1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37
38 #include "pnode.h"
39 #include "internal.h"
40
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48
49 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)50 static int __init set_mhash_entries(char *str)
51 {
52 if (!str)
53 return 0;
54 mhash_entries = simple_strtoul(str, &str, 0);
55 return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58
59 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)60 static int __init set_mphash_entries(char *str)
61 {
62 if (!str)
63 return 0;
64 mphash_entries = simple_strtoul(str, &str, 0);
65 return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68
69 static char * __initdata initramfs_options;
initramfs_options_setup(char * str)70 static int __init initramfs_options_setup(char *str)
71 {
72 initramfs_options = str;
73 return 1;
74 }
75
76 __setup("initramfs_options=", initramfs_options_setup);
77
78 static u64 event;
79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80 static DEFINE_IDA(mnt_group_ida);
81
82 /* Don't allow confusion with old 32bit mount ID */
83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85
86 static struct hlist_head *mount_hashtable __ro_after_init;
87 static struct hlist_head *mountpoint_hashtable __ro_after_init;
88 static struct kmem_cache *mnt_cache __ro_after_init;
89 static DECLARE_RWSEM(namespace_sem);
90 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93
94 static inline void namespace_lock(void);
95 static void namespace_unlock(void);
96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
98 up_read(&namespace_sem))
99
100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
101
102 #ifdef CONFIG_FSNOTIFY
103 LIST_HEAD(notify_list); /* protected by namespace_sem */
104 #endif
105
106 enum mount_kattr_flags_t {
107 MOUNT_KATTR_RECURSE = (1 << 0),
108 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
109 };
110
111 struct mount_kattr {
112 unsigned int attr_set;
113 unsigned int attr_clr;
114 unsigned int propagation;
115 unsigned int lookup_flags;
116 enum mount_kattr_flags_t kflags;
117 struct user_namespace *mnt_userns;
118 struct mnt_idmap *mnt_idmap;
119 };
120
121 /* /sys/fs */
122 struct kobject *fs_kobj __ro_after_init;
123 EXPORT_SYMBOL_GPL(fs_kobj);
124
125 /*
126 * vfsmount lock may be taken for read to prevent changes to the
127 * vfsmount hash, ie. during mountpoint lookups or walking back
128 * up the tree.
129 *
130 * It should be taken for write in all cases where the vfsmount
131 * tree or hash is modified or when a vfsmount structure is modified.
132 */
133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
134
mnt_ns_release(struct mnt_namespace * ns)135 static void mnt_ns_release(struct mnt_namespace *ns)
136 {
137 /* keep alive for {list,stat}mount() */
138 if (ns && refcount_dec_and_test(&ns->passive)) {
139 fsnotify_mntns_delete(ns);
140 put_user_ns(ns->user_ns);
141 kfree(ns);
142 }
143 }
144 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *,
145 if (!IS_ERR(_T)) mnt_ns_release(_T))
146
mnt_ns_release_rcu(struct rcu_head * rcu)147 static void mnt_ns_release_rcu(struct rcu_head *rcu)
148 {
149 mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
150 }
151
mnt_ns_tree_remove(struct mnt_namespace * ns)152 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
153 {
154 /* remove from global mount namespace list */
155 if (ns_tree_active(ns))
156 ns_tree_remove(ns);
157
158 call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
159 }
160
161 /*
162 * Lookup a mount namespace by id and take a passive reference count. Taking a
163 * passive reference means the mount namespace can be emptied if e.g., the last
164 * task holding an active reference exits. To access the mounts of the
165 * namespace the @namespace_sem must first be acquired. If the namespace has
166 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
167 * see that the mount rbtree of the namespace is empty.
168 *
169 * Note the lookup is lockless protected by a sequence counter. We only
170 * need to guard against false negatives as false positives aren't
171 * possible. So if we didn't find a mount namespace and the sequence
172 * counter has changed we need to retry. If the sequence counter is
173 * still the same we know the search actually failed.
174 */
lookup_mnt_ns(u64 mnt_ns_id)175 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
176 {
177 struct mnt_namespace *mnt_ns;
178 struct ns_common *ns;
179
180 guard(rcu)();
181 ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
182 if (!ns)
183 return NULL;
184
185 /*
186 * The last reference count is put with RCU delay so we can
187 * unconditonally acquire a reference here.
188 */
189 mnt_ns = container_of(ns, struct mnt_namespace, ns);
190 refcount_inc(&mnt_ns->passive);
191 return mnt_ns;
192 }
193
lock_mount_hash(void)194 static inline void lock_mount_hash(void)
195 {
196 write_seqlock(&mount_lock);
197 }
198
unlock_mount_hash(void)199 static inline void unlock_mount_hash(void)
200 {
201 write_sequnlock(&mount_lock);
202 }
203
m_hash(struct vfsmount * mnt,struct dentry * dentry)204 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
205 {
206 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
207 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
208 tmp = tmp + (tmp >> m_hash_shift);
209 return &mount_hashtable[tmp & m_hash_mask];
210 }
211
mp_hash(struct dentry * dentry)212 static inline struct hlist_head *mp_hash(struct dentry *dentry)
213 {
214 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
215 tmp = tmp + (tmp >> mp_hash_shift);
216 return &mountpoint_hashtable[tmp & mp_hash_mask];
217 }
218
mnt_alloc_id(struct mount * mnt)219 static int mnt_alloc_id(struct mount *mnt)
220 {
221 int res;
222
223 xa_lock(&mnt_id_xa);
224 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
225 if (!res)
226 mnt->mnt_id_unique = ++mnt_id_ctr;
227 xa_unlock(&mnt_id_xa);
228 return res;
229 }
230
mnt_free_id(struct mount * mnt)231 static void mnt_free_id(struct mount *mnt)
232 {
233 xa_erase(&mnt_id_xa, mnt->mnt_id);
234 }
235
236 /*
237 * Allocate a new peer group ID
238 */
mnt_alloc_group_id(struct mount * mnt)239 static int mnt_alloc_group_id(struct mount *mnt)
240 {
241 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
242
243 if (res < 0)
244 return res;
245 mnt->mnt_group_id = res;
246 return 0;
247 }
248
249 /*
250 * Release a peer group ID
251 */
mnt_release_group_id(struct mount * mnt)252 void mnt_release_group_id(struct mount *mnt)
253 {
254 ida_free(&mnt_group_ida, mnt->mnt_group_id);
255 mnt->mnt_group_id = 0;
256 }
257
258 /*
259 * vfsmount lock must be held for read
260 */
mnt_add_count(struct mount * mnt,int n)261 static inline void mnt_add_count(struct mount *mnt, int n)
262 {
263 #ifdef CONFIG_SMP
264 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
265 #else
266 preempt_disable();
267 mnt->mnt_count += n;
268 preempt_enable();
269 #endif
270 }
271
272 /*
273 * vfsmount lock must be held for write
274 */
mnt_get_count(struct mount * mnt)275 int mnt_get_count(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 int count = 0;
279 int cpu;
280
281 for_each_possible_cpu(cpu) {
282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
283 }
284
285 return count;
286 #else
287 return mnt->mnt_count;
288 #endif
289 }
290
alloc_vfsmnt(const char * name)291 static struct mount *alloc_vfsmnt(const char *name)
292 {
293 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
294 if (mnt) {
295 int err;
296
297 err = mnt_alloc_id(mnt);
298 if (err)
299 goto out_free_cache;
300
301 if (name)
302 mnt->mnt_devname = kstrdup_const(name,
303 GFP_KERNEL_ACCOUNT);
304 else
305 mnt->mnt_devname = "none";
306 if (!mnt->mnt_devname)
307 goto out_free_id;
308
309 #ifdef CONFIG_SMP
310 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
311 if (!mnt->mnt_pcp)
312 goto out_free_devname;
313
314 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
315 #else
316 mnt->mnt_count = 1;
317 mnt->mnt_writers = 0;
318 #endif
319
320 INIT_HLIST_NODE(&mnt->mnt_hash);
321 INIT_LIST_HEAD(&mnt->mnt_child);
322 INIT_LIST_HEAD(&mnt->mnt_mounts);
323 INIT_LIST_HEAD(&mnt->mnt_list);
324 INIT_LIST_HEAD(&mnt->mnt_expire);
325 INIT_LIST_HEAD(&mnt->mnt_share);
326 INIT_HLIST_HEAD(&mnt->mnt_slave_list);
327 INIT_HLIST_NODE(&mnt->mnt_slave);
328 INIT_HLIST_NODE(&mnt->mnt_mp_list);
329 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
330 RB_CLEAR_NODE(&mnt->mnt_node);
331 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
332 }
333 return mnt;
334
335 #ifdef CONFIG_SMP
336 out_free_devname:
337 kfree_const(mnt->mnt_devname);
338 #endif
339 out_free_id:
340 mnt_free_id(mnt);
341 out_free_cache:
342 kmem_cache_free(mnt_cache, mnt);
343 return NULL;
344 }
345
346 /*
347 * Most r/o checks on a fs are for operations that take
348 * discrete amounts of time, like a write() or unlink().
349 * We must keep track of when those operations start
350 * (for permission checks) and when they end, so that
351 * we can determine when writes are able to occur to
352 * a filesystem.
353 */
354 /*
355 * __mnt_is_readonly: check whether a mount is read-only
356 * @mnt: the mount to check for its write status
357 *
358 * This shouldn't be used directly ouside of the VFS.
359 * It does not guarantee that the filesystem will stay
360 * r/w, just that it is right *now*. This can not and
361 * should not be used in place of IS_RDONLY(inode).
362 * mnt_want/drop_write() will _keep_ the filesystem
363 * r/w.
364 */
__mnt_is_readonly(const struct vfsmount * mnt)365 bool __mnt_is_readonly(const struct vfsmount *mnt)
366 {
367 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
368 }
369 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
370
mnt_inc_writers(struct mount * mnt)371 static inline void mnt_inc_writers(struct mount *mnt)
372 {
373 #ifdef CONFIG_SMP
374 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
375 #else
376 mnt->mnt_writers++;
377 #endif
378 }
379
mnt_dec_writers(struct mount * mnt)380 static inline void mnt_dec_writers(struct mount *mnt)
381 {
382 #ifdef CONFIG_SMP
383 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
384 #else
385 mnt->mnt_writers--;
386 #endif
387 }
388
mnt_get_writers(struct mount * mnt)389 static unsigned int mnt_get_writers(struct mount *mnt)
390 {
391 #ifdef CONFIG_SMP
392 unsigned int count = 0;
393 int cpu;
394
395 for_each_possible_cpu(cpu) {
396 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
397 }
398
399 return count;
400 #else
401 return mnt->mnt_writers;
402 #endif
403 }
404
mnt_is_readonly(const struct vfsmount * mnt)405 static int mnt_is_readonly(const struct vfsmount *mnt)
406 {
407 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
408 return 1;
409 /*
410 * The barrier pairs with the barrier in sb_start_ro_state_change()
411 * making sure if we don't see s_readonly_remount set yet, we also will
412 * not see any superblock / mount flag changes done by remount.
413 * It also pairs with the barrier in sb_end_ro_state_change()
414 * assuring that if we see s_readonly_remount already cleared, we will
415 * see the values of superblock / mount flags updated by remount.
416 */
417 smp_rmb();
418 return __mnt_is_readonly(mnt);
419 }
420
421 /*
422 * Most r/o & frozen checks on a fs are for operations that take discrete
423 * amounts of time, like a write() or unlink(). We must keep track of when
424 * those operations start (for permission checks) and when they end, so that we
425 * can determine when writes are able to occur to a filesystem.
426 */
427 /**
428 * mnt_get_write_access - get write access to a mount without freeze protection
429 * @m: the mount on which to take a write
430 *
431 * This tells the low-level filesystem that a write is about to be performed to
432 * it, and makes sure that writes are allowed (mnt it read-write) before
433 * returning success. This operation does not protect against filesystem being
434 * frozen. When the write operation is finished, mnt_put_write_access() must be
435 * called. This is effectively a refcount.
436 */
mnt_get_write_access(struct vfsmount * m)437 int mnt_get_write_access(struct vfsmount *m)
438 {
439 struct mount *mnt = real_mount(m);
440 int ret = 0;
441
442 preempt_disable();
443 mnt_inc_writers(mnt);
444 /*
445 * The store to mnt_inc_writers must be visible before we pass
446 * WRITE_HOLD loop below, so that the slowpath can see our
447 * incremented count after it has set WRITE_HOLD.
448 */
449 smp_mb();
450 might_lock(&mount_lock.lock);
451 while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
452 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
453 cpu_relax();
454 } else {
455 /*
456 * This prevents priority inversion, if the task
457 * setting WRITE_HOLD got preempted on a remote
458 * CPU, and it prevents life lock if the task setting
459 * WRITE_HOLD has a lower priority and is bound to
460 * the same CPU as the task that is spinning here.
461 */
462 preempt_enable();
463 read_seqlock_excl(&mount_lock);
464 read_sequnlock_excl(&mount_lock);
465 preempt_disable();
466 }
467 }
468 /*
469 * The barrier pairs with the barrier sb_start_ro_state_change() making
470 * sure that if we see WRITE_HOLD cleared, we will also see
471 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
472 * mnt_is_readonly() and bail in case we are racing with remount
473 * read-only.
474 */
475 smp_rmb();
476 if (mnt_is_readonly(m)) {
477 mnt_dec_writers(mnt);
478 ret = -EROFS;
479 }
480 preempt_enable();
481
482 return ret;
483 }
484 EXPORT_SYMBOL_GPL(mnt_get_write_access);
485
486 /**
487 * mnt_want_write - get write access to a mount
488 * @m: the mount on which to take a write
489 *
490 * This tells the low-level filesystem that a write is about to be performed to
491 * it, and makes sure that writes are allowed (mount is read-write, filesystem
492 * is not frozen) before returning success. When the write operation is
493 * finished, mnt_drop_write() must be called. This is effectively a refcount.
494 */
mnt_want_write(struct vfsmount * m)495 int mnt_want_write(struct vfsmount *m)
496 {
497 int ret;
498
499 sb_start_write(m->mnt_sb);
500 ret = mnt_get_write_access(m);
501 if (ret)
502 sb_end_write(m->mnt_sb);
503 return ret;
504 }
505 EXPORT_SYMBOL_GPL(mnt_want_write);
506
507 /**
508 * mnt_get_write_access_file - get write access to a file's mount
509 * @file: the file who's mount on which to take a write
510 *
511 * This is like mnt_get_write_access, but if @file is already open for write it
512 * skips incrementing mnt_writers (since the open file already has a reference)
513 * and instead only does the check for emergency r/o remounts. This must be
514 * paired with mnt_put_write_access_file.
515 */
mnt_get_write_access_file(struct file * file)516 int mnt_get_write_access_file(struct file *file)
517 {
518 if (file->f_mode & FMODE_WRITER) {
519 /*
520 * Superblock may have become readonly while there are still
521 * writable fd's, e.g. due to a fs error with errors=remount-ro
522 */
523 if (__mnt_is_readonly(file->f_path.mnt))
524 return -EROFS;
525 return 0;
526 }
527 return mnt_get_write_access(file->f_path.mnt);
528 }
529
530 /**
531 * mnt_want_write_file - get write access to a file's mount
532 * @file: the file who's mount on which to take a write
533 *
534 * This is like mnt_want_write, but if the file is already open for writing it
535 * skips incrementing mnt_writers (since the open file already has a reference)
536 * and instead only does the freeze protection and the check for emergency r/o
537 * remounts. This must be paired with mnt_drop_write_file.
538 */
mnt_want_write_file(struct file * file)539 int mnt_want_write_file(struct file *file)
540 {
541 int ret;
542
543 sb_start_write(file_inode(file)->i_sb);
544 ret = mnt_get_write_access_file(file);
545 if (ret)
546 sb_end_write(file_inode(file)->i_sb);
547 return ret;
548 }
549 EXPORT_SYMBOL_GPL(mnt_want_write_file);
550
551 /**
552 * mnt_put_write_access - give up write access to a mount
553 * @mnt: the mount on which to give up write access
554 *
555 * Tells the low-level filesystem that we are done
556 * performing writes to it. Must be matched with
557 * mnt_get_write_access() call above.
558 */
mnt_put_write_access(struct vfsmount * mnt)559 void mnt_put_write_access(struct vfsmount *mnt)
560 {
561 preempt_disable();
562 mnt_dec_writers(real_mount(mnt));
563 preempt_enable();
564 }
565 EXPORT_SYMBOL_GPL(mnt_put_write_access);
566
567 /**
568 * mnt_drop_write - give up write access to a mount
569 * @mnt: the mount on which to give up write access
570 *
571 * Tells the low-level filesystem that we are done performing writes to it and
572 * also allows filesystem to be frozen again. Must be matched with
573 * mnt_want_write() call above.
574 */
mnt_drop_write(struct vfsmount * mnt)575 void mnt_drop_write(struct vfsmount *mnt)
576 {
577 mnt_put_write_access(mnt);
578 sb_end_write(mnt->mnt_sb);
579 }
580 EXPORT_SYMBOL_GPL(mnt_drop_write);
581
mnt_put_write_access_file(struct file * file)582 void mnt_put_write_access_file(struct file *file)
583 {
584 if (!(file->f_mode & FMODE_WRITER))
585 mnt_put_write_access(file->f_path.mnt);
586 }
587
mnt_drop_write_file(struct file * file)588 void mnt_drop_write_file(struct file *file)
589 {
590 mnt_put_write_access_file(file);
591 sb_end_write(file_inode(file)->i_sb);
592 }
593 EXPORT_SYMBOL(mnt_drop_write_file);
594
595 /**
596 * mnt_hold_writers - prevent write access to the given mount
597 * @mnt: mnt to prevent write access to
598 *
599 * Prevents write access to @mnt if there are no active writers for @mnt.
600 * This function needs to be called and return successfully before changing
601 * properties of @mnt that need to remain stable for callers with write access
602 * to @mnt.
603 *
604 * After this functions has been called successfully callers must pair it with
605 * a call to mnt_unhold_writers() in order to stop preventing write access to
606 * @mnt.
607 *
608 * Context: This function expects to be in mount_locked_reader scope serializing
609 * setting WRITE_HOLD.
610 * Return: On success 0 is returned.
611 * On error, -EBUSY is returned.
612 */
mnt_hold_writers(struct mount * mnt)613 static inline int mnt_hold_writers(struct mount *mnt)
614 {
615 set_write_hold(mnt);
616 /*
617 * After storing WRITE_HOLD, we'll read the counters. This store
618 * should be visible before we do.
619 */
620 smp_mb();
621
622 /*
623 * With writers on hold, if this value is zero, then there are
624 * definitely no active writers (although held writers may subsequently
625 * increment the count, they'll have to wait, and decrement it after
626 * seeing MNT_READONLY).
627 *
628 * It is OK to have counter incremented on one CPU and decremented on
629 * another: the sum will add up correctly. The danger would be when we
630 * sum up each counter, if we read a counter before it is incremented,
631 * but then read another CPU's count which it has been subsequently
632 * decremented from -- we would see more decrements than we should.
633 * WRITE_HOLD protects against this scenario, because
634 * mnt_want_write first increments count, then smp_mb, then spins on
635 * WRITE_HOLD, so it can't be decremented by another CPU while
636 * we're counting up here.
637 */
638 if (mnt_get_writers(mnt) > 0)
639 return -EBUSY;
640
641 return 0;
642 }
643
644 /**
645 * mnt_unhold_writers - stop preventing write access to the given mount
646 * @mnt: mnt to stop preventing write access to
647 *
648 * Stop preventing write access to @mnt allowing callers to gain write access
649 * to @mnt again.
650 *
651 * This function can only be called after a call to mnt_hold_writers().
652 *
653 * Context: This function expects to be in the same mount_locked_reader scope
654 * as the matching mnt_hold_writers().
655 */
mnt_unhold_writers(struct mount * mnt)656 static inline void mnt_unhold_writers(struct mount *mnt)
657 {
658 if (!test_write_hold(mnt))
659 return;
660 /*
661 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
662 * that become unheld will see MNT_READONLY.
663 */
664 smp_wmb();
665 clear_write_hold(mnt);
666 }
667
mnt_del_instance(struct mount * m)668 static inline void mnt_del_instance(struct mount *m)
669 {
670 struct mount **p = m->mnt_pprev_for_sb;
671 struct mount *next = m->mnt_next_for_sb;
672
673 if (next)
674 next->mnt_pprev_for_sb = p;
675 *p = next;
676 }
677
mnt_add_instance(struct mount * m,struct super_block * s)678 static inline void mnt_add_instance(struct mount *m, struct super_block *s)
679 {
680 struct mount *first = s->s_mounts;
681
682 if (first)
683 first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
684 m->mnt_next_for_sb = first;
685 m->mnt_pprev_for_sb = &s->s_mounts;
686 s->s_mounts = m;
687 }
688
mnt_make_readonly(struct mount * mnt)689 static int mnt_make_readonly(struct mount *mnt)
690 {
691 int ret;
692
693 ret = mnt_hold_writers(mnt);
694 if (!ret)
695 mnt->mnt.mnt_flags |= MNT_READONLY;
696 mnt_unhold_writers(mnt);
697 return ret;
698 }
699
sb_prepare_remount_readonly(struct super_block * sb)700 int sb_prepare_remount_readonly(struct super_block *sb)
701 {
702 int err = 0;
703
704 /* Racy optimization. Recheck the counter under WRITE_HOLD */
705 if (atomic_long_read(&sb->s_remove_count))
706 return -EBUSY;
707
708 guard(mount_locked_reader)();
709
710 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
711 if (!(m->mnt.mnt_flags & MNT_READONLY)) {
712 err = mnt_hold_writers(m);
713 if (err)
714 break;
715 }
716 }
717 if (!err && atomic_long_read(&sb->s_remove_count))
718 err = -EBUSY;
719
720 if (!err)
721 sb_start_ro_state_change(sb);
722 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
723 if (test_write_hold(m))
724 clear_write_hold(m);
725 }
726
727 return err;
728 }
729
free_vfsmnt(struct mount * mnt)730 static void free_vfsmnt(struct mount *mnt)
731 {
732 mnt_idmap_put(mnt_idmap(&mnt->mnt));
733 kfree_const(mnt->mnt_devname);
734 #ifdef CONFIG_SMP
735 free_percpu(mnt->mnt_pcp);
736 #endif
737 kmem_cache_free(mnt_cache, mnt);
738 }
739
delayed_free_vfsmnt(struct rcu_head * head)740 static void delayed_free_vfsmnt(struct rcu_head *head)
741 {
742 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
743 }
744
745 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)746 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
747 {
748 struct mount *mnt;
749 if (read_seqretry(&mount_lock, seq))
750 return 1;
751 if (bastard == NULL)
752 return 0;
753 mnt = real_mount(bastard);
754 mnt_add_count(mnt, 1);
755 smp_mb(); // see mntput_no_expire() and do_umount()
756 if (likely(!read_seqretry(&mount_lock, seq)))
757 return 0;
758 lock_mount_hash();
759 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
760 mnt_add_count(mnt, -1);
761 unlock_mount_hash();
762 return 1;
763 }
764 unlock_mount_hash();
765 /* caller will mntput() */
766 return -1;
767 }
768
769 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)770 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
771 {
772 int res = __legitimize_mnt(bastard, seq);
773 if (likely(!res))
774 return true;
775 if (unlikely(res < 0)) {
776 rcu_read_unlock();
777 mntput(bastard);
778 rcu_read_lock();
779 }
780 return false;
781 }
782
783 /**
784 * __lookup_mnt - mount hash lookup
785 * @mnt: parent mount
786 * @dentry: dentry of mountpoint
787 *
788 * If @mnt has a child mount @c mounted on @dentry find and return it.
789 * Caller must either hold the spinlock component of @mount_lock or
790 * hold rcu_read_lock(), sample the seqcount component before the call
791 * and recheck it afterwards.
792 *
793 * Return: The child of @mnt mounted on @dentry or %NULL.
794 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)795 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
796 {
797 struct hlist_head *head = m_hash(mnt, dentry);
798 struct mount *p;
799
800 hlist_for_each_entry_rcu(p, head, mnt_hash)
801 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
802 return p;
803 return NULL;
804 }
805
806 /**
807 * lookup_mnt - Return the child mount mounted at given location
808 * @path: location in the namespace
809 *
810 * Acquires and returns a new reference to mount at given location
811 * or %NULL if nothing is mounted there.
