1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "processor.h" 10 #include "ucall_common.h" 11 12 #include <assert.h> 13 #include <sched.h> 14 #include <sys/mman.h> 15 #include <sys/resource.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 uint32_t guest_random_seed; 24 struct guest_random_state guest_rng; 25 static uint32_t last_guest_seed; 26 27 static size_t vcpu_mmap_sz(void); 28 29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help) 30 { 31 int fd; 32 33 fd = open(path, flags); 34 if (fd < 0) 35 goto error; 36 37 return fd; 38 39 error: 40 if (errno == EACCES || errno == ENOENT) 41 ksft_exit_skip("- Cannot open '%s': %s. %s\n", 42 path, strerror(errno), 43 errno == EACCES ? "Root required?" : enoent_help); 44 TEST_FAIL("Failed to open '%s'", path); 45 } 46 47 int open_path_or_exit(const char *path, int flags) 48 { 49 return __open_path_or_exit(path, flags, ""); 50 } 51 52 /* 53 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 54 * 55 * Input Args: 56 * flags - The flags to pass when opening KVM_DEV_PATH. 57 * 58 * Return: 59 * The opened file descriptor of /dev/kvm. 60 */ 61 static int _open_kvm_dev_path_or_exit(int flags) 62 { 63 return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?"); 64 } 65 66 int open_kvm_dev_path_or_exit(void) 67 { 68 return _open_kvm_dev_path_or_exit(O_RDONLY); 69 } 70 71 static ssize_t get_module_param(const char *module_name, const char *param, 72 void *buffer, size_t buffer_size) 73 { 74 const int path_size = 128; 75 char path[path_size]; 76 ssize_t bytes_read; 77 int fd, r; 78 79 /* Verify KVM is loaded, to provide a more helpful SKIP message. */ 80 close(open_kvm_dev_path_or_exit()); 81 82 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 83 module_name, param); 84 TEST_ASSERT(r < path_size, 85 "Failed to construct sysfs path in %d bytes.", path_size); 86 87 fd = open_path_or_exit(path, O_RDONLY); 88 89 bytes_read = read(fd, buffer, buffer_size); 90 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes", 91 path, bytes_read, buffer_size); 92 93 r = close(fd); 94 TEST_ASSERT(!r, "close(%s) failed", path); 95 return bytes_read; 96 } 97 98 int kvm_get_module_param_integer(const char *module_name, const char *param) 99 { 100 /* 101 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the 102 * NUL char, and 1 byte because the kernel sucks and inserts a newline 103 * at the end. 104 */ 105 char value[16 + 1 + 1]; 106 ssize_t r; 107 108 memset(value, '\0', sizeof(value)); 109 110 r = get_module_param(module_name, param, value, sizeof(value)); 111 TEST_ASSERT(value[r - 1] == '\n', 112 "Expected trailing newline, got char '%c'", value[r - 1]); 113 114 /* 115 * Squash the newline, otherwise atoi_paranoid() will complain about 116 * trailing non-NUL characters in the string. 117 */ 118 value[r - 1] = '\0'; 119 return atoi_paranoid(value); 120 } 121 122 bool kvm_get_module_param_bool(const char *module_name, const char *param) 123 { 124 char value; 125 ssize_t r; 126 127 r = get_module_param(module_name, param, &value, sizeof(value)); 128 TEST_ASSERT_EQ(r, 1); 129 130 if (value == 'Y') 131 return true; 132 else if (value == 'N') 133 return false; 134 135 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 136 } 137 138 /* 139 * Capability 140 * 141 * Input Args: 142 * cap - Capability 143 * 144 * Output Args: None 145 * 146 * Return: 147 * On success, the Value corresponding to the capability (KVM_CAP_*) 148 * specified by the value of cap. On failure a TEST_ASSERT failure 149 * is produced. 150 * 151 * Looks up and returns the value corresponding to the capability 152 * (KVM_CAP_*) given by cap. 153 */ 154 unsigned int kvm_check_cap(long cap) 155 { 156 int ret; 157 int kvm_fd; 158 159 kvm_fd = open_kvm_dev_path_or_exit(); 160 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 161 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 162 163 close(kvm_fd); 164 165 return (unsigned int)ret; 166 } 167 168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 169 { 170 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 171 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 172 else 173 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 174 vm->dirty_ring_size = ring_size; 175 } 176 177 static void vm_open(struct kvm_vm *vm) 178 { 179 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 180 181 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 182 183 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 184 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 185 186 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 187 vm->stats.fd = vm_get_stats_fd(vm); 188 else 189 vm->stats.fd = -1; 190 } 191 192 const char *vm_guest_mode_string(uint32_t i) 193 { 194 static const char * const strings[] = { 195 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 196 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 197 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 198 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 199 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 200 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 201 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 202 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 203 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 204 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 205 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 206 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 207 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 208 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 209 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 210 [VM_MODE_P47V47_16K] = "PA-bits:47, VA-bits:47, 16K pages", 211 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 212 }; 213 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 214 "Missing new mode strings?"); 215 216 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 217 218 return strings[i]; 219 } 220 221 const struct vm_guest_mode_params vm_guest_mode_params[] = { 222 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 223 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 224 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 225 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 226 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 227 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 228 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 229 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 230 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 231 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 232 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 233 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 234 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 235 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 236 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 237 [VM_MODE_P47V47_16K] = { 47, 47, 0x4000, 14 }, 238 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 239 }; 240 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 241 "Missing new mode params?"); 242 243 /* 244 * Initializes vm->vpages_valid to match the canonical VA space of the 245 * architecture. 246 * 247 * The default implementation is valid for architectures which split the 248 * range addressed by a single page table into a low and high region 249 * based on the MSB of the VA. On architectures with this behavior 250 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 251 */ 252 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 253 { 254 sparsebit_set_num(vm->vpages_valid, 255 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 256 sparsebit_set_num(vm->vpages_valid, 257 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 258 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 259 } 260 261 struct kvm_vm *____vm_create(struct vm_shape shape) 262 { 263 struct kvm_vm *vm; 264 265 vm = calloc(1, sizeof(*vm)); 266 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 267 268 INIT_LIST_HEAD(&vm->vcpus); 269 vm->regions.gpa_tree = RB_ROOT; 270 vm->regions.hva_tree = RB_ROOT; 271 hash_init(vm->regions.slot_hash); 272 273 vm->mode = shape.mode; 274 vm->type = shape.type; 275 276 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 277 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 278 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 279 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 280 281 /* Setup mode specific traits. */ 282 switch (vm->mode) { 283 case VM_MODE_P52V48_4K: 284 vm->pgtable_levels = 4; 285 break; 286 case VM_MODE_P52V48_64K: 287 vm->pgtable_levels = 3; 288 break; 289 case VM_MODE_P48V48_4K: 290 vm->pgtable_levels = 4; 291 break; 292 case VM_MODE_P48V48_64K: 293 vm->pgtable_levels = 3; 294 break; 295 case VM_MODE_P40V48_4K: 296 case VM_MODE_P36V48_4K: 297 vm->pgtable_levels = 4; 298 break; 299 case VM_MODE_P40V48_64K: 300 case VM_MODE_P36V48_64K: 301 vm->pgtable_levels = 3; 302 break; 303 case VM_MODE_P52V48_16K: 304 case VM_MODE_P48V48_16K: 305 case VM_MODE_P40V48_16K: 306 case VM_MODE_P36V48_16K: 307 vm->pgtable_levels = 4; 308 break; 309 case VM_MODE_P47V47_16K: 310 case VM_MODE_P36V47_16K: 311 vm->pgtable_levels = 3; 312 break; 313 case VM_MODE_PXXV48_4K: 314 #ifdef __x86_64__ 315 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 316 kvm_init_vm_address_properties(vm); 317 /* 318 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 319 * it doesn't take effect unless a CR4.LA57 is set, which it 320 * isn't for this mode (48-bit virtual address space). 