 */
709 if (continue_fs && journal &&
710 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
711 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
712 else
713 ext4_commit_super(sb);
714 }
715
716 /*
717 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
718 * could panic during 'reboot -f' as the underlying device got already
719 * disabled.
720 */
721 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
722 panic("EXT4-fs (device %s): panic forced after error\n",
723 sb->s_id);
724 }
725
726 if (ext4_emergency_ro(sb) || continue_fs)
727 return;
728
729 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
730 /*
731 * We don't set SB_RDONLY because that requires sb->s_umount
732 * semaphore and setting it without proper remount procedure is
733 * confusing code such as freeze_super() leading to deadlocks
734 * and other problems.
735 */
736 set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
737 }
738
update_super_work(struct work_struct * work)739 static void update_super_work(struct work_struct *work)
740 {
741 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
742 s_sb_upd_work);
743 journal_t *journal = sbi->s_journal;
744 handle_t *handle;
745
746 /*
747 * If the journal is still running, we have to write out superblock
748 * through the journal to avoid collisions of other journalled sb
749 * updates.
750 *
751 * We use directly jbd2 functions here to avoid recursing back into
752 * ext4 error handling code during handling of previous errors.
753 */
754 if (!ext4_emergency_state(sbi->s_sb) &&
755 !sb_rdonly(sbi->s_sb) && journal) {
756 struct buffer_head *sbh = sbi->s_sbh;
757 bool call_notify_err = false;
758
759 handle = jbd2_journal_start(journal, 1);
760 if (IS_ERR(handle))
761 goto write_directly;
762 if (jbd2_journal_get_write_access(handle, sbh)) {
763 jbd2_journal_stop(handle);
764 goto write_directly;
765 }
766
767 if (sbi->s_add_error_count > 0)
768 call_notify_err = true;
769
770 ext4_update_super(sbi->s_sb);
771 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
772 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
773 "superblock detected");
774 clear_buffer_write_io_error(sbh);
775 set_buffer_uptodate(sbh);
776 }
777
778 if (jbd2_journal_dirty_metadata(handle, sbh)) {
779 jbd2_journal_stop(handle);
780 goto write_directly;
781 }
782 jbd2_journal_stop(handle);
783
784 if (call_notify_err)
785 ext4_notify_error_sysfs(sbi);
786
787 return;
788 }
789 write_directly:
790 /*
791 * Write through journal failed. Write sb directly to get error info
792 * out and hope for the best.
793 */
794 ext4_commit_super(sbi->s_sb);
795 ext4_notify_error_sysfs(sbi);
796 }
797
798 #define ext4_error_ratelimit(sb) \
799 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
800 "EXT4-fs error")
801
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)802 void __ext4_error(struct super_block *sb, const char *function,
803 unsigned int line, bool force_ro, int error, __u64 block,
804 const char *fmt, ...)
805 {
806 struct va_format vaf;
807 va_list args;
808
809 if (unlikely(ext4_emergency_state(sb)))
810 return;
811
812 trace_ext4_error(sb, function, line);
813 if (ext4_error_ratelimit(sb)) {
814 va_start(args, fmt);
815 vaf.fmt = fmt;
816 vaf.va = &args;
817 printk(KERN_CRIT
818 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
819 sb->s_id, function, line, current->comm, &vaf);
820 va_end(args);
821 }
822 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
823
824 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
825 }
826
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)827 void __ext4_error_inode(struct inode *inode, const char *function,
828 unsigned int line, ext4_fsblk_t block, int error,
829 const char *fmt, ...)
830 {
831 va_list args;
832 struct va_format vaf;
833
834 if (unlikely(ext4_emergency_state(inode->i_sb)))
835 return;
836
837 trace_ext4_error(inode->i_sb, function, line);
838 if (ext4_error_ratelimit(inode->i_sb)) {
839 va_start(args, fmt);
840 vaf.fmt = fmt;
841 vaf.va = &args;
842 if (block)
843 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
844 "inode #%lu: block %llu: comm %s: %pV\n",
845 inode->i_sb->s_id, function, line, inode->i_ino,
846 block, current->comm, &vaf);
847 else
848 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
849 "inode #%lu: comm %s: %pV\n",
850 inode->i_sb->s_id, function, line, inode->i_ino,
851 current->comm, &vaf);
852 va_end(args);
853 }
854 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
855
856 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
857 function, line);
858 }
859
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)860 void __ext4_error_file(struct file *file, const char *function,
861 unsigned int line, ext4_fsblk_t block,
862 const char *fmt, ...)
863 {
864 va_list args;
865 struct va_format vaf;
866 struct inode *inode = file_inode(file);
867 char pathname[80], *path;
868
869 if (unlikely(ext4_emergency_state(inode->i_sb)))
870 return;
871
872 trace_ext4_error(inode->i_sb, function, line);
873 if (ext4_error_ratelimit(inode->i_sb)) {
874 path = file_path(file, pathname, sizeof(pathname));
875 if (IS_ERR(path))
876 path = "(unknown)";
877 va_start(args, fmt);
878 vaf.fmt = fmt;
879 vaf.va = &args;
880 if (block)
881 printk(KERN_CRIT
882 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
883 "block %llu: comm %s: path %s: %pV\n",
884 inode->i_sb->s_id, function, line, inode->i_ino,
885 block, current->comm, path, &vaf);
886 else
887 printk(KERN_CRIT
888 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
889 "comm %s: path %s: %pV\n",
890 inode->i_sb->s_id, function, line, inode->i_ino,
891 current->comm, path, &vaf);
892 va_end(args);
893 }
894 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
895
896 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
897 function, line);
898 }
899
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])900 const char *ext4_decode_error(struct super_block *sb, int errno,
901 char nbuf[16])
902 {
903 char *errstr = NULL;
904
905 switch (errno) {
906 case -EFSCORRUPTED:
907 errstr = "Corrupt filesystem";
908 break;
909 case -EFSBADCRC:
910 errstr = "Filesystem failed CRC";
911 break;
912 case -EIO:
913 errstr = "IO failure";
914 break;
915 case -ENOMEM:
916 errstr = "Out of memory";
917 break;
918 case -EROFS:
919 if (!sb || (EXT4_SB(sb)->s_journal &&
920 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
921 errstr = "Journal has aborted";
922 else
923 errstr = "Readonly filesystem";
924 break;
925 default:
926 /* If the caller passed in an extra buffer for unknown
927 * errors, textualise them now. Else we just return
928 * NULL. */
929 if (nbuf) {
930 /* Check for truncated error codes... */
931 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
932 errstr = nbuf;
933 }
934 break;
935 }
936
937 return errstr;
938 }
939
940 /* __ext4_std_error decodes expected errors from journaling functions
941 * automatically and invokes the appropriate error response. */
942
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)943 void __ext4_std_error(struct super_block *sb, const char *function,
944 unsigned int line, int errno)
945 {
946 char nbuf[16];
947 const char *errstr;
948
949 if (unlikely(ext4_emergency_state(sb)))
950 return;
951
952 /* Special case: if the error is EROFS, and we're not already
953 * inside a transaction, then there's really no point in logging
954 * an error. */
955 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
956 return;
957
958 if (ext4_error_ratelimit(sb)) {
959 errstr = ext4_decode_error(sb, errno, nbuf);
960 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
961 sb->s_id, function, line, errstr);
962 }
963 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
964
965 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
966 }
967
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)968 void __ext4_msg(struct super_block *sb,
969 const char *prefix, const char *fmt, ...)
970 {
971 struct va_format vaf;
972 va_list args;
973
974 if (sb) {
975 atomic_inc(&EXT4_SB(sb)->s_msg_count);
976 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
977 "EXT4-fs"))
978 return;
979 }
980
981 va_start(args, fmt);
982 vaf.fmt = fmt;
983 vaf.va = &args;
984 if (sb)
985 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
986 else
987 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
988 va_end(args);
989 }
990
ext4_warning_ratelimit(struct super_block * sb)991 static int ext4_warning_ratelimit(struct super_block *sb)
992 {
993 atomic_inc(&EXT4_SB(sb)->s_warning_count);
994 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
995 "EXT4-fs warning");
996 }
997
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)998 void __ext4_warning(struct super_block *sb, const char *function,
999 unsigned int line, const char *fmt, ...)
1000 {
1001 struct va_format vaf;
1002 va_list args;
1003
1004 if (!ext4_warning_ratelimit(sb))
1005 return;
1006
1007 va_start(args, fmt);
1008 vaf.fmt = fmt;
1009 vaf.va = &args;
1010 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1011 sb->s_id, function, line, &vaf);
1012 va_end(args);
1013 }
1014
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1015 void __ext4_warning_inode(const struct inode *inode, const char *function,
1016 unsigned int line, const char *fmt, ...)
1017 {
1018 struct va_format vaf;
1019 va_list args;
1020
1021 if (!ext4_warning_ratelimit(inode->i_sb))
1022 return;
1023
1024 va_start(args, fmt);
1025 vaf.fmt = fmt;
1026 vaf.va = &args;
1027 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1028 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1029 function, line, inode->i_ino, current->comm, &vaf);
1030 va_end(args);
1031 }
1032
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1033 void __ext4_grp_locked_error(const char *function, unsigned int line,
1034 struct super_block *sb, ext4_group_t grp,
1035 unsigned long ino, ext4_fsblk_t block,
1036 const char *fmt, ...)
1037 __releases(bitlock)
1038 __acquires(bitlock)
1039 {
1040 struct va_format vaf;
1041 va_list args;
1042
1043 if (unlikely(ext4_emergency_state(sb)))
1044 return;
1045
1046 trace_ext4_error(sb, function, line);
1047 if (ext4_error_ratelimit(sb)) {
1048 va_start(args, fmt);
1049 vaf.fmt = fmt;
1050 vaf.va = &args;
1051 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1052 sb->s_id, function, line, grp);
1053 if (ino)
1054 printk(KERN_CONT "inode %lu: ", ino);
1055 if (block)
1056 printk(KERN_CONT "block %llu:",
1057 (unsigned long long) block);
1058 printk(KERN_CONT "%pV\n", &vaf);
1059 va_end(args);
1060 }
1061
1062 if (test_opt(sb, ERRORS_CONT)) {
1063 if (test_opt(sb, WARN_ON_ERROR))
1064 WARN_ON_ONCE(1);
1065 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1066 if (!bdev_read_only(sb->s_bdev)) {
1067 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1068 line);
1069 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1070 }
1071 return;
1072 }
1073 ext4_unlock_group(sb, grp);
1074 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1075 /*
1076 * We only get here in the ERRORS_RO case; relocking the group
1077 * may be dangerous, but nothing bad will happen since the
1078 * filesystem will have already been marked read/only and the
1079 * journal has been aborted. We return 1 as a hint to callers
1080 * who might what to use the return value from
1081 * ext4_grp_locked_error() to distinguish between the
1082 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1083 * aggressively from the ext4 function in question, with a
1084 * more appropriate error code.
1085 */
1086 ext4_lock_group(sb, grp);
1087 return;
1088 }
1089
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1090 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1091 ext4_group_t group,
1092 unsigned int flags)
1093 {
1094 struct ext4_sb_info *sbi = EXT4_SB(sb);
1095 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1096 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1097 int ret;
1098
1099 if (!grp || !gdp)
1100 return;
1101 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1102 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1103 &grp->bb_state);
1104 if (!ret)
1105 percpu_counter_sub(&sbi->s_freeclusters_counter,
1106 grp->bb_free);
1107 }
1108
1109 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1110 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1111 &grp->bb_state);
1112 if (!ret && gdp) {
1113 int count;
1114
1115 count = ext4_free_inodes_count(sb, gdp);
1116 percpu_counter_sub(&sbi->s_freeinodes_counter,
1117 count);
1118 }
1119 }
1120 }
1121
ext4_update_dynamic_rev(struct super_block * sb)1122 void ext4_update_dynamic_rev(struct super_block *sb)
1123 {
1124 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1125
1126 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1127 return;
1128
1129 ext4_warning(sb,
1130 "updating to rev %d because of new feature flag, "
1131 "running e2fsck is recommended",
1132 EXT4_DYNAMIC_REV);
1133
1134 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1135 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1136 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1137 /* leave es->s_feature_*compat flags alone */
1138 /* es->s_uuid will be set by e2fsck if empty */
1139
1140 /*
1141 * The rest of the superblock fields should be zero, and if not it
1142 * means they are likely already in use, so leave them alone. We
1143 * can leave it up to e2fsck to clean up any inconsistencies there.
1144 */
1145 }
1146
orphan_list_entry(struct list_head * l)1147 static inline struct inode *orphan_list_entry(struct list_head *l)
1148 {
1149 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1150 }
1151
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1152 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1153 {
1154 struct list_head *l;
1155
1156 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1157 le32_to_cpu(sbi->s_es->s_last_orphan));
1158
1159 printk(KERN_ERR "sb_info orphan list:\n");
1160 list_for_each(l, &sbi->s_orphan) {
1161 struct inode *inode = orphan_list_entry(l);
1162 printk(KERN_ERR " "
1163 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1164 inode->i_sb->s_id, inode->i_ino, inode,
1165 inode->i_mode, inode->i_nlink,
1166 NEXT_ORPHAN(inode));
1167 }
1168 }
1169
1170 #ifdef CONFIG_QUOTA
1171 static int ext4_quota_off(struct super_block *sb, int type);
1172
ext4_quotas_off(struct super_block * sb,int type)1173 static inline void ext4_quotas_off(struct super_block *sb, int type)
1174 {
1175 BUG_ON(type > EXT4_MAXQUOTAS);
1176
1177 /* Use our quota_off function to clear inode flags etc. */
1178 for (type--; type >= 0; type--)
1179 ext4_quota_off(sb, type);
1180 }
1181
1182 /*
1183 * This is a helper function which is used in the mount/remount
1184 * codepaths (which holds s_umount) to fetch the quota file name.
1185 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1186 static inline char *get_qf_name(struct super_block *sb,
1187 struct ext4_sb_info *sbi,
1188 int type)
1189 {
1190 return rcu_dereference_protected(sbi->s_qf_names[type],
1191 lockdep_is_held(&sb->s_umount));
1192 }
1193 #else
ext4_quotas_off(struct super_block * sb,int type)1194 static inline void ext4_quotas_off(struct super_block *sb, int type)
1195 {
1196 }
1197 #endif
1198
ext4_percpu_param_init(struct ext4_sb_info * sbi)1199 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1200 {
1201 ext4_fsblk_t block;
1202 int err;
1203
1204 block = ext4_count_free_clusters(sbi->s_sb);
1205 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1206 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1207 GFP_KERNEL);
1208 if (!err) {
1209 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1210 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1211 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1212 GFP_KERNEL);
1213 }
1214 if (!err)
1215 err = percpu_counter_init(&sbi->s_dirs_counter,
1216 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1217 if (!err)
1218 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1219 GFP_KERNEL);
1220 if (!err)
1221 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1222 GFP_KERNEL);
1223 if (!err)
1224 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1225
1226 if (err)
1227 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1228
1229 return err;
1230 }
1231
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1232 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1233 {
1234 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1235 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1236 percpu_counter_destroy(&sbi->s_dirs_counter);
1237 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1238 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1239 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1240 }
1241
ext4_group_desc_free(struct ext4_sb_info * sbi)1242 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1243 {
1244 struct buffer_head **group_desc;
1245 int i;
1246
1247 rcu_read_lock();
1248 group_desc = rcu_dereference(sbi->s_group_desc);
1249 for (i = 0; i < sbi->s_gdb_count; i++)
1250 brelse(group_desc[i]);
1251 kvfree(group_desc);
1252 rcu_read_unlock();
1253 }
1254
ext4_flex_groups_free(struct ext4_sb_info * sbi)1255 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1256 {
1257 struct flex_groups **flex_groups;
1258 int i;
1259
1260 rcu_read_lock();
1261 flex_groups = rcu_dereference(sbi->s_flex_groups);
1262 if (flex_groups) {
1263 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1264 kvfree(flex_groups[i]);
1265 kvfree(flex_groups);
1266 }
1267 rcu_read_unlock();
1268 }
1269
ext4_put_super(struct super_block * sb)1270 static void ext4_put_super(struct super_block *sb)
1271 {
1272 struct ext4_sb_info *sbi = EXT4_SB(sb);
1273 struct ext4_super_block *es = sbi->s_es;
1274 int aborted = 0;
1275 int err;
1276
1277 /*
1278 * Unregister sysfs before destroying jbd2 journal.
1279 * Since we could still access attr_journal_task attribute via sysfs
1280 * path which could have sbi->s_journal->j_task as NULL
1281 * Unregister sysfs before flush sbi->s_sb_upd_work.
1282 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1283 * read metadata verify failed then will queue error work.
1284 * update_super_work will call start_this_handle may trigger
1285 * BUG_ON.
1286 */
1287 ext4_unregister_sysfs(sb);
1288
1289 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1290 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1291 &sb->s_uuid);
1292
1293 ext4_unregister_li_request(sb);
1294 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1295
1296 destroy_workqueue(sbi->rsv_conversion_wq);
1297 ext4_release_orphan_info(sb);
1298
1299 if (sbi->s_journal) {
1300 aborted = is_journal_aborted(sbi->s_journal);
1301 err = ext4_journal_destroy(sbi, sbi->s_journal);
1302 if ((err < 0) && !aborted) {
1303 ext4_abort(sb, -err, "Couldn't clean up the journal");
1304 }
1305 } else
1306 flush_work(&sbi->s_sb_upd_work);
1307
1308 ext4_es_unregister_shrinker(sbi);
1309 timer_shutdown_sync(&sbi->s_err_report);
1310 ext4_release_system_zone(sb);
1311 ext4_mb_release(sb);
1312 ext4_ext_release(sb);
1313
1314 if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1315 if (!aborted) {
1316 ext4_clear_feature_journal_needs_recovery(sb);
1317 ext4_clear_feature_orphan_present(sb);
1318 es->s_state = cpu_to_le16(sbi->s_mount_state);
1319 }
1320 ext4_commit_super(sb);
1321 }
1322
1323 ext4_group_desc_free(sbi);
1324 ext4_flex_groups_free(sbi);
1325
1326 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1327 percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1328 ext4_percpu_param_destroy(sbi);
1329 #ifdef CONFIG_QUOTA
1330 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1331 kfree(get_qf_name(sb, sbi, i));
1332 #endif
1333
1334 /* Debugging code just in case the in-memory inode orphan list
1335 * isn't empty. The on-disk one can be non-empty if we've
1336 * detected an error and taken the fs readonly, but the
1337 * in-memory list had better be clean by this point. */
1338 if (!list_empty(&sbi->s_orphan))
1339 dump_orphan_list(sb, sbi);
1340 ASSERT(list_empty(&sbi->s_orphan));
1341
1342 sync_blockdev(sb->s_bdev);
1343 invalidate_bdev(sb->s_bdev);
1344 if (sbi->s_journal_bdev_file) {
1345 /*
1346 * Invalidate the journal device's buffers. We don't want them
1347 * floating about in memory - the physical journal device may
1348 * hotswapped, and it breaks the `ro-after' testing code.
1349 */
1350 sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1351 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1352 }
1353
1354 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1355 sbi->s_ea_inode_cache = NULL;
1356
1357 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1358 sbi->s_ea_block_cache = NULL;
1359
1360 ext4_stop_mmpd(sbi);
1361
1362 brelse(sbi->s_sbh);
1363 sb->s_fs_info = NULL;
1364 /*
1365 * Now that we are completely done shutting down the
1366 * superblock, we need to actually destroy the kobject.
1367 */
1368 kobject_put(&sbi->s_kobj);
1369 wait_for_completion(&sbi->s_kobj_unregister);
1370 kfree(sbi->s_blockgroup_lock);
1371 fs_put_dax(sbi->s_daxdev, NULL);
1372 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1373 #if IS_ENABLED(CONFIG_UNICODE)
1374 utf8_unload(sb->s_encoding);
1375 #endif
1376 kfree(sbi);
1377 }
1378
1379 static struct kmem_cache *ext4_inode_cachep;
1380
1381 /*
1382 * Called inside transaction, so use GFP_NOFS
1383 */
ext4_alloc_inode(struct super_block * sb)1384 static struct inode *ext4_alloc_inode(struct super_block *sb)
1385 {
1386 struct ext4_inode_info *ei;
1387
1388 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1389 if (!ei)
1390 return NULL;
1391
1392 inode_set_iversion(&ei->vfs_inode, 1);
1393 ei->i_flags = 0;
1394 spin_lock_init(&ei->i_raw_lock);
1395 ei->i_prealloc_node = RB_ROOT;
1396 atomic_set(&ei->i_prealloc_active, 0);
1397 rwlock_init(&ei->i_prealloc_lock);
1398 ext4_es_init_tree(&ei->i_es_tree);
1399 rwlock_init(&ei->i_es_lock);
1400 INIT_LIST_HEAD(&ei->i_es_list);
1401 ei->i_es_all_nr = 0;
1402 ei->i_es_shk_nr = 0;
1403 ei->i_es_shrink_lblk = 0;
1404 ei->i_reserved_data_blocks = 0;
1405 spin_lock_init(&(ei->i_block_reservation_lock));
1406 ext4_init_pending_tree(&ei->i_pending_tree);
1407 #ifdef CONFIG_QUOTA
1408 ei->i_reserved_quota = 0;
1409 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1410 #endif
1411 ei->jinode = NULL;
1412 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1413 spin_lock_init(&ei->i_completed_io_lock);
1414 ei->i_sync_tid = 0;
1415 ei->i_datasync_tid = 0;
1416 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1417 ext4_fc_init_inode(&ei->vfs_inode);
1418 mutex_init(&ei->i_fc_lock);
1419 return &ei->vfs_inode;
1420 }
1421
ext4_drop_inode(struct inode * inode)1422 static int ext4_drop_inode(struct inode *inode)
1423 {
1424 int drop = generic_drop_inode(inode);
1425
1426 if (!drop)
1427 drop = fscrypt_drop_inode(inode);
1428
1429 trace_ext4_drop_inode(inode, drop);
1430 return drop;
1431 }
1432
ext4_free_in_core_inode(struct inode * inode)1433 static void ext4_free_in_core_inode(struct inode *inode)
1434 {
1435 fscrypt_free_inode(inode);
1436 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1437 pr_warn("%s: inode %ld still in fc list",
1438 __func__, inode->i_ino);
1439 }
1440 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1441 }
1442
ext4_destroy_inode(struct inode * inode)1443 static void ext4_destroy_inode(struct inode *inode)
1444 {
1445 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1446 ext4_msg(inode->i_sb, KERN_ERR,
1447 "Inode %lu (%p): orphan list check failed!",
1448 inode->i_ino, EXT4_I(inode));
1449 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1450 EXT4_I(inode), sizeof(struct ext4_inode_info),
1451 true);
1452 dump_stack();
1453 }
1454
1455 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1456 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1457 ext4_msg(inode->i_sb, KERN_ERR,
1458 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1459 inode->i_ino, EXT4_I(inode),
1460 EXT4_I(inode)->i_reserved_data_blocks);
1461 }
1462
ext4_shutdown(struct super_block * sb)1463 static void ext4_shutdown(struct super_block *sb)
1464 {
1465 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1466 }
1467
init_once(void * foo)1468 static void init_once(void *foo)
1469 {
1470 struct ext4_inode_info *ei = foo;
1471
1472 INIT_LIST_HEAD(&ei->i_orphan);
1473 init_rwsem(&ei->xattr_sem);
1474 init_rwsem(&ei->i_data_sem);
1475 inode_init_once(&ei->vfs_inode);
1476 ext4_fc_init_inode(&ei->vfs_inode);
1477 }
1478
init_inodecache(void)1479 static int __init init_inodecache(void)
1480 {
1481 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1482 sizeof(struct ext4_inode_info), 0,
1483 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1484 offsetof(struct ext4_inode_info, i_data),
1485 sizeof_field(struct ext4_inode_info, i_data),
1486 init_once);
1487 if (ext4_inode_cachep == NULL)
1488 return -ENOMEM;
1489 return 0;
1490 }
1491
destroy_inodecache(void)1492 static void destroy_inodecache(void)
1493 {
1494 /*
1495 * Make sure all delayed rcu free inodes are flushed before we
1496 * destroy cache.