812 */
lookup_mnt(const struct path * path)813 struct vfsmount *lookup_mnt(const struct path *path)
814 {
815 struct mount *child_mnt;
816 struct vfsmount *m;
817 unsigned seq;
818
819 rcu_read_lock();
820 do {
821 seq = read_seqbegin(&mount_lock);
822 child_mnt = __lookup_mnt(path->mnt, path->dentry);
823 m = child_mnt ? &child_mnt->mnt : NULL;
824 } while (!legitimize_mnt(m, seq));
825 rcu_read_unlock();
826 return m;
827 }
828
829 /*
830 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
831 * current mount namespace.
832 *
833 * The common case is dentries are not mountpoints at all and that
834 * test is handled inline. For the slow case when we are actually
835 * dealing with a mountpoint of some kind, walk through all of the
836 * mounts in the current mount namespace and test to see if the dentry
837 * is a mountpoint.
838 *
839 * The mount_hashtable is not usable in the context because we
840 * need to identify all mounts that may be in the current mount
841 * namespace not just a mount that happens to have some specified
842 * parent mount.
843 */
__is_local_mountpoint(const struct dentry * dentry)844 bool __is_local_mountpoint(const struct dentry *dentry)
845 {
846 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
847 struct mount *mnt, *n;
848
849 guard(namespace_shared)();
850
851 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
852 if (mnt->mnt_mountpoint == dentry)
853 return true;
854
855 return false;
856 }
857
858 struct pinned_mountpoint {
859 struct hlist_node node;
860 struct mountpoint *mp;
861 struct mount *parent;
862 };
863
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)864 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
865 {
866 struct hlist_head *chain = mp_hash(dentry);
867 struct mountpoint *mp;
868
869 hlist_for_each_entry(mp, chain, m_hash) {
870 if (mp->m_dentry == dentry) {
871 hlist_add_head(&m->node, &mp->m_list);
872 m->mp = mp;
873 return true;
874 }
875 }
876 return false;
877 }
878
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)879 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
880 {
881 struct mountpoint *mp __free(kfree) = NULL;
882 bool found;
883 int ret;
884
885 if (d_mountpoint(dentry)) {
886 /* might be worth a WARN_ON() */
887 if (d_unlinked(dentry))
888 return -ENOENT;
889 mountpoint:
890 read_seqlock_excl(&mount_lock);
891 found = lookup_mountpoint(dentry, m);
892 read_sequnlock_excl(&mount_lock);
893 if (found)
894 return 0;
895 }
896
897 if (!mp)
898 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
899 if (!mp)
900 return -ENOMEM;
901
902 /* Exactly one processes may set d_mounted */
903 ret = d_set_mounted(dentry);
904
905 /* Someone else set d_mounted? */
906 if (ret == -EBUSY)
907 goto mountpoint;
908
909 /* The dentry is not available as a mountpoint? */
910 if (ret)
911 return ret;
912
913 /* Add the new mountpoint to the hash table */
914 read_seqlock_excl(&mount_lock);
915 mp->m_dentry = dget(dentry);
916 hlist_add_head(&mp->m_hash, mp_hash(dentry));
917 INIT_HLIST_HEAD(&mp->m_list);
918 hlist_add_head(&m->node, &mp->m_list);
919 m->mp = no_free_ptr(mp);
920 read_sequnlock_excl(&mount_lock);
921 return 0;
922 }
923
924 /*
925 * vfsmount lock must be held. Additionally, the caller is responsible
926 * for serializing calls for given disposal list.
927 */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)928 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
929 {
930 if (hlist_empty(&mp->m_list)) {
931 struct dentry *dentry = mp->m_dentry;
932 spin_lock(&dentry->d_lock);
933 dentry->d_flags &= ~DCACHE_MOUNTED;
934 spin_unlock(&dentry->d_lock);
935 dput_to_list(dentry, list);
936 hlist_del(&mp->m_hash);
937 kfree(mp);
938 }
939 }
940
941 /*
942 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
943 */
unpin_mountpoint(struct pinned_mountpoint * m)944 static void unpin_mountpoint(struct pinned_mountpoint *m)
945 {
946 if (m->mp) {
947 hlist_del(&m->node);
948 maybe_free_mountpoint(m->mp, &ex_mountpoints);
949 }
950 }
951
check_mnt(const struct mount * mnt)952 static inline int check_mnt(const struct mount *mnt)
953 {
954 return mnt->mnt_ns == current->nsproxy->mnt_ns;
955 }
956
check_anonymous_mnt(struct mount * mnt)957 static inline bool check_anonymous_mnt(struct mount *mnt)
958 {
959 u64 seq;
960
961 if (!is_anon_ns(mnt->mnt_ns))
962 return false;
963
964 seq = mnt->mnt_ns->seq_origin;
965 return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
966 }
967
968 /*
969 * vfsmount lock must be held for write
970 */
touch_mnt_namespace(struct mnt_namespace * ns)971 static void touch_mnt_namespace(struct mnt_namespace *ns)
972 {
973 if (ns) {
974 ns->event = ++event;
975 wake_up_interruptible(&ns->poll);
976 }
977 }
978
979 /*
980 * vfsmount lock must be held for write
981 */
__touch_mnt_namespace(struct mnt_namespace * ns)982 static void __touch_mnt_namespace(struct mnt_namespace *ns)
983 {
984 if (ns && ns->event != event) {
985 ns->event = event;
986 wake_up_interruptible(&ns->poll);
987 }
988 }
989
990 /*
991 * locks: mount_lock[write_seqlock]
992 */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)993 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
994 {
995 struct mountpoint *mp;
996 struct mount *parent = mnt->mnt_parent;
997 if (unlikely(parent->overmount == mnt))
998 parent->overmount = NULL;
999 mnt->mnt_parent = mnt;
1000 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 list_del_init(&mnt->mnt_child);
1002 hlist_del_init_rcu(&mnt->mnt_hash);
1003 hlist_del_init(&mnt->mnt_mp_list);
1004 mp = mnt->mnt_mp;
1005 mnt->mnt_mp = NULL;
1006 maybe_free_mountpoint(mp, shrink_list);
1007 }
1008
1009 /*
1010 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1011 */
umount_mnt(struct mount * mnt)1012 static void umount_mnt(struct mount *mnt)
1013 {
1014 __umount_mnt(mnt, &ex_mountpoints);
1015 }
1016
1017 /*
1018 * vfsmount lock must be held for write
1019 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1020 void mnt_set_mountpoint(struct mount *mnt,
1021 struct mountpoint *mp,
1022 struct mount *child_mnt)
1023 {
1024 child_mnt->mnt_mountpoint = mp->m_dentry;
1025 child_mnt->mnt_parent = mnt;
1026 child_mnt->mnt_mp = mp;
1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029
make_visible(struct mount * mnt)1030 static void make_visible(struct mount *mnt)
1031 {
1032 struct mount *parent = mnt->mnt_parent;
1033 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1034 parent->overmount = mnt;
1035 hlist_add_head_rcu(&mnt->mnt_hash,
1036 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1037 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1038 }
1039
1040 /**
1041 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1042 * list of child mounts
1043 * @parent: the parent
1044 * @mnt: the new mount
1045 * @mp: the new mountpoint
1046 *
1047 * Mount @mnt at @mp on @parent. Then attach @mnt
1048 * to @parent's child mount list and to @mount_hashtable.
1049 *
1050 * Note, when make_visible() is called @mnt->mnt_parent already points
1051 * to the correct parent.
1052 *
1053 * Context: This function expects namespace_lock() and lock_mount_hash()
1054 * to have been acquired in that order.
1055 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1056 static void attach_mnt(struct mount *mnt, struct mount *parent,
1057 struct mountpoint *mp)
1058 {
1059 mnt_set_mountpoint(parent, mp, mnt);
1060 make_visible(mnt);
1061 }
1062
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1063 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1064 {
1065 struct mountpoint *old_mp = mnt->mnt_mp;
1066
1067 list_del_init(&mnt->mnt_child);
1068 hlist_del_init(&mnt->mnt_mp_list);
1069 hlist_del_init_rcu(&mnt->mnt_hash);
1070
1071 attach_mnt(mnt, parent, mp);
1072
1073 maybe_free_mountpoint(old_mp, &ex_mountpoints);
1074 }
1075
node_to_mount(struct rb_node * node)1076 static inline struct mount *node_to_mount(struct rb_node *node)
1077 {
1078 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1079 }
1080
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1081 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1082 {
1083 struct rb_node **link = &ns->mounts.rb_node;
1084 struct rb_node *parent = NULL;
1085 bool mnt_first_node = true, mnt_last_node = true;
1086
1087 WARN_ON(mnt_ns_attached(mnt));
1088 mnt->mnt_ns = ns;
1089 while (*link) {
1090 parent = *link;
1091 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1092 link = &parent->rb_left;
1093 mnt_last_node = false;
1094 } else {
1095 link = &parent->rb_right;
1096 mnt_first_node = false;
1097 }
1098 }
1099
1100 if (mnt_last_node)
1101 ns->mnt_last_node = &mnt->mnt_node;
1102 if (mnt_first_node)
1103 ns->mnt_first_node = &mnt->mnt_node;
1104 rb_link_node(&mnt->mnt_node, parent, link);
1105 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1106
1107 mnt_notify_add(mnt);
1108 }
1109
next_mnt(struct mount * p,struct mount * root)1110 static struct mount *next_mnt(struct mount *p, struct mount *root)
1111 {
1112 struct list_head *next = p->mnt_mounts.next;
1113 if (next == &p->mnt_mounts) {
1114 while (1) {
1115 if (p == root)
1116 return NULL;
1117 next = p->mnt_child.next;
1118 if (next != &p->mnt_parent->mnt_mounts)
1119 break;
1120 p = p->mnt_parent;
1121 }
1122 }
1123 return list_entry(next, struct mount, mnt_child);
1124 }
1125
skip_mnt_tree(struct mount * p)1126 static struct mount *skip_mnt_tree(struct mount *p)
1127 {
1128 struct list_head *prev = p->mnt_mounts.prev;
1129 while (prev != &p->mnt_mounts) {
1130 p = list_entry(prev, struct mount, mnt_child);
1131 prev = p->mnt_mounts.prev;
1132 }
1133 return p;
1134 }
1135
1136 /*
1137 * vfsmount lock must be held for write
1138 */
commit_tree(struct mount * mnt)1139 static void commit_tree(struct mount *mnt)
1140 {
1141 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1142
1143 if (!mnt_ns_attached(mnt)) {
1144 for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1145 mnt_add_to_ns(n, m);
1146 n->nr_mounts += n->pending_mounts;
1147 n->pending_mounts = 0;
1148 }
1149
1150 make_visible(mnt);
1151 touch_mnt_namespace(n);
1152 }
1153
setup_mnt(struct mount * m,struct dentry * root)1154 static void setup_mnt(struct mount *m, struct dentry *root)
1155 {
1156 struct super_block *s = root->d_sb;
1157
1158 atomic_inc(&s->s_active);
1159 m->mnt.mnt_sb = s;
1160 m->mnt.mnt_root = dget(root);
1161 m->mnt_mountpoint = m->mnt.mnt_root;
1162 m->mnt_parent = m;
1163
1164 guard(mount_locked_reader)();
1165 mnt_add_instance(m, s);
1166 }
1167
1168 /**
1169 * vfs_create_mount - Create a mount for a configured superblock
1170 * @fc: The configuration context with the superblock attached
1171 *
1172 * Create a mount to an already configured superblock. If necessary, the
1173 * caller should invoke vfs_get_tree() before calling this.
1174 *
1175 * Note that this does not attach the mount to anything.
1176 */
vfs_create_mount(struct fs_context * fc)1177 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1178 {
1179 struct mount *mnt;
1180
1181 if (!fc->root)
1182 return ERR_PTR(-EINVAL);
1183
1184 mnt = alloc_vfsmnt(fc->source);
1185 if (!mnt)
1186 return ERR_PTR(-ENOMEM);
1187
1188 if (fc->sb_flags & SB_KERNMOUNT)
1189 mnt->mnt.mnt_flags = MNT_INTERNAL;
1190
1191 setup_mnt(mnt, fc->root);
1192
1193 return &mnt->mnt;
1194 }
1195 EXPORT_SYMBOL(vfs_create_mount);
1196
fc_mount(struct fs_context * fc)1197 struct vfsmount *fc_mount(struct fs_context *fc)
1198 {
1199 int err = vfs_get_tree(fc);
1200 if (!err) {
1201 up_write(&fc->root->d_sb->s_umount);
1202 return vfs_create_mount(fc);
1203 }
1204 return ERR_PTR(err);
1205 }
1206 EXPORT_SYMBOL(fc_mount);
1207
fc_mount_longterm(struct fs_context * fc)1208 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1209 {
1210 struct vfsmount *mnt = fc_mount(fc);
1211 if (!IS_ERR(mnt))
1212 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1213 return mnt;
1214 }
1215 EXPORT_SYMBOL(fc_mount_longterm);
1216
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1217 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1218 int flags, const char *name,
1219 void *data)
1220 {
1221 struct fs_context *fc;
1222 struct vfsmount *mnt;
1223 int ret = 0;
1224
1225 if (!type)
1226 return ERR_PTR(-EINVAL);
1227
1228 fc = fs_context_for_mount(type, flags);
1229 if (IS_ERR(fc))
1230 return ERR_CAST(fc);
1231
1232 if (name)
1233 ret = vfs_parse_fs_string(fc, "source", name);
1234 if (!ret)
1235 ret = parse_monolithic_mount_data(fc, data);
1236 if (!ret)
1237 mnt = fc_mount(fc);
1238 else
1239 mnt = ERR_PTR(ret);
1240
1241 put_fs_context(fc);
1242 return mnt;
1243 }
1244 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1245
clone_mnt(struct mount * old,struct dentry * root,int flag)1246 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1247 int flag)
1248 {
1249 struct mount *mnt;
1250 int err;
1251
1252 mnt = alloc_vfsmnt(old->mnt_devname);
1253 if (!mnt)
1254 return ERR_PTR(-ENOMEM);
1255
1256 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1257 ~MNT_INTERNAL_FLAGS;
1258
1259 if (flag & (CL_SLAVE | CL_PRIVATE))
1260 mnt->mnt_group_id = 0; /* not a peer of original */
1261 else
1262 mnt->mnt_group_id = old->mnt_group_id;
1263
1264 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1265 err = mnt_alloc_group_id(mnt);
1266 if (err)
1267 goto out_free;
1268 }
1269
1270 if (mnt->mnt_group_id)
1271 set_mnt_shared(mnt);
1272
1273 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1274
1275 setup_mnt(mnt, root);
1276
1277 if (flag & CL_PRIVATE) // we are done with it
1278 return mnt;
1279
1280 if (peers(mnt, old))
1281 list_add(&mnt->mnt_share, &old->mnt_share);
1282
1283 if ((flag & CL_SLAVE) && old->mnt_group_id) {
1284 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1285 mnt->mnt_master = old;
1286 } else if (IS_MNT_SLAVE(old)) {
1287 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1288 mnt->mnt_master = old->mnt_master;
1289 }
1290 return mnt;
1291
1292 out_free:
1293 mnt_free_id(mnt);
1294 free_vfsmnt(mnt);
1295 return ERR_PTR(err);
1296 }
1297
cleanup_mnt(struct mount * mnt)1298 static void cleanup_mnt(struct mount *mnt)
1299 {
1300 struct hlist_node *p;
1301 struct mount *m;
1302 /*
1303 * The warning here probably indicates that somebody messed
1304 * up a mnt_want/drop_write() pair. If this happens, the
1305 * filesystem was probably unable to make r/w->r/o transitions.
1306 * The locking used to deal with mnt_count decrement provides barriers,
1307 * so mnt_get_writers() below is safe.
1308 */
1309 WARN_ON(mnt_get_writers(mnt));
1310 if (unlikely(mnt->mnt_pins.first))
1311 mnt_pin_kill(mnt);
1312 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1313 hlist_del(&m->mnt_umount);
1314 mntput(&m->mnt);
1315 }
1316 fsnotify_vfsmount_delete(&mnt->mnt);
1317 dput(mnt->mnt.mnt_root);
1318 deactivate_super(mnt->mnt.mnt_sb);
1319 mnt_free_id(mnt);
1320 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1321 }
1322
__cleanup_mnt(struct rcu_head * head)1323 static void __cleanup_mnt(struct rcu_head *head)
1324 {
1325 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1326 }
1327
1328 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1329 static void delayed_mntput(struct work_struct *unused)
1330 {
1331 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1332 struct mount *m, *t;
1333
1334 llist_for_each_entry_safe(m, t, node, mnt_llist)
1335 cleanup_mnt(m);
1336 }
1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1338
mntput_no_expire(struct mount * mnt)1339 static void mntput_no_expire(struct mount *mnt)
1340 {
1341 LIST_HEAD(list);
1342 int count;
1343
1344 rcu_read_lock();
1345 if (likely(READ_ONCE(mnt->mnt_ns))) {
1346 /*
1347 * Since we don't do lock_mount_hash() here,
1348 * ->mnt_ns can change under us. However, if it's
1349 * non-NULL, then there's a reference that won't
1350 * be dropped until after an RCU delay done after
1351 * turning ->mnt_ns NULL. So if we observe it
1352 * non-NULL under rcu_read_lock(), the reference
1353 * we are dropping is not the final one.
1354 */
1355 mnt_add_count(mnt, -1);
1356 rcu_read_unlock();
1357 return;
1358 }
1359 lock_mount_hash();
1360 /*
1361 * make sure that if __legitimize_mnt() has not seen us grab
1362 * mount_lock, we'll see their refcount increment here.
1363 */
1364 smp_mb();
1365 mnt_add_count(mnt, -1);
1366 count = mnt_get_count(mnt);
1367 if (count != 0) {
1368 WARN_ON(count < 0);
1369 rcu_read_unlock();
1370 unlock_mount_hash();
1371 return;
1372 }
1373 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1374 rcu_read_unlock();
1375 unlock_mount_hash();
1376 return;
1377 }
1378 mnt->mnt.mnt_flags |= MNT_DOOMED;
1379 rcu_read_unlock();
1380
1381 mnt_del_instance(mnt);
1382 if (unlikely(!list_empty(&mnt->mnt_expire)))
1383 list_del(&mnt->mnt_expire);
1384
1385 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1386 struct mount *p, *tmp;
1387 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1388 __umount_mnt(p, &list);
1389 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1390 }
1391 }
1392 unlock_mount_hash();
1393 shrink_dentry_list(&list);
1394
1395 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1396 struct task_struct *task = current;
1397 if (likely(!(task->flags & PF_KTHREAD))) {
1398 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1399 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1400 return;
1401 }
1402 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1403 schedule_delayed_work(&delayed_mntput_work, 1);
1404 return;
1405 }
1406 cleanup_mnt(mnt);
1407 }
1408
mntput(struct vfsmount * mnt)1409 void mntput(struct vfsmount *mnt)
1410 {
1411 if (mnt) {
1412 struct mount *m = real_mount(mnt);
1413 /* avoid cacheline pingpong */
1414 if (unlikely(m->mnt_expiry_mark))
1415 WRITE_ONCE(m->mnt_expiry_mark, 0);
1416 mntput_no_expire(m);
1417 }
1418 }
1419 EXPORT_SYMBOL(mntput);
1420
mntget(struct vfsmount * mnt)1421 struct vfsmount *mntget(struct vfsmount *mnt)
1422 {
1423 if (mnt)
1424 mnt_add_count(real_mount(mnt), 1);
1425 return mnt;
1426 }
1427 EXPORT_SYMBOL(mntget);
1428
1429 /*
1430 * Make a mount point inaccessible to new lookups.
1431 * Because there may still be current users, the caller MUST WAIT
1432 * for an RCU grace period before destroying the mount point.
1433 */
mnt_make_shortterm(struct vfsmount * mnt)1434 void mnt_make_shortterm(struct vfsmount *mnt)
1435 {
1436 if (mnt)
1437 real_mount(mnt)->mnt_ns = NULL;
1438 }
1439
1440 /**
1441 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1442 * @path: path to check
1443 *
1444 * d_mountpoint() can only be used reliably to establish if a dentry is
1445 * not mounted in any namespace and that common case is handled inline.
1446 * d_mountpoint() isn't aware of the possibility there may be multiple
1447 * mounts using a given dentry in a different namespace. This function
1448 * checks if the passed in path is a mountpoint rather than the dentry
1449 * alone.
1450 */
path_is_mountpoint(const struct path * path)1451 bool path_is_mountpoint(const struct path *path)
1452 {
1453 unsigned seq;
1454 bool res;
1455
1456 if (!d_mountpoint(path->dentry))
1457 return false;
1458
1459 rcu_read_lock();
1460 do {
1461 seq = read_seqbegin(&mount_lock);
1462 res = __path_is_mountpoint(path);
1463 } while (read_seqretry(&mount_lock, seq));
1464 rcu_read_unlock();
1465
1466 return res;
1467 }
1468 EXPORT_SYMBOL(path_is_mountpoint);
1469
mnt_clone_internal(const struct path * path)1470 struct vfsmount *mnt_clone_internal(const struct path *path)
1471 {
1472 struct mount *p;
1473 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1474 if (IS_ERR(p))
1475 return ERR_CAST(p);
1476 p->mnt.mnt_flags |= MNT_INTERNAL;
1477 return &p->mnt;
1478 }
1479
1480 /*
1481 * Returns the mount which either has the specified mnt_id, or has the next
1482 * smallest id afer the specified one.
1483 */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1484 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1485 {
1486 struct rb_node *node = ns->mounts.rb_node;
1487 struct mount *ret = NULL;
1488
1489 while (node) {
1490 struct mount *m = node_to_mount(node);
1491
1492 if (mnt_id <= m->mnt_id_unique) {
1493 ret = node_to_mount(node);
1494 if (mnt_id == m->mnt_id_unique)
1495 break;
1496 node = node->rb_left;
1497 } else {
1498 node = node->rb_right;
1499 }
1500 }
1501 return ret;
1502 }
1503
1504 /*
1505 * Returns the mount which either has the specified mnt_id, or has the next
1506 * greater id before the specified one.
1507 */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1508 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1509 {
1510 struct rb_node *node = ns->mounts.rb_node;
1511 struct mount *ret = NULL;
1512
1513 while (node) {
1514 struct mount *m = node_to_mount(node);
1515
1516 if (mnt_id >= m->mnt_id_unique) {
1517 ret = node_to_mount(node);
1518 if (mnt_id == m->mnt_id_unique)
1519 break;
1520 node = node->rb_right;
1521 } else {
1522 node = node->rb_left;
1523 }
1524 }
1525 return ret;
1526 }
1527
1528 #ifdef CONFIG_PROC_FS
1529
1530 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1531 static void *m_start(struct seq_file *m, loff_t *pos)
1532 {
1533 struct proc_mounts *p = m->private;
1534
1535 down_read(&namespace_sem);
1536
1537 return mnt_find_id_at(p->ns, *pos);
1538 }
1539
m_next(struct seq_file * m,void * v,loff_t * pos)1540 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1541 {
1542 struct mount *next = NULL, *mnt = v;
1543 struct rb_node *node = rb_next(&mnt->mnt_node);
1544
1545 ++*pos;
1546 if (node) {
1547 next = node_to_mount(node);
1548 *pos = next->mnt_id_unique;
1549 }
1550 return next;
1551 }
1552
m_stop(struct seq_file * m,void * v)1553 static void m_stop(struct seq_file *m, void *v)
1554 {
1555 up_read(&namespace_sem);
1556 }
1557
m_show(struct seq_file * m,void * v)1558 static int m_show(struct seq_file *m, void *v)
1559 {
1560 struct proc_mounts *p = m->private;
1561 struct mount *r = v;
1562 return p->show(m, &r->mnt);
1563 }
1564
1565 const struct seq_operations mounts_op = {
1566 .start = m_start,
1567 .next = m_next,
1568 .stop = m_stop,
1569 .show = m_show,
1570 };
1571
1572 #endif /* CONFIG_PROC_FS */
1573
1574 /**
1575 * may_umount_tree - check if a mount tree is busy
1576 * @m: root of mount tree
1577 *
1578 * This is called to check if a tree of mounts has any
1579 * open files, pwds, chroots or sub mounts that are
1580 * busy.
