1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 #include "delayed-inode.h"
54
55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
56 BTRFS_HEADER_FLAG_RELOC |\
57 BTRFS_SUPER_FLAG_ERROR |\
58 BTRFS_SUPER_FLAG_SEEDING |\
59 BTRFS_SUPER_FLAG_METADUMP |\
60 BTRFS_SUPER_FLAG_METADUMP_V2)
61
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66 {
67 if (fs_info->csum_shash)
68 crypto_free_shash(fs_info->csum_shash);
69 }
70
71 /*
72 * Compute the csum of a btree block and store the result to provided buffer.
73 */
csum_tree_block(struct extent_buffer * buf,u8 * result)74 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75 {
76 struct btrfs_fs_info *fs_info = buf->fs_info;
77 int num_pages;
78 u32 first_page_part;
79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 char *kaddr;
81 int i;
82
83 shash->tfm = fs_info->csum_shash;
84 crypto_shash_init(shash);
85
86 if (buf->addr) {
87 /* Pages are contiguous, handle them as a big one. */
88 kaddr = buf->addr;
89 first_page_part = fs_info->nodesize;
90 num_pages = 1;
91 } else {
92 kaddr = folio_address(buf->folios[0]);
93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
94 num_pages = num_extent_pages(buf);
95 }
96
97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
98 first_page_part - BTRFS_CSUM_SIZE);
99
100 /*
101 * Multiple single-page folios case would reach here.
102 *
103 * nodesize <= PAGE_SIZE and large folio all handled by above
104 * crypto_shash_update() already.
105 */
106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
107 kaddr = folio_address(buf->folios[i]);
108 crypto_shash_update(shash, kaddr, PAGE_SIZE);
109 }
110 memset(result, 0, BTRFS_CSUM_SIZE);
111 crypto_shash_final(shash, result);
112 }
113
114 /*
115 * we can't consider a given block up to date unless the transid of the
116 * block matches the transid in the parent node's pointer. This is how we
117 * detect blocks that either didn't get written at all or got written
118 * in the wrong place.
119 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,bool atomic)120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic)
121 {
122 if (!extent_buffer_uptodate(eb))
123 return 0;
124
125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
126 return 1;
127
128 if (atomic)
129 return -EAGAIN;
130
131 if (!extent_buffer_uptodate(eb) ||
132 btrfs_header_generation(eb) != parent_transid) {
133 btrfs_err_rl(eb->fs_info,
134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
135 eb->start, eb->read_mirror,
136 parent_transid, btrfs_header_generation(eb));
137 clear_extent_buffer_uptodate(eb);
138 return 0;
139 }
140 return 1;
141 }
142
btrfs_supported_super_csum(u16 csum_type)143 static bool btrfs_supported_super_csum(u16 csum_type)
144 {
145 switch (csum_type) {
146 case BTRFS_CSUM_TYPE_CRC32:
147 case BTRFS_CSUM_TYPE_XXHASH:
148 case BTRFS_CSUM_TYPE_SHA256:
149 case BTRFS_CSUM_TYPE_BLAKE2:
150 return true;
151 default:
152 return false;
153 }
154 }
155
156 /*
157 * Return 0 if the superblock checksum type matches the checksum value of that
158 * algorithm. Pass the raw disk superblock data.
159 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
161 const struct btrfs_super_block *disk_sb)
162 {
163 char result[BTRFS_CSUM_SIZE];
164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
165
166 shash->tfm = fs_info->csum_shash;
167
168 /*
169 * The super_block structure does not span the whole
170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
171 * filled with zeros and is included in the checksum.
172 */
173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
175
176 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
177 return 1;
178
179 return 0;
180 }
181
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
183 int mirror_num)
184 {
185 struct btrfs_fs_info *fs_info = eb->fs_info;
186 const u32 step = min(fs_info->nodesize, PAGE_SIZE);
187 const u32 nr_steps = eb->len / step;
188 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
189 int ret = 0;
190
191 if (sb_rdonly(fs_info->sb))
192 return -EROFS;
193
194 for (int i = 0; i < num_extent_pages(eb); i++) {
195 struct folio *folio = eb->folios[i];
196
197 /* No large folio support yet. */
198 ASSERT(folio_order(folio) == 0);
199 ASSERT(i < nr_steps);
200
201 /*
202 * For nodesize < page size, there is just one paddr, with some
203 * offset inside the page.
204 *
205 * For nodesize >= page size, it's one or more paddrs, and eb->start
206 * must be aligned to page boundary.
207 */
208 paddrs[i] = page_to_phys(&folio->page) + offset_in_page(eb->start);
209 }
210
211 ret = btrfs_repair_io_failure(fs_info, 0, eb->start, eb->len, eb->start,
212 paddrs, step, mirror_num);
213 return ret;
214 }
215
216 /*
217 * helper to read a given tree block, doing retries as required when
218 * the checksums don't match and we have alternate mirrors to try.
219 *
220 * @check: expected tree parentness check, see the comments of the
221 * structure for details.
222 */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)223 int btrfs_read_extent_buffer(struct extent_buffer *eb,
224 const struct btrfs_tree_parent_check *check)
225 {
226 struct btrfs_fs_info *fs_info = eb->fs_info;
227 int failed = 0;
228 int ret;
229 int num_copies = 0;
230 int mirror_num = 0;
231 int failed_mirror = 0;
232
233 ASSERT(check);
234
235 while (1) {
236 ret = read_extent_buffer_pages(eb, mirror_num, check);
237 if (!ret)
238 break;
239
240 num_copies = btrfs_num_copies(fs_info,
241 eb->start, eb->len);
242 if (num_copies == 1)
243 break;
244
245 if (!failed_mirror) {
246 failed = 1;
247 failed_mirror = eb->read_mirror;
248 }
249
250 mirror_num++;
251 if (mirror_num == failed_mirror)
252 mirror_num++;
253
254 if (mirror_num > num_copies)
255 break;
256 }
257
258 if (failed && !ret && failed_mirror)
259 btrfs_repair_eb_io_failure(eb, failed_mirror);
260
261 return ret;
262 }
263
264 /*
265 * Checksum a dirty tree block before IO.
266 */
btree_csum_one_bio(struct btrfs_bio * bbio)267 int btree_csum_one_bio(struct btrfs_bio *bbio)
268 {
269 struct extent_buffer *eb = bbio->private;
270 struct btrfs_fs_info *fs_info = eb->fs_info;
271 u64 found_start = btrfs_header_bytenr(eb);
272 u64 last_trans;
273 u8 result[BTRFS_CSUM_SIZE];
274 int ret;
275
276 /* Btree blocks are always contiguous on disk. */
277 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
278 return -EIO;
279 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
280 return -EIO;
281
282 /*
283 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
284 * checksum it but zero-out its content. This is done to preserve
285 * ordering of I/O without unnecessarily writing out data.
286 */
287 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
288 memzero_extent_buffer(eb, 0, eb->len);
289 return 0;
290 }
291
292 if (WARN_ON_ONCE(found_start != eb->start))
293 return -EIO;
294 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
295 return -EIO;
296
297 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
298 offsetof(struct btrfs_header, fsid),
299 BTRFS_FSID_SIZE) == 0);
300 csum_tree_block(eb, result);
301
302 if (btrfs_header_level(eb))
303 ret = btrfs_check_node(eb);
304 else
305 ret = btrfs_check_leaf(eb);
306
307 if (ret < 0)
308 goto error;
309
310 /*
311 * Also check the generation, the eb reached here must be newer than
312 * last committed. Or something seriously wrong happened.
313 */
314 last_trans = btrfs_get_last_trans_committed(fs_info);
315 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
316 ret = -EUCLEAN;
317 btrfs_err(fs_info,
318 "block=%llu bad generation, have %llu expect > %llu",
319 eb->start, btrfs_header_generation(eb), last_trans);
320 goto error;
321 }
322 write_extent_buffer(eb, result, 0, fs_info->csum_size);
323 return 0;
324
325 error:
326 btrfs_print_tree(eb, 0);
327 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
328 eb->start);
329 /*
330 * Be noisy if this is an extent buffer from a log tree. We don't abort
331 * a transaction in case there's a bad log tree extent buffer, we just
332 * fallback to a transaction commit. Still we want to know when there is
333 * a bad log tree extent buffer, as that may signal a bug somewhere.
334 */
335 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
336 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
337 return ret;
338 }
339
check_tree_block_fsid(struct extent_buffer * eb)340 static bool check_tree_block_fsid(struct extent_buffer *eb)
341 {
342 struct btrfs_fs_info *fs_info = eb->fs_info;
343 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
344 u8 fsid[BTRFS_FSID_SIZE];
345
346 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
347 BTRFS_FSID_SIZE);
348
349 /*
350 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
351 * This is then overwritten by metadata_uuid if it is present in the
352 * device_list_add(). The same true for a seed device as well. So use of
353 * fs_devices::metadata_uuid is appropriate here.
354 */
355 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
356 return false;
357
358 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
359 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
360 return false;
361
362 return true;
363 }
364
365 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)366 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
367 const struct btrfs_tree_parent_check *check)
368 {
369 struct btrfs_fs_info *fs_info = eb->fs_info;
370 u64 found_start;
371 const u32 csum_size = fs_info->csum_size;
372 u8 found_level;
373 u8 result[BTRFS_CSUM_SIZE];
374 const u8 *header_csum;
375 int ret = 0;
376 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
377
378 ASSERT(check);
379
380 found_start = btrfs_header_bytenr(eb);
381 if (unlikely(found_start != eb->start)) {
382 btrfs_err_rl(fs_info,
383 "bad tree block start, mirror %u want %llu have %llu",
384 eb->read_mirror, eb->start, found_start);
385 ret = -EIO;
386 goto out;
387 }
388 if (unlikely(check_tree_block_fsid(eb))) {
389 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
390 eb->start, eb->read_mirror);
391 ret = -EIO;
392 goto out;
393 }
394 found_level = btrfs_header_level(eb);
395 if (unlikely(found_level >= BTRFS_MAX_LEVEL)) {
396 btrfs_err(fs_info,
397 "bad tree block level, mirror %u level %d on logical %llu",
398 eb->read_mirror, btrfs_header_level(eb), eb->start);
399 ret = -EIO;
400 goto out;
401 }
402
403 csum_tree_block(eb, result);
404 header_csum = folio_address(eb->folios[0]) +
405 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
406
407 if (memcmp(result, header_csum, csum_size) != 0) {
408 btrfs_warn_rl(fs_info,
409 "checksum verify failed on logical %llu mirror %u wanted " BTRFS_CSUM_FMT " found " BTRFS_CSUM_FMT " level %d%s",
410 eb->start, eb->read_mirror,
411 BTRFS_CSUM_FMT_VALUE(csum_size, header_csum),
412 BTRFS_CSUM_FMT_VALUE(csum_size, result),
413 btrfs_header_level(eb),
414 ignore_csum ? ", ignored" : "");
415 if (unlikely(!ignore_csum)) {
416 ret = -EUCLEAN;
417 goto out;
418 }
419 }
420
421 if (unlikely(found_level != check->level)) {
422 btrfs_err(fs_info,
423 "level verify failed on logical %llu mirror %u wanted %u found %u",
424 eb->start, eb->read_mirror, check->level, found_level);
425 ret = -EIO;
426 goto out;
427 }
428 if (unlikely(check->transid &&
429 btrfs_header_generation(eb) != check->transid)) {
430 btrfs_err_rl(eb->fs_info,
431 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
432 eb->start, eb->read_mirror, check->transid,
433 btrfs_header_generation(eb));
434 ret = -EIO;
435 goto out;
436 }
437 if (check->has_first_key) {
438 const struct btrfs_key *expect_key = &check->first_key;
439 struct btrfs_key found_key;
440
441 if (found_level)
442 btrfs_node_key_to_cpu(eb, &found_key, 0);
443 else
444 btrfs_item_key_to_cpu(eb, &found_key, 0);
445 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
446 btrfs_err(fs_info,
447 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
448 eb->start, check->transid,
449 expect_key->objectid,
450 expect_key->type, expect_key->offset,
451 found_key.objectid, found_key.type,
452 found_key.offset);
453 ret = -EUCLEAN;
454 goto out;
455 }
456 }
457 if (check->owner_root) {
458 ret = btrfs_check_eb_owner(eb, check->owner_root);
459 if (ret < 0)
460 goto out;
461 }
462
463 /* If this is a leaf block and it is corrupt, just return -EIO. */
464 if (found_level == 0 && btrfs_check_leaf(eb))
465 ret = -EIO;
466
467 if (found_level > 0 && btrfs_check_node(eb))
468 ret = -EIO;
469
470 if (ret)
471 btrfs_err(fs_info,
472 "read time tree block corruption detected on logical %llu mirror %u",
473 eb->start, eb->read_mirror);
474 out:
475 return ret;
476 }
477
478 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)479 static int btree_migrate_folio(struct address_space *mapping,
480 struct folio *dst, struct folio *src, enum migrate_mode mode)
481 {
482 /*
483 * we can't safely write a btree page from here,
484 * we haven't done the locking hook
485 */
486 if (folio_test_dirty(src))
487 return -EAGAIN;
488 /*
489 * Buffers may be managed in a filesystem specific way.
490 * We must have no buffers or drop them.
491 */
492 if (folio_get_private(src) &&
493 !filemap_release_folio(src, GFP_KERNEL))
494 return -EAGAIN;
495 return migrate_folio(mapping, dst, src, mode);
496 }
497 #else
498 #define btree_migrate_folio NULL
499 #endif
500
btree_release_folio(struct folio * folio,gfp_t gfp_flags)501 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
502 {
503 if (folio_test_writeback(folio) || folio_test_dirty(folio))
504 return false;
505
506 return try_release_extent_buffer(folio);
507 }
508
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)509 static void btree_invalidate_folio(struct folio *folio, size_t offset,
510 size_t length)
511 {
512 struct extent_io_tree *tree;
513
514 tree = &folio_to_inode(folio)->io_tree;
515 extent_invalidate_folio(tree, folio, offset);
516 btree_release_folio(folio, GFP_NOFS);
517 if (folio_get_private(folio)) {
518 btrfs_warn(folio_to_fs_info(folio),
519 "folio private not zero on folio %llu",
520 (unsigned long long)folio_pos(folio));
521 folio_detach_private(folio);
522 }
523 }
524
525 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)526 static bool btree_dirty_folio(struct address_space *mapping,
527 struct folio *folio)
528 {
529 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
530 struct btrfs_subpage_info *spi = fs_info->subpage_info;
531 struct btrfs_subpage *subpage;
532 struct extent_buffer *eb;
533 int cur_bit = 0;
534 u64 page_start = folio_pos(folio);
535
536 if (fs_info->sectorsize == PAGE_SIZE) {
537 eb = folio_get_private(folio);
538 BUG_ON(!eb);
539 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
540 BUG_ON(!atomic_read(&eb->refs));
541 btrfs_assert_tree_write_locked(eb);
542 return filemap_dirty_folio(mapping, folio);
543 }
544
545 ASSERT(spi);
546 subpage = folio_get_private(folio);
547
548 for (cur_bit = spi->dirty_offset;
549 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
550 cur_bit++) {
551 unsigned long flags;
552 u64 cur;
553
554 spin_lock_irqsave(&subpage->lock, flags);
555 if (!test_bit(cur_bit, subpage->bitmaps)) {
556 spin_unlock_irqrestore(&subpage->lock, flags);
557 continue;
558 }
559 spin_unlock_irqrestore(&subpage->lock, flags);
560 cur = page_start + cur_bit * fs_info->sectorsize;
561
562 eb = find_extent_buffer(fs_info, cur);
563 ASSERT(eb);
564 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
565 ASSERT(atomic_read(&eb->refs));
566 btrfs_assert_tree_write_locked(eb);
567 free_extent_buffer(eb);
568
569 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
570 }
571 return filemap_dirty_folio(mapping, folio);
572 }
573 #else
574 #define btree_dirty_folio filemap_dirty_folio
575 #endif
576
577 static const struct address_space_operations btree_aops = {
578 .writepages = btree_writepages,
579 .release_folio = btree_release_folio,
580 .invalidate_folio = btree_invalidate_folio,
581 .migrate_folio = btree_migrate_folio,
582 .dirty_folio = btree_dirty_folio,
583 };
584
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)585 struct extent_buffer *btrfs_find_create_tree_block(
586 struct btrfs_fs_info *fs_info,
587 u64 bytenr, u64 owner_root,
588 int level)
589 {
590 if (btrfs_is_testing(fs_info))
591 return alloc_test_extent_buffer(fs_info, bytenr);
592 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
593 }
594
595 /*
596 * Read tree block at logical address @bytenr and do variant basic but critical
597 * verification.
598 *
599 * @check: expected tree parentness check, see comments of the
600 * structure for details.