1497 */
1498 rcu_barrier();
1499 kmem_cache_destroy(ext4_inode_cachep);
1500 }
1501
ext4_clear_inode(struct inode * inode)1502 void ext4_clear_inode(struct inode *inode)
1503 {
1504 ext4_fc_del(inode);
1505 invalidate_inode_buffers(inode);
1506 clear_inode(inode);
1507 ext4_discard_preallocations(inode);
1508 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1509 dquot_drop(inode);
1510 if (EXT4_I(inode)->jinode) {
1511 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1512 EXT4_I(inode)->jinode);
1513 jbd2_free_inode(EXT4_I(inode)->jinode);
1514 EXT4_I(inode)->jinode = NULL;
1515 }
1516 fscrypt_put_encryption_info(inode);
1517 fsverity_cleanup_inode(inode);
1518 }
1519
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1520 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1521 u64 ino, u32 generation)
1522 {
1523 struct inode *inode;
1524
1525 /*
1526 * Currently we don't know the generation for parent directory, so
1527 * a generation of 0 means "accept any"
1528 */
1529 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1530 if (IS_ERR(inode))
1531 return ERR_CAST(inode);
1532 if (generation && inode->i_generation != generation) {
1533 iput(inode);
1534 return ERR_PTR(-ESTALE);
1535 }
1536
1537 return inode;
1538 }
1539
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1540 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1541 int fh_len, int fh_type)
1542 {
1543 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1544 ext4_nfs_get_inode);
1545 }
1546
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1547 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1548 int fh_len, int fh_type)
1549 {
1550 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1551 ext4_nfs_get_inode);
1552 }
1553
ext4_nfs_commit_metadata(struct inode * inode)1554 static int ext4_nfs_commit_metadata(struct inode *inode)
1555 {
1556 struct writeback_control wbc = {
1557 .sync_mode = WB_SYNC_ALL
1558 };
1559
1560 trace_ext4_nfs_commit_metadata(inode);
1561 return ext4_write_inode(inode, &wbc);
1562 }
1563
1564 #ifdef CONFIG_QUOTA
1565 static const char * const quotatypes[] = INITQFNAMES;
1566 #define QTYPE2NAME(t) (quotatypes[t])
1567
1568 static int ext4_write_dquot(struct dquot *dquot);
1569 static int ext4_acquire_dquot(struct dquot *dquot);
1570 static int ext4_release_dquot(struct dquot *dquot);
1571 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1572 static int ext4_write_info(struct super_block *sb, int type);
1573 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1574 const struct path *path);
1575 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1576 size_t len, loff_t off);
1577 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1578 const char *data, size_t len, loff_t off);
1579 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1580 unsigned int flags);
1581
ext4_get_dquots(struct inode * inode)1582 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1583 {
1584 return EXT4_I(inode)->i_dquot;
1585 }
1586
1587 static const struct dquot_operations ext4_quota_operations = {
1588 .get_reserved_space = ext4_get_reserved_space,
1589 .write_dquot = ext4_write_dquot,
1590 .acquire_dquot = ext4_acquire_dquot,
1591 .release_dquot = ext4_release_dquot,
1592 .mark_dirty = ext4_mark_dquot_dirty,
1593 .write_info = ext4_write_info,
1594 .alloc_dquot = dquot_alloc,
1595 .destroy_dquot = dquot_destroy,
1596 .get_projid = ext4_get_projid,
1597 .get_inode_usage = ext4_get_inode_usage,
1598 .get_next_id = dquot_get_next_id,
1599 };
1600
1601 static const struct quotactl_ops ext4_qctl_operations = {
1602 .quota_on = ext4_quota_on,
1603 .quota_off = ext4_quota_off,
1604 .quota_sync = dquot_quota_sync,
1605 .get_state = dquot_get_state,
1606 .set_info = dquot_set_dqinfo,
1607 .get_dqblk = dquot_get_dqblk,
1608 .set_dqblk = dquot_set_dqblk,
1609 .get_nextdqblk = dquot_get_next_dqblk,
1610 };
1611 #endif
1612
1613 static const struct super_operations ext4_sops = {
1614 .alloc_inode = ext4_alloc_inode,
1615 .free_inode = ext4_free_in_core_inode,
1616 .destroy_inode = ext4_destroy_inode,
1617 .write_inode = ext4_write_inode,
1618 .dirty_inode = ext4_dirty_inode,
1619 .drop_inode = ext4_drop_inode,
1620 .evict_inode = ext4_evict_inode,
1621 .put_super = ext4_put_super,
1622 .sync_fs = ext4_sync_fs,
1623 .freeze_fs = ext4_freeze,
1624 .unfreeze_fs = ext4_unfreeze,
1625 .statfs = ext4_statfs,
1626 .show_options = ext4_show_options,
1627 .shutdown = ext4_shutdown,
1628 #ifdef CONFIG_QUOTA
1629 .quota_read = ext4_quota_read,
1630 .quota_write = ext4_quota_write,
1631 .get_dquots = ext4_get_dquots,
1632 #endif
1633 };
1634
1635 static const struct export_operations ext4_export_ops = {
1636 .encode_fh = generic_encode_ino32_fh,
1637 .fh_to_dentry = ext4_fh_to_dentry,
1638 .fh_to_parent = ext4_fh_to_parent,
1639 .get_parent = ext4_get_parent,
1640 .commit_metadata = ext4_nfs_commit_metadata,
1641 };
1642
1643 enum {
1644 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1645 Opt_resgid, Opt_resuid, Opt_sb,
1646 Opt_nouid32, Opt_debug, Opt_removed,
1647 Opt_user_xattr, Opt_acl,
1648 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1649 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1650 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1651 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1652 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1653 Opt_inlinecrypt,
1654 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1655 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1656 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1657 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1658 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1659 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1660 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1661 Opt_inode_readahead_blks, Opt_journal_ioprio,
1662 Opt_dioread_nolock, Opt_dioread_lock,
1663 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1664 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1665 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1666 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1667 #ifdef CONFIG_EXT4_DEBUG
1668 Opt_fc_debug_max_replay, Opt_fc_debug_force
1669 #endif
1670 };
1671
1672 static const struct constant_table ext4_param_errors[] = {
1673 {"continue", EXT4_MOUNT_ERRORS_CONT},
1674 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1675 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1676 {}
1677 };
1678
1679 static const struct constant_table ext4_param_data[] = {
1680 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1681 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1682 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1683 {}
1684 };
1685
1686 static const struct constant_table ext4_param_data_err[] = {
1687 {"abort", Opt_data_err_abort},
1688 {"ignore", Opt_data_err_ignore},
1689 {}
1690 };
1691
1692 static const struct constant_table ext4_param_jqfmt[] = {
1693 {"vfsold", QFMT_VFS_OLD},
1694 {"vfsv0", QFMT_VFS_V0},
1695 {"vfsv1", QFMT_VFS_V1},
1696 {}
1697 };
1698
1699 static const struct constant_table ext4_param_dax[] = {
1700 {"always", Opt_dax_always},
1701 {"inode", Opt_dax_inode},
1702 {"never", Opt_dax_never},
1703 {}
1704 };
1705
1706 /*
1707 * Mount option specification
1708 * We don't use fsparam_flag_no because of the way we set the
1709 * options and the way we show them in _ext4_show_options(). To
1710 * keep the changes to a minimum, let's keep the negative options
1711 * separate for now.
1712 */
1713 static const struct fs_parameter_spec ext4_param_specs[] = {
1714 fsparam_flag ("bsddf", Opt_bsd_df),
1715 fsparam_flag ("minixdf", Opt_minix_df),
1716 fsparam_flag ("grpid", Opt_grpid),
1717 fsparam_flag ("bsdgroups", Opt_grpid),
1718 fsparam_flag ("nogrpid", Opt_nogrpid),
1719 fsparam_flag ("sysvgroups", Opt_nogrpid),
1720 fsparam_gid ("resgid", Opt_resgid),
1721 fsparam_uid ("resuid", Opt_resuid),
1722 fsparam_u32 ("sb", Opt_sb),
1723 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1724 fsparam_flag ("nouid32", Opt_nouid32),
1725 fsparam_flag ("debug", Opt_debug),
1726 fsparam_flag ("oldalloc", Opt_removed),
1727 fsparam_flag ("orlov", Opt_removed),
1728 fsparam_flag ("user_xattr", Opt_user_xattr),
1729 fsparam_flag ("acl", Opt_acl),
1730 fsparam_flag ("norecovery", Opt_noload),
1731 fsparam_flag ("noload", Opt_noload),
1732 fsparam_flag ("bh", Opt_removed),
1733 fsparam_flag ("nobh", Opt_removed),
1734 fsparam_u32 ("commit", Opt_commit),
1735 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1736 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1737 fsparam_u32 ("journal_dev", Opt_journal_dev),
1738 fsparam_bdev ("journal_path", Opt_journal_path),
1739 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1740 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1741 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1742 fsparam_flag ("abort", Opt_abort),
1743 fsparam_enum ("data", Opt_data, ext4_param_data),
1744 fsparam_enum ("data_err", Opt_data_err,
1745 ext4_param_data_err),
1746 fsparam_string_empty
1747 ("usrjquota", Opt_usrjquota),
1748 fsparam_string_empty
1749 ("grpjquota", Opt_grpjquota),
1750 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1751 fsparam_flag ("grpquota", Opt_grpquota),
1752 fsparam_flag ("quota", Opt_quota),
1753 fsparam_flag ("noquota", Opt_noquota),
1754 fsparam_flag ("usrquota", Opt_usrquota),
1755 fsparam_flag ("prjquota", Opt_prjquota),
1756 fsparam_flag ("barrier", Opt_barrier),
1757 fsparam_u32 ("barrier", Opt_barrier),
1758 fsparam_flag ("nobarrier", Opt_nobarrier),
1759 fsparam_flag ("i_version", Opt_removed),
1760 fsparam_flag ("dax", Opt_dax),
1761 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1762 fsparam_u32 ("stripe", Opt_stripe),
1763 fsparam_flag ("delalloc", Opt_delalloc),
1764 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1765 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1766 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1767 fsparam_u32 ("debug_want_extra_isize",
1768 Opt_debug_want_extra_isize),
1769 fsparam_flag ("mblk_io_submit", Opt_removed),
1770 fsparam_flag ("nomblk_io_submit", Opt_removed),
1771 fsparam_flag ("block_validity", Opt_block_validity),
1772 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1773 fsparam_u32 ("inode_readahead_blks",
1774 Opt_inode_readahead_blks),
1775 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1776 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1777 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1778 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1779 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1780 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1781 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1782 fsparam_flag ("discard", Opt_discard),
1783 fsparam_flag ("nodiscard", Opt_nodiscard),
1784 fsparam_u32 ("init_itable", Opt_init_itable),
1785 fsparam_flag ("init_itable", Opt_init_itable),
1786 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1787 #ifdef CONFIG_EXT4_DEBUG
1788 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1789 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1790 #endif
1791 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1792 fsparam_flag ("test_dummy_encryption",
1793 Opt_test_dummy_encryption),
1794 fsparam_string ("test_dummy_encryption",
1795 Opt_test_dummy_encryption),
1796 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1797 fsparam_flag ("nombcache", Opt_nombcache),
1798 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1799 fsparam_flag ("prefetch_block_bitmaps",
1800 Opt_removed),
1801 fsparam_flag ("no_prefetch_block_bitmaps",
1802 Opt_no_prefetch_block_bitmaps),
1803 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1804 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1805 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1806 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1807 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1808 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1809 {}
1810 };
1811
1812 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1813
1814 #define MOPT_SET 0x0001
1815 #define MOPT_CLEAR 0x0002
1816 #define MOPT_NOSUPPORT 0x0004
1817 #define MOPT_EXPLICIT 0x0008
1818 #ifdef CONFIG_QUOTA
1819 #define MOPT_Q 0
1820 #define MOPT_QFMT 0x0010
1821 #else
1822 #define MOPT_Q MOPT_NOSUPPORT
1823 #define MOPT_QFMT MOPT_NOSUPPORT
1824 #endif
1825 #define MOPT_NO_EXT2 0x0020
1826 #define MOPT_NO_EXT3 0x0040
1827 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1828 #define MOPT_SKIP 0x0080
1829 #define MOPT_2 0x0100
1830
1831 static const struct mount_opts {
1832 int token;
1833 int mount_opt;
1834 int flags;
1835 } ext4_mount_opts[] = {
1836 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1837 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1838 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1839 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1840 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1841 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1842 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1843 MOPT_EXT4_ONLY | MOPT_SET},
1844 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1845 MOPT_EXT4_ONLY | MOPT_CLEAR},
1846 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1847 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1848 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1849 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1850 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1851 MOPT_EXT4_ONLY | MOPT_CLEAR},
1852 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1853 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1854 {Opt_commit, 0, MOPT_NO_EXT2},
1855 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1856 MOPT_EXT4_ONLY | MOPT_CLEAR},
1857 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1858 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1859 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1860 EXT4_MOUNT_JOURNAL_CHECKSUM),
1861 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1862 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1863 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1864 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1865 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1866 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1867 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1868 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1869 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1870 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1871 {Opt_journal_path, 0, MOPT_NO_EXT2},
1872 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1873 {Opt_data, 0, MOPT_NO_EXT2},
1874 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1875 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1876 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1877 #else
1878 {Opt_acl, 0, MOPT_NOSUPPORT},
1879 #endif
1880 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1881 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1882 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1883 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1884 MOPT_SET | MOPT_Q},
1885 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1886 MOPT_SET | MOPT_Q},
1887 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1888 MOPT_SET | MOPT_Q},
1889 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1890 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1891 MOPT_CLEAR | MOPT_Q},
1892 {Opt_usrjquota, 0, MOPT_Q},
1893 {Opt_grpjquota, 0, MOPT_Q},
1894 {Opt_jqfmt, 0, MOPT_QFMT},
1895 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1896 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1897 MOPT_SET},
1898 #ifdef CONFIG_EXT4_DEBUG
1899 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1900 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1901 #endif
1902 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1903 {Opt_err, 0, 0}
1904 };
1905
1906 #if IS_ENABLED(CONFIG_UNICODE)
1907 static const struct ext4_sb_encodings {
1908 __u16 magic;
1909 char *name;
1910 unsigned int version;
1911 } ext4_sb_encoding_map[] = {
1912 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1913 };
1914
1915 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1916 ext4_sb_read_encoding(const struct ext4_super_block *es)
1917 {
1918 __u16 magic = le16_to_cpu(es->s_encoding);
1919 int i;
1920
1921 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1922 if (magic == ext4_sb_encoding_map[i].magic)
1923 return &ext4_sb_encoding_map[i];
1924
1925 return NULL;
1926 }
1927 #endif
1928
1929 #define EXT4_SPEC_JQUOTA (1 << 0)
1930 #define EXT4_SPEC_JQFMT (1 << 1)
1931 #define EXT4_SPEC_DATAJ (1 << 2)
1932 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1933 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1934 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1935 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1936 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1937 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1938 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1939 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1940 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1941 #define EXT4_SPEC_s_stripe (1 << 13)
1942 #define EXT4_SPEC_s_resuid (1 << 14)
1943 #define EXT4_SPEC_s_resgid (1 << 15)
1944 #define EXT4_SPEC_s_commit_interval (1 << 16)
1945 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1946 #define EXT4_SPEC_s_sb_block (1 << 18)
1947 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1948
1949 struct ext4_fs_context {
1950 char *s_qf_names[EXT4_MAXQUOTAS];
1951 struct fscrypt_dummy_policy dummy_enc_policy;
1952 int s_jquota_fmt; /* Format of quota to use */
1953 #ifdef CONFIG_EXT4_DEBUG
1954 int s_fc_debug_max_replay;
1955 #endif
1956 unsigned short qname_spec;
1957 unsigned long vals_s_flags; /* Bits to set in s_flags */
1958 unsigned long mask_s_flags; /* Bits changed in s_flags */
1959 unsigned long journal_devnum;
1960 unsigned long s_commit_interval;
1961 unsigned long s_stripe;
1962 unsigned int s_inode_readahead_blks;
1963 unsigned int s_want_extra_isize;
1964 unsigned int s_li_wait_mult;
1965 unsigned int s_max_dir_size_kb;
1966 unsigned int journal_ioprio;
1967 unsigned int vals_s_mount_opt;
1968 unsigned int mask_s_mount_opt;
1969 unsigned int vals_s_mount_opt2;
1970 unsigned int mask_s_mount_opt2;
1971 unsigned int opt_flags; /* MOPT flags */
1972 unsigned int spec;
1973 u32 s_max_batch_time;
1974 u32 s_min_batch_time;
1975 kuid_t s_resuid;
1976 kgid_t s_resgid;
1977 ext4_fsblk_t s_sb_block;
1978 };
1979
ext4_fc_free(struct fs_context * fc)1980 static void ext4_fc_free(struct fs_context *fc)
1981 {
1982 struct ext4_fs_context *ctx = fc->fs_private;
1983 int i;
1984
1985 if (!ctx)
1986 return;
1987
1988 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1989 kfree(ctx->s_qf_names[i]);
1990
1991 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1992 kfree(ctx);
1993 }
1994
ext4_init_fs_context(struct fs_context * fc)1995 int ext4_init_fs_context(struct fs_context *fc)
1996 {
1997 struct ext4_fs_context *ctx;
1998
1999 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2000 if (!ctx)
2001 return -ENOMEM;
2002
2003 fc->fs_private = ctx;
2004 fc->ops = &ext4_context_ops;
2005
2006 return 0;
2007 }
2008
2009 #ifdef CONFIG_QUOTA
2010 /*
2011 * Note the name of the specified quota file.
2012 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2013 static int note_qf_name(struct fs_context *fc, int qtype,
2014 struct fs_parameter *param)
2015 {
2016 struct ext4_fs_context *ctx = fc->fs_private;
2017 char *qname;
2018
2019 if (param->size < 1) {
2020 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2021 return -EINVAL;
2022 }
2023 if (strchr(param->string, '/')) {
2024 ext4_msg(NULL, KERN_ERR,
2025 "quotafile must be on filesystem root");
2026 return -EINVAL;
2027 }
2028 if (ctx->s_qf_names[qtype]) {
2029 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2030 ext4_msg(NULL, KERN_ERR,
2031 "%s quota file already specified",
2032 QTYPE2NAME(qtype));
2033 return -EINVAL;
2034 }
2035 return 0;
2036 }
2037
2038 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2039 if (!qname) {
2040 ext4_msg(NULL, KERN_ERR,
2041 "Not enough memory for storing quotafile name");
2042 return -ENOMEM;
2043 }
2044 ctx->s_qf_names[qtype] = qname;
2045 ctx->qname_spec |= 1 << qtype;
2046 ctx->spec |= EXT4_SPEC_JQUOTA;
2047 return 0;
2048 }
2049
2050 /*
2051 * Clear the name of the specified quota file.
2052 */
unnote_qf_name(struct fs_context * fc,int qtype)2053 static int unnote_qf_name(struct fs_context *fc, int qtype)
2054 {
2055 struct ext4_fs_context *ctx = fc->fs_private;
2056
2057 kfree(ctx->s_qf_names[qtype]);
2058
2059 ctx->s_qf_names[qtype] = NULL;
2060 ctx->qname_spec |= 1 << qtype;
2061 ctx->spec |= EXT4_SPEC_JQUOTA;
2062 return 0;
2063 }
2064 #endif
2065
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2066 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2067 struct ext4_fs_context *ctx)
2068 {
2069 int err;
2070
2071 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2072 ext4_msg(NULL, KERN_WARNING,
2073 "test_dummy_encryption option not supported");
2074 return -EINVAL;
2075 }
2076 err = fscrypt_parse_test_dummy_encryption(param,
2077 &ctx->dummy_enc_policy);
2078 if (err == -EINVAL) {
2079 ext4_msg(NULL, KERN_WARNING,
2080 "Value of option \"%s\" is unrecognized", param->key);
2081 } else if (err == -EEXIST) {
2082 ext4_msg(NULL, KERN_WARNING,
2083 "Conflicting test_dummy_encryption options");
2084 return -EINVAL;
2085 }
2086 return err;
2087 }
2088
2089 #define EXT4_SET_CTX(name) \
2090 static inline __maybe_unused \
2091 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2092 { \
2093 ctx->mask_s_##name |= flag; \
2094 ctx->vals_s_##name |= flag; \
2095 }
2096
2097 #define EXT4_CLEAR_CTX(name) \
2098 static inline __maybe_unused \
2099 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2100 { \
2101 ctx->mask_s_##name |= flag; \
2102 ctx->vals_s_##name &= ~flag; \
2103 }
2104
2105 #define EXT4_TEST_CTX(name) \
2106 static inline unsigned long \
2107 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2108 { \
2109 return (ctx->vals_s_##name & flag); \
2110 }
2111
2112 EXT4_SET_CTX(flags); /* set only */
2113 EXT4_SET_CTX(mount_opt);
2114 EXT4_CLEAR_CTX(mount_opt);
2115 EXT4_TEST_CTX(mount_opt);
2116 EXT4_SET_CTX(mount_opt2);
2117 EXT4_CLEAR_CTX(mount_opt2);
2118 EXT4_TEST_CTX(mount_opt2);
2119
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2120 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2121 {
2122 struct ext4_fs_context *ctx = fc->fs_private;
2123 struct fs_parse_result result;
2124 const struct mount_opts *m;
2125 int is_remount;
2126 int token;
2127
2128 token = fs_parse(fc, ext4_param_specs, param, &result);
2129 if (token < 0)
2130 return token;
2131 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2132
2133 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2134 if (token == m->token)
2135 break;
2136
2137 ctx->opt_flags |= m->flags;
2138
2139 if (m->flags & MOPT_EXPLICIT) {
2140 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2141 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2142 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2143 ctx_set_mount_opt2(ctx,
2144 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2145 } else
2146 return -EINVAL;
2147 }
2148
2149 if (m->flags & MOPT_NOSUPPORT) {
2150 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2151 param->key);
2152 return 0;
2153 }
2154
2155 switch (token) {
2156 #ifdef CONFIG_QUOTA
2157 case Opt_usrjquota:
2158 if (!*param->string)
2159 return unnote_qf_name(fc, USRQUOTA);
2160 else
2161 return note_qf_name(fc, USRQUOTA, param);
2162 case Opt_grpjquota:
2163 if (!*param->string)
2164 return unnote_qf_name(fc, GRPQUOTA);
2165 else
2166 return note_qf_name(fc, GRPQUOTA, param);
2167 #endif
2168 case Opt_sb:
2169 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2170 ext4_msg(NULL, KERN_WARNING,
2171 "Ignoring %s option on remount", param->key);
2172 } else {
2173 ctx->s_sb_block = result.uint_32;
2174 ctx->spec |= EXT4_SPEC_s_sb_block;
2175 }
2176 return 0;
2177 case Opt_removed:
2178 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2179 param->key);
2180 return 0;
2181 case Opt_inlinecrypt:
2182 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2183 ctx_set_flags(ctx, SB_INLINECRYPT);
2184 #else
2185 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2186 #endif
2187 return 0;
2188 case Opt_errors:
2189 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2190 ctx_set_mount_opt(ctx, result.uint_32);
2191 return 0;
2192 #ifdef CONFIG_QUOTA
2193 case Opt_jqfmt:
2194 ctx->s_jquota_fmt = result.uint_32;
2195 ctx->spec |= EXT4_SPEC_JQFMT;
2196 return 0;
2197 #endif
2198 case Opt_data:
2199 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2200 ctx_set_mount_opt(ctx, result.uint_32);
2201 ctx->spec |= EXT4_SPEC_DATAJ;
2202 return 0;
2203 case Opt_commit:
2204 if (result.uint_32 == 0)
2205 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2206 else if (result.uint_32 > INT_MAX / HZ) {
2207 ext4_msg(NULL, KERN_ERR,
2208 "Invalid commit interval %d, "
2209 "must be smaller than %d",
2210 result.uint_32, INT_MAX / HZ);
2211 return -EINVAL;
2212 }
2213 ctx->s_commit_interval = HZ * result.uint_32;
2214 ctx->spec |= EXT4_SPEC_s_commit_interval;
2215 return 0;
2216 case Opt_debug_want_extra_isize:
2217 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2218 ext4_msg(NULL, KERN_ERR,
2219 "Invalid want_extra_isize %d", result.uint_32);
2220 return -EINVAL;
2221 }
2222 ctx->s_want_extra_isize = result.uint_32;
2223 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2224 return 0;
2225 case Opt_max_batch_time:
2226 ctx->s_max_batch_time = result.uint_32;
2227 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2228 return 0;
2229 case Opt_min_batch_time:
2230 ctx->s_min_batch_time = result.uint_32;
2231 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2232 return 0;
2233 case Opt_inode_readahead_blks:
2234 if (result.uint_32 &&
2235 (result.uint_32 > (1 << 30) ||
2236 !is_power_of_2(result.uint_32))) {
2237 ext4_msg(NULL, KERN_ERR,
2238 "EXT4-fs: inode_readahead_blks must be "
2239 "0 or a power of 2 smaller than 2^31");
2240 return -EINVAL;
2241 }
2242 ctx->s_inode_readahead_blks = result.uint_32;
2243 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2244 return 0;
2245 case Opt_init_itable:
2246 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2247 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2248 if (param->type == fs_value_is_string)
2249 ctx->s_li_wait_mult = result.uint_32;
2250 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2251 return 0;
2252 case Opt_max_dir_size_kb:
2253 ctx->s_max_dir_size_kb = result.uint_32;
2254 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2255 return 0;
2256 #ifdef CONFIG_EXT4_DEBUG
2257 case Opt_fc_debug_max_replay:
2258 ctx->s_fc_debug_max_replay = result.uint_32;
2259 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2260 return 0;
2261 #endif
2262 case Opt_stripe:
2263 ctx->s_stripe = result.uint_32;
2264 ctx->spec |= EXT4_SPEC_s_stripe;
2265 return 0;
2266 case Opt_resuid:
2267 ctx->s_resuid = result.uid;
2268 ctx->spec |= EXT4_SPEC_s_resuid;
2269 return 0;
2270 case Opt_resgid:
2271 ctx->s_resgid = result.gid;
2272 ctx->spec |= EXT4_SPEC_s_resgid;
2273 return 0;
2274 case Opt_journal_dev:
2275 if (is_remount) {
2276 ext4_msg(NULL, KERN_ERR,
2277 "Cannot specify journal on remount");
2278 return -EINVAL;
2279 }
2280 ctx->journal_devnum = result.uint_32;
2281 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2282 return 0;
2283 case Opt_journal_path:
2284 {
2285 struct inode *journal_inode;
2286 struct path path;
2287 int error;
2288
2289 if (is_remount) {
2290 ext4_msg(NULL, KERN_ERR,
2291 "Cannot specify journal on remount");
2292 return -EINVAL;
2293 }
2294
2295 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2296 if (error) {
2297 ext4_msg(NULL, KERN_ERR, "error: could not find "
2298 "journal device path");
2299 return -EINVAL;
2300 }
2301
2302 journal_inode = d_inode(path.dentry);
2303 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2304 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2305 path_put(&path);
2306 return 0;
2307 }
2308 case Opt_journal_ioprio:
2309 if (result.uint_32 > 7) {
2310 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2311 " (must be 0-7)");
2312 return -EINVAL;
2313 }
2314 ctx->journal_ioprio =
2315 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2316 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2317 return 0;
2318 case Opt_test_dummy_encryption:
2319 return ext4_parse_test_dummy_encryption(param, ctx);
2320 case Opt_dax:
2321 case Opt_dax_type:
2322 #ifdef CONFIG_FS_DAX
2323 {
2324 int type = (token == Opt_dax) ?