1581 */
may_umount_tree(struct vfsmount * m)1582 int may_umount_tree(struct vfsmount *m)
1583 {
1584 struct mount *mnt = real_mount(m);
1585 bool busy = false;
1586
1587 /* write lock needed for mnt_get_count */
1588 lock_mount_hash();
1589 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1590 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1591 busy = true;
1592 break;
1593 }
1594 }
1595 unlock_mount_hash();
1596
1597 return !busy;
1598 }
1599
1600 EXPORT_SYMBOL(may_umount_tree);
1601
1602 /**
1603 * may_umount - check if a mount point is busy
1604 * @mnt: root of mount
1605 *
1606 * This is called to check if a mount point has any
1607 * open files, pwds, chroots or sub mounts. If the
1608 * mount has sub mounts this will return busy
1609 * regardless of whether the sub mounts are busy.
1610 *
1611 * Doesn't take quota and stuff into account. IOW, in some cases it will
1612 * give false negatives. The main reason why it's here is that we need
1613 * a non-destructive way to look for easily umountable filesystems.
1614 */
may_umount(struct vfsmount * mnt)1615 int may_umount(struct vfsmount *mnt)
1616 {
1617 int ret = 1;
1618 down_read(&namespace_sem);
1619 lock_mount_hash();
1620 if (propagate_mount_busy(real_mount(mnt), 2))
1621 ret = 0;
1622 unlock_mount_hash();
1623 up_read(&namespace_sem);
1624 return ret;
1625 }
1626
1627 EXPORT_SYMBOL(may_umount);
1628
1629 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1630 static void mnt_notify(struct mount *p)
1631 {
1632 if (!p->prev_ns && p->mnt_ns) {
1633 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1634 } else if (p->prev_ns && !p->mnt_ns) {
1635 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1636 } else if (p->prev_ns == p->mnt_ns) {
1637 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1638 } else {
1639 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1640 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1641 }
1642 p->prev_ns = p->mnt_ns;
1643 }
1644
notify_mnt_list(void)1645 static void notify_mnt_list(void)
1646 {
1647 struct mount *m, *tmp;
1648 /*
1649 * Notify about mounts that were added/reparented/detached/remain
1650 * connected after unmount.
1651 */
1652 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1653 mnt_notify(m);
1654 list_del_init(&m->to_notify);
1655 }
1656 }
1657
need_notify_mnt_list(void)1658 static bool need_notify_mnt_list(void)
1659 {
1660 return !list_empty(¬ify_list);
1661 }
1662 #else
notify_mnt_list(void)1663 static void notify_mnt_list(void)
1664 {
1665 }
1666
need_notify_mnt_list(void)1667 static bool need_notify_mnt_list(void)
1668 {
1669 return false;
1670 }
1671 #endif
1672
1673 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1674 static void namespace_unlock(void)
1675 {
1676 struct hlist_head head;
1677 struct hlist_node *p;
1678 struct mount *m;
1679 struct mnt_namespace *ns = emptied_ns;
1680 LIST_HEAD(list);
1681
1682 hlist_move_list(&unmounted, &head);
1683 list_splice_init(&ex_mountpoints, &list);
1684 emptied_ns = NULL;
1685
1686 if (need_notify_mnt_list()) {
1687 /*
1688 * No point blocking out concurrent readers while notifications
1689 * are sent. This will also allow statmount()/listmount() to run
1690 * concurrently.
1691 */
1692 downgrade_write(&namespace_sem);
1693 notify_mnt_list();
1694 up_read(&namespace_sem);
1695 } else {
1696 up_write(&namespace_sem);
1697 }
1698 if (unlikely(ns)) {
1699 /* Make sure we notice when we leak mounts. */
1700 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1701 free_mnt_ns(ns);
1702 }
1703
1704 shrink_dentry_list(&list);
1705
1706 if (likely(hlist_empty(&head)))
1707 return;
1708
1709 synchronize_rcu_expedited();
1710
1711 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1712 hlist_del(&m->mnt_umount);
1713 mntput(&m->mnt);
1714 }
1715 }
1716
namespace_lock(void)1717 static inline void namespace_lock(void)
1718 {
1719 down_write(&namespace_sem);
1720 }
1721
1722 enum umount_tree_flags {
1723 UMOUNT_SYNC = 1,
1724 UMOUNT_PROPAGATE = 2,
1725 UMOUNT_CONNECTED = 4,
1726 };
1727
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1728 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1729 {
1730 /* Leaving mounts connected is only valid for lazy umounts */
1731 if (how & UMOUNT_SYNC)
1732 return true;
1733
1734 /* A mount without a parent has nothing to be connected to */
1735 if (!mnt_has_parent(mnt))
1736 return true;
1737
1738 /* Because the reference counting rules change when mounts are
1739 * unmounted and connected, umounted mounts may not be
1740 * connected to mounted mounts.
1741 */
1742 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1743 return true;
1744
1745 /* Has it been requested that the mount remain connected? */
1746 if (how & UMOUNT_CONNECTED)
1747 return false;
1748
1749 /* Is the mount locked such that it needs to remain connected? */
1750 if (IS_MNT_LOCKED(mnt))
1751 return false;
1752
1753 /* By default disconnect the mount */
1754 return true;
1755 }
1756
1757 /*
1758 * mount_lock must be held
1759 * namespace_sem must be held for write
1760 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1761 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1762 {
1763 LIST_HEAD(tmp_list);
1764 struct mount *p;
1765
1766 if (how & UMOUNT_PROPAGATE)
1767 propagate_mount_unlock(mnt);
1768
1769 /* Gather the mounts to umount */
1770 for (p = mnt; p; p = next_mnt(p, mnt)) {
1771 p->mnt.mnt_flags |= MNT_UMOUNT;
1772 if (mnt_ns_attached(p))
1773 move_from_ns(p);
1774 list_add_tail(&p->mnt_list, &tmp_list);
1775 }
1776
1777 /* Hide the mounts from mnt_mounts */
1778 list_for_each_entry(p, &tmp_list, mnt_list) {
1779 list_del_init(&p->mnt_child);
1780 }
1781
1782 /* Add propagated mounts to the tmp_list */
1783 if (how & UMOUNT_PROPAGATE)
1784 propagate_umount(&tmp_list);
1785
1786 bulk_make_private(&tmp_list);
1787
1788 while (!list_empty(&tmp_list)) {
1789 struct mnt_namespace *ns;
1790 bool disconnect;
1791 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1792 list_del_init(&p->mnt_expire);
1793 list_del_init(&p->mnt_list);
1794 ns = p->mnt_ns;
1795 if (ns) {
1796 ns->nr_mounts--;
1797 __touch_mnt_namespace(ns);
1798 }
1799 p->mnt_ns = NULL;
1800 if (how & UMOUNT_SYNC)
1801 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1802
1803 disconnect = disconnect_mount(p, how);
1804 if (mnt_has_parent(p)) {
1805 if (!disconnect) {
1806 /* Don't forget about p */
1807 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1808 } else {
1809 umount_mnt(p);
1810 }
1811 }
1812 if (disconnect)
1813 hlist_add_head(&p->mnt_umount, &unmounted);
1814
1815 /*
1816 * At this point p->mnt_ns is NULL, notification will be queued
1817 * only if
1818 *
1819 * - p->prev_ns is non-NULL *and*
1820 * - p->prev_ns->n_fsnotify_marks is non-NULL
1821 *
1822 * This will preclude queuing the mount if this is a cleanup
1823 * after a failed copy_tree() or destruction of an anonymous
1824 * namespace, etc.
1825 */
1826 mnt_notify_add(p);
1827 }
1828 }
1829
1830 static void shrink_submounts(struct mount *mnt);
1831
do_umount_root(struct super_block * sb)1832 static int do_umount_root(struct super_block *sb)
1833 {
1834 int ret = 0;
1835
1836 down_write(&sb->s_umount);
1837 if (!sb_rdonly(sb)) {
1838 struct fs_context *fc;
1839
1840 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1841 SB_RDONLY);
1842 if (IS_ERR(fc)) {
1843 ret = PTR_ERR(fc);
1844 } else {
1845 ret = parse_monolithic_mount_data(fc, NULL);
1846 if (!ret)
1847 ret = reconfigure_super(fc);
1848 put_fs_context(fc);
1849 }
1850 }
1851 up_write(&sb->s_umount);
1852 return ret;
1853 }
1854
do_umount(struct mount * mnt,int flags)1855 static int do_umount(struct mount *mnt, int flags)
1856 {
1857 struct super_block *sb = mnt->mnt.mnt_sb;
1858 int retval;
1859
1860 retval = security_sb_umount(&mnt->mnt, flags);
1861 if (retval)
1862 return retval;
1863
1864 /*
1865 * Allow userspace to request a mountpoint be expired rather than
1866 * unmounting unconditionally. Unmount only happens if:
1867 * (1) the mark is already set (the mark is cleared by mntput())
1868 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1869 */
1870 if (flags & MNT_EXPIRE) {
1871 if (&mnt->mnt == current->fs->root.mnt ||
1872 flags & (MNT_FORCE | MNT_DETACH))
1873 return -EINVAL;
1874
1875 /*
1876 * probably don't strictly need the lock here if we examined
1877 * all race cases, but it's a slowpath.
1878 */
1879 lock_mount_hash();
1880 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1881 unlock_mount_hash();
1882 return -EBUSY;
1883 }
1884 unlock_mount_hash();
1885
1886 if (!xchg(&mnt->mnt_expiry_mark, 1))
1887 return -EAGAIN;
1888 }
1889
1890 /*
1891 * If we may have to abort operations to get out of this
1892 * mount, and they will themselves hold resources we must
1893 * allow the fs to do things. In the Unix tradition of
1894 * 'Gee thats tricky lets do it in userspace' the umount_begin
1895 * might fail to complete on the first run through as other tasks
1896 * must return, and the like. Thats for the mount program to worry
1897 * about for the moment.
1898 */
1899
1900 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1901 sb->s_op->umount_begin(sb);
1902 }
1903
1904 /*
1905 * No sense to grab the lock for this test, but test itself looks
1906 * somewhat bogus. Suggestions for better replacement?
1907 * Ho-hum... In principle, we might treat that as umount + switch
1908 * to rootfs. GC would eventually take care of the old vfsmount.
1909 * Actually it makes sense, especially if rootfs would contain a
1910 * /reboot - static binary that would close all descriptors and
1911 * call reboot(9). Then init(8) could umount root and exec /reboot.
1912 */
1913 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1914 /*
1915 * Special case for "unmounting" root ...
1916 * we just try to remount it readonly.
1917 */
1918 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1919 return -EPERM;
1920 return do_umount_root(sb);
1921 }
1922
1923 namespace_lock();
1924 lock_mount_hash();
1925
1926 /* Repeat the earlier racy checks, now that we are holding the locks */
1927 retval = -EINVAL;
1928 if (!check_mnt(mnt))
1929 goto out;
1930
1931 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1932 goto out;
1933
1934 if (!mnt_has_parent(mnt)) /* not the absolute root */
1935 goto out;
1936
1937 event++;
1938 if (flags & MNT_DETACH) {
1939 umount_tree(mnt, UMOUNT_PROPAGATE);
1940 retval = 0;
1941 } else {
1942 smp_mb(); // paired with __legitimize_mnt()
1943 shrink_submounts(mnt);
1944 retval = -EBUSY;
1945 if (!propagate_mount_busy(mnt, 2)) {
1946 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1947 retval = 0;
1948 }
1949 }
1950 out:
1951 unlock_mount_hash();
1952 namespace_unlock();
1953 return retval;
1954 }
1955
1956 /*
1957 * __detach_mounts - lazily unmount all mounts on the specified dentry
1958 *
1959 * During unlink, rmdir, and d_drop it is possible to loose the path
1960 * to an existing mountpoint, and wind up leaking the mount.
1961 * detach_mounts allows lazily unmounting those mounts instead of
1962 * leaking them.
1963 *
1964 * The caller may hold dentry->d_inode->i_rwsem.
1965 */
__detach_mounts(struct dentry * dentry)1966 void __detach_mounts(struct dentry *dentry)
1967 {
1968 struct pinned_mountpoint mp = {};
1969 struct mount *mnt;
1970
1971 guard(namespace_excl)();
1972 guard(mount_writer)();
1973
1974 if (!lookup_mountpoint(dentry, &mp))
1975 return;
1976
1977 event++;
1978 while (mp.node.next) {
1979 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1980 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1981 umount_mnt(mnt);
1982 hlist_add_head(&mnt->mnt_umount, &unmounted);
1983 }
1984 else umount_tree(mnt, UMOUNT_CONNECTED);
1985 }
1986 unpin_mountpoint(&mp);
1987 }
1988
1989 /*
1990 * Is the caller allowed to modify his namespace?
1991 */
may_mount(void)1992 bool may_mount(void)
1993 {
1994 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1995 }
1996
warn_mandlock(void)1997 static void warn_mandlock(void)
1998 {
1999 pr_warn_once("=======================================================\n"
2000 "WARNING: The mand mount option has been deprecated and\n"
2001 " and is ignored by this kernel. Remove the mand\n"
2002 " option from the mount to silence this warning.\n"
2003 "=======================================================\n");
2004 }
2005
can_umount(const struct path * path,int flags)2006 static int can_umount(const struct path *path, int flags)
2007 {
2008 struct mount *mnt = real_mount(path->mnt);
2009 struct super_block *sb = path->dentry->d_sb;
2010
2011 if (!may_mount())
2012 return -EPERM;
2013 if (!path_mounted(path))
2014 return -EINVAL;
2015 if (!check_mnt(mnt))
2016 return -EINVAL;
2017 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2018 return -EINVAL;
2019 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2020 return -EPERM;
2021 return 0;
2022 }
2023
2024 // caller is responsible for flags being sane
path_umount(const struct path * path,int flags)2025 int path_umount(const struct path *path, int flags)
2026 {
2027 struct mount *mnt = real_mount(path->mnt);
2028 int ret;
2029
2030 ret = can_umount(path, flags);
2031 if (!ret)
2032 ret = do_umount(mnt, flags);
2033
2034 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2035 dput(path->dentry);
2036 mntput_no_expire(mnt);
2037 return ret;
2038 }
2039
ksys_umount(char __user * name,int flags)2040 static int ksys_umount(char __user *name, int flags)
2041 {
2042 int lookup_flags = LOOKUP_MOUNTPOINT;
2043 struct path path;
2044 int ret;
2045
2046 // basic validity checks done first
2047 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2048 return -EINVAL;
2049
2050 if (!(flags & UMOUNT_NOFOLLOW))
2051 lookup_flags |= LOOKUP_FOLLOW;
2052 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2053 if (ret)
2054 return ret;
2055 return path_umount(&path, flags);
2056 }
2057
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2058 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2059 {
2060 return ksys_umount(name, flags);
2061 }
2062
2063 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2064
2065 /*
2066 * The 2.0 compatible umount. No flags.
2067 */
SYSCALL_DEFINE1(oldumount,char __user *,name)2068 SYSCALL_DEFINE1(oldumount, char __user *, name)
2069 {
2070 return ksys_umount(name, 0);
2071 }
2072
2073 #endif
2074
is_mnt_ns_file(struct dentry * dentry)2075 static bool is_mnt_ns_file(struct dentry *dentry)
2076 {
2077 struct ns_common *ns;
2078
2079 /* Is this a proxy for a mount namespace? */
2080 if (dentry->d_op != &ns_dentry_operations)
2081 return false;
2082
2083 ns = d_inode(dentry)->i_private;
2084
2085 return ns->ops == &mntns_operations;
2086 }
2087
from_mnt_ns(struct mnt_namespace * mnt)2088 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2089 {
2090 return &mnt->ns;
2091 }
2092
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2093 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2094 {
2095 struct ns_common *ns;
2096
2097 guard(rcu)();
2098
2099 for (;;) {
2100 ns = ns_tree_adjoined_rcu(mntns, previous);
2101 if (IS_ERR(ns))
2102 return ERR_CAST(ns);
2103
2104 mntns = to_mnt_ns(ns);
2105
2106 /*
2107 * The last passive reference count is put with RCU
2108 * delay so accessing the mount namespace is not just
2109 * safe but all relevant members are still valid.
2110 */
2111 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2112 continue;
2113
2114 /*
2115 * We need an active reference count as we're persisting
2116 * the mount namespace and it might already be on its
2117 * deathbed.
2118 */
2119 if (!ns_ref_get(mntns))
2120 continue;
2121
2122 return mntns;
2123 }
2124 }
2125
mnt_ns_from_dentry(struct dentry * dentry)2126 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2127 {
2128 if (!is_mnt_ns_file(dentry))
2129 return NULL;
2130
2131 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2132 }
2133
mnt_ns_loop(struct dentry * dentry)2134 static bool mnt_ns_loop(struct dentry *dentry)
2135 {
2136 /* Could bind mounting the mount namespace inode cause a
2137 * mount namespace loop?
2138 */
2139 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2140
2141 if (!mnt_ns)
2142 return false;
2143
2144 return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2145 }
2146
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2147 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2148 int flag)
2149 {
2150 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2151 *dst_parent, *dst_mnt;
2152
2153 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2154 return ERR_PTR(-EINVAL);
2155
2156 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2157 return ERR_PTR(-EINVAL);
2158
2159 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2160 if (IS_ERR(dst_mnt))
2161 return dst_mnt;
2162
2163 src_parent = src_root;
2164
2165 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2166 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2167 continue;
2168
2169 for (src_mnt = src_root_child; src_mnt;
2170 src_mnt = next_mnt(src_mnt, src_root_child)) {
2171 if (!(flag & CL_COPY_UNBINDABLE) &&
2172 IS_MNT_UNBINDABLE(src_mnt)) {
2173 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2174 /* Both unbindable and locked. */
2175 dst_mnt = ERR_PTR(-EPERM);
2176 goto out;
2177 } else {
2178 src_mnt = skip_mnt_tree(src_mnt);
2179 continue;
2180 }
2181 }
2182 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2183 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2184 src_mnt = skip_mnt_tree(src_mnt);
2185 continue;
2186 }
2187 while (src_parent != src_mnt->mnt_parent) {
2188 src_parent = src_parent->mnt_parent;
2189 dst_mnt = dst_mnt->mnt_parent;
2190 }
2191
2192 src_parent = src_mnt;
2193 dst_parent = dst_mnt;
2194 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2195 if (IS_ERR(dst_mnt))
2196 goto out;
2197 lock_mount_hash();
2198 if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2199 dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2200 if (unlikely(flag & CL_EXPIRE)) {
2201 /* stick the duplicate mount on the same expiry
2202 * list as the original if that was on one */
2203 if (!list_empty(&src_mnt->mnt_expire))
2204 list_add(&dst_mnt->mnt_expire,
2205 &src_mnt->mnt_expire);
2206 }
2207 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2208 unlock_mount_hash();
2209 }
2210 }
2211 return res;
2212
2213 out:
2214 if (res) {
2215 lock_mount_hash();
2216 umount_tree(res, UMOUNT_SYNC);
2217 unlock_mount_hash();
2218 }
2219 return dst_mnt;
2220 }
2221
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2222 static inline bool extend_array(struct path **res, struct path **to_free,
2223 unsigned n, unsigned *count, unsigned new_count)
2224 {
2225 struct path *p;
2226
2227 if (likely(n < *count))
2228 return true;
2229 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2230 if (p && *count)
2231 memcpy(p, *res, *count * sizeof(struct path));
2232 *count = new_count;
2233 kfree(*to_free);
2234 *to_free = *res = p;
2235 return p;
2236 }
2237
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2238 const struct path *collect_paths(const struct path *path,
2239 struct path *prealloc, unsigned count)
2240 {
2241 struct mount *root = real_mount(path->mnt);
2242 struct mount *child;
2243 struct path *res = prealloc, *to_free = NULL;
2244 unsigned n = 0;
2245
2246 guard(namespace_shared)();
2247
2248 if (!check_mnt(root))
2249 return ERR_PTR(-EINVAL);
2250 if (!extend_array(&res, &to_free, 0, &count, 32))
2251 return ERR_PTR(-ENOMEM);
2252 res[n++] = *path;
2253 list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2254 if (!is_subdir(child->mnt_mountpoint, path->dentry))
2255 continue;
2256 for (struct mount *m = child; m; m = next_mnt(m, child)) {
2257 if (!extend_array(&res, &to_free, n, &count, 2 * count))
2258 return ERR_PTR(-ENOMEM);
2259 res[n].mnt = &m->mnt;
2260 res[n].dentry = m->mnt.mnt_root;
2261 n++;
2262 }
2263 }
2264 if (!extend_array(&res, &to_free, n, &count, count + 1))
2265 return ERR_PTR(-ENOMEM);
2266 memset(res + n, 0, (count - n) * sizeof(struct path));
2267 for (struct path *p = res; p->mnt; p++)
2268 path_get(p);
2269 return res;
2270 }
2271
drop_collected_paths(const struct path * paths,const struct path * prealloc)2272 void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2273 {
2274 for (const struct path *p = paths; p->mnt; p++)
2275 path_put(p);
2276 if (paths != prealloc)
2277 kfree(paths);
2278 }
2279
2280 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2281
dissolve_on_fput(struct vfsmount * mnt)2282 void dissolve_on_fput(struct vfsmount *mnt)
2283 {
2284 struct mount *m = real_mount(mnt);
2285
2286 /*
2287 * m used to be the root of anon namespace; if it still is one,
2288 * we need to dissolve the mount tree and free that namespace.
2289 * Let's try to avoid taking namespace_sem if we can determine
2290 * that there's nothing to do without it - rcu_read_lock() is
2291 * enough to make anon_ns_root() memory-safe and once m has
2292 * left its namespace, it's no longer our concern, since it will
2293 * never become a root of anon ns again.
2294 */
2295
2296 scoped_guard(rcu) {
2297 if (!anon_ns_root(m))
2298 return;
2299 }
2300
2301 scoped_guard(namespace_excl) {
2302 if (!anon_ns_root(m))
2303 return;
2304
2305 emptied_ns = m->mnt_ns;
2306 lock_mount_hash();
2307 umount_tree(m, UMOUNT_CONNECTED);
2308 unlock_mount_hash();
2309 }
2310 }
2311
2312 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
__has_locked_children(struct mount * mnt,struct dentry * dentry)2313 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2314 {
2315 struct mount *child;
2316
2317 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2318 if (!is_subdir(child->mnt_mountpoint, dentry))
2319 continue;
2320
2321 if (child->mnt.mnt_flags & MNT_LOCKED)
2322 return true;
2323 }
2324 return false;
2325 }
2326
has_locked_children(struct mount * mnt,struct dentry * dentry)2327 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2328 {
2329 guard(mount_locked_reader)();
2330 return __has_locked_children(mnt, dentry);
2331 }
2332
2333 /*
2334 * Check that there aren't references to earlier/same mount namespaces in the
2335 * specified subtree. Such references can act as pins for mount namespaces
2336 * that aren't checked by the mount-cycle checking code, thereby allowing
2337 * cycles to be made.
2338 *
2339 * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2340 */
check_for_nsfs_mounts(struct mount * subtree)2341 static bool check_for_nsfs_mounts(struct mount *subtree)
2342 {
2343 for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2344 if (mnt_ns_loop(p->mnt.mnt_root))
2345 return false;
2346 return true;
2347 }
2348
2349 /**
2350 * clone_private_mount - create a private clone of a path
2351 * @path: path to clone
2352 *
2353 * This creates a new vfsmount, which will be the clone of @path. The new mount
2354 * will not be attached anywhere in the namespace and will be private (i.e.
2355 * changes to the originating mount won't be propagated into this).
2356 *
2357 * This assumes caller has called or done the equivalent of may_mount().
2358 *
2359 * Release with mntput().
2360 */
clone_private_mount(const struct path * path)2361 struct vfsmount *clone_private_mount(const struct path *path)
2362 {
2363 struct mount *old_mnt = real_mount(path->mnt);
2364 struct mount *new_mnt;
2365
2366 guard(namespace_shared)();
2367
2368 if (IS_MNT_UNBINDABLE(old_mnt))
2369 return ERR_PTR(-EINVAL);
2370
2371 /*
2372 * Make sure the source mount is acceptable.
2373 * Anything mounted in our mount namespace is allowed.
2374 * Otherwise, it must be the root of an anonymous mount
2375 * namespace, and we need to make sure no namespace
2376 * loops get created.