601 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)602 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
603 struct btrfs_tree_parent_check *check)
604 {
605 struct extent_buffer *buf = NULL;
606 int ret;
607
608 ASSERT(check);
609
610 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
611 check->level);
612 if (IS_ERR(buf))
613 return buf;
614
615 ret = btrfs_read_extent_buffer(buf, check);
616 if (ret) {
617 free_extent_buffer_stale(buf);
618 return ERR_PTR(ret);
619 }
620 return buf;
621
622 }
623
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)624 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
625 u64 objectid, gfp_t flags)
626 {
627 struct btrfs_root *root;
628
629 root = kzalloc(sizeof(*root), flags);
630 if (!root)
631 return NULL;
632
633 root->fs_info = fs_info;
634 root->root_key.objectid = objectid;
635 RB_CLEAR_NODE(&root->rb_node);
636
637 xa_init(&root->inodes);
638 xa_init(&root->delayed_nodes);
639
640 btrfs_init_root_block_rsv(root);
641
642 INIT_LIST_HEAD(&root->dirty_list);
643 INIT_LIST_HEAD(&root->root_list);
644 INIT_LIST_HEAD(&root->delalloc_inodes);
645 INIT_LIST_HEAD(&root->delalloc_root);
646 INIT_LIST_HEAD(&root->ordered_extents);
647 INIT_LIST_HEAD(&root->ordered_root);
648 INIT_LIST_HEAD(&root->reloc_dirty_list);
649 spin_lock_init(&root->delalloc_lock);
650 spin_lock_init(&root->ordered_extent_lock);
651 spin_lock_init(&root->accounting_lock);
652 spin_lock_init(&root->qgroup_meta_rsv_lock);
653 mutex_init(&root->objectid_mutex);
654 mutex_init(&root->log_mutex);
655 mutex_init(&root->ordered_extent_mutex);
656 mutex_init(&root->delalloc_mutex);
657 init_waitqueue_head(&root->qgroup_flush_wait);
658 init_waitqueue_head(&root->log_writer_wait);
659 init_waitqueue_head(&root->log_commit_wait[0]);
660 init_waitqueue_head(&root->log_commit_wait[1]);
661 INIT_LIST_HEAD(&root->log_ctxs[0]);
662 INIT_LIST_HEAD(&root->log_ctxs[1]);
663 atomic_set(&root->log_commit[0], 0);
664 atomic_set(&root->log_commit[1], 0);
665 atomic_set(&root->log_writers, 0);
666 atomic_set(&root->log_batch, 0);
667 refcount_set(&root->refs, 1);
668 atomic_set(&root->snapshot_force_cow, 0);
669 atomic_set(&root->nr_swapfiles, 0);
670 root->log_transid_committed = -1;
671 if (!btrfs_is_testing(fs_info)) {
672 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages,
673 IO_TREE_ROOT_DIRTY_LOG_PAGES);
674 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range,
675 IO_TREE_LOG_CSUM_RANGE);
676 }
677
678 spin_lock_init(&root->root_item_lock);
679 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
680 #ifdef CONFIG_BTRFS_DEBUG
681 INIT_LIST_HEAD(&root->leak_list);
682 spin_lock(&fs_info->fs_roots_radix_lock);
683 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
684 spin_unlock(&fs_info->fs_roots_radix_lock);
685 #endif
686
687 return root;
688 }
689
690 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
691 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)692 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
693 {
694 struct btrfs_root *root;
695
696 if (!fs_info)
697 return ERR_PTR(-EINVAL);
698
699 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
700 if (!root)
701 return ERR_PTR(-ENOMEM);
702
703 /* We don't use the stripesize in selftest, set it as sectorsize */
704 root->alloc_bytenr = 0;
705
706 return root;
707 }
708 #endif
709
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)710 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
711 {
712 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
713 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
714
715 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
716 }
717
global_root_key_cmp(const void * k,const struct rb_node * node)718 static int global_root_key_cmp(const void *k, const struct rb_node *node)
719 {
720 const struct btrfs_key *key = k;
721 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
722
723 return btrfs_comp_cpu_keys(key, &root->root_key);
724 }
725
btrfs_global_root_insert(struct btrfs_root * root)726 int btrfs_global_root_insert(struct btrfs_root *root)
727 {
728 struct btrfs_fs_info *fs_info = root->fs_info;
729 struct rb_node *tmp;
730 int ret = 0;
731
732 write_lock(&fs_info->global_root_lock);
733 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
734 write_unlock(&fs_info->global_root_lock);
735
736 if (tmp) {
737 ret = -EEXIST;
738 btrfs_warn(fs_info, "global root %llu %llu already exists",
739 btrfs_root_id(root), root->root_key.offset);
740 }
741 return ret;
742 }
743
btrfs_global_root_delete(struct btrfs_root * root)744 void btrfs_global_root_delete(struct btrfs_root *root)
745 {
746 struct btrfs_fs_info *fs_info = root->fs_info;
747
748 write_lock(&fs_info->global_root_lock);
749 rb_erase(&root->rb_node, &fs_info->global_root_tree);
750 write_unlock(&fs_info->global_root_lock);
751 }
752
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)753 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
754 struct btrfs_key *key)
755 {
756 struct rb_node *node;
757 struct btrfs_root *root = NULL;
758
759 read_lock(&fs_info->global_root_lock);
760 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
761 if (node)
762 root = container_of(node, struct btrfs_root, rb_node);
763 read_unlock(&fs_info->global_root_lock);
764
765 return root;
766 }
767
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)768 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
769 {
770 struct btrfs_block_group *block_group;
771 u64 ret;
772
773 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
774 return 0;
775
776 if (bytenr)
777 block_group = btrfs_lookup_block_group(fs_info, bytenr);
778 else
779 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
780 ASSERT(block_group);
781 if (!block_group)
782 return 0;
783 ret = block_group->global_root_id;
784 btrfs_put_block_group(block_group);
785
786 return ret;
787 }
788
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)789 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
790 {
791 struct btrfs_key key = {
792 .objectid = BTRFS_CSUM_TREE_OBJECTID,
793 .type = BTRFS_ROOT_ITEM_KEY,
794 .offset = btrfs_global_root_id(fs_info, bytenr),
795 };
796
797 return btrfs_global_root(fs_info, &key);
798 }
799
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)800 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
801 {
802 struct btrfs_key key = {
803 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
804 .type = BTRFS_ROOT_ITEM_KEY,
805 .offset = btrfs_global_root_id(fs_info, bytenr),
806 };
807
808 return btrfs_global_root(fs_info, &key);
809 }
810
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)811 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
812 u64 objectid)
813 {
814 struct btrfs_fs_info *fs_info = trans->fs_info;
815 struct extent_buffer *leaf;
816 struct btrfs_root *tree_root = fs_info->tree_root;
817 struct btrfs_root *root;
818 struct btrfs_key key;
819 unsigned int nofs_flag;
820 int ret = 0;
821
822 /*
823 * We're holding a transaction handle, so use a NOFS memory allocation
824 * context to avoid deadlock if reclaim happens.
825 */
826 nofs_flag = memalloc_nofs_save();
827 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
828 memalloc_nofs_restore(nofs_flag);
829 if (!root)
830 return ERR_PTR(-ENOMEM);
831
832 root->root_key.objectid = objectid;
833 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
834 root->root_key.offset = 0;
835
836 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
837 0, BTRFS_NESTING_NORMAL);
838 if (IS_ERR(leaf)) {
839 ret = PTR_ERR(leaf);
840 leaf = NULL;
841 goto fail;
842 }
843
844 root->node = leaf;
845 btrfs_mark_buffer_dirty(trans, leaf);
846
847 root->commit_root = btrfs_root_node(root);
848 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
849
850 btrfs_set_root_flags(&root->root_item, 0);
851 btrfs_set_root_limit(&root->root_item, 0);
852 btrfs_set_root_bytenr(&root->root_item, leaf->start);
853 btrfs_set_root_generation(&root->root_item, trans->transid);
854 btrfs_set_root_level(&root->root_item, 0);
855 btrfs_set_root_refs(&root->root_item, 1);
856 btrfs_set_root_used(&root->root_item, leaf->len);
857 btrfs_set_root_last_snapshot(&root->root_item, 0);
858 btrfs_set_root_dirid(&root->root_item, 0);
859 if (btrfs_is_fstree(objectid))
860 generate_random_guid(root->root_item.uuid);
861 else
862 export_guid(root->root_item.uuid, &guid_null);
863 btrfs_set_root_drop_level(&root->root_item, 0);
864
865 btrfs_tree_unlock(leaf);
866
867 key.objectid = objectid;
868 key.type = BTRFS_ROOT_ITEM_KEY;
869 key.offset = 0;
870 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
871 if (ret)
872 goto fail;
873
874 return root;
875
876 fail:
877 btrfs_put_root(root);
878
879 return ERR_PTR(ret);
880 }
881
alloc_log_tree(struct btrfs_fs_info * fs_info)882 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
883 {
884 struct btrfs_root *root;
885
886 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
887 if (!root)
888 return ERR_PTR(-ENOMEM);
889
890 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
891 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
892 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
893
894 return root;
895 }
896
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)897 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
898 struct btrfs_root *root)
899 {
900 struct extent_buffer *leaf;
901
902 /*
903 * DON'T set SHAREABLE bit for log trees.
904 *
905 * Log trees are not exposed to user space thus can't be snapshotted,
906 * and they go away before a real commit is actually done.
907 *
908 * They do store pointers to file data extents, and those reference
909 * counts still get updated (along with back refs to the log tree).
910 */
911
912 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
913 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
914 if (IS_ERR(leaf))
915 return PTR_ERR(leaf);
916
917 root->node = leaf;
918
919 btrfs_mark_buffer_dirty(trans, root->node);
920 btrfs_tree_unlock(root->node);
921
922 return 0;
923 }
924
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)925 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
926 struct btrfs_fs_info *fs_info)
927 {
928 struct btrfs_root *log_root;
929
930 log_root = alloc_log_tree(fs_info);
931 if (IS_ERR(log_root))
932 return PTR_ERR(log_root);
933
934 if (!btrfs_is_zoned(fs_info)) {
935 int ret = btrfs_alloc_log_tree_node(trans, log_root);
936
937 if (ret) {
938 btrfs_put_root(log_root);
939 return ret;
940 }
941 }
942
943 WARN_ON(fs_info->log_root_tree);
944 fs_info->log_root_tree = log_root;
945 return 0;
946 }
947
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)948 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
949 struct btrfs_root *root)
950 {
951 struct btrfs_fs_info *fs_info = root->fs_info;
952 struct btrfs_root *log_root;
953 struct btrfs_inode_item *inode_item;
954 int ret;
955
956 log_root = alloc_log_tree(fs_info);
957 if (IS_ERR(log_root))
958 return PTR_ERR(log_root);
959
960 ret = btrfs_alloc_log_tree_node(trans, log_root);
961 if (ret) {
962 btrfs_put_root(log_root);
963 return ret;
964 }
965
966 btrfs_set_root_last_trans(log_root, trans->transid);
967 log_root->root_key.offset = btrfs_root_id(root);
968
969 inode_item = &log_root->root_item.inode;
970 btrfs_set_stack_inode_generation(inode_item, 1);
971 btrfs_set_stack_inode_size(inode_item, 3);
972 btrfs_set_stack_inode_nlink(inode_item, 1);
973 btrfs_set_stack_inode_nbytes(inode_item,
974 fs_info->nodesize);
975 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
976
977 btrfs_set_root_node(&log_root->root_item, log_root->node);
978
979 WARN_ON(root->log_root);
980 root->log_root = log_root;
981 btrfs_set_root_log_transid(root, 0);
982 root->log_transid_committed = -1;
983 btrfs_set_root_last_log_commit(root, 0);
984 return 0;
985 }
986
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)987 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
988 struct btrfs_path *path,
989 const struct btrfs_key *key)
990 {
991 struct btrfs_root *root;
992 struct btrfs_tree_parent_check check = { 0 };
993 struct btrfs_fs_info *fs_info = tree_root->fs_info;
994 u64 generation;
995 int ret;
996 int level;
997
998 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
999 if (!root)
1000 return ERR_PTR(-ENOMEM);
1001
1002 ret = btrfs_find_root(tree_root, key, path,
1003 &root->root_item, &root->root_key);
1004 if (ret) {
1005 if (ret > 0)
1006 ret = -ENOENT;
1007 goto fail;
1008 }
1009
1010 generation = btrfs_root_generation(&root->root_item);
1011 level = btrfs_root_level(&root->root_item);
1012 check.level = level;
1013 check.transid = generation;
1014 check.owner_root = key->objectid;
1015 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1016 &check);
1017 if (IS_ERR(root->node)) {
1018 ret = PTR_ERR(root->node);
1019 root->node = NULL;
1020 goto fail;
1021 }
1022 if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) {
1023 ret = -EIO;
1024 goto fail;
1025 }
1026
1027 /*
1028 * For real fs, and not log/reloc trees, root owner must
1029 * match its root node owner
1030 */
1031 if (unlikely(!btrfs_is_testing(fs_info) &&
1032 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1033 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1034 btrfs_root_id(root) != btrfs_header_owner(root->node))) {
1035 btrfs_crit(fs_info,
1036 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1037 btrfs_root_id(root), root->node->start,
1038 btrfs_header_owner(root->node),
1039 btrfs_root_id(root));
1040 ret = -EUCLEAN;
1041 goto fail;
1042 }
1043 root->commit_root = btrfs_root_node(root);
1044 return root;
1045 fail:
1046 btrfs_put_root(root);
1047 return ERR_PTR(ret);
1048 }
1049
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1050 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1051 const struct btrfs_key *key)
1052 {
1053 struct btrfs_root *root;
1054 BTRFS_PATH_AUTO_FREE(path);
1055
1056 path = btrfs_alloc_path();
1057 if (!path)
1058 return ERR_PTR(-ENOMEM);
1059 root = read_tree_root_path(tree_root, path, key);
1060
1061 return root;
1062 }
1063
1064 /*
1065 * Initialize subvolume root in-memory structure.
1066 *
1067 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1068 *
1069 * In case of failure the caller is responsible to call btrfs_free_fs_root()
1070 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1071 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1072 {
1073 int ret;
1074
1075 btrfs_drew_lock_init(&root->snapshot_lock);
1076
1077 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1078 !btrfs_is_data_reloc_root(root) &&
1079 btrfs_is_fstree(btrfs_root_id(root))) {
1080 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1081 btrfs_check_and_init_root_item(&root->root_item);
1082 }
1083
1084 /*
1085 * Don't assign anonymous block device to roots that are not exposed to
1086 * userspace, the id pool is limited to 1M
1087 */
1088 if (btrfs_is_fstree(btrfs_root_id(root)) &&
1089 btrfs_root_refs(&root->root_item) > 0) {
1090 if (!anon_dev) {
1091 ret = get_anon_bdev(&root->anon_dev);
1092 if (ret)
1093 return ret;
1094 } else {
1095 root->anon_dev = anon_dev;
1096 }
1097 }
1098
1099 mutex_lock(&root->objectid_mutex);
1100 ret = btrfs_init_root_free_objectid(root);
1101 if (ret) {
1102 mutex_unlock(&root->objectid_mutex);
1103 return ret;
1104 }
1105
1106 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1107
1108 mutex_unlock(&root->objectid_mutex);
1109
1110 return 0;
1111 }
1112
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1113 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1114 u64 root_id)
1115 {
1116 struct btrfs_root *root;
1117
1118 spin_lock(&fs_info->fs_roots_radix_lock);
1119 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1120 (unsigned long)root_id);
1121 root = btrfs_grab_root(root);
1122 spin_unlock(&fs_info->fs_roots_radix_lock);
1123 return root;
1124 }
1125
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1126 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1127 u64 objectid)
1128 {
1129 struct btrfs_key key = {
1130 .objectid = objectid,
1131 .type = BTRFS_ROOT_ITEM_KEY,
1132 .offset = 0,
1133 };
1134
1135 switch (objectid) {
1136 case BTRFS_ROOT_TREE_OBJECTID:
1137 return btrfs_grab_root(fs_info->tree_root);
1138 case BTRFS_EXTENT_TREE_OBJECTID:
1139 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1140 case BTRFS_CHUNK_TREE_OBJECTID:
1141 return btrfs_grab_root(fs_info->chunk_root);
1142 case BTRFS_DEV_TREE_OBJECTID:
1143 return btrfs_grab_root(fs_info->dev_root);
1144 case BTRFS_CSUM_TREE_OBJECTID:
1145 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1146 case BTRFS_QUOTA_TREE_OBJECTID:
1147 return btrfs_grab_root(fs_info->quota_root);
1148 case BTRFS_UUID_TREE_OBJECTID:
1149 return btrfs_grab_root(fs_info->uuid_root);
1150 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1151 return btrfs_grab_root(fs_info->block_group_root);
1152 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1153 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1154 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1155 return btrfs_grab_root(fs_info->stripe_root);
1156 default:
1157 return NULL;
1158 }
1159 }
1160
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1161 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1162 struct btrfs_root *root)
1163 {
1164 int ret;
1165
1166 ret = radix_tree_preload(GFP_NOFS);
1167 if (ret)
1168 return ret;
1169
1170 spin_lock(&fs_info->fs_roots_radix_lock);
1171 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1172 (unsigned long)btrfs_root_id(root),
1173 root);
1174 if (ret == 0) {
1175 btrfs_grab_root(root);
1176 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1177 }
1178 spin_unlock(&fs_info->fs_roots_radix_lock);
1179 radix_tree_preload_end();
1180
1181 return ret;
1182 }
1183
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1184 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1185 {
1186 #ifdef CONFIG_BTRFS_DEBUG
1187 struct btrfs_root *root;
1188
1189 while (!list_empty(&fs_info->allocated_roots)) {
1190 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1191
1192 root = list_first_entry(&fs_info->allocated_roots,
1193 struct btrfs_root, leak_list);
1194 btrfs_err(fs_info, "leaked root %s refcount %d",
1195 btrfs_root_name(&root->root_key, buf),
1196 refcount_read(&root->refs));
1197 WARN_ON_ONCE(1);
1198 while (refcount_read(&root->refs) > 1)
1199 btrfs_put_root(root);
1200 btrfs_put_root(root);
1201 }
1202 #endif
1203 }
1204
free_global_roots(struct btrfs_fs_info * fs_info)1205 static void free_global_roots(struct btrfs_fs_info *fs_info)
1206 {
1207 struct btrfs_root *root;
1208 struct rb_node *node;
1209
1210 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1211 root = rb_entry(node, struct btrfs_root, rb_node);
1212 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1213 btrfs_put_root(root);
1214 }
1215 }
1216
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1217 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1218 {
1219 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1220
1221 if (fs_info->fs_devices)
1222 btrfs_close_devices(fs_info->fs_devices);
1223 btrfs_free_compress_wsm(fs_info);
1224 percpu_counter_destroy(&fs_info->stats_read_blocks);
1225 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1226 percpu_counter_destroy(&fs_info->delalloc_bytes);
1227 percpu_counter_destroy(&fs_info->ordered_bytes);
1228 if (percpu_counter_initialized(em_counter))
1229 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1230 percpu_counter_destroy(em_counter);
1231 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1232 btrfs_free_csum_hash(fs_info);
1233 btrfs_free_stripe_hash_table(fs_info);
1234 btrfs_free_ref_cache(fs_info);
1235 kfree(fs_info->balance_ctl);
1236 kfree(fs_info->delayed_root);
1237 free_global_roots(fs_info);
1238 btrfs_put_root(fs_info->tree_root);
1239 btrfs_put_root(fs_info->chunk_root);
1240 btrfs_put_root(fs_info->dev_root);
1241 btrfs_put_root(fs_info->quota_root);
1242 btrfs_put_root(fs_info->uuid_root);
1243 btrfs_put_root(fs_info->fs_root);
1244 btrfs_put_root(fs_info->data_reloc_root);
1245 btrfs_put_root(fs_info->block_group_root);
1246 btrfs_put_root(fs_info->stripe_root);
1247 btrfs_check_leaked_roots(fs_info);
1248 btrfs_extent_buffer_leak_debug_check(fs_info);
1249 kfree(fs_info->super_copy);
1250 kfree(fs_info->super_for_commit);
1251 kvfree(fs_info);
1252 }
1253
1254
1255 /*
1256 * Get an in-memory reference of a root structure.
1257 *
1258 * For essential trees like root/extent tree, we grab it from fs_info directly.
1259 * For subvolume trees, we check the cached filesystem roots first. If not
1260 * found, then read it from disk and add it to cached fs roots.
1261 *
1262 * Caller should release the root by calling btrfs_put_root() after the usage.
1263 *
1264 * NOTE: Reloc and log trees can't be read by this function as they share the
1265 * same root objectid.
1266 *
1267 * @objectid: root id
1268 * @anon_dev: preallocated anonymous block device number for new roots,
1269 * pass NULL for a new allocation.
