1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "error.h"
18 #include "extents.h"
19 #include "io_write.h"
20 #include "journal.h"
21 #include "journal_reclaim.h"
22 #include "keylist.h"
23 #include "recovery_passes.h"
24 #include "replicas.h"
25 #include "sb-members.h"
26 #include "super-io.h"
27 #include "trace.h"
28
29 #include <linux/random.h>
30
31 static const char * const bch2_btree_update_modes[] = {
32 #define x(t) #t,
33 BTREE_UPDATE_MODES()
34 #undef x
35 NULL
36 };
37
38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
39 btree_path_idx_t, struct btree *, struct keylist *);
40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
41
42 /*
43 * Verify that child nodes correctly span parent node's range:
44 */
bch2_btree_node_check_topology(struct btree_trans * trans,struct btree * b)45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
46 {
47 struct bch_fs *c = trans->c;
48 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
49 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
50 : b->data->min_key;
51 struct btree_and_journal_iter iter;
52 struct bkey_s_c k;
53 struct printbuf buf = PRINTBUF;
54 struct bkey_buf prev;
55 int ret = 0;
56
57 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
58 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
59 b->data->min_key));
60
61 bch2_bkey_buf_init(&prev);
62 bkey_init(&prev.k->k);
63 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
64
65 if (b == btree_node_root(c, b)) {
66 if (!bpos_eq(b->data->min_key, POS_MIN)) {
67 printbuf_reset(&buf);
68 bch2_bpos_to_text(&buf, b->data->min_key);
69 log_fsck_err(trans, btree_root_bad_min_key,
70 "btree root with incorrect min_key: %s", buf.buf);
71 goto topology_repair;
72 }
73
74 if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
75 printbuf_reset(&buf);
76 bch2_bpos_to_text(&buf, b->data->max_key);
77 log_fsck_err(trans, btree_root_bad_max_key,
78 "btree root with incorrect max_key: %s", buf.buf);
79 goto topology_repair;
80 }
81 }
82
83 if (!b->c.level)
84 goto out;
85
86 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
87 if (k.k->type != KEY_TYPE_btree_ptr_v2)
88 goto out;
89
90 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
91
92 struct bpos expected_min = bkey_deleted(&prev.k->k)
93 ? node_min
94 : bpos_successor(prev.k->k.p);
95
96 if (!bpos_eq(expected_min, bp.v->min_key)) {
97 bch2_topology_error(c);
98
99 printbuf_reset(&buf);
100 prt_str(&buf, "end of prev node doesn't match start of next node\n in ");
101 bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
102 prt_str(&buf, " node ");
103 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
104 prt_str(&buf, "\n prev ");
105 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
106 prt_str(&buf, "\n next ");
107 bch2_bkey_val_to_text(&buf, c, k);
108
109 log_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf);
110 goto topology_repair;
111 }
112
113 bch2_bkey_buf_reassemble(&prev, c, k);
114 bch2_btree_and_journal_iter_advance(&iter);
115 }
116
117 if (bkey_deleted(&prev.k->k)) {
118 bch2_topology_error(c);
119
120 printbuf_reset(&buf);
121 prt_str(&buf, "empty interior node\n in ");
122 bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
123 prt_str(&buf, " node ");
124 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
125
126 log_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf);
127 goto topology_repair;
128 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
129 bch2_topology_error(c);
130
131 printbuf_reset(&buf);
132 prt_str(&buf, "last child node doesn't end at end of parent node\n in ");
133 bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
134 prt_str(&buf, " node ");
135 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
136 prt_str(&buf, "\n last key ");
137 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
138
139 log_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf);
140 goto topology_repair;
141 }
142 out:
143 fsck_err:
144 bch2_btree_and_journal_iter_exit(&iter);
145 bch2_bkey_buf_exit(&prev, c);
146 printbuf_exit(&buf);
147 return ret;
148 topology_repair:
149 ret = bch2_topology_error(c);
150 goto out;
151 }
152
153 /* Calculate ideal packed bkey format for new btree nodes: */
154
__bch2_btree_calc_format(struct bkey_format_state * s,struct btree * b)155 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
156 {
157 struct bkey_packed *k;
158 struct bkey uk;
159
160 for_each_bset(b, t)
161 bset_tree_for_each_key(b, t, k)
162 if (!bkey_deleted(k)) {
163 uk = bkey_unpack_key(b, k);
164 bch2_bkey_format_add_key(s, &uk);
165 }
166 }
167
bch2_btree_calc_format(struct btree * b)168 static struct bkey_format bch2_btree_calc_format(struct btree *b)
169 {
170 struct bkey_format_state s;
171
172 bch2_bkey_format_init(&s);
173 bch2_bkey_format_add_pos(&s, b->data->min_key);
174 bch2_bkey_format_add_pos(&s, b->data->max_key);
175 __bch2_btree_calc_format(&s, b);
176
177 return bch2_bkey_format_done(&s);
178 }
179
btree_node_u64s_with_format(struct btree_nr_keys nr,struct bkey_format * old_f,struct bkey_format * new_f)180 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
181 struct bkey_format *old_f,
182 struct bkey_format *new_f)
183 {
184 /* stupid integer promotion rules */
185 ssize_t delta =
186 (((int) new_f->key_u64s - old_f->key_u64s) *
187 (int) nr.packed_keys) +
188 (((int) new_f->key_u64s - BKEY_U64s) *
189 (int) nr.unpacked_keys);
190
191 BUG_ON(delta + nr.live_u64s < 0);
192
193 return nr.live_u64s + delta;
194 }
195
196 /**
197 * bch2_btree_node_format_fits - check if we could rewrite node with a new format
198 *
199 * @c: filesystem handle
200 * @b: btree node to rewrite
201 * @nr: number of keys for new node (i.e. b->nr)
202 * @new_f: bkey format to translate keys to
203 *
204 * Returns: true if all re-packed keys will be able to fit in a new node.
205 *
206 * Assumes all keys will successfully pack with the new format.
207 */
bch2_btree_node_format_fits(struct bch_fs * c,struct btree * b,struct btree_nr_keys nr,struct bkey_format * new_f)208 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
209 struct btree_nr_keys nr,
210 struct bkey_format *new_f)
211 {
212 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
213
214 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
215 }
216
217 /* Btree node freeing/allocation: */
218
__btree_node_free(struct btree_trans * trans,struct btree * b)219 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
220 {
221 struct bch_fs *c = trans->c;
222
223 trace_and_count(c, btree_node_free, trans, b);
224
225 BUG_ON(btree_node_write_blocked(b));
226 BUG_ON(btree_node_dirty(b));
227 BUG_ON(btree_node_need_write(b));
228 BUG_ON(b == btree_node_root(c, b));
229 BUG_ON(b->ob.nr);
230 BUG_ON(!list_empty(&b->write_blocked));
231 BUG_ON(b->will_make_reachable);
232
233 clear_btree_node_noevict(b);
234 }
235
bch2_btree_node_free_inmem(struct btree_trans * trans,struct btree_path * path,struct btree * b)236 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
237 struct btree_path *path,
238 struct btree *b)
239 {
240 struct bch_fs *c = trans->c;
241
242 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
243
244 __btree_node_free(trans, b);
245
246 mutex_lock(&c->btree_cache.lock);
247 bch2_btree_node_hash_remove(&c->btree_cache, b);
248 mutex_unlock(&c->btree_cache.lock);
249
250 six_unlock_write(&b->c.lock);
251 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
252
253 bch2_trans_node_drop(trans, b);
254 }
255
bch2_btree_node_free_never_used(struct btree_update * as,struct btree_trans * trans,struct btree * b)256 static void bch2_btree_node_free_never_used(struct btree_update *as,
257 struct btree_trans *trans,
258 struct btree *b)
259 {
260 struct bch_fs *c = as->c;
261 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
262
263 BUG_ON(!list_empty(&b->write_blocked));
264 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
265
266 b->will_make_reachable = 0;
267 closure_put(&as->cl);
268
269 clear_btree_node_will_make_reachable(b);
270 clear_btree_node_accessed(b);
271 clear_btree_node_dirty_acct(c, b);
272 clear_btree_node_need_write(b);
273
274 mutex_lock(&c->btree_cache.lock);
275 __bch2_btree_node_hash_remove(&c->btree_cache, b);
276 mutex_unlock(&c->btree_cache.lock);
277
278 BUG_ON(p->nr >= ARRAY_SIZE(p->b));
279 p->b[p->nr++] = b;
280
281 six_unlock_intent(&b->c.lock);
282
283 bch2_trans_node_drop(trans, b);
284 }
285
__bch2_btree_node_alloc(struct btree_trans * trans,struct disk_reservation * res,struct closure * cl,bool interior_node,unsigned flags)286 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
287 struct disk_reservation *res,
288 struct closure *cl,
289 bool interior_node,
290 unsigned flags)
291 {
292 struct bch_fs *c = trans->c;
293 struct write_point *wp;
294 struct btree *b;
295 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
296 struct open_buckets obs = { .nr = 0 };
297 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
298 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
299 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
300 ? BTREE_NODE_RESERVE
301 : 0;
302 int ret;
303
304 b = bch2_btree_node_mem_alloc(trans, interior_node);
305 if (IS_ERR(b))
306 return b;
307
308 BUG_ON(b->ob.nr);
309
310 mutex_lock(&c->btree_reserve_cache_lock);
311 if (c->btree_reserve_cache_nr > nr_reserve) {
312 struct btree_alloc *a =
313 &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
314
315 obs = a->ob;
316 bkey_copy(&tmp.k, &a->k);
317 mutex_unlock(&c->btree_reserve_cache_lock);
318 goto out;
319 }
320 mutex_unlock(&c->btree_reserve_cache_lock);
321 retry:
322 ret = bch2_alloc_sectors_start_trans(trans,
323 c->opts.metadata_target ?:
324 c->opts.foreground_target,
325 0,
326 writepoint_ptr(&c->btree_write_point),
327 &devs_have,
328 res->nr_replicas,
329 min(res->nr_replicas,
330 c->opts.metadata_replicas_required),
331 watermark, 0, cl, &wp);
332 if (unlikely(ret))
333 goto err;
334
335 if (wp->sectors_free < btree_sectors(c)) {
336 struct open_bucket *ob;
337 unsigned i;
338
339 open_bucket_for_each(c, &wp->ptrs, ob, i)
340 if (ob->sectors_free < btree_sectors(c))
341 ob->sectors_free = 0;
342
343 bch2_alloc_sectors_done(c, wp);
344 goto retry;
345 }
346
347 bkey_btree_ptr_v2_init(&tmp.k);
348 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
349
350 bch2_open_bucket_get(c, wp, &obs);
351 bch2_alloc_sectors_done(c, wp);
352 out:
353 bkey_copy(&b->key, &tmp.k);
354 b->ob = obs;
355 six_unlock_write(&b->c.lock);
356 six_unlock_intent(&b->c.lock);
357
358 return b;
359 err:
360 bch2_btree_node_to_freelist(c, b);
361 return ERR_PTR(ret);