2325 Opt_dax : result.uint_32;
2326
2327 switch (type) {
2328 case Opt_dax:
2329 case Opt_dax_always:
2330 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2331 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2332 break;
2333 case Opt_dax_never:
2334 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2335 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2336 break;
2337 case Opt_dax_inode:
2338 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2339 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2340 /* Strictly for printing options */
2341 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2342 break;
2343 }
2344 return 0;
2345 }
2346 #else
2347 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2348 return -EINVAL;
2349 #endif
2350 case Opt_data_err:
2351 if (result.uint_32 == Opt_data_err_abort)
2352 ctx_set_mount_opt(ctx, m->mount_opt);
2353 else if (result.uint_32 == Opt_data_err_ignore)
2354 ctx_clear_mount_opt(ctx, m->mount_opt);
2355 return 0;
2356 case Opt_mb_optimize_scan:
2357 if (result.int_32 == 1) {
2358 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2359 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2360 } else if (result.int_32 == 0) {
2361 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2362 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2363 } else {
2364 ext4_msg(NULL, KERN_WARNING,
2365 "mb_optimize_scan should be set to 0 or 1.");
2366 return -EINVAL;
2367 }
2368 return 0;
2369 }
2370
2371 /*
2372 * At this point we should only be getting options requiring MOPT_SET,
2373 * or MOPT_CLEAR. Anything else is a bug
2374 */
2375 if (m->token == Opt_err) {
2376 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2377 param->key);
2378 WARN_ON(1);
2379 return -EINVAL;
2380 }
2381
2382 else {
2383 unsigned int set = 0;
2384
2385 if ((param->type == fs_value_is_flag) ||
2386 result.uint_32 > 0)
2387 set = 1;
2388
2389 if (m->flags & MOPT_CLEAR)
2390 set = !set;
2391 else if (unlikely(!(m->flags & MOPT_SET))) {
2392 ext4_msg(NULL, KERN_WARNING,
2393 "buggy handling of option %s",
2394 param->key);
2395 WARN_ON(1);
2396 return -EINVAL;
2397 }
2398 if (m->flags & MOPT_2) {
2399 if (set != 0)
2400 ctx_set_mount_opt2(ctx, m->mount_opt);
2401 else
2402 ctx_clear_mount_opt2(ctx, m->mount_opt);
2403 } else {
2404 if (set != 0)
2405 ctx_set_mount_opt(ctx, m->mount_opt);
2406 else
2407 ctx_clear_mount_opt(ctx, m->mount_opt);
2408 }
2409 }
2410
2411 return 0;
2412 }
2413
parse_options(struct fs_context * fc,char * options)2414 static int parse_options(struct fs_context *fc, char *options)
2415 {
2416 struct fs_parameter param;
2417 int ret;
2418 char *key;
2419
2420 if (!options)
2421 return 0;
2422
2423 while ((key = strsep(&options, ",")) != NULL) {
2424 if (*key) {
2425 size_t v_len = 0;
2426 char *value = strchr(key, '=');
2427
2428 param.type = fs_value_is_flag;
2429 param.string = NULL;
2430
2431 if (value) {
2432 if (value == key)
2433 continue;
2434
2435 *value++ = 0;
2436 v_len = strlen(value);
2437 param.string = kmemdup_nul(value, v_len,
2438 GFP_KERNEL);
2439 if (!param.string)
2440 return -ENOMEM;
2441 param.type = fs_value_is_string;
2442 }
2443
2444 param.key = key;
2445 param.size = v_len;
2446
2447 ret = ext4_parse_param(fc, ¶m);
2448 kfree(param.string);
2449 if (ret < 0)
2450 return ret;
2451 }
2452 }
2453
2454 ret = ext4_validate_options(fc);
2455 if (ret < 0)
2456 return ret;
2457
2458 return 0;
2459 }
2460
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2461 static int parse_apply_sb_mount_options(struct super_block *sb,
2462 struct ext4_fs_context *m_ctx)
2463 {
2464 struct ext4_sb_info *sbi = EXT4_SB(sb);
2465 char *s_mount_opts = NULL;
2466 struct ext4_fs_context *s_ctx = NULL;
2467 struct fs_context *fc = NULL;
2468 int ret = -ENOMEM;
2469
2470 if (!sbi->s_es->s_mount_opts[0])
2471 return 0;
2472
2473 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2474 sizeof(sbi->s_es->s_mount_opts),
2475 GFP_KERNEL);
2476 if (!s_mount_opts)
2477 return ret;
2478
2479 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2480 if (!fc)
2481 goto out_free;
2482
2483 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2484 if (!s_ctx)
2485 goto out_free;
2486
2487 fc->fs_private = s_ctx;
2488 fc->s_fs_info = sbi;
2489
2490 ret = parse_options(fc, s_mount_opts);
2491 if (ret < 0)
2492 goto parse_failed;
2493
2494 ret = ext4_check_opt_consistency(fc, sb);
2495 if (ret < 0) {
2496 parse_failed:
2497 ext4_msg(sb, KERN_WARNING,
2498 "failed to parse options in superblock: %s",
2499 s_mount_opts);
2500 ret = 0;
2501 goto out_free;
2502 }
2503
2504 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2505 m_ctx->journal_devnum = s_ctx->journal_devnum;
2506 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2507 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2508
2509 ext4_apply_options(fc, sb);
2510 ret = 0;
2511
2512 out_free:
2513 if (fc) {
2514 ext4_fc_free(fc);
2515 kfree(fc);
2516 }
2517 kfree(s_mount_opts);
2518 return ret;
2519 }
2520
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2521 static void ext4_apply_quota_options(struct fs_context *fc,
2522 struct super_block *sb)
2523 {
2524 #ifdef CONFIG_QUOTA
2525 bool quota_feature = ext4_has_feature_quota(sb);
2526 struct ext4_fs_context *ctx = fc->fs_private;
2527 struct ext4_sb_info *sbi = EXT4_SB(sb);
2528 char *qname;
2529 int i;
2530
2531 if (quota_feature)
2532 return;
2533
2534 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2535 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2536 if (!(ctx->qname_spec & (1 << i)))
2537 continue;
2538
2539 qname = ctx->s_qf_names[i]; /* May be NULL */
2540 if (qname)
2541 set_opt(sb, QUOTA);
2542 ctx->s_qf_names[i] = NULL;
2543 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2544 lockdep_is_held(&sb->s_umount));
2545 if (qname)
2546 kfree_rcu_mightsleep(qname);
2547 }
2548 }
2549
2550 if (ctx->spec & EXT4_SPEC_JQFMT)
2551 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2552 #endif
2553 }
2554
2555 /*
2556 * Check quota settings consistency.
2557 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2558 static int ext4_check_quota_consistency(struct fs_context *fc,
2559 struct super_block *sb)
2560 {
2561 #ifdef CONFIG_QUOTA
2562 struct ext4_fs_context *ctx = fc->fs_private;
2563 struct ext4_sb_info *sbi = EXT4_SB(sb);
2564 bool quota_feature = ext4_has_feature_quota(sb);
2565 bool quota_loaded = sb_any_quota_loaded(sb);
2566 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2567 int quota_flags, i;
2568
2569 /*
2570 * We do the test below only for project quotas. 'usrquota' and
2571 * 'grpquota' mount options are allowed even without quota feature
2572 * to support legacy quotas in quota files.
2573 */
2574 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2575 !ext4_has_feature_project(sb)) {
2576 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2577 "Cannot enable project quota enforcement.");
2578 return -EINVAL;
2579 }
2580
2581 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2582 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2583 if (quota_loaded &&
2584 ctx->mask_s_mount_opt & quota_flags &&
2585 !ctx_test_mount_opt(ctx, quota_flags))
2586 goto err_quota_change;
2587
2588 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2589
2590 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2591 if (!(ctx->qname_spec & (1 << i)))
2592 continue;
2593
2594 if (quota_loaded &&
2595 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2596 goto err_jquota_change;
2597
2598 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2599 strcmp(get_qf_name(sb, sbi, i),
2600 ctx->s_qf_names[i]) != 0)
2601 goto err_jquota_specified;
2602 }
2603
2604 if (quota_feature) {
2605 ext4_msg(NULL, KERN_INFO,
2606 "Journaled quota options ignored when "
2607 "QUOTA feature is enabled");
2608 return 0;
2609 }
2610 }
2611
2612 if (ctx->spec & EXT4_SPEC_JQFMT) {
2613 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2614 goto err_jquota_change;
2615 if (quota_feature) {
2616 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2617 "ignored when QUOTA feature is enabled");
2618 return 0;
2619 }
2620 }
2621
2622 /* Make sure we don't mix old and new quota format */
2623 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2624 ctx->s_qf_names[USRQUOTA]);
2625 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2626 ctx->s_qf_names[GRPQUOTA]);
2627
2628 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2629 test_opt(sb, USRQUOTA));
2630
2631 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2632 test_opt(sb, GRPQUOTA));
2633
2634 if (usr_qf_name) {
2635 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2636 usrquota = false;
2637 }
2638 if (grp_qf_name) {
2639 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2640 grpquota = false;
2641 }
2642
2643 if (usr_qf_name || grp_qf_name) {
2644 if (usrquota || grpquota) {
2645 ext4_msg(NULL, KERN_ERR, "old and new quota "
2646 "format mixing");
2647 return -EINVAL;
2648 }
2649
2650 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2651 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2652 "not specified");
2653 return -EINVAL;
2654 }
2655 }
2656
2657 return 0;
2658
2659 err_quota_change:
2660 ext4_msg(NULL, KERN_ERR,
2661 "Cannot change quota options when quota turned on");
2662 return -EINVAL;
2663 err_jquota_change:
2664 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2665 "options when quota turned on");
2666 return -EINVAL;
2667 err_jquota_specified:
2668 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2669 QTYPE2NAME(i));
2670 return -EINVAL;
2671 #else
2672 return 0;
2673 #endif
2674 }
2675
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2676 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2677 struct super_block *sb)
2678 {
2679 const struct ext4_fs_context *ctx = fc->fs_private;
2680 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2681
2682 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2683 return 0;
2684
2685 if (!ext4_has_feature_encrypt(sb)) {
2686 ext4_msg(NULL, KERN_WARNING,
2687 "test_dummy_encryption requires encrypt feature");
2688 return -EINVAL;
2689 }
2690 /*
2691 * This mount option is just for testing, and it's not worthwhile to
2692 * implement the extra complexity (e.g. RCU protection) that would be
2693 * needed to allow it to be set or changed during remount. We do allow
2694 * it to be specified during remount, but only if there is no change.
2695 */
2696 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2697 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2698 &ctx->dummy_enc_policy))
2699 return 0;
2700 ext4_msg(NULL, KERN_WARNING,
2701 "Can't set or change test_dummy_encryption on remount");
2702 return -EINVAL;
2703 }
2704 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2705 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2706 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2707 &ctx->dummy_enc_policy))
2708 return 0;
2709 ext4_msg(NULL, KERN_WARNING,
2710 "Conflicting test_dummy_encryption options");
2711 return -EINVAL;
2712 }
2713 return 0;
2714 }
2715
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2716 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2717 struct super_block *sb)
2718 {
2719 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2720 /* if already set, it was already verified to be the same */
2721 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2722 return;
2723 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2724 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2725 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2726 }
2727
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2728 static int ext4_check_opt_consistency(struct fs_context *fc,
2729 struct super_block *sb)
2730 {
2731 struct ext4_fs_context *ctx = fc->fs_private;
2732 struct ext4_sb_info *sbi = fc->s_fs_info;
2733 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2734 int err;
2735
2736 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2737 ext4_msg(NULL, KERN_ERR,
2738 "Mount option(s) incompatible with ext2");
2739 return -EINVAL;
2740 }
2741 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2742 ext4_msg(NULL, KERN_ERR,
2743 "Mount option(s) incompatible with ext3");
2744 return -EINVAL;
2745 }
2746
2747 if (ctx->s_want_extra_isize >
2748 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2749 ext4_msg(NULL, KERN_ERR,
2750 "Invalid want_extra_isize %d",
2751 ctx->s_want_extra_isize);
2752 return -EINVAL;
2753 }
2754
2755 err = ext4_check_test_dummy_encryption(fc, sb);
2756 if (err)
2757 return err;
2758
2759 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2760 if (!sbi->s_journal) {
2761 ext4_msg(NULL, KERN_WARNING,
2762 "Remounting file system with no journal "
2763 "so ignoring journalled data option");
2764 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2765 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2766 test_opt(sb, DATA_FLAGS)) {
2767 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2768 "on remount");
2769 return -EINVAL;
2770 }
2771 }
2772
2773 if (is_remount) {
2774 if (!sbi->s_journal &&
2775 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2776 ext4_msg(NULL, KERN_WARNING,
2777 "Remounting fs w/o journal so ignoring data_err option");
2778 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2779 }
2780
2781 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2782 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2783 ext4_msg(NULL, KERN_ERR, "can't mount with "
2784 "both data=journal and dax");
2785 return -EINVAL;
2786 }
2787
2788 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2789 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2790 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2791 fail_dax_change_remount:
2792 ext4_msg(NULL, KERN_ERR, "can't change "
2793 "dax mount option while remounting");
2794 return -EINVAL;
2795 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2796 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2797 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2798 goto fail_dax_change_remount;
2799 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2800 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2801 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2802 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2803 goto fail_dax_change_remount;
2804 }
2805 }
2806
2807 return ext4_check_quota_consistency(fc, sb);
2808 }
2809
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2810 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2811 {
2812 struct ext4_fs_context *ctx = fc->fs_private;
2813 struct ext4_sb_info *sbi = fc->s_fs_info;
2814
2815 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2816 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2817 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2818 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2819 sb->s_flags &= ~ctx->mask_s_flags;
2820 sb->s_flags |= ctx->vals_s_flags;
2821
2822 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2823 APPLY(s_commit_interval);
2824 APPLY(s_stripe);
2825 APPLY(s_max_batch_time);
2826 APPLY(s_min_batch_time);
2827 APPLY(s_want_extra_isize);
2828 APPLY(s_inode_readahead_blks);
2829 APPLY(s_max_dir_size_kb);
2830 APPLY(s_li_wait_mult);
2831 APPLY(s_resgid);
2832 APPLY(s_resuid);
2833
2834 #ifdef CONFIG_EXT4_DEBUG
2835 APPLY(s_fc_debug_max_replay);
2836 #endif
2837
2838 ext4_apply_quota_options(fc, sb);
2839 ext4_apply_test_dummy_encryption(ctx, sb);
2840 }
2841
2842
ext4_validate_options(struct fs_context * fc)2843 static int ext4_validate_options(struct fs_context *fc)
2844 {
2845 #ifdef CONFIG_QUOTA
2846 struct ext4_fs_context *ctx = fc->fs_private;
2847 char *usr_qf_name, *grp_qf_name;
2848
2849 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2850 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2851
2852 if (usr_qf_name || grp_qf_name) {
2853 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2854 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2855
2856 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2857 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2858
2859 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2860 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2861 ext4_msg(NULL, KERN_ERR, "old and new quota "
2862 "format mixing");
2863 return -EINVAL;
2864 }
2865 }
2866 #endif
2867 return 1;
2868 }
2869
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2870 static inline void ext4_show_quota_options(struct seq_file *seq,
2871 struct super_block *sb)
2872 {
2873 #if defined(CONFIG_QUOTA)
2874 struct ext4_sb_info *sbi = EXT4_SB(sb);
2875 char *usr_qf_name, *grp_qf_name;
2876
2877 if (sbi->s_jquota_fmt) {
2878 char *fmtname = "";
2879
2880 switch (sbi->s_jquota_fmt) {
2881 case QFMT_VFS_OLD:
2882 fmtname = "vfsold";
2883 break;
2884 case QFMT_VFS_V0:
2885 fmtname = "vfsv0";
2886 break;
2887 case QFMT_VFS_V1:
2888 fmtname = "vfsv1";
2889 break;
2890 }
2891 seq_printf(seq, ",jqfmt=%s", fmtname);
2892 }
2893
2894 rcu_read_lock();
2895 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2896 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2897 if (usr_qf_name)
2898 seq_show_option(seq, "usrjquota", usr_qf_name);
2899 if (grp_qf_name)
2900 seq_show_option(seq, "grpjquota", grp_qf_name);
2901 rcu_read_unlock();
2902 #endif
2903 }
2904
token2str(int token)2905 static const char *token2str(int token)
2906 {
2907 const struct fs_parameter_spec *spec;
2908
2909 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2910 if (spec->opt == token && !spec->type)
2911 break;
2912 return spec->name;
2913 }
2914
2915 /*
2916 * Show an option if
2917 * - it's set to a non-default value OR
2918 * - if the per-sb default is different from the global default
2919 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2920 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2921 int nodefs)
2922 {
2923 struct ext4_sb_info *sbi = EXT4_SB(sb);
2924 struct ext4_super_block *es = sbi->s_es;
2925 int def_errors;
2926 const struct mount_opts *m;
2927 char sep = nodefs ? '\n' : ',';
2928
2929 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2930 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2931
2932 if (sbi->s_sb_block != 1)
2933 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2934
2935 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2936 int want_set = m->flags & MOPT_SET;
2937 int opt_2 = m->flags & MOPT_2;
2938 unsigned int mount_opt, def_mount_opt;
2939
2940 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2941 m->flags & MOPT_SKIP)
2942 continue;
2943
2944 if (opt_2) {
2945 mount_opt = sbi->s_mount_opt2;
2946 def_mount_opt = sbi->s_def_mount_opt2;
2947 } else {
2948 mount_opt = sbi->s_mount_opt;
2949 def_mount_opt = sbi->s_def_mount_opt;
2950 }
2951 /* skip if same as the default */
2952 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2953 continue;
2954 /* select Opt_noFoo vs Opt_Foo */
2955 if ((want_set &&
2956 (mount_opt & m->mount_opt) != m->mount_opt) ||
2957 (!want_set && (mount_opt & m->mount_opt)))
2958 continue;
2959 SEQ_OPTS_PRINT("%s", token2str(m->token));
2960 }
2961
2962 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2963 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2964 SEQ_OPTS_PRINT("resuid=%u",
2965 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2966 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2967 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2968 SEQ_OPTS_PRINT("resgid=%u",
2969 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2970 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2971 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2972 SEQ_OPTS_PUTS("errors=remount-ro");
2973 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2974 SEQ_OPTS_PUTS("errors=continue");
2975 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2976 SEQ_OPTS_PUTS("errors=panic");
2977 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2978 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2979 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2980 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2981 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2982 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2983 if (nodefs || sbi->s_stripe)
2984 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2985 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2986 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2987 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2988 SEQ_OPTS_PUTS("data=journal");
2989 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2990 SEQ_OPTS_PUTS("data=ordered");
2991 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2992 SEQ_OPTS_PUTS("data=writeback");
2993 }
2994 if (nodefs ||
2995 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2996 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2997 sbi->s_inode_readahead_blks);
2998
2999 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3000 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3001 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3002 if (nodefs || sbi->s_max_dir_size_kb)
3003 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3004 if (test_opt(sb, DATA_ERR_ABORT))
3005 SEQ_OPTS_PUTS("data_err=abort");
3006
3007 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3008
3009 if (sb->s_flags & SB_INLINECRYPT)
3010 SEQ_OPTS_PUTS("inlinecrypt");
3011
3012 if (test_opt(sb, DAX_ALWAYS)) {
3013 if (IS_EXT2_SB(sb))
3014 SEQ_OPTS_PUTS("dax");
3015 else
3016 SEQ_OPTS_PUTS("dax=always");
3017 } else if (test_opt2(sb, DAX_NEVER)) {
3018 SEQ_OPTS_PUTS("dax=never");
3019 } else if (test_opt2(sb, DAX_INODE)) {
3020 SEQ_OPTS_PUTS("dax=inode");
3021 }
3022
3023 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3024 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3025 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3026 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3027 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3028 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3029 }
3030
3031 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3032 SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3033
3034 if (ext4_emergency_ro(sb))
3035 SEQ_OPTS_PUTS("emergency_ro");
3036
3037 if (ext4_forced_shutdown(sb))
3038 SEQ_OPTS_PUTS("shutdown");
3039
3040 ext4_show_quota_options(seq, sb);
3041 return 0;
3042 }
3043
ext4_show_options(struct seq_file * seq,struct dentry * root)3044 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3045 {
3046 return _ext4_show_options(seq, root->d_sb, 0);
3047 }
3048
ext4_seq_options_show(struct seq_file * seq,void * offset)3049 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3050 {
3051 struct super_block *sb = seq->private;
3052 int rc;
3053
3054 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3055 rc = _ext4_show_options(seq, sb, 1);
3056 seq_putc(seq, '\n');
3057 return rc;
3058 }
3059
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3060 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3061 int read_only)
3062 {
3063 struct ext4_sb_info *sbi = EXT4_SB(sb);
3064 int err = 0;
3065
3066 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3067 ext4_msg(sb, KERN_ERR, "revision level too high, "
3068 "forcing read-only mode");
3069 err = -EROFS;
3070 goto done;
3071 }
3072 if (read_only)
3073 goto done;
3074 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3075 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3076 "running e2fsck is recommended");
3077 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3078 ext4_msg(sb, KERN_WARNING,
3079 "warning: mounting fs with errors, "
3080 "running e2fsck is recommended");
3081 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3082 le16_to_cpu(es->s_mnt_count) >=
3083 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3084 ext4_msg(sb, KERN_WARNING,
3085 "warning: maximal mount count reached, "
3086 "running e2fsck is recommended");
3087 else if (le32_to_cpu(es->s_checkinterval) &&
3088 (ext4_get_tstamp(es, s_lastcheck) +
3089 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3090 ext4_msg(sb, KERN_WARNING,
3091 "warning: checktime reached, "
3092 "running e2fsck is recommended");
3093 if (!sbi->s_journal)
3094 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3095 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3096 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3097 le16_add_cpu(&es->s_mnt_count, 1);
3098 ext4_update_tstamp(es, s_mtime);
3099 if (sbi->s_journal) {
3100 ext4_set_feature_journal_needs_recovery(sb);
3101 if (ext4_has_feature_orphan_file(sb))
3102 ext4_set_feature_orphan_present(sb);
3103 }
3104
3105 err = ext4_commit_super(sb);
3106 done:
3107 if (test_opt(sb, DEBUG))
3108 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3109 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3110 sb->s_blocksize,
3111 sbi->s_groups_count,
3112 EXT4_BLOCKS_PER_GROUP(sb),
3113 EXT4_INODES_PER_GROUP(sb),
3114 sbi->s_mount_opt, sbi->s_mount_opt2);
3115 return err;
3116 }
3117
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3118 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3119 {
3120 struct ext4_sb_info *sbi = EXT4_SB(sb);
3121 struct flex_groups **old_groups, **new_groups;
3122 int size, i, j;
3123
3124 if (!sbi->s_log_groups_per_flex)
3125 return 0;
3126
3127 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3128 if (size <= sbi->s_flex_groups_allocated)
3129 return 0;
3130
3131 new_groups = kvzalloc(roundup_pow_of_two(size *
3132 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3133 if (!new_groups) {
3134 ext4_msg(sb, KERN_ERR,
3135 "not enough memory for %d flex group pointers", size);
3136 return -ENOMEM;
3137 }
3138 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3139 new_groups[i] = kvzalloc(roundup_pow_of_two(
3140 sizeof(struct flex_groups)),
3141 GFP_KERNEL);
3142 if (!new_groups[i]) {
3143 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3144 kvfree(new_groups[j]);
3145 kvfree(new_groups);
3146 ext4_msg(sb, KERN_ERR,
3147 "not enough memory for %d flex groups", size);
3148 return -ENOMEM;
3149 }
3150 }
3151 rcu_read_lock();
3152 old_groups = rcu_dereference(sbi->s_flex_groups);
3153 if (old_groups)
3154 memcpy(new_groups, old_groups,
3155 (sbi->s_flex_groups_allocated *
3156 sizeof(struct flex_groups *)));
3157 rcu_read_unlock();
3158 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3159 sbi->s_flex_groups_allocated = size;
3160 if (old_groups)
3161 ext4_kvfree_array_rcu(old_groups);
3162 return 0;
3163 }
3164
ext4_fill_flex_info(struct super_block * sb)3165 static int ext4_fill_flex_info(struct super_block *sb)
3166 {
3167 struct ext4_sb_info *sbi = EXT4_SB(sb);
3168 struct ext4_group_desc *gdp = NULL;
3169 struct flex_groups *fg;
3170 ext4_group_t flex_group;
3171 int i, err;
3172
3173 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3174 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3175 sbi->s_log_groups_per_flex = 0;
3176 return 1;
3177 }
3178
3179 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3180 if (err)
3181 goto failed;
3182
3183 for (i = 0; i < sbi->s_groups_count; i++) {
3184 gdp = ext4_get_group_desc(sb, i, NULL);
3185
3186 flex_group = ext4_flex_group(sbi, i);
3187 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3188 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3189 atomic64_add(ext4_free_group_clusters(sb, gdp),
3190 &fg->free_clusters);
3191 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3192 }
3193
3194 return 1;
3195 failed:
3196 return 0;
3197 }
3198
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3199 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3200 struct ext4_group_desc *gdp)
3201 {
3202 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3203 __u16 crc = 0;
3204 __le32 le_group = cpu_to_le32(block_group);
3205 struct ext4_sb_info *sbi = EXT4_SB(sb);
3206
3207 if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3208 /* Use new metadata_csum algorithm */
3209 __u32 csum32;
3210 __u16 dummy_csum = 0;
3211
3212 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3213 sizeof(le_group));
3214 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3215 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3216 sizeof(dummy_csum));
3217 offset += sizeof(dummy_csum);
3218 if (offset < sbi->s_desc_size)
3219 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3220 sbi->s_desc_size - offset);
3221
3222 crc = csum32 & 0xFFFF;
3223 goto out;
3224 }
3225
3226 /* old crc16 code */
3227 if (!ext4_has_feature_gdt_csum(sb))
3228 return 0;
3229
3230 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3231 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3232 crc = crc16(crc, (__u8 *)gdp, offset);
3233 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3234 /* for checksum of struct ext4_group_desc do the rest...*/
3235 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3236 crc = crc16(crc, (__u8 *)gdp + offset,
3237 sbi->s_desc_size - offset);
3238
3239 out:
3240 return cpu_to_le16(crc);
3241 }
3242
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3243 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3244 struct ext4_group_desc *gdp)
3245 {
3246 if (ext4_has_group_desc_csum(sb) &&
3247 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3248 return 0;
3249
3250 return 1;
3251 }
3252
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3253 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3254 struct ext4_group_desc *gdp)
3255 {
3256 if (!ext4_has_group_desc_csum(sb))
3257 return;
3258 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3259 }
3260
3261 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3262 static int ext4_check_descriptors(struct super_block *sb,
3263 ext4_fsblk_t sb_block,
3264 ext4_group_t *first_not_zeroed)
3265 {
3266 struct ext4_sb_info *sbi = EXT4_SB(sb);
3267 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3268 ext4_fsblk_t last_block;
3269 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3270 ext4_fsblk_t block_bitmap;
3271 ext4_fsblk_t inode_bitmap;
3272 ext4_fsblk_t inode_table;
3273 int flexbg_flag = 0;
3274 ext4_group_t i, grp = sbi->s_groups_count;
3275
3276 if (ext4_has_feature_flex_bg(sb))
3277 flexbg_flag = 1;
3278
3279 ext4_debug("Checking group descriptors");
3280
3281 for (i = 0; i < sbi->s_groups_count; i++) {
3282 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3283
3284 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3285 last_block = ext4_blocks_count(sbi->s_es) - 1;
3286 else
3287 last_block = first_block +
3288 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3289
3290 if ((grp == sbi->s_groups_count) &&
3291 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3292 grp = i;
3293
3294 block_bitmap = ext4_block_bitmap(sb, gdp);
3295 if (block_bitmap == sb_block) {
3296 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3297 "Block bitmap for group %u overlaps "
3298 "superblock", i);
3299 if (!sb_rdonly(sb))
3300 return 0;
3301 }
3302 if (block_bitmap >= sb_block + 1 &&
3303 block_bitmap <= last_bg_block) {
3304 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3305 "Block bitmap for group %u overlaps "
3306 "block group descriptors", i);
3307 if (!sb_rdonly(sb))
3308 return 0;
3309 }
3310 if (block_bitmap < first_block || block_bitmap > last_block) {
3311 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3312 "Block bitmap for group %u not in group "
3313 "(block %llu)!", i, block_bitmap);
3314 return 0;
3315 }
3316 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3317 if (inode_bitmap == sb_block) {
3318 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3319 "Inode bitmap for group %u overlaps "
3320 "superblock", i);
3321 if (!sb_rdonly(sb))
3322 return 0;
3323 }
3324 if (inode_bitmap >= sb_block + 1 &&
3325 inode_bitmap <= last_bg_block) {
3326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3327 "Inode bitmap for group %u overlaps "
3328 "block group descriptors", i);
3329 if (!sb_rdonly(sb))
3330 return 0;
3331 }
3332 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3334 "Inode bitmap for group %u not in group "
3335 "(block %llu)!", i, inode_bitmap);
3336 return 0;
3337 }
3338 inode_table = ext4_inode_table(sb, gdp);
3339 if (inode_table == sb_block) {
3340 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3341 "Inode table for group %u overlaps "
3342 "superblock", i);
3343 if (!sb_rdonly(sb))
3344 return 0;
3345 }
3346 if (inode_table >= sb_block + 1 &&
3347 inode_table <= last_bg_block) {
3348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3349 "Inode table for group %u overlaps "
3350 "block group descriptors", i);
3351 if (!sb_rdonly(sb))
3352 return 0;
3353 }
3354 if (inode_table < first_block ||
3355 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3357 "Inode table for group %u not in group "
3358 "(block %llu)!", i, inode_table);
3359 return 0;
3360 }
3361 ext4_lock_group(sb, i);
3362 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3363 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3364 "Checksum for group %u failed (%u!=%u)",
3365 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3366 gdp)), le16_to_cpu(gdp->bg_checksum));
3367 if (!sb_rdonly(sb)) {
3368 ext4_unlock_group(sb, i);
3369 return 0;
3370 }
3371 }
3372 ext4_unlock_group(sb, i);
3373 if (!flexbg_flag)
3374 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3375 }
3376 if (NULL != first_not_zeroed)
3377 *first_not_zeroed = grp;
3378 return 1;
3379 }
3380
3381 /*
3382 * Maximal extent format file size.