1270 * @check_ref: whether to check root item references, If true, return -ENOENT
1271 * for orphan roots
1272 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1273 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1274 u64 objectid, dev_t *anon_dev,
1275 bool check_ref)
1276 {
1277 struct btrfs_root *root;
1278 struct btrfs_path *path;
1279 struct btrfs_key key;
1280 int ret;
1281
1282 root = btrfs_get_global_root(fs_info, objectid);
1283 if (root)
1284 return root;
1285
1286 /*
1287 * If we're called for non-subvolume trees, and above function didn't
1288 * find one, do not try to read it from disk.
1289 *
1290 * This is namely for free-space-tree and quota tree, which can change
1291 * at runtime and should only be grabbed from fs_info.
1292 */
1293 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1294 return ERR_PTR(-ENOENT);
1295 again:
1296 root = btrfs_lookup_fs_root(fs_info, objectid);
1297 if (root) {
1298 /*
1299 * Some other caller may have read out the newly inserted
1300 * subvolume already (for things like backref walk etc). Not
1301 * that common but still possible. In that case, we just need
1302 * to free the anon_dev.
1303 */
1304 if (unlikely(anon_dev && *anon_dev)) {
1305 free_anon_bdev(*anon_dev);
1306 *anon_dev = 0;
1307 }
1308
1309 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1310 btrfs_put_root(root);
1311 return ERR_PTR(-ENOENT);
1312 }
1313 return root;
1314 }
1315
1316 key.objectid = objectid;
1317 key.type = BTRFS_ROOT_ITEM_KEY;
1318 key.offset = (u64)-1;
1319 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1320 if (IS_ERR(root))
1321 return root;
1322
1323 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1324 ret = -ENOENT;
1325 goto fail;
1326 }
1327
1328 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1329 if (ret)
1330 goto fail;
1331
1332 path = btrfs_alloc_path();
1333 if (!path) {
1334 ret = -ENOMEM;
1335 goto fail;
1336 }
1337 key.objectid = BTRFS_ORPHAN_OBJECTID;
1338 key.type = BTRFS_ORPHAN_ITEM_KEY;
1339 key.offset = objectid;
1340
1341 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1342 btrfs_free_path(path);
1343 if (ret < 0)
1344 goto fail;
1345 if (ret == 0)
1346 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1347
1348 ret = btrfs_insert_fs_root(fs_info, root);
1349 if (ret) {
1350 if (ret == -EEXIST) {
1351 btrfs_put_root(root);
1352 goto again;
1353 }
1354 goto fail;
1355 }
1356 return root;
1357 fail:
1358 /*
1359 * If our caller provided us an anonymous device, then it's his
1360 * responsibility to free it in case we fail. So we have to set our
1361 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1362 * and once again by our caller.
1363 */
1364 if (anon_dev && *anon_dev)
1365 root->anon_dev = 0;
1366 btrfs_put_root(root);
1367 return ERR_PTR(ret);
1368 }
1369
1370 /*
1371 * Get in-memory reference of a root structure
1372 *
1373 * @objectid: tree objectid
1374 * @check_ref: if set, verify that the tree exists and the item has at least
1375 * one reference
1376 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1377 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1378 u64 objectid, bool check_ref)
1379 {
1380 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1381 }
1382
1383 /*
1384 * Get in-memory reference of a root structure, created as new, optionally pass
1385 * the anonymous block device id
1386 *
1387 * @objectid: tree objectid
1388 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1389 * parameter value if not NULL
1390 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1391 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1392 u64 objectid, dev_t *anon_dev)
1393 {
1394 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1395 }
1396
1397 /*
1398 * Return a root for the given objectid.
1399 *
1400 * @fs_info: the fs_info
1401 * @objectid: the objectid we need to lookup
1402 *
1403 * This is exclusively used for backref walking, and exists specifically because
1404 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1405 * creation time, which means we may have to read the tree_root in order to look
1406 * up a fs root that is not in memory. If the root is not in memory we will
1407 * read the tree root commit root and look up the fs root from there. This is a
1408 * temporary root, it will not be inserted into the radix tree as it doesn't
1409 * have the most uptodate information, it'll simply be discarded once the
1410 * backref code is finished using the root.
1411 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1412 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1413 struct btrfs_path *path,
1414 u64 objectid)
1415 {
1416 struct btrfs_root *root;
1417 struct btrfs_key key;
1418
1419 ASSERT(path->search_commit_root && path->skip_locking);
1420
1421 /*
1422 * This can return -ENOENT if we ask for a root that doesn't exist, but
1423 * since this is called via the backref walking code we won't be looking
1424 * up a root that doesn't exist, unless there's corruption. So if root
1425 * != NULL just return it.
1426 */
1427 root = btrfs_get_global_root(fs_info, objectid);
1428 if (root)
1429 return root;
1430
1431 root = btrfs_lookup_fs_root(fs_info, objectid);
1432 if (root)
1433 return root;
1434
1435 key.objectid = objectid;
1436 key.type = BTRFS_ROOT_ITEM_KEY;
1437 key.offset = (u64)-1;
1438 root = read_tree_root_path(fs_info->tree_root, path, &key);
1439 btrfs_release_path(path);
1440
1441 return root;
1442 }
1443
cleaner_kthread(void * arg)1444 static int cleaner_kthread(void *arg)
1445 {
1446 struct btrfs_fs_info *fs_info = arg;
1447 int again;
1448
1449 while (1) {
1450 again = 0;
1451
1452 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1453
1454 /* Make the cleaner go to sleep early. */
1455 if (btrfs_need_cleaner_sleep(fs_info))
1456 goto sleep;
1457
1458 /*
1459 * Do not do anything if we might cause open_ctree() to block
1460 * before we have finished mounting the filesystem.
1461 */
1462 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1463 goto sleep;
1464
1465 if (!mutex_trylock(&fs_info->cleaner_mutex))
1466 goto sleep;
1467
1468 /*
1469 * Avoid the problem that we change the status of the fs
1470 * during the above check and trylock.
1471 */
1472 if (btrfs_need_cleaner_sleep(fs_info)) {
1473 mutex_unlock(&fs_info->cleaner_mutex);
1474 goto sleep;
1475 }
1476
1477 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1478 btrfs_sysfs_feature_update(fs_info);
1479
1480 btrfs_run_delayed_iputs(fs_info);
1481
1482 again = btrfs_clean_one_deleted_snapshot(fs_info);
1483 mutex_unlock(&fs_info->cleaner_mutex);
1484
1485 /*
1486 * The defragger has dealt with the R/O remount and umount,
1487 * needn't do anything special here.
1488 */
1489 btrfs_run_defrag_inodes(fs_info);
1490
1491 /*
1492 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1493 * with relocation (btrfs_relocate_chunk) and relocation
1494 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1495 * after acquiring fs_info->reclaim_bgs_lock. So we
1496 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1497 * unused block groups.
1498 */
1499 btrfs_delete_unused_bgs(fs_info);
1500
1501 /*
1502 * Reclaim block groups in the reclaim_bgs list after we deleted
1503 * all unused block_groups. This possibly gives us some more free
1504 * space.
1505 */
1506 btrfs_reclaim_bgs(fs_info);
1507 sleep:
1508 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1509 if (kthread_should_park())
1510 kthread_parkme();
1511 if (kthread_should_stop())
1512 return 0;
1513 if (!again) {
1514 set_current_state(TASK_INTERRUPTIBLE);
1515 schedule();
1516 __set_current_state(TASK_RUNNING);
1517 }
1518 }
1519 }
1520
transaction_kthread(void * arg)1521 static int transaction_kthread(void *arg)
1522 {
1523 struct btrfs_root *root = arg;
1524 struct btrfs_fs_info *fs_info = root->fs_info;
1525 struct btrfs_trans_handle *trans;
1526 struct btrfs_transaction *cur;
1527 u64 transid;
1528 time64_t delta;
1529 unsigned long delay;
1530 bool cannot_commit;
1531
1532 do {
1533 cannot_commit = false;
1534 delay = secs_to_jiffies(fs_info->commit_interval);
1535 mutex_lock(&fs_info->transaction_kthread_mutex);
1536
1537 spin_lock(&fs_info->trans_lock);
1538 cur = fs_info->running_transaction;
1539 if (!cur) {
1540 spin_unlock(&fs_info->trans_lock);
1541 goto sleep;
1542 }
1543
1544 delta = ktime_get_seconds() - cur->start_time;
1545 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1546 cur->state < TRANS_STATE_COMMIT_PREP &&
1547 delta < fs_info->commit_interval) {
1548 spin_unlock(&fs_info->trans_lock);
1549 delay -= secs_to_jiffies(delta - 1);
1550 delay = min(delay,
1551 secs_to_jiffies(fs_info->commit_interval));
1552 goto sleep;
1553 }
1554 transid = cur->transid;
1555 spin_unlock(&fs_info->trans_lock);
1556
1557 /* If the file system is aborted, this will always fail. */
1558 trans = btrfs_attach_transaction(root);
1559 if (IS_ERR(trans)) {
1560 if (PTR_ERR(trans) != -ENOENT)
1561 cannot_commit = true;
1562 goto sleep;
1563 }
1564 if (transid == trans->transid) {
1565 btrfs_commit_transaction(trans);
1566 } else {
1567 btrfs_end_transaction(trans);
1568 }
1569 sleep:
1570 wake_up_process(fs_info->cleaner_kthread);
1571 mutex_unlock(&fs_info->transaction_kthread_mutex);
1572
1573 if (BTRFS_FS_ERROR(fs_info))
1574 btrfs_cleanup_transaction(fs_info);
1575 if (!kthread_should_stop() &&
1576 (!btrfs_transaction_blocked(fs_info) ||
1577 cannot_commit))
1578 schedule_timeout_interruptible(delay);
1579 } while (!kthread_should_stop());
1580 return 0;
1581 }
1582
1583 /*
1584 * This will find the highest generation in the array of root backups. The
1585 * index of the highest array is returned, or -EINVAL if we can't find
1586 * anything.
1587 *
1588 * We check to make sure the array is valid by comparing the
1589 * generation of the latest root in the array with the generation
1590 * in the super block. If they don't match we pitch it.
1591 */
find_newest_super_backup(struct btrfs_fs_info * info)1592 static int find_newest_super_backup(struct btrfs_fs_info *info)
1593 {
1594 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1595 u64 cur;
1596 struct btrfs_root_backup *root_backup;
1597 int i;
1598
1599 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1600 root_backup = info->super_copy->super_roots + i;
1601 cur = btrfs_backup_tree_root_gen(root_backup);
1602 if (cur == newest_gen)
1603 return i;
1604 }
1605
1606 return -EINVAL;
1607 }
1608
1609 /*
1610 * copy all the root pointers into the super backup array.
1611 * this will bump the backup pointer by one when it is
1612 * done
1613 */
backup_super_roots(struct btrfs_fs_info * info)1614 static void backup_super_roots(struct btrfs_fs_info *info)
1615 {
1616 const int next_backup = info->backup_root_index;
1617 struct btrfs_root_backup *root_backup;
1618
1619 root_backup = info->super_for_commit->super_roots + next_backup;
1620
1621 /*
1622 * make sure all of our padding and empty slots get zero filled
1623 * regardless of which ones we use today
1624 */
1625 memset(root_backup, 0, sizeof(*root_backup));
1626
1627 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1628
1629 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1630 btrfs_set_backup_tree_root_gen(root_backup,
1631 btrfs_header_generation(info->tree_root->node));
1632
1633 btrfs_set_backup_tree_root_level(root_backup,
1634 btrfs_header_level(info->tree_root->node));
1635
1636 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1637 btrfs_set_backup_chunk_root_gen(root_backup,
1638 btrfs_header_generation(info->chunk_root->node));
1639 btrfs_set_backup_chunk_root_level(root_backup,
1640 btrfs_header_level(info->chunk_root->node));
1641
1642 if (!btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
1643 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1644 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1645
1646 btrfs_set_backup_extent_root(root_backup,
1647 extent_root->node->start);
1648 btrfs_set_backup_extent_root_gen(root_backup,
1649 btrfs_header_generation(extent_root->node));
1650 btrfs_set_backup_extent_root_level(root_backup,
1651 btrfs_header_level(extent_root->node));
1652
1653 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1654 btrfs_set_backup_csum_root_gen(root_backup,
1655 btrfs_header_generation(csum_root->node));
1656 btrfs_set_backup_csum_root_level(root_backup,
1657 btrfs_header_level(csum_root->node));
1658 }
1659
1660 /*
1661 * we might commit during log recovery, which happens before we set
1662 * the fs_root. Make sure it is valid before we fill it in.
1663 */
1664 if (info->fs_root && info->fs_root->node) {
1665 btrfs_set_backup_fs_root(root_backup,
1666 info->fs_root->node->start);
1667 btrfs_set_backup_fs_root_gen(root_backup,
1668 btrfs_header_generation(info->fs_root->node));
1669 btrfs_set_backup_fs_root_level(root_backup,
1670 btrfs_header_level(info->fs_root->node));
1671 }
1672
1673 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1674 btrfs_set_backup_dev_root_gen(root_backup,
1675 btrfs_header_generation(info->dev_root->node));
1676 btrfs_set_backup_dev_root_level(root_backup,
1677 btrfs_header_level(info->dev_root->node));
1678
1679 btrfs_set_backup_total_bytes(root_backup,
1680 btrfs_super_total_bytes(info->super_copy));
1681 btrfs_set_backup_bytes_used(root_backup,
1682 btrfs_super_bytes_used(info->super_copy));
1683 btrfs_set_backup_num_devices(root_backup,
1684 btrfs_super_num_devices(info->super_copy));
1685
1686 /*
1687 * if we don't copy this out to the super_copy, it won't get remembered
1688 * for the next commit
1689 */
1690 memcpy(&info->super_copy->super_roots,
1691 &info->super_for_commit->super_roots,
1692 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1693 }
1694
1695 /*
1696 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1697 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1698 *
1699 * @fs_info: filesystem whose backup roots need to be read
1700 * @priority: priority of backup root required
1701 *
1702 * Returns backup root index on success and -EINVAL otherwise.
1703 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1704 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1705 {
1706 int backup_index = find_newest_super_backup(fs_info);
1707 struct btrfs_super_block *super = fs_info->super_copy;
1708 struct btrfs_root_backup *root_backup;
1709
1710 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1711 if (priority == 0)
1712 return backup_index;
1713
1714 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1715 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1716 } else {
1717 return -EINVAL;
1718 }
1719
1720 root_backup = super->super_roots + backup_index;
1721
1722 btrfs_set_super_generation(super,
1723 btrfs_backup_tree_root_gen(root_backup));
1724 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1725 btrfs_set_super_root_level(super,
1726 btrfs_backup_tree_root_level(root_backup));
1727 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1728
1729 /*
1730 * Fixme: the total bytes and num_devices need to match or we should
1731 * need a fsck
1732 */
1733 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1734 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1735
1736 return backup_index;
1737 }
1738
1739 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1740 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1741 {
1742 btrfs_destroy_workqueue(fs_info->fixup_workers);
1743 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1744 btrfs_destroy_workqueue(fs_info->workers);
1745 if (fs_info->endio_workers)
1746 destroy_workqueue(fs_info->endio_workers);
1747 if (fs_info->rmw_workers)
1748 destroy_workqueue(fs_info->rmw_workers);
1749 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1750 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1751 btrfs_destroy_workqueue(fs_info->delayed_workers);
1752 btrfs_destroy_workqueue(fs_info->caching_workers);
1753 btrfs_destroy_workqueue(fs_info->flush_workers);
1754 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1755 if (fs_info->discard_ctl.discard_workers)
1756 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1757 /*
1758 * Now that all other work queues are destroyed, we can safely destroy
1759 * the queues used for metadata I/O, since tasks from those other work
1760 * queues can do metadata I/O operations.
1761 */
1762 if (fs_info->endio_meta_workers)
1763 destroy_workqueue(fs_info->endio_meta_workers);
1764 }
1765
free_root_extent_buffers(struct btrfs_root * root)1766 static void free_root_extent_buffers(struct btrfs_root *root)
1767 {
1768 if (root) {
1769 free_extent_buffer(root->node);
1770 free_extent_buffer(root->commit_root);
1771 root->node = NULL;
1772 root->commit_root = NULL;
1773 }
1774 }
1775
free_global_root_pointers(struct btrfs_fs_info * fs_info)1776 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1777 {
1778 struct btrfs_root *root, *tmp;
1779
1780 rbtree_postorder_for_each_entry_safe(root, tmp,
1781 &fs_info->global_root_tree,
1782 rb_node)
1783 free_root_extent_buffers(root);
1784 }
1785
1786 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1787 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1788 {
1789 free_root_extent_buffers(info->tree_root);
1790
1791 free_global_root_pointers(info);
1792 free_root_extent_buffers(info->dev_root);
1793 free_root_extent_buffers(info->quota_root);
1794 free_root_extent_buffers(info->uuid_root);
1795 free_root_extent_buffers(info->fs_root);
1796 free_root_extent_buffers(info->data_reloc_root);
1797 free_root_extent_buffers(info->block_group_root);
1798 free_root_extent_buffers(info->stripe_root);
1799 if (free_chunk_root)
1800 free_root_extent_buffers(info->chunk_root);
1801 }
1802
btrfs_put_root(struct btrfs_root * root)1803 void btrfs_put_root(struct btrfs_root *root)
1804 {
1805 if (!root)
1806 return;
1807
1808 if (refcount_dec_and_test(&root->refs)) {
1809 if (WARN_ON(!xa_empty(&root->inodes)))
1810 xa_destroy(&root->inodes);
1811 if (WARN_ON(!xa_empty(&root->delayed_nodes)))
1812 xa_destroy(&root->delayed_nodes);
1813 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1814 if (root->anon_dev)
1815 free_anon_bdev(root->anon_dev);
1816 free_root_extent_buffers(root);
1817 #ifdef CONFIG_BTRFS_DEBUG
1818 spin_lock(&root->fs_info->fs_roots_radix_lock);
1819 list_del_init(&root->leak_list);
1820 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1821 #endif
1822 kfree(root);
1823 }
1824 }
1825
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1826 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1827 {
1828 int ret;
1829 struct btrfs_root *gang[8];
1830 int i;
1831
1832 while (!list_empty(&fs_info->dead_roots)) {
1833 gang[0] = list_first_entry(&fs_info->dead_roots,
1834 struct btrfs_root, root_list);
1835 list_del(&gang[0]->root_list);
1836
1837 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1838 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1839 btrfs_put_root(gang[0]);
1840 }
1841
1842 while (1) {
1843 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1844 (void **)gang, 0,
1845 ARRAY_SIZE(gang));
1846 if (!ret)
1847 break;
1848 for (i = 0; i < ret; i++)
1849 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1850 }
1851 }
1852
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1853 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1854 {
1855 mutex_init(&fs_info->scrub_lock);
1856 atomic_set(&fs_info->scrubs_running, 0);
1857 atomic_set(&fs_info->scrub_pause_req, 0);
1858 atomic_set(&fs_info->scrubs_paused, 0);
1859 atomic_set(&fs_info->scrub_cancel_req, 0);
1860 init_waitqueue_head(&fs_info->scrub_pause_wait);
1861 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1862 }
1863
btrfs_init_balance(struct btrfs_fs_info * fs_info)1864 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1865 {
1866 spin_lock_init(&fs_info->balance_lock);
1867 mutex_init(&fs_info->balance_mutex);
1868 atomic_set(&fs_info->balance_pause_req, 0);
1869 atomic_set(&fs_info->balance_cancel_req, 0);
1870 fs_info->balance_ctl = NULL;
1871 init_waitqueue_head(&fs_info->balance_wait_q);
1872 atomic_set(&fs_info->reloc_cancel_req, 0);
1873 }
1874
btrfs_init_btree_inode(struct super_block * sb)1875 static int btrfs_init_btree_inode(struct super_block *sb)
1876 {
1877 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1878 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1879 fs_info->tree_root);
1880 struct inode *inode;
1881
1882 inode = new_inode(sb);
1883 if (!inode)
1884 return -ENOMEM;
1885
1886 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1887 set_nlink(inode, 1);
1888 /*
1889 * we set the i_size on the btree inode to the max possible int.