362 }
363
bch2_btree_node_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)364 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
365 struct btree_trans *trans,
366 unsigned level)
367 {
368 struct bch_fs *c = as->c;
369 struct btree *b;
370 struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
371 int ret;
372
373 BUG_ON(level >= BTREE_MAX_DEPTH);
374 BUG_ON(!p->nr);
375
376 b = p->b[--p->nr];
377
378 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
379 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
380
381 set_btree_node_accessed(b);
382 set_btree_node_dirty_acct(c, b);
383 set_btree_node_need_write(b);
384
385 bch2_bset_init_first(b, &b->data->keys);
386 b->c.level = level;
387 b->c.btree_id = as->btree_id;
388 b->version_ondisk = c->sb.version;
389
390 memset(&b->nr, 0, sizeof(b->nr));
391 b->data->magic = cpu_to_le64(bset_magic(c));
392 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
393 b->data->flags = 0;
394 SET_BTREE_NODE_ID(b->data, as->btree_id);
395 SET_BTREE_NODE_LEVEL(b->data, level);
396
397 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
398 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
399
400 bp->v.mem_ptr = 0;
401 bp->v.seq = b->data->keys.seq;
402 bp->v.sectors_written = 0;
403 }
404
405 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
406
407 bch2_btree_build_aux_trees(b);
408
409 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
410 BUG_ON(ret);
411
412 trace_and_count(c, btree_node_alloc, trans, b);
413 bch2_increment_clock(c, btree_sectors(c), WRITE);
414 return b;
415 }
416
btree_set_min(struct btree * b,struct bpos pos)417 static void btree_set_min(struct btree *b, struct bpos pos)
418 {
419 if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
420 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
421 b->data->min_key = pos;
422 }
423
btree_set_max(struct btree * b,struct bpos pos)424 static void btree_set_max(struct btree *b, struct bpos pos)
425 {
426 b->key.k.p = pos;
427 b->data->max_key = pos;
428 }
429
bch2_btree_node_alloc_replacement(struct btree_update * as,struct btree_trans * trans,struct btree * b)430 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
431 struct btree_trans *trans,
432 struct btree *b)
433 {
434 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
435 struct bkey_format format = bch2_btree_calc_format(b);
436
437 /*
438 * The keys might expand with the new format - if they wouldn't fit in
439 * the btree node anymore, use the old format for now:
440 */
441 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
442 format = b->format;
443
444 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
445
446 btree_set_min(n, b->data->min_key);
447 btree_set_max(n, b->data->max_key);
448
449 n->data->format = format;
450 btree_node_set_format(n, format);
451
452 bch2_btree_sort_into(as->c, n, b);
453
454 btree_node_reset_sib_u64s(n);
455 return n;
456 }
457
__btree_root_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)458 static struct btree *__btree_root_alloc(struct btree_update *as,
459 struct btree_trans *trans, unsigned level)
460 {
461 struct btree *b = bch2_btree_node_alloc(as, trans, level);
462
463 btree_set_min(b, POS_MIN);
464 btree_set_max(b, SPOS_MAX);
465 b->data->format = bch2_btree_calc_format(b);
466
467 btree_node_set_format(b, b->data->format);
468 bch2_btree_build_aux_trees(b);
469
470 return b;
471 }
472
bch2_btree_reserve_put(struct btree_update * as,struct btree_trans * trans)473 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
474 {
475 struct bch_fs *c = as->c;
476 struct prealloc_nodes *p;
477
478 for (p = as->prealloc_nodes;
479 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
480 p++) {
481 while (p->nr) {
482 struct btree *b = p->b[--p->nr];
483
484 mutex_lock(&c->btree_reserve_cache_lock);
485
486 if (c->btree_reserve_cache_nr <
487 ARRAY_SIZE(c->btree_reserve_cache)) {
488 struct btree_alloc *a =
489 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
490
491 a->ob = b->ob;
492 b->ob.nr = 0;
493 bkey_copy(&a->k, &b->key);
494 } else {
495 bch2_open_buckets_put(c, &b->ob);
496 }
497
498 mutex_unlock(&c->btree_reserve_cache_lock);
499
500 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
501 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
502 __btree_node_free(trans, b);
503 bch2_btree_node_to_freelist(c, b);
504 }
505 }
506 }
507
bch2_btree_reserve_get(struct btree_trans * trans,struct btree_update * as,unsigned nr_nodes[2],unsigned flags,struct closure * cl)508 static int bch2_btree_reserve_get(struct btree_trans *trans,
509 struct btree_update *as,
510 unsigned nr_nodes[2],
511 unsigned flags,
512 struct closure *cl)
513 {
514 struct btree *b;
515 unsigned interior;
516 int ret = 0;
517
518 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
519
520 /*
521 * Protects reaping from the btree node cache and using the btree node
522 * open bucket reserve:
523 */
524 ret = bch2_btree_cache_cannibalize_lock(trans, cl);
525 if (ret)
526 return ret;
527
528 for (interior = 0; interior < 2; interior++) {
529 struct prealloc_nodes *p = as->prealloc_nodes + interior;
530
531 while (p->nr < nr_nodes[interior]) {
532 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
533 interior, flags);
534 if (IS_ERR(b)) {
535 ret = PTR_ERR(b);
536 goto err;
537 }
538
539 p->b[p->nr++] = b;
540 }
541 }
542 err:
543 bch2_btree_cache_cannibalize_unlock(trans);
544 return ret;
545 }
546
547 /* Asynchronous interior node update machinery */
548
bch2_btree_update_free(struct btree_update * as,struct btree_trans * trans)549 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
550 {
551 struct bch_fs *c = as->c;
552
553 if (as->took_gc_lock)
554 up_read(&c->gc_lock);
555 as->took_gc_lock = false;
556
557 bch2_journal_pin_drop(&c->journal, &as->journal);
558 bch2_journal_pin_flush(&c->journal, &as->journal);
559 bch2_disk_reservation_put(c, &as->disk_res);
560 bch2_btree_reserve_put(as, trans);
561
562 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
563 as->start_time);
564
565 mutex_lock(&c->btree_interior_update_lock);
566 list_del(&as->unwritten_list);
567 list_del(&as->list);
568
569 closure_debug_destroy(&as->cl);
570 mempool_free(as, &c->btree_interior_update_pool);
571
572 /*
573 * Have to do the wakeup with btree_interior_update_lock still held,
574 * since being on btree_interior_update_list is our ref on @c:
575 */
576 closure_wake_up(&c->btree_interior_update_wait);
577
578 mutex_unlock(&c->btree_interior_update_lock);
579 }
580
btree_update_add_key(struct btree_update * as,struct keylist * keys,struct btree * b)581 static void btree_update_add_key(struct btree_update *as,
582 struct keylist *keys, struct btree *b)
583 {
584 struct bkey_i *k = &b->key;
585
586 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
587 ARRAY_SIZE(as->_old_keys));
588
589 bkey_copy(keys->top, k);
590 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
591
592 bch2_keylist_push(keys);
593 }
594
btree_update_new_nodes_marked_sb(struct btree_update * as)595 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
596 {
597 for_each_keylist_key(&as->new_keys, k)
598 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
599 return false;
600 return true;
601 }
602
btree_update_new_nodes_mark_sb(struct btree_update * as)603 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
604 {
605 struct bch_fs *c = as->c;
606
607 mutex_lock(&c->sb_lock);
608 for_each_keylist_key(&as->new_keys, k)
609 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
610
611 bch2_write_super(c);
612 mutex_unlock(&c->sb_lock);
613 }
614
615 /*
616 * The transactional part of an interior btree node update, where we journal the
617 * update we did to the interior node and update alloc info:
618 */
btree_update_nodes_written_trans(struct btree_trans * trans,struct btree_update * as)619 static int btree_update_nodes_written_trans(struct btree_trans *trans,
620 struct btree_update *as)
621 {
622 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
623 int ret = PTR_ERR_OR_ZERO(e);
624 if (ret)
625 return ret;
626
627 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
628
629 trans->journal_pin = &as->journal;
630
631 for_each_keylist_key(&as->old_keys, k) {
632 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
633
634 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
635 BTREE_TRIGGER_transactional);
636 if (ret)
637 return ret;
638 }
639
640 for_each_keylist_key(&as->new_keys, k) {
641 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
642
643 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
644 BTREE_TRIGGER_transactional);
645 if (ret)
646 return ret;
647 }
648
649 return 0;
650 }
651
btree_update_nodes_written(struct btree_update * as)652 static void btree_update_nodes_written(struct btree_update *as)
653 {
654 struct bch_fs *c = as->c;
655 struct btree *b;
656 struct btree_trans *trans = bch2_trans_get(c);
657 u64 journal_seq = 0;
658 unsigned i;
659 int ret;
660
661 /*
662 * If we're already in an error state, it might be because a btree node
663 * was never written, and we might be trying to free that same btree
664 * node here, but it won't have been marked as allocated and we'll see
665 * spurious disk usage inconsistencies in the transactional part below
666 * if we don't skip it:
667 */
668 ret = bch2_journal_error(&c->journal);
669 if (ret)
670 goto err;
671
672 if (!btree_update_new_nodes_marked_sb(as))
673 btree_update_new_nodes_mark_sb(as);
674
675 /*
676 * Wait for any in flight writes to finish before we free the old nodes
677 * on disk:
678 */
679 for (i = 0; i < as->nr_old_nodes; i++) {
680 __le64 seq;
681
682 b = as->old_nodes[i];
683
684 bch2_trans_begin(trans);
685 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
686 seq = b->data ? b->data->keys.seq : 0;
687 six_unlock_read(&b->c.lock);
688 bch2_trans_unlock_long(trans);
689
690 if (seq == as->old_nodes_seq[i])
691 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
692 TASK_UNINTERRUPTIBLE);
693 }
694
695 /*
696 * We did an update to a parent node where the pointers we added pointed
697 * to child nodes that weren't written yet: now, the child nodes have
698 * been written so we can write out the update to the interior node.
699 */
700
701 /*
702 * We can't call into journal reclaim here: we'd block on the journal
703 * reclaim lock, but we may need to release the open buckets we have
704 * pinned in order for other btree updates to make forward progress, and
705 * journal reclaim does btree updates when flushing bkey_cached entries,
706 * which may require allocations as well.