2377 */
2378 if (!check_mnt(old_mnt)) {
2379 if (!anon_ns_root(old_mnt))
2380 return ERR_PTR(-EINVAL);
2381
2382 if (!check_for_nsfs_mounts(old_mnt))
2383 return ERR_PTR(-EINVAL);
2384 }
2385
2386 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2387 return ERR_PTR(-EPERM);
2388
2389 if (__has_locked_children(old_mnt, path->dentry))
2390 return ERR_PTR(-EINVAL);
2391
2392 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2393 if (IS_ERR(new_mnt))
2394 return ERR_PTR(-EINVAL);
2395
2396 /* Longterm mount to be removed by kern_unmount*() */
2397 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2398 return &new_mnt->mnt;
2399 }
2400 EXPORT_SYMBOL_GPL(clone_private_mount);
2401
lock_mnt_tree(struct mount * mnt)2402 static void lock_mnt_tree(struct mount *mnt)
2403 {
2404 struct mount *p;
2405
2406 for (p = mnt; p; p = next_mnt(p, mnt)) {
2407 int flags = p->mnt.mnt_flags;
2408 /* Don't allow unprivileged users to change mount flags */
2409 flags |= MNT_LOCK_ATIME;
2410
2411 if (flags & MNT_READONLY)
2412 flags |= MNT_LOCK_READONLY;
2413
2414 if (flags & MNT_NODEV)
2415 flags |= MNT_LOCK_NODEV;
2416
2417 if (flags & MNT_NOSUID)
2418 flags |= MNT_LOCK_NOSUID;
2419
2420 if (flags & MNT_NOEXEC)
2421 flags |= MNT_LOCK_NOEXEC;
2422 /* Don't allow unprivileged users to reveal what is under a mount */
2423 if (list_empty(&p->mnt_expire) && p != mnt)
2424 flags |= MNT_LOCKED;
2425 p->mnt.mnt_flags = flags;
2426 }
2427 }
2428
cleanup_group_ids(struct mount * mnt,struct mount * end)2429 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2430 {
2431 struct mount *p;
2432
2433 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2434 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2435 mnt_release_group_id(p);
2436 }
2437 }
2438
invent_group_ids(struct mount * mnt,bool recurse)2439 static int invent_group_ids(struct mount *mnt, bool recurse)
2440 {
2441 struct mount *p;
2442
2443 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2444 if (!p->mnt_group_id) {
2445 int err = mnt_alloc_group_id(p);
2446 if (err) {
2447 cleanup_group_ids(mnt, p);
2448 return err;
2449 }
2450 }
2451 }
2452
2453 return 0;
2454 }
2455
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2456 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2457 {
2458 unsigned int max = READ_ONCE(sysctl_mount_max);
2459 unsigned int mounts = 0;
2460 struct mount *p;
2461
2462 if (ns->nr_mounts >= max)
2463 return -ENOSPC;
2464 max -= ns->nr_mounts;
2465 if (ns->pending_mounts >= max)
2466 return -ENOSPC;
2467 max -= ns->pending_mounts;
2468
2469 for (p = mnt; p; p = next_mnt(p, mnt))
2470 mounts++;
2471
2472 if (mounts > max)
2473 return -ENOSPC;
2474
2475 ns->pending_mounts += mounts;
2476 return 0;
2477 }
2478
2479 enum mnt_tree_flags_t {
2480 MNT_TREE_BENEATH = BIT(0),
2481 MNT_TREE_PROPAGATION = BIT(1),
2482 };
2483
2484 /**
2485 * attach_recursive_mnt - attach a source mount tree
2486 * @source_mnt: mount tree to be attached
2487 * @dest: the context for mounting at the place where the tree should go
2488 *
2489 * NOTE: in the table below explains the semantics when a source mount
2490 * of a given type is attached to a destination mount of a given type.
2491 * ---------------------------------------------------------------------------
2492 * | BIND MOUNT OPERATION |
2493 * |**************************************************************************
2494 * | source-->| shared | private | slave | unbindable |
2495 * | dest | | | | |
2496 * | | | | | | |
2497 * | v | | | | |
2498 * |**************************************************************************
2499 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2500 * | | | | | |
2501 * |non-shared| shared (+) | private | slave (*) | invalid |
2502 * ***************************************************************************
2503 * A bind operation clones the source mount and mounts the clone on the
2504 * destination mount.
2505 *
2506 * (++) the cloned mount is propagated to all the mounts in the propagation
2507 * tree of the destination mount and the cloned mount is added to
2508 * the peer group of the source mount.
2509 * (+) the cloned mount is created under the destination mount and is marked
2510 * as shared. The cloned mount is added to the peer group of the source
2511 * mount.
2512 * (+++) the mount is propagated to all the mounts in the propagation tree
2513 * of the destination mount and the cloned mount is made slave
2514 * of the same master as that of the source mount. The cloned mount
2515 * is marked as 'shared and slave'.
2516 * (*) the cloned mount is made a slave of the same master as that of the
2517 * source mount.
2518 *
2519 * ---------------------------------------------------------------------------
2520 * | MOVE MOUNT OPERATION |
2521 * |**************************************************************************
2522 * | source-->| shared | private | slave | unbindable |
2523 * | dest | | | | |
2524 * | | | | | | |
2525 * | v | | | | |
2526 * |**************************************************************************
2527 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2528 * | | | | | |
2529 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2530 * ***************************************************************************
2531 *
2532 * (+) the mount is moved to the destination. And is then propagated to
2533 * all the mounts in the propagation tree of the destination mount.
2534 * (+*) the mount is moved to the destination.
2535 * (+++) the mount is moved to the destination and is then propagated to
2536 * all the mounts belonging to the destination mount's propagation tree.
2537 * the mount is marked as 'shared and slave'.
2538 * (*) the mount continues to be a slave at the new location.
2539 *
2540 * if the source mount is a tree, the operations explained above is
2541 * applied to each mount in the tree.
2542 * Must be called without spinlocks held, since this function can sleep
2543 * in allocations.
2544 *
2545 * Context: The function expects namespace_lock() to be held.
2546 * Return: If @source_mnt was successfully attached 0 is returned.
2547 * Otherwise a negative error code is returned.
2548 */
attach_recursive_mnt(struct mount * source_mnt,const struct pinned_mountpoint * dest)2549 static int attach_recursive_mnt(struct mount *source_mnt,
2550 const struct pinned_mountpoint *dest)
2551 {
2552 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2553 struct mount *dest_mnt = dest->parent;
2554 struct mountpoint *dest_mp = dest->mp;
2555 HLIST_HEAD(tree_list);
2556 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2557 struct pinned_mountpoint root = {};
2558 struct mountpoint *shorter = NULL;
2559 struct mount *child, *p;
2560 struct mount *top;
2561 struct hlist_node *n;
2562 int err = 0;
2563 bool moving = mnt_has_parent(source_mnt);
2564
2565 /*
2566 * Preallocate a mountpoint in case the new mounts need to be
2567 * mounted beneath mounts on the same mountpoint.
2568 */
2569 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2570 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2571 shorter = top->mnt_mp;
2572 }
2573 err = get_mountpoint(top->mnt.mnt_root, &root);
2574 if (err)
2575 return err;
2576
2577 /* Is there space to add these mounts to the mount namespace? */
2578 if (!moving) {
2579 err = count_mounts(ns, source_mnt);
2580 if (err)
2581 goto out;
2582 }
2583
2584 if (IS_MNT_SHARED(dest_mnt)) {
2585 err = invent_group_ids(source_mnt, true);
2586 if (err)
2587 goto out;
2588 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2589 }
2590 lock_mount_hash();
2591 if (err)
2592 goto out_cleanup_ids;
2593
2594 if (IS_MNT_SHARED(dest_mnt)) {
2595 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2596 set_mnt_shared(p);
2597 }
2598
2599 if (moving) {
2600 umount_mnt(source_mnt);
2601 mnt_notify_add(source_mnt);
2602 /* if the mount is moved, it should no longer be expired
2603 * automatically */
2604 list_del_init(&source_mnt->mnt_expire);
2605 } else {
2606 if (source_mnt->mnt_ns) {
2607 /* move from anon - the caller will destroy */
2608 emptied_ns = source_mnt->mnt_ns;
2609 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2610 move_from_ns(p);
2611 }
2612 }
2613
2614 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2615 /*
2616 * Now the original copy is in the same state as the secondaries -
2617 * its root attached to mountpoint, but not hashed and all mounts
2618 * in it are either in our namespace or in no namespace at all.
2619 * Add the original to the list of copies and deal with the
2620 * rest of work for all of them uniformly.
2621 */
2622 hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2623
2624 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2625 struct mount *q;
2626 hlist_del_init(&child->mnt_hash);
2627 /* Notice when we are propagating across user namespaces */
2628 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2629 lock_mnt_tree(child);
2630 q = __lookup_mnt(&child->mnt_parent->mnt,
2631 child->mnt_mountpoint);
2632 commit_tree(child);
2633 if (q) {
2634 struct mount *r = topmost_overmount(child);
2635 struct mountpoint *mp = root.mp;
2636
2637 if (unlikely(shorter) && child != source_mnt)
2638 mp = shorter;
2639 mnt_change_mountpoint(r, mp, q);
2640 }
2641 }
2642 unpin_mountpoint(&root);
2643 unlock_mount_hash();
2644
2645 return 0;
2646
2647 out_cleanup_ids:
2648 while (!hlist_empty(&tree_list)) {
2649 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2650 child->mnt_parent->mnt_ns->pending_mounts = 0;
2651 umount_tree(child, UMOUNT_SYNC);
2652 }
2653 unlock_mount_hash();
2654 cleanup_group_ids(source_mnt, NULL);
2655 out:
2656 ns->pending_mounts = 0;
2657
2658 read_seqlock_excl(&mount_lock);
2659 unpin_mountpoint(&root);
2660 read_sequnlock_excl(&mount_lock);
2661
2662 return err;
2663 }
2664
where_to_mount(const struct path * path,struct dentry ** dentry,bool beneath)2665 static inline struct mount *where_to_mount(const struct path *path,
2666 struct dentry **dentry,
2667 bool beneath)
2668 {
2669 struct mount *m;
2670
2671 if (unlikely(beneath)) {
2672 m = topmost_overmount(real_mount(path->mnt));
2673 *dentry = m->mnt_mountpoint;
2674 return m->mnt_parent;
2675 }
2676 m = __lookup_mnt(path->mnt, path->dentry);
2677 if (unlikely(m)) {
2678 m = topmost_overmount(m);
2679 *dentry = m->mnt.mnt_root;
2680 return m;
2681 }
2682 *dentry = path->dentry;
2683 return real_mount(path->mnt);
2684 }
2685
2686 /**
2687 * do_lock_mount - acquire environment for mounting
2688 * @path: target path
2689 * @res: context to set up
2690 * @beneath: whether the intention is to mount beneath @path
2691 *
2692 * To mount something at given location, we need
2693 * namespace_sem locked exclusive
2694 * inode of dentry we are mounting on locked exclusive
2695 * struct mountpoint for that dentry
2696 * struct mount we are mounting on
2697 *
2698 * Results are stored in caller-supplied context (pinned_mountpoint);
2699 * on success we have res->parent and res->mp pointing to parent and
2700 * mountpoint respectively and res->node inserted into the ->m_list
2701 * of the mountpoint, making sure the mountpoint won't disappear.
2702 * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2703 * left NULL, res->node - empty.
2704 * In case of success do_lock_mount returns with locks acquired (in
2705 * proper order - inode lock nests outside of namespace_sem).
2706 *
2707 * Request to mount on overmounted location is treated as "mount on
2708 * top of whatever's overmounting it"; request to mount beneath
2709 * a location - "mount immediately beneath the topmost mount at that
2710 * place".
2711 *
2712 * In all cases the location must not have been unmounted and the
2713 * chosen mountpoint must be allowed to be mounted on. For "beneath"
2714 * case we also require the location to be at the root of a mount
2715 * that has a parent (i.e. is not a root of some namespace).
2716 */
do_lock_mount(const struct path * path,struct pinned_mountpoint * res,bool beneath)2717 static void do_lock_mount(const struct path *path,
2718 struct pinned_mountpoint *res,
2719 bool beneath)
2720 {
2721 int err;
2722
2723 if (unlikely(beneath) && !path_mounted(path)) {
2724 res->parent = ERR_PTR(-EINVAL);
2725 return;
2726 }
2727
2728 do {
2729 struct dentry *dentry, *d;
2730 struct mount *m, *n;
2731
2732 scoped_guard(mount_locked_reader) {
2733 m = where_to_mount(path, &dentry, beneath);
2734 if (&m->mnt != path->mnt) {
2735 mntget(&m->mnt);
2736 dget(dentry);
2737 }
2738 }
2739
2740 inode_lock(dentry->d_inode);
2741 namespace_lock();
2742
2743 // check if the chain of mounts (if any) has changed.
2744 scoped_guard(mount_locked_reader)
2745 n = where_to_mount(path, &d, beneath);
2746
2747 if (unlikely(n != m || dentry != d))
2748 err = -EAGAIN; // something moved, retry
2749 else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2750 err = -ENOENT; // not to be mounted on
2751 else if (beneath && &m->mnt == path->mnt && !m->overmount)
2752 err = -EINVAL;
2753 else
2754 err = get_mountpoint(dentry, res);
2755
2756 if (unlikely(err)) {
2757 res->parent = ERR_PTR(err);
2758 namespace_unlock();
2759 inode_unlock(dentry->d_inode);
2760 } else {
2761 res->parent = m;
2762 }
2763 /*
2764 * Drop the temporary references. This is subtle - on success
2765 * we are doing that under namespace_sem, which would normally
2766 * be forbidden. However, in that case we are guaranteed that
2767 * refcounts won't reach zero, since we know that path->mnt
2768 * is mounted and thus all mounts reachable from it are pinned
2769 * and stable, along with their mountpoints and roots.
2770 */
2771 if (&m->mnt != path->mnt) {
2772 dput(dentry);
2773 mntput(&m->mnt);
2774 }
2775 } while (err == -EAGAIN);
2776 }
2777
__unlock_mount(struct pinned_mountpoint * m)2778 static void __unlock_mount(struct pinned_mountpoint *m)
2779 {
2780 inode_unlock(m->mp->m_dentry->d_inode);
2781 read_seqlock_excl(&mount_lock);
2782 unpin_mountpoint(m);
2783 read_sequnlock_excl(&mount_lock);
2784 namespace_unlock();
2785 }
2786
unlock_mount(struct pinned_mountpoint * m)2787 static inline void unlock_mount(struct pinned_mountpoint *m)
2788 {
2789 if (!IS_ERR(m->parent))
2790 __unlock_mount(m);
2791 }
2792
2793 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2794 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2795 do_lock_mount((path), &mp, (beneath))
2796 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2797 #define LOCK_MOUNT_EXACT(mp, path) \
2798 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2799 lock_mount_exact((path), &mp)
2800
graft_tree(struct mount * mnt,const struct pinned_mountpoint * mp)2801 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2802 {
2803 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2804 return -EINVAL;
2805
2806 if (d_is_dir(mp->mp->m_dentry) !=
2807 d_is_dir(mnt->mnt.mnt_root))
2808 return -ENOTDIR;
2809
2810 return attach_recursive_mnt(mnt, mp);
2811 }
2812
may_change_propagation(const struct mount * m)2813 static int may_change_propagation(const struct mount *m)
2814 {
2815 struct mnt_namespace *ns = m->mnt_ns;
2816
2817 // it must be mounted in some namespace
2818 if (IS_ERR_OR_NULL(ns)) // is_mounted()
2819 return -EINVAL;
2820 // and the caller must be admin in userns of that namespace
2821 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2822 return -EPERM;
2823 return 0;
2824 }
2825
2826 /*
2827 * Sanity check the flags to change_mnt_propagation.
2828 */
2829
flags_to_propagation_type(int ms_flags)2830 static int flags_to_propagation_type(int ms_flags)
2831 {
2832 int type = ms_flags & ~(MS_REC | MS_SILENT);
2833
2834 /* Fail if any non-propagation flags are set */
2835 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2836 return 0;
2837 /* Only one propagation flag should be set */
2838 if (!is_power_of_2(type))
2839 return 0;
2840 return type;
2841 }
2842
2843 /*
2844 * recursively change the type of the mountpoint.
2845 */
do_change_type(const struct path * path,int ms_flags)2846 static int do_change_type(const struct path *path, int ms_flags)
2847 {
2848 struct mount *m;
2849 struct mount *mnt = real_mount(path->mnt);
2850 int recurse = ms_flags & MS_REC;
2851 int type;
2852 int err;
2853
2854 if (!path_mounted(path))
2855 return -EINVAL;
2856
2857 type = flags_to_propagation_type(ms_flags);
2858 if (!type)
2859 return -EINVAL;
2860
2861 guard(namespace_excl)();
2862
2863 err = may_change_propagation(mnt);
2864 if (err)
2865 return err;
2866
2867 if (type == MS_SHARED) {
2868 err = invent_group_ids(mnt, recurse);
2869 if (err)
2870 return err;
2871 }
2872
2873 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2874 change_mnt_propagation(m, type);
2875
2876 return 0;
2877 }
2878
2879 /* may_copy_tree() - check if a mount tree can be copied
2880 * @path: path to the mount tree to be copied
2881 *
2882 * This helper checks if the caller may copy the mount tree starting
2883 * from @path->mnt. The caller may copy the mount tree under the
2884 * following circumstances:
2885 *
2886 * (1) The caller is located in the mount namespace of the mount tree.
2887 * This also implies that the mount does not belong to an anonymous
2888 * mount namespace.
2889 * (2) The caller tries to copy an nfs mount referring to a mount
2890 * namespace, i.e., the caller is trying to copy a mount namespace
2891 * entry from nsfs.
2892 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2893 * (4) The caller is trying to copy a mount tree that belongs to an
2894 * anonymous mount namespace.
2895 *
2896 * For that to be safe, this helper enforces that the origin mount
2897 * namespace the anonymous mount namespace was created from is the
2898 * same as the caller's mount namespace by comparing the sequence
2899 * numbers.
2900 *
2901 * This is not strictly necessary. The current semantics of the new
2902 * mount api enforce that the caller must be located in the same
2903 * mount namespace as the mount tree it interacts with. Using the
2904 * origin sequence number preserves these semantics even for
2905 * anonymous mount namespaces. However, one could envision extending
2906 * the api to directly operate across mount namespace if needed.
2907 *
2908 * The ownership of a non-anonymous mount namespace such as the
2909 * caller's cannot change.
2910 * => We know that the caller's mount namespace is stable.
2911 *
2912 * If the origin sequence number of the anonymous mount namespace is
2913 * the same as the sequence number of the caller's mount namespace.
2914 * => The owning namespaces are the same.
2915 *
2916 * ==> The earlier capability check on the owning namespace of the
2917 * caller's mount namespace ensures that the caller has the
2918 * ability to copy the mount tree.
2919 *
2920 * Returns true if the mount tree can be copied, false otherwise.
2921 */
may_copy_tree(const struct path * path)2922 static inline bool may_copy_tree(const struct path *path)
2923 {
2924 struct mount *mnt = real_mount(path->mnt);
2925 const struct dentry_operations *d_op;
2926
2927 if (check_mnt(mnt))
2928 return true;
2929
2930 d_op = path->dentry->d_op;
2931 if (d_op == &ns_dentry_operations)
2932 return true;
2933
2934 if (d_op == &pidfs_dentry_operations)
2935 return true;
2936
2937 if (!is_mounted(path->mnt))
2938 return false;
2939
2940 return check_anonymous_mnt(mnt);
2941 }
2942
2943
__do_loopback(const struct path * old_path,int recurse)2944 static struct mount *__do_loopback(const struct path *old_path, int recurse)
2945 {
2946 struct mount *old = real_mount(old_path->mnt);
2947
2948 if (IS_MNT_UNBINDABLE(old))
2949 return ERR_PTR(-EINVAL);
2950
2951 if (!may_copy_tree(old_path))
2952 return ERR_PTR(-EINVAL);
2953
2954 if (!recurse && __has_locked_children(old, old_path->dentry))
2955 return ERR_PTR(-EINVAL);
2956
2957 if (recurse)
2958 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2959 else
2960 return clone_mnt(old, old_path->dentry, 0);
2961 }
2962
2963 /*
2964 * do loopback mount.
2965 */
do_loopback(const struct path * path,const char * old_name,int recurse)2966 static int do_loopback(const struct path *path, const char *old_name,
2967 int recurse)
2968 {
2969 struct path old_path __free(path_put) = {};
2970 struct mount *mnt = NULL;
2971 int err;
2972 if (!old_name || !*old_name)
2973 return -EINVAL;
2974 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2975 if (err)
2976 return err;
2977
2978 if (mnt_ns_loop(old_path.dentry))
2979 return -EINVAL;
2980
2981 LOCK_MOUNT(mp, path);
2982 if (IS_ERR(mp.parent))
2983 return PTR_ERR(mp.parent);
2984
2985 if (!check_mnt(mp.parent))
2986 return -EINVAL;
2987
2988 mnt = __do_loopback(&old_path, recurse);
2989 if (IS_ERR(mnt))
2990 return PTR_ERR(mnt);
2991
2992 err = graft_tree(mnt, &mp);
2993 if (err) {
2994 lock_mount_hash();
2995 umount_tree(mnt, UMOUNT_SYNC);
2996 unlock_mount_hash();
2997 }
2998 return err;
2999 }
3000
get_detached_copy(const struct path * path,bool recursive)3001 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive)
3002 {
3003 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3004 struct user_namespace *user_ns = mnt_ns->user_ns;
3005 struct mount *mnt, *p;
3006
3007 ns = alloc_mnt_ns(user_ns, true);
3008 if (IS_ERR(ns))
3009 return ns;
3010
3011 guard(namespace_excl)();
3012
3013 /*
3014 * Record the sequence number of the source mount namespace.
3015 * This needs to hold namespace_sem to ensure that the mount
3016 * doesn't get attached.
3017 */
3018 if (is_mounted(path->mnt)) {
3019 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3020 if (is_anon_ns(src_mnt_ns))
3021 ns->seq_origin = src_mnt_ns->seq_origin;
3022 else
3023 ns->seq_origin = src_mnt_ns->ns.ns_id;
3024 }
3025
3026 mnt = __do_loopback(path, recursive);
3027 if (IS_ERR(mnt)) {
3028 emptied_ns = ns;
3029 return ERR_CAST(mnt);
3030 }
3031
3032 for (p = mnt; p; p = next_mnt(p, mnt)) {
3033 mnt_add_to_ns(ns, p);
3034 ns->nr_mounts++;
3035 }
3036 ns->root = mnt;
3037 return ns;
3038 }
3039
open_detached_copy(struct path * path,bool recursive)3040 static struct file *open_detached_copy(struct path *path, bool recursive)
3041 {
3042 struct mnt_namespace *ns = get_detached_copy(path, recursive);
3043 struct file *file;
3044
3045 if (IS_ERR(ns))
3046 return ERR_CAST(ns);
3047
3048 mntput(path->mnt);
3049 path->mnt = mntget(&ns->root->mnt);
3050 file = dentry_open(path, O_PATH, current_cred());
3051 if (IS_ERR(file))
3052 dissolve_on_fput(path->mnt);
3053 else
3054 file->f_mode |= FMODE_NEED_UNMOUNT;
3055 return file;
3056 }
3057
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3058 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3059 {
3060 int ret;
3061 struct path path __free(path_put) = {};
3062 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3063 bool detached = flags & OPEN_TREE_CLONE;
3064
3065 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3066
3067 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3068 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3069 OPEN_TREE_CLOEXEC))
3070 return ERR_PTR(-EINVAL);
3071
3072 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3073 return ERR_PTR(-EINVAL);
3074
3075 if (flags & AT_NO_AUTOMOUNT)
3076 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3077 if (flags & AT_SYMLINK_NOFOLLOW)
3078 lookup_flags &= ~LOOKUP_FOLLOW;
3079 if (flags & AT_EMPTY_PATH)
3080 lookup_flags |= LOOKUP_EMPTY;
3081
3082 if (detached && !may_mount())
3083 return ERR_PTR(-EPERM);
3084
3085 ret = user_path_at(dfd, filename, lookup_flags, &path);
3086 if (unlikely(ret))
3087 return ERR_PTR(ret);
3088
3089 if (detached)
3090 return open_detached_copy(&path, flags & AT_RECURSIVE);
3091
3092 return dentry_open(&path, O_PATH, current_cred());
3093 }
3094
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3095 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3096 {
3097 int fd;
3098 struct file *file __free(fput) = NULL;
3099
3100 file = vfs_open_tree(dfd, filename, flags);
3101 if (IS_ERR(file))
3102 return PTR_ERR(file);
3103
3104 fd = get_unused_fd_flags(flags & O_CLOEXEC);
3105 if (fd < 0)
3106 return fd;
3107
3108 fd_install(fd, no_free_ptr(file));
3109 return fd;
3110 }
3111
3112 /*
3113 * Don't allow locked mount flags to be cleared.