1890 * the real end of the address space is determined by all of
1891 * the devices in the system
1892 */
1893 inode->i_size = OFFSET_MAX;
1894 inode->i_mapping->a_ops = &btree_aops;
1895 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1896
1897 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1898 IO_TREE_BTREE_INODE_IO);
1899 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1900
1901 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1902 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1903 __insert_inode_hash(inode, hash);
1904 set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags);
1905 fs_info->btree_inode = inode;
1906
1907 return 0;
1908 }
1909
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1910 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1911 {
1912 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1913 init_rwsem(&fs_info->dev_replace.rwsem);
1914 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1915 }
1916
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1917 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1918 {
1919 spin_lock_init(&fs_info->qgroup_lock);
1920 mutex_init(&fs_info->qgroup_ioctl_lock);
1921 fs_info->qgroup_tree = RB_ROOT;
1922 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1923 fs_info->qgroup_seq = 1;
1924 fs_info->qgroup_rescan_running = false;
1925 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1926 mutex_init(&fs_info->qgroup_rescan_lock);
1927 }
1928
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1929 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1930 {
1931 u32 max_active = fs_info->thread_pool_size;
1932 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1933 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU;
1934
1935 fs_info->workers =
1936 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1937
1938 fs_info->delalloc_workers =
1939 btrfs_alloc_workqueue(fs_info, "delalloc",
1940 flags, max_active, 2);
1941
1942 fs_info->flush_workers =
1943 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1944 flags, max_active, 0);
1945
1946 fs_info->caching_workers =
1947 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1948
1949 fs_info->fixup_workers =
1950 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1951
1952 fs_info->endio_workers =
1953 alloc_workqueue("btrfs-endio", flags, max_active);
1954 fs_info->endio_meta_workers =
1955 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1956 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1957 fs_info->endio_write_workers =
1958 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1959 max_active, 2);
1960 fs_info->endio_freespace_worker =
1961 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1962 max_active, 0);
1963 fs_info->delayed_workers =
1964 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1965 max_active, 0);
1966 fs_info->qgroup_rescan_workers =
1967 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1968 ordered_flags);
1969 fs_info->discard_ctl.discard_workers =
1970 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE);
1971
1972 if (!(fs_info->workers &&
1973 fs_info->delalloc_workers && fs_info->flush_workers &&
1974 fs_info->endio_workers && fs_info->endio_meta_workers &&
1975 fs_info->endio_write_workers &&
1976 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1977 fs_info->caching_workers && fs_info->fixup_workers &&
1978 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1979 fs_info->discard_ctl.discard_workers)) {
1980 return -ENOMEM;
1981 }
1982
1983 return 0;
1984 }
1985
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)1986 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
1987 {
1988 struct crypto_shash *csum_shash;
1989 const char *csum_driver = btrfs_super_csum_driver(csum_type);
1990
1991 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
1992
1993 if (IS_ERR(csum_shash)) {
1994 btrfs_err(fs_info, "error allocating %s hash for checksum",
1995 csum_driver);
1996 return PTR_ERR(csum_shash);
1997 }
1998
1999 fs_info->csum_shash = csum_shash;
2000
2001 /* Check if the checksum implementation is a fast accelerated one. */
2002 switch (csum_type) {
2003 case BTRFS_CSUM_TYPE_CRC32:
2004 if (crc32_optimizations() & CRC32C_OPTIMIZATION)
2005 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2006 break;
2007 case BTRFS_CSUM_TYPE_XXHASH:
2008 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2009 break;
2010 default:
2011 break;
2012 }
2013
2014 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2015 btrfs_super_csum_name(csum_type),
2016 crypto_shash_driver_name(csum_shash));
2017 return 0;
2018 }
2019
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2020 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2021 struct btrfs_fs_devices *fs_devices)
2022 {
2023 int ret;
2024 struct btrfs_tree_parent_check check = { 0 };
2025 struct btrfs_root *log_tree_root;
2026 struct btrfs_super_block *disk_super = fs_info->super_copy;
2027 u64 bytenr = btrfs_super_log_root(disk_super);
2028 int level = btrfs_super_log_root_level(disk_super);
2029
2030 if (unlikely(fs_devices->rw_devices == 0)) {
2031 btrfs_warn(fs_info, "log replay required on RO media");
2032 return -EIO;
2033 }
2034
2035 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2036 GFP_KERNEL);
2037 if (!log_tree_root)
2038 return -ENOMEM;
2039
2040 check.level = level;
2041 check.transid = fs_info->generation + 1;
2042 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2043 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2044 if (IS_ERR(log_tree_root->node)) {
2045 btrfs_warn(fs_info, "failed to read log tree");
2046 ret = PTR_ERR(log_tree_root->node);
2047 log_tree_root->node = NULL;
2048 btrfs_put_root(log_tree_root);
2049 return ret;
2050 }
2051 if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) {
2052 btrfs_err(fs_info, "failed to read log tree");
2053 btrfs_put_root(log_tree_root);
2054 return -EIO;
2055 }
2056
2057 /* returns with log_tree_root freed on success */
2058 ret = btrfs_recover_log_trees(log_tree_root);
2059 btrfs_put_root(log_tree_root);
2060 if (ret) {
2061 btrfs_handle_fs_error(fs_info, ret,
2062 "Failed to recover log tree");
2063 return ret;
2064 }
2065
2066 if (sb_rdonly(fs_info->sb)) {
2067 ret = btrfs_commit_super(fs_info);
2068 if (ret)
2069 return ret;
2070 }
2071
2072 return 0;
2073 }
2074
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2075 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2076 struct btrfs_path *path, u64 objectid,
2077 const char *name)
2078 {
2079 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2080 struct btrfs_root *root;
2081 u64 max_global_id = 0;
2082 int ret;
2083 struct btrfs_key key = {
2084 .objectid = objectid,
2085 .type = BTRFS_ROOT_ITEM_KEY,
2086 .offset = 0,
2087 };
2088 bool found = false;
2089
2090 /* If we have IGNOREDATACSUMS skip loading these roots. */
2091 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2092 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2093 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2094 return 0;
2095 }
2096
2097 while (1) {
2098 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2099 if (ret < 0)
2100 break;
2101
2102 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2103 ret = btrfs_next_leaf(tree_root, path);
2104 if (ret) {
2105 if (ret > 0)
2106 ret = 0;
2107 break;
2108 }
2109 }
2110 ret = 0;
2111
2112 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2113 if (key.objectid != objectid)
2114 break;
2115 btrfs_release_path(path);
2116
2117 /*
2118 * Just worry about this for extent tree, it'll be the same for
2119 * everybody.
2120 */
2121 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2122 max_global_id = max(max_global_id, key.offset);
2123
2124 found = true;
2125 root = read_tree_root_path(tree_root, path, &key);
2126 if (IS_ERR(root)) {
2127 ret = PTR_ERR(root);
2128 break;
2129 }
2130 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2131 ret = btrfs_global_root_insert(root);
2132 if (ret) {
2133 btrfs_put_root(root);
2134 break;
2135 }
2136 key.offset++;
2137 }
2138 btrfs_release_path(path);
2139
2140 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2141 fs_info->nr_global_roots = max_global_id + 1;
2142
2143 if (!found || ret) {
2144 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2145 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2146
2147 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2148 ret = ret ? ret : -ENOENT;
2149 else
2150 ret = 0;
2151 btrfs_err(fs_info, "failed to load root %s", name);
2152 }
2153 return ret;
2154 }
2155
load_global_roots(struct btrfs_root * tree_root)2156 static int load_global_roots(struct btrfs_root *tree_root)
2157 {
2158 BTRFS_PATH_AUTO_FREE(path);
2159 int ret;
2160
2161 path = btrfs_alloc_path();
2162 if (!path)
2163 return -ENOMEM;
2164
2165 ret = load_global_roots_objectid(tree_root, path,
2166 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2167 if (ret)
2168 return ret;
2169 ret = load_global_roots_objectid(tree_root, path,
2170 BTRFS_CSUM_TREE_OBJECTID, "csum");
2171 if (ret)
2172 return ret;
2173 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2174 return ret;
2175 ret = load_global_roots_objectid(tree_root, path,
2176 BTRFS_FREE_SPACE_TREE_OBJECTID,
2177 "free space");
2178
2179 return ret;
2180 }
2181
btrfs_read_roots(struct btrfs_fs_info * fs_info)2182 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2183 {
2184 struct btrfs_root *tree_root = fs_info->tree_root;
2185 struct btrfs_root *root;
2186 struct btrfs_key location;
2187 int ret;
2188
2189 ASSERT(fs_info->tree_root);
2190
2191 ret = load_global_roots(tree_root);
2192 if (ret)
2193 return ret;
2194
2195 location.type = BTRFS_ROOT_ITEM_KEY;
2196 location.offset = 0;
2197
2198 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2199 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2200 root = btrfs_read_tree_root(tree_root, &location);
2201 if (IS_ERR(root)) {
2202 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2203 ret = PTR_ERR(root);
2204 goto out;
2205 }
2206 } else {
2207 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2208 fs_info->block_group_root = root;
2209 }
2210 }
2211
2212 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2213 root = btrfs_read_tree_root(tree_root, &location);
2214 if (IS_ERR(root)) {
2215 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2216 ret = PTR_ERR(root);
2217 goto out;
2218 }
2219 } else {
2220 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2221 fs_info->dev_root = root;
2222 }
2223 /* Initialize fs_info for all devices in any case */
2224 ret = btrfs_init_devices_late(fs_info);
2225 if (ret)
2226 goto out;
2227
2228 /*
2229 * This tree can share blocks with some other fs tree during relocation
2230 * and we need a proper setup by btrfs_get_fs_root
2231 */
2232 root = btrfs_get_fs_root(tree_root->fs_info,
2233 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2234 if (IS_ERR(root)) {
2235 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2236 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
2237 ret = PTR_ERR(root);
2238 goto out;
2239 }
2240 } else {
2241 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2242 fs_info->data_reloc_root = root;
2243 }
2244
2245 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2246 root = btrfs_read_tree_root(tree_root, &location);
2247 if (!IS_ERR(root)) {
2248 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2249 fs_info->quota_root = root;
2250 }
2251
2252 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2253 root = btrfs_read_tree_root(tree_root, &location);
2254 if (IS_ERR(root)) {
2255 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 ret = PTR_ERR(root);
2257 if (ret != -ENOENT)
2258 goto out;
2259 }
2260 } else {
2261 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262 fs_info->uuid_root = root;
2263 }
2264
2265 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2266 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2267 root = btrfs_read_tree_root(tree_root, &location);
2268 if (IS_ERR(root)) {
2269 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270 ret = PTR_ERR(root);
2271 goto out;
2272 }
2273 } else {
2274 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275 fs_info->stripe_root = root;
2276 }
2277 }
2278
2279 return 0;
2280 out:
2281 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2282 location.objectid, ret);
2283 return ret;
2284 }
2285
validate_sys_chunk_array(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb)2286 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2287 const struct btrfs_super_block *sb)
2288 {
2289 unsigned int cur = 0; /* Offset inside the sys chunk array */
2290 /*
2291 * At sb read time, fs_info is not fully initialized. Thus we have
2292 * to use super block sectorsize, which should have been validated.
2293 */
2294 const u32 sectorsize = btrfs_super_sectorsize(sb);
2295 u32 sys_array_size = btrfs_super_sys_array_size(sb);
2296
2297 if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) {
2298 btrfs_err(fs_info, "system chunk array too big %u > %u",
2299 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2300 return -EUCLEAN;
2301 }
2302
2303 while (cur < sys_array_size) {
2304 struct btrfs_disk_key *disk_key;
2305 struct btrfs_chunk *chunk;
2306 struct btrfs_key key;
2307 u64 type;
2308 u16 num_stripes;
2309 u32 len;
2310 int ret;
2311
2312 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2313 len = sizeof(*disk_key);
2314
2315 if (unlikely(cur + len > sys_array_size))
2316 goto short_read;
2317 cur += len;
2318
2319 btrfs_disk_key_to_cpu(&key, disk_key);
2320 if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) {
2321 btrfs_err(fs_info,
2322 "unexpected item type %u in sys_array at offset %u",
2323 key.type, cur);
2324 return -EUCLEAN;
2325 }
2326 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2327 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2328 if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size))
2329 goto short_read;
2330 type = btrfs_stack_chunk_type(chunk);
2331 if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) {
2332 btrfs_err(fs_info,
2333 "invalid chunk type %llu in sys_array at offset %u",
2334 type, cur);
2335 return -EUCLEAN;
2336 }
2337 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2338 sectorsize);
2339 if (ret < 0)
2340 return ret;
2341 cur += btrfs_chunk_item_size(num_stripes);
2342 }
2343 return 0;
2344 short_read:
2345 btrfs_err(fs_info,
2346 "super block sys chunk array short read, cur=%u sys_array_size=%u",
2347 cur, sys_array_size);
2348 return -EUCLEAN;
2349 }
2350
2351 /*
2352 * Real super block validation
2353 * NOTE: super csum type and incompat features will not be checked here.
2354 *
2355 * @sb: super block to check
2356 * @mirror_num: the super block number to check its bytenr:
2357 * 0 the primary (1st) sb
2358 * 1, 2 2nd and 3rd backup copy
2359 * -1 skip bytenr check
2360 */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2361 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2362 const struct btrfs_super_block *sb, int mirror_num)
2363 {
2364 u64 nodesize = btrfs_super_nodesize(sb);
2365 u64 sectorsize = btrfs_super_sectorsize(sb);
2366 int ret = 0;
2367 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2368
2369 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2370 btrfs_err(fs_info, "no valid FS found");
2371 ret = -EINVAL;
2372 }
2373 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2374 if (!ignore_flags) {
2375 btrfs_err(fs_info,
2376 "unrecognized or unsupported super flag 0x%llx",
2377 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2378 ret = -EINVAL;
2379 } else {
2380 btrfs_info(fs_info,
2381 "unrecognized or unsupported super flags: 0x%llx, ignored",
2382 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2383 }
2384 }
2385 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2386 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2387 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2388 ret = -EINVAL;
2389 }
2390 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2391 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2392 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2393 ret = -EINVAL;
2394 }
2395 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2396 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2397 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2398 ret = -EINVAL;
2399 }
2400
2401 /*
2402 * Check sectorsize and nodesize first, other check will need it.
2403 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2404 */
2405 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2406 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2408 ret = -EINVAL;
2409 }
2410
2411 if (!btrfs_supported_blocksize(sectorsize)) {
2412 btrfs_err(fs_info,
2413 "sectorsize %llu not yet supported for page size %lu",
2414 sectorsize, PAGE_SIZE);
2415 ret = -EINVAL;
2416 }
2417
2418 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2419 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2420 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2421 ret = -EINVAL;
2422 }
2423 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2424 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2425 le32_to_cpu(sb->__unused_leafsize), nodesize);
2426 ret = -EINVAL;
2427 }
2428
2429 /* Root alignment check */
2430 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2431 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2432 btrfs_super_root(sb));
2433 ret = -EINVAL;
2434 }
2435 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2436 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2437 btrfs_super_chunk_root(sb));
2438 ret = -EINVAL;
2439 }
2440 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2441 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2442 btrfs_super_log_root(sb));
2443 ret = -EINVAL;
2444 }
2445
2446 if (!fs_info->fs_devices->temp_fsid &&
2447 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2448 btrfs_err(fs_info,
2449 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2450 sb->fsid, fs_info->fs_devices->fsid);
2451 ret = -EINVAL;
2452 }
2453
2454 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2455 BTRFS_FSID_SIZE) != 0) {
2456 btrfs_err(fs_info,
2457 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2458 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2459 ret = -EINVAL;
2460 }
2461
2462 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2463 BTRFS_FSID_SIZE) != 0) {
2464 btrfs_err(fs_info,
2465 "dev_item UUID does not match metadata fsid: %pU != %pU",
2466 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2467 ret = -EINVAL;
2468 }
2469
2470 /*
2471 * Artificial requirement for block-group-tree to force newer features
2472 * (free-space-tree, no-holes) so the test matrix is smaller.
2473 */
2474 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2475 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2476 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2477 btrfs_err(fs_info,
2478 "block-group-tree feature requires free-space-tree and no-holes");
2479 ret = -EINVAL;
2480 }
2481
2482 /*
2483 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2484 * done later
2485 */
2486 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2487 btrfs_err(fs_info, "bytes_used is too small %llu",
2488 btrfs_super_bytes_used(sb));
2489 ret = -EINVAL;
2490 }
2491 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2492 btrfs_err(fs_info, "invalid stripesize %u",
2493 btrfs_super_stripesize(sb));
2494 ret = -EINVAL;
2495 }
2496 if (btrfs_super_num_devices(sb) > (1UL << 31))
2497 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2498 btrfs_super_num_devices(sb));
2499 if (btrfs_super_num_devices(sb) == 0) {
2500 btrfs_err(fs_info, "number of devices is 0");
2501 ret = -EINVAL;
2502 }
2503
2504 if (mirror_num >= 0 &&
2505 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2506 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2507 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2508 ret = -EINVAL;
2509 }
2510
2511 if (ret)
2512 return ret;
2513
2514 ret = validate_sys_chunk_array(fs_info, sb);
2515
2516 /*
2517 * Obvious sys_chunk_array corruptions, it must hold at least one key
2518 * and one chunk
2519 */
2520 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2521 btrfs_err(fs_info, "system chunk array too big %u > %u",
2522 btrfs_super_sys_array_size(sb),
2523 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2524 ret = -EINVAL;
2525 }
2526 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2527 + sizeof(struct btrfs_chunk)) {
2528 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2529 btrfs_super_sys_array_size(sb),
2530 sizeof(struct btrfs_disk_key)
2531 + sizeof(struct btrfs_chunk));
2532 ret = -EINVAL;
2533 }
2534
2535 /*
2536 * The generation is a global counter, we'll trust it more than the others
2537 * but it's still possible that it's the one that's wrong.