707 */
708 ret = commit_do(trans, &as->disk_res, &journal_seq,
709 BCH_WATERMARK_interior_updates|
710 BCH_TRANS_COMMIT_no_enospc|
711 BCH_TRANS_COMMIT_no_check_rw|
712 BCH_TRANS_COMMIT_journal_reclaim,
713 btree_update_nodes_written_trans(trans, as));
714 bch2_trans_unlock(trans);
715
716 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
717 "%s", bch2_err_str(ret));
718 err:
719 /*
720 * Ensure transaction is unlocked before using btree_node_lock_nopath()
721 * (the use of which is always suspect, we need to work on removing this
722 * in the future)
723 *
724 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
725 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
726 * rarely end up with a locked path besides the one we have here:
727 */
728 bch2_trans_unlock(trans);
729 bch2_trans_begin(trans);
730
731 /*
732 * We have to be careful because another thread might be getting ready
733 * to free as->b and calling btree_update_reparent() on us - we'll
734 * recheck under btree_update_lock below:
735 */
736 b = READ_ONCE(as->b);
737 if (b) {
738 /*
739 * @b is the node we did the final insert into:
740 *
741 * On failure to get a journal reservation, we still have to
742 * unblock the write and allow most of the write path to happen
743 * so that shutdown works, but the i->journal_seq mechanism
744 * won't work to prevent the btree write from being visible (we
745 * didn't get a journal sequence number) - instead
746 * __bch2_btree_node_write() doesn't do the actual write if
747 * we're in journal error state:
748 */
749
750 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
751 as->btree_id, b->c.level, b->key.k.p);
752 struct btree_path *path = trans->paths + path_idx;
753 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
754 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
755 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
756 path->l[b->c.level].b = b;
757
758 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
759
760 mutex_lock(&c->btree_interior_update_lock);
761
762 list_del(&as->write_blocked_list);
763 if (list_empty(&b->write_blocked))
764 clear_btree_node_write_blocked(b);
765
766 /*
767 * Node might have been freed, recheck under
768 * btree_interior_update_lock:
769 */
770 if (as->b == b) {
771 BUG_ON(!b->c.level);
772 BUG_ON(!btree_node_dirty(b));
773
774 if (!ret) {
775 struct bset *last = btree_bset_last(b);
776
777 last->journal_seq = cpu_to_le64(
778 max(journal_seq,
779 le64_to_cpu(last->journal_seq)));
780
781 bch2_btree_add_journal_pin(c, b, journal_seq);
782 } else {
783 /*
784 * If we didn't get a journal sequence number we
785 * can't write this btree node, because recovery
786 * won't know to ignore this write:
787 */
788 set_btree_node_never_write(b);
789 }
790 }
791
792 mutex_unlock(&c->btree_interior_update_lock);
793
794 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
795 six_unlock_write(&b->c.lock);
796
797 btree_node_write_if_need(trans, b, SIX_LOCK_intent);
798 btree_node_unlock(trans, path, b->c.level);
799 bch2_path_put(trans, path_idx, true);
800 }
801
802 bch2_journal_pin_drop(&c->journal, &as->journal);
803
804 mutex_lock(&c->btree_interior_update_lock);
805 for (i = 0; i < as->nr_new_nodes; i++) {
806 b = as->new_nodes[i];
807
808 BUG_ON(b->will_make_reachable != (unsigned long) as);
809 b->will_make_reachable = 0;
810 clear_btree_node_will_make_reachable(b);
811 }
812 mutex_unlock(&c->btree_interior_update_lock);
813
814 for (i = 0; i < as->nr_new_nodes; i++) {
815 b = as->new_nodes[i];
816
817 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
818 btree_node_write_if_need(trans, b, SIX_LOCK_read);
819 six_unlock_read(&b->c.lock);
820 }
821
822 for (i = 0; i < as->nr_open_buckets; i++)
823 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
824
825 bch2_btree_update_free(as, trans);
826 bch2_trans_put(trans);
827 }
828
btree_interior_update_work(struct work_struct * work)829 static void btree_interior_update_work(struct work_struct *work)
830 {
831 struct bch_fs *c =
832 container_of(work, struct bch_fs, btree_interior_update_work);
833 struct btree_update *as;
834
835 while (1) {
836 mutex_lock(&c->btree_interior_update_lock);
837 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
838 struct btree_update, unwritten_list);
839 if (as && !as->nodes_written)
840 as = NULL;
841 mutex_unlock(&c->btree_interior_update_lock);
842
843 if (!as)
844 break;
845
846 btree_update_nodes_written(as);
847 }
848 }
849
CLOSURE_CALLBACK(btree_update_set_nodes_written)850 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
851 {
852 closure_type(as, struct btree_update, cl);
853 struct bch_fs *c = as->c;
854
855 mutex_lock(&c->btree_interior_update_lock);
856 as->nodes_written = true;
857 mutex_unlock(&c->btree_interior_update_lock);
858
859 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
860 }
861
862 /*
863 * We're updating @b with pointers to nodes that haven't finished writing yet:
864 * block @b from being written until @as completes
865 */
btree_update_updated_node(struct btree_update * as,struct btree * b)866 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
867 {
868 struct bch_fs *c = as->c;
869
870 BUG_ON(as->mode != BTREE_UPDATE_none);
871 BUG_ON(as->update_level_end < b->c.level);
872 BUG_ON(!btree_node_dirty(b));
873 BUG_ON(!b->c.level);
874
875 mutex_lock(&c->btree_interior_update_lock);
876 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
877
878 as->mode = BTREE_UPDATE_node;
879 as->b = b;
880 as->update_level_end = b->c.level;
881
882 set_btree_node_write_blocked(b);
883 list_add(&as->write_blocked_list, &b->write_blocked);
884
885 mutex_unlock(&c->btree_interior_update_lock);
886 }
887
bch2_update_reparent_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)888 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
889 struct journal_entry_pin *_pin, u64 seq)
890 {
891 return 0;
892 }
893
btree_update_reparent(struct btree_update * as,struct btree_update * child)894 static void btree_update_reparent(struct btree_update *as,
895 struct btree_update *child)
896 {
897 struct bch_fs *c = as->c;
898
899 lockdep_assert_held(&c->btree_interior_update_lock);
900
901 child->b = NULL;
902 child->mode = BTREE_UPDATE_update;
903
904 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
905 bch2_update_reparent_journal_pin_flush);
906 }
907
btree_update_updated_root(struct btree_update * as,struct btree * b)908 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
909 {
910 struct bkey_i *insert = &b->key;
911 struct bch_fs *c = as->c;
912
913 BUG_ON(as->mode != BTREE_UPDATE_none);
914
915 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
916 ARRAY_SIZE(as->journal_entries));
917
918 as->journal_u64s +=
919 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
920 BCH_JSET_ENTRY_btree_root,
921 b->c.btree_id, b->c.level,
922 insert, insert->k.u64s);
923
924 mutex_lock(&c->btree_interior_update_lock);
925 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
926
927 as->mode = BTREE_UPDATE_root;
928 mutex_unlock(&c->btree_interior_update_lock);
929 }
930
931 /*
932 * bch2_btree_update_add_new_node:
933 *
934 * This causes @as to wait on @b to be written, before it gets to
935 * bch2_btree_update_nodes_written
936 *
937 * Additionally, it sets b->will_make_reachable to prevent any additional writes
938 * to @b from happening besides the first until @b is reachable on disk
939 *
940 * And it adds @b to the list of @as's new nodes, so that we can update sector
941 * counts in bch2_btree_update_nodes_written:
942 */
bch2_btree_update_add_new_node(struct btree_update * as,struct btree * b)943 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
944 {
945 struct bch_fs *c = as->c;
946
947 closure_get(&as->cl);
948
949 mutex_lock(&c->btree_interior_update_lock);
950 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
951 BUG_ON(b->will_make_reachable);
952
953 as->new_nodes[as->nr_new_nodes++] = b;
954 b->will_make_reachable = 1UL|(unsigned long) as;
955 set_btree_node_will_make_reachable(b);
956
957 mutex_unlock(&c->btree_interior_update_lock);
958
959 btree_update_add_key(as, &as->new_keys, b);
960
961 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
962 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
963 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
964
965 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
966 cpu_to_le16(sectors);
967 }
968 }
969
970 /*
971 * returns true if @b was a new node
972 */
btree_update_drop_new_node(struct bch_fs * c,struct btree * b)973 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
974 {
975 struct btree_update *as;
976 unsigned long v;
977 unsigned i;
978
979 mutex_lock(&c->btree_interior_update_lock);
980 /*
981 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
982 * dropped when it gets written by bch2_btree_complete_write - the
983 * xchg() is for synchronization with bch2_btree_complete_write:
984 */
985 v = xchg(&b->will_make_reachable, 0);
986 clear_btree_node_will_make_reachable(b);
987 as = (struct btree_update *) (v & ~1UL);
988
989 if (!as) {
990 mutex_unlock(&c->btree_interior_update_lock);
991 return;
992 }
993
994 for (i = 0; i < as->nr_new_nodes; i++)
995 if (as->new_nodes[i] == b)
996 goto found;
997
998 BUG();
999 found:
1000 array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1001 mutex_unlock(&c->btree_interior_update_lock);
1002
1003 if (v & 1)
1004 closure_put(&as->cl);
1005 }
1006
bch2_btree_update_get_open_buckets(struct btree_update * as,struct btree * b)1007 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1008 {
1009 while (b->ob.nr)
1010 as->open_buckets[as->nr_open_buckets++] =
1011 b->ob.v[--b->ob.nr];
1012 }
1013
bch2_btree_update_will_free_node_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)1014 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1015 struct journal_entry_pin *_pin, u64 seq)
1016 {
1017 return 0;
1018 }
1019
1020 /*
1021 * @b is being split/rewritten: it may have pointers to not-yet-written btree
1022 * nodes and thus outstanding btree_updates - redirect @b's
1023 * btree_updates to point to this btree_update:
1024 */
bch2_btree_interior_update_will_free_node(struct btree_update * as,struct btree * b)1025 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1026 struct btree *b)
1027 {
1028 struct bch_fs *c = as->c;
1029 struct btree_update *p, *n;
1030 struct btree_write *w;
1031
1032 set_btree_node_dying(b);
1033
1034 if (btree_node_fake(b))
1035 return;
1036
1037 mutex_lock(&c->btree_interior_update_lock);
1038
1039 /*
1040 * Does this node have any btree_update operations preventing
1041 * it from being written?
1042 *
1043 * If so, redirect them to point to this btree_update: we can
1044 * write out our new nodes, but we won't make them visible until those
1045 * operations complete
1046 */
1047 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1048 list_del_init(&p->write_blocked_list);
1049 btree_update_reparent(as, p);
1050
1051 /*
1052 * for flush_held_btree_writes() waiting on updates to flush or
1053 * nodes to be writeable:
1054 */
1055 closure_wake_up(&c->btree_interior_update_wait);
1056 }
1057
1058 clear_btree_node_dirty_acct(c, b);
1059 clear_btree_node_need_write(b);
1060 clear_btree_node_write_blocked(b);
1061
1062 /*
1063 * Does this node have unwritten data that has a pin on the journal?