321 */ 322 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 323 "Linear address width (%d bits) not supported", 324 vm->va_bits); 325 pr_debug("Guest physical address width detected: %d\n", 326 vm->pa_bits); 327 vm->pgtable_levels = 4; 328 vm->va_bits = 48; 329 #else 330 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 331 #endif 332 break; 333 case VM_MODE_P47V64_4K: 334 vm->pgtable_levels = 5; 335 break; 336 case VM_MODE_P44V64_4K: 337 vm->pgtable_levels = 5; 338 break; 339 default: 340 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 341 } 342 343 #ifdef __aarch64__ 344 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 345 if (vm->pa_bits != 40) 346 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 347 #endif 348 349 vm_open(vm); 350 351 /* Limit to VA-bit canonical virtual addresses. */ 352 vm->vpages_valid = sparsebit_alloc(); 353 vm_vaddr_populate_bitmap(vm); 354 355 /* Limit physical addresses to PA-bits. */ 356 vm->max_gfn = vm_compute_max_gfn(vm); 357 358 /* Allocate and setup memory for guest. */ 359 vm->vpages_mapped = sparsebit_alloc(); 360 361 return vm; 362 } 363 364 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 365 uint32_t nr_runnable_vcpus, 366 uint64_t extra_mem_pages) 367 { 368 uint64_t page_size = vm_guest_mode_params[mode].page_size; 369 uint64_t nr_pages; 370 371 TEST_ASSERT(nr_runnable_vcpus, 372 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 373 374 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 375 "nr_vcpus = %d too large for host, max-vcpus = %d", 376 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 377 378 /* 379 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 380 * test code and other per-VM assets that will be loaded into memslot0. 381 */ 382 nr_pages = 512; 383 384 /* Account for the per-vCPU stacks on behalf of the test. */ 385 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 386 387 /* 388 * Account for the number of pages needed for the page tables. The 389 * maximum page table size for a memory region will be when the 390 * smallest page size is used. Considering each page contains x page 391 * table descriptors, the total extra size for page tables (for extra 392 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 393 * than N/x*2. 394 */ 395 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 396 397 /* Account for the number of pages needed by ucall. */ 398 nr_pages += ucall_nr_pages_required(page_size); 399 400 return vm_adjust_num_guest_pages(mode, nr_pages); 401 } 402 403 void kvm_set_files_rlimit(uint32_t nr_vcpus) 404 { 405 /* 406 * Each vCPU will open two file descriptors: the vCPU itself and the 407 * vCPU's binary stats file descriptor. Add an arbitrary amount of 408 * buffer for all other files a test may open. 409 */ 410 int nr_fds_wanted = nr_vcpus * 2 + 100; 411 struct rlimit rl; 412 413 /* 414 * Check that we're allowed to open nr_fds_wanted file descriptors and 415 * try raising the limits if needed. 416 */ 417 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!"); 418 419 if (rl.rlim_cur < nr_fds_wanted) { 420 rl.rlim_cur = nr_fds_wanted; 421 if (rl.rlim_max < nr_fds_wanted) { 422 int old_rlim_max = rl.rlim_max; 423 424 rl.rlim_max = nr_fds_wanted; 425 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0, 426 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)", 427 old_rlim_max, nr_fds_wanted); 428 } else { 429 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!"); 430 } 431 } 432 433 } 434 435 static bool is_guest_memfd_required(struct vm_shape shape) 436 { 437 #ifdef __x86_64__ 438 return shape.type == KVM_X86_SNP_VM; 439 #else 440 return false; 441 #endif 442 } 443 444 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 445 uint64_t nr_extra_pages) 446 { 447 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 448 nr_extra_pages); 449 struct userspace_mem_region *slot0; 450 struct kvm_vm *vm; 451 int i, flags; 452 453 kvm_set_files_rlimit(nr_runnable_vcpus); 454 455 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 456 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 457 458 vm = ____vm_create(shape); 459 460 /* 461 * Force GUEST_MEMFD for the primary memory region if necessary, e.g. 462 * for CoCo VMs that require GUEST_MEMFD backed private memory. 463 */ 464 flags = 0; 465 if (is_guest_memfd_required(shape)) 466 flags |= KVM_MEM_GUEST_MEMFD; 467 468 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags); 469 for (i = 0; i < NR_MEM_REGIONS; i++) 470 vm->memslots[i] = 0; 471 472 kvm_vm_elf_load(vm, program_invocation_name); 473 474 /* 475 * TODO: Add proper defines to protect the library's memslots, and then 476 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 477 * read-only memslots as MMIO, and creating a read-only memslot for the 478 * MMIO region would prevent silently clobbering the MMIO region. 479 */ 480 slot0 = memslot2region(vm, 0); 481 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 482 483 if (guest_random_seed != last_guest_seed) { 484 pr_info("Random seed: 0x%x\n", guest_random_seed); 485 last_guest_seed = guest_random_seed; 486 } 487 guest_rng = new_guest_random_state(guest_random_seed); 488 sync_global_to_guest(vm, guest_rng); 489 490 kvm_arch_vm_post_create(vm, nr_runnable_vcpus); 491 492 return vm; 493 } 494 495 /* 496 * VM Create with customized parameters 497 * 498 * Input Args: 499 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 500 * nr_vcpus - VCPU count 501 * extra_mem_pages - Non-slot0 physical memory total size 502 * guest_code - Guest entry point 503 * vcpuids - VCPU IDs 504 * 505 * Output Args: None 506 * 507 * Return: 508 * Pointer to opaque structure that describes the created VM. 509 * 510 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 511 * extra_mem_pages is only used to calculate the maximum page table size, 512 * no real memory allocation for non-slot0 memory in this function. 513 */ 514 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 515 uint64_t extra_mem_pages, 516 void *guest_code, struct kvm_vcpu *vcpus[]) 517 { 518 struct kvm_vm *vm; 519 int i; 520 521 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 522 523 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 524 525 for (i = 0; i < nr_vcpus; ++i) 526 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 527 528 kvm_arch_vm_finalize_vcpus(vm); 529 return vm; 530 } 531 532 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 533 struct kvm_vcpu **vcpu, 534 uint64_t extra_mem_pages, 535 void *guest_code) 536 { 537 struct kvm_vcpu *vcpus[1]; 538 struct kvm_vm *vm; 539 540 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 541 542 *vcpu = vcpus[0]; 543 return vm; 544 } 545 546 /* 547 * VM Restart 548 * 549 * Input Args: 550 * vm - VM that has been released before 551 * 552 * Output Args: None 553 * 554 * Reopens the file descriptors associated to the VM and reinstates the 555 * global state, such as the irqchip and the memory regions that are mapped 556 * into the guest. 