2538 */
2539 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2540 btrfs_warn(fs_info,
2541 "suspicious: generation < chunk_root_generation: %llu < %llu",
2542 btrfs_super_generation(sb),
2543 btrfs_super_chunk_root_generation(sb));
2544 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2545 && btrfs_super_cache_generation(sb) != (u64)-1)
2546 btrfs_warn(fs_info,
2547 "suspicious: generation < cache_generation: %llu < %llu",
2548 btrfs_super_generation(sb),
2549 btrfs_super_cache_generation(sb));
2550
2551 return ret;
2552 }
2553
2554 /*
2555 * Validation of super block at mount time.
2556 * Some checks already done early at mount time, like csum type and incompat
2557 * flags will be skipped.
2558 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2559 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2560 {
2561 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2562 }
2563
2564 /*
2565 * Validation of super block at write time.
2566 * Some checks like bytenr check will be skipped as their values will be
2567 * overwritten soon.
2568 * Extra checks like csum type and incompat flags will be done here.
2569 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2570 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2571 struct btrfs_super_block *sb)
2572 {
2573 int ret;
2574
2575 ret = btrfs_validate_super(fs_info, sb, -1);
2576 if (ret < 0)
2577 goto out;
2578 if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) {
2579 ret = -EUCLEAN;
2580 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2581 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2582 goto out;
2583 }
2584 if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) {
2585 ret = -EUCLEAN;
2586 btrfs_err(fs_info,
2587 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2588 btrfs_super_incompat_flags(sb),
2589 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2590 goto out;
2591 }
2592 out:
2593 if (ret < 0)
2594 btrfs_err(fs_info,
2595 "super block corruption detected before writing it to disk");
2596 return ret;
2597 }
2598
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2599 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2600 {
2601 struct btrfs_tree_parent_check check = {
2602 .level = level,
2603 .transid = gen,
2604 .owner_root = btrfs_root_id(root)
2605 };
2606 int ret = 0;
2607
2608 root->node = read_tree_block(root->fs_info, bytenr, &check);
2609 if (IS_ERR(root->node)) {
2610 ret = PTR_ERR(root->node);
2611 root->node = NULL;
2612 return ret;
2613 }
2614 if (unlikely(!extent_buffer_uptodate(root->node))) {
2615 free_extent_buffer(root->node);
2616 root->node = NULL;
2617 return -EIO;
2618 }
2619
2620 btrfs_set_root_node(&root->root_item, root->node);
2621 root->commit_root = btrfs_root_node(root);
2622 btrfs_set_root_refs(&root->root_item, 1);
2623 return ret;
2624 }
2625
load_important_roots(struct btrfs_fs_info * fs_info)2626 static int load_important_roots(struct btrfs_fs_info *fs_info)
2627 {
2628 struct btrfs_super_block *sb = fs_info->super_copy;
2629 u64 gen, bytenr;
2630 int level, ret;
2631
2632 bytenr = btrfs_super_root(sb);
2633 gen = btrfs_super_generation(sb);
2634 level = btrfs_super_root_level(sb);
2635 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2636 if (ret) {
2637 btrfs_warn(fs_info, "couldn't read tree root");
2638 return ret;
2639 }
2640 return 0;
2641 }
2642
init_tree_roots(struct btrfs_fs_info * fs_info)2643 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2644 {
2645 int backup_index = find_newest_super_backup(fs_info);
2646 struct btrfs_super_block *sb = fs_info->super_copy;
2647 struct btrfs_root *tree_root = fs_info->tree_root;
2648 bool handle_error = false;
2649 int ret = 0;
2650 int i;
2651
2652 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2653 if (handle_error) {
2654 if (!IS_ERR(tree_root->node))
2655 free_extent_buffer(tree_root->node);
2656 tree_root->node = NULL;
2657
2658 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2659 break;
2660
2661 free_root_pointers(fs_info, 0);
2662
2663 /*
2664 * Don't use the log in recovery mode, it won't be
2665 * valid
2666 */
2667 btrfs_set_super_log_root(sb, 0);
2668
2669 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2670 ret = read_backup_root(fs_info, i);
2671 backup_index = ret;
2672 if (ret < 0)
2673 return ret;
2674 }
2675
2676 ret = load_important_roots(fs_info);
2677 if (ret) {
2678 handle_error = true;
2679 continue;
2680 }
2681
2682 /*
2683 * No need to hold btrfs_root::objectid_mutex since the fs
2684 * hasn't been fully initialised and we are the only user
2685 */
2686 ret = btrfs_init_root_free_objectid(tree_root);
2687 if (ret < 0) {
2688 handle_error = true;
2689 continue;
2690 }
2691
2692 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2693
2694 ret = btrfs_read_roots(fs_info);
2695 if (ret < 0) {
2696 handle_error = true;
2697 continue;
2698 }
2699
2700 /* All successful */
2701 fs_info->generation = btrfs_header_generation(tree_root->node);
2702 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2703 fs_info->last_reloc_trans = 0;
2704
2705 /* Always begin writing backup roots after the one being used */
2706 if (backup_index < 0) {
2707 fs_info->backup_root_index = 0;
2708 } else {
2709 fs_info->backup_root_index = backup_index + 1;
2710 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2711 }
2712 break;
2713 }
2714
2715 return ret;
2716 }
2717
2718 /*
2719 * Lockdep gets confused between our buffer_tree which requires IRQ locking because
2720 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't
2721 * have these requirements. Use a class key so lockdep doesn't get them mixed up.
2722 */
2723 static struct lock_class_key buffer_xa_class;
2724
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2725 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2726 {
2727 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2728
2729 /* Use the same flags as mapping->i_pages. */
2730 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
2731 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
2732
2733 INIT_LIST_HEAD(&fs_info->trans_list);
2734 INIT_LIST_HEAD(&fs_info->dead_roots);
2735 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2736 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2737 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2738 spin_lock_init(&fs_info->delalloc_root_lock);
2739 spin_lock_init(&fs_info->trans_lock);
2740 spin_lock_init(&fs_info->fs_roots_radix_lock);
2741 spin_lock_init(&fs_info->delayed_iput_lock);
2742 spin_lock_init(&fs_info->defrag_inodes_lock);
2743 spin_lock_init(&fs_info->super_lock);
2744 spin_lock_init(&fs_info->unused_bgs_lock);
2745 spin_lock_init(&fs_info->treelog_bg_lock);
2746 spin_lock_init(&fs_info->zone_active_bgs_lock);
2747 spin_lock_init(&fs_info->relocation_bg_lock);
2748 rwlock_init(&fs_info->tree_mod_log_lock);
2749 rwlock_init(&fs_info->global_root_lock);
2750 mutex_init(&fs_info->unused_bg_unpin_mutex);
2751 mutex_init(&fs_info->reclaim_bgs_lock);
2752 mutex_init(&fs_info->reloc_mutex);
2753 mutex_init(&fs_info->delalloc_root_mutex);
2754 mutex_init(&fs_info->zoned_meta_io_lock);
2755 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2756 seqlock_init(&fs_info->profiles_lock);
2757
2758 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2759 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2760 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2761 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2762 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2763 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2764 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2765 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2766 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2767 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2768 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2769 BTRFS_LOCKDEP_TRANS_COMPLETED);
2770
2771 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2772 INIT_LIST_HEAD(&fs_info->space_info);
2773 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2774 INIT_LIST_HEAD(&fs_info->unused_bgs);
2775 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2776 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2777 #ifdef CONFIG_BTRFS_DEBUG
2778 INIT_LIST_HEAD(&fs_info->allocated_roots);
2779 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2780 spin_lock_init(&fs_info->eb_leak_lock);
2781 #endif
2782 fs_info->mapping_tree = RB_ROOT_CACHED;
2783 rwlock_init(&fs_info->mapping_tree_lock);
2784 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2785 BTRFS_BLOCK_RSV_GLOBAL);
2786 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2787 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2788 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG);
2789 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2790 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2791 BTRFS_BLOCK_RSV_DELOPS);
2792 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2793 BTRFS_BLOCK_RSV_DELREFS);
2794
2795 atomic_set(&fs_info->async_delalloc_pages, 0);
2796 atomic_set(&fs_info->defrag_running, 0);
2797 atomic_set(&fs_info->nr_delayed_iputs, 0);
2798 atomic64_set(&fs_info->tree_mod_seq, 0);
2799 fs_info->global_root_tree = RB_ROOT;
2800 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2801 fs_info->metadata_ratio = 0;
2802 fs_info->defrag_inodes = RB_ROOT;
2803 atomic64_set(&fs_info->free_chunk_space, 0);
2804 fs_info->tree_mod_log = RB_ROOT;
2805 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2806 btrfs_init_ref_verify(fs_info);
2807
2808 fs_info->thread_pool_size = min_t(unsigned long,
2809 num_online_cpus() + 2, 8);
2810
2811 INIT_LIST_HEAD(&fs_info->ordered_roots);
2812 spin_lock_init(&fs_info->ordered_root_lock);
2813
2814 btrfs_init_scrub(fs_info);
2815 btrfs_init_balance(fs_info);
2816 btrfs_init_async_reclaim_work(fs_info);
2817 btrfs_init_extent_map_shrinker_work(fs_info);
2818
2819 rwlock_init(&fs_info->block_group_cache_lock);
2820 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2821
2822 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2823 IO_TREE_FS_EXCLUDED_EXTENTS);
2824
2825 mutex_init(&fs_info->ordered_operations_mutex);
2826 mutex_init(&fs_info->tree_log_mutex);
2827 mutex_init(&fs_info->chunk_mutex);
2828 mutex_init(&fs_info->transaction_kthread_mutex);
2829 mutex_init(&fs_info->cleaner_mutex);
2830 mutex_init(&fs_info->ro_block_group_mutex);
2831 init_rwsem(&fs_info->commit_root_sem);
2832 init_rwsem(&fs_info->cleanup_work_sem);
2833 init_rwsem(&fs_info->subvol_sem);
2834 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2835
2836 btrfs_init_dev_replace_locks(fs_info);
2837 btrfs_init_qgroup(fs_info);
2838 btrfs_discard_init(fs_info);
2839
2840 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2841 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2842
2843 init_waitqueue_head(&fs_info->transaction_throttle);
2844 init_waitqueue_head(&fs_info->transaction_wait);
2845 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2846 init_waitqueue_head(&fs_info->async_submit_wait);
2847 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2848
2849 /* Usable values until the real ones are cached from the superblock */
2850 fs_info->nodesize = 4096;
2851 fs_info->sectorsize = 4096;
2852 fs_info->sectorsize_bits = ilog2(4096);
2853 fs_info->stripesize = 4096;
2854
2855 /* Default compress algorithm when user does -o compress */
2856 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2857
2858 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2859
2860 spin_lock_init(&fs_info->swapfile_pins_lock);
2861 fs_info->swapfile_pins = RB_ROOT;
2862
2863 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2864 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2865 }
2866
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2867 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2868 {
2869 int ret;
2870
2871 fs_info->sb = sb;
2872 /* Temporary fixed values for block size until we read the superblock. */
2873 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2874 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2875
2876 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2877 if (ret)
2878 return ret;
2879
2880 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2881 if (ret)
2882 return ret;
2883
2884 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2885 if (ret)
2886 return ret;
2887
2888 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2889 if (ret)
2890 return ret;
2891
2892 fs_info->dirty_metadata_batch = PAGE_SIZE *
2893 (1 + ilog2(nr_cpu_ids));
2894
2895 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2896 if (ret)
2897 return ret;
2898
2899 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2900 GFP_KERNEL);
2901 if (ret)
2902 return ret;
2903
2904 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2905 GFP_KERNEL);
2906 if (!fs_info->delayed_root)
2907 return -ENOMEM;
2908 btrfs_init_delayed_root(fs_info->delayed_root);
2909
2910 if (sb_rdonly(sb))
2911 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2912 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2913 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2914
2915 return btrfs_alloc_stripe_hash_table(fs_info);
2916 }
2917
btrfs_uuid_rescan_kthread(void * data)2918 static int btrfs_uuid_rescan_kthread(void *data)
2919 {
2920 struct btrfs_fs_info *fs_info = data;
2921 int ret;
2922
2923 /*
2924 * 1st step is to iterate through the existing UUID tree and
2925 * to delete all entries that contain outdated data.
2926 * 2nd step is to add all missing entries to the UUID tree.
2927 */
2928 ret = btrfs_uuid_tree_iterate(fs_info);
2929 if (ret < 0) {
2930 if (ret != -EINTR)
2931 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2932 ret);
2933 up(&fs_info->uuid_tree_rescan_sem);
2934 return ret;
2935 }
2936 return btrfs_uuid_scan_kthread(data);
2937 }
2938
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2939 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2940 {
2941 struct task_struct *task;
2942
2943 down(&fs_info->uuid_tree_rescan_sem);
2944 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2945 if (IS_ERR(task)) {
2946 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2947 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2948 up(&fs_info->uuid_tree_rescan_sem);
2949 return PTR_ERR(task);
2950 }
2951
2952 return 0;
2953 }
2954
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2955 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2956 {
2957 u64 root_objectid = 0;
2958 struct btrfs_root *gang[8];
2959 int ret = 0;
2960
2961 while (1) {
2962 unsigned int found;
2963
2964 spin_lock(&fs_info->fs_roots_radix_lock);
2965 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2966 (void **)gang, root_objectid,
2967 ARRAY_SIZE(gang));
2968 if (!found) {
2969 spin_unlock(&fs_info->fs_roots_radix_lock);
2970 break;
2971 }
2972 root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2973
2974 for (int i = 0; i < found; i++) {
2975 /* Avoid to grab roots in dead_roots. */
2976 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2977 gang[i] = NULL;
2978 continue;
2979 }
2980 /* Grab all the search result for later use. */
2981 gang[i] = btrfs_grab_root(gang[i]);
2982 }
2983 spin_unlock(&fs_info->fs_roots_radix_lock);
2984
2985 for (int i = 0; i < found; i++) {
2986 if (!gang[i])
2987 continue;
2988 root_objectid = btrfs_root_id(gang[i]);
2989 /*
2990 * Continue to release the remaining roots after the first
2991 * error without cleanup and preserve the first error
2992 * for the return.
2993 */
2994 if (!ret)
2995 ret = btrfs_orphan_cleanup(gang[i]);
2996 btrfs_put_root(gang[i]);
2997 }
2998 if (ret)
2999 break;
3000
3001 root_objectid++;
3002 }
3003 return ret;
3004 }
3005
3006 /*
3007 * Mounting logic specific to read-write file systems. Shared by open_ctree
3008 * and btrfs_remount when remounting from read-only to read-write.
3009 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3010 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3011 {
3012 int ret;
3013 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3014 bool rebuild_free_space_tree = false;
3015
3016 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3017 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3018 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3019 btrfs_warn(fs_info,
3020 "'clear_cache' option is ignored with extent tree v2");
3021 else
3022 rebuild_free_space_tree = true;
3023 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3024 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3025 btrfs_warn(fs_info, "free space tree is invalid");
3026 rebuild_free_space_tree = true;
3027 }
3028
3029 if (rebuild_free_space_tree) {
3030 btrfs_info(fs_info, "rebuilding free space tree");
3031 ret = btrfs_rebuild_free_space_tree(fs_info);
3032 if (ret) {
3033 btrfs_warn(fs_info,
3034 "failed to rebuild free space tree: %d", ret);
3035 goto out;
3036 }
3037 }
3038
3039 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3040 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3041 btrfs_info(fs_info, "disabling free space tree");
3042 ret = btrfs_delete_free_space_tree(fs_info);
3043 if (ret) {
3044 btrfs_warn(fs_info,
3045 "failed to disable free space tree: %d", ret);
3046 goto out;
3047 }
3048 }
3049
3050 /*
3051 * btrfs_find_orphan_roots() is responsible for finding all the dead
3052 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3053 * them into the fs_info->fs_roots_radix tree. This must be done before
3054 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3055 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3056 * item before the root's tree is deleted - this means that if we unmount
3057 * or crash before the deletion completes, on the next mount we will not
3058 * delete what remains of the tree because the orphan item does not
3059 * exists anymore, which is what tells us we have a pending deletion.
3060 */
3061 ret = btrfs_find_orphan_roots(fs_info);
3062 if (ret)
3063 goto out;
3064
3065 ret = btrfs_cleanup_fs_roots(fs_info);
3066 if (ret)
3067 goto out;
3068
3069 down_read(&fs_info->cleanup_work_sem);
3070 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3071 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3072 up_read(&fs_info->cleanup_work_sem);
3073 goto out;
3074 }
3075 up_read(&fs_info->cleanup_work_sem);
3076
3077 mutex_lock(&fs_info->cleaner_mutex);
3078 ret = btrfs_recover_relocation(fs_info);
3079 mutex_unlock(&fs_info->cleaner_mutex);
3080 if (ret < 0) {
3081 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3082 goto out;
3083 }
3084
3085 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3086 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3087 btrfs_info(fs_info, "creating free space tree");
3088 ret = btrfs_create_free_space_tree(fs_info);
3089 if (ret) {
3090 btrfs_warn(fs_info,
3091 "failed to create free space tree: %d", ret);
3092 goto out;
3093 }
3094 }
3095
3096 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3097 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3098 if (ret)
3099 goto out;
3100 }
3101
3102 ret = btrfs_resume_balance_async(fs_info);
3103 if (ret)
3104 goto out;
3105
3106 ret = btrfs_resume_dev_replace_async(fs_info);
3107 if (ret) {
3108 btrfs_warn(fs_info, "failed to resume dev_replace");
3109 goto out;
3110 }
3111
3112 btrfs_qgroup_rescan_resume(fs_info);
3113
3114 if (!fs_info->uuid_root) {
3115 btrfs_info(fs_info, "creating UUID tree");
3116 ret = btrfs_create_uuid_tree(fs_info);
3117 if (ret) {
3118 btrfs_warn(fs_info,
3119 "failed to create the UUID tree %d", ret);
3120 goto out;
3121 }
3122 }
3123
3124 out:
3125 return ret;
3126 }
3127
3128 /*
3129 * Do various sanity and dependency checks of different features.
3130 *
3131 * @is_rw_mount: If the mount is read-write.
3132 *
3133 * This is the place for less strict checks (like for subpage or artificial
3134 * feature dependencies).
3135 *
3136 * For strict checks or possible corruption detection, see
3137 * btrfs_validate_super().