1064 *
1065 * If so, transfer that pin to the btree_update operation -
1066 * note that if we're freeing multiple nodes, we only need to keep the
1067 * oldest pin of any of the nodes we're freeing. We'll release the pin
1068 * when the new nodes are persistent and reachable on disk:
1069 */
1070 w = btree_current_write(b);
1071 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1072 bch2_btree_update_will_free_node_journal_pin_flush);
1073 bch2_journal_pin_drop(&c->journal, &w->journal);
1074
1075 w = btree_prev_write(b);
1076 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1077 bch2_btree_update_will_free_node_journal_pin_flush);
1078 bch2_journal_pin_drop(&c->journal, &w->journal);
1079
1080 mutex_unlock(&c->btree_interior_update_lock);
1081
1082 /*
1083 * Is this a node that isn't reachable on disk yet?
1084 *
1085 * Nodes that aren't reachable yet have writes blocked until they're
1086 * reachable - now that we've cancelled any pending writes and moved
1087 * things waiting on that write to wait on this update, we can drop this
1088 * node from the list of nodes that the other update is making
1089 * reachable, prior to freeing it:
1090 */
1091 btree_update_drop_new_node(c, b);
1092
1093 btree_update_add_key(as, &as->old_keys, b);
1094
1095 as->old_nodes[as->nr_old_nodes] = b;
1096 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1097 as->nr_old_nodes++;
1098 }
1099
bch2_btree_update_done(struct btree_update * as,struct btree_trans * trans)1100 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1101 {
1102 struct bch_fs *c = as->c;
1103 u64 start_time = as->start_time;
1104
1105 BUG_ON(as->mode == BTREE_UPDATE_none);
1106
1107 if (as->took_gc_lock)
1108 up_read(&as->c->gc_lock);
1109 as->took_gc_lock = false;
1110
1111 bch2_btree_reserve_put(as, trans);
1112
1113 continue_at(&as->cl, btree_update_set_nodes_written,
1114 as->c->btree_interior_update_worker);
1115
1116 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1117 start_time);
1118 }
1119
1120 static struct btree_update *
bch2_btree_update_start(struct btree_trans * trans,struct btree_path * path,unsigned level_start,bool split,unsigned flags)1121 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1122 unsigned level_start, bool split, unsigned flags)
1123 {
1124 struct bch_fs *c = trans->c;
1125 struct btree_update *as;
1126 u64 start_time = local_clock();
1127 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1128 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1129 unsigned nr_nodes[2] = { 0, 0 };
1130 unsigned level_end = level_start;
1131 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1132 int ret = 0;
1133 u32 restart_count = trans->restart_count;
1134
1135 BUG_ON(!path->should_be_locked);
1136
1137 if (watermark == BCH_WATERMARK_copygc)
1138 watermark = BCH_WATERMARK_btree_copygc;
1139 if (watermark < BCH_WATERMARK_btree)
1140 watermark = BCH_WATERMARK_btree;
1141
1142 flags &= ~BCH_WATERMARK_MASK;
1143 flags |= watermark;
1144
1145 if (watermark < BCH_WATERMARK_reclaim &&
1146 test_bit(JOURNAL_space_low, &c->journal.flags)) {
1147 if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1148 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1149
1150 ret = drop_locks_do(trans,
1151 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1152 if (ret)
1153 return ERR_PTR(ret);
1154 }
1155
1156 while (1) {
1157 nr_nodes[!!level_end] += 1 + split;
1158 level_end++;
1159
1160 ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1161 if (ret)
1162 return ERR_PTR(ret);
1163
1164 if (!btree_path_node(path, level_end)) {
1165 /* Allocating new root? */
1166 nr_nodes[1] += split;
1167 level_end = BTREE_MAX_DEPTH;
1168 break;
1169 }
1170
1171 /*
1172 * Always check for space for two keys, even if we won't have to
1173 * split at prior level - it might have been a merge instead:
1174 */
1175 if (bch2_btree_node_insert_fits(path->l[level_end].b,
1176 BKEY_BTREE_PTR_U64s_MAX * 2))
1177 break;
1178
1179 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1180 }
1181
1182 if (!down_read_trylock(&c->gc_lock)) {
1183 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1184 if (ret) {
1185 up_read(&c->gc_lock);
1186 return ERR_PTR(ret);
1187 }
1188 }
1189
1190 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1191 memset(as, 0, sizeof(*as));
1192 closure_init(&as->cl, NULL);
1193 as->c = c;
1194 as->start_time = start_time;
1195 as->ip_started = _RET_IP_;
1196 as->mode = BTREE_UPDATE_none;
1197 as->flags = flags;
1198 as->took_gc_lock = true;
1199 as->btree_id = path->btree_id;
1200 as->update_level_start = level_start;
1201 as->update_level_end = level_end;
1202 INIT_LIST_HEAD(&as->list);
1203 INIT_LIST_HEAD(&as->unwritten_list);
1204 INIT_LIST_HEAD(&as->write_blocked_list);
1205 bch2_keylist_init(&as->old_keys, as->_old_keys);
1206 bch2_keylist_init(&as->new_keys, as->_new_keys);
1207 bch2_keylist_init(&as->parent_keys, as->inline_keys);
1208
1209 mutex_lock(&c->btree_interior_update_lock);
1210 list_add_tail(&as->list, &c->btree_interior_update_list);
1211 mutex_unlock(&c->btree_interior_update_lock);
1212
1213 /*
1214 * We don't want to allocate if we're in an error state, that can cause
1215 * deadlock on emergency shutdown due to open buckets getting stuck in
1216 * the btree_reserve_cache after allocator shutdown has cleared it out.
1217 * This check needs to come after adding us to the btree_interior_update
1218 * list but before calling bch2_btree_reserve_get, to synchronize with
1219 * __bch2_fs_read_only().
1220 */
1221 ret = bch2_journal_error(&c->journal);
1222 if (ret)
1223 goto err;
1224
1225 ret = bch2_disk_reservation_get(c, &as->disk_res,
1226 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1227 c->opts.metadata_replicas,
1228 disk_res_flags);
1229 if (ret)
1230 goto err;
1231
1232 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1233 if (bch2_err_matches(ret, ENOSPC) ||
1234 bch2_err_matches(ret, ENOMEM)) {
1235 struct closure cl;
1236
1237 /*
1238 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1239 * flag
1240 */
1241 if (bch2_err_matches(ret, ENOSPC) &&
1242 (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1243 watermark < BCH_WATERMARK_reclaim) {
1244 ret = -BCH_ERR_journal_reclaim_would_deadlock;
1245 goto err;
1246 }
1247
1248 closure_init_stack(&cl);
1249
1250 do {
1251 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1252
1253 bch2_trans_unlock(trans);
1254 bch2_wait_on_allocator(c, &cl);
1255 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1256 }
1257
1258 if (ret) {
1259 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1260 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1261 goto err;
1262 }
1263
1264 ret = bch2_trans_relock(trans);
1265 if (ret)
1266 goto err;
1267
1268 bch2_trans_verify_not_restarted(trans, restart_count);
1269 return as;
1270 err:
1271 bch2_btree_update_free(as, trans);
1272 if (!bch2_err_matches(ret, ENOSPC) &&
1273 !bch2_err_matches(ret, EROFS) &&
1274 ret != -BCH_ERR_journal_reclaim_would_deadlock)
1275 bch_err_fn_ratelimited(c, ret);
1276 return ERR_PTR(ret);
1277 }
1278
1279 /* Btree root updates: */
1280
bch2_btree_set_root_inmem(struct bch_fs * c,struct btree * b)1281 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1282 {
1283 /* Root nodes cannot be reaped */
1284 mutex_lock(&c->btree_cache.lock);
1285 list_del_init(&b->list);
1286 mutex_unlock(&c->btree_cache.lock);
1287
1288 mutex_lock(&c->btree_root_lock);
1289 bch2_btree_id_root(c, b->c.btree_id)->b = b;
1290 mutex_unlock(&c->btree_root_lock);
1291
1292 bch2_recalc_btree_reserve(c);
1293 }
1294
bch2_btree_set_root(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,bool nofail)1295 static int bch2_btree_set_root(struct btree_update *as,
1296 struct btree_trans *trans,
1297 struct btree_path *path,
1298 struct btree *b,
1299 bool nofail)
1300 {
1301 struct bch_fs *c = as->c;
1302
1303 trace_and_count(c, btree_node_set_root, trans, b);
1304
1305 struct btree *old = btree_node_root(c, b);
1306
1307 /*
1308 * Ensure no one is using the old root while we switch to the
1309 * new root:
1310 */
1311 if (nofail) {
1312 bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1313 } else {
1314 int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1315 if (ret)
1316 return ret;
1317 }
1318
1319 bch2_btree_set_root_inmem(c, b);
1320
1321 btree_update_updated_root(as, b);
1322
1323 /*
1324 * Unlock old root after new root is visible:
1325 *
1326 * The new root isn't persistent, but that's ok: we still have
1327 * an intent lock on the new root, and any updates that would
1328 * depend on the new root would have to update the new root.