3114 *
3115 * No locks need to be held here while testing the various MNT_LOCK
3116 * flags because those flags can never be cleared once they are set.
3117 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3118 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3119 {
3120 unsigned int fl = mnt->mnt.mnt_flags;
3121
3122 if ((fl & MNT_LOCK_READONLY) &&
3123 !(mnt_flags & MNT_READONLY))
3124 return false;
3125
3126 if ((fl & MNT_LOCK_NODEV) &&
3127 !(mnt_flags & MNT_NODEV))
3128 return false;
3129
3130 if ((fl & MNT_LOCK_NOSUID) &&
3131 !(mnt_flags & MNT_NOSUID))
3132 return false;
3133
3134 if ((fl & MNT_LOCK_NOEXEC) &&
3135 !(mnt_flags & MNT_NOEXEC))
3136 return false;
3137
3138 if ((fl & MNT_LOCK_ATIME) &&
3139 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3140 return false;
3141
3142 return true;
3143 }
3144
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3145 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3146 {
3147 bool readonly_request = (mnt_flags & MNT_READONLY);
3148
3149 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3150 return 0;
3151
3152 if (readonly_request)
3153 return mnt_make_readonly(mnt);
3154
3155 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3156 return 0;
3157 }
3158
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3159 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3160 {
3161 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3162 mnt->mnt.mnt_flags = mnt_flags;
3163 touch_mnt_namespace(mnt->mnt_ns);
3164 }
3165
mnt_warn_timestamp_expiry(const struct path * mountpoint,struct vfsmount * mnt)3166 static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3167 struct vfsmount *mnt)
3168 {
3169 struct super_block *sb = mnt->mnt_sb;
3170
3171 if (!__mnt_is_readonly(mnt) &&
3172 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3173 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3174 char *buf, *mntpath;
3175
3176 buf = (char *)__get_free_page(GFP_KERNEL);
3177 if (buf)
3178 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3179 else
3180 mntpath = ERR_PTR(-ENOMEM);
3181 if (IS_ERR(mntpath))
3182 mntpath = "(unknown)";
3183
3184 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3185 sb->s_type->name,
3186 is_mounted(mnt) ? "remounted" : "mounted",
3187 mntpath, &sb->s_time_max,
3188 (unsigned long long)sb->s_time_max);
3189
3190 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3191 if (buf)
3192 free_page((unsigned long)buf);
3193 }
3194 }
3195
3196 /*
3197 * Handle reconfiguration of the mountpoint only without alteration of the
3198 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3199 * to mount(2).
3200 */
do_reconfigure_mnt(const struct path * path,unsigned int mnt_flags)3201 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3202 {
3203 struct super_block *sb = path->mnt->mnt_sb;
3204 struct mount *mnt = real_mount(path->mnt);
3205 int ret;
3206
3207 if (!check_mnt(mnt))
3208 return -EINVAL;
3209
3210 if (!path_mounted(path))
3211 return -EINVAL;
3212
3213 if (!can_change_locked_flags(mnt, mnt_flags))
3214 return -EPERM;
3215
3216 /*
3217 * We're only checking whether the superblock is read-only not
3218 * changing it, so only take down_read(&sb->s_umount).
3219 */
3220 down_read(&sb->s_umount);
3221 lock_mount_hash();
3222 ret = change_mount_ro_state(mnt, mnt_flags);
3223 if (ret == 0)
3224 set_mount_attributes(mnt, mnt_flags);
3225 unlock_mount_hash();
3226 up_read(&sb->s_umount);
3227
3228 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3229
3230 return ret;
3231 }
3232
3233 /*
3234 * change filesystem flags. dir should be a physical root of filesystem.
3235 * If you've mounted a non-root directory somewhere and want to do remount
3236 * on it - tough luck.
3237 */
do_remount(const struct path * path,int sb_flags,int mnt_flags,void * data)3238 static int do_remount(const struct path *path, int sb_flags,
3239 int mnt_flags, void *data)
3240 {
3241 int err;
3242 struct super_block *sb = path->mnt->mnt_sb;
3243 struct mount *mnt = real_mount(path->mnt);
3244 struct fs_context *fc;
3245
3246 if (!check_mnt(mnt))
3247 return -EINVAL;
3248
3249 if (!path_mounted(path))
3250 return -EINVAL;
3251
3252 if (!can_change_locked_flags(mnt, mnt_flags))
3253 return -EPERM;
3254
3255 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3256 if (IS_ERR(fc))
3257 return PTR_ERR(fc);
3258
3259 /*
3260 * Indicate to the filesystem that the remount request is coming
3261 * from the legacy mount system call.
3262 */
3263 fc->oldapi = true;
3264
3265 err = parse_monolithic_mount_data(fc, data);
3266 if (!err) {
3267 down_write(&sb->s_umount);
3268 err = -EPERM;
3269 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3270 err = reconfigure_super(fc);
3271 if (!err) {
3272 lock_mount_hash();
3273 set_mount_attributes(mnt, mnt_flags);
3274 unlock_mount_hash();
3275 }
3276 }
3277 up_write(&sb->s_umount);
3278 }
3279
3280 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3281
3282 put_fs_context(fc);
3283 return err;
3284 }
3285
tree_contains_unbindable(struct mount * mnt)3286 static inline int tree_contains_unbindable(struct mount *mnt)
3287 {
3288 struct mount *p;
3289 for (p = mnt; p; p = next_mnt(p, mnt)) {
3290 if (IS_MNT_UNBINDABLE(p))
3291 return 1;
3292 }
3293 return 0;
3294 }
3295
do_set_group(const struct path * from_path,const struct path * to_path)3296 static int do_set_group(const struct path *from_path, const struct path *to_path)
3297 {
3298 struct mount *from = real_mount(from_path->mnt);
3299 struct mount *to = real_mount(to_path->mnt);
3300 int err;
3301
3302 guard(namespace_excl)();
3303
3304 err = may_change_propagation(from);
3305 if (err)
3306 return err;
3307 err = may_change_propagation(to);
3308 if (err)
3309 return err;
3310
3311 /* To and From paths should be mount roots */
3312 if (!path_mounted(from_path))
3313 return -EINVAL;
3314 if (!path_mounted(to_path))
3315 return -EINVAL;
3316
3317 /* Setting sharing groups is only allowed across same superblock */
3318 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3319 return -EINVAL;
3320
3321 /* From mount root should be wider than To mount root */
3322 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3323 return -EINVAL;
3324
3325 /* From mount should not have locked children in place of To's root */
3326 if (__has_locked_children(from, to->mnt.mnt_root))
3327 return -EINVAL;
3328
3329 /* Setting sharing groups is only allowed on private mounts */
3330 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3331 return -EINVAL;
3332
3333 /* From should not be private */
3334 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3335 return -EINVAL;
3336
3337 if (IS_MNT_SLAVE(from)) {
3338 hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3339 to->mnt_master = from->mnt_master;
3340 }
3341
3342 if (IS_MNT_SHARED(from)) {
3343 to->mnt_group_id = from->mnt_group_id;
3344 list_add(&to->mnt_share, &from->mnt_share);
3345 set_mnt_shared(to);
3346 }
3347 return 0;
3348 }
3349
3350 /**
3351 * path_overmounted - check if path is overmounted
3352 * @path: path to check
3353 *
3354 * Check if path is overmounted, i.e., if there's a mount on top of
3355 * @path->mnt with @path->dentry as mountpoint.
3356 *
3357 * Context: namespace_sem must be held at least shared.
3358 * MUST NOT be called under lock_mount_hash() (there one should just
3359 * call __lookup_mnt() and check if it returns NULL).
3360 * Return: If path is overmounted true is returned, false if not.
3361 */
path_overmounted(const struct path * path)3362 static inline bool path_overmounted(const struct path *path)
3363 {
3364 unsigned seq = read_seqbegin(&mount_lock);
3365 bool no_child;
3366
3367 rcu_read_lock();
3368 no_child = !__lookup_mnt(path->mnt, path->dentry);
3369 rcu_read_unlock();
3370 if (need_seqretry(&mount_lock, seq)) {
3371 read_seqlock_excl(&mount_lock);
3372 no_child = !__lookup_mnt(path->mnt, path->dentry);
3373 read_sequnlock_excl(&mount_lock);
3374 }
3375 return unlikely(!no_child);
3376 }
3377
3378 /*
3379 * Check if there is a possibly empty chain of descent from p1 to p2.
3380 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3381 */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3382 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3383 {
3384 while (p2 != p1 && mnt_has_parent(p2))
3385 p2 = p2->mnt_parent;
3386 return p2 == p1;
3387 }
3388
3389 /**
3390 * can_move_mount_beneath - check that we can mount beneath the top mount
3391 * @mnt_from: mount we are trying to move
3392 * @mnt_to: mount under which to mount
3393 * @mp: mountpoint of @mnt_to
3394 *
3395 * - Make sure that nothing can be mounted beneath the caller's current
3396 * root or the rootfs of the namespace.
3397 * - Make sure that the caller can unmount the topmost mount ensuring
3398 * that the caller could reveal the underlying mountpoint.
3399 * - Ensure that nothing has been mounted on top of @mnt_from before we
3400 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3401 * - Prevent mounting beneath a mount if the propagation relationship
3402 * between the source mount, parent mount, and top mount would lead to
3403 * nonsensical mount trees.
3404 *
3405 * Context: This function expects namespace_lock() to be held.
3406 * Return: On success 0, and on error a negative error code is returned.
3407 */
can_move_mount_beneath(const struct mount * mnt_from,const struct mount * mnt_to,const struct mountpoint * mp)3408 static int can_move_mount_beneath(const struct mount *mnt_from,
3409 const struct mount *mnt_to,
3410 const struct mountpoint *mp)
3411 {
3412 struct mount *parent_mnt_to = mnt_to->mnt_parent;
3413
3414 if (IS_MNT_LOCKED(mnt_to))
3415 return -EINVAL;
3416
3417 /* Avoid creating shadow mounts during mount propagation. */
3418 if (mnt_from->overmount)
3419 return -EINVAL;
3420
3421 /*
3422 * Mounting beneath the rootfs only makes sense when the
3423 * semantics of pivot_root(".", ".") are used.
3424 */
3425 if (&mnt_to->mnt == current->fs->root.mnt)
3426 return -EINVAL;
3427 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3428 return -EINVAL;
3429
3430 if (mount_is_ancestor(mnt_to, mnt_from))
3431 return -EINVAL;
3432
3433 /*
3434 * If the parent mount propagates to the child mount this would
3435 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3436 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3437 * defeats the whole purpose of mounting beneath another mount.
3438 */
3439 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3440 return -EINVAL;
3441
3442 /*
3443 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3444 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3445 * Afterwards @mnt_from would be mounted on top of
3446 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3447 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3448 * already mounted on @mnt_from, @mnt_to would ultimately be
3449 * remounted on top of @c. Afterwards, @mnt_from would be
3450 * covered by a copy @c of @mnt_from and @c would be covered by
3451 * @mnt_from itself. This defeats the whole purpose of mounting
3452 * @mnt_from beneath @mnt_to.
3453 */
3454 if (check_mnt(mnt_from) &&
3455 propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3456 return -EINVAL;
3457
3458 return 0;
3459 }
3460
3461 /* may_use_mount() - check if a mount tree can be used
3462 * @mnt: vfsmount to be used
3463 *
3464 * This helper checks if the caller may use the mount tree starting
3465 * from @path->mnt. The caller may use the mount tree under the
3466 * following circumstances:
3467 *
3468 * (1) The caller is located in the mount namespace of the mount tree.
3469 * This also implies that the mount does not belong to an anonymous
3470 * mount namespace.
3471 * (2) The caller is trying to use a mount tree that belongs to an
3472 * anonymous mount namespace.
3473 *
3474 * For that to be safe, this helper enforces that the origin mount
3475 * namespace the anonymous mount namespace was created from is the
3476 * same as the caller's mount namespace by comparing the sequence
3477 * numbers.
3478 *
3479 * The ownership of a non-anonymous mount namespace such as the
3480 * caller's cannot change.
3481 * => We know that the caller's mount namespace is stable.
3482 *
3483 * If the origin sequence number of the anonymous mount namespace is
3484 * the same as the sequence number of the caller's mount namespace.
3485 * => The owning namespaces are the same.
3486 *
3487 * ==> The earlier capability check on the owning namespace of the
3488 * caller's mount namespace ensures that the caller has the
3489 * ability to use the mount tree.
3490 *
3491 * Returns true if the mount tree can be used, false otherwise.
3492 */
may_use_mount(struct mount * mnt)3493 static inline bool may_use_mount(struct mount *mnt)
3494 {
3495 if (check_mnt(mnt))
3496 return true;
3497
3498 /*
3499 * Make sure that noone unmounted the target path or somehow
3500 * managed to get their hands on something purely kernel
3501 * internal.
3502 */
3503 if (!is_mounted(&mnt->mnt))
3504 return false;
3505
3506 return check_anonymous_mnt(mnt);
3507 }
3508
do_move_mount(const struct path * old_path,const struct path * new_path,enum mnt_tree_flags_t flags)3509 static int do_move_mount(const struct path *old_path,
3510 const struct path *new_path,
3511 enum mnt_tree_flags_t flags)
3512 {
3513 struct mount *old = real_mount(old_path->mnt);
3514 int err;
3515 bool beneath = flags & MNT_TREE_BENEATH;
3516
3517 if (!path_mounted(old_path))
3518 return -EINVAL;
3519
3520 if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3521 return -EINVAL;
3522
3523 LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3524 if (IS_ERR(mp.parent))
3525 return PTR_ERR(mp.parent);
3526
3527 if (check_mnt(old)) {
3528 /* if the source is in our namespace... */
3529 /* ... it should be detachable from parent */
3530 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3531 return -EINVAL;
3532 /* ... which should not be shared */
3533 if (IS_MNT_SHARED(old->mnt_parent))
3534 return -EINVAL;
3535 /* ... and the target should be in our namespace */
3536 if (!check_mnt(mp.parent))
3537 return -EINVAL;
3538 } else {
3539 /*
3540 * otherwise the source must be the root of some anon namespace.
3541 */
3542 if (!anon_ns_root(old))
3543 return -EINVAL;
3544 /*
3545 * Bail out early if the target is within the same namespace -
3546 * subsequent checks would've rejected that, but they lose
3547 * some corner cases if we check it early.
3548 */
3549 if (old->mnt_ns == mp.parent->mnt_ns)
3550 return -EINVAL;
3551 /*
3552 * Target should be either in our namespace or in an acceptable
3553 * anon namespace, sensu check_anonymous_mnt().
3554 */
3555 if (!may_use_mount(mp.parent))
3556 return -EINVAL;
3557 }
3558
3559 if (beneath) {
3560 struct mount *over = real_mount(new_path->mnt);
3561
3562 if (mp.parent != over->mnt_parent)
3563 over = mp.parent->overmount;
3564 err = can_move_mount_beneath(old, over, mp.mp);
3565 if (err)
3566 return err;
3567 }
3568
3569 /*
3570 * Don't move a mount tree containing unbindable mounts to a destination
3571 * mount which is shared.
3572 */
3573 if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3574 return -EINVAL;
3575 if (!check_for_nsfs_mounts(old))
3576 return -ELOOP;
3577 if (mount_is_ancestor(old, mp.parent))
3578 return -ELOOP;
3579
3580 return attach_recursive_mnt(old, &mp);
3581 }
3582
do_move_mount_old(const struct path * path,const char * old_name)3583 static int do_move_mount_old(const struct path *path, const char *old_name)
3584 {
3585 struct path old_path __free(path_put) = {};
3586 int err;
3587
3588 if (!old_name || !*old_name)
3589 return -EINVAL;
3590
3591 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3592 if (err)
3593 return err;
3594
3595 return do_move_mount(&old_path, path, 0);
3596 }
3597
3598 /*
3599 * add a mount into a namespace's mount tree
3600 */
do_add_mount(struct mount * newmnt,const struct pinned_mountpoint * mp,int mnt_flags)3601 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3602 int mnt_flags)
3603 {
3604 struct mount *parent = mp->parent;
3605
3606 if (IS_ERR(parent))
3607 return PTR_ERR(parent);
3608
3609 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3610
3611 if (unlikely(!check_mnt(parent))) {
3612 /* that's acceptable only for automounts done in private ns */
3613 if (!(mnt_flags & MNT_SHRINKABLE))
3614 return -EINVAL;
3615 /* ... and for those we'd better have mountpoint still alive */
3616 if (!parent->mnt_ns)
3617 return -EINVAL;
3618 }
3619
3620 /* Refuse the same filesystem on the same mount point */
3621 if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3622 parent->mnt.mnt_root == mp->mp->m_dentry)
3623 return -EBUSY;
3624
3625 if (d_is_symlink(newmnt->mnt.mnt_root))
3626 return -EINVAL;
3627
3628 newmnt->mnt.mnt_flags = mnt_flags;
3629 return graft_tree(newmnt, mp);
3630 }
3631
3632 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3633
3634 /*
3635 * Create a new mount using a superblock configuration and request it
3636 * be added to the namespace tree.
3637 */
do_new_mount_fc(struct fs_context * fc,const struct path * mountpoint,unsigned int mnt_flags)3638 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3639 unsigned int mnt_flags)
3640 {
3641 struct super_block *sb;
3642 struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3643 int error;
3644
3645 if (IS_ERR(mnt))
3646 return PTR_ERR(mnt);
3647
3648 sb = fc->root->d_sb;
3649 error = security_sb_kern_mount(sb);
3650 if (unlikely(error))
3651 return error;
3652
3653 if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3654 errorfcp(fc, "VFS", "Mount too revealing");
3655 return -EPERM;
3656 }
3657
3658 mnt_warn_timestamp_expiry(mountpoint, mnt);
3659
3660 LOCK_MOUNT(mp, mountpoint);
3661 error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3662 if (!error)
3663 retain_and_null_ptr(mnt); // consumed on success
3664 return error;
3665 }
3666
3667 /*
3668 * create a new mount for userspace and request it to be added into the
3669 * namespace's tree
3670 */
do_new_mount(const struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3671 static int do_new_mount(const struct path *path, const char *fstype,
3672 int sb_flags, int mnt_flags,
3673 const char *name, void *data)
3674 {
3675 struct file_system_type *type;
3676 struct fs_context *fc;
3677 const char *subtype = NULL;
3678 int err = 0;
3679
3680 if (!fstype)
3681 return -EINVAL;
3682
3683 type = get_fs_type(fstype);
3684 if (!type)
3685 return -ENODEV;
3686
3687 if (type->fs_flags & FS_HAS_SUBTYPE) {
3688 subtype = strchr(fstype, '.');
3689 if (subtype) {
3690 subtype++;
3691 if (!*subtype) {
3692 put_filesystem(type);
3693 return -EINVAL;
3694 }
3695 }
3696 }
3697
3698 fc = fs_context_for_mount(type, sb_flags);
3699 put_filesystem(type);
3700 if (IS_ERR(fc))
3701 return PTR_ERR(fc);
3702
3703 /*
3704 * Indicate to the filesystem that the mount request is coming
3705 * from the legacy mount system call.
3706 */
3707 fc->oldapi = true;
3708
3709 if (subtype)
3710 err = vfs_parse_fs_string(fc, "subtype", subtype);
3711 if (!err && name)
3712 err = vfs_parse_fs_string(fc, "source", name);
3713 if (!err)
3714 err = parse_monolithic_mount_data(fc, data);
3715 if (!err && !mount_capable(fc))
3716 err = -EPERM;
3717 if (!err)
3718 err = do_new_mount_fc(fc, path, mnt_flags);
3719
3720 put_fs_context(fc);
3721 return err;
3722 }
3723
lock_mount_exact(const struct path * path,struct pinned_mountpoint * mp)3724 static void lock_mount_exact(const struct path *path,
3725 struct pinned_mountpoint *mp)
3726 {
3727 struct dentry *dentry = path->dentry;
3728 int err;
3729
3730 inode_lock(dentry->d_inode);
3731 namespace_lock();
3732 if (unlikely(cant_mount(dentry)))
3733 err = -ENOENT;
3734 else if (path_overmounted(path))
3735 err = -EBUSY;
3736 else
3737 err = get_mountpoint(dentry, mp);
3738 if (unlikely(err)) {
3739 namespace_unlock();
3740 inode_unlock(dentry->d_inode);
3741 mp->parent = ERR_PTR(err);
3742 } else {
3743 mp->parent = real_mount(path->mnt);
3744 }
3745 }
3746
finish_automount(struct vfsmount * __m,const struct path * path)3747 int finish_automount(struct vfsmount *__m, const struct path *path)
3748 {
3749 struct vfsmount *m __free(mntput) = __m;
3750 struct mount *mnt;
3751 int err;
3752
3753 if (!m)
3754 return 0;
3755 if (IS_ERR(m))
3756 return PTR_ERR(m);
3757
3758 mnt = real_mount(m);
3759
3760 if (m->mnt_root == path->dentry)
3761 return -ELOOP;
3762
3763 /*
3764 * we don't want to use LOCK_MOUNT() - in this case finding something
3765 * that overmounts our mountpoint to be means "quitely drop what we've
3766 * got", not "try to mount it on top".
3767 */
3768 LOCK_MOUNT_EXACT(mp, path);
3769 if (mp.parent == ERR_PTR(-EBUSY))
3770 return 0;
3771
3772 err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3773 if (likely(!err))
3774 retain_and_null_ptr(m);
3775 return err;
3776 }
3777
3778 /**
3779 * mnt_set_expiry - Put a mount on an expiration list
3780 * @mnt: The mount to list.
3781 * @expiry_list: The list to add the mount to.
3782 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3783 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3784 {
3785 guard(mount_locked_reader)();
3786 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3787 }
3788 EXPORT_SYMBOL(mnt_set_expiry);
3789
3790 /*
3791 * process a list of expirable mountpoints with the intent of discarding any
3792 * mountpoints that aren't in use and haven't been touched since last we came
3793 * here
3794 */
mark_mounts_for_expiry(struct list_head * mounts)3795 void mark_mounts_for_expiry(struct list_head *mounts)
3796 {
3797 struct mount *mnt, *next;
3798 LIST_HEAD(graveyard);
3799
3800 if (list_empty(mounts))
3801 return;
3802
3803 guard(namespace_excl)();
3804 guard(mount_writer)();
3805
3806 /* extract from the expiration list every vfsmount that matches the
3807 * following criteria:
3808 * - already mounted
3809 * - only referenced by its parent vfsmount
3810 * - still marked for expiry (marked on the last call here; marks are
3811 * cleared by mntput())
3812 */
3813 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3814 if (!is_mounted(&mnt->mnt))
3815 continue;
3816 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3817 propagate_mount_busy(mnt, 1))
3818 continue;
3819 list_move(&mnt->mnt_expire, &graveyard);
3820 }
3821 while (!list_empty(&graveyard)) {
3822 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3823 touch_mnt_namespace(mnt->mnt_ns);
3824 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3825 }
3826 }
3827
3828 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3829
3830 /*
3831 * Ripoff of 'select_parent()'
3832 *
3833 * search the list of submounts for a given mountpoint, and move any
3834 * shrinkable submounts to the 'graveyard' list.
3835 */
select_submounts(struct mount * parent,struct list_head * graveyard)3836 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3837 {
3838 struct mount *this_parent = parent;
3839 struct list_head *next;
3840 int found = 0;
3841
3842 repeat:
3843 next = this_parent->mnt_mounts.next;
3844 resume:
3845 while (next != &this_parent->mnt_mounts) {
3846 struct list_head *tmp = next;
3847 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3848
3849 next = tmp->next;
3850 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3851 continue;
3852 /*
3853 * Descend a level if the d_mounts list is non-empty.