557 */ 558 void kvm_vm_restart(struct kvm_vm *vmp) 559 { 560 int ctr; 561 struct userspace_mem_region *region; 562 563 vm_open(vmp); 564 if (vmp->has_irqchip) 565 vm_create_irqchip(vmp); 566 567 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 568 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 569 570 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 571 " rc: %i errno: %i\n" 572 " slot: %u flags: 0x%x\n" 573 " guest_phys_addr: 0x%llx size: 0x%llx", 574 ret, errno, region->region.slot, 575 region->region.flags, 576 region->region.guest_phys_addr, 577 region->region.memory_size); 578 } 579 } 580 581 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 582 uint32_t vcpu_id) 583 { 584 return __vm_vcpu_add(vm, vcpu_id); 585 } 586 587 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 588 { 589 kvm_vm_restart(vm); 590 591 return vm_vcpu_recreate(vm, 0); 592 } 593 594 int __pin_task_to_cpu(pthread_t task, int cpu) 595 { 596 cpu_set_t cpuset; 597 598 CPU_ZERO(&cpuset); 599 CPU_SET(cpu, &cpuset); 600 601 return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset); 602 } 603 604 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 605 { 606 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 607 608 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 609 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 610 return pcpu; 611 } 612 613 void kvm_print_vcpu_pinning_help(void) 614 { 615 const char *name = program_invocation_name; 616 617 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 618 " values (target pCPU), one for each vCPU, plus an optional\n" 619 " entry for the main application task (specified via entry\n" 620 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 621 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 622 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 623 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 624 " %s -v 3 -c 22,23,24,50\n\n" 625 " To leave the application task unpinned, drop the final entry:\n\n" 626 " %s -v 3 -c 22,23,24\n\n" 627 " (default: no pinning)\n", name, name); 628 } 629 630 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 631 int nr_vcpus) 632 { 633 cpu_set_t allowed_mask; 634 char *cpu, *cpu_list; 635 char delim[2] = ","; 636 int i, r; 637 638 cpu_list = strdup(pcpus_string); 639 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 640 641 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 642 TEST_ASSERT(!r, "sched_getaffinity() failed"); 643 644 cpu = strtok(cpu_list, delim); 645 646 /* 1. Get all pcpus for vcpus. */ 647 for (i = 0; i < nr_vcpus; i++) { 648 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 649 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 650 cpu = strtok(NULL, delim); 651 } 652 653 /* 2. Check if the main worker needs to be pinned. */ 654 if (cpu) { 655 pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask)); 656 cpu = strtok(NULL, delim); 657 } 658 659 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 660 free(cpu_list); 661 } 662 663 /* 664 * Userspace Memory Region Find 665 * 666 * Input Args: 667 * vm - Virtual Machine 668 * start - Starting VM physical address 669 * end - Ending VM physical address, inclusive. 670 * 671 * Output Args: None 672 * 673 * Return: 674 * Pointer to overlapping region, NULL if no such region. 675 * 676 * Searches for a region with any physical memory that overlaps with 677 * any portion of the guest physical addresses from start to end 678 * inclusive. If multiple overlapping regions exist, a pointer to any 679 * of the regions is returned. Null is returned only when no overlapping 680 * region exists. 681 */ 682 static struct userspace_mem_region * 683 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 684 { 685 struct rb_node *node; 686 687 for (node = vm->regions.gpa_tree.rb_node; node; ) { 688 struct userspace_mem_region *region = 689 container_of(node, struct userspace_mem_region, gpa_node); 690 uint64_t existing_start = region->region.guest_phys_addr; 691 uint64_t existing_end = region->region.guest_phys_addr 692 + region->region.memory_size - 1; 693 if (start <= existing_end && end >= existing_start) 694 return region; 695 696 if (start < existing_start) 697 node = node->rb_left; 698 else 699 node = node->rb_right; 700 } 701 702 return NULL; 703 } 704 705 static void kvm_stats_release(struct kvm_binary_stats *stats) 706 { 707 int ret; 708 709 if (stats->fd < 0) 710 return; 711 712 if (stats->desc) { 713 free(stats->desc); 714 stats->desc = NULL; 715 } 716 717 ret = close(stats->fd); 718 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 719 stats->fd = -1; 720 } 721 722 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 723 { 724 725 } 726 727 /* 728 * VM VCPU Remove 729 * 730 * Input Args: 731 * vcpu - VCPU to remove 732 * 733 * Output Args: None 734 * 735 * Return: None, TEST_ASSERT failures for all error conditions 736 * 737 * Removes a vCPU from a VM and frees its resources. 738 */ 739 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 740 { 741 int ret; 742 743 if (vcpu->dirty_gfns) { 744 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 745 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 746 vcpu->dirty_gfns = NULL; 747 } 748 749 ret = munmap(vcpu->run, vcpu_mmap_sz()); 750 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 751 752 ret = close(vcpu->fd); 753 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 754 755 kvm_stats_release(&vcpu->stats); 756 757 list_del(&vcpu->list); 758 759 vcpu_arch_free(vcpu); 760 free(vcpu); 761 } 762 763 void kvm_vm_release(struct kvm_vm *vmp) 764 { 765 struct kvm_vcpu *vcpu, *tmp; 766 int ret; 767 768 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 769 vm_vcpu_rm(vmp, vcpu); 770 771 ret = close(vmp->fd); 772 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 773 774 ret = close(vmp->kvm_fd); 775 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 776 777 /* Free cached stats metadata and close FD */ 778 kvm_stats_release(&vmp->stats); 779 780 kvm_arch_vm_release(vmp); 781 } 782 783 static void __vm_mem_region_delete(struct kvm_vm *vm, 784 struct userspace_mem_region *region) 785 { 786 int ret; 787 788 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 789 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 790 hash_del(®ion->slot_node); 791 792 sparsebit_free(®ion->unused_phy_pages); 793 sparsebit_free(®ion->protected_phy_pages); 794 ret = munmap(region->mmap_start, region->mmap_size); 795 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 796 if (region->fd >= 0) { 797 /* There's an extra map when using shared memory. */ 798 ret = munmap(region->mmap_alias, region->mmap_size); 799 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 800 close(region->fd); 801 } 802 if (region->region.guest_memfd >= 0) 803 close(region->region.guest_memfd); 804 805 free(region); 806 } 807 808 /* 809 * Destroys and frees the VM pointed to by vmp. 810 */ 811 void kvm_vm_free(struct kvm_vm *vmp) 812 { 813 int ctr; 814 struct hlist_node *node; 815 struct userspace_mem_region *region; 816 817 if (vmp == NULL) 818 return; 819 820 /* Free userspace_mem_regions. */ 821 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 822 __vm_mem_region_delete(vmp, region); 823 824 /* Free sparsebit arrays. */ 825 sparsebit_free(&vmp->vpages_valid); 826 sparsebit_free(&vmp->vpages_mapped); 827 828 kvm_vm_release(vmp); 829 830 /* Free the structure describing the VM. */ 831 free(vmp); 832 } 833 834 int kvm_memfd_alloc(size_t size, bool hugepages) 835 { 836 int memfd_flags = MFD_CLOEXEC; 837 int fd, r; 838 839 if (hugepages) 840 memfd_flags |= MFD_HUGETLB; 841 842 fd = memfd_create("kvm_selftest", memfd_flags); 843 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 844 845 r = ftruncate(fd, size); 846 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 847 848 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 849 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 850 851 return fd; 852 } 853 854 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 855 struct userspace_mem_region *region) 856 { 857 struct rb_node **cur, *parent; 858 859 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 860 struct userspace_mem_region *cregion; 861 862 cregion = container_of(*cur, typeof(*cregion), gpa_node); 863 parent = *cur; 864 if (region->region.guest_phys_addr < 865 cregion->region.guest_phys_addr) 866 cur = &(*cur)->rb_left; 867 else { 868 TEST_ASSERT(region->region.guest_phys_addr != 869 cregion->region.guest_phys_addr, 870 "Duplicate GPA in region tree"); 871 872 cur = &(*cur)->rb_right; 873 } 874 } 875 876 rb_link_node(®ion->gpa_node, parent, cur); 877 rb_insert_color(®ion->gpa_node, gpa_tree); 878 } 879 880 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 881 struct userspace_mem_region *region) 882 { 883 struct rb_node **cur, *parent; 884 885 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 886 struct userspace_mem_region *cregion; 887 888 cregion = container_of(*cur, typeof(*cregion), hva_node); 889 parent = *cur; 890 if (region->host_mem < cregion->host_mem) 891 cur = &(*cur)->rb_left; 892 else { 893 TEST_ASSERT(region->host_mem != 894 cregion->host_mem, 895 "Duplicate HVA in region tree"); 896 897 cur = &(*cur)->rb_right; 898 } 899 } 900 901 rb_link_node(®ion->hva_node, parent, cur); 902 rb_insert_color(®ion->hva_node, hva_tree); 903 } 904 905 906 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 907 uint64_t gpa, uint64_t size, void *hva) 908 { 909 struct kvm_userspace_memory_region region = { 910 .slot = slot, 911 .flags = flags, 912 .guest_phys_addr = gpa, 913 .memory_size = size, 914 .userspace_addr = (uintptr_t)hva, 915 }; 916 917 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 918 } 919 920 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 921 uint64_t gpa, uint64_t size, void *hva) 922 { 923 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 924 925 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 926 errno, strerror(errno)); 927 } 928 929 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \ 930 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \ 931 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)") 932 933 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 934 uint64_t gpa, uint64_t size, void *hva, 935 uint32_t guest_memfd, uint64_t guest_memfd_offset) 936 { 937 struct kvm_userspace_memory_region2 region = { 938 .slot = slot, 939 .flags = flags, 940 .guest_phys_addr = gpa, 941 .memory_size = size, 942 .userspace_addr = (uintptr_t)hva, 943 .guest_memfd = guest_memfd, 944 .guest_memfd_offset = guest_memfd_offset, 945 }; 946 947 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 948 949 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 950 } 951 952 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 953 uint64_t gpa, uint64_t size, void *hva, 954 uint32_t guest_memfd, uint64_t guest_memfd_offset) 955 { 956 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 957 guest_memfd, guest_memfd_offset); 958 959 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 960 errno, strerror(errno)); 961 } 962 963 964 /* FIXME: This thing needs to be ripped apart and rewritten. */ 965 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 966 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 967 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 968 { 969 int ret; 970 struct userspace_mem_region *region; 971 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 972 size_t mem_size = npages * vm->page_size; 973 size_t alignment; 974 975 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 976 977 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 978 "Number of guest pages is not compatible with the host. " 979 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 980 981 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 982 "address not on a page boundary.\n" 983 " guest_paddr: 0x%lx vm->page_size: 0x%x", 984 guest_paddr, vm->page_size); 985 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 986 <= vm->max_gfn, "Physical range beyond maximum " 987 "supported physical address,\n" 988 " guest_paddr: 0x%lx npages: 0x%lx\n" 989 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 990 guest_paddr, npages, vm->max_gfn, vm->page_size); 991 992 /* 993 * Confirm a mem region with an overlapping address doesn't 994 * already exist. 995 */ 996 region = (struct userspace_mem_region *) userspace_mem_region_find( 997 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 998 if (region != NULL) 999 TEST_FAIL("overlapping userspace_mem_region already " 1000 "exists\n" 1001 " requested guest_paddr: 0x%lx npages: 0x%lx " 1002 "page_size: 0x%x\n" 1003 " existing guest_paddr: 0x%lx size: 0x%lx", 1004 guest_paddr, npages, vm->page_size, 1005 (uint64_t) region->region.guest_phys_addr, 1006 (uint64_t) region->region.memory_size); 1007 1008 /* Confirm no region with the requested slot already exists. */ 1009 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1010 slot) { 1011 if (region->region.slot != slot) 1012 continue; 1013 1014 TEST_FAIL("A mem region with the requested slot " 1015 "already exists.\n" 1016 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 1017 " existing slot: %u paddr: 0x%lx size: 0x%lx", 1018 slot, guest_paddr, npages, 1019 region->region.slot, 1020 (uint64_t) region->region.guest_phys_addr, 1021 (uint64_t) region->region.memory_size); 1022 } 1023 1024 /* Allocate and initialize new mem region structure. */ 1025 region = calloc(1, sizeof(*region)); 1026 TEST_ASSERT(region != NULL, "Insufficient Memory"); 1027 region->mmap_size = mem_size; 1028 1029 #ifdef __s390x__ 1030 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 1031 alignment = 0x100000; 1032 #else 1033 alignment = 1; 1034 #endif 1035 1036 /* 1037 * When using THP mmap is not guaranteed to returned a hugepage aligned 1038 * address so we have to pad the mmap. Padding is not needed for HugeTLB 1039 * because mmap will always return an address aligned to the HugeTLB 1040 * page size. 1041 */ 1042 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 1043 alignment = max(backing_src_pagesz, alignment); 1044 1045 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 1046 1047 /* Add enough memory to align up if necessary */ 1048 if (alignment > 1) 1049 region->mmap_size += alignment; 1050 1051 region->fd = -1; 1052 if (backing_src_is_shared(src_type)) 1053 region->fd = kvm_memfd_alloc(region->mmap_size, 1054 src_type == VM_MEM_SRC_SHARED_HUGETLB); 1055 1056 region->mmap_start = mmap(NULL, region->mmap_size, 1057 PROT_READ | PROT_WRITE, 1058 vm_mem_backing_src_alias(src_type)->flag, 1059 region->fd, 0); 1060 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1061 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1062 1063 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1064 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1065 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1066 region->mmap_start, backing_src_pagesz); 1067 1068 /* Align host address */ 1069 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1070 1071 /* As needed perform madvise */ 1072 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1073 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1074 ret = madvise(region->host_mem, mem_size, 1075 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1076 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1077 region->host_mem, mem_size, 1078 vm_mem_backing_src_alias(src_type)->name); 1079 } 1080 1081 region->backing_src_type = src_type; 1082 1083 if (flags & KVM_MEM_GUEST_MEMFD) { 1084 if (guest_memfd < 0) { 1085 uint32_t guest_memfd_flags = 0; 1086 TEST_ASSERT(!guest_memfd_offset, 1087 "Offset must be zero when creating new guest_memfd"); 1088 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1089 } else { 1090 /* 1091 * Install a unique fd for each memslot so that the fd 1092 * can be closed when the region is deleted without 1093 * needing to track if the fd is owned by the framework 1094 * or by the caller. 1095 */ 1096 guest_memfd = dup(guest_memfd); 1097 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1098 } 1099 1100 region->region.guest_memfd = guest_memfd; 1101 region->region.guest_memfd_offset = guest_memfd_offset; 1102 } else { 1103 region->region.guest_memfd = -1; 1104 } 1105 1106 region->unused_phy_pages = sparsebit_alloc(); 1107 if (vm_arch_has_protected_memory(vm)) 1108 region->protected_phy_pages = sparsebit_alloc(); 1109 sparsebit_set_num(region->unused_phy_pages, 1110 guest_paddr >> vm->page_shift, npages); 1111 region->region.slot = slot; 1112 region->region.flags = flags; 1113 region->region.guest_phys_addr = guest_paddr; 1114 region->region.memory_size = npages * vm->page_size; 1115 region->region.userspace_addr = (uintptr_t) region->host_mem; 1116 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1117 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1118 " rc: %i errno: %i\n" 1119 " slot: %u flags: 0x%x\n" 1120 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1121 ret, errno, slot, flags, 1122 guest_paddr, (uint64_t) region->region.memory_size, 1123 region->region.guest_memfd); 1124 1125 /* Add to quick lookup data structures */ 1126 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1127 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1128 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1129 1130 /* If shared memory, create an alias. */ 1131 if (region->fd >= 0) { 1132 region->mmap_alias = mmap(NULL, region->mmap_size, 1133 PROT_READ | PROT_WRITE, 1134 vm_mem_backing_src_alias(src_type)->flag, 1135 region->fd, 0); 1136 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1137 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1138 1139 /* Align host alias address */ 1140 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1141 } 1142 } 1143 1144 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1145 enum vm_mem_backing_src_type src_type, 1146 uint64_t guest_paddr, uint32_t slot, 1147 uint64_t npages, uint32_t flags) 1148 { 1149 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1150 } 1151 1152 /* 1153 * Memslot to region 1154 * 1155 * Input Args: 1156 * vm - Virtual Machine 1157 * memslot - KVM memory slot ID 1158 * 1159 * Output Args: None 1160 * 1161 * Return: 1162 * Pointer to memory region structure that describe memory region 1163 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1164 * on error (e.g. currently no memory region using memslot as a KVM 1165 * memory slot ID). 