1329 */
1330 bch2_btree_node_unlock_write(trans, path, old);
1331 return 0;
1332 }
1333
1334 /* Interior node updates: */
1335
bch2_insert_fixup_btree_ptr(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter * node_iter,struct bkey_i * insert)1336 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1337 struct btree_trans *trans,
1338 struct btree_path *path,
1339 struct btree *b,
1340 struct btree_node_iter *node_iter,
1341 struct bkey_i *insert)
1342 {
1343 struct bch_fs *c = as->c;
1344 struct bkey_packed *k;
1345 struct printbuf buf = PRINTBUF;
1346 unsigned long old, new;
1347
1348 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1349 !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1350
1351 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1352 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1353
1354 struct bkey_validate_context from = (struct bkey_validate_context) {
1355 .from = BKEY_VALIDATE_btree_node,
1356 .level = b->c.level,
1357 .btree = b->c.btree_id,
1358 .flags = BCH_VALIDATE_commit,
1359 };
1360 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), from) ?:
1361 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), from)) {
1362 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1363 dump_stack();
1364 }
1365
1366 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1367 ARRAY_SIZE(as->journal_entries));
1368
1369 as->journal_u64s +=
1370 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1371 BCH_JSET_ENTRY_btree_keys,
1372 b->c.btree_id, b->c.level,
1373 insert, insert->k.u64s);
1374
1375 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1376 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1377 bch2_btree_node_iter_advance(node_iter, b);
1378
1379 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1380 set_btree_node_dirty_acct(c, b);
1381
1382 old = READ_ONCE(b->flags);
1383 do {
1384 new = old;
1385
1386 new &= ~BTREE_WRITE_TYPE_MASK;
1387 new |= BTREE_WRITE_interior;
1388 new |= 1 << BTREE_NODE_need_write;
1389 } while (!try_cmpxchg(&b->flags, &old, new));
1390
1391 printbuf_exit(&buf);
1392 }
1393
1394 static void
bch2_btree_insert_keys_interior(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter node_iter,struct keylist * keys)1395 bch2_btree_insert_keys_interior(struct btree_update *as,
1396 struct btree_trans *trans,
1397 struct btree_path *path,
1398 struct btree *b,
1399 struct btree_node_iter node_iter,
1400 struct keylist *keys)
1401 {
1402 struct bkey_i *insert = bch2_keylist_front(keys);
1403 struct bkey_packed *k;
1404
1405 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1406
1407 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1408 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1409 ;
1410
1411 for (;
1412 insert != keys->top && bpos_le(insert->k.p, b->key.k.p);
1413 insert = bkey_next(insert))
1414 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1415
1416 if (bch2_btree_node_check_topology(trans, b)) {
1417 struct printbuf buf = PRINTBUF;
1418
1419 for (struct bkey_i *k = keys->keys;
1420 k != insert;
1421 k = bkey_next(k)) {
1422 bch2_bkey_val_to_text(&buf, trans->c, bkey_i_to_s_c(k));
1423 prt_newline(&buf);
1424 }
1425
1426 panic("%s(): check_topology error: inserted keys\n%s", __func__, buf.buf);
1427 }
1428
1429 memmove_u64s_down(keys->keys, insert, keys->top_p - insert->_data);
1430 keys->top_p -= insert->_data - keys->keys_p;
1431 }
1432
key_deleted_in_insert(struct keylist * insert_keys,struct bpos pos)1433 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1434 {
1435 if (insert_keys)
1436 for_each_keylist_key(insert_keys, k)
1437 if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1438 return true;
1439 return false;
1440 }
1441
1442 /*
1443 * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1444 * node)
1445 */
__btree_split_node(struct btree_update * as,struct btree_trans * trans,struct btree * b,struct btree * n[2],struct keylist * insert_keys)1446 static void __btree_split_node(struct btree_update *as,
1447 struct btree_trans *trans,
1448 struct btree *b,
1449 struct btree *n[2],
1450 struct keylist *insert_keys)
1451 {
1452 struct bkey_packed *k;
1453 struct bpos n1_pos = POS_MIN;
1454 struct btree_node_iter iter;
1455 struct bset *bsets[2];
1456 struct bkey_format_state format[2];
1457 struct bkey_packed *out[2];
1458 struct bkey uk;
1459 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1460 struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1461 int i;
1462
1463 memset(&nr_keys, 0, sizeof(nr_keys));
1464
1465 for (i = 0; i < 2; i++) {
1466 BUG_ON(n[i]->nsets != 1);
1467
1468 bsets[i] = btree_bset_first(n[i]);
1469 out[i] = bsets[i]->start;
1470
1471 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1472 bch2_bkey_format_init(&format[i]);
1473 }
1474
1475 u64s = 0;
1476 for_each_btree_node_key(b, k, &iter) {
1477 if (bkey_deleted(k))
1478 continue;
1479
1480 uk = bkey_unpack_key(b, k);
1481
1482 if (b->c.level &&
1483 u64s < n1_u64s &&
1484 u64s + k->u64s >= n1_u64s &&
1485 (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1486 key_deleted_in_insert(insert_keys, uk.p)))
1487 n1_u64s += k->u64s;
1488
1489 i = u64s >= n1_u64s;
1490 u64s += k->u64s;
1491 if (!i)
1492 n1_pos = uk.p;
1493 bch2_bkey_format_add_key(&format[i], &uk);
1494
1495 nr_keys[i].nr_keys++;
1496 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1497 }
1498
1499 btree_set_min(n[0], b->data->min_key);
1500 btree_set_max(n[0], n1_pos);
1501 btree_set_min(n[1], bpos_successor(n1_pos));
1502 btree_set_max(n[1], b->data->max_key);
1503
1504 for (i = 0; i < 2; i++) {
1505 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1506 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1507
1508 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1509
1510 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1511 nr_keys[i].val_u64s;
1512 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1513 n[i]->data->format = b->format;
1514
1515 btree_node_set_format(n[i], n[i]->data->format);
1516 }
1517
1518 u64s = 0;
1519 for_each_btree_node_key(b, k, &iter) {
1520 if (bkey_deleted(k))
1521 continue;
1522
1523 i = u64s >= n1_u64s;
1524 u64s += k->u64s;
1525
1526 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1527 ? &b->format: &bch2_bkey_format_current, k))
1528 out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1529 else
1530 bch2_bkey_unpack(b, (void *) out[i], k);
1531
1532 out[i]->needs_whiteout = false;
1533
1534 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1535 out[i] = bkey_p_next(out[i]);
1536 }
1537
1538 for (i = 0; i < 2; i++) {
1539 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1540
1541 BUG_ON(!bsets[i]->u64s);
1542
1543 set_btree_bset_end(n[i], n[i]->set);
1544
1545 btree_node_reset_sib_u64s(n[i]);
1546
1547 bch2_verify_btree_nr_keys(n[i]);
1548
1549 BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1550 }
1551 }
1552
1553 /*
1554 * For updates to interior nodes, we've got to do the insert before we split
1555 * because the stuff we're inserting has to be inserted atomically. Post split,
1556 * the keys might have to go in different nodes and the split would no longer be
1557 * atomic.
1558 *
1559 * Worse, if the insert is from btree node coalescing, if we do the insert after
1560 * we do the split (and pick the pivot) - the pivot we pick might be between
1561 * nodes that were coalesced, and thus in the middle of a child node post
1562 * coalescing:
1563 */
btree_split_insert_keys(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1564 static void btree_split_insert_keys(struct btree_update *as,
1565 struct btree_trans *trans,
1566 btree_path_idx_t path_idx,
1567 struct btree *b,
1568 struct keylist *keys)
1569 {
1570 struct btree_path *path = trans->paths + path_idx;
1571
1572 if (!bch2_keylist_empty(keys) &&
1573 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1574 struct btree_node_iter node_iter;
1575
1576 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1577
1578 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1579 }
1580 }
1581
btree_split(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path,struct btree * b,struct keylist * keys)1582 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1583 btree_path_idx_t path, struct btree *b,
1584 struct keylist *keys)
1585 {
1586 struct bch_fs *c = as->c;
1587 struct btree *parent = btree_node_parent(trans->paths + path, b);
1588 struct btree *n1, *n2 = NULL, *n3 = NULL;
1589 btree_path_idx_t path1 = 0, path2 = 0;
1590 u64 start_time = local_clock();
1591 int ret = 0;
1592
1593 bch2_verify_btree_nr_keys(b);
1594 BUG_ON(!parent && (b != btree_node_root(c, b)));
1595 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1596
1597 ret = bch2_btree_node_check_topology(trans, b);
1598 if (ret)
1599 return ret;
1600
1601 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1602 struct btree *n[2];
1603
1604 trace_and_count(c, btree_node_split, trans, b);
1605
1606 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1607 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1608
1609 __btree_split_node(as, trans, b, n, keys);
1610
1611 if (keys) {
1612 btree_split_insert_keys(as, trans, path, n1, keys);
1613 btree_split_insert_keys(as, trans, path, n2, keys);
1614 BUG_ON(!bch2_keylist_empty(keys));
1615 }
1616
1617 bch2_btree_build_aux_trees(n2);
1618 bch2_btree_build_aux_trees(n1);
1619
1620 bch2_btree_update_add_new_node(as, n1);
1621 bch2_btree_update_add_new_node(as, n2);
1622 six_unlock_write(&n2->c.lock);
1623 six_unlock_write(&n1->c.lock);
1624
1625 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1626 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1627 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1628 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1629
1630 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1631 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1632 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1633 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1634
1635 /*
1636 * Note that on recursive parent_keys == keys, so we
1637 * can't start adding new keys to parent_keys before emptying it
1638 * out (which we did with btree_split_insert_keys() above)
1639 */
1640 bch2_keylist_add(&as->parent_keys, &n1->key);
1641 bch2_keylist_add(&as->parent_keys, &n2->key);
1642
1643 if (!parent) {
1644 /* Depth increases, make a new root */
1645 n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1646
1647 bch2_btree_update_add_new_node(as, n3);
1648 six_unlock_write(&n3->c.lock);
1649
1650 trans->paths[path2].locks_want++;
1651 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1652 six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1653 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1654 bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1655
1656 n3->sib_u64s[0] = U16_MAX;
1657 n3->sib_u64s[1] = U16_MAX;
1658
1659 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1660 }
1661 } else {
1662 trace_and_count(c, btree_node_compact, trans, b);
1663
1664 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1665
1666 if (keys) {
1667 btree_split_insert_keys(as, trans, path, n1, keys);
1668 BUG_ON(!bch2_keylist_empty(keys));
1669 }
1670
1671 bch2_btree_build_aux_trees(n1);
1672 bch2_btree_update_add_new_node(as, n1);
1673 six_unlock_write(&n1->c.lock);
1674
1675 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1676 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1677 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1678 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1679
1680 if (parent)
1681 bch2_keylist_add(&as->parent_keys, &n1->key);
1682 }
1683
1684 /* New nodes all written, now make them visible: */
1685
1686 if (parent) {
1687 /* Split a non root node */
1688 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1689 } else if (n3) {
1690 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1691 } else {
1692 /* Root filled up but didn't need to be split */
1693 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1694 }
1695
1696 if (ret)
1697 goto err;
1698
1699 bch2_btree_interior_update_will_free_node(as, b);
1700
1701 if (n3) {
1702 bch2_btree_update_get_open_buckets(as, n3);
1703 bch2_btree_node_write_trans(trans, n3, SIX_LOCK_intent, 0);
1704 }
1705 if (n2) {
1706 bch2_btree_update_get_open_buckets(as, n2);
1707 bch2_btree_node_write_trans(trans, n2, SIX_LOCK_intent, 0);
1708 }
1709 bch2_btree_update_get_open_buckets(as, n1);
1710 bch2_btree_node_write_trans(trans, n1, SIX_LOCK_intent, 0);
1711
1712 /*
1713 * The old node must be freed (in memory) _before_ unlocking the new
1714 * nodes - else another thread could re-acquire a read lock on the old
1715 * node after another thread has locked and updated the new node, thus
1716 * seeing stale data:
1717 */
1718 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1719
1720 if (n3)
1721 bch2_trans_node_add(trans, trans->paths + path, n3);
1722 if (n2)
1723 bch2_trans_node_add(trans, trans->paths + path2, n2);
1724 bch2_trans_node_add(trans, trans->paths + path1, n1);
1725
1726 if (n3)
1727 six_unlock_intent(&n3->c.lock);
1728 if (n2)
1729 six_unlock_intent(&n2->c.lock);
1730 six_unlock_intent(&n1->c.lock);
1731 out:
1732 if (path2) {
1733 __bch2_btree_path_unlock(trans, trans->paths + path2);
1734 bch2_path_put(trans, path2, true);
1735 }
1736 if (path1) {
1737 __bch2_btree_path_unlock(trans, trans->paths + path1);
1738 bch2_path_put(trans, path1, true);
1739 }
1740
1741 bch2_trans_verify_locks(trans);
1742
1743 bch2_time_stats_update(&c->times[n2
1744 ? BCH_TIME_btree_node_split
1745 : BCH_TIME_btree_node_compact],
1746 start_time);
1747 return ret;
1748 err:
1749 if (n3)
1750 bch2_btree_node_free_never_used(as, trans, n3);
1751 if (n2)
1752 bch2_btree_node_free_never_used(as, trans, n2);
1753 bch2_btree_node_free_never_used(as, trans, n1);
1754 goto out;
1755 }
1756
1757 /**
1758 * bch2_btree_insert_node - insert bkeys into a given btree node
1759 *
1760 * @as: btree_update object
1761 * @trans: btree_trans object
1762 * @path_idx: path that points to current node
1763 * @b: node to insert keys into
1764 * @keys: list of keys to insert
1765 *
1766 * Returns: 0 on success, typically transaction restart error on failure
1767 *
1768 * Inserts as many keys as it can into a given btree node, splitting it if full.