3854 */
3855 if (!list_empty(&mnt->mnt_mounts)) {
3856 this_parent = mnt;
3857 goto repeat;
3858 }
3859
3860 if (!propagate_mount_busy(mnt, 1)) {
3861 list_move_tail(&mnt->mnt_expire, graveyard);
3862 found++;
3863 }
3864 }
3865 /*
3866 * All done at this level ... ascend and resume the search
3867 */
3868 if (this_parent != parent) {
3869 next = this_parent->mnt_child.next;
3870 this_parent = this_parent->mnt_parent;
3871 goto resume;
3872 }
3873 return found;
3874 }
3875
3876 /*
3877 * process a list of expirable mountpoints with the intent of discarding any
3878 * submounts of a specific parent mountpoint
3879 *
3880 * mount_lock must be held for write
3881 */
shrink_submounts(struct mount * mnt)3882 static void shrink_submounts(struct mount *mnt)
3883 {
3884 LIST_HEAD(graveyard);
3885 struct mount *m;
3886
3887 /* extract submounts of 'mountpoint' from the expiration list */
3888 while (select_submounts(mnt, &graveyard)) {
3889 while (!list_empty(&graveyard)) {
3890 m = list_first_entry(&graveyard, struct mount,
3891 mnt_expire);
3892 touch_mnt_namespace(m->mnt_ns);
3893 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3894 }
3895 }
3896 }
3897
copy_mount_options(const void __user * data)3898 static void *copy_mount_options(const void __user * data)
3899 {
3900 char *copy;
3901 unsigned left, offset;
3902
3903 if (!data)
3904 return NULL;
3905
3906 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3907 if (!copy)
3908 return ERR_PTR(-ENOMEM);
3909
3910 left = copy_from_user(copy, data, PAGE_SIZE);
3911
3912 /*
3913 * Not all architectures have an exact copy_from_user(). Resort to
3914 * byte at a time.
3915 */
3916 offset = PAGE_SIZE - left;
3917 while (left) {
3918 char c;
3919 if (get_user(c, (const char __user *)data + offset))
3920 break;
3921 copy[offset] = c;
3922 left--;
3923 offset++;
3924 }
3925
3926 if (left == PAGE_SIZE) {
3927 kfree(copy);
3928 return ERR_PTR(-EFAULT);
3929 }
3930
3931 return copy;
3932 }
3933
copy_mount_string(const void __user * data)3934 static char *copy_mount_string(const void __user *data)
3935 {
3936 return data ? strndup_user(data, PATH_MAX) : NULL;
3937 }
3938
3939 /*
3940 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3941 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3942 *
3943 * data is a (void *) that can point to any structure up to
3944 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3945 * information (or be NULL).
3946 *
3947 * Pre-0.97 versions of mount() didn't have a flags word.
3948 * When the flags word was introduced its top half was required
3949 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3950 * Therefore, if this magic number is present, it carries no information
3951 * and must be discarded.
3952 */
path_mount(const char * dev_name,const struct path * path,const char * type_page,unsigned long flags,void * data_page)3953 int path_mount(const char *dev_name, const struct path *path,
3954 const char *type_page, unsigned long flags, void *data_page)
3955 {
3956 unsigned int mnt_flags = 0, sb_flags;
3957 int ret;
3958
3959 /* Discard magic */
3960 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3961 flags &= ~MS_MGC_MSK;
3962
3963 /* Basic sanity checks */
3964 if (data_page)
3965 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3966
3967 if (flags & MS_NOUSER)
3968 return -EINVAL;
3969
3970 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3971 if (ret)
3972 return ret;
3973 if (!may_mount())
3974 return -EPERM;
3975 if (flags & SB_MANDLOCK)
3976 warn_mandlock();
3977
3978 /* Default to relatime unless overriden */
3979 if (!(flags & MS_NOATIME))
3980 mnt_flags |= MNT_RELATIME;
3981
3982 /* Separate the per-mountpoint flags */
3983 if (flags & MS_NOSUID)
3984 mnt_flags |= MNT_NOSUID;
3985 if (flags & MS_NODEV)
3986 mnt_flags |= MNT_NODEV;
3987 if (flags & MS_NOEXEC)
3988 mnt_flags |= MNT_NOEXEC;
3989 if (flags & MS_NOATIME)
3990 mnt_flags |= MNT_NOATIME;
3991 if (flags & MS_NODIRATIME)
3992 mnt_flags |= MNT_NODIRATIME;
3993 if (flags & MS_STRICTATIME)
3994 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3995 if (flags & MS_RDONLY)
3996 mnt_flags |= MNT_READONLY;
3997 if (flags & MS_NOSYMFOLLOW)
3998 mnt_flags |= MNT_NOSYMFOLLOW;
3999
4000 /* The default atime for remount is preservation */
4001 if ((flags & MS_REMOUNT) &&
4002 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4003 MS_STRICTATIME)) == 0)) {
4004 mnt_flags &= ~MNT_ATIME_MASK;
4005 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4006 }
4007
4008 sb_flags = flags & (SB_RDONLY |
4009 SB_SYNCHRONOUS |
4010 SB_MANDLOCK |
4011 SB_DIRSYNC |
4012 SB_SILENT |
4013 SB_POSIXACL |
4014 SB_LAZYTIME |
4015 SB_I_VERSION);
4016
4017 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4018 return do_reconfigure_mnt(path, mnt_flags);
4019 if (flags & MS_REMOUNT)
4020 return do_remount(path, sb_flags, mnt_flags, data_page);
4021 if (flags & MS_BIND)
4022 return do_loopback(path, dev_name, flags & MS_REC);
4023 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4024 return do_change_type(path, flags);
4025 if (flags & MS_MOVE)
4026 return do_move_mount_old(path, dev_name);
4027
4028 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4029 data_page);
4030 }
4031
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4032 int do_mount(const char *dev_name, const char __user *dir_name,
4033 const char *type_page, unsigned long flags, void *data_page)
4034 {
4035 struct path path __free(path_put) = {};
4036 int ret;
4037
4038 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4039 if (ret)
4040 return ret;
4041 return path_mount(dev_name, &path, type_page, flags, data_page);
4042 }
4043
inc_mnt_namespaces(struct user_namespace * ns)4044 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4045 {
4046 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4047 }
4048
dec_mnt_namespaces(struct ucounts * ucounts)4049 static void dec_mnt_namespaces(struct ucounts *ucounts)
4050 {
4051 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4052 }
4053
free_mnt_ns(struct mnt_namespace * ns)4054 static void free_mnt_ns(struct mnt_namespace *ns)
4055 {
4056 if (!is_anon_ns(ns))
4057 ns_common_free(ns);
4058 dec_mnt_namespaces(ns->ucounts);
4059 mnt_ns_tree_remove(ns);
4060 }
4061
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4062 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4063 {
4064 struct mnt_namespace *new_ns;
4065 struct ucounts *ucounts;
4066 int ret;
4067
4068 ucounts = inc_mnt_namespaces(user_ns);
4069 if (!ucounts)
4070 return ERR_PTR(-ENOSPC);
4071
4072 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4073 if (!new_ns) {
4074 dec_mnt_namespaces(ucounts);
4075 return ERR_PTR(-ENOMEM);
4076 }
4077
4078 if (anon)
4079 ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4080 else
4081 ret = ns_common_init(new_ns);
4082 if (ret) {
4083 kfree(new_ns);
4084 dec_mnt_namespaces(ucounts);
4085 return ERR_PTR(ret);
4086 }
4087 if (!anon)
4088 ns_tree_gen_id(&new_ns->ns);
4089 refcount_set(&new_ns->passive, 1);
4090 new_ns->mounts = RB_ROOT;
4091 init_waitqueue_head(&new_ns->poll);
4092 new_ns->user_ns = get_user_ns(user_ns);
4093 new_ns->ucounts = ucounts;
4094 return new_ns;
4095 }
4096
4097 __latent_entropy
copy_mnt_ns(u64 flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4098 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4099 struct user_namespace *user_ns, struct fs_struct *new_fs)
4100 {
4101 struct mnt_namespace *new_ns;
4102 struct vfsmount *rootmnt __free(mntput) = NULL;
4103 struct vfsmount *pwdmnt __free(mntput) = NULL;
4104 struct mount *p, *q;
4105 struct mount *old;
4106 struct mount *new;
4107 int copy_flags;
4108
4109 BUG_ON(!ns);
4110
4111 if (likely(!(flags & CLONE_NEWNS))) {
4112 get_mnt_ns(ns);
4113 return ns;
4114 }
4115
4116 old = ns->root;
4117
4118 new_ns = alloc_mnt_ns(user_ns, false);
4119 if (IS_ERR(new_ns))
4120 return new_ns;
4121
4122 guard(namespace_excl)();
4123 /* First pass: copy the tree topology */
4124 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4125 if (user_ns != ns->user_ns)
4126 copy_flags |= CL_SLAVE;
4127 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4128 if (IS_ERR(new)) {
4129 emptied_ns = new_ns;
4130 return ERR_CAST(new);
4131 }
4132 if (user_ns != ns->user_ns) {
4133 guard(mount_writer)();
4134 lock_mnt_tree(new);
4135 }
4136 new_ns->root = new;
4137
4138 /*
4139 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4140 * as belonging to new namespace. We have already acquired a private
4141 * fs_struct, so tsk->fs->lock is not needed.
4142 */
4143 p = old;
4144 q = new;
4145 while (p) {
4146 mnt_add_to_ns(new_ns, q);
4147 new_ns->nr_mounts++;
4148 if (new_fs) {
4149 if (&p->mnt == new_fs->root.mnt) {
4150 new_fs->root.mnt = mntget(&q->mnt);
4151 rootmnt = &p->mnt;
4152 }
4153 if (&p->mnt == new_fs->pwd.mnt) {
4154 new_fs->pwd.mnt = mntget(&q->mnt);
4155 pwdmnt = &p->mnt;
4156 }
4157 }
4158 p = next_mnt(p, old);
4159 q = next_mnt(q, new);
4160 if (!q)
4161 break;
4162 // an mntns binding we'd skipped?
4163 while (p->mnt.mnt_root != q->mnt.mnt_root)
4164 p = next_mnt(skip_mnt_tree(p), old);
4165 }
4166 ns_tree_add_raw(new_ns);
4167 return new_ns;
4168 }
4169
mount_subtree(struct vfsmount * m,const char * name)4170 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4171 {
4172 struct mount *mnt = real_mount(m);
4173 struct mnt_namespace *ns;
4174 struct super_block *s;
4175 struct path path;
4176 int err;
4177
4178 ns = alloc_mnt_ns(&init_user_ns, true);
4179 if (IS_ERR(ns)) {
4180 mntput(m);
4181 return ERR_CAST(ns);
4182 }
4183 ns->root = mnt;
4184 ns->nr_mounts++;
4185 mnt_add_to_ns(ns, mnt);
4186
4187 err = vfs_path_lookup(m->mnt_root, m,
4188 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4189
4190 put_mnt_ns(ns);
4191
4192 if (err)
4193 return ERR_PTR(err);
4194
4195 /* trade a vfsmount reference for active sb one */
4196 s = path.mnt->mnt_sb;
4197 atomic_inc(&s->s_active);
4198 mntput(path.mnt);
4199 /* lock the sucker */
4200 down_write(&s->s_umount);
4201 /* ... and return the root of (sub)tree on it */
4202 return path.dentry;
4203 }
4204 EXPORT_SYMBOL(mount_subtree);
4205
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4206 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4207 char __user *, type, unsigned long, flags, void __user *, data)
4208 {
4209 int ret;
4210 char *kernel_type;
4211 char *kernel_dev;
4212 void *options;
4213
4214 kernel_type = copy_mount_string(type);
4215 ret = PTR_ERR(kernel_type);
4216 if (IS_ERR(kernel_type))
4217 goto out_type;
4218
4219 kernel_dev = copy_mount_string(dev_name);
4220 ret = PTR_ERR(kernel_dev);
4221 if (IS_ERR(kernel_dev))
4222 goto out_dev;
4223
4224 options = copy_mount_options(data);
4225 ret = PTR_ERR(options);
4226 if (IS_ERR(options))
4227 goto out_data;
4228
4229 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4230
4231 kfree(options);
4232 out_data:
4233 kfree(kernel_dev);
4234 out_dev:
4235 kfree(kernel_type);
4236 out_type:
4237 return ret;
4238 }
4239
4240 #define FSMOUNT_VALID_FLAGS \
4241 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4242 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4243 MOUNT_ATTR_NOSYMFOLLOW)
4244
4245 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4246
4247 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4248 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4249
attr_flags_to_mnt_flags(u64 attr_flags)4250 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4251 {
4252 unsigned int mnt_flags = 0;
4253
4254 if (attr_flags & MOUNT_ATTR_RDONLY)
4255 mnt_flags |= MNT_READONLY;
4256 if (attr_flags & MOUNT_ATTR_NOSUID)
4257 mnt_flags |= MNT_NOSUID;
4258 if (attr_flags & MOUNT_ATTR_NODEV)
4259 mnt_flags |= MNT_NODEV;
4260 if (attr_flags & MOUNT_ATTR_NOEXEC)
4261 mnt_flags |= MNT_NOEXEC;
4262 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4263 mnt_flags |= MNT_NODIRATIME;
4264 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4265 mnt_flags |= MNT_NOSYMFOLLOW;
4266
4267 return mnt_flags;
4268 }
4269
4270 /*
4271 * Create a kernel mount representation for a new, prepared superblock
4272 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4273 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4274 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4275 unsigned int, attr_flags)
4276 {
4277 struct mnt_namespace *ns;
4278 struct fs_context *fc;
4279 struct file *file;
4280 struct path newmount;
4281 struct mount *mnt;
4282 unsigned int mnt_flags = 0;
4283 long ret;
4284
4285 if (!may_mount())
4286 return -EPERM;
4287
4288 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4289 return -EINVAL;
4290
4291 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4292 return -EINVAL;
4293
4294 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4295
4296 switch (attr_flags & MOUNT_ATTR__ATIME) {
4297 case MOUNT_ATTR_STRICTATIME:
4298 break;
4299 case MOUNT_ATTR_NOATIME:
4300 mnt_flags |= MNT_NOATIME;
4301 break;
4302 case MOUNT_ATTR_RELATIME:
4303 mnt_flags |= MNT_RELATIME;
4304 break;
4305 default:
4306 return -EINVAL;
4307 }
4308
4309 CLASS(fd, f)(fs_fd);
4310 if (fd_empty(f))
4311 return -EBADF;
4312
4313 if (fd_file(f)->f_op != &fscontext_fops)
4314 return -EINVAL;
4315
4316 fc = fd_file(f)->private_data;
4317
4318 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4319 if (ret < 0)
4320 return ret;
4321
4322 /* There must be a valid superblock or we can't mount it */
4323 ret = -EINVAL;
4324 if (!fc->root)
4325 goto err_unlock;
4326
4327 ret = -EPERM;
4328 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4329 errorfcp(fc, "VFS", "Mount too revealing");
4330 goto err_unlock;
4331 }
4332
4333 ret = -EBUSY;
4334 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4335 goto err_unlock;
4336
4337 if (fc->sb_flags & SB_MANDLOCK)
4338 warn_mandlock();
4339
4340 newmount.mnt = vfs_create_mount(fc);
4341 if (IS_ERR(newmount.mnt)) {
4342 ret = PTR_ERR(newmount.mnt);
4343 goto err_unlock;
4344 }
4345 newmount.dentry = dget(fc->root);
4346 newmount.mnt->mnt_flags = mnt_flags;
4347
4348 /* We've done the mount bit - now move the file context into more or
4349 * less the same state as if we'd done an fspick(). We don't want to
4350 * do any memory allocation or anything like that at this point as we
4351 * don't want to have to handle any errors incurred.
4352 */
4353 vfs_clean_context(fc);
4354
4355 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4356 if (IS_ERR(ns)) {
4357 ret = PTR_ERR(ns);
4358 goto err_path;
4359 }
4360 mnt = real_mount(newmount.mnt);
4361 ns->root = mnt;
4362 ns->nr_mounts = 1;
4363 mnt_add_to_ns(ns, mnt);
4364 mntget(newmount.mnt);
4365
4366 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4367 * it, not just simply put it.
4368 */
4369 file = dentry_open(&newmount, O_PATH, fc->cred);
4370 if (IS_ERR(file)) {
4371 dissolve_on_fput(newmount.mnt);
4372 ret = PTR_ERR(file);
4373 goto err_path;
4374 }
4375 file->f_mode |= FMODE_NEED_UNMOUNT;
4376
4377 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4378 if (ret >= 0)
4379 fd_install(ret, file);
4380 else
4381 fput(file);
4382
4383 err_path:
4384 path_put(&newmount);
4385 err_unlock:
4386 mutex_unlock(&fc->uapi_mutex);
4387 return ret;
4388 }
4389
vfs_move_mount(const struct path * from_path,const struct path * to_path,enum mnt_tree_flags_t mflags)4390 static inline int vfs_move_mount(const struct path *from_path,
4391 const struct path *to_path,
4392 enum mnt_tree_flags_t mflags)
4393 {
4394 int ret;
4395
4396 ret = security_move_mount(from_path, to_path);
4397 if (ret)
4398 return ret;
4399
4400 if (mflags & MNT_TREE_PROPAGATION)
4401 return do_set_group(from_path, to_path);
4402
4403 return do_move_mount(from_path, to_path, mflags);
4404 }
4405
4406 /*
4407 * Move a mount from one place to another. In combination with
4408 * fsopen()/fsmount() this is used to install a new mount and in combination
4409 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4410 * a mount subtree.
4411 *
4412 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4413 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4414 SYSCALL_DEFINE5(move_mount,
4415 int, from_dfd, const char __user *, from_pathname,
4416 int, to_dfd, const char __user *, to_pathname,
4417 unsigned int, flags)
4418 {
4419 struct path to_path __free(path_put) = {};
4420 struct path from_path __free(path_put) = {};
4421 struct filename *to_name __free(putname) = NULL;
4422 struct filename *from_name __free(putname) = NULL;
4423 unsigned int lflags, uflags;
4424 enum mnt_tree_flags_t mflags = 0;
4425 int ret = 0;
4426
4427 if (!may_mount())
4428 return -EPERM;
4429
4430 if (flags & ~MOVE_MOUNT__MASK)
4431 return -EINVAL;
4432
4433 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4434 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4435 return -EINVAL;
4436
4437 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4438 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4439
4440 uflags = 0;
4441 if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4442 uflags = AT_EMPTY_PATH;
4443
4444 to_name = getname_maybe_null(to_pathname, uflags);
4445 if (IS_ERR(to_name))
4446 return PTR_ERR(to_name);
4447
4448 if (!to_name && to_dfd >= 0) {
4449 CLASS(fd_raw, f_to)(to_dfd);
4450 if (fd_empty(f_to))
4451 return -EBADF;
4452
4453 to_path = fd_file(f_to)->f_path;
4454 path_get(&to_path);
4455 } else {
4456 lflags = 0;
4457 if (flags & MOVE_MOUNT_T_SYMLINKS)
4458 lflags |= LOOKUP_FOLLOW;
4459 if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4460 lflags |= LOOKUP_AUTOMOUNT;
4461 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4462 if (ret)
4463 return ret;
4464 }
4465
4466 uflags = 0;
4467 if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4468 uflags = AT_EMPTY_PATH;
4469
4470 from_name = getname_maybe_null(from_pathname, uflags);
4471 if (IS_ERR(from_name))
4472 return PTR_ERR(from_name);
4473
4474 if (!from_name && from_dfd >= 0) {
4475 CLASS(fd_raw, f_from)(from_dfd);
4476 if (fd_empty(f_from))
4477 return -EBADF;
4478
4479 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4480 }
4481
4482 lflags = 0;
4483 if (flags & MOVE_MOUNT_F_SYMLINKS)
4484 lflags |= LOOKUP_FOLLOW;
4485 if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4486 lflags |= LOOKUP_AUTOMOUNT;
4487 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4488 if (ret)
4489 return ret;
4490
4491 return vfs_move_mount(&from_path, &to_path, mflags);
4492 }
4493
4494 /*
4495 * Return true if path is reachable from root
4496 *
4497 * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4498 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4499 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4500 const struct path *root)
4501 {
4502 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4503 dentry = mnt->mnt_mountpoint;
4504 mnt = mnt->mnt_parent;
4505 }
4506 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4507 }
4508
path_is_under(const struct path * path1,const struct path * path2)4509 bool path_is_under(const struct path *path1, const struct path *path2)
4510 {
4511 guard(mount_locked_reader)();
4512 return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4513 }
4514 EXPORT_SYMBOL(path_is_under);
4515
4516 /*
4517 * pivot_root Semantics:
4518 * Moves the root file system of the current process to the directory put_old,
4519 * makes new_root as the new root file system of the current process, and sets
4520 * root/cwd of all processes which had them on the current root to new_root.
4521 *
4522 * Restrictions:
4523 * The new_root and put_old must be directories, and must not be on the
4524 * same file system as the current process root. The put_old must be
4525 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4526 * pointed to by put_old must yield the same directory as new_root. No other
4527 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4528 *
4529 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4530 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4531 * in this situation.
4532 *
4533 * Notes:
4534 * - we don't move root/cwd if they are not at the root (reason: if something
4535 * cared enough to change them, it's probably wrong to force them elsewhere)
4536 * - it's okay to pick a root that isn't the root of a file system, e.g.
4537 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4538 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4539 * first.
4540 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4541 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4542 const char __user *, put_old)
4543 {
4544 struct path new __free(path_put) = {};
4545 struct path old __free(path_put) = {};
4546 struct path root __free(path_put) = {};
4547 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4548 int error;
4549
4550 if (!may_mount())
4551 return -EPERM;
4552
4553 error = user_path_at(AT_FDCWD, new_root,
4554 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4555 if (error)
4556 return error;
4557
4558 error = user_path_at(AT_FDCWD, put_old,
4559 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4560 if (error)
4561 return error;
4562
4563 error = security_sb_pivotroot(&old, &new);
4564 if (error)
4565 return error;
4566
4567 get_fs_root(current->fs, &root);
4568
4569 LOCK_MOUNT(old_mp, &old);
4570 old_mnt = old_mp.parent;
4571 if (IS_ERR(old_mnt))
4572 return PTR_ERR(old_mnt);
4573
4574 new_mnt = real_mount(new.mnt);
4575 root_mnt = real_mount(root.mnt);
4576 ex_parent = new_mnt->mnt_parent;
4577 root_parent = root_mnt->mnt_parent;
4578 if (IS_MNT_SHARED(old_mnt) ||
4579 IS_MNT_SHARED(ex_parent) ||
4580 IS_MNT_SHARED(root_parent))
4581 return -EINVAL;
4582 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4583 return -EINVAL;
4584 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4585 return -EINVAL;
4586 if (d_unlinked(new.dentry))
4587 return -ENOENT;
4588 if (new_mnt == root_mnt || old_mnt == root_mnt)
4589 return -EBUSY; /* loop, on the same file system */
4590 if (!path_mounted(&root))
4591 return -EINVAL; /* not a mountpoint */
4592 if (!mnt_has_parent(root_mnt))
4593 return -EINVAL; /* absolute root */
4594 if (!path_mounted(&new))
4595 return -EINVAL; /* not a mountpoint */
4596 if (!mnt_has_parent(new_mnt))
4597 return -EINVAL; /* absolute root */
4598 /* make sure we can reach put_old from new_root */
4599 if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new))
4600 return -EINVAL;
4601 /* make certain new is below the root */
4602 if (!is_path_reachable(new_mnt, new.dentry, &root))
4603 return -EINVAL;
4604 lock_mount_hash();
4605 umount_mnt(new_mnt);
4606 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4607 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4608 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4609 }
4610 /* mount new_root on / */
4611 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4612 umount_mnt(root_mnt);
4613 /* mount old root on put_old */
4614 attach_mnt(root_mnt, old_mnt, old_mp.mp);
4615 touch_mnt_namespace(current->nsproxy->mnt_ns);
4616 /* A moved mount should not expire automatically */
4617 list_del_init(&new_mnt->mnt_expire);
4618 unlock_mount_hash();
4619 mnt_notify_add(root_mnt);
4620 mnt_notify_add(new_mnt);
4621 chroot_fs_refs(&root, &new);
4622 return 0;
4623 }
4624
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4625 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4626 {
4627 unsigned int flags = mnt->mnt.mnt_flags;
4628
4629 /* flags to clear */
4630 flags &= ~kattr->attr_clr;
4631 /* flags to raise */
4632 flags |= kattr->attr_set;
4633
4634 return flags;
4635 }
4636
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4637 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4638 {
4639 struct vfsmount *m = &mnt->mnt;
4640 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4641
4642 if (!kattr->mnt_idmap)
4643 return 0;
4644
4645 /*
4646 * Creating an idmapped mount with the filesystem wide idmapping
4647 * doesn't make sense so block that. We don't allow mushy semantics.