3383 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3384 * extent format containers, within a sector_t, and within i_blocks
3385 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3386 * so that won't be a limiting factor.
3387 *
3388 * However there is other limiting factor. We do store extents in the form
3389 * of starting block and length, hence the resulting length of the extent
3390 * covering maximum file size must fit into on-disk format containers as
3391 * well. Given that length is always by 1 unit bigger than max unit (because
3392 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3393 *
3394 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3395 */
ext4_max_size(int blkbits,int has_huge_files)3396 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3397 {
3398 loff_t res;
3399 loff_t upper_limit = MAX_LFS_FILESIZE;
3400
3401 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3402
3403 if (!has_huge_files) {
3404 upper_limit = (1LL << 32) - 1;
3405
3406 /* total blocks in file system block size */
3407 upper_limit >>= (blkbits - 9);
3408 upper_limit <<= blkbits;
3409 }
3410
3411 /*
3412 * 32-bit extent-start container, ee_block. We lower the maxbytes
3413 * by one fs block, so ee_len can cover the extent of maximum file
3414 * size
3415 */
3416 res = (1LL << 32) - 1;
3417 res <<= blkbits;
3418
3419 /* Sanity check against vm- & vfs- imposed limits */
3420 if (res > upper_limit)
3421 res = upper_limit;
3422
3423 return res;
3424 }
3425
3426 /*
3427 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3428 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3429 * We need to be 1 filesystem block less than the 2^48 sector limit.
3430 */
ext4_max_bitmap_size(int bits,int has_huge_files)3431 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3432 {
3433 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3434 int meta_blocks;
3435 unsigned int ppb = 1 << (bits - 2);
3436
3437 /*
3438 * This is calculated to be the largest file size for a dense, block
3439 * mapped file such that the file's total number of 512-byte sectors,
3440 * including data and all indirect blocks, does not exceed (2^48 - 1).
3441 *
3442 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3443 * number of 512-byte sectors of the file.
3444 */
3445 if (!has_huge_files) {
3446 /*
3447 * !has_huge_files or implies that the inode i_block field
3448 * represents total file blocks in 2^32 512-byte sectors ==
3449 * size of vfs inode i_blocks * 8
3450 */
3451 upper_limit = (1LL << 32) - 1;
3452
3453 /* total blocks in file system block size */
3454 upper_limit >>= (bits - 9);
3455
3456 } else {
3457 /*
3458 * We use 48 bit ext4_inode i_blocks
3459 * With EXT4_HUGE_FILE_FL set the i_blocks
3460 * represent total number of blocks in
3461 * file system block size
3462 */
3463 upper_limit = (1LL << 48) - 1;
3464
3465 }
3466
3467 /* Compute how many blocks we can address by block tree */
3468 res += ppb;
3469 res += ppb * ppb;
3470 res += ((loff_t)ppb) * ppb * ppb;
3471 /* Compute how many metadata blocks are needed */
3472 meta_blocks = 1;
3473 meta_blocks += 1 + ppb;
3474 meta_blocks += 1 + ppb + ppb * ppb;
3475 /* Does block tree limit file size? */
3476 if (res + meta_blocks <= upper_limit)
3477 goto check_lfs;
3478
3479 res = upper_limit;
3480 /* How many metadata blocks are needed for addressing upper_limit? */
3481 upper_limit -= EXT4_NDIR_BLOCKS;
3482 /* indirect blocks */
3483 meta_blocks = 1;
3484 upper_limit -= ppb;
3485 /* double indirect blocks */
3486 if (upper_limit < ppb * ppb) {
3487 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3488 res -= meta_blocks;
3489 goto check_lfs;
3490 }
3491 meta_blocks += 1 + ppb;
3492 upper_limit -= ppb * ppb;
3493 /* tripple indirect blocks for the rest */
3494 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3495 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3496 res -= meta_blocks;
3497 check_lfs:
3498 res <<= bits;
3499 if (res > MAX_LFS_FILESIZE)
3500 res = MAX_LFS_FILESIZE;
3501
3502 return res;
3503 }
3504
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3505 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3506 ext4_fsblk_t logical_sb_block, int nr)
3507 {
3508 struct ext4_sb_info *sbi = EXT4_SB(sb);
3509 ext4_group_t bg, first_meta_bg;
3510 int has_super = 0;
3511
3512 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3513
3514 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3515 return logical_sb_block + nr + 1;
3516 bg = sbi->s_desc_per_block * nr;
3517 if (ext4_bg_has_super(sb, bg))
3518 has_super = 1;
3519
3520 /*
3521 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3522 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3523 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3524 * compensate.
3525 */
3526 if (sb->s_blocksize == 1024 && nr == 0 &&
3527 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3528 has_super++;
3529
3530 return (has_super + ext4_group_first_block_no(sb, bg));
3531 }
3532
3533 /**
3534 * ext4_get_stripe_size: Get the stripe size.
3535 * @sbi: In memory super block info
3536 *
3537 * If we have specified it via mount option, then
3538 * use the mount option value. If the value specified at mount time is
3539 * greater than the blocks per group use the super block value.
3540 * If the super block value is greater than blocks per group return 0.
3541 * Allocator needs it be less than blocks per group.
3542 *
3543 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3544 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3545 {
3546 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3547 unsigned long stripe_width =
3548 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3549 int ret;
3550
3551 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3552 ret = sbi->s_stripe;
3553 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3554 ret = stripe_width;
3555 else if (stride && stride <= sbi->s_blocks_per_group)
3556 ret = stride;
3557 else
3558 ret = 0;
3559
3560 /*
3561 * If the stripe width is 1, this makes no sense and
3562 * we set it to 0 to turn off stripe handling code.
3563 */
3564 if (ret <= 1)
3565 ret = 0;
3566
3567 return ret;
3568 }
3569
3570 /*
3571 * Check whether this filesystem can be mounted based on
3572 * the features present and the RDONLY/RDWR mount requested.
3573 * Returns 1 if this filesystem can be mounted as requested,
3574 * 0 if it cannot be.
3575 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3576 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3577 {
3578 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3579 ext4_msg(sb, KERN_ERR,
3580 "Couldn't mount because of "
3581 "unsupported optional features (%x)",
3582 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3583 ~EXT4_FEATURE_INCOMPAT_SUPP));
3584 return 0;
3585 }
3586
3587 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3588 ext4_msg(sb, KERN_ERR,
3589 "Filesystem with casefold feature cannot be "
3590 "mounted without CONFIG_UNICODE");
3591 return 0;
3592 }
3593
3594 if (readonly)
3595 return 1;
3596
3597 if (ext4_has_feature_readonly(sb)) {
3598 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3599 sb->s_flags |= SB_RDONLY;
3600 return 1;
3601 }
3602
3603 /* Check that feature set is OK for a read-write mount */
3604 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3605 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3606 "unsupported optional features (%x)",
3607 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3608 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3609 return 0;
3610 }
3611 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3612 ext4_msg(sb, KERN_ERR,
3613 "Can't support bigalloc feature without "
3614 "extents feature\n");
3615 return 0;
3616 }
3617
3618 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3619 if (!readonly && (ext4_has_feature_quota(sb) ||
3620 ext4_has_feature_project(sb))) {
3621 ext4_msg(sb, KERN_ERR,
3622 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3623 return 0;
3624 }
3625 #endif /* CONFIG_QUOTA */
3626 return 1;
3627 }
3628
3629 /*
3630 * This function is called once a day if we have errors logged
3631 * on the file system
3632 */
print_daily_error_info(struct timer_list * t)3633 static void print_daily_error_info(struct timer_list *t)
3634 {
3635 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3636 struct super_block *sb = sbi->s_sb;
3637 struct ext4_super_block *es = sbi->s_es;
3638
3639 if (es->s_error_count)
3640 /* fsck newer than v1.41.13 is needed to clean this condition. */
3641 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3642 le32_to_cpu(es->s_error_count));
3643 if (es->s_first_error_time) {
3644 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3645 sb->s_id,
3646 ext4_get_tstamp(es, s_first_error_time),
3647 (int) sizeof(es->s_first_error_func),
3648 es->s_first_error_func,
3649 le32_to_cpu(es->s_first_error_line));
3650 if (es->s_first_error_ino)
3651 printk(KERN_CONT ": inode %u",
3652 le32_to_cpu(es->s_first_error_ino));
3653 if (es->s_first_error_block)
3654 printk(KERN_CONT ": block %llu", (unsigned long long)
3655 le64_to_cpu(es->s_first_error_block));
3656 printk(KERN_CONT "\n");
3657 }
3658 if (es->s_last_error_time) {
3659 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3660 sb->s_id,
3661 ext4_get_tstamp(es, s_last_error_time),
3662 (int) sizeof(es->s_last_error_func),
3663 es->s_last_error_func,
3664 le32_to_cpu(es->s_last_error_line));
3665 if (es->s_last_error_ino)
3666 printk(KERN_CONT ": inode %u",
3667 le32_to_cpu(es->s_last_error_ino));
3668 if (es->s_last_error_block)
3669 printk(KERN_CONT ": block %llu", (unsigned long long)
3670 le64_to_cpu(es->s_last_error_block));
3671 printk(KERN_CONT "\n");
3672 }
3673 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3674 }
3675
3676 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3677 static int ext4_run_li_request(struct ext4_li_request *elr)
3678 {
3679 struct ext4_group_desc *gdp = NULL;
3680 struct super_block *sb = elr->lr_super;
3681 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3682 ext4_group_t group = elr->lr_next_group;
3683 unsigned int prefetch_ios = 0;
3684 int ret = 0;
3685 int nr = EXT4_SB(sb)->s_mb_prefetch;
3686 u64 start_time;
3687
3688 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3689 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3690 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3691 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3692 if (group >= elr->lr_next_group) {
3693 ret = 1;
3694 if (elr->lr_first_not_zeroed != ngroups &&
3695 !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3696 test_opt(sb, INIT_INODE_TABLE)) {
3697 elr->lr_next_group = elr->lr_first_not_zeroed;
3698 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3699 ret = 0;
3700 }
3701 }
3702 return ret;
3703 }
3704
3705 for (; group < ngroups; group++) {
3706 gdp = ext4_get_group_desc(sb, group, NULL);
3707 if (!gdp) {
3708 ret = 1;
3709 break;
3710 }
3711
3712 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3713 break;
3714 }
3715
3716 if (group >= ngroups)
3717 ret = 1;
3718
3719 if (!ret) {
3720 start_time = ktime_get_ns();
3721 ret = ext4_init_inode_table(sb, group,
3722 elr->lr_timeout ? 0 : 1);
3723 trace_ext4_lazy_itable_init(sb, group);
3724 if (elr->lr_timeout == 0) {
3725 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3726 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3727 }
3728 elr->lr_next_sched = jiffies + elr->lr_timeout;
3729 elr->lr_next_group = group + 1;
3730 }
3731 return ret;
3732 }
3733
3734 /*
3735 * Remove lr_request from the list_request and free the
3736 * request structure. Should be called with li_list_mtx held
3737 */
ext4_remove_li_request(struct ext4_li_request * elr)3738 static void ext4_remove_li_request(struct ext4_li_request *elr)
3739 {
3740 if (!elr)
3741 return;
3742
3743 list_del(&elr->lr_request);
3744 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3745 kfree(elr);
3746 }
3747
ext4_unregister_li_request(struct super_block * sb)3748 static void ext4_unregister_li_request(struct super_block *sb)
3749 {
3750 mutex_lock(&ext4_li_mtx);
3751 if (!ext4_li_info) {
3752 mutex_unlock(&ext4_li_mtx);
3753 return;
3754 }
3755
3756 mutex_lock(&ext4_li_info->li_list_mtx);
3757 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3758 mutex_unlock(&ext4_li_info->li_list_mtx);
3759 mutex_unlock(&ext4_li_mtx);
3760 }
3761
3762 static struct task_struct *ext4_lazyinit_task;
3763
3764 /*
3765 * This is the function where ext4lazyinit thread lives. It walks
3766 * through the request list searching for next scheduled filesystem.
3767 * When such a fs is found, run the lazy initialization request
3768 * (ext4_rn_li_request) and keep track of the time spend in this
3769 * function. Based on that time we compute next schedule time of
3770 * the request. When walking through the list is complete, compute
3771 * next waking time and put itself into sleep.
3772 */
ext4_lazyinit_thread(void * arg)3773 static int ext4_lazyinit_thread(void *arg)
3774 {
3775 struct ext4_lazy_init *eli = arg;
3776 struct list_head *pos, *n;
3777 struct ext4_li_request *elr;
3778 unsigned long next_wakeup, cur;
3779
3780 BUG_ON(NULL == eli);
3781 set_freezable();
3782
3783 cont_thread:
3784 while (true) {
3785 bool next_wakeup_initialized = false;
3786
3787 next_wakeup = 0;
3788 mutex_lock(&eli->li_list_mtx);
3789 if (list_empty(&eli->li_request_list)) {
3790 mutex_unlock(&eli->li_list_mtx);
3791 goto exit_thread;
3792 }
3793 list_for_each_safe(pos, n, &eli->li_request_list) {
3794 int err = 0;
3795 int progress = 0;
3796 elr = list_entry(pos, struct ext4_li_request,
3797 lr_request);
3798
3799 if (time_before(jiffies, elr->lr_next_sched)) {
3800 if (!next_wakeup_initialized ||
3801 time_before(elr->lr_next_sched, next_wakeup)) {
3802 next_wakeup = elr->lr_next_sched;
3803 next_wakeup_initialized = true;
3804 }
3805 continue;
3806 }
3807 if (down_read_trylock(&elr->lr_super->s_umount)) {
3808 if (sb_start_write_trylock(elr->lr_super)) {
3809 progress = 1;
3810 /*
3811 * We hold sb->s_umount, sb can not
3812 * be removed from the list, it is
3813 * now safe to drop li_list_mtx
3814 */
3815 mutex_unlock(&eli->li_list_mtx);
3816 err = ext4_run_li_request(elr);
3817 sb_end_write(elr->lr_super);
3818 mutex_lock(&eli->li_list_mtx);
3819 n = pos->next;
3820 }
3821 up_read((&elr->lr_super->s_umount));
3822 }
3823 /* error, remove the lazy_init job */
3824 if (err) {
3825 ext4_remove_li_request(elr);
3826 continue;
3827 }
3828 if (!progress) {
3829 elr->lr_next_sched = jiffies +
3830 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3831 }
3832 if (!next_wakeup_initialized ||
3833 time_before(elr->lr_next_sched, next_wakeup)) {
3834 next_wakeup = elr->lr_next_sched;
3835 next_wakeup_initialized = true;
3836 }
3837 }
3838 mutex_unlock(&eli->li_list_mtx);
3839
3840 try_to_freeze();
3841
3842 cur = jiffies;
3843 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3844 cond_resched();
3845 continue;
3846 }
3847
3848 schedule_timeout_interruptible(next_wakeup - cur);
3849
3850 if (kthread_should_stop()) {
3851 ext4_clear_request_list();
3852 goto exit_thread;
3853 }
3854 }
3855
3856 exit_thread:
3857 /*
3858 * It looks like the request list is empty, but we need
3859 * to check it under the li_list_mtx lock, to prevent any
3860 * additions into it, and of course we should lock ext4_li_mtx
3861 * to atomically free the list and ext4_li_info, because at
3862 * this point another ext4 filesystem could be registering
3863 * new one.
3864 */
3865 mutex_lock(&ext4_li_mtx);
3866 mutex_lock(&eli->li_list_mtx);
3867 if (!list_empty(&eli->li_request_list)) {
3868 mutex_unlock(&eli->li_list_mtx);
3869 mutex_unlock(&ext4_li_mtx);
3870 goto cont_thread;
3871 }
3872 mutex_unlock(&eli->li_list_mtx);
3873 kfree(ext4_li_info);
3874 ext4_li_info = NULL;
3875 mutex_unlock(&ext4_li_mtx);
3876
3877 return 0;
3878 }
3879
ext4_clear_request_list(void)3880 static void ext4_clear_request_list(void)
3881 {
3882 struct list_head *pos, *n;
3883 struct ext4_li_request *elr;
3884
3885 mutex_lock(&ext4_li_info->li_list_mtx);
3886 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3887 elr = list_entry(pos, struct ext4_li_request,
3888 lr_request);
3889 ext4_remove_li_request(elr);
3890 }
3891 mutex_unlock(&ext4_li_info->li_list_mtx);
3892 }
3893
ext4_run_lazyinit_thread(void)3894 static int ext4_run_lazyinit_thread(void)
3895 {
3896 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3897 ext4_li_info, "ext4lazyinit");
3898 if (IS_ERR(ext4_lazyinit_task)) {
3899 int err = PTR_ERR(ext4_lazyinit_task);
3900 ext4_clear_request_list();
3901 kfree(ext4_li_info);
3902 ext4_li_info = NULL;
3903 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3904 "initialization thread\n",
3905 err);
3906 return err;
3907 }
3908 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3909 return 0;
3910 }
3911
3912 /*
3913 * Check whether it make sense to run itable init. thread or not.
3914 * If there is at least one uninitialized inode table, return
3915 * corresponding group number, else the loop goes through all
3916 * groups and return total number of groups.
3917 */
ext4_has_uninit_itable(struct super_block * sb)3918 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3919 {
3920 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3921 struct ext4_group_desc *gdp = NULL;
3922
3923 if (!ext4_has_group_desc_csum(sb))
3924 return ngroups;
3925
3926 for (group = 0; group < ngroups; group++) {
3927 gdp = ext4_get_group_desc(sb, group, NULL);
3928 if (!gdp)
3929 continue;
3930
3931 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3932 break;
3933 }
3934
3935 return group;
3936 }
3937
ext4_li_info_new(void)3938 static int ext4_li_info_new(void)
3939 {
3940 struct ext4_lazy_init *eli = NULL;
3941
3942 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3943 if (!eli)
3944 return -ENOMEM;
3945
3946 INIT_LIST_HEAD(&eli->li_request_list);
3947 mutex_init(&eli->li_list_mtx);
3948
3949 eli->li_state |= EXT4_LAZYINIT_QUIT;
3950
3951 ext4_li_info = eli;
3952
3953 return 0;
3954 }
3955
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3956 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3957 ext4_group_t start)
3958 {
3959 struct ext4_li_request *elr;
3960
3961 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3962 if (!elr)
3963 return NULL;
3964
3965 elr->lr_super = sb;
3966 elr->lr_first_not_zeroed = start;
3967 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3968 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3969 elr->lr_next_group = start;
3970 } else {
3971 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3972 }
3973
3974 /*
3975 * Randomize first schedule time of the request to
3976 * spread the inode table initialization requests
3977 * better.
3978 */
3979 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3980 return elr;
3981 }
3982
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3983 int ext4_register_li_request(struct super_block *sb,
3984 ext4_group_t first_not_zeroed)
3985 {
3986 struct ext4_sb_info *sbi = EXT4_SB(sb);
3987 struct ext4_li_request *elr = NULL;
3988 ext4_group_t ngroups = sbi->s_groups_count;
3989 int ret = 0;
3990
3991 mutex_lock(&ext4_li_mtx);
3992 if (sbi->s_li_request != NULL) {
3993 /*
3994 * Reset timeout so it can be computed again, because
3995 * s_li_wait_mult might have changed.
3996 */
3997 sbi->s_li_request->lr_timeout = 0;
3998 goto out;
3999 }
4000
4001 if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
4002 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4003 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4004 goto out;
4005
4006 elr = ext4_li_request_new(sb, first_not_zeroed);
4007 if (!elr) {
4008 ret = -ENOMEM;
4009 goto out;
4010 }
4011
4012 if (NULL == ext4_li_info) {
4013 ret = ext4_li_info_new();
4014 if (ret)
4015 goto out;
4016 }
4017
4018 mutex_lock(&ext4_li_info->li_list_mtx);
4019 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4020 mutex_unlock(&ext4_li_info->li_list_mtx);
4021
4022 sbi->s_li_request = elr;
4023 /*
4024 * set elr to NULL here since it has been inserted to
4025 * the request_list and the removal and free of it is
4026 * handled by ext4_clear_request_list from now on.
4027 */
4028 elr = NULL;
4029
4030 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4031 ret = ext4_run_lazyinit_thread();
4032 if (ret)
4033 goto out;
4034 }
4035 out:
4036 mutex_unlock(&ext4_li_mtx);
4037 if (ret)
4038 kfree(elr);
4039 return ret;
4040 }
4041
4042 /*
4043 * We do not need to lock anything since this is called on
4044 * module unload.
4045 */
ext4_destroy_lazyinit_thread(void)4046 static void ext4_destroy_lazyinit_thread(void)
4047 {
4048 /*
4049 * If thread exited earlier
4050 * there's nothing to be done.
4051 */
4052 if (!ext4_li_info || !ext4_lazyinit_task)
4053 return;
4054
4055 kthread_stop(ext4_lazyinit_task);
4056 }
4057
set_journal_csum_feature_set(struct super_block * sb)4058 static int set_journal_csum_feature_set(struct super_block *sb)
4059 {
4060 int ret = 1;
4061 int compat, incompat;
4062 struct ext4_sb_info *sbi = EXT4_SB(sb);
4063
4064 if (ext4_has_feature_metadata_csum(sb)) {
4065 /* journal checksum v3 */
4066 compat = 0;
4067 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4068 } else {
4069 /* journal checksum v1 */
4070 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4071 incompat = 0;
4072 }
4073
4074 jbd2_journal_clear_features(sbi->s_journal,
4075 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4076 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4077 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4078 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4079 ret = jbd2_journal_set_features(sbi->s_journal,
4080 compat, 0,
4081 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4082 incompat);
4083 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4084 ret = jbd2_journal_set_features(sbi->s_journal,
4085 compat, 0,
4086 incompat);
4087 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4088 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4089 } else {
4090 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4091 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4092 }
4093
4094 return ret;
4095 }
4096
4097 /*
4098 * Note: calculating the overhead so we can be compatible with
4099 * historical BSD practice is quite difficult in the face of
4100 * clusters/bigalloc. This is because multiple metadata blocks from
4101 * different block group can end up in the same allocation cluster.
4102 * Calculating the exact overhead in the face of clustered allocation
4103 * requires either O(all block bitmaps) in memory or O(number of block
4104 * groups**2) in time. We will still calculate the superblock for
4105 * older file systems --- and if we come across with a bigalloc file
4106 * system with zero in s_overhead_clusters the estimate will be close to
4107 * correct especially for very large cluster sizes --- but for newer
4108 * file systems, it's better to calculate this figure once at mkfs
4109 * time, and store it in the superblock. If the superblock value is
4110 * present (even for non-bigalloc file systems), we will use it.