1769 * If a split occurred, this function will return early. This can only happen
1770 * for leaf nodes -- inserts into interior nodes have to be atomic.
1771 */
bch2_btree_insert_node(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1772 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1773 btree_path_idx_t path_idx, struct btree *b,
1774 struct keylist *keys)
1775 {
1776 struct bch_fs *c = as->c;
1777 struct btree_path *path = trans->paths + path_idx, *linked;
1778 unsigned i;
1779 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1780 int old_live_u64s = b->nr.live_u64s;
1781 int live_u64s_added, u64s_added;
1782 int ret;
1783
1784 lockdep_assert_held(&c->gc_lock);
1785 BUG_ON(!btree_node_intent_locked(path, b->c.level));
1786 BUG_ON(!b->c.level);
1787 BUG_ON(!as || as->b);
1788 bch2_verify_keylist_sorted(keys);
1789
1790 ret = bch2_btree_node_lock_write(trans, path, &b->c);
1791 if (ret)
1792 return ret;
1793
1794 bch2_btree_node_prep_for_write(trans, path, b);
1795
1796 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1797 bch2_btree_node_unlock_write(trans, path, b);
1798 goto split;
1799 }
1800
1801 ret = bch2_btree_node_check_topology(trans, b);
1802 if (ret) {
1803 bch2_btree_node_unlock_write(trans, path, b);
1804 return ret;
1805 }
1806
1807 bch2_btree_insert_keys_interior(as, trans, path, b,
1808 path->l[b->c.level].iter, keys);
1809
1810 trans_for_each_path_with_node(trans, b, linked, i)
1811 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1812
1813 bch2_trans_verify_paths(trans);
1814
1815 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1816 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1817
1818 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1819 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1820 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1821 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1822
1823 if (u64s_added > live_u64s_added &&
1824 bch2_maybe_compact_whiteouts(c, b))
1825 bch2_trans_node_reinit_iter(trans, b);
1826
1827 btree_update_updated_node(as, b);
1828 bch2_btree_node_unlock_write(trans, path, b);
1829 return 0;
1830 split:
1831 /*
1832 * We could attempt to avoid the transaction restart, by calling
1833 * bch2_btree_path_upgrade() and allocating more nodes:
1834 */
1835 if (b->c.level >= as->update_level_end) {
1836 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1837 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1838 }
1839
1840 return btree_split(as, trans, path_idx, b, keys);
1841 }
1842
bch2_btree_split_leaf(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1843 int bch2_btree_split_leaf(struct btree_trans *trans,
1844 btree_path_idx_t path,
1845 unsigned flags)
1846 {
1847 /* btree_split & merge may both cause paths array to be reallocated */
1848 struct btree *b = path_l(trans->paths + path)->b;
1849 struct btree_update *as;
1850 unsigned l;
1851 int ret = 0;
1852
1853 as = bch2_btree_update_start(trans, trans->paths + path,
1854 trans->paths[path].level,
1855 true, flags);
1856 if (IS_ERR(as))
1857 return PTR_ERR(as);
1858
1859 ret = btree_split(as, trans, path, b, NULL);
1860 if (ret) {
1861 bch2_btree_update_free(as, trans);
1862 return ret;
1863 }
1864
1865 bch2_btree_update_done(as, trans);
1866
1867 for (l = trans->paths[path].level + 1;
1868 btree_node_intent_locked(&trans->paths[path], l) && !ret;
1869 l++)
1870 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1871
1872 return ret;
1873 }
1874
__btree_increase_depth(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx)1875 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1876 btree_path_idx_t path_idx)
1877 {
1878 struct bch_fs *c = as->c;
1879 struct btree_path *path = trans->paths + path_idx;
1880 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1881
1882 BUG_ON(!btree_node_locked(path, b->c.level));
1883
1884 n = __btree_root_alloc(as, trans, b->c.level + 1);
1885
1886 bch2_btree_update_add_new_node(as, n);
1887 six_unlock_write(&n->c.lock);
1888
1889 path->locks_want++;
1890 BUG_ON(btree_node_locked(path, n->c.level));
1891 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1892 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1893 bch2_btree_path_level_init(trans, path, n);
1894
1895 n->sib_u64s[0] = U16_MAX;
1896 n->sib_u64s[1] = U16_MAX;
1897
1898 bch2_keylist_add(&as->parent_keys, &b->key);
1899 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1900
1901 int ret = bch2_btree_set_root(as, trans, path, n, true);
1902 BUG_ON(ret);
1903
1904 bch2_btree_update_get_open_buckets(as, n);
1905 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
1906 bch2_trans_node_add(trans, path, n);
1907 six_unlock_intent(&n->c.lock);
1908
1909 mutex_lock(&c->btree_cache.lock);
1910 list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1911 mutex_unlock(&c->btree_cache.lock);
1912
1913 bch2_trans_verify_locks(trans);
1914 }
1915
bch2_btree_increase_depth(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1916 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1917 {
1918 struct bch_fs *c = trans->c;
1919 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1920
1921 if (btree_node_fake(b))
1922 return bch2_btree_split_leaf(trans, path, flags);
1923
1924 struct btree_update *as =
1925 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1926 if (IS_ERR(as))
1927 return PTR_ERR(as);
1928
1929 __btree_increase_depth(as, trans, path);
1930 bch2_btree_update_done(as, trans);
1931 return 0;
1932 }
1933
__bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags,enum btree_node_sibling sib)1934 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1935 btree_path_idx_t path,
1936 unsigned level,
1937 unsigned flags,
1938 enum btree_node_sibling sib)
1939 {
1940 struct bch_fs *c = trans->c;
1941 struct btree_update *as;
1942 struct bkey_format_state new_s;
1943 struct bkey_format new_f;
1944 struct bkey_i delete;
1945 struct btree *b, *m, *n, *prev, *next, *parent;
1946 struct bpos sib_pos;
1947 size_t sib_u64s;
1948 enum btree_id btree = trans->paths[path].btree_id;
1949 btree_path_idx_t sib_path = 0, new_path = 0;
1950 u64 start_time = local_clock();
1951 int ret = 0;
1952
1953 bch2_trans_verify_not_unlocked_or_in_restart(trans);
1954 BUG_ON(!trans->paths[path].should_be_locked);
1955 BUG_ON(!btree_node_locked(&trans->paths[path], level));
1956
1957 /*
1958 * Work around a deadlock caused by the btree write buffer not doing
1959 * merges and leaving tons of merges for us to do - we really don't need
1960 * to be doing merges at all from the interior update path, and if the
1961 * interior update path is generating too many new interior updates we
1962 * deadlock:
1963 */
1964 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1965 return 0;
1966
1967 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1968 flags &= ~BCH_WATERMARK_MASK;
1969 flags |= BCH_WATERMARK_btree;
1970 flags |= BCH_TRANS_COMMIT_journal_reclaim;
1971 }
1972
1973 b = trans->paths[path].l[level].b;
1974
1975 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1976 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1977 b->sib_u64s[sib] = U16_MAX;
1978 return 0;
1979 }
1980
1981 sib_pos = sib == btree_prev_sib
1982 ? bpos_predecessor(b->data->min_key)
1983 : bpos_successor(b->data->max_key);
1984
1985 sib_path = bch2_path_get(trans, btree, sib_pos,
1986 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
1987 ret = bch2_btree_path_traverse(trans, sib_path, false);
1988 if (ret)
1989 goto err;
1990
1991 btree_path_set_should_be_locked(trans, trans->paths + sib_path);
1992
1993 m = trans->paths[sib_path].l[level].b;
1994
1995 if (btree_node_parent(trans->paths + path, b) !=
1996 btree_node_parent(trans->paths + sib_path, m)) {
1997 b->sib_u64s[sib] = U16_MAX;
1998 goto out;
1999 }
2000
2001 if (sib == btree_prev_sib) {
2002 prev = m;
2003 next = b;
2004 } else {
2005 prev = b;
2006 next = m;
2007 }
2008
2009 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2010 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2011
2012 bch2_bpos_to_text(&buf1, prev->data->max_key);
2013 bch2_bpos_to_text(&buf2, next->data->min_key);
2014 bch_err(c,
2015 "%s(): btree topology error:\n"
2016 " prev ends at %s\n"
2017 " next starts at %s",
2018 __func__, buf1.buf, buf2.buf);
2019 printbuf_exit(&buf1);
2020 printbuf_exit(&buf2);
2021 ret = bch2_topology_error(c);
2022 goto err;
2023 }
2024
2025 bch2_bkey_format_init(&new_s);
2026 bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2027 __bch2_btree_calc_format(&new_s, prev);
2028 __bch2_btree_calc_format(&new_s, next);
2029 bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2030 new_f = bch2_bkey_format_done(&new_s);
2031
2032 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2033 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2034
2035 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2036 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2037 sib_u64s /= 2;
2038 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2039 }
2040
2041 sib_u64s = min(sib_u64s, btree_max_u64s(c));
2042 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2043 b->sib_u64s[sib] = sib_u64s;
2044
2045 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2046 goto out;
2047
2048 parent = btree_node_parent(trans->paths + path, b);
2049 as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2050 BCH_TRANS_COMMIT_no_enospc|flags);
2051 ret = PTR_ERR_OR_ZERO(as);
2052 if (ret)
2053 goto err;
2054
2055 trace_and_count(c, btree_node_merge, trans, b);
2056
2057 n = bch2_btree_node_alloc(as, trans, b->c.level);
2058
2059 SET_BTREE_NODE_SEQ(n->data,
2060 max(BTREE_NODE_SEQ(b->data),
2061 BTREE_NODE_SEQ(m->data)) + 1);
2062
2063 btree_set_min(n, prev->data->min_key);
2064 btree_set_max(n, next->data->max_key);
2065
2066 n->data->format = new_f;
2067 btree_node_set_format(n, new_f);
2068
2069 bch2_btree_sort_into(c, n, prev);
2070 bch2_btree_sort_into(c, n, next);
2071
2072 bch2_btree_build_aux_trees(n);
2073 bch2_btree_update_add_new_node(as, n);
2074 six_unlock_write(&n->c.lock);
2075
2076 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2077 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2078 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2079 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2080