1166 */ 1167 struct userspace_mem_region * 1168 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1169 { 1170 struct userspace_mem_region *region; 1171 1172 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1173 memslot) 1174 if (region->region.slot == memslot) 1175 return region; 1176 1177 fprintf(stderr, "No mem region with the requested slot found,\n" 1178 " requested slot: %u\n", memslot); 1179 fputs("---- vm dump ----\n", stderr); 1180 vm_dump(stderr, vm, 2); 1181 TEST_FAIL("Mem region not found"); 1182 return NULL; 1183 } 1184 1185 /* 1186 * VM Memory Region Flags Set 1187 * 1188 * Input Args: 1189 * vm - Virtual Machine 1190 * flags - Starting guest physical address 1191 * 1192 * Output Args: None 1193 * 1194 * Return: None 1195 * 1196 * Sets the flags of the memory region specified by the value of slot, 1197 * to the values given by flags. 1198 */ 1199 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1200 { 1201 int ret; 1202 struct userspace_mem_region *region; 1203 1204 region = memslot2region(vm, slot); 1205 1206 region->region.flags = flags; 1207 1208 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1209 1210 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1211 " rc: %i errno: %i slot: %u flags: 0x%x", 1212 ret, errno, slot, flags); 1213 } 1214 1215 /* 1216 * VM Memory Region Move 1217 * 1218 * Input Args: 1219 * vm - Virtual Machine 1220 * slot - Slot of the memory region to move 1221 * new_gpa - Starting guest physical address 1222 * 1223 * Output Args: None 1224 * 1225 * Return: None 1226 * 1227 * Change the gpa of a memory region. 1228 */ 1229 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1230 { 1231 struct userspace_mem_region *region; 1232 int ret; 1233 1234 region = memslot2region(vm, slot); 1235 1236 region->region.guest_phys_addr = new_gpa; 1237 1238 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1239 1240 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1241 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1242 ret, errno, slot, new_gpa); 1243 } 1244 1245 /* 1246 * VM Memory Region Delete 1247 * 1248 * Input Args: 1249 * vm - Virtual Machine 1250 * slot - Slot of the memory region to delete 1251 * 1252 * Output Args: None 1253 * 1254 * Return: None 1255 * 1256 * Delete a memory region. 1257 */ 1258 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1259 { 1260 struct userspace_mem_region *region = memslot2region(vm, slot); 1261 1262 region->region.memory_size = 0; 1263 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1264 1265 __vm_mem_region_delete(vm, region); 1266 } 1267 1268 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1269 bool punch_hole) 1270 { 1271 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1272 struct userspace_mem_region *region; 1273 uint64_t end = base + size; 1274 uint64_t gpa, len; 1275 off_t fd_offset; 1276 int ret; 1277 1278 for (gpa = base; gpa < end; gpa += len) { 1279 uint64_t offset; 1280 1281 region = userspace_mem_region_find(vm, gpa, gpa); 1282 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1283 "Private memory region not found for GPA 0x%lx", gpa); 1284 1285 offset = gpa - region->region.guest_phys_addr; 1286 fd_offset = region->region.guest_memfd_offset + offset; 1287 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1288 1289 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1290 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1291 punch_hole ? "punch hole" : "allocate", gpa, len, 1292 region->region.guest_memfd, mode, fd_offset); 1293 } 1294 } 1295 1296 /* Returns the size of a vCPU's kvm_run structure. */ 1297 static size_t vcpu_mmap_sz(void) 1298 { 1299 int dev_fd, ret; 1300 1301 dev_fd = open_kvm_dev_path_or_exit(); 1302 1303 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1304 TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run), 1305 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1306 1307 close(dev_fd); 1308 1309 return ret; 1310 } 1311 1312 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1313 { 1314 struct kvm_vcpu *vcpu; 1315 1316 list_for_each_entry(vcpu, &vm->vcpus, list) { 1317 if (vcpu->id == vcpu_id) 1318 return true; 1319 } 1320 1321 return false; 1322 } 1323 1324 /* 1325 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1326 * No additional vCPU setup is done. Returns the vCPU. 1327 */ 1328 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1329 { 1330 struct kvm_vcpu *vcpu; 1331 1332 /* Confirm a vcpu with the specified id doesn't already exist. */ 1333 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1334 1335 /* Allocate and initialize new vcpu structure. */ 1336 vcpu = calloc(1, sizeof(*vcpu)); 1337 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1338 1339 vcpu->vm = vm; 1340 vcpu->id = vcpu_id; 1341 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1342 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1343 1344 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1345 "smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi", 1346 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1347 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1348 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1349 TEST_ASSERT(vcpu->run != MAP_FAILED, 1350 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1351 1352 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 1353 vcpu->stats.fd = vcpu_get_stats_fd(vcpu); 1354 else 1355 vcpu->stats.fd = -1; 1356 1357 /* Add to linked-list of VCPUs. */ 1358 list_add(&vcpu->list, &vm->vcpus); 1359 1360 return vcpu; 1361 } 1362 1363 /* 1364 * VM Virtual Address Unused Gap 1365 * 1366 * Input Args: 1367 * vm - Virtual Machine 1368 * sz - Size (bytes) 1369 * vaddr_min - Minimum Virtual Address 1370 * 1371 * Output Args: None 1372 * 1373 * Return: 1374 * Lowest virtual address at or below vaddr_min, with at least 1375 * sz unused bytes. TEST_ASSERT failure if no area of at least 1376 * size sz is available. 1377 * 1378 * Within the VM specified by vm, locates the lowest starting virtual 1379 * address >= vaddr_min, that has at least sz unallocated bytes. A 1380 * TEST_ASSERT failure occurs for invalid input or no area of at least 1381 * sz unallocated bytes >= vaddr_min is available. 1382 */ 1383 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1384 vm_vaddr_t vaddr_min) 1385 { 1386 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1387 1388 /* Determine lowest permitted virtual page index. */ 1389 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1390 if ((pgidx_start * vm->page_size) < vaddr_min) 1391 goto no_va_found; 1392 1393 /* Loop over section with enough valid virtual page indexes. */ 1394 if (!sparsebit_is_set_num(vm->vpages_valid, 1395 pgidx_start, pages)) 1396 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1397 pgidx_start, pages); 1398 do { 1399 /* 1400 * Are there enough unused virtual pages available at 1401 * the currently proposed starting virtual page index. 1402 * If not, adjust proposed starting index to next 1403 * possible. 1404 */ 1405 if (sparsebit_is_clear_num(vm->vpages_mapped, 1406 pgidx_start, pages)) 1407 goto va_found; 1408 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1409 pgidx_start, pages); 1410 if (pgidx_start == 0) 1411 goto no_va_found; 1412 1413 /* 1414 * If needed, adjust proposed starting virtual address, 1415 * to next range of valid virtual addresses. 1416 */ 1417 if (!sparsebit_is_set_num(vm->vpages_valid, 1418 pgidx_start, pages)) { 1419 pgidx_start = sparsebit_next_set_num( 1420 vm->vpages_valid, pgidx_start, pages); 1421 if (pgidx_start == 0) 1422 goto no_va_found; 1423 } 1424 } while (pgidx_start != 0); 1425 1426 no_va_found: 1427 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1428 1429 /* NOT REACHED */ 1430 return -1; 1431 1432 va_found: 1433 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1434 pgidx_start, pages), 1435 "Unexpected, invalid virtual page index range,\n" 1436 " pgidx_start: 0x%lx\n" 1437 " pages: 0x%lx", 1438 pgidx_start, pages); 1439 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1440 pgidx_start, pages), 1441 "Unexpected, pages already mapped,\n" 1442 " pgidx_start: 0x%lx\n" 1443 " pages: 0x%lx", 1444 pgidx_start, pages); 1445 1446 return pgidx_start * vm->page_size; 1447 } 1448 1449 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1450 vm_vaddr_t vaddr_min, 1451 enum kvm_mem_region_type type, 1452 bool protected) 1453 { 1454 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1455 1456 virt_pgd_alloc(vm); 1457 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1458 KVM_UTIL_MIN_PFN * vm->page_size, 1459 vm->memslots[type], protected); 1460 1461 /* 1462 * Find an unused range of virtual page addresses of at least 1463 * pages in length. 