4111 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4112 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4113 char *buf)
4114 {
4115 struct ext4_sb_info *sbi = EXT4_SB(sb);
4116 struct ext4_group_desc *gdp;
4117 ext4_fsblk_t first_block, last_block, b;
4118 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4119 int s, j, count = 0;
4120 int has_super = ext4_bg_has_super(sb, grp);
4121
4122 if (!ext4_has_feature_bigalloc(sb))
4123 return (has_super + ext4_bg_num_gdb(sb, grp) +
4124 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4125 sbi->s_itb_per_group + 2);
4126
4127 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4128 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4129 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4130 for (i = 0; i < ngroups; i++) {
4131 gdp = ext4_get_group_desc(sb, i, NULL);
4132 b = ext4_block_bitmap(sb, gdp);
4133 if (b >= first_block && b <= last_block) {
4134 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4135 count++;
4136 }
4137 b = ext4_inode_bitmap(sb, gdp);
4138 if (b >= first_block && b <= last_block) {
4139 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4140 count++;
4141 }
4142 b = ext4_inode_table(sb, gdp);
4143 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4144 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4145 int c = EXT4_B2C(sbi, b - first_block);
4146 ext4_set_bit(c, buf);
4147 count++;
4148 }
4149 if (i != grp)
4150 continue;
4151 s = 0;
4152 if (ext4_bg_has_super(sb, grp)) {
4153 ext4_set_bit(s++, buf);
4154 count++;
4155 }
4156 j = ext4_bg_num_gdb(sb, grp);
4157 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4158 ext4_error(sb, "Invalid number of block group "
4159 "descriptor blocks: %d", j);
4160 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4161 }
4162 count += j;
4163 for (; j > 0; j--)
4164 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4165 }
4166 if (!count)
4167 return 0;
4168 return EXT4_CLUSTERS_PER_GROUP(sb) -
4169 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4170 }
4171
4172 /*
4173 * Compute the overhead and stash it in sbi->s_overhead
4174 */
ext4_calculate_overhead(struct super_block * sb)4175 int ext4_calculate_overhead(struct super_block *sb)
4176 {
4177 struct ext4_sb_info *sbi = EXT4_SB(sb);
4178 struct ext4_super_block *es = sbi->s_es;
4179 struct inode *j_inode;
4180 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4181 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4182 ext4_fsblk_t overhead = 0;
4183 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4184
4185 if (!buf)
4186 return -ENOMEM;
4187
4188 /*
4189 * Compute the overhead (FS structures). This is constant
4190 * for a given filesystem unless the number of block groups
4191 * changes so we cache the previous value until it does.
4192 */
4193
4194 /*
4195 * All of the blocks before first_data_block are overhead
4196 */
4197 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4198
4199 /*
4200 * Add the overhead found in each block group
4201 */
4202 for (i = 0; i < ngroups; i++) {
4203 int blks;
4204
4205 blks = count_overhead(sb, i, buf);
4206 overhead += blks;
4207 if (blks)
4208 memset(buf, 0, PAGE_SIZE);
4209 cond_resched();
4210 }
4211
4212 /*
4213 * Add the internal journal blocks whether the journal has been
4214 * loaded or not
4215 */
4216 if (sbi->s_journal && !sbi->s_journal_bdev_file)
4217 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4218 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4219 /* j_inum for internal journal is non-zero */
4220 j_inode = ext4_get_journal_inode(sb, j_inum);
4221 if (!IS_ERR(j_inode)) {
4222 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4223 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4224 iput(j_inode);
4225 } else {
4226 ext4_msg(sb, KERN_ERR, "can't get journal size");
4227 }
4228 }
4229 sbi->s_overhead = overhead;
4230 smp_wmb();
4231 free_page((unsigned long) buf);
4232 return 0;
4233 }
4234
ext4_set_resv_clusters(struct super_block * sb)4235 static void ext4_set_resv_clusters(struct super_block *sb)
4236 {
4237 ext4_fsblk_t resv_clusters;
4238 struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240 /*
4241 * There's no need to reserve anything when we aren't using extents.
4242 * The space estimates are exact, there are no unwritten extents,
4243 * hole punching doesn't need new metadata... This is needed especially
4244 * to keep ext2/3 backward compatibility.
4245 */
4246 if (!ext4_has_feature_extents(sb))
4247 return;
4248 /*
4249 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4250 * This should cover the situations where we can not afford to run
4251 * out of space like for example punch hole, or converting
4252 * unwritten extents in delalloc path. In most cases such
4253 * allocation would require 1, or 2 blocks, higher numbers are
4254 * very rare.
4255 */
4256 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4257 sbi->s_cluster_bits);
4258
4259 do_div(resv_clusters, 50);
4260 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4261
4262 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4263 }
4264
ext4_quota_mode(struct super_block * sb)4265 static const char *ext4_quota_mode(struct super_block *sb)
4266 {
4267 #ifdef CONFIG_QUOTA
4268 if (!ext4_quota_capable(sb))
4269 return "none";
4270
4271 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4272 return "journalled";
4273 else
4274 return "writeback";
4275 #else
4276 return "disabled";
4277 #endif
4278 }
4279
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4280 static void ext4_setup_csum_trigger(struct super_block *sb,
4281 enum ext4_journal_trigger_type type,
4282 void (*trigger)(
4283 struct jbd2_buffer_trigger_type *type,
4284 struct buffer_head *bh,
4285 void *mapped_data,
4286 size_t size))
4287 {
4288 struct ext4_sb_info *sbi = EXT4_SB(sb);
4289
4290 sbi->s_journal_triggers[type].sb = sb;
4291 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4292 }
4293
ext4_free_sbi(struct ext4_sb_info * sbi)4294 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4295 {
4296 if (!sbi)
4297 return;
4298
4299 kfree(sbi->s_blockgroup_lock);
4300 fs_put_dax(sbi->s_daxdev, NULL);
4301 kfree(sbi);
4302 }
4303
ext4_alloc_sbi(struct super_block * sb)4304 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4305 {
4306 struct ext4_sb_info *sbi;
4307
4308 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4309 if (!sbi)
4310 return NULL;
4311
4312 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4313 NULL, NULL);
4314
4315 sbi->s_blockgroup_lock =
4316 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4317
4318 if (!sbi->s_blockgroup_lock)
4319 goto err_out;
4320
4321 sb->s_fs_info = sbi;
4322 sbi->s_sb = sb;
4323 return sbi;
4324 err_out:
4325 fs_put_dax(sbi->s_daxdev, NULL);
4326 kfree(sbi);
4327 return NULL;
4328 }
4329
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4330 static void ext4_set_def_opts(struct super_block *sb,
4331 struct ext4_super_block *es)
4332 {
4333 unsigned long def_mount_opts;
4334
4335 /* Set defaults before we parse the mount options */
4336 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4337 set_opt(sb, INIT_INODE_TABLE);
4338 if (def_mount_opts & EXT4_DEFM_DEBUG)
4339 set_opt(sb, DEBUG);
4340 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4341 set_opt(sb, GRPID);
4342 if (def_mount_opts & EXT4_DEFM_UID16)
4343 set_opt(sb, NO_UID32);
4344 /* xattr user namespace & acls are now defaulted on */
4345 set_opt(sb, XATTR_USER);
4346 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4347 set_opt(sb, POSIX_ACL);
4348 #endif
4349 if (ext4_has_feature_fast_commit(sb))
4350 set_opt2(sb, JOURNAL_FAST_COMMIT);
4351 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4352 if (ext4_has_feature_metadata_csum(sb))
4353 set_opt(sb, JOURNAL_CHECKSUM);
4354
4355 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4356 set_opt(sb, JOURNAL_DATA);
4357 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4358 set_opt(sb, ORDERED_DATA);
4359 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4360 set_opt(sb, WRITEBACK_DATA);
4361
4362 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4363 set_opt(sb, ERRORS_PANIC);
4364 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4365 set_opt(sb, ERRORS_CONT);
4366 else
4367 set_opt(sb, ERRORS_RO);
4368 /* block_validity enabled by default; disable with noblock_validity */
4369 set_opt(sb, BLOCK_VALIDITY);
4370 if (def_mount_opts & EXT4_DEFM_DISCARD)
4371 set_opt(sb, DISCARD);
4372
4373 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4374 set_opt(sb, BARRIER);
4375
4376 /*
4377 * enable delayed allocation by default
4378 * Use -o nodelalloc to turn it off
4379 */
4380 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4381 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4382 set_opt(sb, DELALLOC);
4383
4384 if (sb->s_blocksize <= PAGE_SIZE)
4385 set_opt(sb, DIOREAD_NOLOCK);
4386 }
4387
ext4_handle_clustersize(struct super_block * sb)4388 static int ext4_handle_clustersize(struct super_block *sb)
4389 {
4390 struct ext4_sb_info *sbi = EXT4_SB(sb);
4391 struct ext4_super_block *es = sbi->s_es;
4392 int clustersize;
4393
4394 /* Handle clustersize */
4395 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4396 if (ext4_has_feature_bigalloc(sb)) {
4397 if (clustersize < sb->s_blocksize) {
4398 ext4_msg(sb, KERN_ERR,
4399 "cluster size (%d) smaller than "
4400 "block size (%lu)", clustersize, sb->s_blocksize);
4401 return -EINVAL;
4402 }
4403 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4404 le32_to_cpu(es->s_log_block_size);
4405 } else {
4406 if (clustersize != sb->s_blocksize) {
4407 ext4_msg(sb, KERN_ERR,
4408 "fragment/cluster size (%d) != "
4409 "block size (%lu)", clustersize, sb->s_blocksize);
4410 return -EINVAL;
4411 }
4412 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4413 ext4_msg(sb, KERN_ERR,
4414 "#blocks per group too big: %lu",
4415 sbi->s_blocks_per_group);
4416 return -EINVAL;
4417 }
4418 sbi->s_cluster_bits = 0;
4419 }
4420 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4421 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4422 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4423 sbi->s_clusters_per_group);
4424 return -EINVAL;
4425 }
4426 if (sbi->s_blocks_per_group !=
4427 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4428 ext4_msg(sb, KERN_ERR,
4429 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4430 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4431 return -EINVAL;
4432 }
4433 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4434
4435 /* Do we have standard group size of clustersize * 8 blocks ? */
4436 if (sbi->s_blocks_per_group == clustersize << 3)
4437 set_opt2(sb, STD_GROUP_SIZE);
4438
4439 return 0;
4440 }
4441
4442 /*
4443 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4444 * @sb: super block
4445 * TODO: Later add support for bigalloc
4446 */
ext4_atomic_write_init(struct super_block * sb)4447 static void ext4_atomic_write_init(struct super_block *sb)
4448 {
4449 struct ext4_sb_info *sbi = EXT4_SB(sb);
4450 struct block_device *bdev = sb->s_bdev;
4451
4452 if (!bdev_can_atomic_write(bdev))
4453 return;
4454
4455 if (!ext4_has_feature_extents(sb))
4456 return;
4457
4458 sbi->s_awu_min = max(sb->s_blocksize,
4459 bdev_atomic_write_unit_min_bytes(bdev));
4460 sbi->s_awu_max = min(sb->s_blocksize,
4461 bdev_atomic_write_unit_max_bytes(bdev));
4462 if (sbi->s_awu_min && sbi->s_awu_max &&
4463 sbi->s_awu_min <= sbi->s_awu_max) {
4464 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4465 sbi->s_awu_min, sbi->s_awu_max);
4466 } else {
4467 sbi->s_awu_min = 0;
4468 sbi->s_awu_max = 0;
4469 }
4470 }
4471
ext4_fast_commit_init(struct super_block * sb)4472 static void ext4_fast_commit_init(struct super_block *sb)
4473 {
4474 struct ext4_sb_info *sbi = EXT4_SB(sb);
4475
4476 /* Initialize fast commit stuff */
4477 atomic_set(&sbi->s_fc_subtid, 0);
4478 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4479 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4480 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4481 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4482 sbi->s_fc_bytes = 0;
4483 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4484 sbi->s_fc_ineligible_tid = 0;
4485 spin_lock_init(&sbi->s_fc_lock);
4486 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4487 sbi->s_fc_replay_state.fc_regions = NULL;
4488 sbi->s_fc_replay_state.fc_regions_size = 0;
4489 sbi->s_fc_replay_state.fc_regions_used = 0;
4490 sbi->s_fc_replay_state.fc_regions_valid = 0;
4491 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4492 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4493 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4494 }
4495
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4496 static int ext4_inode_info_init(struct super_block *sb,
4497 struct ext4_super_block *es)
4498 {
4499 struct ext4_sb_info *sbi = EXT4_SB(sb);
4500
4501 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4502 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4503 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4504 } else {
4505 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4506 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4507 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4508 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4509 sbi->s_first_ino);
4510 return -EINVAL;
4511 }
4512 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4513 (!is_power_of_2(sbi->s_inode_size)) ||
4514 (sbi->s_inode_size > sb->s_blocksize)) {
4515 ext4_msg(sb, KERN_ERR,
4516 "unsupported inode size: %d",
4517 sbi->s_inode_size);
4518 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4519 return -EINVAL;
4520 }
4521 /*
4522 * i_atime_extra is the last extra field available for
4523 * [acm]times in struct ext4_inode. Checking for that
4524 * field should suffice to ensure we have extra space
4525 * for all three.
4526 */
4527 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4528 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4529 sb->s_time_gran = 1;
4530 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4531 } else {
4532 sb->s_time_gran = NSEC_PER_SEC;
4533 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4534 }
4535 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4536 }
4537
4538 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4539 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4540 EXT4_GOOD_OLD_INODE_SIZE;
4541 if (ext4_has_feature_extra_isize(sb)) {
4542 unsigned v, max = (sbi->s_inode_size -
4543 EXT4_GOOD_OLD_INODE_SIZE);
4544
4545 v = le16_to_cpu(es->s_want_extra_isize);
4546 if (v > max) {
4547 ext4_msg(sb, KERN_ERR,
4548 "bad s_want_extra_isize: %d", v);
4549 return -EINVAL;
4550 }
4551 if (sbi->s_want_extra_isize < v)
4552 sbi->s_want_extra_isize = v;
4553
4554 v = le16_to_cpu(es->s_min_extra_isize);
4555 if (v > max) {
4556 ext4_msg(sb, KERN_ERR,
4557 "bad s_min_extra_isize: %d", v);
4558 return -EINVAL;
4559 }
4560 if (sbi->s_want_extra_isize < v)
4561 sbi->s_want_extra_isize = v;
4562 }
4563 }
4564
4565 return 0;
4566 }
4567
4568 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4569 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4570 {
4571 const struct ext4_sb_encodings *encoding_info;
4572 struct unicode_map *encoding;
4573 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4574
4575 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4576 return 0;
4577
4578 encoding_info = ext4_sb_read_encoding(es);
4579 if (!encoding_info) {
4580 ext4_msg(sb, KERN_ERR,
4581 "Encoding requested by superblock is unknown");
4582 return -EINVAL;
4583 }
4584
4585 encoding = utf8_load(encoding_info->version);
4586 if (IS_ERR(encoding)) {
4587 ext4_msg(sb, KERN_ERR,
4588 "can't mount with superblock charset: %s-%u.%u.%u "
4589 "not supported by the kernel. flags: 0x%x.",
4590 encoding_info->name,
4591 unicode_major(encoding_info->version),
4592 unicode_minor(encoding_info->version),
4593 unicode_rev(encoding_info->version),
4594 encoding_flags);
4595 return -EINVAL;
4596 }
4597 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4598 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4599 unicode_major(encoding_info->version),
4600 unicode_minor(encoding_info->version),
4601 unicode_rev(encoding_info->version),
4602 encoding_flags);
4603
4604 sb->s_encoding = encoding;
4605 sb->s_encoding_flags = encoding_flags;
4606
4607 return 0;
4608 }
4609 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4610 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4611 {
4612 return 0;
4613 }
4614 #endif
4615
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4616 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4617 {
4618 struct ext4_sb_info *sbi = EXT4_SB(sb);
4619
4620 /* Warn if metadata_csum and gdt_csum are both set. */
4621 if (ext4_has_feature_metadata_csum(sb) &&
4622 ext4_has_feature_gdt_csum(sb))
4623 ext4_warning(sb, "metadata_csum and uninit_bg are "
4624 "redundant flags; please run fsck.");
4625
4626 /* Check for a known checksum algorithm */
4627 if (!ext4_verify_csum_type(sb, es)) {
4628 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4629 "unknown checksum algorithm.");
4630 return -EINVAL;
4631 }
4632 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4633 ext4_orphan_file_block_trigger);
4634
4635 /* Check superblock checksum */
4636 if (!ext4_superblock_csum_verify(sb, es)) {
4637 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4638 "invalid superblock checksum. Run e2fsck?");
4639 return -EFSBADCRC;
4640 }
4641
4642 /* Precompute checksum seed for all metadata */
4643 if (ext4_has_feature_csum_seed(sb))
4644 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4645 else if (ext4_has_feature_metadata_csum(sb) ||
4646 ext4_has_feature_ea_inode(sb))
4647 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4648 sizeof(es->s_uuid));
4649 return 0;
4650 }
4651
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4652 static int ext4_check_feature_compatibility(struct super_block *sb,
4653 struct ext4_super_block *es,
4654 int silent)
4655 {
4656 struct ext4_sb_info *sbi = EXT4_SB(sb);
4657
4658 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4659 (ext4_has_compat_features(sb) ||
4660 ext4_has_ro_compat_features(sb) ||
4661 ext4_has_incompat_features(sb)))
4662 ext4_msg(sb, KERN_WARNING,
4663 "feature flags set on rev 0 fs, "
4664 "running e2fsck is recommended");
4665
4666 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4667 set_opt2(sb, HURD_COMPAT);
4668 if (ext4_has_feature_64bit(sb)) {
4669 ext4_msg(sb, KERN_ERR,
4670 "The Hurd can't support 64-bit file systems");
4671 return -EINVAL;
4672 }
4673
4674 /*
4675 * ea_inode feature uses l_i_version field which is not
4676 * available in HURD_COMPAT mode.
4677 */
4678 if (ext4_has_feature_ea_inode(sb)) {
4679 ext4_msg(sb, KERN_ERR,
4680 "ea_inode feature is not supported for Hurd");
4681 return -EINVAL;
4682 }
4683 }
4684
4685 if (IS_EXT2_SB(sb)) {
4686 if (ext2_feature_set_ok(sb))
4687 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4688 "using the ext4 subsystem");
4689 else {
4690 /*
4691 * If we're probing be silent, if this looks like
4692 * it's actually an ext[34] filesystem.
4693 */
4694 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4695 return -EINVAL;
4696 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4697 "to feature incompatibilities");
4698 return -EINVAL;
4699 }
4700 }
4701
4702 if (IS_EXT3_SB(sb)) {
4703 if (ext3_feature_set_ok(sb))
4704 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4705 "using the ext4 subsystem");
4706 else {
4707 /*
4708 * If we're probing be silent, if this looks like
4709 * it's actually an ext4 filesystem.
4710 */
4711 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4712 return -EINVAL;
4713 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4714 "to feature incompatibilities");
4715 return -EINVAL;
4716 }
4717 }
4718
4719 /*
4720 * Check feature flags regardless of the revision level, since we
4721 * previously didn't change the revision level when setting the flags,
4722 * so there is a chance incompat flags are set on a rev 0 filesystem.
4723 */
4724 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4725 return -EINVAL;
4726
4727 if (sbi->s_daxdev) {
4728 if (sb->s_blocksize == PAGE_SIZE)
4729 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4730 else
4731 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4732 }
4733
4734 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4735 if (ext4_has_feature_inline_data(sb)) {
4736 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4737 " that may contain inline data");
4738 return -EINVAL;
4739 }
4740 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4741 ext4_msg(sb, KERN_ERR,
4742 "DAX unsupported by block device.");
4743 return -EINVAL;
4744 }
4745 }
4746
4747 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4748 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4749 es->s_encryption_level);
4750 return -EINVAL;
4751 }
4752
4753 return 0;
4754 }
4755
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4756 static int ext4_check_geometry(struct super_block *sb,
4757 struct ext4_super_block *es)
4758 {
4759 struct ext4_sb_info *sbi = EXT4_SB(sb);
4760 __u64 blocks_count;
4761 int err;
4762
4763 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4764 ext4_msg(sb, KERN_ERR,
4765 "Number of reserved GDT blocks insanely large: %d",
4766 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4767 return -EINVAL;
4768 }
4769 /*
4770 * Test whether we have more sectors than will fit in sector_t,
4771 * and whether the max offset is addressable by the page cache.
4772 */
4773 err = generic_check_addressable(sb->s_blocksize_bits,
4774 ext4_blocks_count(es));
4775 if (err) {
4776 ext4_msg(sb, KERN_ERR, "filesystem"
4777 " too large to mount safely on this system");
4778 return err;
4779 }
4780
4781 /* check blocks count against device size */
4782 blocks_count = sb_bdev_nr_blocks(sb);
4783 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4784 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4785 "exceeds size of device (%llu blocks)",
4786 ext4_blocks_count(es), blocks_count);
4787 return -EINVAL;
4788 }
4789
4790 /*
4791 * It makes no sense for the first data block to be beyond the end
4792 * of the filesystem.
4793 */
4794 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4795 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4796 "block %u is beyond end of filesystem (%llu)",
4797 le32_to_cpu(es->s_first_data_block),
4798 ext4_blocks_count(es));
4799 return -EINVAL;
4800 }
4801 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4802 (sbi->s_cluster_ratio == 1)) {
4803 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4804 "block is 0 with a 1k block and cluster size");
4805 return -EINVAL;
4806 }
4807
4808 blocks_count = (ext4_blocks_count(es) -
4809 le32_to_cpu(es->s_first_data_block) +
4810 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4811 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4812 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4813 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4814 "(block count %llu, first data block %u, "
4815 "blocks per group %lu)", blocks_count,
4816 ext4_blocks_count(es),
4817 le32_to_cpu(es->s_first_data_block),
4818 EXT4_BLOCKS_PER_GROUP(sb));
4819 return -EINVAL;
4820 }
4821 sbi->s_groups_count = blocks_count;
4822 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4823 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4824 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4825 le32_to_cpu(es->s_inodes_count)) {
4826 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4827 le32_to_cpu(es->s_inodes_count),
4828 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4829 return -EINVAL;
4830 }
4831
4832 return 0;
4833 }
4834
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4835 static int ext4_group_desc_init(struct super_block *sb,
4836 struct ext4_super_block *es,
4837 ext4_fsblk_t logical_sb_block,
4838 ext4_group_t *first_not_zeroed)
4839 {
4840 struct ext4_sb_info *sbi = EXT4_SB(sb);
4841 unsigned int db_count;
4842 ext4_fsblk_t block;
4843 int i;
4844
4845 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4846 EXT4_DESC_PER_BLOCK(sb);
4847 if (ext4_has_feature_meta_bg(sb)) {
4848 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4849 ext4_msg(sb, KERN_WARNING,
4850 "first meta block group too large: %u "
4851 "(group descriptor block count %u)",
4852 le32_to_cpu(es->s_first_meta_bg), db_count);
4853 return -EINVAL;
4854 }
4855 }
4856 rcu_assign_pointer(sbi->s_group_desc,
4857 kvmalloc_array(db_count,
4858 sizeof(struct buffer_head *),
4859 GFP_KERNEL));
4860 if (sbi->s_group_desc == NULL) {
4861 ext4_msg(sb, KERN_ERR, "not enough memory");
4862 return -ENOMEM;
4863 }
4864
4865 bgl_lock_init(sbi->s_blockgroup_lock);
4866
4867 /* Pre-read the descriptors into the buffer cache */
4868 for (i = 0; i < db_count; i++) {
4869 block = descriptor_loc(sb, logical_sb_block, i);
4870 ext4_sb_breadahead_unmovable(sb, block);
4871 }
4872
4873 for (i = 0; i < db_count; i++) {
4874 struct buffer_head *bh;
4875
4876 block = descriptor_loc(sb, logical_sb_block, i);
4877 bh = ext4_sb_bread_unmovable(sb, block);
4878 if (IS_ERR(bh)) {
4879 ext4_msg(sb, KERN_ERR,
4880 "can't read group descriptor %d", i);
4881 sbi->s_gdb_count = i;
4882 return PTR_ERR(bh);
4883 }
4884 rcu_read_lock();
4885 rcu_dereference(sbi->s_group_desc)[i] = bh;
4886 rcu_read_unlock();
4887 }
4888 sbi->s_gdb_count = db_count;
4889 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4890 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4891 return -EFSCORRUPTED;
4892 }
4893
4894 return 0;
4895 }
4896
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4897 static int ext4_load_and_init_journal(struct super_block *sb,
4898 struct ext4_super_block *es,
4899 struct ext4_fs_context *ctx)
4900 {
4901 struct ext4_sb_info *sbi = EXT4_SB(sb);
4902 int err;
4903
4904 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4905 if (err)
4906 return err;
4907
4908 if (ext4_has_feature_64bit(sb) &&
4909 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4910 JBD2_FEATURE_INCOMPAT_64BIT)) {
4911 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4912 goto out;
4913 }
4914
4915 if (!set_journal_csum_feature_set(sb)) {
4916 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4917 "feature set");
4918 goto out;
4919 }
4920
4921 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4922 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4923 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4924 ext4_msg(sb, KERN_ERR,
4925 "Failed to set fast commit journal feature");
4926 goto out;
4927 }
4928
4929 /* We have now updated the journal if required, so we can
4930 * validate the data journaling mode. */
4931 switch (test_opt(sb, DATA_FLAGS)) {
4932 case 0:
4933 /* No mode set, assume a default based on the journal
4934 * capabilities: ORDERED_DATA if the journal can
4935 * cope, else JOURNAL_DATA
4936 */
4937 if (jbd2_journal_check_available_features
4938 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4939 set_opt(sb, ORDERED_DATA);
4940 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4941 } else {
4942 set_opt(sb, JOURNAL_DATA);
4943 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4944 }
4945 break;
4946
4947 case EXT4_MOUNT_ORDERED_DATA:
4948 case EXT4_MOUNT_WRITEBACK_DATA:
4949 if (!jbd2_journal_check_available_features
4950 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4951 ext4_msg(sb, KERN_ERR, "Journal does not support "
4952 "requested data journaling mode");
4953 goto out;
4954 }
4955 break;
4956 default:
4957 break;
4958 }
4959
4960 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4961 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4962 ext4_msg(sb, KERN_ERR, "can't mount with "
4963 "journal_async_commit in data=ordered mode");
4964 goto out;
4965 }
4966
4967 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4968
4969 sbi->s_journal->j_submit_inode_data_buffers =
4970 ext4_journal_submit_inode_data_buffers;
4971 sbi->s_journal->j_finish_inode_data_buffers =
4972 ext4_journal_finish_inode_data_buffers;
4973
4974 return 0;
4975
4976 out:
4977 ext4_journal_destroy(sbi, sbi->s_journal);
4978 return -EINVAL;
4979 }
4980
ext4_check_journal_data_mode(struct super_block * sb)4981 static int ext4_check_journal_data_mode(struct super_block *sb)
4982 {
4983 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4984 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4985 "data=journal disables delayed allocation, "
4986 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4987 /* can't mount with both data=journal and dioread_nolock. */
4988 clear_opt(sb, DIOREAD_NOLOCK);
4989 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4990 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4991 ext4_msg(sb, KERN_ERR, "can't mount with "
4992 "both data=journal and delalloc");
4993 return -EINVAL;
4994 }
4995 if (test_opt(sb, DAX_ALWAYS)) {
4996 ext4_msg(sb, KERN_ERR, "can't mount with "
4997 "both data=journal and dax");
4998 return -EINVAL;
4999 }
5000 if (ext4_has_feature_encrypt(sb)) {
5001 ext4_msg(sb, KERN_WARNING,
5002 "encrypted files will use data=ordered "
5003 "instead of data journaling mode");
5004 }
5005 if (test_opt(sb, DELALLOC))
5006 clear_opt(sb, DELALLOC);
5007 } else {
5008 sb->s_iflags |= SB_I_CGROUPWB;
5009 }
5010
5011 return 0;
5012 }
5013
ext4_has_journal_option(struct super_block * sb)5014 static const char *ext4_has_journal_option(struct super_block *sb)
5015 {
5016 struct ext4_sb_info *sbi = EXT4_SB(sb);
5017
5018 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5019 return "journal_async_commit";
5020 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5021 return "journal_checksum";
5022 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5023 return "commit=";
5024 if (EXT4_MOUNT_DATA_FLAGS &
5025 (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5026 return "data=";
5027 if (test_opt(sb, DATA_ERR_ABORT))
5028 return "data_err=abort";
5029 return NULL;
5030 }
5031
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5032 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5033 int silent)
5034 {
5035 struct ext4_sb_info *sbi = EXT4_SB(sb);
5036 struct ext4_super_block *es;
5037 ext4_fsblk_t logical_sb_block;
5038 unsigned long offset = 0;
5039 struct buffer_head *bh;
5040 int ret = -EINVAL;
5041 int blocksize;
5042
5043 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5044 if (!blocksize) {
5045 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5046 return -EINVAL;
5047 }
5048
5049 /*
5050 * The ext4 superblock will not be buffer aligned for other than 1kB
5051 * block sizes. We need to calculate the offset from buffer start.