2081 bkey_init(&delete.k);
2082 delete.k.p = prev->key.k.p;
2083 bch2_keylist_add(&as->parent_keys, &delete);
2084 bch2_keylist_add(&as->parent_keys, &n->key);
2085
2086 bch2_trans_verify_paths(trans);
2087
2088 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2089 if (ret)
2090 goto err_free_update;
2091
2092 bch2_btree_interior_update_will_free_node(as, b);
2093 bch2_btree_interior_update_will_free_node(as, m);
2094
2095 bch2_trans_verify_paths(trans);
2096
2097 bch2_btree_update_get_open_buckets(as, n);
2098 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2099
2100 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2101 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2102
2103 bch2_trans_node_add(trans, trans->paths + path, n);
2104
2105 bch2_trans_verify_paths(trans);
2106
2107 six_unlock_intent(&n->c.lock);
2108
2109 bch2_btree_update_done(as, trans);
2110
2111 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2112 out:
2113 err:
2114 if (new_path)
2115 bch2_path_put(trans, new_path, true);
2116 bch2_path_put(trans, sib_path, true);
2117 bch2_trans_verify_locks(trans);
2118 if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2119 ret = 0;
2120 if (!ret)
2121 ret = bch2_trans_relock(trans);
2122 return ret;
2123 err_free_update:
2124 bch2_btree_node_free_never_used(as, trans, n);
2125 bch2_btree_update_free(as, trans);
2126 goto out;
2127 }
2128
bch2_btree_node_rewrite(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,unsigned flags)2129 int bch2_btree_node_rewrite(struct btree_trans *trans,
2130 struct btree_iter *iter,
2131 struct btree *b,
2132 unsigned flags)
2133 {
2134 struct bch_fs *c = trans->c;
2135 struct btree *n, *parent;
2136 struct btree_update *as;
2137 btree_path_idx_t new_path = 0;
2138 int ret;
2139
2140 flags |= BCH_TRANS_COMMIT_no_enospc;
2141
2142 struct btree_path *path = btree_iter_path(trans, iter);
2143 parent = btree_node_parent(path, b);
2144 as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2145 ret = PTR_ERR_OR_ZERO(as);
2146 if (ret)
2147 goto out;
2148
2149 n = bch2_btree_node_alloc_replacement(as, trans, b);
2150
2151 bch2_btree_build_aux_trees(n);
2152 bch2_btree_update_add_new_node(as, n);
2153 six_unlock_write(&n->c.lock);
2154
2155 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2156 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2157 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2158 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2159
2160 trace_and_count(c, btree_node_rewrite, trans, b);
2161
2162 if (parent) {
2163 bch2_keylist_add(&as->parent_keys, &n->key);
2164 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2165 } else {
2166 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2167 }
2168
2169 if (ret)
2170 goto err;
2171
2172 bch2_btree_interior_update_will_free_node(as, b);
2173
2174 bch2_btree_update_get_open_buckets(as, n);
2175 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2176
2177 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2178
2179 bch2_trans_node_add(trans, trans->paths + iter->path, n);
2180 six_unlock_intent(&n->c.lock);
2181
2182 bch2_btree_update_done(as, trans);
2183 out:
2184 if (new_path)
2185 bch2_path_put(trans, new_path, true);
2186 bch2_trans_downgrade(trans);
2187 return ret;
2188 err:
2189 bch2_btree_node_free_never_used(as, trans, n);
2190 bch2_btree_update_free(as, trans);
2191 goto out;
2192 }
2193
2194 struct async_btree_rewrite {
2195 struct bch_fs *c;
2196 struct work_struct work;
2197 struct list_head list;
2198 enum btree_id btree_id;
2199 unsigned level;
2200 struct bkey_buf key;
2201 };
2202
async_btree_node_rewrite_trans(struct btree_trans * trans,struct async_btree_rewrite * a)2203 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2204 struct async_btree_rewrite *a)
2205 {
2206 struct btree_iter iter;
2207 bch2_trans_node_iter_init(trans, &iter,
2208 a->btree_id, a->key.k->k.p,
2209 BTREE_MAX_DEPTH, a->level, 0);
2210 struct btree *b = bch2_btree_iter_peek_node(&iter);
2211 int ret = PTR_ERR_OR_ZERO(b);
2212 if (ret)
2213 goto out;
2214
2215 bool found = b && btree_ptr_hash_val(&b->key) == btree_ptr_hash_val(a->key.k);
2216 ret = found
2217 ? bch2_btree_node_rewrite(trans, &iter, b, 0)
2218 : -ENOENT;
2219
2220 #if 0
2221 /* Tracepoint... */
2222 if (!ret || ret == -ENOENT) {
2223 struct bch_fs *c = trans->c;
2224 struct printbuf buf = PRINTBUF;
2225
2226 if (!ret) {
2227 prt_printf(&buf, "rewrite node:\n ");
2228 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(a->key.k));
2229 } else {
2230 prt_printf(&buf, "node to rewrite not found:\n want: ");
2231 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(a->key.k));
2232 prt_printf(&buf, "\n got: ");
2233 if (b)
2234 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2235 else
2236 prt_str(&buf, "(null)");
2237 }
2238 bch_info(c, "%s", buf.buf);
2239 printbuf_exit(&buf);
2240 }
2241 #endif
2242 out:
2243 bch2_trans_iter_exit(trans, &iter);
2244 return ret;
2245 }
2246
async_btree_node_rewrite_work(struct work_struct * work)2247 static void async_btree_node_rewrite_work(struct work_struct *work)
2248 {
2249 struct async_btree_rewrite *a =
2250 container_of(work, struct async_btree_rewrite, work);
2251 struct bch_fs *c = a->c;
2252
2253 int ret = bch2_trans_do(c, async_btree_node_rewrite_trans(trans, a));
2254 if (ret != -ENOENT)
2255 bch_err_fn_ratelimited(c, ret);
2256
2257 spin_lock(&c->btree_node_rewrites_lock);
2258 list_del(&a->list);
2259 spin_unlock(&c->btree_node_rewrites_lock);
2260
2261 closure_wake_up(&c->btree_node_rewrites_wait);
2262
2263 bch2_bkey_buf_exit(&a->key, c);
2264 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2265 kfree(a);
2266 }
2267
bch2_btree_node_rewrite_async(struct bch_fs * c,struct btree * b)2268 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2269 {
2270 struct async_btree_rewrite *a = kmalloc(sizeof(*a), GFP_NOFS);
2271 if (!a)
2272 return;
2273
2274 a->c = c;
2275 a->btree_id = b->c.btree_id;
2276 a->level = b->c.level;
2277 INIT_WORK(&a->work, async_btree_node_rewrite_work);
2278
2279 bch2_bkey_buf_init(&a->key);
2280 bch2_bkey_buf_copy(&a->key, c, &b->key);
2281
2282 bool now = false, pending = false;
2283
2284 spin_lock(&c->btree_node_rewrites_lock);
2285 if (c->curr_recovery_pass > BCH_RECOVERY_PASS_journal_replay &&
2286 bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2287 list_add(&a->list, &c->btree_node_rewrites);
2288 now = true;
2289 } else if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
2290 list_add(&a->list, &c->btree_node_rewrites_pending);
2291 pending = true;
2292 }
2293 spin_unlock(&c->btree_node_rewrites_lock);
2294
2295 if (now) {
2296 queue_work(c->btree_node_rewrite_worker, &a->work);
2297 } else if (pending) {
2298 /* bch2_do_pending_node_rewrites will execute */
2299 } else {
2300 bch2_bkey_buf_exit(&a->key, c);
2301 kfree(a);
2302 }
2303 }
2304
bch2_async_btree_node_rewrites_flush(struct bch_fs * c)2305 void bch2_async_btree_node_rewrites_flush(struct bch_fs *c)
2306 {
2307 closure_wait_event(&c->btree_node_rewrites_wait,
2308 list_empty(&c->btree_node_rewrites));
2309 }
2310
bch2_do_pending_node_rewrites(struct bch_fs * c)2311 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2312 {
2313 while (1) {
2314 spin_lock(&c->btree_node_rewrites_lock);
2315 struct async_btree_rewrite *a =
2316 list_pop_entry(&c->btree_node_rewrites_pending,
2317 struct async_btree_rewrite, list);
2318 if (a)
2319 list_add(&a->list, &c->btree_node_rewrites);
2320 spin_unlock(&c->btree_node_rewrites_lock);
2321
2322 if (!a)
2323 break;
2324
2325 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2326 queue_work(c->btree_node_rewrite_worker, &a->work);
2327 }
2328 }
2329
bch2_free_pending_node_rewrites(struct bch_fs * c)2330 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2331 {
2332 while (1) {
2333 spin_lock(&c->btree_node_rewrites_lock);
2334 struct async_btree_rewrite *a =
2335 list_pop_entry(&c->btree_node_rewrites_pending,
2336 struct async_btree_rewrite, list);
2337 spin_unlock(&c->btree_node_rewrites_lock);
2338
2339 if (!a)
2340 break;
2341
2342 bch2_bkey_buf_exit(&a->key, c);
2343 kfree(a);
2344 }
2345 }
2346
__bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct btree * new_hash,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2347 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2348 struct btree_iter *iter,
2349 struct btree *b, struct btree *new_hash,
2350 struct bkey_i *new_key,
2351 unsigned commit_flags,
2352 bool skip_triggers)
2353 {
2354 struct bch_fs *c = trans->c;
2355 struct btree_iter iter2 = { NULL };
2356 struct btree *parent;
2357 int ret;
2358
2359 if (!skip_triggers) {
2360 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2361 bkey_i_to_s_c(&b->key),
2362 BTREE_TRIGGER_transactional) ?:
2363 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2364 bkey_i_to_s(new_key),
2365 BTREE_TRIGGER_transactional);
2366 if (ret)
2367 return ret;
2368 }
2369
2370 if (new_hash) {
2371 bkey_copy(&new_hash->key, new_key);
2372 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2373 new_hash, b->c.level, b->c.btree_id);
2374 BUG_ON(ret);
2375 }
2376
2377 parent = btree_node_parent(btree_iter_path(trans, iter), b);
2378 if (parent) {
2379 bch2_trans_copy_iter(&iter2, iter);
2380
2381 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2382 iter2.flags & BTREE_ITER_intent,
2383 _THIS_IP_);
2384
2385 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2386 BUG_ON(path2->level != b->c.level);
2387 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2388
2389 btree_path_set_level_up(trans, path2);
2390
2391 trans->paths_sorted = false;
2392
2393 ret = bch2_btree_iter_traverse(&iter2) ?:
2394 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2395 if (ret)
2396 goto err;
2397 } else {
2398 BUG_ON(btree_node_root(c, b) != b);
2399
2400 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2401 jset_u64s(new_key->k.u64s));
2402 ret = PTR_ERR_OR_ZERO(e);
2403 if (ret)
2404 return ret;
2405
2406 journal_entry_set(e,
2407 BCH_JSET_ENTRY_btree_root,
2408 b->c.btree_id, b->c.level,
2409 new_key, new_key->k.u64s);
2410 }
2411
2412 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2413 if (ret)
2414 goto err;
2415
2416 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2417