3138 *
3139 * This should be called after btrfs_parse_options(), as some mount options
3140 * (space cache related) can modify on-disk format like free space tree and
3141 * screw up certain feature dependencies.
3142 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3143 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3144 {
3145 struct btrfs_super_block *disk_super = fs_info->super_copy;
3146 u64 incompat = btrfs_super_incompat_flags(disk_super);
3147 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3148 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3149
3150 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3151 btrfs_err(fs_info,
3152 "cannot mount because of unknown incompat features (0x%llx)",
3153 incompat);
3154 return -EINVAL;
3155 }
3156
3157 /* Runtime limitation for mixed block groups. */
3158 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3159 (fs_info->sectorsize != fs_info->nodesize)) {
3160 btrfs_err(fs_info,
3161 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3162 fs_info->nodesize, fs_info->sectorsize);
3163 return -EINVAL;
3164 }
3165
3166 /* Mixed backref is an always-enabled feature. */
3167 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3168
3169 /* Set compression related flags just in case. */
3170 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3171 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3172 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3173 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3174
3175 /*
3176 * An ancient flag, which should really be marked deprecated.
3177 * Such runtime limitation doesn't really need a incompat flag.
3178 */
3179 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3180 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3181
3182 if (compat_ro_unsupp && is_rw_mount) {
3183 btrfs_err(fs_info,
3184 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3185 compat_ro);
3186 return -EINVAL;
3187 }
3188
3189 /*
3190 * We have unsupported RO compat features, although RO mounted, we
3191 * should not cause any metadata writes, including log replay.
3192 * Or we could screw up whatever the new feature requires.
3193 */
3194 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3195 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3196 btrfs_err(fs_info,
3197 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3198 compat_ro);
3199 return -EINVAL;
3200 }
3201
3202 /*
3203 * Artificial limitations for block group tree, to force
3204 * block-group-tree to rely on no-holes and free-space-tree.
3205 */
3206 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3207 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3208 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3209 btrfs_err(fs_info,
3210 "block-group-tree feature requires no-holes and free-space-tree features");
3211 return -EINVAL;
3212 }
3213
3214 /*
3215 * Subpage/bs > ps runtime limitation on v1 cache.
3216 *
3217 * V1 space cache still has some hard coded PAGE_SIZE usage, while
3218 * we're already defaulting to v2 cache, no need to bother v1 as it's
3219 * going to be deprecated anyway.
3220 */
3221 if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3222 btrfs_warn(fs_info,
3223 "v1 space cache is not supported for page size %lu with sectorsize %u",
3224 PAGE_SIZE, fs_info->sectorsize);
3225 return -EINVAL;
3226 }
3227
3228 /* This can be called by remount, we need to protect the super block. */
3229 spin_lock(&fs_info->super_lock);
3230 btrfs_set_super_incompat_flags(disk_super, incompat);
3231 spin_unlock(&fs_info->super_lock);
3232
3233 return 0;
3234 }
3235
fs_is_full_ro(const struct btrfs_fs_info * fs_info)3236 static bool fs_is_full_ro(const struct btrfs_fs_info *fs_info)
3237 {
3238 if (!sb_rdonly(fs_info->sb))
3239 return false;
3240 if (unlikely(fs_info->mount_opt & BTRFS_MOUNT_FULL_RO_MASK))
3241 return true;
3242 return false;
3243 }
3244
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3245 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3246 {
3247 u32 sectorsize;
3248 u32 nodesize;
3249 u32 stripesize;
3250 u64 generation;
3251 u16 csum_type;
3252 struct btrfs_super_block *disk_super;
3253 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3254 struct btrfs_root *tree_root;
3255 struct btrfs_root *chunk_root;
3256 int ret;
3257 int level;
3258
3259 ret = init_mount_fs_info(fs_info, sb);
3260 if (ret)
3261 goto fail;
3262
3263 /* These need to be init'ed before we start creating inodes and such. */
3264 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3265 GFP_KERNEL);
3266 fs_info->tree_root = tree_root;
3267 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3268 GFP_KERNEL);
3269 fs_info->chunk_root = chunk_root;
3270 if (!tree_root || !chunk_root) {
3271 ret = -ENOMEM;
3272 goto fail;
3273 }
3274
3275 ret = btrfs_init_btree_inode(sb);
3276 if (ret)
3277 goto fail;
3278
3279 invalidate_bdev(fs_devices->latest_dev->bdev);
3280
3281 /*
3282 * Read super block and check the signature bytes only
3283 */
3284 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false);
3285 if (IS_ERR(disk_super)) {
3286 ret = PTR_ERR(disk_super);
3287 goto fail_alloc;
3288 }
3289
3290 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3291 /*
3292 * Verify the type first, if that or the checksum value are
3293 * corrupted, we'll find out
3294 */
3295 csum_type = btrfs_super_csum_type(disk_super);
3296 if (!btrfs_supported_super_csum(csum_type)) {
3297 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3298 csum_type);
3299 ret = -EINVAL;
3300 btrfs_release_disk_super(disk_super);
3301 goto fail_alloc;
3302 }
3303
3304 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3305
3306 ret = btrfs_init_csum_hash(fs_info, csum_type);
3307 if (ret) {
3308 btrfs_release_disk_super(disk_super);
3309 goto fail_alloc;
3310 }
3311
3312 /*
3313 * We want to check superblock checksum, the type is stored inside.
3314 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3315 */
3316 if (btrfs_check_super_csum(fs_info, disk_super)) {
3317 btrfs_err(fs_info, "superblock checksum mismatch");
3318 ret = -EINVAL;
3319 btrfs_release_disk_super(disk_super);
3320 goto fail_alloc;
3321 }
3322
3323 /*
3324 * super_copy is zeroed at allocation time and we never touch the
3325 * following bytes up to INFO_SIZE, the checksum is calculated from
3326 * the whole block of INFO_SIZE
3327 */
3328 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3329 btrfs_release_disk_super(disk_super);
3330
3331 disk_super = fs_info->super_copy;
3332
3333 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3334 sizeof(*fs_info->super_for_commit));
3335
3336 ret = btrfs_validate_mount_super(fs_info);
3337 if (ret) {
3338 btrfs_err(fs_info, "superblock contains fatal errors");
3339 ret = -EINVAL;
3340 goto fail_alloc;
3341 }
3342
3343 if (!btrfs_super_root(disk_super)) {
3344 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3345 ret = -EINVAL;
3346 goto fail_alloc;
3347 }
3348
3349 /* check FS state, whether FS is broken. */
3350 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3351 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3352
3353 /* If the fs has any rescue options, no transaction is allowed. */
3354 if (fs_is_full_ro(fs_info))
3355 WRITE_ONCE(fs_info->fs_error, -EROFS);
3356
3357 /* Set up fs_info before parsing mount options */
3358 nodesize = btrfs_super_nodesize(disk_super);
3359 sectorsize = btrfs_super_sectorsize(disk_super);
3360 stripesize = sectorsize;
3361 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3362 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3363
3364 fs_info->nodesize = nodesize;
3365 fs_info->nodesize_bits = ilog2(nodesize);
3366 fs_info->sectorsize = sectorsize;
3367 fs_info->sectorsize_bits = ilog2(sectorsize);
3368 fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT);
3369 fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT);
3370 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3371 fs_info->stripesize = stripesize;
3372 fs_info->fs_devices->fs_info = fs_info;
3373
3374 if (fs_info->sectorsize > PAGE_SIZE)
3375 btrfs_warn(fs_info,
3376 "support for block size %u with page size %lu is experimental, some features may be missing",
3377 fs_info->sectorsize, PAGE_SIZE);
3378 /*
3379 * Handle the space caching options appropriately now that we have the
3380 * super block loaded and validated.
3381 */
3382 btrfs_set_free_space_cache_settings(fs_info);
3383
3384 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3385 ret = -EINVAL;
3386 goto fail_alloc;
3387 }
3388
3389 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3390 if (ret < 0)
3391 goto fail_alloc;
3392
3393 /*
3394 * At this point our mount options are validated, if we set ->max_inline
3395 * to something non-standard make sure we truncate it to sectorsize.
3396 */
3397 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3398
3399 ret = btrfs_alloc_compress_wsm(fs_info);
3400 if (ret)
3401 goto fail_sb_buffer;
3402 ret = btrfs_init_workqueues(fs_info);
3403 if (ret)
3404 goto fail_sb_buffer;
3405
3406 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3407 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3408
3409 /* Update the values for the current filesystem. */
3410 sb->s_blocksize = sectorsize;
3411 sb->s_blocksize_bits = blksize_bits(sectorsize);
3412 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3413
3414 mutex_lock(&fs_info->chunk_mutex);
3415 ret = btrfs_read_sys_array(fs_info);
3416 mutex_unlock(&fs_info->chunk_mutex);
3417 if (ret) {
3418 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3419 goto fail_sb_buffer;
3420 }
3421
3422 generation = btrfs_super_chunk_root_generation(disk_super);
3423 level = btrfs_super_chunk_root_level(disk_super);
3424 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3425 generation, level);
3426 if (ret) {
3427 btrfs_err(fs_info, "failed to read chunk root");
3428 goto fail_tree_roots;
3429 }
3430
3431 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3432 offsetof(struct btrfs_header, chunk_tree_uuid),
3433 BTRFS_UUID_SIZE);
3434
3435 ret = btrfs_read_chunk_tree(fs_info);
3436 if (ret) {
3437 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3438 goto fail_tree_roots;
3439 }
3440
3441 /*
3442 * At this point we know all the devices that make this filesystem,
3443 * including the seed devices but we don't know yet if the replace
3444 * target is required. So free devices that are not part of this
3445 * filesystem but skip the replace target device which is checked
3446 * below in btrfs_init_dev_replace().
3447 */
3448 btrfs_free_extra_devids(fs_devices);
3449 if (unlikely(!fs_devices->latest_dev->bdev)) {
3450 btrfs_err(fs_info, "failed to read devices");
3451 ret = -EIO;
3452 goto fail_tree_roots;
3453 }
3454
3455 ret = init_tree_roots(fs_info);
3456 if (ret)
3457 goto fail_tree_roots;
3458
3459 /*
3460 * Get zone type information of zoned block devices. This will also
3461 * handle emulation of a zoned filesystem if a regular device has the
3462 * zoned incompat feature flag set.
3463 */
3464 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3465 if (ret) {
3466 btrfs_err(fs_info,
3467 "zoned: failed to read device zone info: %d", ret);
3468 goto fail_block_groups;
3469 }
3470
3471 /*
3472 * If we have a uuid root and we're not being told to rescan we need to
3473 * check the generation here so we can set the
3474 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3475 * transaction during a balance or the log replay without updating the
3476 * uuid generation, and then if we crash we would rescan the uuid tree,
3477 * even though it was perfectly fine.
3478 */
3479 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3480 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3481 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3482
3483 if (unlikely(btrfs_verify_dev_items(fs_info))) {
3484 ret = -EUCLEAN;
3485 goto fail_block_groups;
3486 }
3487 ret = btrfs_verify_dev_extents(fs_info);
3488 if (ret) {
3489 btrfs_err(fs_info,
3490 "failed to verify dev extents against chunks: %d",
3491 ret);
3492 goto fail_block_groups;
3493 }
3494 ret = btrfs_recover_balance(fs_info);
3495 if (ret) {
3496 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3497 goto fail_block_groups;
3498 }
3499
3500 ret = btrfs_init_dev_stats(fs_info);
3501 if (ret) {
3502 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3503 goto fail_block_groups;
3504 }
3505
3506 ret = btrfs_init_dev_replace(fs_info);
3507 if (ret) {
3508 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3509 goto fail_block_groups;
3510 }
3511
3512 ret = btrfs_check_zoned_mode(fs_info);
3513 if (ret) {
3514 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3515 ret);
3516 goto fail_block_groups;
3517 }
3518
3519 ret = btrfs_sysfs_add_fsid(fs_devices);
3520 if (ret) {
3521 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3522 ret);
3523 goto fail_block_groups;
3524 }
3525
3526 ret = btrfs_sysfs_add_mounted(fs_info);
3527 if (ret) {
3528 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3529 goto fail_fsdev_sysfs;
3530 }
3531
3532 ret = btrfs_init_space_info(fs_info);
3533 if (ret) {
3534 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3535 goto fail_sysfs;
3536 }
3537
3538 ret = btrfs_read_block_groups(fs_info);
3539 if (ret) {
3540 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3541 goto fail_sysfs;
3542 }
3543
3544 btrfs_zoned_reserve_data_reloc_bg(fs_info);
3545 btrfs_free_zone_cache(fs_info);
3546
3547 btrfs_check_active_zone_reservation(fs_info);
3548
3549 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3550 !btrfs_check_rw_degradable(fs_info, NULL)) {
3551 btrfs_warn(fs_info,
3552 "writable mount is not allowed due to too many missing devices");
3553 ret = -EINVAL;
3554 goto fail_sysfs;
3555 }
3556
3557 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3558 "btrfs-cleaner");
3559 if (IS_ERR(fs_info->cleaner_kthread)) {
3560 ret = PTR_ERR(fs_info->cleaner_kthread);
3561 goto fail_sysfs;
3562 }
3563
3564 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3565 tree_root,
3566 "btrfs-transaction");
3567 if (IS_ERR(fs_info->transaction_kthread)) {
3568 ret = PTR_ERR(fs_info->transaction_kthread);
3569 goto fail_cleaner;
3570 }
3571
3572 ret = btrfs_read_qgroup_config(fs_info);
3573 if (ret)
3574 goto fail_trans_kthread;
3575
3576 if (btrfs_build_ref_tree(fs_info))
3577 btrfs_err(fs_info, "couldn't build ref tree");
3578
3579 /* do not make disk changes in broken FS or nologreplay is given */
3580 if (btrfs_super_log_root(disk_super) != 0 &&
3581 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3582 btrfs_info(fs_info, "start tree-log replay");
3583 ret = btrfs_replay_log(fs_info, fs_devices);
3584 if (ret)
3585 goto fail_qgroup;
3586 }
3587
3588 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3589 if (IS_ERR(fs_info->fs_root)) {
3590 ret = PTR_ERR(fs_info->fs_root);
3591 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3592 fs_info->fs_root = NULL;
3593 goto fail_qgroup;
3594 }
3595
3596 if (sb_rdonly(sb))
3597 return 0;
3598
3599 ret = btrfs_start_pre_rw_mount(fs_info);
3600 if (ret) {
3601 close_ctree(fs_info);
3602 return ret;
3603 }
3604 btrfs_discard_resume(fs_info);
3605
3606 if (fs_info->uuid_root &&
3607 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3608 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3609 btrfs_info(fs_info, "checking UUID tree");
3610 ret = btrfs_check_uuid_tree(fs_info);
3611 if (ret) {
3612 btrfs_warn(fs_info,
3613 "failed to check the UUID tree: %d", ret);
3614 close_ctree(fs_info);
3615 return ret;
3616 }
3617 }
3618
3619 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3620
3621 /* Kick the cleaner thread so it'll start deleting snapshots. */
3622 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3623 wake_up_process(fs_info->cleaner_kthread);
3624
3625 return 0;
3626
3627 fail_qgroup:
3628 btrfs_free_qgroup_config(fs_info);
3629 fail_trans_kthread:
3630 kthread_stop(fs_info->transaction_kthread);
3631 btrfs_cleanup_transaction(fs_info);
3632 btrfs_free_fs_roots(fs_info);
3633 fail_cleaner:
3634 kthread_stop(fs_info->cleaner_kthread);
3635
3636 /*
3637 * make sure we're done with the btree inode before we stop our
3638 * kthreads
3639 */
3640 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3641
3642 fail_sysfs:
3643 btrfs_sysfs_remove_mounted(fs_info);
3644
3645 fail_fsdev_sysfs:
3646 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3647
3648 fail_block_groups:
3649 btrfs_put_block_group_cache(fs_info);
3650
3651 fail_tree_roots:
3652 if (fs_info->data_reloc_root)
3653 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3654 free_root_pointers(fs_info, true);
3655 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3656
3657 fail_sb_buffer:
3658 btrfs_stop_all_workers(fs_info);
3659 btrfs_free_block_groups(fs_info);
3660 fail_alloc:
3661 btrfs_mapping_tree_free(fs_info);
3662
3663 iput(fs_info->btree_inode);
3664 fail:
3665 ASSERT(ret < 0);
3666 return ret;
3667 }
3668 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3669
btrfs_end_super_write(struct bio * bio)3670 static void btrfs_end_super_write(struct bio *bio)
3671 {
3672 struct btrfs_device *device = bio->bi_private;
3673 struct folio_iter fi;
3674
3675 bio_for_each_folio_all(fi, bio) {
3676 if (bio->bi_status) {
3677 btrfs_warn_rl(device->fs_info,
3678 "lost super block write due to IO error on %s (%d)",
3679 btrfs_dev_name(device),
3680 blk_status_to_errno(bio->bi_status));
3681 btrfs_dev_stat_inc_and_print(device,
3682 BTRFS_DEV_STAT_WRITE_ERRS);
3683 /* Ensure failure if the primary sb fails. */
3684 if (bio->bi_opf & REQ_FUA)
3685 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3686 &device->sb_write_errors);
3687 else
3688 atomic_inc(&device->sb_write_errors);
3689 }
3690 folio_unlock(fi.folio);
3691 folio_put(fi.folio);
3692 }
3693
3694 bio_put(bio);
3695 }
3696
3697 /*
3698 * Write superblock @sb to the @device. Do not wait for completion, all the
3699 * folios we use for writing are locked.
3700 *
3701 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3702 * the expected device size at commit time. Note that max_mirrors must be
3703 * same for write and wait phases.
3704 *
3705 * Return number of errors when folio is not found or submission fails.
3706 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3707 static int write_dev_supers(struct btrfs_device *device,
3708 struct btrfs_super_block *sb, int max_mirrors)
3709 {
3710 struct btrfs_fs_info *fs_info = device->fs_info;
3711 struct address_space *mapping = device->bdev->bd_mapping;
3712 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3713 int i;
3714 int ret;
3715 u64 bytenr, bytenr_orig;
3716
3717 atomic_set(&device->sb_write_errors, 0);
3718
3719 if (max_mirrors == 0)
3720 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3721
3722 shash->tfm = fs_info->csum_shash;
3723
3724 for (i = 0; i < max_mirrors; i++) {
3725 struct folio *folio;
3726 struct bio *bio;
3727 struct btrfs_super_block *disk_super;
3728 size_t offset;
3729
3730 bytenr_orig = btrfs_sb_offset(i);
3731 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3732 if (ret == -ENOENT) {
3733 continue;
3734 } else if (ret < 0) {
3735 btrfs_err(device->fs_info,
3736 "couldn't get super block location for mirror %d error %d",
3737 i, ret);
3738 atomic_inc(&device->sb_write_errors);
3739 continue;
3740 }
3741 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3742 device->commit_total_bytes)
3743 break;
3744
3745 btrfs_set_super_bytenr(sb, bytenr_orig);
3746
3747 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3748 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3749 sb->csum);
3750
3751 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3752 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3753 GFP_NOFS);
3754 if (IS_ERR(folio)) {
3755 btrfs_err(device->fs_info,
3756 "couldn't get super block page for bytenr %llu error %ld",
3757 bytenr, PTR_ERR(folio));
3758 atomic_inc(&device->sb_write_errors);
3759 continue;
3760 }
3761
3762 offset = offset_in_folio(folio, bytenr);
3763 disk_super = folio_address(folio) + offset;
3764 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3765
3766 /*
3767 * Directly use bios here instead of relying on the page cache
3768 * to do I/O, so we don't lose the ability to do integrity
3769 * checking.