5052 */
5053 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5054 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5055 offset = do_div(logical_sb_block, blocksize);
5056 } else {
5057 logical_sb_block = sbi->s_sb_block;
5058 }
5059
5060 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5061 if (IS_ERR(bh)) {
5062 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5063 return PTR_ERR(bh);
5064 }
5065 /*
5066 * Note: s_es must be initialized as soon as possible because
5067 * some ext4 macro-instructions depend on its value
5068 */
5069 es = (struct ext4_super_block *) (bh->b_data + offset);
5070 sbi->s_es = es;
5071 sb->s_magic = le16_to_cpu(es->s_magic);
5072 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5073 if (!silent)
5074 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5075 goto out;
5076 }
5077
5078 if (le32_to_cpu(es->s_log_block_size) >
5079 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5080 ext4_msg(sb, KERN_ERR,
5081 "Invalid log block size: %u",
5082 le32_to_cpu(es->s_log_block_size));
5083 goto out;
5084 }
5085 if (le32_to_cpu(es->s_log_cluster_size) >
5086 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5087 ext4_msg(sb, KERN_ERR,
5088 "Invalid log cluster size: %u",
5089 le32_to_cpu(es->s_log_cluster_size));
5090 goto out;
5091 }
5092
5093 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5094
5095 /*
5096 * If the default block size is not the same as the real block size,
5097 * we need to reload it.
5098 */
5099 if (sb->s_blocksize == blocksize) {
5100 *lsb = logical_sb_block;
5101 sbi->s_sbh = bh;
5102 return 0;
5103 }
5104
5105 /*
5106 * bh must be released before kill_bdev(), otherwise
5107 * it won't be freed and its page also. kill_bdev()
5108 * is called by sb_set_blocksize().
5109 */
5110 brelse(bh);
5111 /* Validate the filesystem blocksize */
5112 if (!sb_set_blocksize(sb, blocksize)) {
5113 ext4_msg(sb, KERN_ERR, "bad block size %d",
5114 blocksize);
5115 bh = NULL;
5116 goto out;
5117 }
5118
5119 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5120 offset = do_div(logical_sb_block, blocksize);
5121 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5122 if (IS_ERR(bh)) {
5123 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5124 ret = PTR_ERR(bh);
5125 bh = NULL;
5126 goto out;
5127 }
5128 es = (struct ext4_super_block *)(bh->b_data + offset);
5129 sbi->s_es = es;
5130 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5131 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5132 goto out;
5133 }
5134 *lsb = logical_sb_block;
5135 sbi->s_sbh = bh;
5136 return 0;
5137 out:
5138 brelse(bh);
5139 return ret;
5140 }
5141
ext4_hash_info_init(struct super_block * sb)5142 static int ext4_hash_info_init(struct super_block *sb)
5143 {
5144 struct ext4_sb_info *sbi = EXT4_SB(sb);
5145 struct ext4_super_block *es = sbi->s_es;
5146 unsigned int i;
5147
5148 sbi->s_def_hash_version = es->s_def_hash_version;
5149
5150 if (sbi->s_def_hash_version > DX_HASH_LAST) {
5151 ext4_msg(sb, KERN_ERR,
5152 "Invalid default hash set in the superblock");
5153 return -EINVAL;
5154 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5155 ext4_msg(sb, KERN_ERR,
5156 "SIPHASH is not a valid default hash value");
5157 return -EINVAL;
5158 }
5159
5160 for (i = 0; i < 4; i++)
5161 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5162
5163 if (ext4_has_feature_dir_index(sb)) {
5164 i = le32_to_cpu(es->s_flags);
5165 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5166 sbi->s_hash_unsigned = 3;
5167 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5168 #ifdef __CHAR_UNSIGNED__
5169 if (!sb_rdonly(sb))
5170 es->s_flags |=
5171 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5172 sbi->s_hash_unsigned = 3;
5173 #else
5174 if (!sb_rdonly(sb))
5175 es->s_flags |=
5176 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5177 #endif
5178 }
5179 }
5180 return 0;
5181 }
5182
ext4_block_group_meta_init(struct super_block * sb,int silent)5183 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5184 {
5185 struct ext4_sb_info *sbi = EXT4_SB(sb);
5186 struct ext4_super_block *es = sbi->s_es;
5187 int has_huge_files;
5188
5189 has_huge_files = ext4_has_feature_huge_file(sb);
5190 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5191 has_huge_files);
5192 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5193
5194 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5195 if (ext4_has_feature_64bit(sb)) {
5196 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5197 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5198 !is_power_of_2(sbi->s_desc_size)) {
5199 ext4_msg(sb, KERN_ERR,
5200 "unsupported descriptor size %lu",
5201 sbi->s_desc_size);
5202 return -EINVAL;
5203 }
5204 } else
5205 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5206
5207 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5208 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5209
5210 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5211 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5212 if (!silent)
5213 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5214 return -EINVAL;
5215 }
5216 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5217 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5218 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5219 sbi->s_inodes_per_group);
5220 return -EINVAL;
5221 }
5222 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5223 sbi->s_inodes_per_block;
5224 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5225 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5226 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5227 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5228
5229 return 0;
5230 }
5231
5232 /*
5233 * It's hard to get stripe aligned blocks if stripe is not aligned with
5234 * cluster, just disable stripe and alert user to simplify code and avoid
5235 * stripe aligned allocation which will rarely succeed.
5236 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5237 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5238 {
5239 struct ext4_sb_info *sbi = EXT4_SB(sb);
5240 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5241 stripe % sbi->s_cluster_ratio != 0);
5242 }
5243
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5244 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5245 {
5246 struct ext4_super_block *es = NULL;
5247 struct ext4_sb_info *sbi = EXT4_SB(sb);
5248 ext4_fsblk_t logical_sb_block;
5249 struct inode *root;
5250 int needs_recovery;
5251 int err;
5252 ext4_group_t first_not_zeroed;
5253 struct ext4_fs_context *ctx = fc->fs_private;
5254 int silent = fc->sb_flags & SB_SILENT;
5255
5256 /* Set defaults for the variables that will be set during parsing */
5257 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5258 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5259
5260 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5261 sbi->s_sectors_written_start =
5262 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5263
5264 err = ext4_load_super(sb, &logical_sb_block, silent);
5265 if (err)
5266 goto out_fail;
5267
5268 es = sbi->s_es;
5269 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5270
5271 err = ext4_init_metadata_csum(sb, es);
5272 if (err)
5273 goto failed_mount;
5274
5275 ext4_set_def_opts(sb, es);
5276
5277 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5278 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5279 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5280 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5281 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5282 sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5283 sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5284
5285 /*
5286 * set default s_li_wait_mult for lazyinit, for the case there is
5287 * no mount option specified.
5288 */
5289 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5290
5291 err = ext4_inode_info_init(sb, es);
5292 if (err)
5293 goto failed_mount;
5294
5295 err = parse_apply_sb_mount_options(sb, ctx);
5296 if (err < 0)
5297 goto failed_mount;
5298
5299 sbi->s_def_mount_opt = sbi->s_mount_opt;
5300 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5301
5302 err = ext4_check_opt_consistency(fc, sb);
5303 if (err < 0)
5304 goto failed_mount;
5305
5306 ext4_apply_options(fc, sb);
5307
5308 err = ext4_encoding_init(sb, es);
5309 if (err)
5310 goto failed_mount;
5311
5312 err = ext4_check_journal_data_mode(sb);
5313 if (err)
5314 goto failed_mount;
5315
5316 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5317 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5318
5319 /* i_version is always enabled now */
5320 sb->s_flags |= SB_I_VERSION;
5321
5322 /* HSM events are allowed by default. */
5323 sb->s_iflags |= SB_I_ALLOW_HSM;
5324
5325 err = ext4_check_feature_compatibility(sb, es, silent);
5326 if (err)
5327 goto failed_mount;
5328
5329 err = ext4_block_group_meta_init(sb, silent);
5330 if (err)
5331 goto failed_mount;
5332
5333 err = ext4_hash_info_init(sb);
5334 if (err)
5335 goto failed_mount;
5336
5337 err = ext4_handle_clustersize(sb);
5338 if (err)
5339 goto failed_mount;
5340
5341 err = ext4_check_geometry(sb, es);
5342 if (err)
5343 goto failed_mount;
5344
5345 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5346 spin_lock_init(&sbi->s_error_lock);
5347 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5348
5349 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5350 if (err)
5351 goto failed_mount3;
5352
5353 err = ext4_es_register_shrinker(sbi);
5354 if (err)
5355 goto failed_mount3;
5356
5357 sbi->s_stripe = ext4_get_stripe_size(sbi);
5358 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5359 ext4_msg(sb, KERN_WARNING,
5360 "stripe (%lu) is not aligned with cluster size (%u), "
5361 "stripe is disabled",
5362 sbi->s_stripe, sbi->s_cluster_ratio);
5363 sbi->s_stripe = 0;
5364 }
5365 sbi->s_extent_max_zeroout_kb = 32;
5366
5367 /*
5368 * set up enough so that it can read an inode
5369 */
5370 sb->s_op = &ext4_sops;
5371 sb->s_export_op = &ext4_export_ops;
5372 sb->s_xattr = ext4_xattr_handlers;
5373 #ifdef CONFIG_FS_ENCRYPTION
5374 sb->s_cop = &ext4_cryptops;
5375 #endif
5376 #ifdef CONFIG_FS_VERITY
5377 sb->s_vop = &ext4_verityops;
5378 #endif
5379 #ifdef CONFIG_QUOTA
5380 sb->dq_op = &ext4_quota_operations;
5381 if (ext4_has_feature_quota(sb))
5382 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5383 else
5384 sb->s_qcop = &ext4_qctl_operations;
5385 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5386 #endif
5387 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5388 super_set_sysfs_name_bdev(sb);
5389
5390 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5391 mutex_init(&sbi->s_orphan_lock);
5392
5393 spin_lock_init(&sbi->s_bdev_wb_lock);
5394
5395 ext4_atomic_write_init(sb);
5396 ext4_fast_commit_init(sb);
5397
5398 sb->s_root = NULL;
5399
5400 needs_recovery = (es->s_last_orphan != 0 ||
5401 ext4_has_feature_orphan_present(sb) ||
5402 ext4_has_feature_journal_needs_recovery(sb));
5403
5404 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5405 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5406 if (err)
5407 goto failed_mount3a;
5408 }
5409
5410 err = -EINVAL;
5411 /*
5412 * The first inode we look at is the journal inode. Don't try
5413 * root first: it may be modified in the journal!
5414 */
5415 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5416 err = ext4_load_and_init_journal(sb, es, ctx);
5417 if (err)
5418 goto failed_mount3a;
5419 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5420 ext4_has_feature_journal_needs_recovery(sb)) {
5421 ext4_msg(sb, KERN_ERR, "required journal recovery "
5422 "suppressed and not mounted read-only");
5423 goto failed_mount3a;
5424 } else {
5425 const char *journal_option;
5426
5427 /* Nojournal mode, all journal mount options are illegal */
5428 journal_option = ext4_has_journal_option(sb);
5429 if (journal_option != NULL) {
5430 ext4_msg(sb, KERN_ERR,
5431 "can't mount with %s, fs mounted w/o journal",
5432 journal_option);
5433 goto failed_mount3a;
5434 }
5435
5436 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5437 clear_opt(sb, JOURNAL_CHECKSUM);
5438 clear_opt(sb, DATA_FLAGS);
5439 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5440 sbi->s_journal = NULL;
5441 needs_recovery = 0;
5442 }
5443
5444 if (!test_opt(sb, NO_MBCACHE)) {
5445 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5446 if (!sbi->s_ea_block_cache) {
5447 ext4_msg(sb, KERN_ERR,
5448 "Failed to create ea_block_cache");
5449 err = -EINVAL;
5450 goto failed_mount_wq;
5451 }
5452
5453 if (ext4_has_feature_ea_inode(sb)) {
5454 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5455 if (!sbi->s_ea_inode_cache) {
5456 ext4_msg(sb, KERN_ERR,
5457 "Failed to create ea_inode_cache");
5458 err = -EINVAL;
5459 goto failed_mount_wq;
5460 }
5461 }
5462 }
5463
5464 /*
5465 * Get the # of file system overhead blocks from the
5466 * superblock if present.
5467 */
5468 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5469 /* ignore the precalculated value if it is ridiculous */
5470 if (sbi->s_overhead > ext4_blocks_count(es))
5471 sbi->s_overhead = 0;
5472 /*
5473 * If the bigalloc feature is not enabled recalculating the
5474 * overhead doesn't take long, so we might as well just redo
5475 * it to make sure we are using the correct value.
5476 */
5477 if (!ext4_has_feature_bigalloc(sb))
5478 sbi->s_overhead = 0;
5479 if (sbi->s_overhead == 0) {
5480 err = ext4_calculate_overhead(sb);
5481 if (err)
5482 goto failed_mount_wq;
5483 }
5484
5485 /*
5486 * The maximum number of concurrent works can be high and
5487 * concurrency isn't really necessary. Limit it to 1.
5488 */
5489 EXT4_SB(sb)->rsv_conversion_wq =
5490 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5491 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5492 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5493 err = -ENOMEM;
5494 goto failed_mount4;
5495 }
5496
5497 /*
5498 * The jbd2_journal_load will have done any necessary log recovery,
5499 * so we can safely mount the rest of the filesystem now.
5500 */
5501
5502 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5503 if (IS_ERR(root)) {
5504 ext4_msg(sb, KERN_ERR, "get root inode failed");
5505 err = PTR_ERR(root);
5506 root = NULL;
5507 goto failed_mount4;
5508 }
5509 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5510 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5511 iput(root);
5512 err = -EFSCORRUPTED;
5513 goto failed_mount4;
5514 }
5515
5516 generic_set_sb_d_ops(sb);
5517 sb->s_root = d_make_root(root);
5518 if (!sb->s_root) {
5519 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5520 err = -ENOMEM;
5521 goto failed_mount4;
5522 }
5523
5524 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5525 if (err == -EROFS) {
5526 sb->s_flags |= SB_RDONLY;
5527 } else if (err)
5528 goto failed_mount4a;
5529
5530 ext4_set_resv_clusters(sb);
5531
5532 if (test_opt(sb, BLOCK_VALIDITY)) {
5533 err = ext4_setup_system_zone(sb);
5534 if (err) {
5535 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5536 "zone (%d)", err);
5537 goto failed_mount4a;
5538 }
5539 }
5540 ext4_fc_replay_cleanup(sb);
5541
5542 ext4_ext_init(sb);
5543
5544 /*
5545 * Enable optimize_scan if number of groups is > threshold. This can be
5546 * turned off by passing "mb_optimize_scan=0". This can also be
5547 * turned on forcefully by passing "mb_optimize_scan=1".
5548 */
5549 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5550 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5551 set_opt2(sb, MB_OPTIMIZE_SCAN);
5552 else
5553 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5554 }
5555
5556 err = ext4_mb_init(sb);
5557 if (err) {
5558 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5559 err);
5560 goto failed_mount5;
5561 }
5562
5563 /*
5564 * We can only set up the journal commit callback once
5565 * mballoc is initialized
5566 */
5567 if (sbi->s_journal)
5568 sbi->s_journal->j_commit_callback =
5569 ext4_journal_commit_callback;
5570
5571 err = ext4_percpu_param_init(sbi);
5572 if (err)
5573 goto failed_mount6;
5574
5575 if (ext4_has_feature_flex_bg(sb))
5576 if (!ext4_fill_flex_info(sb)) {
5577 ext4_msg(sb, KERN_ERR,
5578 "unable to initialize "
5579 "flex_bg meta info!");
5580 err = -ENOMEM;
5581 goto failed_mount6;
5582 }
5583
5584 err = ext4_register_li_request(sb, first_not_zeroed);
5585 if (err)
5586 goto failed_mount6;
5587
5588 err = ext4_init_orphan_info(sb);
5589 if (err)
5590 goto failed_mount7;
5591 #ifdef CONFIG_QUOTA
5592 /* Enable quota usage during mount. */
5593 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5594 err = ext4_enable_quotas(sb);
5595 if (err)
5596 goto failed_mount8;
5597 }
5598 #endif /* CONFIG_QUOTA */
5599
5600 /*
5601 * Save the original bdev mapping's wb_err value which could be
5602 * used to detect the metadata async write error.
5603 */
5604 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5605 &sbi->s_bdev_wb_err);
5606 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5607 ext4_orphan_cleanup(sb, es);
5608 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5609 /*
5610 * Update the checksum after updating free space/inode counters and
5611 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5612 * checksum in the buffer cache until it is written out and
5613 * e2fsprogs programs trying to open a file system immediately
5614 * after it is mounted can fail.
5615 */
5616 ext4_superblock_csum_set(sb);
5617 if (needs_recovery) {
5618 ext4_msg(sb, KERN_INFO, "recovery complete");
5619 err = ext4_mark_recovery_complete(sb, es);
5620 if (err)
5621 goto failed_mount9;
5622 }
5623
5624 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5625 ext4_msg(sb, KERN_WARNING,
5626 "mounting with \"discard\" option, but the device does not support discard");
5627 clear_opt(sb, DISCARD);
5628 }
5629
5630 if (es->s_error_count)
5631 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5632
5633 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5634 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5635 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5636 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5637 atomic_set(&sbi->s_warning_count, 0);
5638 atomic_set(&sbi->s_msg_count, 0);
5639
5640 /* Register sysfs after all initializations are complete. */
5641 err = ext4_register_sysfs(sb);
5642 if (err)
5643 goto failed_mount9;
5644
5645 return 0;
5646
5647 failed_mount9:
5648 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5649 failed_mount8: __maybe_unused
5650 ext4_release_orphan_info(sb);
5651 failed_mount7:
5652 ext4_unregister_li_request(sb);
5653 failed_mount6:
5654 ext4_mb_release(sb);
5655 ext4_flex_groups_free(sbi);
5656 ext4_percpu_param_destroy(sbi);
5657 failed_mount5:
5658 ext4_ext_release(sb);
5659 ext4_release_system_zone(sb);
5660 failed_mount4a:
5661 dput(sb->s_root);
5662 sb->s_root = NULL;
5663 failed_mount4:
5664 ext4_msg(sb, KERN_ERR, "mount failed");
5665 if (EXT4_SB(sb)->rsv_conversion_wq)
5666 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5667 failed_mount_wq:
5668 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5669 sbi->s_ea_inode_cache = NULL;
5670
5671 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5672 sbi->s_ea_block_cache = NULL;
5673
5674 if (sbi->s_journal) {
5675 ext4_journal_destroy(sbi, sbi->s_journal);
5676 }
5677 failed_mount3a:
5678 ext4_es_unregister_shrinker(sbi);
5679 failed_mount3:
5680 /* flush s_sb_upd_work before sbi destroy */
5681 flush_work(&sbi->s_sb_upd_work);
5682 ext4_stop_mmpd(sbi);
5683 del_timer_sync(&sbi->s_err_report);
5684 ext4_group_desc_free(sbi);
5685 failed_mount:
5686 #if IS_ENABLED(CONFIG_UNICODE)
5687 utf8_unload(sb->s_encoding);
5688 #endif
5689
5690 #ifdef CONFIG_QUOTA
5691 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5692 kfree(get_qf_name(sb, sbi, i));
5693 #endif
5694 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5695 brelse(sbi->s_sbh);
5696 if (sbi->s_journal_bdev_file) {
5697 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5698 bdev_fput(sbi->s_journal_bdev_file);
5699 }
5700 out_fail:
5701 invalidate_bdev(sb->s_bdev);
5702 sb->s_fs_info = NULL;
5703 return err;
5704 }
5705
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5706 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5707 {
5708 struct ext4_fs_context *ctx = fc->fs_private;
5709 struct ext4_sb_info *sbi;
5710 const char *descr;
5711 int ret;
5712
5713 sbi = ext4_alloc_sbi(sb);
5714 if (!sbi)
5715 return -ENOMEM;
5716
5717 fc->s_fs_info = sbi;
5718
5719 /* Cleanup superblock name */
5720 strreplace(sb->s_id, '/', '!');
5721
5722 sbi->s_sb_block = 1; /* Default super block location */
5723 if (ctx->spec & EXT4_SPEC_s_sb_block)
5724 sbi->s_sb_block = ctx->s_sb_block;
5725
5726 ret = __ext4_fill_super(fc, sb);
5727 if (ret < 0)
5728 goto free_sbi;
5729
5730 if (sbi->s_journal) {
5731 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5732 descr = " journalled data mode";
5733 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5734 descr = " ordered data mode";
5735 else
5736 descr = " writeback data mode";
5737 } else
5738 descr = "out journal";
5739
5740 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5741 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5742 "Quota mode: %s.", &sb->s_uuid,
5743 sb_rdonly(sb) ? "ro" : "r/w", descr,
5744 ext4_quota_mode(sb));
5745
5746 /* Update the s_overhead_clusters if necessary */
5747 ext4_update_overhead(sb, false);
5748 return 0;
5749
5750 free_sbi:
5751 ext4_free_sbi(sbi);
5752 fc->s_fs_info = NULL;
5753 return ret;
5754 }
5755
ext4_get_tree(struct fs_context * fc)5756 static int ext4_get_tree(struct fs_context *fc)
5757 {
5758 return get_tree_bdev(fc, ext4_fill_super);
5759 }
5760
5761 /*
5762 * Setup any per-fs journal parameters now. We'll do this both on
5763 * initial mount, once the journal has been initialised but before we've
5764 * done any recovery; and again on any subsequent remount.
5765 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5766 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5767 {
5768 struct ext4_sb_info *sbi = EXT4_SB(sb);
5769
5770 journal->j_commit_interval = sbi->s_commit_interval;
5771 journal->j_min_batch_time = sbi->s_min_batch_time;
5772 journal->j_max_batch_time = sbi->s_max_batch_time;
5773 ext4_fc_init(sb, journal);
5774
5775 write_lock(&journal->j_state_lock);
5776 if (test_opt(sb, BARRIER))
5777 journal->j_flags |= JBD2_BARRIER;
5778 else
5779 journal->j_flags &= ~JBD2_BARRIER;
5780 /*
5781 * Always enable journal cycle record option, letting the journal
5782 * records log transactions continuously between each mount.
5783 */
5784 journal->j_flags |= JBD2_CYCLE_RECORD;
5785 write_unlock(&journal->j_state_lock);
5786 }
5787
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5788 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5789 unsigned int journal_inum)
5790 {
5791 struct inode *journal_inode;
5792
5793 /*
5794 * Test for the existence of a valid inode on disk. Bad things
5795 * happen if we iget() an unused inode, as the subsequent iput()
5796 * will try to delete it.