4648 */
4649 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4650 return -EINVAL;
4651
4652 /*
4653 * We only allow an mount to change it's idmapping if it has
4654 * never been accessible to userspace.
4655 */
4656 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4657 return -EPERM;
4658
4659 /* The underlying filesystem doesn't support idmapped mounts yet. */
4660 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4661 return -EINVAL;
4662
4663 /* The filesystem has turned off idmapped mounts. */
4664 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4665 return -EINVAL;
4666
4667 /* We're not controlling the superblock. */
4668 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4669 return -EPERM;
4670
4671 /* Mount has already been visible in the filesystem hierarchy. */
4672 if (!is_anon_ns(mnt->mnt_ns))
4673 return -EINVAL;
4674
4675 return 0;
4676 }
4677
4678 /**
4679 * mnt_allow_writers() - check whether the attribute change allows writers
4680 * @kattr: the new mount attributes
4681 * @mnt: the mount to which @kattr will be applied
4682 *
4683 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4684 *
4685 * Return: true if writers need to be held, false if not
4686 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4687 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4688 const struct mount *mnt)
4689 {
4690 return (!(kattr->attr_set & MNT_READONLY) ||
4691 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4692 !kattr->mnt_idmap;
4693 }
4694
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4695 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4696 {
4697 struct mount *m;
4698 int err;
4699
4700 for (m = mnt; m; m = next_mnt(m, mnt)) {
4701 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4702 err = -EPERM;
4703 break;
4704 }
4705
4706 err = can_idmap_mount(kattr, m);
4707 if (err)
4708 break;
4709
4710 if (!mnt_allow_writers(kattr, m)) {
4711 err = mnt_hold_writers(m);
4712 if (err) {
4713 m = next_mnt(m, mnt);
4714 break;
4715 }
4716 }
4717
4718 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4719 return 0;
4720 }
4721
4722 if (err) {
4723 /* undo all mnt_hold_writers() we'd done */
4724 for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4725 mnt_unhold_writers(p);
4726 }
4727 return err;
4728 }
4729
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4730 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4731 {
4732 struct mnt_idmap *old_idmap;
4733
4734 if (!kattr->mnt_idmap)
4735 return;
4736
4737 old_idmap = mnt_idmap(&mnt->mnt);
4738
4739 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4740 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4741 mnt_idmap_put(old_idmap);
4742 }
4743
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4744 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4745 {
4746 struct mount *m;
4747
4748 for (m = mnt; m; m = next_mnt(m, mnt)) {
4749 unsigned int flags;
4750
4751 do_idmap_mount(kattr, m);
4752 flags = recalc_flags(kattr, m);
4753 WRITE_ONCE(m->mnt.mnt_flags, flags);
4754
4755 /* If we had to hold writers unblock them. */
4756 mnt_unhold_writers(m);
4757
4758 if (kattr->propagation)
4759 change_mnt_propagation(m, kattr->propagation);
4760 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4761 break;
4762 }
4763 touch_mnt_namespace(mnt->mnt_ns);
4764 }
4765
do_mount_setattr(const struct path * path,struct mount_kattr * kattr)4766 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4767 {
4768 struct mount *mnt = real_mount(path->mnt);
4769 int err = 0;
4770
4771 if (!path_mounted(path))
4772 return -EINVAL;
4773
4774 if (kattr->mnt_userns) {
4775 struct mnt_idmap *mnt_idmap;
4776
4777 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4778 if (IS_ERR(mnt_idmap))
4779 return PTR_ERR(mnt_idmap);
4780 kattr->mnt_idmap = mnt_idmap;
4781 }
4782
4783 if (kattr->propagation) {
4784 /*
4785 * Only take namespace_lock() if we're actually changing
4786 * propagation.
4787 */
4788 namespace_lock();
4789 if (kattr->propagation == MS_SHARED) {
4790 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4791 if (err) {
4792 namespace_unlock();
4793 return err;
4794 }
4795 }
4796 }
4797
4798 err = -EINVAL;
4799 lock_mount_hash();
4800
4801 if (!anon_ns_root(mnt) && !check_mnt(mnt))
4802 goto out;
4803
4804 /*
4805 * First, we get the mount tree in a shape where we can change mount
4806 * properties without failure. If we succeeded to do so we commit all
4807 * changes and if we failed we clean up.
4808 */
4809 err = mount_setattr_prepare(kattr, mnt);
4810 if (!err)
4811 mount_setattr_commit(kattr, mnt);
4812
4813 out:
4814 unlock_mount_hash();
4815
4816 if (kattr->propagation) {
4817 if (err)
4818 cleanup_group_ids(mnt, NULL);
4819 namespace_unlock();
4820 }
4821
4822 return err;
4823 }
4824
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4825 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4826 struct mount_kattr *kattr)
4827 {
4828 struct ns_common *ns;
4829 struct user_namespace *mnt_userns;
4830
4831 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4832 return 0;
4833
4834 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4835 /*
4836 * We can only remove an idmapping if it's never been
4837 * exposed to userspace.
4838 */
4839 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4840 return -EINVAL;
4841
4842 /*
4843 * Removal of idmappings is equivalent to setting
4844 * nop_mnt_idmap.
4845 */
4846 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4847 kattr->mnt_idmap = &nop_mnt_idmap;
4848 return 0;
4849 }
4850 }
4851
4852 if (attr->userns_fd > INT_MAX)
4853 return -EINVAL;
4854
4855 CLASS(fd, f)(attr->userns_fd);
4856 if (fd_empty(f))
4857 return -EBADF;
4858
4859 if (!proc_ns_file(fd_file(f)))
4860 return -EINVAL;
4861
4862 ns = get_proc_ns(file_inode(fd_file(f)));
4863 if (ns->ns_type != CLONE_NEWUSER)
4864 return -EINVAL;
4865
4866 /*
4867 * The initial idmapping cannot be used to create an idmapped
4868 * mount. We use the initial idmapping as an indicator of a mount
4869 * that is not idmapped. It can simply be passed into helpers that
4870 * are aware of idmapped mounts as a convenient shortcut. A user
4871 * can just create a dedicated identity mapping to achieve the same
4872 * result.
4873 */
4874 mnt_userns = container_of(ns, struct user_namespace, ns);
4875 if (mnt_userns == &init_user_ns)
4876 return -EPERM;
4877
4878 /* We're not controlling the target namespace. */
4879 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4880 return -EPERM;
4881
4882 kattr->mnt_userns = get_user_ns(mnt_userns);
4883 return 0;
4884 }
4885
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4886 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4887 struct mount_kattr *kattr)
4888 {
4889 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4890 return -EINVAL;
4891 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4892 return -EINVAL;
4893 kattr->propagation = attr->propagation;
4894
4895 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4896 return -EINVAL;
4897
4898 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4899 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4900
4901 /*
4902 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4903 * users wanting to transition to a different atime setting cannot
4904 * simply specify the atime setting in @attr_set, but must also
4905 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4906 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4907 * @attr_clr and that @attr_set can't have any atime bits set if
4908 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4909 */
4910 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4911 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4912 return -EINVAL;
4913
4914 /*
4915 * Clear all previous time settings as they are mutually
4916 * exclusive.
4917 */
4918 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4919 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4920 case MOUNT_ATTR_RELATIME:
4921 kattr->attr_set |= MNT_RELATIME;
4922 break;
4923 case MOUNT_ATTR_NOATIME:
4924 kattr->attr_set |= MNT_NOATIME;
4925 break;
4926 case MOUNT_ATTR_STRICTATIME:
4927 break;
4928 default:
4929 return -EINVAL;
4930 }
4931 } else {
4932 if (attr->attr_set & MOUNT_ATTR__ATIME)
4933 return -EINVAL;
4934 }
4935
4936 return build_mount_idmapped(attr, usize, kattr);
4937 }
4938
finish_mount_kattr(struct mount_kattr * kattr)4939 static void finish_mount_kattr(struct mount_kattr *kattr)
4940 {
4941 if (kattr->mnt_userns) {
4942 put_user_ns(kattr->mnt_userns);
4943 kattr->mnt_userns = NULL;
4944 }
4945
4946 if (kattr->mnt_idmap)
4947 mnt_idmap_put(kattr->mnt_idmap);
4948 }
4949
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)4950 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
4951 struct mount_kattr *kattr)
4952 {
4953 int ret;
4954 struct mount_attr attr;
4955
4956 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4957
4958 if (unlikely(usize > PAGE_SIZE))
4959 return -E2BIG;
4960 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4961 return -EINVAL;
4962
4963 if (!may_mount())
4964 return -EPERM;
4965
4966 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4967 if (ret)
4968 return ret;
4969
4970 /* Don't bother walking through the mounts if this is a nop. */
4971 if (attr.attr_set == 0 &&
4972 attr.attr_clr == 0 &&
4973 attr.propagation == 0)
4974 return 0; /* Tell caller to not bother. */
4975
4976 ret = build_mount_kattr(&attr, usize, kattr);
4977 if (ret < 0)
4978 return ret;
4979
4980 return 1;
4981 }
4982
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4983 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4984 unsigned int, flags, struct mount_attr __user *, uattr,
4985 size_t, usize)
4986 {
4987 int err;
4988 struct path target;
4989 struct mount_kattr kattr;
4990 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4991
4992 if (flags & ~(AT_EMPTY_PATH |
4993 AT_RECURSIVE |
4994 AT_SYMLINK_NOFOLLOW |
4995 AT_NO_AUTOMOUNT))
4996 return -EINVAL;
4997
4998 if (flags & AT_NO_AUTOMOUNT)
4999 lookup_flags &= ~LOOKUP_AUTOMOUNT;
5000 if (flags & AT_SYMLINK_NOFOLLOW)
5001 lookup_flags &= ~LOOKUP_FOLLOW;
5002 if (flags & AT_EMPTY_PATH)
5003 lookup_flags |= LOOKUP_EMPTY;
5004
5005 kattr = (struct mount_kattr) {
5006 .lookup_flags = lookup_flags,
5007 };
5008
5009 if (flags & AT_RECURSIVE)
5010 kattr.kflags |= MOUNT_KATTR_RECURSE;
5011
5012 err = wants_mount_setattr(uattr, usize, &kattr);
5013 if (err <= 0)
5014 return err;
5015
5016 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5017 if (!err) {
5018 err = do_mount_setattr(&target, &kattr);
5019 path_put(&target);
5020 }
5021 finish_mount_kattr(&kattr);
5022 return err;
5023 }
5024
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5025 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5026 unsigned, flags, struct mount_attr __user *, uattr,
5027 size_t, usize)
5028 {
5029 struct file __free(fput) *file = NULL;
5030 int fd;
5031
5032 if (!uattr && usize)
5033 return -EINVAL;
5034
5035 file = vfs_open_tree(dfd, filename, flags);
5036 if (IS_ERR(file))
5037 return PTR_ERR(file);
5038
5039 if (uattr) {
5040 int ret;
5041 struct mount_kattr kattr = {};
5042
5043 if (flags & OPEN_TREE_CLONE)
5044 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5045 if (flags & AT_RECURSIVE)
5046 kattr.kflags |= MOUNT_KATTR_RECURSE;
5047
5048 ret = wants_mount_setattr(uattr, usize, &kattr);
5049 if (ret > 0) {
5050 ret = do_mount_setattr(&file->f_path, &kattr);
5051 finish_mount_kattr(&kattr);
5052 }
5053 if (ret)
5054 return ret;
5055 }
5056
5057 fd = get_unused_fd_flags(flags & O_CLOEXEC);
5058 if (fd < 0)
5059 return fd;
5060
5061 fd_install(fd, no_free_ptr(file));
5062 return fd;
5063 }
5064
show_path(struct seq_file * m,struct dentry * root)5065 int show_path(struct seq_file *m, struct dentry *root)
5066 {
5067 if (root->d_sb->s_op->show_path)
5068 return root->d_sb->s_op->show_path(m, root);
5069
5070 seq_dentry(m, root, " \t\n\\");
5071 return 0;
5072 }
5073
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5074 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5075 {
5076 struct mount *mnt = mnt_find_id_at(ns, id);
5077
5078 if (!mnt || mnt->mnt_id_unique != id)
5079 return NULL;
5080
5081 return &mnt->mnt;
5082 }
5083
5084 struct kstatmount {
5085 struct statmount __user *buf;
5086 size_t bufsize;
5087 struct vfsmount *mnt;
5088 struct mnt_idmap *idmap;
5089 u64 mask;
5090 struct path root;
5091 struct seq_file seq;
5092
5093 /* Must be last --ends in a flexible-array member. */
5094 struct statmount sm;
5095 };
5096
mnt_to_attr_flags(struct vfsmount * mnt)5097 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5098 {
5099 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5100 u64 attr_flags = 0;
5101
5102 if (mnt_flags & MNT_READONLY)
5103 attr_flags |= MOUNT_ATTR_RDONLY;
5104 if (mnt_flags & MNT_NOSUID)
5105 attr_flags |= MOUNT_ATTR_NOSUID;
5106 if (mnt_flags & MNT_NODEV)
5107 attr_flags |= MOUNT_ATTR_NODEV;
5108 if (mnt_flags & MNT_NOEXEC)
5109 attr_flags |= MOUNT_ATTR_NOEXEC;
5110 if (mnt_flags & MNT_NODIRATIME)
5111 attr_flags |= MOUNT_ATTR_NODIRATIME;
5112 if (mnt_flags & MNT_NOSYMFOLLOW)
5113 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5114
5115 if (mnt_flags & MNT_NOATIME)
5116 attr_flags |= MOUNT_ATTR_NOATIME;
5117 else if (mnt_flags & MNT_RELATIME)
5118 attr_flags |= MOUNT_ATTR_RELATIME;
5119 else
5120 attr_flags |= MOUNT_ATTR_STRICTATIME;
5121
5122 if (is_idmapped_mnt(mnt))
5123 attr_flags |= MOUNT_ATTR_IDMAP;
5124
5125 return attr_flags;
5126 }
5127
mnt_to_propagation_flags(struct mount * m)5128 static u64 mnt_to_propagation_flags(struct mount *m)
5129 {
5130 u64 propagation = 0;
5131
5132 if (IS_MNT_SHARED(m))
5133 propagation |= MS_SHARED;
5134 if (IS_MNT_SLAVE(m))
5135 propagation |= MS_SLAVE;
5136 if (IS_MNT_UNBINDABLE(m))
5137 propagation |= MS_UNBINDABLE;
5138 if (!propagation)
5139 propagation |= MS_PRIVATE;
5140
5141 return propagation;
5142 }
5143
statmount_sb_basic(struct kstatmount * s)5144 static void statmount_sb_basic(struct kstatmount *s)
5145 {
5146 struct super_block *sb = s->mnt->mnt_sb;
5147
5148 s->sm.mask |= STATMOUNT_SB_BASIC;
5149 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5150 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5151 s->sm.sb_magic = sb->s_magic;
5152 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5153 }
5154
statmount_mnt_basic(struct kstatmount * s)5155 static void statmount_mnt_basic(struct kstatmount *s)
5156 {
5157 struct mount *m = real_mount(s->mnt);
5158
5159 s->sm.mask |= STATMOUNT_MNT_BASIC;
5160 s->sm.mnt_id = m->mnt_id_unique;
5161 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5162 s->sm.mnt_id_old = m->mnt_id;
5163 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5164 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5165 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5166 s->sm.mnt_peer_group = m->mnt_group_id;
5167 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5168 }
5169
statmount_propagate_from(struct kstatmount * s)5170 static void statmount_propagate_from(struct kstatmount *s)
5171 {
5172 struct mount *m = real_mount(s->mnt);
5173
5174 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5175 if (IS_MNT_SLAVE(m))
5176 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5177 }
5178
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5179 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5180 {
5181 int ret;
5182 size_t start = seq->count;
5183
5184 ret = show_path(seq, s->mnt->mnt_root);
5185 if (ret)
5186 return ret;
5187
5188 if (unlikely(seq_has_overflowed(seq)))
5189 return -EAGAIN;
5190
5191 /*
5192 * Unescape the result. It would be better if supplied string was not
5193 * escaped in the first place, but that's a pretty invasive change.
5194 */
5195 seq->buf[seq->count] = '\0';
5196 seq->count = start;
5197 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5198 return 0;
5199 }
5200
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5201 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5202 {
5203 struct vfsmount *mnt = s->mnt;
5204 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5205 int err;
5206
5207 err = seq_path_root(seq, &mnt_path, &s->root, "");
5208 return err == SEQ_SKIP ? 0 : err;
5209 }
5210
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5211 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5212 {
5213 struct super_block *sb = s->mnt->mnt_sb;
5214
5215 seq_puts(seq, sb->s_type->name);
5216 return 0;
5217 }
5218
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5219 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5220 {
5221 struct super_block *sb = s->mnt->mnt_sb;
5222
5223 if (sb->s_subtype)
5224 seq_puts(seq, sb->s_subtype);
5225 }
5226
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5227 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5228 {
5229 struct super_block *sb = s->mnt->mnt_sb;
5230 struct mount *r = real_mount(s->mnt);
5231
5232 if (sb->s_op->show_devname) {
5233 size_t start = seq->count;
5234 int ret;
5235
5236 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5237 if (ret)
5238 return ret;
5239
5240 if (unlikely(seq_has_overflowed(seq)))
5241 return -EAGAIN;
5242
5243 /* Unescape the result */
5244 seq->buf[seq->count] = '\0';
5245 seq->count = start;
5246 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5247 } else {
5248 seq_puts(seq, r->mnt_devname);
5249 }
5250 return 0;
5251 }
5252
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5253 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5254 {
5255 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5256 s->sm.mnt_ns_id = ns->ns.ns_id;
5257 }
5258
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5259 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5260 {
5261 struct vfsmount *mnt = s->mnt;
5262 struct super_block *sb = mnt->mnt_sb;
5263 size_t start = seq->count;
5264 int err;
5265
5266 err = security_sb_show_options(seq, sb);
5267 if (err)
5268 return err;
5269
5270 if (sb->s_op->show_options) {
5271 err = sb->s_op->show_options(seq, mnt->mnt_root);
5272 if (err)
5273 return err;
5274 }
5275
5276 if (unlikely(seq_has_overflowed(seq)))
5277 return -EAGAIN;
5278
5279 if (seq->count == start)
5280 return 0;
5281
5282 /* skip leading comma */
5283 memmove(seq->buf + start, seq->buf + start + 1,
5284 seq->count - start - 1);
5285 seq->count--;
5286
5287 return 0;
5288 }
5289
statmount_opt_process(struct seq_file * seq,size_t start)5290 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5291 {
5292 char *buf_end, *opt_end, *src, *dst;
5293 int count = 0;
5294
5295 if (unlikely(seq_has_overflowed(seq)))
5296 return -EAGAIN;
5297
5298 buf_end = seq->buf + seq->count;
5299 dst = seq->buf + start;
5300 src = dst + 1; /* skip initial comma */
5301
5302 if (src >= buf_end) {
5303 seq->count = start;
5304 return 0;
5305 }
5306
5307 *buf_end = '\0';
5308 for (; src < buf_end; src = opt_end + 1) {
5309 opt_end = strchrnul(src, ',');
5310 *opt_end = '\0';
5311 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5312 if (WARN_ON_ONCE(++count == INT_MAX))
5313 return -EOVERFLOW;
5314 }
5315 seq->count = dst - 1 - seq->buf;
5316 return count;
5317 }
5318
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5319 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5320 {
5321 struct vfsmount *mnt = s->mnt;
5322 struct super_block *sb = mnt->mnt_sb;
5323 size_t start = seq->count;
5324 int err;
5325
5326 if (!sb->s_op->show_options)
5327 return 0;
5328
5329 err = sb->s_op->show_options(seq, mnt->mnt_root);
5330 if (err)
5331 return err;
5332
5333 err = statmount_opt_process(seq, start);
5334 if (err < 0)
5335 return err;
5336
5337 s->sm.opt_num = err;
5338 return 0;
5339 }
5340
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5341 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5342 {
5343 struct vfsmount *mnt = s->mnt;
5344 struct super_block *sb = mnt->mnt_sb;
5345 size_t start = seq->count;
5346 int err;
5347
5348 err = security_sb_show_options(seq, sb);
5349 if (err)
5350 return err;
5351
5352 err = statmount_opt_process(seq, start);
5353 if (err < 0)
5354 return err;
5355
5356 s->sm.opt_sec_num = err;
5357 return 0;
5358 }
5359
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5360 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5361 {
5362 int ret;
5363
5364 ret = statmount_mnt_idmap(s->idmap, seq, true);
5365 if (ret < 0)
5366 return ret;
5367
5368 s->sm.mnt_uidmap_num = ret;
5369 /*
5370 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5371 * mappings. This allows userspace to distinguish between a
5372 * non-idmapped mount and an idmapped mount where none of the
5373 * individual mappings are valid in the caller's idmapping.
5374 */
5375 if (is_valid_mnt_idmap(s->idmap))
5376 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5377 return 0;
5378 }
5379
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5380 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5381 {
5382 int ret;
5383
5384 ret = statmount_mnt_idmap(s->idmap, seq, false);
5385 if (ret < 0)
5386 return ret;
5387
5388 s->sm.mnt_gidmap_num = ret;
5389 /*
5390 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5391 * mappings. This allows userspace to distinguish between a
5392 * non-idmapped mount and an idmapped mount where none of the
5393 * individual mappings are valid in the caller's idmapping.
5394 */
5395 if (is_valid_mnt_idmap(s->idmap))
5396 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5397 return 0;
5398 }
5399
statmount_string(struct kstatmount * s,u64 flag)5400 static int statmount_string(struct kstatmount *s, u64 flag)
5401 {
5402 int ret = 0;
5403 size_t kbufsize;
5404 struct seq_file *seq = &s->seq;
5405 struct statmount *sm = &s->sm;
5406 u32 start, *offp;
5407
5408 /* Reserve an empty string at the beginning for any unset offsets */
5409 if (!seq->count)
5410 seq_putc(seq, 0);
5411
5412 start = seq->count;
5413
5414 switch (flag) {
5415 case STATMOUNT_FS_TYPE:
5416 offp = &sm->fs_type;
5417 ret = statmount_fs_type(s, seq);
5418 break;
5419 case STATMOUNT_MNT_ROOT:
5420 offp = &sm->mnt_root;
5421 ret = statmount_mnt_root(s, seq);
5422 break;
5423 case STATMOUNT_MNT_POINT:
5424 offp = &sm->mnt_point;
5425 ret = statmount_mnt_point(s, seq);
5426 break;
5427 case STATMOUNT_MNT_OPTS:
5428 offp = &sm->mnt_opts;
5429 ret = statmount_mnt_opts(s, seq);
5430 break;
5431 case STATMOUNT_OPT_ARRAY:
5432 offp = &sm->opt_array;
5433 ret = statmount_opt_array(s, seq);
5434 break;
5435 case STATMOUNT_OPT_SEC_ARRAY:
5436 offp = &sm->opt_sec_array;
5437 ret = statmount_opt_sec_array(s, seq);
5438 break;
5439 case STATMOUNT_FS_SUBTYPE:
5440 offp = &sm->fs_subtype;
5441 statmount_fs_subtype(s, seq);
5442 break;
5443 case STATMOUNT_SB_SOURCE:
5444 offp = &sm->sb_source;
5445 ret = statmount_sb_source(s, seq);
5446 break;
5447 case STATMOUNT_MNT_UIDMAP:
5448 offp = &sm->mnt_uidmap;
5449 ret = statmount_mnt_uidmap(s, seq);
5450 break;
5451 case STATMOUNT_MNT_GIDMAP:
5452 offp = &sm->mnt_gidmap;
5453 ret = statmount_mnt_gidmap(s, seq);
5454 break;
5455 default:
5456 WARN_ON_ONCE(true);
5457 return -EINVAL;
5458 }
5459
5460 /*
5461 * If nothing was emitted, return to avoid setting the flag
5462 * and terminating the buffer.