3770 */
3771 bio = bio_alloc(device->bdev, 1,
3772 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3773 GFP_NOFS);
3774 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3775 bio->bi_private = device;
3776 bio->bi_end_io = btrfs_end_super_write;
3777 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3778
3779 /*
3780 * We FUA only the first super block. The others we allow to
3781 * go down lazy and there's a short window where the on-disk
3782 * copies might still contain the older version.
3783 */
3784 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3785 bio->bi_opf |= REQ_FUA;
3786 submit_bio(bio);
3787
3788 if (btrfs_advance_sb_log(device, i))
3789 atomic_inc(&device->sb_write_errors);
3790 }
3791 return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3792 }
3793
3794 /*
3795 * Wait for write completion of superblocks done by write_dev_supers,
3796 * @max_mirrors same for write and wait phases.
3797 *
3798 * Return -1 if primary super block write failed or when there were no super block
3799 * copies written. Otherwise 0.
3800 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3801 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3802 {
3803 int i;
3804 int errors = 0;
3805 bool primary_failed = false;
3806 int ret;
3807 u64 bytenr;
3808
3809 if (max_mirrors == 0)
3810 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3811
3812 for (i = 0; i < max_mirrors; i++) {
3813 struct folio *folio;
3814
3815 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3816 if (ret == -ENOENT) {
3817 break;
3818 } else if (ret < 0) {
3819 errors++;
3820 if (i == 0)
3821 primary_failed = true;
3822 continue;
3823 }
3824 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3825 device->commit_total_bytes)
3826 break;
3827
3828 folio = filemap_get_folio(device->bdev->bd_mapping,
3829 bytenr >> PAGE_SHIFT);
3830 /* If the folio has been removed, then we know it completed. */
3831 if (IS_ERR(folio))
3832 continue;
3833
3834 /* Folio will be unlocked once the write completes. */
3835 folio_wait_locked(folio);
3836 folio_put(folio);
3837 }
3838
3839 errors += atomic_read(&device->sb_write_errors);
3840 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3841 primary_failed = true;
3842 if (primary_failed) {
3843 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3844 device->devid);
3845 return -1;
3846 }
3847
3848 return errors < i ? 0 : -1;
3849 }
3850
3851 /*
3852 * endio for the write_dev_flush, this will wake anyone waiting
3853 * for the barrier when it is done
3854 */
btrfs_end_empty_barrier(struct bio * bio)3855 static void btrfs_end_empty_barrier(struct bio *bio)
3856 {
3857 bio_uninit(bio);
3858 complete(bio->bi_private);
3859 }
3860
3861 /*
3862 * Submit a flush request to the device if it supports it. Error handling is
3863 * done in the waiting counterpart.
3864 */
write_dev_flush(struct btrfs_device * device)3865 static void write_dev_flush(struct btrfs_device *device)
3866 {
3867 struct bio *bio = &device->flush_bio;
3868
3869 device->last_flush_error = BLK_STS_OK;
3870
3871 bio_init(bio, device->bdev, NULL, 0,
3872 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3873 bio->bi_end_io = btrfs_end_empty_barrier;
3874 init_completion(&device->flush_wait);
3875 bio->bi_private = &device->flush_wait;
3876 submit_bio(bio);
3877 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3878 }
3879
3880 /*
3881 * If the flush bio has been submitted by write_dev_flush, wait for it.
3882 * Return true for any error, and false otherwise.
3883 */
wait_dev_flush(struct btrfs_device * device)3884 static bool wait_dev_flush(struct btrfs_device *device)
3885 {
3886 struct bio *bio = &device->flush_bio;
3887
3888 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3889 return false;
3890
3891 wait_for_completion_io(&device->flush_wait);
3892
3893 if (bio->bi_status) {
3894 device->last_flush_error = bio->bi_status;
3895 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3896 return true;
3897 }
3898
3899 return false;
3900 }
3901
3902 /*
3903 * send an empty flush down to each device in parallel,
3904 * then wait for them
3905 */
barrier_all_devices(struct btrfs_fs_info * info)3906 static int barrier_all_devices(struct btrfs_fs_info *info)
3907 {
3908 struct list_head *head;
3909 struct btrfs_device *dev;
3910 int errors_wait = 0;
3911
3912 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3913 /* send down all the barriers */
3914 head = &info->fs_devices->devices;
3915 list_for_each_entry(dev, head, dev_list) {
3916 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3917 continue;
3918 if (!dev->bdev)
3919 continue;
3920 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3921 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3922 continue;
3923
3924 write_dev_flush(dev);
3925 }
3926
3927 /* wait for all the barriers */
3928 list_for_each_entry(dev, head, dev_list) {
3929 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3930 continue;
3931 if (!dev->bdev) {
3932 errors_wait++;
3933 continue;
3934 }
3935 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3936 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3937 continue;
3938
3939 if (wait_dev_flush(dev))
3940 errors_wait++;
3941 }
3942
3943 /*
3944 * Checks last_flush_error of disks in order to determine the device
3945 * state.
3946 */
3947 if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL)))
3948 return -EIO;
3949
3950 return 0;
3951 }
3952
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3953 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3954 {
3955 int raid_type;
3956 int min_tolerated = INT_MAX;
3957
3958 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3959 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3960 min_tolerated = min_t(int, min_tolerated,
3961 btrfs_raid_array[BTRFS_RAID_SINGLE].
3962 tolerated_failures);
3963
3964 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3965 if (raid_type == BTRFS_RAID_SINGLE)
3966 continue;
3967 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3968 continue;
3969 min_tolerated = min_t(int, min_tolerated,
3970 btrfs_raid_array[raid_type].
3971 tolerated_failures);
3972 }
3973
3974 if (min_tolerated == INT_MAX) {
3975 btrfs_warn(NULL, "unknown raid flag: %llu", flags);
3976 min_tolerated = 0;
3977 }
3978
3979 return min_tolerated;
3980 }
3981
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3982 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3983 {
3984 struct list_head *head;
3985 struct btrfs_device *dev;
3986 struct btrfs_super_block *sb;
3987 struct btrfs_dev_item *dev_item;
3988 int ret;
3989 int do_barriers;
3990 int max_errors;
3991 int total_errors = 0;
3992 u64 flags;
3993
3994 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3995
3996 /*
3997 * max_mirrors == 0 indicates we're from commit_transaction,
3998 * not from fsync where the tree roots in fs_info have not
3999 * been consistent on disk.
4000 */
4001 if (max_mirrors == 0)
4002 backup_super_roots(fs_info);
4003
4004 sb = fs_info->super_for_commit;
4005 dev_item = &sb->dev_item;
4006
4007 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4008 head = &fs_info->fs_devices->devices;
4009 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4010
4011 if (do_barriers) {
4012 ret = barrier_all_devices(fs_info);
4013 if (ret) {
4014 mutex_unlock(
4015 &fs_info->fs_devices->device_list_mutex);
4016 btrfs_handle_fs_error(fs_info, ret,
4017 "errors while submitting device barriers.");
4018 return ret;
4019 }
4020 }
4021
4022 list_for_each_entry(dev, head, dev_list) {
4023 if (!dev->bdev) {
4024 total_errors++;
4025 continue;
4026 }
4027 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4028 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4029 continue;
4030
4031 btrfs_set_stack_device_generation(dev_item, 0);
4032 btrfs_set_stack_device_type(dev_item, dev->type);
4033 btrfs_set_stack_device_id(dev_item, dev->devid);
4034 btrfs_set_stack_device_total_bytes(dev_item,
4035 dev->commit_total_bytes);
4036 btrfs_set_stack_device_bytes_used(dev_item,
4037 dev->commit_bytes_used);
4038 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4039 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4040 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4041 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4042 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4043 BTRFS_FSID_SIZE);
4044
4045 flags = btrfs_super_flags(sb);
4046 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4047
4048 ret = btrfs_validate_write_super(fs_info, sb);
4049 if (unlikely(ret < 0)) {
4050 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4051 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4052 "unexpected superblock corruption detected");
4053 return -EUCLEAN;
4054 }
4055
4056 ret = write_dev_supers(dev, sb, max_mirrors);
4057 if (ret)
4058 total_errors++;
4059 }
4060 if (unlikely(total_errors > max_errors)) {
4061 btrfs_err(fs_info, "%d errors while writing supers",
4062 total_errors);
4063 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4064
4065 /* FUA is masked off if unsupported and can't be the reason */
4066 btrfs_handle_fs_error(fs_info, -EIO,
4067 "%d errors while writing supers",
4068 total_errors);
4069 return -EIO;
4070 }
4071
4072 total_errors = 0;
4073 list_for_each_entry(dev, head, dev_list) {
4074 if (!dev->bdev)
4075 continue;
4076 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4077 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4078 continue;
4079
4080 ret = wait_dev_supers(dev, max_mirrors);
4081 if (ret)
4082 total_errors++;
4083 }
4084 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4085 if (unlikely(total_errors > max_errors)) {
4086 btrfs_handle_fs_error(fs_info, -EIO,
4087 "%d errors while writing supers",
4088 total_errors);
4089 return -EIO;
4090 }
4091 return 0;
4092 }
4093
4094 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4095 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4096 struct btrfs_root *root)
4097 {
4098 bool drop_ref = false;
4099
4100 spin_lock(&fs_info->fs_roots_radix_lock);
4101 radix_tree_delete(&fs_info->fs_roots_radix,
4102 (unsigned long)btrfs_root_id(root));
4103 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4104 drop_ref = true;
4105 spin_unlock(&fs_info->fs_roots_radix_lock);
4106
4107 if (BTRFS_FS_ERROR(fs_info)) {
4108 ASSERT(root->log_root == NULL);
4109 if (root->reloc_root) {
4110 btrfs_put_root(root->reloc_root);
4111 root->reloc_root = NULL;
4112 }
4113 }
4114
4115 if (drop_ref)
4116 btrfs_put_root(root);
4117 }
4118
btrfs_commit_super(struct btrfs_fs_info * fs_info)4119 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4120 {
4121 mutex_lock(&fs_info->cleaner_mutex);
4122 btrfs_run_delayed_iputs(fs_info);
4123 mutex_unlock(&fs_info->cleaner_mutex);
4124 wake_up_process(fs_info->cleaner_kthread);
4125
4126 /* wait until ongoing cleanup work done */
4127 down_write(&fs_info->cleanup_work_sem);
4128 up_write(&fs_info->cleanup_work_sem);
4129
4130 return btrfs_commit_current_transaction(fs_info->tree_root);
4131 }
4132
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4133 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4134 {
4135 struct btrfs_transaction *trans;
4136 struct btrfs_transaction *tmp;
4137 bool found = false;
4138
4139 /*
4140 * This function is only called at the very end of close_ctree(),
4141 * thus no other running transaction, no need to take trans_lock.
4142 */
4143 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4144 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4145 struct extent_state *cached = NULL;
4146 u64 dirty_bytes = 0;
4147 u64 cur = 0;
4148 u64 found_start;
4149 u64 found_end;
4150
4151 found = true;
4152 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur,
4153 &found_start, &found_end,
4154 EXTENT_DIRTY, &cached)) {
4155 dirty_bytes += found_end + 1 - found_start;
4156 cur = found_end + 1;
4157 }
4158 btrfs_warn(fs_info,
4159 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4160 trans->transid, dirty_bytes);
4161 btrfs_cleanup_one_transaction(trans);
4162
4163 if (trans == fs_info->running_transaction)
4164 fs_info->running_transaction = NULL;
4165 list_del_init(&trans->list);
4166
4167 btrfs_put_transaction(trans);
4168 trace_btrfs_transaction_commit(fs_info);
4169 }
4170 ASSERT(!found);
4171 }
4172
close_ctree(struct btrfs_fs_info * fs_info)4173 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4174 {
4175 int ret;
4176
4177 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4178
4179 /*
4180 * If we had UNFINISHED_DROPS we could still be processing them, so
4181 * clear that bit and wake up relocation so it can stop.
4182 * We must do this before stopping the block group reclaim task, because
4183 * at btrfs_relocate_block_group() we wait for this bit, and after the
4184 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4185 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4186 * return 1.
4187 */
4188 btrfs_wake_unfinished_drop(fs_info);
4189
4190 /*
4191 * We may have the reclaim task running and relocating a data block group,
4192 * in which case it may create delayed iputs. So stop it before we park
4193 * the cleaner kthread otherwise we can get new delayed iputs after
4194 * parking the cleaner, and that can make the async reclaim task to hang
4195 * if it's waiting for delayed iputs to complete, since the cleaner is
4196 * parked and can not run delayed iputs - this will make us hang when
4197 * trying to stop the async reclaim task.
4198 */
4199 cancel_work_sync(&fs_info->reclaim_bgs_work);
4200 /*
4201 * We don't want the cleaner to start new transactions, add more delayed
4202 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4203 * because that frees the task_struct, and the transaction kthread might
4204 * still try to wake up the cleaner.
4205 */
4206 kthread_park(fs_info->cleaner_kthread);
4207
4208 /* wait for the qgroup rescan worker to stop */
4209 btrfs_qgroup_wait_for_completion(fs_info, false);
4210
4211 /* wait for the uuid_scan task to finish */
4212 down(&fs_info->uuid_tree_rescan_sem);
4213 /* avoid complains from lockdep et al., set sem back to initial state */
4214 up(&fs_info->uuid_tree_rescan_sem);
4215
4216 /* pause restriper - we want to resume on mount */
4217 btrfs_pause_balance(fs_info);
4218
4219 btrfs_dev_replace_suspend_for_unmount(fs_info);
4220
4221 btrfs_scrub_cancel(fs_info);
4222
4223 /* wait for any defraggers to finish */
4224 wait_event(fs_info->transaction_wait,
4225 (atomic_read(&fs_info->defrag_running) == 0));
4226
4227 /* clear out the rbtree of defraggable inodes */
4228 btrfs_cleanup_defrag_inodes(fs_info);
4229
4230 /*
4231 * Handle the error fs first, as it will flush and wait for all ordered
4232 * extents. This will generate delayed iputs, thus we want to handle
4233 * it first.
4234 */
4235 if (unlikely(BTRFS_FS_ERROR(fs_info)))
4236 btrfs_error_commit_super(fs_info);
4237
4238 /*
4239 * Wait for any fixup workers to complete.
4240 * If we don't wait for them here and they are still running by the time
4241 * we call kthread_stop() against the cleaner kthread further below, we
4242 * get an use-after-free on the cleaner because the fixup worker adds an
4243 * inode to the list of delayed iputs and then attempts to wakeup the
4244 * cleaner kthread, which was already stopped and destroyed. We parked
4245 * already the cleaner, but below we run all pending delayed iputs.
4246 */
4247 btrfs_flush_workqueue(fs_info->fixup_workers);
4248 /*
4249 * Similar case here, we have to wait for delalloc workers before we
4250 * proceed below and stop the cleaner kthread, otherwise we trigger a
4251 * use-after-tree on the cleaner kthread task_struct when a delalloc
4252 * worker running submit_compressed_extents() adds a delayed iput, which
4253 * does a wake up on the cleaner kthread, which was already freed below
4254 * when we call kthread_stop().
4255 */
4256 btrfs_flush_workqueue(fs_info->delalloc_workers);
4257
4258 /*
4259 * We can have ordered extents getting their last reference dropped from
4260 * the fs_info->workers queue because for async writes for data bios we
4261 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4262 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4263 * has an error, and that later function can do the final
4264 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4265 * which adds a delayed iput for the inode. So we must flush the queue
4266 * so that we don't have delayed iputs after committing the current
4267 * transaction below and stopping the cleaner and transaction kthreads.
4268 */
4269 btrfs_flush_workqueue(fs_info->workers);
4270
4271 /*
4272 * When finishing a compressed write bio we schedule a work queue item
4273 * to finish an ordered extent - end_bbio_compressed_write()
4274 * calls btrfs_finish_ordered_extent() which in turns does a call to
4275 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4276 * completion either in the endio_write_workers work queue or in the
4277 * fs_info->endio_freespace_worker work queue. We flush those queues
4278 * below, so before we flush them we must flush this queue for the
4279 * workers of compressed writes.
4280 */
4281 flush_workqueue(fs_info->endio_workers);
4282
4283 /*
4284 * After we parked the cleaner kthread, ordered extents may have
4285 * completed and created new delayed iputs. If one of the async reclaim
4286 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4287 * can hang forever trying to stop it, because if a delayed iput is
4288 * added after it ran btrfs_run_delayed_iputs() and before it called
4289 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4290 * no one else to run iputs.
4291 *
4292 * So wait for all ongoing ordered extents to complete and then run
4293 * delayed iputs. This works because once we reach this point no one
4294 * can create new ordered extents, but delayed iputs can still be added
4295 * by a reclaim worker (see comments further below).
4296 *
4297 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4298 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4299 * but the delayed iput for the respective inode is made only when doing
4300 * the final btrfs_put_ordered_extent() (which must happen at
4301 * btrfs_finish_ordered_io() when we are unmounting).
4302 */
4303 btrfs_flush_workqueue(fs_info->endio_write_workers);
4304 /* Ordered extents for free space inodes. */
4305 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4306 /*
4307 * Run delayed iputs in case an async reclaim worker is waiting for them
4308 * to be run as mentioned above.
4309 */
4310 btrfs_run_delayed_iputs(fs_info);
4311
4312 cancel_work_sync(&fs_info->async_reclaim_work);
4313 cancel_work_sync(&fs_info->async_data_reclaim_work);
4314 cancel_work_sync(&fs_info->preempt_reclaim_work);
4315 cancel_work_sync(&fs_info->em_shrinker_work);
4316
4317 /*
4318 * Run delayed iputs again because an async reclaim worker may have
4319 * added new ones if it was flushing delalloc:
4320 *
4321 * shrink_delalloc() -> btrfs_start_delalloc_roots() ->
4322 * start_delalloc_inodes() -> btrfs_add_delayed_iput()
4323 */
4324 btrfs_run_delayed_iputs(fs_info);
4325
4326 /* There should be no more workload to generate new delayed iputs. */
4327 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4328
4329 /* Cancel or finish ongoing discard work */
4330 btrfs_discard_cleanup(fs_info);
4331
4332 if (!sb_rdonly(fs_info->sb)) {
4333 /*
4334 * The cleaner kthread is stopped, so do one final pass over
4335 * unused block groups.