5797 */
5798 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5799 if (IS_ERR(journal_inode)) {
5800 ext4_msg(sb, KERN_ERR, "no journal found");
5801 return ERR_CAST(journal_inode);
5802 }
5803 if (!journal_inode->i_nlink) {
5804 make_bad_inode(journal_inode);
5805 iput(journal_inode);
5806 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5807 return ERR_PTR(-EFSCORRUPTED);
5808 }
5809 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5810 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5811 iput(journal_inode);
5812 return ERR_PTR(-EFSCORRUPTED);
5813 }
5814
5815 ext4_debug("Journal inode found at %p: %lld bytes\n",
5816 journal_inode, journal_inode->i_size);
5817 return journal_inode;
5818 }
5819
ext4_journal_bmap(journal_t * journal,sector_t * block)5820 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5821 {
5822 struct ext4_map_blocks map;
5823 int ret;
5824
5825 if (journal->j_inode == NULL)
5826 return 0;
5827
5828 map.m_lblk = *block;
5829 map.m_len = 1;
5830 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5831 if (ret <= 0) {
5832 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5833 "journal bmap failed: block %llu ret %d\n",
5834 *block, ret);
5835 jbd2_journal_abort(journal, ret ? ret : -EIO);
5836 return ret;
5837 }
5838 *block = map.m_pblk;
5839 return 0;
5840 }
5841
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5842 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5843 unsigned int journal_inum)
5844 {
5845 struct inode *journal_inode;
5846 journal_t *journal;
5847
5848 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5849 if (IS_ERR(journal_inode))
5850 return ERR_CAST(journal_inode);
5851
5852 journal = jbd2_journal_init_inode(journal_inode);
5853 if (IS_ERR(journal)) {
5854 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5855 iput(journal_inode);
5856 return ERR_CAST(journal);
5857 }
5858 journal->j_private = sb;
5859 journal->j_bmap = ext4_journal_bmap;
5860 ext4_init_journal_params(sb, journal);
5861 return journal;
5862 }
5863
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5864 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5865 dev_t j_dev, ext4_fsblk_t *j_start,
5866 ext4_fsblk_t *j_len)
5867 {
5868 struct buffer_head *bh;
5869 struct block_device *bdev;
5870 struct file *bdev_file;
5871 int hblock, blocksize;
5872 ext4_fsblk_t sb_block;
5873 unsigned long offset;
5874 struct ext4_super_block *es;
5875 int errno;
5876
5877 bdev_file = bdev_file_open_by_dev(j_dev,
5878 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5879 sb, &fs_holder_ops);
5880 if (IS_ERR(bdev_file)) {
5881 ext4_msg(sb, KERN_ERR,
5882 "failed to open journal device unknown-block(%u,%u) %ld",
5883 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5884 return bdev_file;
5885 }
5886
5887 bdev = file_bdev(bdev_file);
5888 blocksize = sb->s_blocksize;
5889 hblock = bdev_logical_block_size(bdev);
5890 if (blocksize < hblock) {
5891 ext4_msg(sb, KERN_ERR,
5892 "blocksize too small for journal device");
5893 errno = -EINVAL;
5894 goto out_bdev;
5895 }
5896
5897 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5898 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5899 set_blocksize(bdev_file, blocksize);
5900 bh = __bread(bdev, sb_block, blocksize);
5901 if (!bh) {
5902 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5903 "external journal");
5904 errno = -EINVAL;
5905 goto out_bdev;
5906 }
5907
5908 es = (struct ext4_super_block *) (bh->b_data + offset);
5909 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5910 !(le32_to_cpu(es->s_feature_incompat) &
5911 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5912 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5913 errno = -EFSCORRUPTED;
5914 goto out_bh;
5915 }
5916
5917 if ((le32_to_cpu(es->s_feature_ro_compat) &
5918 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5919 es->s_checksum != ext4_superblock_csum(sb, es)) {
5920 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5921 errno = -EFSCORRUPTED;
5922 goto out_bh;
5923 }
5924
5925 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5926 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5927 errno = -EFSCORRUPTED;
5928 goto out_bh;
5929 }
5930
5931 *j_start = sb_block + 1;
5932 *j_len = ext4_blocks_count(es);
5933 brelse(bh);
5934 return bdev_file;
5935
5936 out_bh:
5937 brelse(bh);
5938 out_bdev:
5939 bdev_fput(bdev_file);
5940 return ERR_PTR(errno);
5941 }
5942
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5943 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5944 dev_t j_dev)
5945 {
5946 journal_t *journal;
5947 ext4_fsblk_t j_start;
5948 ext4_fsblk_t j_len;
5949 struct file *bdev_file;
5950 int errno = 0;
5951
5952 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5953 if (IS_ERR(bdev_file))
5954 return ERR_CAST(bdev_file);
5955
5956 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5957 j_len, sb->s_blocksize);
5958 if (IS_ERR(journal)) {
5959 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5960 errno = PTR_ERR(journal);
5961 goto out_bdev;
5962 }
5963 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5964 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5965 "user (unsupported) - %d",
5966 be32_to_cpu(journal->j_superblock->s_nr_users));
5967 errno = -EINVAL;
5968 goto out_journal;
5969 }
5970 journal->j_private = sb;
5971 EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5972 ext4_init_journal_params(sb, journal);
5973 return journal;
5974
5975 out_journal:
5976 ext4_journal_destroy(EXT4_SB(sb), journal);
5977 out_bdev:
5978 bdev_fput(bdev_file);
5979 return ERR_PTR(errno);
5980 }
5981
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5982 static int ext4_load_journal(struct super_block *sb,
5983 struct ext4_super_block *es,
5984 unsigned long journal_devnum)
5985 {
5986 journal_t *journal;
5987 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5988 dev_t journal_dev;
5989 int err = 0;
5990 int really_read_only;
5991 int journal_dev_ro;
5992
5993 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5994 return -EFSCORRUPTED;
5995
5996 if (journal_devnum &&
5997 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5998 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5999 "numbers have changed");
6000 journal_dev = new_decode_dev(journal_devnum);
6001 } else
6002 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6003
6004 if (journal_inum && journal_dev) {
6005 ext4_msg(sb, KERN_ERR,
6006 "filesystem has both journal inode and journal device!");
6007 return -EINVAL;
6008 }
6009
6010 if (journal_inum) {
6011 journal = ext4_open_inode_journal(sb, journal_inum);
6012 if (IS_ERR(journal))
6013 return PTR_ERR(journal);
6014 } else {
6015 journal = ext4_open_dev_journal(sb, journal_dev);
6016 if (IS_ERR(journal))
6017 return PTR_ERR(journal);
6018 }
6019
6020 journal_dev_ro = bdev_read_only(journal->j_dev);
6021 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6022
6023 if (journal_dev_ro && !sb_rdonly(sb)) {
6024 ext4_msg(sb, KERN_ERR,
6025 "journal device read-only, try mounting with '-o ro'");
6026 err = -EROFS;
6027 goto err_out;
6028 }
6029
6030 /*
6031 * Are we loading a blank journal or performing recovery after a
6032 * crash? For recovery, we need to check in advance whether we
6033 * can get read-write access to the device.
6034 */
6035 if (ext4_has_feature_journal_needs_recovery(sb)) {
6036 if (sb_rdonly(sb)) {
6037 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6038 "required on readonly filesystem");
6039 if (really_read_only) {
6040 ext4_msg(sb, KERN_ERR, "write access "
6041 "unavailable, cannot proceed "
6042 "(try mounting with noload)");
6043 err = -EROFS;
6044 goto err_out;
6045 }
6046 ext4_msg(sb, KERN_INFO, "write access will "
6047 "be enabled during recovery");
6048 }
6049 }
6050
6051 if (!(journal->j_flags & JBD2_BARRIER))
6052 ext4_msg(sb, KERN_INFO, "barriers disabled");
6053
6054 if (!ext4_has_feature_journal_needs_recovery(sb))
6055 err = jbd2_journal_wipe(journal, !really_read_only);
6056 if (!err) {
6057 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6058 __le16 orig_state;
6059 bool changed = false;
6060
6061 if (save)
6062 memcpy(save, ((char *) es) +
6063 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6064 err = jbd2_journal_load(journal);
6065 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6066 save, EXT4_S_ERR_LEN)) {
6067 memcpy(((char *) es) + EXT4_S_ERR_START,
6068 save, EXT4_S_ERR_LEN);
6069 changed = true;
6070 }
6071 kfree(save);
6072 orig_state = es->s_state;
6073 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6074 EXT4_ERROR_FS);
6075 if (orig_state != es->s_state)
6076 changed = true;
6077 /* Write out restored error information to the superblock */
6078 if (changed && !really_read_only) {
6079 int err2;
6080 err2 = ext4_commit_super(sb);
6081 err = err ? : err2;
6082 }
6083 }
6084
6085 if (err) {
6086 ext4_msg(sb, KERN_ERR, "error loading journal");
6087 goto err_out;
6088 }
6089
6090 EXT4_SB(sb)->s_journal = journal;
6091 err = ext4_clear_journal_err(sb, es);
6092 if (err) {
6093 ext4_journal_destroy(EXT4_SB(sb), journal);
6094 return err;
6095 }
6096
6097 if (!really_read_only && journal_devnum &&
6098 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6099 es->s_journal_dev = cpu_to_le32(journal_devnum);
6100 ext4_commit_super(sb);
6101 }
6102 if (!really_read_only && journal_inum &&
6103 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6104 es->s_journal_inum = cpu_to_le32(journal_inum);
6105 ext4_commit_super(sb);
6106 }
6107
6108 return 0;
6109
6110 err_out:
6111 ext4_journal_destroy(EXT4_SB(sb), journal);
6112 return err;
6113 }
6114
6115 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6116 static void ext4_update_super(struct super_block *sb)
6117 {
6118 struct ext4_sb_info *sbi = EXT4_SB(sb);
6119 struct ext4_super_block *es = sbi->s_es;
6120 struct buffer_head *sbh = sbi->s_sbh;
6121
6122 lock_buffer(sbh);
6123 /*
6124 * If the file system is mounted read-only, don't update the
6125 * superblock write time. This avoids updating the superblock
6126 * write time when we are mounting the root file system
6127 * read/only but we need to replay the journal; at that point,
6128 * for people who are east of GMT and who make their clock
6129 * tick in localtime for Windows bug-for-bug compatibility,
6130 * the clock is set in the future, and this will cause e2fsck
6131 * to complain and force a full file system check.
6132 */
6133 if (!sb_rdonly(sb))
6134 ext4_update_tstamp(es, s_wtime);
6135 es->s_kbytes_written =
6136 cpu_to_le64(sbi->s_kbytes_written +
6137 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6138 sbi->s_sectors_written_start) >> 1));
6139 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6140 ext4_free_blocks_count_set(es,
6141 EXT4_C2B(sbi, percpu_counter_sum_positive(
6142 &sbi->s_freeclusters_counter)));
6143 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6144 es->s_free_inodes_count =
6145 cpu_to_le32(percpu_counter_sum_positive(
6146 &sbi->s_freeinodes_counter));
6147 /* Copy error information to the on-disk superblock */
6148 spin_lock(&sbi->s_error_lock);
6149 if (sbi->s_add_error_count > 0) {
6150 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6151 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6152 __ext4_update_tstamp(&es->s_first_error_time,
6153 &es->s_first_error_time_hi,
6154 sbi->s_first_error_time);
6155 strtomem_pad(es->s_first_error_func,
6156 sbi->s_first_error_func, 0);
6157 es->s_first_error_line =
6158 cpu_to_le32(sbi->s_first_error_line);
6159 es->s_first_error_ino =
6160 cpu_to_le32(sbi->s_first_error_ino);
6161 es->s_first_error_block =
6162 cpu_to_le64(sbi->s_first_error_block);
6163 es->s_first_error_errcode =
6164 ext4_errno_to_code(sbi->s_first_error_code);
6165 }
6166 __ext4_update_tstamp(&es->s_last_error_time,
6167 &es->s_last_error_time_hi,
6168 sbi->s_last_error_time);
6169 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6170 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6171 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6172 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6173 es->s_last_error_errcode =
6174 ext4_errno_to_code(sbi->s_last_error_code);
6175 /*
6176 * Start the daily error reporting function if it hasn't been
6177 * started already
6178 */
6179 if (!es->s_error_count)
6180 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6181 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6182 sbi->s_add_error_count = 0;
6183 }
6184 spin_unlock(&sbi->s_error_lock);
6185
6186 ext4_superblock_csum_set(sb);
6187 unlock_buffer(sbh);
6188 }
6189
ext4_commit_super(struct super_block * sb)6190 static int ext4_commit_super(struct super_block *sb)
6191 {
6192 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6193
6194 if (!sbh)
6195 return -EINVAL;
6196
6197 ext4_update_super(sb);
6198
6199 lock_buffer(sbh);
6200 /* Buffer got discarded which means block device got invalidated */
6201 if (!buffer_mapped(sbh)) {
6202 unlock_buffer(sbh);
6203 return -EIO;
6204 }
6205
6206 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6207 /*
6208 * Oh, dear. A previous attempt to write the
6209 * superblock failed. This could happen because the
6210 * USB device was yanked out. Or it could happen to
6211 * be a transient write error and maybe the block will
6212 * be remapped. Nothing we can do but to retry the
6213 * write and hope for the best.
6214 */
6215 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6216 "superblock detected");
6217 clear_buffer_write_io_error(sbh);
6218 set_buffer_uptodate(sbh);
6219 }
6220 get_bh(sbh);
6221 /* Clear potential dirty bit if it was journalled update */
6222 clear_buffer_dirty(sbh);
6223 sbh->b_end_io = end_buffer_write_sync;
6224 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6225 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6226 wait_on_buffer(sbh);
6227 if (buffer_write_io_error(sbh)) {
6228 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6229 "superblock");
6230 clear_buffer_write_io_error(sbh);
6231 set_buffer_uptodate(sbh);
6232 return -EIO;
6233 }
6234 return 0;
6235 }
6236
6237 /*
6238 * Have we just finished recovery? If so, and if we are mounting (or
6239 * remounting) the filesystem readonly, then we will end up with a
6240 * consistent fs on disk. Record that fact.
6241 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6242 static int ext4_mark_recovery_complete(struct super_block *sb,
6243 struct ext4_super_block *es)
6244 {
6245 int err;
6246 journal_t *journal = EXT4_SB(sb)->s_journal;
6247
6248 if (!ext4_has_feature_journal(sb)) {
6249 if (journal != NULL) {
6250 ext4_error(sb, "Journal got removed while the fs was "
6251 "mounted!");
6252 return -EFSCORRUPTED;
6253 }
6254 return 0;
6255 }
6256 jbd2_journal_lock_updates(journal);
6257 err = jbd2_journal_flush(journal, 0);
6258 if (err < 0)
6259 goto out;
6260
6261 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6262 ext4_has_feature_orphan_present(sb))) {
6263 if (!ext4_orphan_file_empty(sb)) {
6264 ext4_error(sb, "Orphan file not empty on read-only fs.");
6265 err = -EFSCORRUPTED;
6266 goto out;
6267 }
6268 ext4_clear_feature_journal_needs_recovery(sb);
6269 ext4_clear_feature_orphan_present(sb);
6270 ext4_commit_super(sb);
6271 }
6272 out:
6273 jbd2_journal_unlock_updates(journal);
6274 return err;
6275 }
6276
6277 /*
6278 * If we are mounting (or read-write remounting) a filesystem whose journal
6279 * has recorded an error from a previous lifetime, move that error to the
6280 * main filesystem now.
6281 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6282 static int ext4_clear_journal_err(struct super_block *sb,
6283 struct ext4_super_block *es)
6284 {
6285 journal_t *journal;
6286 int j_errno;
6287 const char *errstr;
6288
6289 if (!ext4_has_feature_journal(sb)) {
6290 ext4_error(sb, "Journal got removed while the fs was mounted!");
6291 return -EFSCORRUPTED;
6292 }
6293
6294 journal = EXT4_SB(sb)->s_journal;
6295
6296 /*
6297 * Now check for any error status which may have been recorded in the
6298 * journal by a prior ext4_error() or ext4_abort()
6299 */
6300
6301 j_errno = jbd2_journal_errno(journal);
6302 if (j_errno) {
6303 char nbuf[16];
6304
6305 errstr = ext4_decode_error(sb, j_errno, nbuf);
6306 ext4_warning(sb, "Filesystem error recorded "
6307 "from previous mount: %s", errstr);
6308
6309 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6310 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6311 j_errno = ext4_commit_super(sb);
6312 if (j_errno)
6313 return j_errno;
6314 ext4_warning(sb, "Marked fs in need of filesystem check.");
6315
6316 jbd2_journal_clear_err(journal);
6317 jbd2_journal_update_sb_errno(journal);
6318 }
6319 return 0;
6320 }
6321
6322 /*
6323 * Force the running and committing transactions to commit,
6324 * and wait on the commit.
6325 */
ext4_force_commit(struct super_block * sb)6326 int ext4_force_commit(struct super_block *sb)
6327 {
6328 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6329 }
6330
ext4_sync_fs(struct super_block * sb,int wait)6331 static int ext4_sync_fs(struct super_block *sb, int wait)
6332 {
6333 int ret = 0;
6334 tid_t target;
6335 bool needs_barrier = false;
6336 struct ext4_sb_info *sbi = EXT4_SB(sb);
6337
6338 ret = ext4_emergency_state(sb);
6339 if (unlikely(ret))
6340 return ret;
6341
6342 trace_ext4_sync_fs(sb, wait);
6343 flush_workqueue(sbi->rsv_conversion_wq);
6344 /*
6345 * Writeback quota in non-journalled quota case - journalled quota has
6346 * no dirty dquots
6347 */
6348 dquot_writeback_dquots(sb, -1);
6349 /*
6350 * Data writeback is possible w/o journal transaction, so barrier must
6351 * being sent at the end of the function. But we can skip it if
6352 * transaction_commit will do it for us.
6353 */
6354 if (sbi->s_journal) {
6355 target = jbd2_get_latest_transaction(sbi->s_journal);
6356 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6357 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6358 needs_barrier = true;
6359
6360 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6361 if (wait)
6362 ret = jbd2_log_wait_commit(sbi->s_journal,
6363 target);
6364 }
6365 } else if (wait && test_opt(sb, BARRIER))
6366 needs_barrier = true;
6367 if (needs_barrier) {
6368 int err;
6369 err = blkdev_issue_flush(sb->s_bdev);
6370 if (!ret)
6371 ret = err;
6372 }
6373
6374 return ret;
6375 }
6376
6377 /*
6378 * LVM calls this function before a (read-only) snapshot is created. This
6379 * gives us a chance to flush the journal completely and mark the fs clean.
6380 *
6381 * Note that only this function cannot bring a filesystem to be in a clean
6382 * state independently. It relies on upper layer to stop all data & metadata
6383 * modifications.
6384 */
ext4_freeze(struct super_block * sb)6385 static int ext4_freeze(struct super_block *sb)
6386 {
6387 int error = 0;
6388 journal_t *journal = EXT4_SB(sb)->s_journal;
6389
6390 if (journal) {
6391 /* Now we set up the journal barrier. */
6392 jbd2_journal_lock_updates(journal);
6393
6394 /*
6395 * Don't clear the needs_recovery flag if we failed to
6396 * flush the journal.
6397 */
6398 error = jbd2_journal_flush(journal, 0);
6399 if (error < 0)
6400 goto out;
6401
6402 /* Journal blocked and flushed, clear needs_recovery flag. */
6403 ext4_clear_feature_journal_needs_recovery(sb);
6404 if (ext4_orphan_file_empty(sb))
6405 ext4_clear_feature_orphan_present(sb);
6406 }
6407
6408 error = ext4_commit_super(sb);
6409 out:
6410 if (journal)
6411 /* we rely on upper layer to stop further updates */
6412 jbd2_journal_unlock_updates(journal);
6413 return error;
6414 }
6415
6416 /*
6417 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6418 * flag here, even though the filesystem is not technically dirty yet.
6419 */
ext4_unfreeze(struct super_block * sb)6420 static int ext4_unfreeze(struct super_block *sb)
6421 {
6422 if (ext4_emergency_state(sb))
6423 return 0;
6424
6425 if (EXT4_SB(sb)->s_journal) {
6426 /* Reset the needs_recovery flag before the fs is unlocked. */
6427 ext4_set_feature_journal_needs_recovery(sb);
6428 if (ext4_has_feature_orphan_file(sb))
6429 ext4_set_feature_orphan_present(sb);
6430 }
6431
6432 ext4_commit_super(sb);
6433 return 0;
6434 }
6435
6436 /*
6437 * Structure to save mount options for ext4_remount's benefit
6438 */
6439 struct ext4_mount_options {
6440 unsigned long s_mount_opt;
6441 unsigned long s_mount_opt2;
6442 kuid_t s_resuid;
6443 kgid_t s_resgid;
6444 unsigned long s_commit_interval;
6445 u32 s_min_batch_time, s_max_batch_time;
6446 #ifdef CONFIG_QUOTA
6447 int s_jquota_fmt;
6448 char *s_qf_names[EXT4_MAXQUOTAS];
6449 #endif
6450 };
6451
__ext4_remount(struct fs_context * fc,struct super_block * sb)6452 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6453 {
6454 struct ext4_fs_context *ctx = fc->fs_private;
6455 struct ext4_super_block *es;
6456 struct ext4_sb_info *sbi = EXT4_SB(sb);
6457 unsigned long old_sb_flags;
6458 struct ext4_mount_options old_opts;
6459 ext4_group_t g;
6460 int err = 0;
6461 int alloc_ctx;
6462 #ifdef CONFIG_QUOTA
6463 int enable_quota = 0;
6464 int i, j;
6465 char *to_free[EXT4_MAXQUOTAS];
6466 #endif
6467
6468
6469 /* Store the original options */
6470 old_sb_flags = sb->s_flags;
6471 old_opts.s_mount_opt = sbi->s_mount_opt;
6472 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6473 old_opts.s_resuid = sbi->s_resuid;
6474 old_opts.s_resgid = sbi->s_resgid;
6475 old_opts.s_commit_interval = sbi->s_commit_interval;
6476 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6477 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6478 #ifdef CONFIG_QUOTA
6479 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6480 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6481 if (sbi->s_qf_names[i]) {
6482 char *qf_name = get_qf_name(sb, sbi, i);
6483
6484 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6485 if (!old_opts.s_qf_names[i]) {
6486 for (j = 0; j < i; j++)
6487 kfree(old_opts.s_qf_names[j]);
6488 return -ENOMEM;
6489 }
6490 } else
6491 old_opts.s_qf_names[i] = NULL;
6492 #endif
6493 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6494 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6495 ctx->journal_ioprio =
6496 sbi->s_journal->j_task->io_context->ioprio;
6497 else
6498 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6499
6500 }
6501
6502 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6503 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6504 ext4_msg(sb, KERN_WARNING,
6505 "stripe (%lu) is not aligned with cluster size (%u), "
6506 "stripe is disabled",
6507 ctx->s_stripe, sbi->s_cluster_ratio);
6508 ctx->s_stripe = 0;
6509 }
6510
6511 /*
6512 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6513 * two calls to ext4_should_dioread_nolock() to return inconsistent
6514 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6515 * here s_writepages_rwsem to avoid race between writepages ops and
6516 * remount.
6517 */
6518 alloc_ctx = ext4_writepages_down_write(sb);
6519 ext4_apply_options(fc, sb);
6520 ext4_writepages_up_write(sb, alloc_ctx);
6521
6522 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6523 test_opt(sb, JOURNAL_CHECKSUM)) {
6524 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6525 "during remount not supported; ignoring");
6526 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6527 }
6528
6529 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6530 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6531 ext4_msg(sb, KERN_ERR, "can't mount with "
6532 "both data=journal and delalloc");
6533 err = -EINVAL;
6534 goto restore_opts;
6535 }
6536 if (test_opt(sb, DIOREAD_NOLOCK)) {
6537 ext4_msg(sb, KERN_ERR, "can't mount with "
6538 "both data=journal and dioread_nolock");
6539 err = -EINVAL;
6540 goto restore_opts;
6541 }
6542 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6543 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6544 ext4_msg(sb, KERN_ERR, "can't mount with "
6545 "journal_async_commit in data=ordered mode");
6546 err = -EINVAL;
6547 goto restore_opts;
6548 }
6549 }
6550
6551 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6552 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6553 err = -EINVAL;
6554 goto restore_opts;
6555 }
6556
6557 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6558 !test_opt(sb, DELALLOC)) {
6559 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6560 err = -EINVAL;
6561 goto restore_opts;
6562 }
6563
6564 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6565 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6566
6567 es = sbi->s_es;
6568
6569 if (sbi->s_journal) {
6570 ext4_init_journal_params(sb, sbi->s_journal);
6571 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6572 }
6573
6574 /* Flush outstanding errors before changing fs state */
6575 flush_work(&sbi->s_sb_upd_work);
6576
6577 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6578 if (ext4_emergency_state(sb)) {
6579 err = -EROFS;
6580 goto restore_opts;
6581 }
6582
6583 if (fc->sb_flags & SB_RDONLY) {
6584 err = sync_filesystem(sb);
6585 if (err < 0)
6586 goto restore_opts;
6587 err = dquot_suspend(sb, -1);
6588 if (err < 0)
6589 goto restore_opts;
6590
6591 /*
6592 * First of all, the unconditional stuff we have to do
6593 * to disable replay of the journal when we next remount
6594 */
6595 sb->s_flags |= SB_RDONLY;
6596
6597 /*
6598 * OK, test if we are remounting a valid rw partition
6599 * readonly, and if so set the rdonly flag and then
6600 * mark the partition as valid again.
6601 */
6602 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6603 (sbi->s_mount_state & EXT4_VALID_FS))
6604 es->s_state = cpu_to_le16(sbi->s_mount_state);
6605
6606 if (sbi->s_journal) {
6607 /*
6608 * We let remount-ro finish even if marking fs
6609 * as clean failed...
6610 */
6611 ext4_mark_recovery_complete(sb, es);
6612 }
6613 } else {
6614 /* Make sure we can mount this feature set readwrite */
6615 if (ext4_has_feature_readonly(sb) ||
6616 !ext4_feature_set_ok(sb, 0)) {
6617 err = -EROFS;
6618 goto restore_opts;
6619 }
6620 /*
6621 * Make sure the group descriptor checksums
6622 * are sane. If they aren't, refuse to remount r/w.