5463 */
5464 if (seq->count == start)
5465 return ret;
5466 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5467 return -EOVERFLOW;
5468 if (kbufsize >= s->bufsize)
5469 return -EOVERFLOW;
5470
5471 /* signal a retry */
5472 if (unlikely(seq_has_overflowed(seq)))
5473 return -EAGAIN;
5474
5475 if (ret)
5476 return ret;
5477
5478 seq->buf[seq->count++] = '\0';
5479 sm->mask |= flag;
5480 *offp = start;
5481 return 0;
5482 }
5483
copy_statmount_to_user(struct kstatmount * s)5484 static int copy_statmount_to_user(struct kstatmount *s)
5485 {
5486 struct statmount *sm = &s->sm;
5487 struct seq_file *seq = &s->seq;
5488 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5489 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5490
5491 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5492 return -EFAULT;
5493
5494 /* Return the number of bytes copied to the buffer */
5495 sm->size = copysize + seq->count;
5496 if (copy_to_user(s->buf, sm, copysize))
5497 return -EFAULT;
5498
5499 return 0;
5500 }
5501
listmnt_next(struct mount * curr,bool reverse)5502 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5503 {
5504 struct rb_node *node;
5505
5506 if (reverse)
5507 node = rb_prev(&curr->mnt_node);
5508 else
5509 node = rb_next(&curr->mnt_node);
5510
5511 return node_to_mount(node);
5512 }
5513
grab_requested_root(struct mnt_namespace * ns,struct path * root)5514 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5515 {
5516 struct mount *first, *child;
5517
5518 rwsem_assert_held(&namespace_sem);
5519
5520 /* We're looking at our own ns, just use get_fs_root. */
5521 if (ns == current->nsproxy->mnt_ns) {
5522 get_fs_root(current->fs, root);
5523 return 0;
5524 }
5525
5526 /*
5527 * We have to find the first mount in our ns and use that, however it
5528 * may not exist, so handle that properly.
5529 */
5530 if (mnt_ns_empty(ns))
5531 return -ENOENT;
5532
5533 first = child = ns->root;
5534 for (;;) {
5535 child = listmnt_next(child, false);
5536 if (!child)
5537 return -ENOENT;
5538 if (child->mnt_parent == first)
5539 break;
5540 }
5541
5542 root->mnt = mntget(&child->mnt);
5543 root->dentry = dget(root->mnt->mnt_root);
5544 return 0;
5545 }
5546
5547 /* This must be updated whenever a new flag is added */
5548 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5549 STATMOUNT_MNT_BASIC | \
5550 STATMOUNT_PROPAGATE_FROM | \
5551 STATMOUNT_MNT_ROOT | \
5552 STATMOUNT_MNT_POINT | \
5553 STATMOUNT_FS_TYPE | \
5554 STATMOUNT_MNT_NS_ID | \
5555 STATMOUNT_MNT_OPTS | \
5556 STATMOUNT_FS_SUBTYPE | \
5557 STATMOUNT_SB_SOURCE | \
5558 STATMOUNT_OPT_ARRAY | \
5559 STATMOUNT_OPT_SEC_ARRAY | \
5560 STATMOUNT_SUPPORTED_MASK | \
5561 STATMOUNT_MNT_UIDMAP | \
5562 STATMOUNT_MNT_GIDMAP)
5563
5564 /* locks: namespace_shared */
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5565 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5566 struct mnt_namespace *ns)
5567 {
5568 struct mount *m;
5569 int err;
5570
5571 /* Has the namespace already been emptied? */
5572 if (mnt_ns_id && mnt_ns_empty(ns))
5573 return -ENOENT;
5574
5575 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5576 if (!s->mnt)
5577 return -ENOENT;
5578
5579 err = grab_requested_root(ns, &s->root);
5580 if (err)
5581 return err;
5582
5583 /*
5584 * Don't trigger audit denials. We just want to determine what
5585 * mounts to show users.
5586 */
5587 m = real_mount(s->mnt);
5588 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5589 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5590 return -EPERM;
5591
5592 err = security_sb_statfs(s->mnt->mnt_root);
5593 if (err)
5594 return err;
5595
5596 /*
5597 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5598 * can change concurrently as we only hold the read-side of the
5599 * namespace semaphore and mount properties may change with only
5600 * the mount lock held.
5601 *
5602 * We could sample the mount lock sequence counter to detect
5603 * those changes and retry. But it's not worth it. Worst that
5604 * happens is that the mnt->mnt_idmap pointer is already changed
5605 * while mnt->mnt_flags isn't or vica versa. So what.
5606 *
5607 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5608 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5609 * torn read/write. That's all we care about right now.
5610 */
5611 s->idmap = mnt_idmap(s->mnt);
5612 if (s->mask & STATMOUNT_MNT_BASIC)
5613 statmount_mnt_basic(s);
5614
5615 if (s->mask & STATMOUNT_SB_BASIC)
5616 statmount_sb_basic(s);
5617
5618 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5619 statmount_propagate_from(s);
5620
5621 if (s->mask & STATMOUNT_FS_TYPE)
5622 err = statmount_string(s, STATMOUNT_FS_TYPE);
5623
5624 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5625 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5626
5627 if (!err && s->mask & STATMOUNT_MNT_POINT)
5628 err = statmount_string(s, STATMOUNT_MNT_POINT);
5629
5630 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5631 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5632
5633 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5634 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5635
5636 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5637 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5638
5639 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5640 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5641
5642 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5643 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5644
5645 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5646 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5647
5648 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5649 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5650
5651 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5652 statmount_mnt_ns_id(s, ns);
5653
5654 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5655 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5656 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5657 }
5658
5659 if (err)
5660 return err;
5661
5662 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5663 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5664
5665 return 0;
5666 }
5667
retry_statmount(const long ret,size_t * seq_size)5668 static inline bool retry_statmount(const long ret, size_t *seq_size)
5669 {
5670 if (likely(ret != -EAGAIN))
5671 return false;
5672 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5673 return false;
5674 if (unlikely(*seq_size > MAX_RW_COUNT))
5675 return false;
5676 return true;
5677 }
5678
5679 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5680 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5681 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5682 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5683 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5684
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5685 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5686 struct statmount __user *buf, size_t bufsize,
5687 size_t seq_size)
5688 {
5689 if (!access_ok(buf, bufsize))
5690 return -EFAULT;
5691
5692 memset(ks, 0, sizeof(*ks));
5693 ks->mask = kreq->param;
5694 ks->buf = buf;
5695 ks->bufsize = bufsize;
5696
5697 if (ks->mask & STATMOUNT_STRING_REQ) {
5698 if (bufsize == sizeof(ks->sm))
5699 return -EOVERFLOW;
5700
5701 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5702 if (!ks->seq.buf)
5703 return -ENOMEM;
5704
5705 ks->seq.size = seq_size;
5706 }
5707
5708 return 0;
5709 }
5710
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5711 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5712 struct mnt_id_req *kreq)
5713 {
5714 int ret;
5715 size_t usize;
5716
5717 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5718
5719 ret = get_user(usize, &req->size);
5720 if (ret)
5721 return -EFAULT;
5722 if (unlikely(usize > PAGE_SIZE))
5723 return -E2BIG;
5724 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5725 return -EINVAL;
5726 memset(kreq, 0, sizeof(*kreq));
5727 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5728 if (ret)
5729 return ret;
5730 if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id)
5731 return -EINVAL;
5732 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5733 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5734 return -EINVAL;
5735 return 0;
5736 }
5737
5738 /*
5739 * If the user requested a specific mount namespace id, look that up and return
5740 * that, or if not simply grab a passive reference on our mount namespace and
5741 * return that.
5742 */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5743 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5744 {
5745 struct mnt_namespace *mnt_ns;
5746
5747 if (kreq->mnt_ns_id) {
5748 mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id);
5749 } else if (kreq->mnt_ns_fd) {
5750 struct ns_common *ns;
5751
5752 CLASS(fd, f)(kreq->mnt_ns_fd);
5753 if (fd_empty(f))
5754 return ERR_PTR(-EBADF);
5755
5756 if (!proc_ns_file(fd_file(f)))
5757 return ERR_PTR(-EINVAL);
5758
5759 ns = get_proc_ns(file_inode(fd_file(f)));
5760 if (ns->ns_type != CLONE_NEWNS)
5761 return ERR_PTR(-EINVAL);
5762
5763 mnt_ns = to_mnt_ns(ns);
5764 } else {
5765 mnt_ns = current->nsproxy->mnt_ns;
5766 }
5767 if (!mnt_ns)
5768 return ERR_PTR(-ENOENT);
5769
5770 refcount_inc(&mnt_ns->passive);
5771 return mnt_ns;
5772 }
5773
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5774 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5775 struct statmount __user *, buf, size_t, bufsize,
5776 unsigned int, flags)
5777 {
5778 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5779 struct kstatmount *ks __free(kfree) = NULL;
5780 struct mnt_id_req kreq;
5781 /* We currently support retrieval of 3 strings. */
5782 size_t seq_size = 3 * PATH_MAX;
5783 int ret;
5784
5785 if (flags)
5786 return -EINVAL;
5787
5788 ret = copy_mnt_id_req(req, &kreq);
5789 if (ret)
5790 return ret;
5791
5792 ns = grab_requested_mnt_ns(&kreq);
5793 if (IS_ERR(ns))
5794 return PTR_ERR(ns);
5795
5796 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5797 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5798 return -ENOENT;
5799
5800 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5801 if (!ks)
5802 return -ENOMEM;
5803
5804 retry:
5805 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5806 if (ret)
5807 return ret;
5808
5809 scoped_guard(namespace_shared)
5810 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5811
5812 if (!ret)
5813 ret = copy_statmount_to_user(ks);
5814 kvfree(ks->seq.buf);
5815 path_put(&ks->root);
5816 if (retry_statmount(ret, &seq_size))
5817 goto retry;
5818 return ret;
5819 }
5820
5821 struct klistmount {
5822 u64 last_mnt_id;
5823 u64 mnt_parent_id;
5824 u64 *kmnt_ids;
5825 u32 nr_mnt_ids;
5826 struct mnt_namespace *ns;
5827 struct path root;
5828 };
5829
5830 /* locks: namespace_shared */
do_listmount(struct klistmount * kls,bool reverse)5831 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5832 {
5833 struct mnt_namespace *ns = kls->ns;
5834 u64 mnt_parent_id = kls->mnt_parent_id;
5835 u64 last_mnt_id = kls->last_mnt_id;
5836 u64 *mnt_ids = kls->kmnt_ids;
5837 size_t nr_mnt_ids = kls->nr_mnt_ids;
5838 struct path orig;
5839 struct mount *r, *first;
5840 ssize_t ret;
5841
5842 rwsem_assert_held(&namespace_sem);
5843
5844 ret = grab_requested_root(ns, &kls->root);
5845 if (ret)
5846 return ret;
5847
5848 if (mnt_parent_id == LSMT_ROOT) {
5849 orig = kls->root;
5850 } else {
5851 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5852 if (!orig.mnt)
5853 return -ENOENT;
5854 orig.dentry = orig.mnt->mnt_root;
5855 }
5856
5857 /*
5858 * Don't trigger audit denials. We just want to determine what
5859 * mounts to show users.
5860 */
5861 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5862 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5863 return -EPERM;
5864
5865 ret = security_sb_statfs(orig.dentry);
5866 if (ret)
5867 return ret;
5868
5869 if (!last_mnt_id) {
5870 if (reverse)
5871 first = node_to_mount(ns->mnt_last_node);
5872 else
5873 first = node_to_mount(ns->mnt_first_node);
5874 } else {
5875 if (reverse)
5876 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5877 else
5878 first = mnt_find_id_at(ns, last_mnt_id + 1);
5879 }
5880
5881 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5882 if (r->mnt_id_unique == mnt_parent_id)
5883 continue;
5884 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5885 continue;
5886 *mnt_ids = r->mnt_id_unique;
5887 mnt_ids++;
5888 nr_mnt_ids--;
5889 ret++;
5890 }
5891 return ret;
5892 }
5893
__free_klistmount_free(const struct klistmount * kls)5894 static void __free_klistmount_free(const struct klistmount *kls)
5895 {
5896 path_put(&kls->root);
5897 kvfree(kls->kmnt_ids);
5898 mnt_ns_release(kls->ns);
5899 }
5900
prepare_klistmount(struct klistmount * kls,struct mnt_id_req * kreq,size_t nr_mnt_ids)5901 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5902 size_t nr_mnt_ids)
5903 {
5904 u64 last_mnt_id = kreq->param;
5905 struct mnt_namespace *ns;
5906
5907 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5908 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5909 return -EINVAL;
5910
5911 kls->last_mnt_id = last_mnt_id;
5912
5913 kls->nr_mnt_ids = nr_mnt_ids;
5914 kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5915 GFP_KERNEL_ACCOUNT);
5916 if (!kls->kmnt_ids)
5917 return -ENOMEM;
5918
5919 ns = grab_requested_mnt_ns(kreq);
5920 if (IS_ERR(ns))
5921 return PTR_ERR(ns);
5922 kls->ns = ns;
5923
5924 kls->mnt_parent_id = kreq->mnt_id;
5925 return 0;
5926 }
5927
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5928 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5929 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5930 {
5931 struct klistmount kls __free(klistmount_free) = {};
5932 const size_t maxcount = 1000000;
5933 struct mnt_id_req kreq;
5934 ssize_t ret;
5935
5936 if (flags & ~LISTMOUNT_REVERSE)
5937 return -EINVAL;
5938
5939 /*
5940 * If the mount namespace really has more than 1 million mounts the
5941 * caller must iterate over the mount namespace (and reconsider their
5942 * system design...).
5943 */
5944 if (unlikely(nr_mnt_ids > maxcount))
5945 return -EOVERFLOW;
5946
5947 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5948 return -EFAULT;
5949
5950 ret = copy_mnt_id_req(req, &kreq);
5951 if (ret)
5952 return ret;
5953
5954 ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
5955 if (ret)
5956 return ret;
5957
5958 if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
5959 !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
5960 return -ENOENT;
5961
5962 /*
5963 * We only need to guard against mount topology changes as
5964 * listmount() doesn't care about any mount properties.
5965 */
5966 scoped_guard(namespace_shared)
5967 ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
5968 if (ret <= 0)
5969 return ret;
5970
5971 if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
5972 return -EFAULT;
5973
5974 return ret;
5975 }
5976
5977 struct mnt_namespace init_mnt_ns = {
5978 .ns.inum = ns_init_inum(&init_mnt_ns),
5979 .ns.ops = &mntns_operations,
5980 .user_ns = &init_user_ns,
5981 .ns.__ns_ref = REFCOUNT_INIT(1),
5982 .ns.ns_type = ns_common_type(&init_mnt_ns),
5983 .passive = REFCOUNT_INIT(1),
5984 .mounts = RB_ROOT,
5985 .poll = __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
5986 };
5987
init_mount_tree(void)5988 static void __init init_mount_tree(void)
5989 {
5990 struct vfsmount *mnt;
5991 struct mount *m;
5992 struct path root;
5993
5994 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
5995 if (IS_ERR(mnt))
5996 panic("Can't create rootfs");
5997
5998 m = real_mount(mnt);
5999 init_mnt_ns.root = m;
6000 init_mnt_ns.nr_mounts = 1;
6001 mnt_add_to_ns(&init_mnt_ns, m);
6002 init_task.nsproxy->mnt_ns = &init_mnt_ns;
6003 get_mnt_ns(&init_mnt_ns);
6004
6005 root.mnt = mnt;
6006 root.dentry = mnt->mnt_root;
6007
6008 set_fs_pwd(current->fs, &root);
6009 set_fs_root(current->fs, &root);
6010
6011 ns_tree_add(&init_mnt_ns);
6012 }
6013
mnt_init(void)6014 void __init mnt_init(void)
6015 {
6016 int err;
6017
6018 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6019 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6020
6021 mount_hashtable = alloc_large_system_hash("Mount-cache",
6022 sizeof(struct hlist_head),
6023 mhash_entries, 19,
6024 HASH_ZERO,
6025 &m_hash_shift, &m_hash_mask, 0, 0);
6026 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6027 sizeof(struct hlist_head),
6028 mphash_entries, 19,
6029 HASH_ZERO,
6030 &mp_hash_shift, &mp_hash_mask, 0, 0);
6031
6032 if (!mount_hashtable || !mountpoint_hashtable)
6033 panic("Failed to allocate mount hash table\n");
6034
6035 kernfs_init();
6036
6037 err = sysfs_init();
6038 if (err)
6039 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6040 __func__, err);
6041 fs_kobj = kobject_create_and_add("fs", NULL);
6042 if (!fs_kobj)
6043 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6044 shmem_init();
6045 init_rootfs();
6046 init_mount_tree();
6047 }
6048
put_mnt_ns(struct mnt_namespace * ns)6049 void put_mnt_ns(struct mnt_namespace *ns)
6050 {
6051 if (!ns_ref_put(ns))
6052 return;
6053 guard(namespace_excl)();
6054 emptied_ns = ns;
6055 guard(mount_writer)();
6056 umount_tree(ns->root, 0);
6057 }
6058
kern_mount(struct file_system_type * type)6059 struct vfsmount *kern_mount(struct file_system_type *type)
6060 {
6061 struct vfsmount *mnt;
6062 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6063 if (!IS_ERR(mnt)) {
6064 /*
6065 * it is a longterm mount, don't release mnt until
6066 * we unmount before file sys is unregistered
6067 */
6068 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6069 }
6070 return mnt;
6071 }
6072 EXPORT_SYMBOL_GPL(kern_mount);
6073
kern_unmount(struct vfsmount * mnt)6074 void kern_unmount(struct vfsmount *mnt)
6075 {
6076 /* release long term mount so mount point can be released */
6077 if (!IS_ERR(mnt)) {
6078 mnt_make_shortterm(mnt);
6079 synchronize_rcu(); /* yecchhh... */
6080 mntput(mnt);
6081 }
6082 }
6083 EXPORT_SYMBOL(kern_unmount);
6084
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6085 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6086 {
6087 unsigned int i;
6088
6089 for (i = 0; i < num; i++)
6090 mnt_make_shortterm(mnt[i]);
6091 synchronize_rcu_expedited();
6092 for (i = 0; i < num; i++)
6093 mntput(mnt[i]);
6094 }
6095 EXPORT_SYMBOL(kern_unmount_array);
6096
our_mnt(struct vfsmount * mnt)6097 bool our_mnt(struct vfsmount *mnt)
6098 {
6099 return check_mnt(real_mount(mnt));
6100 }
6101
current_chrooted(void)6102 bool current_chrooted(void)
6103 {
6104 /* Does the current process have a non-standard root */
6105 struct path fs_root __free(path_put) = {};
6106 struct mount *root;
6107
6108 get_fs_root(current->fs, &fs_root);
6109
6110 /* Find the namespace root */
6111
6112 guard(mount_locked_reader)();
6113
6114 root = topmost_overmount(current->nsproxy->mnt_ns->root);
6115
6116 return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6117 }
6118
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6119 static bool mnt_already_visible(struct mnt_namespace *ns,
6120 const struct super_block *sb,
6121 int *new_mnt_flags)
6122 {
6123 int new_flags = *new_mnt_flags;
6124 struct mount *mnt, *n;
6125
6126 guard(namespace_shared)();
6127 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6128 struct mount *child;
6129 int mnt_flags;
6130
6131 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6132 continue;
6133
6134 /* This mount is not fully visible if it's root directory
6135 * is not the root directory of the filesystem.
6136 */
6137 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6138 continue;
6139
6140 /* A local view of the mount flags */
6141 mnt_flags = mnt->mnt.mnt_flags;
6142
6143 /* Don't miss readonly hidden in the superblock flags */
6144 if (sb_rdonly(mnt->mnt.mnt_sb))
6145 mnt_flags |= MNT_LOCK_READONLY;
6146
6147 /* Verify the mount flags are equal to or more permissive
6148 * than the proposed new mount.
6149 */
6150 if ((mnt_flags & MNT_LOCK_READONLY) &&
6151 !(new_flags & MNT_READONLY))
6152 continue;
6153 if ((mnt_flags & MNT_LOCK_ATIME) &&
6154 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6155 continue;
6156
6157 /* This mount is not fully visible if there are any
6158 * locked child mounts that cover anything except for
6159 * empty directories.
6160 */
6161 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6162 struct inode *inode = child->mnt_mountpoint->d_inode;
6163 /* Only worry about locked mounts */
6164 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6165 continue;
6166 /* Is the directory permanently empty? */
6167 if (!is_empty_dir_inode(inode))
6168 goto next;
6169 }
6170 /* Preserve the locked attributes */
6171 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6172 MNT_LOCK_ATIME);
6173 return true;
6174 next: ;
6175 }
6176 return false;
6177 }
6178
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6179 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6180 {
6181 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6182 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6183 unsigned long s_iflags;
6184
6185 if (ns->user_ns == &init_user_ns)
6186 return false;
6187
6188 /* Can this filesystem be too revealing? */
6189 s_iflags = sb->s_iflags;
6190 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6191 return false;
6192
6193 if ((s_iflags & required_iflags) != required_iflags) {
6194 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6195 required_iflags);
6196 return true;
6197 }
6198
6199 return !mnt_already_visible(ns, sb, new_mnt_flags);
6200 }
6201
mnt_may_suid(struct vfsmount * mnt)6202 bool mnt_may_suid(struct vfsmount *mnt)
6203 {
6204 /*
6205 * Foreign mounts (accessed via fchdir or through /proc
6206 * symlinks) are always treated as if they are nosuid. This
6207 * prevents namespaces from trusting potentially unsafe
6208 * suid/sgid bits, file caps, or security labels that originate
6209 * in other namespaces.
6210 */
6211 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6212 current_in_userns(mnt->mnt_sb->s_user_ns);
6213 }
6214
mntns_get(struct task_struct * task)6215 static struct ns_common *mntns_get(struct task_struct *task)
6216 {
6217 struct ns_common *ns = NULL;
6218 struct nsproxy *nsproxy;
6219
6220 task_lock(task);
6221 nsproxy = task->nsproxy;
6222 if (nsproxy) {
6223 ns = &nsproxy->mnt_ns->ns;
6224 get_mnt_ns(to_mnt_ns(ns));
6225 }
6226 task_unlock(task);
6227
6228 return ns;
6229 }
6230
mntns_put(struct ns_common * ns)6231 static void mntns_put(struct ns_common *ns)
6232 {
6233 put_mnt_ns(to_mnt_ns(ns));
6234 }
6235
mntns_install(struct nsset * nsset,struct ns_common * ns)6236 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6237 {
6238 struct nsproxy *nsproxy = nsset->nsproxy;
6239 struct fs_struct *fs = nsset->fs;
6240 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6241 struct user_namespace *user_ns = nsset->cred->user_ns;
6242 struct path root;
6243 int err;
6244
6245 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6246 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6247 !ns_capable(user_ns, CAP_SYS_ADMIN))
6248 return -EPERM;
6249
6250 if (is_anon_ns(mnt_ns))
6251 return -EINVAL;
6252
6253 if (fs->users != 1)
6254 return -EINVAL;
6255
6256 get_mnt_ns(mnt_ns);
6257 old_mnt_ns = nsproxy->mnt_ns;
6258 nsproxy->mnt_ns = mnt_ns;
6259
6260 /* Find the root */
6261 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6262 "/", LOOKUP_DOWN, &root);
6263 if (err) {
6264 /* revert to old namespace */
6265 nsproxy->mnt_ns = old_mnt_ns;
6266 put_mnt_ns(mnt_ns);
6267 return err;
6268 }
6269
6270 put_mnt_ns(old_mnt_ns);
6271
6272 /* Update the pwd and root */
6273 set_fs_pwd(fs, &root);
6274 set_fs_root(fs, &root);
6275
6276 path_put(&root);
6277 return 0;
6278 }
6279
mntns_owner(struct ns_common * ns)6280 static struct user_namespace *mntns_owner(struct ns_common *ns)
6281 {
6282 return to_mnt_ns(ns)->user_ns;
6283 }
6284
6285 const struct proc_ns_operations mntns_operations = {
6286 .name = "mnt",
6287 .get = mntns_get,
6288 .put = mntns_put,
6289 .install = mntns_install,
6290 .owner = mntns_owner,
6291 };
6292
6293 #ifdef CONFIG_SYSCTL
6294 static const struct ctl_table fs_namespace_sysctls[] = {
6295 {
6296 .procname = "mount-max",
6297 .data = &sysctl_mount_max,
6298 .maxlen = sizeof(unsigned int),
6299 .mode = 0644,
6300 .proc_handler = proc_dointvec_minmax,
6301 .extra1 = SYSCTL_ONE,
6302 },
6303 };
6304
init_fs_namespace_sysctls(void)6305 static int __init init_fs_namespace_sysctls(void)
6306 {
6307 register_sysctl_init("fs", fs_namespace_sysctls);
6308 return 0;
6309 }
6310 fs_initcall(init_fs_namespace_sysctls);
6311
6312 #endif /* CONFIG_SYSCTL */
6313