1464 */ 1465 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1466 1467 /* Map the virtual pages. */ 1468 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1469 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1470 1471 virt_pg_map(vm, vaddr, paddr); 1472 1473 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1474 } 1475 1476 return vaddr_start; 1477 } 1478 1479 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1480 enum kvm_mem_region_type type) 1481 { 1482 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1483 vm_arch_has_protected_memory(vm)); 1484 } 1485 1486 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1487 vm_vaddr_t vaddr_min, 1488 enum kvm_mem_region_type type) 1489 { 1490 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1491 } 1492 1493 /* 1494 * VM Virtual Address Allocate 1495 * 1496 * Input Args: 1497 * vm - Virtual Machine 1498 * sz - Size in bytes 1499 * vaddr_min - Minimum starting virtual address 1500 * 1501 * Output Args: None 1502 * 1503 * Return: 1504 * Starting guest virtual address 1505 * 1506 * Allocates at least sz bytes within the virtual address space of the vm 1507 * given by vm. The allocated bytes are mapped to a virtual address >= 1508 * the address given by vaddr_min. Note that each allocation uses a 1509 * a unique set of pages, with the minimum real allocation being at least 1510 * a page. The allocated physical space comes from the TEST_DATA memory region. 1511 */ 1512 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1513 { 1514 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1515 } 1516 1517 /* 1518 * VM Virtual Address Allocate Pages 1519 * 1520 * Input Args: 1521 * vm - Virtual Machine 1522 * 1523 * Output Args: None 1524 * 1525 * Return: 1526 * Starting guest virtual address 1527 * 1528 * Allocates at least N system pages worth of bytes within the virtual address 1529 * space of the vm. 1530 */ 1531 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1532 { 1533 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1534 } 1535 1536 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1537 { 1538 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1539 } 1540 1541 /* 1542 * VM Virtual Address Allocate Page 1543 * 1544 * Input Args: 1545 * vm - Virtual Machine 1546 * 1547 * Output Args: None 1548 * 1549 * Return: 1550 * Starting guest virtual address 1551 * 1552 * Allocates at least one system page worth of bytes within the virtual address 1553 * space of the vm. 1554 */ 1555 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1556 { 1557 return vm_vaddr_alloc_pages(vm, 1); 1558 } 1559 1560 /* 1561 * Map a range of VM virtual address to the VM's physical address 1562 * 1563 * Input Args: 1564 * vm - Virtual Machine 1565 * vaddr - Virtuall address to map 1566 * paddr - VM Physical Address 1567 * npages - The number of pages to map 1568 * 1569 * Output Args: None 1570 * 1571 * Return: None 1572 * 1573 * Within the VM given by @vm, creates a virtual translation for 1574 * @npages starting at @vaddr to the page range starting at @paddr. 1575 */ 1576 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1577 unsigned int npages) 1578 { 1579 size_t page_size = vm->page_size; 1580 size_t size = npages * page_size; 1581 1582 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1583 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1584 1585 while (npages--) { 1586 virt_pg_map(vm, vaddr, paddr); 1587 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1588 1589 vaddr += page_size; 1590 paddr += page_size; 1591 } 1592 } 1593 1594 /* 1595 * Address VM Physical to Host Virtual 1596 * 1597 * Input Args: 1598 * vm - Virtual Machine 1599 * gpa - VM physical address 1600 * 1601 * Output Args: None 1602 * 1603 * Return: 1604 * Equivalent host virtual address 1605 * 1606 * Locates the memory region containing the VM physical address given 1607 * by gpa, within the VM given by vm. When found, the host virtual 1608 * address providing the memory to the vm physical address is returned. 1609 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1610 */ 1611 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1612 { 1613 struct userspace_mem_region *region; 1614 1615 gpa = vm_untag_gpa(vm, gpa); 1616 1617 region = userspace_mem_region_find(vm, gpa, gpa); 1618 if (!region) { 1619 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1620 return NULL; 1621 } 1622 1623 return (void *)((uintptr_t)region->host_mem 1624 + (gpa - region->region.guest_phys_addr)); 1625 } 1626 1627 /* 1628 * Address Host Virtual to VM Physical 1629 * 1630 * Input Args: 1631 * vm - Virtual Machine 1632 * hva - Host virtual address 1633 * 1634 * Output Args: None 1635 * 1636 * Return: 1637 * Equivalent VM physical address 1638 * 1639 * Locates the memory region containing the host virtual address given 1640 * by hva, within the VM given by vm. When found, the equivalent 1641 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1642 * region containing hva exists. 1643 */ 1644 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1645 { 1646 struct rb_node *node; 1647 1648 for (node = vm->regions.hva_tree.rb_node; node; ) { 1649 struct userspace_mem_region *region = 1650 container_of(node, struct userspace_mem_region, hva_node); 1651 1652 if (hva >= region->host_mem) { 1653 if (hva <= (region->host_mem 1654 + region->region.memory_size - 1)) 1655 return (vm_paddr_t)((uintptr_t) 1656 region->region.guest_phys_addr 1657 + (hva - (uintptr_t)region->host_mem)); 1658 1659 node = node->rb_right; 1660 } else 1661 node = node->rb_left; 1662 } 1663 1664 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1665 return -1; 1666 } 1667 1668 /* 1669 * Address VM physical to Host Virtual *alias*. 1670 * 1671 * Input Args: 1672 * vm - Virtual Machine 1673 * gpa - VM physical address 1674 * 1675 * Output Args: None 1676 * 1677 * Return: 1678 * Equivalent address within the host virtual *alias* area, or NULL 1679 * (without failing the test) if the guest memory is not shared (so 1680 * no alias exists). 1681 * 1682 * Create a writable, shared virtual=>physical alias for the specific GPA. 1683 * The primary use case is to allow the host selftest to manipulate guest 1684 * memory without mapping said memory in the guest's address space. And, for 1685 * userfaultfd-based demand paging, to do so without triggering userfaults. 1686 */ 1687 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1688 { 1689 struct userspace_mem_region *region; 1690 uintptr_t offset; 1691 1692 region = userspace_mem_region_find(vm, gpa, gpa); 1693 if (!region) 1694 return NULL; 1695 1696 if (!region->host_alias) 1697 return NULL; 1698 1699 offset = gpa - region->region.guest_phys_addr; 1700 return (void *) ((uintptr_t) region->host_alias + offset); 1701 } 1702 1703 /* Create an interrupt controller chip for the specified VM. */ 1704 void vm_create_irqchip(struct kvm_vm *vm) 1705 { 1706 int r; 1707 1708 /* 1709 * Allocate a fully in-kernel IRQ chip by default, but fall back to a 1710 * split model (x86 only) if that fails (KVM x86 allows compiling out 1711 * support for KVM_CREATE_IRQCHIP). 1712 */ 1713 r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1714 if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP)) 1715 vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24); 1716 else 1717 TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm); 1718 1719 vm->has_irqchip = true; 1720 } 1721 1722 int _vcpu_run(struct kvm_vcpu *vcpu) 1723 { 1724 int rc; 1725 1726 do { 1727 rc = __vcpu_run(vcpu); 1728 } while (rc == -1 && errno == EINTR); 1729 1730 if (!rc) 1731 assert_on_unhandled_exception(vcpu); 1732 1733 return rc; 1734 } 1735 1736 /* 1737 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1738 * Assert if the KVM returns an error (other than -EINTR). 