6623 */
6624 for (g = 0; g < sbi->s_groups_count; g++) {
6625 struct ext4_group_desc *gdp =
6626 ext4_get_group_desc(sb, g, NULL);
6627
6628 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6629 ext4_msg(sb, KERN_ERR,
6630 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6631 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6632 le16_to_cpu(gdp->bg_checksum));
6633 err = -EFSBADCRC;
6634 goto restore_opts;
6635 }
6636 }
6637
6638 /*
6639 * If we have an unprocessed orphan list hanging
6640 * around from a previously readonly bdev mount,
6641 * require a full umount/remount for now.
6642 */
6643 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6644 ext4_msg(sb, KERN_WARNING, "Couldn't "
6645 "remount RDWR because of unprocessed "
6646 "orphan inode list. Please "
6647 "umount/remount instead");
6648 err = -EINVAL;
6649 goto restore_opts;
6650 }
6651
6652 /*
6653 * Mounting a RDONLY partition read-write, so reread
6654 * and store the current valid flag. (It may have
6655 * been changed by e2fsck since we originally mounted
6656 * the partition.)
6657 */
6658 if (sbi->s_journal) {
6659 err = ext4_clear_journal_err(sb, es);
6660 if (err)
6661 goto restore_opts;
6662 }
6663 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6664 ~EXT4_FC_REPLAY);
6665
6666 err = ext4_setup_super(sb, es, 0);
6667 if (err)
6668 goto restore_opts;
6669
6670 sb->s_flags &= ~SB_RDONLY;
6671 if (ext4_has_feature_mmp(sb)) {
6672 err = ext4_multi_mount_protect(sb,
6673 le64_to_cpu(es->s_mmp_block));
6674 if (err)
6675 goto restore_opts;
6676 }
6677 #ifdef CONFIG_QUOTA
6678 enable_quota = 1;
6679 #endif
6680 }
6681 }
6682
6683 /*
6684 * Handle creation of system zone data early because it can fail.
6685 * Releasing of existing data is done when we are sure remount will
6686 * succeed.
6687 */
6688 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6689 err = ext4_setup_system_zone(sb);
6690 if (err)
6691 goto restore_opts;
6692 }
6693
6694 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6695 err = ext4_commit_super(sb);
6696 if (err)
6697 goto restore_opts;
6698 }
6699
6700 #ifdef CONFIG_QUOTA
6701 if (enable_quota) {
6702 if (sb_any_quota_suspended(sb))
6703 dquot_resume(sb, -1);
6704 else if (ext4_has_feature_quota(sb)) {
6705 err = ext4_enable_quotas(sb);
6706 if (err)
6707 goto restore_opts;
6708 }
6709 }
6710 /* Release old quota file names */
6711 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6712 kfree(old_opts.s_qf_names[i]);
6713 #endif
6714 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6715 ext4_release_system_zone(sb);
6716
6717 /*
6718 * Reinitialize lazy itable initialization thread based on
6719 * current settings
6720 */
6721 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6722 ext4_unregister_li_request(sb);
6723 else {
6724 ext4_group_t first_not_zeroed;
6725 first_not_zeroed = ext4_has_uninit_itable(sb);
6726 ext4_register_li_request(sb, first_not_zeroed);
6727 }
6728
6729 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6730 ext4_stop_mmpd(sbi);
6731
6732 /*
6733 * Handle aborting the filesystem as the last thing during remount to
6734 * avoid obsure errors during remount when some option changes fail to
6735 * apply due to shutdown filesystem.
6736 */
6737 if (test_opt2(sb, ABORT))
6738 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6739
6740 return 0;
6741
6742 restore_opts:
6743 /*
6744 * If there was a failing r/w to ro transition, we may need to
6745 * re-enable quota
6746 */
6747 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6748 sb_any_quota_suspended(sb))
6749 dquot_resume(sb, -1);
6750
6751 alloc_ctx = ext4_writepages_down_write(sb);
6752 sb->s_flags = old_sb_flags;
6753 sbi->s_mount_opt = old_opts.s_mount_opt;
6754 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6755 sbi->s_resuid = old_opts.s_resuid;
6756 sbi->s_resgid = old_opts.s_resgid;
6757 sbi->s_commit_interval = old_opts.s_commit_interval;
6758 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6759 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6760 ext4_writepages_up_write(sb, alloc_ctx);
6761
6762 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6763 ext4_release_system_zone(sb);
6764 #ifdef CONFIG_QUOTA
6765 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6766 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6767 to_free[i] = get_qf_name(sb, sbi, i);
6768 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6769 }
6770 synchronize_rcu();
6771 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6772 kfree(to_free[i]);
6773 #endif
6774 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6775 ext4_stop_mmpd(sbi);
6776 return err;
6777 }
6778
ext4_reconfigure(struct fs_context * fc)6779 static int ext4_reconfigure(struct fs_context *fc)
6780 {
6781 struct super_block *sb = fc->root->d_sb;
6782 int ret;
6783 bool old_ro = sb_rdonly(sb);
6784
6785 fc->s_fs_info = EXT4_SB(sb);
6786
6787 ret = ext4_check_opt_consistency(fc, sb);
6788 if (ret < 0)
6789 return ret;
6790
6791 ret = __ext4_remount(fc, sb);
6792 if (ret < 0)
6793 return ret;
6794
6795 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6796 &sb->s_uuid,
6797 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6798
6799 return 0;
6800 }
6801
6802 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6803 static int ext4_statfs_project(struct super_block *sb,
6804 kprojid_t projid, struct kstatfs *buf)
6805 {
6806 struct kqid qid;
6807 struct dquot *dquot;
6808 u64 limit;
6809 u64 curblock;
6810
6811 qid = make_kqid_projid(projid);
6812 dquot = dqget(sb, qid);
6813 if (IS_ERR(dquot))
6814 return PTR_ERR(dquot);
6815 spin_lock(&dquot->dq_dqb_lock);
6816
6817 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6818 dquot->dq_dqb.dqb_bhardlimit);
6819 limit >>= sb->s_blocksize_bits;
6820
6821 if (limit) {
6822 uint64_t remaining = 0;
6823
6824 curblock = (dquot->dq_dqb.dqb_curspace +
6825 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6826 if (limit > curblock)
6827 remaining = limit - curblock;
6828
6829 buf->f_blocks = min(buf->f_blocks, limit);
6830 buf->f_bfree = min(buf->f_bfree, remaining);
6831 buf->f_bavail = min(buf->f_bavail, remaining);
6832 }
6833
6834 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6835 dquot->dq_dqb.dqb_ihardlimit);
6836 if (limit) {
6837 uint64_t remaining = 0;
6838
6839 if (limit > dquot->dq_dqb.dqb_curinodes)
6840 remaining = limit - dquot->dq_dqb.dqb_curinodes;
6841
6842 buf->f_files = min(buf->f_files, limit);
6843 buf->f_ffree = min(buf->f_ffree, remaining);
6844 }
6845
6846 spin_unlock(&dquot->dq_dqb_lock);
6847 dqput(dquot);
6848 return 0;
6849 }
6850 #endif
6851
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6852 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6853 {
6854 struct super_block *sb = dentry->d_sb;
6855 struct ext4_sb_info *sbi = EXT4_SB(sb);
6856 struct ext4_super_block *es = sbi->s_es;
6857 ext4_fsblk_t overhead = 0, resv_blocks;
6858 s64 bfree;
6859 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6860
6861 if (!test_opt(sb, MINIX_DF))
6862 overhead = sbi->s_overhead;
6863
6864 buf->f_type = EXT4_SUPER_MAGIC;
6865 buf->f_bsize = sb->s_blocksize;
6866 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6867 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6868 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6869 /* prevent underflow in case that few free space is available */
6870 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6871 buf->f_bavail = buf->f_bfree -
6872 (ext4_r_blocks_count(es) + resv_blocks);
6873 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6874 buf->f_bavail = 0;
6875 buf->f_files = le32_to_cpu(es->s_inodes_count);
6876 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6877 buf->f_namelen = EXT4_NAME_LEN;
6878 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6879
6880 #ifdef CONFIG_QUOTA
6881 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6882 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6883 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6884 #endif
6885 return 0;
6886 }
6887
6888
6889 #ifdef CONFIG_QUOTA
6890
6891 /*
6892 * Helper functions so that transaction is started before we acquire dqio_sem
6893 * to keep correct lock ordering of transaction > dqio_sem
6894 */
dquot_to_inode(struct dquot * dquot)6895 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6896 {
6897 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6898 }
6899
ext4_write_dquot(struct dquot * dquot)6900 static int ext4_write_dquot(struct dquot *dquot)
6901 {
6902 int ret, err;
6903 handle_t *handle;
6904 struct inode *inode;
6905
6906 inode = dquot_to_inode(dquot);
6907 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6908 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6909 if (IS_ERR(handle))
6910 return PTR_ERR(handle);
6911 ret = dquot_commit(dquot);
6912 if (ret < 0)
6913 ext4_error_err(dquot->dq_sb, -ret,
6914 "Failed to commit dquot type %d",
6915 dquot->dq_id.type);
6916 err = ext4_journal_stop(handle);
6917 if (!ret)
6918 ret = err;
6919 return ret;
6920 }
6921
ext4_acquire_dquot(struct dquot * dquot)6922 static int ext4_acquire_dquot(struct dquot *dquot)
6923 {
6924 int ret, err;
6925 handle_t *handle;
6926
6927 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6928 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6929 if (IS_ERR(handle))
6930 return PTR_ERR(handle);
6931 ret = dquot_acquire(dquot);
6932 if (ret < 0)
6933 ext4_error_err(dquot->dq_sb, -ret,
6934 "Failed to acquire dquot type %d",
6935 dquot->dq_id.type);
6936 err = ext4_journal_stop(handle);
6937 if (!ret)
6938 ret = err;
6939 return ret;
6940 }
6941
ext4_release_dquot(struct dquot * dquot)6942 static int ext4_release_dquot(struct dquot *dquot)
6943 {
6944 int ret, err;
6945 handle_t *handle;
6946 bool freeze_protected = false;
6947
6948 /*
6949 * Trying to sb_start_intwrite() in a running transaction
6950 * can result in a deadlock. Further, running transactions
6951 * are already protected from freezing.
6952 */
6953 if (!ext4_journal_current_handle()) {
6954 sb_start_intwrite(dquot->dq_sb);
6955 freeze_protected = true;
6956 }
6957
6958 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6959 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6960 if (IS_ERR(handle)) {
6961 /* Release dquot anyway to avoid endless cycle in dqput() */
6962 dquot_release(dquot);
6963 if (freeze_protected)
6964 sb_end_intwrite(dquot->dq_sb);
6965 return PTR_ERR(handle);
6966 }
6967 ret = dquot_release(dquot);
6968 if (ret < 0)
6969 ext4_error_err(dquot->dq_sb, -ret,
6970 "Failed to release dquot type %d",
6971 dquot->dq_id.type);
6972 err = ext4_journal_stop(handle);
6973 if (!ret)
6974 ret = err;
6975
6976 if (freeze_protected)
6977 sb_end_intwrite(dquot->dq_sb);
6978
6979 return ret;
6980 }
6981
ext4_mark_dquot_dirty(struct dquot * dquot)6982 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6983 {
6984 struct super_block *sb = dquot->dq_sb;
6985
6986 if (ext4_is_quota_journalled(sb)) {
6987 dquot_mark_dquot_dirty(dquot);
6988 return ext4_write_dquot(dquot);
6989 } else {
6990 return dquot_mark_dquot_dirty(dquot);
6991 }
6992 }
6993
ext4_write_info(struct super_block * sb,int type)6994 static int ext4_write_info(struct super_block *sb, int type)
6995 {
6996 int ret, err;
6997 handle_t *handle;
6998
6999 /* Data block + inode block */
7000 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7001 if (IS_ERR(handle))
7002 return PTR_ERR(handle);
7003 ret = dquot_commit_info(sb, type);
7004 err = ext4_journal_stop(handle);
7005 if (!ret)
7006 ret = err;
7007 return ret;
7008 }
7009
lockdep_set_quota_inode(struct inode * inode,int subclass)7010 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7011 {
7012 struct ext4_inode_info *ei = EXT4_I(inode);
7013
7014 /* The first argument of lockdep_set_subclass has to be
7015 * *exactly* the same as the argument to init_rwsem() --- in
7016 * this case, in init_once() --- or lockdep gets unhappy
7017 * because the name of the lock is set using the
7018 * stringification of the argument to init_rwsem().
7019 */
7020 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
7021 lockdep_set_subclass(&ei->i_data_sem, subclass);
7022 }
7023
7024 /*
7025 * Standard function to be called on quota_on
7026 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7027 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7028 const struct path *path)
7029 {
7030 int err;
7031
7032 if (!test_opt(sb, QUOTA))
7033 return -EINVAL;
7034
7035 /* Quotafile not on the same filesystem? */
7036 if (path->dentry->d_sb != sb)
7037 return -EXDEV;
7038
7039 /* Quota already enabled for this file? */
7040 if (IS_NOQUOTA(d_inode(path->dentry)))
7041 return -EBUSY;
7042
7043 /* Journaling quota? */
7044 if (EXT4_SB(sb)->s_qf_names[type]) {
7045 /* Quotafile not in fs root? */
7046 if (path->dentry->d_parent != sb->s_root)
7047 ext4_msg(sb, KERN_WARNING,
7048 "Quota file not on filesystem root. "
7049 "Journaled quota will not work");
7050 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7051 } else {
7052 /*
7053 * Clear the flag just in case mount options changed since
7054 * last time.
7055 */
7056 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7057 }
7058
7059 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7060 err = dquot_quota_on(sb, type, format_id, path);
7061 if (!err) {
7062 struct inode *inode = d_inode(path->dentry);
7063 handle_t *handle;
7064
7065 /*
7066 * Set inode flags to prevent userspace from messing with quota
7067 * files. If this fails, we return success anyway since quotas
7068 * are already enabled and this is not a hard failure.
7069 */
7070 inode_lock(inode);
7071 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7072 if (IS_ERR(handle))
7073 goto unlock_inode;
7074 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7075 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7076 S_NOATIME | S_IMMUTABLE);
7077 err = ext4_mark_inode_dirty(handle, inode);
7078 ext4_journal_stop(handle);
7079 unlock_inode:
7080 inode_unlock(inode);
7081 if (err)
7082 dquot_quota_off(sb, type);
7083 }
7084 if (err)
7085 lockdep_set_quota_inode(path->dentry->d_inode,
7086 I_DATA_SEM_NORMAL);
7087 return err;
7088 }
7089
ext4_check_quota_inum(int type,unsigned long qf_inum)7090 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7091 {
7092 switch (type) {
7093 case USRQUOTA:
7094 return qf_inum == EXT4_USR_QUOTA_INO;
7095 case GRPQUOTA:
7096 return qf_inum == EXT4_GRP_QUOTA_INO;
7097 case PRJQUOTA:
7098 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7099 default:
7100 BUG();
7101 }
7102 }
7103
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7104 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7105 unsigned int flags)
7106 {
7107 int err;
7108 struct inode *qf_inode;
7109 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7110 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7111 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7112 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7113 };
7114
7115 BUG_ON(!ext4_has_feature_quota(sb));
7116
7117 if (!qf_inums[type])
7118 return -EPERM;
7119
7120 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7121 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7122 qf_inums[type], type);
7123 return -EUCLEAN;
7124 }
7125
7126 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7127 if (IS_ERR(qf_inode)) {
7128 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7129 qf_inums[type], type);
7130 return PTR_ERR(qf_inode);
7131 }
7132
7133 /* Don't account quota for quota files to avoid recursion */
7134 qf_inode->i_flags |= S_NOQUOTA;
7135 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7136 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7137 if (err)
7138 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7139 iput(qf_inode);
7140
7141 return err;
7142 }
7143
7144 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7145 int ext4_enable_quotas(struct super_block *sb)
7146 {
7147 int type, err = 0;
7148 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7149 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7150 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7151 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7152 };
7153 bool quota_mopt[EXT4_MAXQUOTAS] = {
7154 test_opt(sb, USRQUOTA),
7155 test_opt(sb, GRPQUOTA),
7156 test_opt(sb, PRJQUOTA),
7157 };
7158
7159 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7160 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7161 if (qf_inums[type]) {
7162 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7163 DQUOT_USAGE_ENABLED |
7164 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7165 if (err) {
7166 ext4_warning(sb,
7167 "Failed to enable quota tracking "
7168 "(type=%d, err=%d, ino=%lu). "
7169 "Please run e2fsck to fix.", type,
7170 err, qf_inums[type]);
7171
7172 ext4_quotas_off(sb, type);
7173 return err;
7174 }
7175 }
7176 }
7177 return 0;
7178 }
7179
ext4_quota_off(struct super_block * sb,int type)7180 static int ext4_quota_off(struct super_block *sb, int type)
7181 {
7182 struct inode *inode = sb_dqopt(sb)->files[type];
7183 handle_t *handle;
7184 int err;
7185
7186 /* Force all delayed allocation blocks to be allocated.
7187 * Caller already holds s_umount sem */
7188 if (test_opt(sb, DELALLOC))
7189 sync_filesystem(sb);
7190
7191 if (!inode || !igrab(inode))
7192 goto out;
7193
7194 err = dquot_quota_off(sb, type);
7195 if (err || ext4_has_feature_quota(sb))
7196 goto out_put;
7197 /*
7198 * When the filesystem was remounted read-only first, we cannot cleanup
7199 * inode flags here. Bad luck but people should be using QUOTA feature
7200 * these days anyway.
7201 */
7202 if (sb_rdonly(sb))
7203 goto out_put;
7204
7205 inode_lock(inode);
7206 /*
7207 * Update modification times of quota files when userspace can
7208 * start looking at them. If we fail, we return success anyway since
7209 * this is not a hard failure and quotas are already disabled.
7210 */
7211 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7212 if (IS_ERR(handle)) {
7213 err = PTR_ERR(handle);
7214 goto out_unlock;
7215 }
7216 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7217 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7218 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7219 err = ext4_mark_inode_dirty(handle, inode);
7220 ext4_journal_stop(handle);
7221 out_unlock:
7222 inode_unlock(inode);
7223 out_put:
7224 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7225 iput(inode);
7226 return err;
7227 out:
7228 return dquot_quota_off(sb, type);
7229 }
7230
7231 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7232 * acquiring the locks... As quota files are never truncated and quota code
7233 * itself serializes the operations (and no one else should touch the files)
7234 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7235 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7236 size_t len, loff_t off)
7237 {
7238 struct inode *inode = sb_dqopt(sb)->files[type];
7239 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7240 int offset = off & (sb->s_blocksize - 1);
7241 int tocopy;
7242 size_t toread;
7243 struct buffer_head *bh;
7244 loff_t i_size = i_size_read(inode);
7245
7246 if (off > i_size)
7247 return 0;
7248 if (off+len > i_size)
7249 len = i_size-off;
7250 toread = len;
7251 while (toread > 0) {
7252 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7253 bh = ext4_bread(NULL, inode, blk, 0);
7254 if (IS_ERR(bh))
7255 return PTR_ERR(bh);
7256 if (!bh) /* A hole? */
7257 memset(data, 0, tocopy);
7258 else
7259 memcpy(data, bh->b_data+offset, tocopy);
7260 brelse(bh);
7261 offset = 0;
7262 toread -= tocopy;
7263 data += tocopy;
7264 blk++;
7265 }
7266 return len;
7267 }
7268
7269 /* Write to quotafile (we know the transaction is already started and has
7270 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7271 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7272 const char *data, size_t len, loff_t off)
7273 {
7274 struct inode *inode = sb_dqopt(sb)->files[type];
7275 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7276 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7277 int retries = 0;
7278 struct buffer_head *bh;
7279 handle_t *handle = journal_current_handle();
7280
7281 if (!handle) {
7282 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7283 " cancelled because transaction is not started",
7284 (unsigned long long)off, (unsigned long long)len);
7285 return -EIO;
7286 }
7287 /*
7288 * Since we account only one data block in transaction credits,
7289 * then it is impossible to cross a block boundary.
7290 */
7291 if (sb->s_blocksize - offset < len) {
7292 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7293 " cancelled because not block aligned",
7294 (unsigned long long)off, (unsigned long long)len);
7295 return -EIO;
7296 }
7297
7298 do {
7299 bh = ext4_bread(handle, inode, blk,
7300 EXT4_GET_BLOCKS_CREATE |
7301 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7302 } while (PTR_ERR(bh) == -ENOSPC &&
7303 ext4_should_retry_alloc(inode->i_sb, &retries));
7304 if (IS_ERR(bh))
7305 return PTR_ERR(bh);
7306 if (!bh)
7307 goto out;
7308 BUFFER_TRACE(bh, "get write access");
7309 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7310 if (err) {
7311 brelse(bh);
7312 return err;
7313 }
7314 lock_buffer(bh);
7315 memcpy(bh->b_data+offset, data, len);
7316 flush_dcache_folio(bh->b_folio);
7317 unlock_buffer(bh);
7318 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7319 brelse(bh);
7320 out:
7321 if (inode->i_size < off + len) {
7322 i_size_write(inode, off + len);
7323 EXT4_I(inode)->i_disksize = inode->i_size;
7324 err2 = ext4_mark_inode_dirty(handle, inode);
7325 if (unlikely(err2 && !err))
7326 err = err2;
7327 }
7328 return err ? err : len;
7329 }
7330 #endif
7331
7332 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7333 static inline void register_as_ext2(void)
7334 {
7335 int err = register_filesystem(&ext2_fs_type);
7336 if (err)
7337 printk(KERN_WARNING
7338 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7339 }
7340
unregister_as_ext2(void)7341 static inline void unregister_as_ext2(void)
7342 {
7343 unregister_filesystem(&ext2_fs_type);
7344 }
7345
ext2_feature_set_ok(struct super_block * sb)7346 static inline int ext2_feature_set_ok(struct super_block *sb)
7347 {
7348 if (ext4_has_unknown_ext2_incompat_features(sb))
7349 return 0;
7350 if (sb_rdonly(sb))
7351 return 1;
7352 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7353 return 0;
7354 return 1;
7355 }
7356 #else
register_as_ext2(void)7357 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7358 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7359 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7360 #endif
7361
register_as_ext3(void)7362 static inline void register_as_ext3(void)
7363 {
7364 int err = register_filesystem(&ext3_fs_type);
7365 if (err)
7366 printk(KERN_WARNING
7367 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7368 }
7369
unregister_as_ext3(void)7370 static inline void unregister_as_ext3(void)
7371 {
7372 unregister_filesystem(&ext3_fs_type);
7373 }
7374
ext3_feature_set_ok(struct super_block * sb)7375 static inline int ext3_feature_set_ok(struct super_block *sb)
7376 {
7377 if (ext4_has_unknown_ext3_incompat_features(sb))
7378 return 0;
7379 if (!ext4_has_feature_journal(sb))
7380 return 0;
7381 if (sb_rdonly(sb))
7382 return 1;
7383 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7384 return 0;
7385 return 1;
7386 }
7387
ext4_kill_sb(struct super_block * sb)7388 static void ext4_kill_sb(struct super_block *sb)
7389 {
7390 struct ext4_sb_info *sbi = EXT4_SB(sb);
7391 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7392
7393 kill_block_super(sb);
7394
7395 if (bdev_file)
7396 bdev_fput(bdev_file);
7397 }
7398
7399 static struct file_system_type ext4_fs_type = {
7400 .owner = THIS_MODULE,
7401 .name = "ext4",
7402 .init_fs_context = ext4_init_fs_context,
7403 .parameters = ext4_param_specs,
7404 .kill_sb = ext4_kill_sb,
7405 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7406 };
7407 MODULE_ALIAS_FS("ext4");
7408
ext4_init_fs(void)7409 static int __init ext4_init_fs(void)
7410 {
7411 int err;
7412
7413 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7414 ext4_li_info = NULL;
7415
7416 /* Build-time check for flags consistency */
7417 ext4_check_flag_values();
7418
7419 err = ext4_init_es();
7420 if (err)
7421 return err;
7422
7423 err = ext4_init_pending();
7424 if (err)
7425 goto out7;
7426
7427 err = ext4_init_post_read_processing();
7428 if (err)
7429 goto out6;
7430
7431 err = ext4_init_pageio();
7432 if (err)
7433 goto out5;
7434
7435 err = ext4_init_system_zone();
7436 if (err)
7437 goto out4;
7438
7439 err = ext4_init_sysfs();
7440 if (err)
7441 goto out3;
7442
7443 err = ext4_init_mballoc();
7444 if (err)
7445 goto out2;
7446 err = init_inodecache();
7447 if (err)
7448 goto out1;
7449
7450 err = ext4_fc_init_dentry_cache();
7451 if (err)
7452 goto out05;
7453
7454 register_as_ext3();
7455 register_as_ext2();
7456 err = register_filesystem(&ext4_fs_type);
7457 if (err)
7458 goto out;
7459
7460 return 0;
7461 out:
7462 unregister_as_ext2();
7463 unregister_as_ext3();
7464 ext4_fc_destroy_dentry_cache();
7465 out05:
7466 destroy_inodecache();
7467 out1:
7468 ext4_exit_mballoc();
7469 out2:
7470 ext4_exit_sysfs();
7471 out3:
7472 ext4_exit_system_zone();
7473 out4:
7474 ext4_exit_pageio();
7475 out5:
7476 ext4_exit_post_read_processing();
7477 out6:
7478 ext4_exit_pending();
7479 out7:
7480 ext4_exit_es();
7481
7482 return err;
7483 }
7484
ext4_exit_fs(void)7485 static void __exit ext4_exit_fs(void)
7486 {
7487 ext4_destroy_lazyinit_thread();
7488 unregister_as_ext2();
7489 unregister_as_ext3();
7490 unregister_filesystem(&ext4_fs_type);
7491 ext4_fc_destroy_dentry_cache();
7492 destroy_inodecache();
7493 ext4_exit_mballoc();
7494 ext4_exit_sysfs();
7495 ext4_exit_system_zone();
7496 ext4_exit_pageio();
7497 ext4_exit_post_read_processing();
7498 ext4_exit_es();
7499 ext4_exit_pending();
7500 }
7501
7502 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7503 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7504 MODULE_LICENSE("GPL");
7505 module_init(ext4_init_fs)
7506 module_exit(ext4_exit_fs)
7507