4336 */
4337 btrfs_delete_unused_bgs(fs_info);
4338
4339 /*
4340 * There might be existing delayed inode workers still running
4341 * and holding an empty delayed inode item. We must wait for
4342 * them to complete first because they can create a transaction.
4343 * This happens when someone calls btrfs_balance_delayed_items()
4344 * and then a transaction commit runs the same delayed nodes
4345 * before any delayed worker has done something with the nodes.
4346 * We must wait for any worker here and not at transaction
4347 * commit time since that could cause a deadlock.
4348 * This is a very rare case.
4349 */
4350 btrfs_flush_workqueue(fs_info->delayed_workers);
4351
4352 ret = btrfs_commit_super(fs_info);
4353 if (ret)
4354 btrfs_err(fs_info, "commit super ret %d", ret);
4355 }
4356
4357 kthread_stop(fs_info->transaction_kthread);
4358 kthread_stop(fs_info->cleaner_kthread);
4359
4360 ASSERT(list_empty(&fs_info->delayed_iputs));
4361 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4362
4363 if (btrfs_check_quota_leak(fs_info)) {
4364 DEBUG_WARN("qgroup reserved space leaked");
4365 btrfs_err(fs_info, "qgroup reserved space leaked");
4366 }
4367
4368 btrfs_free_qgroup_config(fs_info);
4369 ASSERT(list_empty(&fs_info->delalloc_roots));
4370
4371 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4372 btrfs_info(fs_info, "at unmount delalloc count %lld",
4373 percpu_counter_sum(&fs_info->delalloc_bytes));
4374 }
4375
4376 if (percpu_counter_sum(&fs_info->ordered_bytes))
4377 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4378 percpu_counter_sum(&fs_info->ordered_bytes));
4379
4380 btrfs_sysfs_remove_mounted(fs_info);
4381 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4382
4383 btrfs_put_block_group_cache(fs_info);
4384
4385 /*
4386 * we must make sure there is not any read request to
4387 * submit after we stopping all workers.
4388 */
4389 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4390 btrfs_stop_all_workers(fs_info);
4391
4392 /* We shouldn't have any transaction open at this point */
4393 warn_about_uncommitted_trans(fs_info);
4394
4395 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4396 free_root_pointers(fs_info, true);
4397 btrfs_free_fs_roots(fs_info);
4398
4399 /*
4400 * We must free the block groups after dropping the fs_roots as we could
4401 * have had an IO error and have left over tree log blocks that aren't
4402 * cleaned up until the fs roots are freed. This makes the block group
4403 * accounting appear to be wrong because there's pending reserved bytes,
4404 * so make sure we do the block group cleanup afterwards.
4405 */
4406 btrfs_free_block_groups(fs_info);
4407
4408 iput(fs_info->btree_inode);
4409
4410 btrfs_mapping_tree_free(fs_info);
4411 }
4412
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4413 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4414 struct extent_buffer *buf)
4415 {
4416 struct btrfs_fs_info *fs_info = buf->fs_info;
4417 u64 transid = btrfs_header_generation(buf);
4418
4419 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4420 /*
4421 * This is a fast path so only do this check if we have sanity tests
4422 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4423 * outside of the sanity tests.
4424 */
4425 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4426 return;
4427 #endif
4428 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4429 ASSERT(trans->transid == fs_info->generation);
4430 btrfs_assert_tree_write_locked(buf);
4431 if (unlikely(transid != fs_info->generation)) {
4432 btrfs_abort_transaction(trans, -EUCLEAN);
4433 btrfs_crit(fs_info,
4434 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4435 buf->start, transid, fs_info->generation);
4436 }
4437 set_extent_buffer_dirty(buf);
4438 }
4439
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4440 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4441 int flush_delayed)
4442 {
4443 /*
4444 * looks as though older kernels can get into trouble with
4445 * this code, they end up stuck in balance_dirty_pages forever
4446 */
4447 int ret;
4448
4449 if (current->flags & PF_MEMALLOC)
4450 return;
4451
4452 if (flush_delayed)
4453 btrfs_balance_delayed_items(fs_info);
4454
4455 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4456 BTRFS_DIRTY_METADATA_THRESH,
4457 fs_info->dirty_metadata_batch);
4458 if (ret > 0) {
4459 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4460 }
4461 }
4462
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4463 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4464 {
4465 __btrfs_btree_balance_dirty(fs_info, 1);
4466 }
4467
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4468 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4469 {
4470 __btrfs_btree_balance_dirty(fs_info, 0);
4471 }
4472
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4473 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4474 {
4475 /* cleanup FS via transaction */
4476 btrfs_cleanup_transaction(fs_info);
4477
4478 down_write(&fs_info->cleanup_work_sem);
4479 up_write(&fs_info->cleanup_work_sem);
4480 }
4481
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4482 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4483 {
4484 struct btrfs_root *gang[8];
4485 u64 root_objectid = 0;
4486 int ret;
4487
4488 spin_lock(&fs_info->fs_roots_radix_lock);
4489 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4490 (void **)gang, root_objectid,
4491 ARRAY_SIZE(gang))) != 0) {
4492 int i;
4493
4494 for (i = 0; i < ret; i++)
4495 gang[i] = btrfs_grab_root(gang[i]);
4496 spin_unlock(&fs_info->fs_roots_radix_lock);
4497
4498 for (i = 0; i < ret; i++) {
4499 if (!gang[i])
4500 continue;
4501 root_objectid = btrfs_root_id(gang[i]);
4502 btrfs_free_log(NULL, gang[i]);
4503 btrfs_put_root(gang[i]);
4504 }
4505 root_objectid++;
4506 spin_lock(&fs_info->fs_roots_radix_lock);
4507 }
4508 spin_unlock(&fs_info->fs_roots_radix_lock);
4509 btrfs_free_log_root_tree(NULL, fs_info);
4510 }
4511
btrfs_destroy_ordered_extents(struct btrfs_root * root)4512 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4513 {
4514 struct btrfs_ordered_extent *ordered;
4515
4516 spin_lock(&root->ordered_extent_lock);
4517 /*
4518 * This will just short circuit the ordered completion stuff which will
4519 * make sure the ordered extent gets properly cleaned up.
4520 */
4521 list_for_each_entry(ordered, &root->ordered_extents,
4522 root_extent_list)
4523 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4524 spin_unlock(&root->ordered_extent_lock);
4525 }
4526
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4527 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4528 {
4529 struct btrfs_root *root;
4530 LIST_HEAD(splice);
4531
4532 spin_lock(&fs_info->ordered_root_lock);
4533 list_splice_init(&fs_info->ordered_roots, &splice);
4534 while (!list_empty(&splice)) {
4535 root = list_first_entry(&splice, struct btrfs_root,
4536 ordered_root);
4537 list_move_tail(&root->ordered_root,
4538 &fs_info->ordered_roots);
4539
4540 spin_unlock(&fs_info->ordered_root_lock);
4541 btrfs_destroy_ordered_extents(root);
4542
4543 cond_resched();
4544 spin_lock(&fs_info->ordered_root_lock);
4545 }
4546 spin_unlock(&fs_info->ordered_root_lock);
4547
4548 /*
4549 * We need this here because if we've been flipped read-only we won't
4550 * get sync() from the umount, so we need to make sure any ordered
4551 * extents that haven't had their dirty pages IO start writeout yet
4552 * actually get run and error out properly.
4553 */
4554 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4555 }
4556
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4557 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4558 {
4559 struct btrfs_inode *btrfs_inode;
4560 LIST_HEAD(splice);
4561
4562 spin_lock(&root->delalloc_lock);
4563 list_splice_init(&root->delalloc_inodes, &splice);
4564
4565 while (!list_empty(&splice)) {
4566 struct inode *inode = NULL;
4567 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4568 delalloc_inodes);
4569 btrfs_del_delalloc_inode(btrfs_inode);
4570 spin_unlock(&root->delalloc_lock);
4571
4572 /*
4573 * Make sure we get a live inode and that it'll not disappear
4574 * meanwhile.
4575 */
4576 inode = igrab(&btrfs_inode->vfs_inode);
4577 if (inode) {
4578 unsigned int nofs_flag;
4579
4580 nofs_flag = memalloc_nofs_save();
4581 invalidate_inode_pages2(inode->i_mapping);
4582 memalloc_nofs_restore(nofs_flag);
4583 iput(inode);
4584 }
4585 spin_lock(&root->delalloc_lock);
4586 }
4587 spin_unlock(&root->delalloc_lock);
4588 }
4589
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4590 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4591 {
4592 struct btrfs_root *root;
4593 LIST_HEAD(splice);
4594
4595 spin_lock(&fs_info->delalloc_root_lock);
4596 list_splice_init(&fs_info->delalloc_roots, &splice);
4597 while (!list_empty(&splice)) {
4598 root = list_first_entry(&splice, struct btrfs_root,
4599 delalloc_root);
4600 root = btrfs_grab_root(root);
4601 BUG_ON(!root);
4602 spin_unlock(&fs_info->delalloc_root_lock);
4603
4604 btrfs_destroy_delalloc_inodes(root);
4605 btrfs_put_root(root);
4606
4607 spin_lock(&fs_info->delalloc_root_lock);
4608 }
4609 spin_unlock(&fs_info->delalloc_root_lock);
4610 }
4611
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4612 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4613 struct extent_io_tree *dirty_pages,
4614 int mark)
4615 {
4616 struct extent_buffer *eb;
4617 u64 start = 0;
4618 u64 end;
4619
4620 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
4621 mark, NULL)) {
4622 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL);
4623 while (start <= end) {
4624 eb = find_extent_buffer(fs_info, start);
4625 start += fs_info->nodesize;
4626 if (!eb)
4627 continue;
4628
4629 btrfs_tree_lock(eb);
4630 wait_on_extent_buffer_writeback(eb);
4631 btrfs_clear_buffer_dirty(NULL, eb);
4632 btrfs_tree_unlock(eb);
4633
4634 free_extent_buffer_stale(eb);
4635 }
4636 }
4637 }
4638
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4639 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4640 struct extent_io_tree *unpin)
4641 {
4642 u64 start;
4643 u64 end;
4644
4645 while (1) {
4646 struct extent_state *cached_state = NULL;
4647
4648 /*
4649 * The btrfs_finish_extent_commit() may get the same range as
4650 * ours between find_first_extent_bit and clear_extent_dirty.
4651 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4652 * the same extent range.
4653 */
4654 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4655 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end,
4656 EXTENT_DIRTY, &cached_state)) {
4657 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4658 break;
4659 }
4660
4661 btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
4662 btrfs_free_extent_state(cached_state);
4663 btrfs_error_unpin_extent_range(fs_info, start, end);
4664 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4665 cond_resched();
4666 }
4667 }
4668
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4669 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4670 {
4671 struct inode *inode;
4672
4673 inode = cache->io_ctl.inode;
4674 if (inode) {
4675 unsigned int nofs_flag;
4676
4677 nofs_flag = memalloc_nofs_save();
4678 invalidate_inode_pages2(inode->i_mapping);
4679 memalloc_nofs_restore(nofs_flag);
4680
4681 BTRFS_I(inode)->generation = 0;
4682 cache->io_ctl.inode = NULL;
4683 iput(inode);
4684 }
4685 ASSERT(cache->io_ctl.pages == NULL);
4686 btrfs_put_block_group(cache);
4687 }
4688
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4689 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4690 struct btrfs_fs_info *fs_info)
4691 {
4692 struct btrfs_block_group *cache;
4693
4694 spin_lock(&cur_trans->dirty_bgs_lock);
4695 while (!list_empty(&cur_trans->dirty_bgs)) {
4696 cache = list_first_entry(&cur_trans->dirty_bgs,
4697 struct btrfs_block_group,
4698 dirty_list);
4699
4700 if (!list_empty(&cache->io_list)) {
4701 spin_unlock(&cur_trans->dirty_bgs_lock);
4702 list_del_init(&cache->io_list);
4703 btrfs_cleanup_bg_io(cache);
4704 spin_lock(&cur_trans->dirty_bgs_lock);
4705 }
4706
4707 list_del_init(&cache->dirty_list);
4708 spin_lock(&cache->lock);
4709 cache->disk_cache_state = BTRFS_DC_ERROR;
4710 spin_unlock(&cache->lock);
4711
4712 spin_unlock(&cur_trans->dirty_bgs_lock);
4713 btrfs_put_block_group(cache);
4714 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4715 spin_lock(&cur_trans->dirty_bgs_lock);
4716 }
4717 spin_unlock(&cur_trans->dirty_bgs_lock);
4718
4719 /*
4720 * Refer to the definition of io_bgs member for details why it's safe
4721 * to use it without any locking
4722 */
4723 while (!list_empty(&cur_trans->io_bgs)) {
4724 cache = list_first_entry(&cur_trans->io_bgs,
4725 struct btrfs_block_group,
4726 io_list);
4727
4728 list_del_init(&cache->io_list);
4729 spin_lock(&cache->lock);
4730 cache->disk_cache_state = BTRFS_DC_ERROR;
4731 spin_unlock(&cache->lock);
4732 btrfs_cleanup_bg_io(cache);
4733 }
4734 }
4735
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4736 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4737 {
4738 struct btrfs_root *gang[8];
4739 int i;
4740 int ret;
4741
4742 spin_lock(&fs_info->fs_roots_radix_lock);
4743 while (1) {
4744 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4745 (void **)gang, 0,
4746 ARRAY_SIZE(gang),
4747 BTRFS_ROOT_TRANS_TAG);
4748 if (ret == 0)
4749 break;
4750 for (i = 0; i < ret; i++) {
4751 struct btrfs_root *root = gang[i];
4752
4753 btrfs_qgroup_free_meta_all_pertrans(root);
4754 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4755 (unsigned long)btrfs_root_id(root),
4756 BTRFS_ROOT_TRANS_TAG);
4757 }
4758 }
4759 spin_unlock(&fs_info->fs_roots_radix_lock);
4760 }
4761
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans)4762 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4763 {
4764 struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4765 struct btrfs_device *dev, *tmp;
4766
4767 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4768 ASSERT(list_empty(&cur_trans->dirty_bgs));
4769 ASSERT(list_empty(&cur_trans->io_bgs));
4770
4771 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4772 post_commit_list) {
4773 list_del_init(&dev->post_commit_list);
4774 }
4775
4776 btrfs_destroy_delayed_refs(cur_trans);
4777
4778 cur_trans->state = TRANS_STATE_COMMIT_START;
4779 wake_up(&fs_info->transaction_blocked_wait);
4780
4781 cur_trans->state = TRANS_STATE_UNBLOCKED;
4782 wake_up(&fs_info->transaction_wait);
4783
4784 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4785 EXTENT_DIRTY);
4786 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4787
4788 cur_trans->state =TRANS_STATE_COMPLETED;
4789 wake_up(&cur_trans->commit_wait);
4790 }
4791
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4792 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4793 {
4794 struct btrfs_transaction *t;
4795
4796 mutex_lock(&fs_info->transaction_kthread_mutex);
4797
4798 spin_lock(&fs_info->trans_lock);
4799 while (!list_empty(&fs_info->trans_list)) {
4800 t = list_first_entry(&fs_info->trans_list,
4801 struct btrfs_transaction, list);
4802 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4803 refcount_inc(&t->use_count);
4804 spin_unlock(&fs_info->trans_lock);
4805 btrfs_wait_for_commit(fs_info, t->transid);
4806 btrfs_put_transaction(t);
4807 spin_lock(&fs_info->trans_lock);
4808 continue;
4809 }
4810 if (t == fs_info->running_transaction) {
4811 t->state = TRANS_STATE_COMMIT_DOING;
4812 spin_unlock(&fs_info->trans_lock);
4813 /*
4814 * We wait for 0 num_writers since we don't hold a trans
4815 * handle open currently for this transaction.
4816 */
4817 wait_event(t->writer_wait,
4818 atomic_read(&t->num_writers) == 0);
4819 } else {
4820 spin_unlock(&fs_info->trans_lock);
4821 }
4822 btrfs_cleanup_one_transaction(t);
4823
4824 spin_lock(&fs_info->trans_lock);
4825 if (t == fs_info->running_transaction)
4826 fs_info->running_transaction = NULL;
4827 list_del_init(&t->list);
4828 spin_unlock(&fs_info->trans_lock);
4829
4830 btrfs_put_transaction(t);
4831 trace_btrfs_transaction_commit(fs_info);
4832 spin_lock(&fs_info->trans_lock);
4833 }
4834 spin_unlock(&fs_info->trans_lock);
4835 btrfs_destroy_all_ordered_extents(fs_info);
4836 btrfs_destroy_delayed_inodes(fs_info);
4837 btrfs_assert_delayed_root_empty(fs_info);
4838 btrfs_destroy_all_delalloc_inodes(fs_info);
4839 btrfs_drop_all_logs(fs_info);
4840 btrfs_free_all_qgroup_pertrans(fs_info);
4841 mutex_unlock(&fs_info->transaction_kthread_mutex);
4842
4843 return 0;
4844 }
4845
btrfs_init_root_free_objectid(struct btrfs_root * root)4846 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4847 {
4848 BTRFS_PATH_AUTO_FREE(path);
4849 int ret;
4850 struct extent_buffer *l;
4851 struct btrfs_key search_key;
4852 struct btrfs_key found_key;
4853 int slot;
4854
4855 path = btrfs_alloc_path();
4856 if (!path)
4857 return -ENOMEM;
4858
4859 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4860 search_key.type = -1;
4861 search_key.offset = (u64)-1;
4862 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4863 if (ret < 0)
4864 return ret;
4865 if (unlikely(ret == 0)) {
4866 /*
4867 * Key with offset -1 found, there would have to exist a root
4868 * with such id, but this is out of valid range.
4869 */
4870 return -EUCLEAN;
4871 }
4872 if (path->slots[0] > 0) {
4873 slot = path->slots[0] - 1;
4874 l = path->nodes[0];
4875 btrfs_item_key_to_cpu(l, &found_key, slot);
4876 root->free_objectid = max_t(u64, found_key.objectid + 1,
4877 BTRFS_FIRST_FREE_OBJECTID);
4878 } else {
4879 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4880 }
4881
4882 return 0;
4883 }
4884
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4885 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4886 {
4887 int ret;
4888 mutex_lock(&root->objectid_mutex);
4889
4890 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4891 btrfs_warn(root->fs_info,
4892 "the objectid of root %llu reaches its highest value",
4893 btrfs_root_id(root));
4894 ret = -ENOSPC;
4895 goto out;
4896 }
4897
4898 *objectid = root->free_objectid++;
4899 ret = 0;
4900 out:
4901 mutex_unlock(&root->objectid_mutex);
4902 return ret;
4903 }
4904