1739 */ 1740 void vcpu_run(struct kvm_vcpu *vcpu) 1741 { 1742 int ret = _vcpu_run(vcpu); 1743 1744 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1745 } 1746 1747 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1748 { 1749 int ret; 1750 1751 vcpu->run->immediate_exit = 1; 1752 ret = __vcpu_run(vcpu); 1753 vcpu->run->immediate_exit = 0; 1754 1755 TEST_ASSERT(ret == -1 && errno == EINTR, 1756 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1757 ret, errno); 1758 } 1759 1760 /* 1761 * Get the list of guest registers which are supported for 1762 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1763 * it is the caller's responsibility to free the list. 1764 */ 1765 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1766 { 1767 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1768 int ret; 1769 1770 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1771 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1772 1773 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1774 reg_list->n = reg_list_n.n; 1775 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1776 return reg_list; 1777 } 1778 1779 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1780 { 1781 uint32_t page_size = getpagesize(); 1782 uint32_t size = vcpu->vm->dirty_ring_size; 1783 1784 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1785 1786 if (!vcpu->dirty_gfns) { 1787 void *addr; 1788 1789 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1790 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1791 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1792 1793 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1794 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1795 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1796 1797 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1798 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1799 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1800 1801 vcpu->dirty_gfns = addr; 1802 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1803 } 1804 1805 return vcpu->dirty_gfns; 1806 } 1807 1808 /* 1809 * Device Ioctl 1810 */ 1811 1812 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1813 { 1814 struct kvm_device_attr attribute = { 1815 .group = group, 1816 .attr = attr, 1817 .flags = 0, 1818 }; 1819 1820 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1821 } 1822 1823 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1824 { 1825 struct kvm_create_device create_dev = { 1826 .type = type, 1827 .flags = KVM_CREATE_DEVICE_TEST, 1828 }; 1829 1830 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1831 } 1832 1833 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1834 { 1835 struct kvm_create_device create_dev = { 1836 .type = type, 1837 .fd = -1, 1838 .flags = 0, 1839 }; 1840 int err; 1841 1842 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1843 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1844 return err ? : create_dev.fd; 1845 } 1846 1847 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1848 { 1849 struct kvm_device_attr kvmattr = { 1850 .group = group, 1851 .attr = attr, 1852 .flags = 0, 1853 .addr = (uintptr_t)val, 1854 }; 1855 1856 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1857 } 1858 1859 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1860 { 1861 struct kvm_device_attr kvmattr = { 1862 .group = group, 1863 .attr = attr, 1864 .flags = 0, 1865 .addr = (uintptr_t)val, 1866 }; 1867 1868 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1869 } 1870 1871 /* 1872 * IRQ related functions. 1873 */ 1874 1875 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1876 { 1877 struct kvm_irq_level irq_level = { 1878 .irq = irq, 1879 .level = level, 1880 }; 1881 1882 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1883 } 1884 1885 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1886 { 1887 int ret = _kvm_irq_line(vm, irq, level); 1888 1889 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1890 } 1891 1892 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1893 { 1894 struct kvm_irq_routing *routing; 1895 size_t size; 1896 1897 size = sizeof(struct kvm_irq_routing); 1898 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1899 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1900 routing = calloc(1, size); 1901 assert(routing); 1902 1903 return routing; 1904 } 1905 1906 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1907 uint32_t gsi, uint32_t pin) 1908 { 1909 int i; 1910 1911 assert(routing); 1912 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1913 1914 i = routing->nr; 1915 routing->entries[i].gsi = gsi; 1916 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1917 routing->entries[i].flags = 0; 1918 routing->entries[i].u.irqchip.irqchip = 0; 1919 routing->entries[i].u.irqchip.pin = pin; 1920 routing->nr++; 1921 } 1922 1923 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1924 { 1925 int ret; 1926 1927 assert(routing); 1928 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1929 free(routing); 1930 1931 return ret; 1932 } 1933 1934 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1935 { 1936 int ret; 1937 1938 ret = _kvm_gsi_routing_write(vm, routing); 1939 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1940 } 1941 1942 /* 1943 * VM Dump 1944 * 1945 * Input Args: 1946 * vm - Virtual Machine 1947 * indent - Left margin indent amount 1948 * 1949 * Output Args: 1950 * stream - Output FILE stream 1951 * 1952 * Return: None 1953 * 1954 * Dumps the current state of the VM given by vm, to the FILE stream 1955 * given by stream. 1956 */ 1957 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1958 { 1959 int ctr; 1960 struct userspace_mem_region *region; 1961 struct kvm_vcpu *vcpu; 1962 1963 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1964 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1965 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1966 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1967 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1968 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1969 "host_virt: %p\n", indent + 2, "", 1970 (uint64_t) region->region.guest_phys_addr, 1971 (uint64_t) region->region.memory_size, 1972 region->host_mem); 1973 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1974 sparsebit_dump(stream, region->unused_phy_pages, 0); 1975 if (region->protected_phy_pages) { 1976 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1977 sparsebit_dump(stream, region->protected_phy_pages, 0); 1978 } 1979 } 1980 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1981 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1982 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1983 vm->pgd_created); 1984 if (vm->pgd_created) { 1985 fprintf(stream, "%*sVirtual Translation Tables:\n", 1986 indent + 2, ""); 1987 virt_dump(stream, vm, indent + 4); 1988 } 1989 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1990 1991 list_for_each_entry(vcpu, &vm->vcpus, list) 1992 vcpu_dump(stream, vcpu, indent + 2); 1993 } 1994 1995 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1996 1997 /* Known KVM exit reasons */ 1998 static struct exit_reason { 1999 unsigned int reason; 2000 const char *name; 2001 } exit_reasons_known[] = { 2002 KVM_EXIT_STRING(UNKNOWN), 2003 KVM_EXIT_STRING(EXCEPTION), 2004 KVM_EXIT_STRING(IO), 2005 KVM_EXIT_STRING(HYPERCALL), 2006 KVM_EXIT_STRING(DEBUG), 2007 KVM_EXIT_STRING(HLT), 2008 KVM_EXIT_STRING(MMIO), 2009 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 2010 KVM_EXIT_STRING(SHUTDOWN), 2011 KVM_EXIT_STRING(FAIL_ENTRY), 2012 KVM_EXIT_STRING(INTR), 2013 KVM_EXIT_STRING(SET_TPR), 2014 KVM_EXIT_STRING(TPR_ACCESS), 2015 KVM_EXIT_STRING(S390_SIEIC), 2016 KVM_EXIT_STRING(S390_RESET), 2017 KVM_EXIT_STRING(DCR), 2018 KVM_EXIT_STRING(NMI), 2019 KVM_EXIT_STRING(INTERNAL_ERROR), 2020 KVM_EXIT_STRING(OSI), 2021 KVM_EXIT_STRING(PAPR_HCALL), 2022 KVM_EXIT_STRING(S390_UCONTROL), 2023 KVM_EXIT_STRING(WATCHDOG), 2024 KVM_EXIT_STRING(S390_TSCH), 2025 KVM_EXIT_STRING(EPR), 2026 KVM_EXIT_STRING(SYSTEM_EVENT), 2027 KVM_EXIT_STRING(S390_STSI), 2028 KVM_EXIT_STRING(IOAPIC_EOI), 2029 KVM_EXIT_STRING(HYPERV), 2030 KVM_EXIT_STRING(ARM_NISV), 2031 KVM_EXIT_STRING(X86_RDMSR), 2032 KVM_EXIT_STRING(X86_WRMSR), 2033 KVM_EXIT_STRING(DIRTY_RING_FULL), 2034 KVM_EXIT_STRING(AP_RESET_HOLD), 2035 KVM_EXIT_STRING(X86_BUS_LOCK), 2036 KVM_EXIT_STRING(XEN), 2037 KVM_EXIT_STRING(RISCV_SBI), 2038 KVM_EXIT_STRING(RISCV_CSR), 2039 KVM_EXIT_STRING(NOTIFY), 2040 KVM_EXIT_STRING(LOONGARCH_IOCSR), 2041 KVM_EXIT_STRING(MEMORY_FAULT), 2042 }; 2043 2044 /* 2045 * Exit Reason String 2046 * 2047 * Input Args: 2048 * exit_reason - Exit reason 2049 * 2050 * Output Args: None 2051 * 2052 * Return: 2053 * Constant string pointer describing the exit reason. 