2418 if (new_hash) {
2419 mutex_lock(&c->btree_cache.lock);
2420 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2421
2422 __bch2_btree_node_hash_remove(&c->btree_cache, b);
2423
2424 bkey_copy(&b->key, new_key);
2425 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2426 BUG_ON(ret);
2427 mutex_unlock(&c->btree_cache.lock);
2428 } else {
2429 bkey_copy(&b->key, new_key);
2430 }
2431
2432 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2433 out:
2434 bch2_trans_iter_exit(trans, &iter2);
2435 return ret;
2436 err:
2437 if (new_hash) {
2438 mutex_lock(&c->btree_cache.lock);
2439 bch2_btree_node_hash_remove(&c->btree_cache, b);
2440 mutex_unlock(&c->btree_cache.lock);
2441 }
2442 goto out;
2443 }
2444
bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2445 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2446 struct btree *b, struct bkey_i *new_key,
2447 unsigned commit_flags, bool skip_triggers)
2448 {
2449 struct bch_fs *c = trans->c;
2450 struct btree *new_hash = NULL;
2451 struct btree_path *path = btree_iter_path(trans, iter);
2452 struct closure cl;
2453 int ret = 0;
2454
2455 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2456 if (ret)
2457 return ret;
2458
2459 closure_init_stack(&cl);
2460
2461 /*
2462 * check btree_ptr_hash_val() after @b is locked by
2463 * btree_iter_traverse():
2464 */
2465 if (btree_ptr_hash_val(new_key) != b->hash_val) {
2466 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2467 if (ret) {
2468 ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2469 if (ret)
2470 return ret;
2471 }
2472
2473 new_hash = bch2_btree_node_mem_alloc(trans, false);
2474 ret = PTR_ERR_OR_ZERO(new_hash);
2475 if (ret)
2476 goto err;
2477 }
2478
2479 path->intent_ref++;
2480 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2481 commit_flags, skip_triggers);
2482 --path->intent_ref;
2483
2484 if (new_hash)
2485 bch2_btree_node_to_freelist(c, new_hash);
2486 err:
2487 closure_sync(&cl);
2488 bch2_btree_cache_cannibalize_unlock(trans);
2489 return ret;
2490 }
2491
bch2_btree_node_update_key_get_iter(struct btree_trans * trans,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2492 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2493 struct btree *b, struct bkey_i *new_key,
2494 unsigned commit_flags, bool skip_triggers)
2495 {
2496 struct btree_iter iter;
2497 int ret;
2498
2499 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2500 BTREE_MAX_DEPTH, b->c.level,
2501 BTREE_ITER_intent);
2502 ret = bch2_btree_iter_traverse(&iter);
2503 if (ret)
2504 goto out;
2505
2506 /* has node been freed? */
2507 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2508 /* node has been freed: */
2509 BUG_ON(!btree_node_dying(b));
2510 goto out;
2511 }
2512
2513 BUG_ON(!btree_node_hashed(b));
2514
2515 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2516 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2517
2518 ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2519 commit_flags, skip_triggers);
2520 out:
2521 bch2_trans_iter_exit(trans, &iter);
2522 return ret;
2523 }
2524
2525 /* Init code: */
2526
2527 /*
2528 * Only for filesystem bringup, when first reading the btree roots or allocating
2529 * btree roots when initializing a new filesystem:
2530 */
bch2_btree_set_root_for_read(struct bch_fs * c,struct btree * b)2531 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2532 {
2533 BUG_ON(btree_node_root(c, b));
2534
2535 bch2_btree_set_root_inmem(c, b);
2536 }
2537
bch2_btree_root_alloc_fake_trans(struct btree_trans * trans,enum btree_id id,unsigned level)2538 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2539 {
2540 struct bch_fs *c = trans->c;
2541 struct closure cl;
2542 struct btree *b;
2543 int ret;
2544
2545 closure_init_stack(&cl);
2546
2547 do {
2548 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2549 closure_sync(&cl);
2550 } while (ret);
2551
2552 b = bch2_btree_node_mem_alloc(trans, false);
2553 bch2_btree_cache_cannibalize_unlock(trans);
2554
2555 ret = PTR_ERR_OR_ZERO(b);
2556 if (ret)
2557 return ret;
2558
2559 set_btree_node_fake(b);
2560 set_btree_node_need_rewrite(b);
2561 b->c.level = level;
2562 b->c.btree_id = id;
2563
2564 bkey_btree_ptr_init(&b->key);
2565 b->key.k.p = SPOS_MAX;
2566 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2567
2568 bch2_bset_init_first(b, &b->data->keys);
2569 bch2_btree_build_aux_trees(b);
2570
2571 b->data->flags = 0;
2572 btree_set_min(b, POS_MIN);
2573 btree_set_max(b, SPOS_MAX);
2574 b->data->format = bch2_btree_calc_format(b);
2575 btree_node_set_format(b, b->data->format);
2576
2577 ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2578 b->c.level, b->c.btree_id);
2579 BUG_ON(ret);
2580
2581 bch2_btree_set_root_inmem(c, b);
2582
2583 six_unlock_write(&b->c.lock);
2584 six_unlock_intent(&b->c.lock);
2585 return 0;
2586 }
2587
bch2_btree_root_alloc_fake(struct bch_fs * c,enum btree_id id,unsigned level)2588 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2589 {
2590 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2591 }
2592
bch2_btree_update_to_text(struct printbuf * out,struct btree_update * as)2593 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2594 {
2595 prt_printf(out, "%ps: ", (void *) as->ip_started);
2596 bch2_trans_commit_flags_to_text(out, as->flags);
2597
2598 prt_str(out, " ");
2599 bch2_btree_id_to_text(out, as->btree_id);
2600 prt_printf(out, " l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2601 as->update_level_start,
2602 as->update_level_end,
2603 bch2_btree_update_modes[as->mode],
2604 as->nodes_written,
2605 closure_nr_remaining(&as->cl),
2606 as->journal.seq);
2607 }
2608
bch2_btree_updates_to_text(struct printbuf * out,struct bch_fs * c)2609 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2610 {
2611 struct btree_update *as;
2612
2613 mutex_lock(&c->btree_interior_update_lock);
2614 list_for_each_entry(as, &c->btree_interior_update_list, list)
2615 bch2_btree_update_to_text(out, as);
2616 mutex_unlock(&c->btree_interior_update_lock);
2617 }
2618
bch2_btree_interior_updates_pending(struct bch_fs * c)2619 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2620 {
2621 bool ret;
2622
2623 mutex_lock(&c->btree_interior_update_lock);
2624 ret = !list_empty(&c->btree_interior_update_list);
2625 mutex_unlock(&c->btree_interior_update_lock);
2626
2627 return ret;
2628 }
2629
bch2_btree_interior_updates_flush(struct bch_fs * c)2630 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2631 {
2632 bool ret = bch2_btree_interior_updates_pending(c);
2633
2634 if (ret)
2635 closure_wait_event(&c->btree_interior_update_wait,
2636 !bch2_btree_interior_updates_pending(c));
2637 return ret;
2638 }
2639
bch2_journal_entry_to_btree_root(struct bch_fs * c,struct jset_entry * entry)2640 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2641 {
2642 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2643
2644 mutex_lock(&c->btree_root_lock);
2645
2646 r->level = entry->level;
2647 r->alive = true;
2648 bkey_copy(&r->key, (struct bkey_i *) entry->start);
2649
2650 mutex_unlock(&c->btree_root_lock);
2651 }
2652
2653 struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs * c,struct jset_entry * end,unsigned long skip)2654 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2655 struct jset_entry *end,
2656 unsigned long skip)
2657 {
2658 unsigned i;
2659
2660 mutex_lock(&c->btree_root_lock);
2661
2662 for (i = 0; i < btree_id_nr_alive(c); i++) {
2663 struct btree_root *r = bch2_btree_id_root(c, i);
2664
2665 if (r->alive && !test_bit(i, &skip)) {
2666 journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2667 i, r->level, &r->key, r->key.k.u64s);
2668 end = vstruct_next(end);
2669 }
2670 }
2671
2672 mutex_unlock(&c->btree_root_lock);
2673
2674 return end;
2675 }
2676
bch2_btree_alloc_to_text(struct printbuf * out,struct bch_fs * c,struct btree_alloc * a)2677 static void bch2_btree_alloc_to_text(struct printbuf *out,
2678 struct bch_fs *c,
2679 struct btree_alloc *a)
2680 {
2681 printbuf_indent_add(out, 2);
2682 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2683 prt_newline(out);
2684
2685 struct open_bucket *ob;
2686 unsigned i;
2687 open_bucket_for_each(c, &a->ob, ob, i)
2688 bch2_open_bucket_to_text(out, c, ob);
2689
2690 printbuf_indent_sub(out, 2);
2691 }
2692
bch2_btree_reserve_cache_to_text(struct printbuf * out,struct bch_fs * c)2693 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2694 {
2695 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2696 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2697 }
2698
bch2_fs_btree_interior_update_exit(struct bch_fs * c)2699 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2700 {
2701 WARN_ON(!list_empty(&c->btree_node_rewrites));
2702 WARN_ON(!list_empty(&c->btree_node_rewrites_pending));
2703
2704 if (c->btree_node_rewrite_worker)
2705 destroy_workqueue(c->btree_node_rewrite_worker);
2706 if (c->btree_interior_update_worker)
2707 destroy_workqueue(c->btree_interior_update_worker);
2708 mempool_exit(&c->btree_interior_update_pool);
2709 }
2710
bch2_fs_btree_interior_update_init_early(struct bch_fs * c)2711 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2712 {
2713 mutex_init(&c->btree_reserve_cache_lock);
2714 INIT_LIST_HEAD(&c->btree_interior_update_list);
2715 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2716 mutex_init(&c->btree_interior_update_lock);
2717 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2718
2719 INIT_LIST_HEAD(&c->btree_node_rewrites);
2720 INIT_LIST_HEAD(&c->btree_node_rewrites_pending);
2721 spin_lock_init(&c->btree_node_rewrites_lock);
2722 }
2723
bch2_fs_btree_interior_update_init(struct bch_fs * c)2724 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2725 {
2726 c->btree_interior_update_worker =
2727 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2728 if (!c->btree_interior_update_worker)
2729 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2730
2731 c->btree_node_rewrite_worker =
2732 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2733 if (!c->btree_node_rewrite_worker)
2734 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2735
2736 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2737 sizeof(struct btree_update)))
2738 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2739
2740 return 0;
2741 }
2742