2054 * 2055 * Locates and returns a constant string that describes the KVM exit 2056 * reason given by exit_reason. If no such string is found, a constant 2057 * string of "Unknown" is returned. 2058 */ 2059 const char *exit_reason_str(unsigned int exit_reason) 2060 { 2061 unsigned int n1; 2062 2063 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2064 if (exit_reason == exit_reasons_known[n1].reason) 2065 return exit_reasons_known[n1].name; 2066 } 2067 2068 return "Unknown"; 2069 } 2070 2071 /* 2072 * Physical Contiguous Page Allocator 2073 * 2074 * Input Args: 2075 * vm - Virtual Machine 2076 * num - number of pages 2077 * paddr_min - Physical address minimum 2078 * memslot - Memory region to allocate page from 2079 * protected - True if the pages will be used as protected/private memory 2080 * 2081 * Output Args: None 2082 * 2083 * Return: 2084 * Starting physical address 2085 * 2086 * Within the VM specified by vm, locates a range of available physical 2087 * pages at or above paddr_min. If found, the pages are marked as in use 2088 * and their base address is returned. A TEST_ASSERT failure occurs if 2089 * not enough pages are available at or above paddr_min. 2090 */ 2091 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2092 vm_paddr_t paddr_min, uint32_t memslot, 2093 bool protected) 2094 { 2095 struct userspace_mem_region *region; 2096 sparsebit_idx_t pg, base; 2097 2098 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2099 2100 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2101 "not divisible by page size.\n" 2102 " paddr_min: 0x%lx page_size: 0x%x", 2103 paddr_min, vm->page_size); 2104 2105 region = memslot2region(vm, memslot); 2106 TEST_ASSERT(!protected || region->protected_phy_pages, 2107 "Region doesn't support protected memory"); 2108 2109 base = pg = paddr_min >> vm->page_shift; 2110 do { 2111 for (; pg < base + num; ++pg) { 2112 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2113 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2114 break; 2115 } 2116 } 2117 } while (pg && pg != base + num); 2118 2119 if (pg == 0) { 2120 fprintf(stderr, "No guest physical page available, " 2121 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2122 paddr_min, vm->page_size, memslot); 2123 fputs("---- vm dump ----\n", stderr); 2124 vm_dump(stderr, vm, 2); 2125 abort(); 2126 } 2127 2128 for (pg = base; pg < base + num; ++pg) { 2129 sparsebit_clear(region->unused_phy_pages, pg); 2130 if (protected) 2131 sparsebit_set(region->protected_phy_pages, pg); 2132 } 2133 2134 return base * vm->page_size; 2135 } 2136 2137 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2138 uint32_t memslot) 2139 { 2140 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2141 } 2142 2143 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2144 { 2145 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2146 vm->memslots[MEM_REGION_PT]); 2147 } 2148 2149 /* 2150 * Address Guest Virtual to Host Virtual 2151 * 2152 * Input Args: 2153 * vm - Virtual Machine 2154 * gva - VM virtual address 2155 * 2156 * Output Args: None 2157 * 2158 * Return: 2159 * Equivalent host virtual address 2160 */ 2161 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2162 { 2163 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2164 } 2165 2166 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2167 { 2168 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2169 } 2170 2171 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2172 unsigned int page_shift, 2173 unsigned int new_page_shift, 2174 bool ceil) 2175 { 2176 unsigned int n = 1 << (new_page_shift - page_shift); 2177 2178 if (page_shift >= new_page_shift) 2179 return num_pages * (1 << (page_shift - new_page_shift)); 2180 2181 return num_pages / n + !!(ceil && num_pages % n); 2182 } 2183 2184 static inline int getpageshift(void) 2185 { 2186 return __builtin_ffs(getpagesize()) - 1; 2187 } 2188 2189 unsigned int 2190 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2191 { 2192 return vm_calc_num_pages(num_guest_pages, 2193 vm_guest_mode_params[mode].page_shift, 2194 getpageshift(), true); 2195 } 2196 2197 unsigned int 2198 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2199 { 2200 return vm_calc_num_pages(num_host_pages, getpageshift(), 2201 vm_guest_mode_params[mode].page_shift, false); 2202 } 2203 2204 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2205 { 2206 unsigned int n; 2207 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2208 return vm_adjust_num_guest_pages(mode, n); 2209 } 2210 2211 /* 2212 * Read binary stats descriptors 2213 * 2214 * Input Args: 2215 * stats_fd - the file descriptor for the binary stats file from which to read 2216 * header - the binary stats metadata header corresponding to the given FD 2217 * 2218 * Output Args: None 2219 * 2220 * Return: 2221 * A pointer to a newly allocated series of stat descriptors. 2222 * Caller is responsible for freeing the returned kvm_stats_desc. 2223 * 2224 * Read the stats descriptors from the binary stats interface. 2225 */ 2226 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2227 struct kvm_stats_header *header) 2228 { 2229 struct kvm_stats_desc *stats_desc; 2230 ssize_t desc_size, total_size, ret; 2231 2232 desc_size = get_stats_descriptor_size(header); 2233 total_size = header->num_desc * desc_size; 2234 2235 stats_desc = calloc(header->num_desc, desc_size); 2236 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2237 2238 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2239 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2240 2241 return stats_desc; 2242 } 2243 2244 /* 2245 * Read stat data for a particular stat 2246 * 2247 * Input Args: 2248 * stats_fd - the file descriptor for the binary stats file from which to read 2249 * header - the binary stats metadata header corresponding to the given FD 2250 * desc - the binary stat metadata for the particular stat to be read 2251 * max_elements - the maximum number of 8-byte values to read into data 2252 * 2253 * Output Args: 2254 * data - the buffer into which stat data should be read 2255 * 2256 * Read the data values of a specified stat from the binary stats interface. 2257 */ 2258 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2259 struct kvm_stats_desc *desc, uint64_t *data, 2260 size_t max_elements) 2261 { 2262 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2263 size_t size = nr_elements * sizeof(*data); 2264 ssize_t ret; 2265 2266 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2267 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2268 2269 ret = pread(stats_fd, data, size, 2270 header->data_offset + desc->offset); 2271 2272 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2273 desc->name, errno, strerror(errno)); 2274 TEST_ASSERT(ret == size, 2275 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2276 desc->name, size, ret); 2277 } 2278 2279 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 2280 uint64_t *data, size_t max_elements) 2281 { 2282 struct kvm_stats_desc *desc; 2283 size_t size_desc; 2284 int i; 2285 2286 if (!stats->desc) { 2287 read_stats_header(stats->fd, &stats->header); 2288 stats->desc = read_stats_descriptors(stats->fd, &stats->header); 2289 } 2290 2291 size_desc = get_stats_descriptor_size(&stats->header); 2292 2293 for (i = 0; i < stats->header.num_desc; ++i) { 2294 desc = (void *)stats->desc + (i * size_desc); 2295 2296 if (strcmp(desc->name, name)) 2297 continue; 2298 2299 read_stat_data(stats->fd, &stats->header, desc, data, max_elements); 2300 return; 2301 } 2302 2303 TEST_FAIL("Unable to find stat '%s'", name); 2304 } 2305 2306 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus) 2307 { 2308 } 2309 2310 __weak void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm) 2311 { 2312 } 2313 2314 __weak void kvm_arch_vm_release(struct kvm_vm *vm) 2315 { 2316 } 2317 2318 __weak void kvm_selftest_arch_init(void) 2319 { 2320 } 2321 2322 void __attribute((constructor)) kvm_selftest_init(void) 2323 { 2324 /* Tell stdout not to buffer its content. */ 2325 setbuf(stdout, NULL); 2326 2327 guest_random_seed = last_guest_seed = random(); 2328 pr_info("Random seed: 0x%x\n", guest_random_seed); 2329 2330 kvm_selftest_arch_init(); 2331 } 2332 2333 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2334 { 2335 sparsebit_idx_t pg = 0; 2336 struct userspace_mem_region *region; 2337 2338 if (!vm_arch_has_protected_memory(vm)) 2339 return false; 2340 2341 region = userspace_mem_region_find(vm, paddr, paddr); 2342 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2343 2344 pg = paddr >> vm->page_shift; 2345 return sparsebit_is_set(region->protected_phy_pages, pg); 2346 } 2347